1.4: Solving Absolute Value Equations Kf >/

The absolute value of a number is its distance from zero on a number line. Since distance is
always non-negative, absolute values are always non-negative.

Symbol: |x|

Another way of understanding it is that the absolute value bars are like a “positivity machine.”
Any number that enters the positivity machine will come out positive. Zero will come out as zero.

Ex #1: Please evaluate the following if x = -2 .
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Solving Absolute Value E_q:ations — “BIFURCATE” — meaning, dividing into two branches
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Ex #2: Please solve each equatlon. Then graph your solution(s) on a number line.

(then solve both branches) X/ K /
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No solution?
We know that an absolute value is always equal to a positive number.
Thus, whenever an absolute value equation equals a negative number, there is no solution.

Here are some examples of an equation having “no solution” for the variable, ‘a’.

o = -8 (there is no number that a can be _EBE‘ ::8- (divide both sides by -2, to
that would make the equation true) -z Z see that abs. value = neg.)
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Ex #3: Extraneous Solutions — When an absolute value expression is set equal to an
expression containing a variable, extraneous solutions may be encountered.

(Hint: first combine like terms. Then isolate the absolute value. Then bifurcate, and solve each.)
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