AP® PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

Electron charge magnitude,

 $e = 1.60 \times 10^{-19} \text{ C}$

Coulomb's law constant,

 $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Universal gravitational constant,

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	C		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	T		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	С		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	o°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

MECH	HANICS
$v_x = v_{x0} + a_x t$	a = acceleration
λ λΟ λ	A = amplitude
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d = distance
$x - x_0 + v_{x0}t + 2u_xt$	E = energy
2 2 2 ()	f = frequency
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	F = force
$\mathbf{\nabla} \vec{\mathbf{c}} = \vec{\mathbf{c}}$	I = rotational inertia
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy
m m	k = spring constant
	_

$$|\vec{F}_f| \le \mu |\vec{F}_n|$$
 $L = \text{angular momentum}$ $\ell = \text{length}$ $m = \text{mass}$ $\ell = \text{power}$

$$a_c = \frac{1}{r}$$
 $p = power$
 $p = momentum$
 $\vec{p} = m\vec{v}$
 $r = radius \text{ or separation}$

$$\Delta \vec{p} = \vec{F} \Delta t$$
 $T = \text{period}$ $t = \text{time}$ $U = \text{potential energy}$

$$K = \frac{1}{2}mv^2$$

$$V = \text{volume}$$

$$v = \text{speed}$$

$$\Delta E = W = F_{\parallel}d = Fd\cos\theta$$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$

$$x = position$$

$$y = height$$

$$\alpha = angular$$

$$\alpha$$
 = angular acceleration μ = coefficient of friction

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\theta = \text{angle}$$

$$\rho = \text{density}$$

$$\omega = \omega_0 + \alpha t$$

$$\tau = \text{torque}$$

$$\omega = \omega_0 + \alpha t$$
 $\tau = \text{torque}$
 $\alpha = \alpha \cos(2\pi f t)$ $\tau = \alpha \cos(2\pi f t)$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$$
 $\Delta U_g = mg \Delta y$

$$\tau = r_{\perp}F = rF\sin\theta \qquad \qquad T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$L = I\omega$$

$$\Delta L = \tau \Delta t$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$K = \frac{1}{2}I\omega^2 \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$\left|\vec{F}_{s}\right| = k\left|\vec{x}\right| \qquad \left|\vec{F}_{g}\right| = G\frac{m_{1}m_{2}}{r^{2}}$$

$$U_s = \frac{1}{2}kx^2$$

$$\vec{g} = \frac{\vec{F}_g}{m}$$

$$\rho = \frac{m}{V} \qquad U_G = -\frac{Gm_1m_2}{r}$$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference
	V = volume
Triangle	S = surface area
$A = \frac{1}{2}bh$	b = base
2	h = height
	$\ell = length$
Circle	w = width
$A = \pi r^2$	r = radius

Rectangular solid Right
$$V = \ell wh$$
 c^2

Cylinder
$$V = \pi r^2 \ell$$
$$S = 2\pi r \ell + 2\pi r^2$$

Sphere
$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

 $C = 2\pi r$

Right triangle $c^2 = a^2 + b^2$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

