Exercise: Rootfinding

In this exercise, we'll be finding a root of a 2-dimensional residual function $g: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$:

$$
g\left(\left[\begin{array}{l}
x \tag{1}\\
y
\end{array}\right]\right)=\left[\begin{array}{c}
\tanh \left((x+2) y^{2} \frac{1}{25}-0.5\right) \\
\sin (x)-0.5 y+1
\end{array}\right] .
$$

1 Rootfinding, finite-differences

Tasks:

1. Write an m -function that implements g :
```
function \(\mathrm{z}=\mathrm{g}(\mathrm{w})\)
    \(\mathrm{x}=\mathrm{w}(1)\); \(\mathrm{y}=\mathrm{w}(2)\);
    \(\mathrm{g} 1=\tanh \left((\mathrm{x}+2) * \mathrm{y}^{\wedge} 2 / 25-0.5\right)\);
    \(\mathrm{g} 2=\sin (\mathrm{x})-0.5 * \mathrm{y}+1\);
    z = [g1;g2];
end
```

Verify that $\mathrm{g}([-0.8 ; 2])$ yields $[-0.2986 ;-0.7174]$.
2. Write a script that computes the Jacobian of g using finite differences with $\epsilon=1 \mathrm{e}-8$, at the point $x_{0}=\left[\begin{array}{c}-0.8 \\ 2\end{array}\right]$. Verify that the Jacobian at this location is $[0.14570 .1749 ; 0.6967$ -0.5000].
3. Perform 5 Newton steps starting from x_{0}. Verify that you end up at $[0.1945 ; 2.3866]$.

2 Rootfinding, using a CasADi Jacobian

For now, all you need to know about CasADi is:

1. Symbols are created as in $x=M X . \operatorname{sym}(' x ')$.
2. Symbols, numbers and operations can be composed into symbolic expressions e.g. $\sin (x)-0.5$.
3. Symbolic expressions can be evaluated by constructing a CasADi Function using a list of input symbols and list of output expressions:
$\mathrm{f}=$ Function('f',\{x\},\{sin(x)-0.5\});
$f(0.8) \%$ evaluate for $x=0.8$
4. The output of a CasADi Function evaluation is a CasADi numeric type (DM). Use 'full' or 'sparse' to convert it to a regular Matlab matrix:
f_value $=$ full (f(0.8))
Tasks:
5. Follow the CasADi install instructions from http://install35.casadi.org. Verify that you can run the example on that webpage.
6. After importing CasADi into the global namespace (import casadi.*), create a two-by-one symbolic matrix x as follows:

X = MX.sym('X',2);

Verify that $\mathrm{g}(\mathrm{X})$ evaluates without error. Use Matlab's class(.) function to check the datatype of $g(X)$, and size(.) to check its dimension: it is a 2-by-1 symbolic expression. Can you make sense of print-representation? Inspect the symbolic expression J=jacobian ($\mathrm{g}(\mathrm{X}$), X). What are its datatype and dimensions?
3. Create a CasADi Function called Jf (see syntax in step 3 above) that maps from X to J. The print representation ${ }^{11}$ of this Function will look like:

Jf:(i0[2])->(oO[2x2]) MXFunction

Keeping in mind that a print representation should convey something insightful in a compact way, what do you think [2] and [2x2] mean here?
4. Now that we created a Function out of J, evaluate it numerically (see syntax in step 4 above) at $x_{0}=\left[\begin{array}{c}-0.8 \\ 2\end{array}\right]$. Verify the result with the finite difference result obtained earlier.
5. Perform 5 Newton steps starting from x_{0} and using a Jacobian computed by CasADi.

Here, we will pause the exercise and dive a bit deeper into CasADi basics...

[^0]
3 CasADi's rootfinder

Instead of writing out the Newton steps ourselves, we may also use a built-in rootfinder of CasADi. Mathematically, the expected form for the residual function is:

$$
\begin{equation*}
g(x, p)=0 \tag{2}
\end{equation*}
$$

with $x \in \mathbb{R}^{n}$ the unknowns, and $p \in \mathbb{R}^{m}$ parameters.
Syntax-wise, the construction of this CasADi Function looks like:
rf = rootfinder('rf','newton',struct('x',...,'p',...,'g',...));
where 'rf' is a label, 'newton' identifies a particular solver implementation, and the dots are placeholders for symbolic expressions. The x and p expressions should be symbols, while the g expression should depend on those (and only those) symbols. The p keyword and expression may also be omitted (indeed, here we have no parameters i.e. $m=0$).

Tasks:

1. Create a CasADi rootfinder Function object rf that can be used to solve Equation 1. Use only expressions defined earlier in the exercise. Verify that the print representation is as follows:
$r f:(x 0[2], p[])->(x[2])$ Newton
This means that the function expects 2 inputs:
(a) The initial guess for the unknown x , a two-vector.
(b) The parameter vector p, an empty vector [].
2. Verify that the evaluation of the rootfinder Function object rf gives the same result as the hand-coded Newton iterations for the same initial guess:

$$
r f([-0.8 ; 2],[])
$$

3. Have a look at rf.stats(). How many iterations did the rootfinder take?
4. The rootfinder constructor takes an optional fourth argument: a structure of options. Try out what information you can get with a 'print_iteration' option set to true.

[^0]: ${ }^{1}$ disp(Jf)

