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1

Weather derivatives and the weather
derivatives market

1.1 Introduction

This book is about the valuation of a certain class of financial contracts
known as weather derivatives. The purpose of weather derivatives is to allow
businesses and other organisations to insure themselves against fluctuations
in the weather. For example, they allow natural gas companies to avoid the
negative impact of a mild winter when no one turns on the heating, they
allow construction companies to avoid the losses due to a period of rain
when construction workers cannot work outside and they allow ski resorts
to make up for the money they lose when there is no snow.

The weather derivatives market, in which contracts that provide this kind
of insurance are traded, first appeared in the US energy industry in 1996
and 1997. Companies accustomed to trading contracts based on electricity
and gas prices in order to hedge their electricity and gas price risk realised
they could trade contracts based on the weather and hedge their weather
risk in the same way. The market grew rapidly and soon expanded to other
industries and to Europe and Japan. Volatility in the financial markets has
meant that not all of the original participants are still trading, but the
weather derivatives market has steadily grown and there are now a number
of energy companies, insurance companies, reinsurance companies, banks
and hedge funds that have groups dedicated purely to the business of buying
and selling weather derivatives. The Weather Risk Management Association
(WRMA), the industry body that represents the weather market, recently
reported a total notional value of over $10 billion for weather derivative
trades in the year 2002/2003.1

During the eight years since the first weather derivative trades took place
the ‘science’ of weather derivative pricing has gradually developed. It now

1 See http://wrma.org.
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2 Weather derivatives and the market

seems possible, and – hopefully – useful, to bring this information together
into one place, both for the benefit of those already involved in the market as
a point of reference and for those outside the market who are interested to
learn what weather derivative pricing is all about. Other than this chap-
ter, which contains introductory material about weather derivatives and
the weather derivative market, the book focuses on the meteorological, sta-
tistical, mathematical and financial issues that determine the methods used
for the pricing, valuation and risk management of weather derivatives con-
tracts and portfolios. We attempt to describe all the methods and models
currently in use in the weather market and give examples of how they can be
applied in practice. We cannot cover everything, however. There are many
ways of approaching the question of how to price a weather derivative, there
are strong financial incentives to invent (and keep secret!) new and more
accurate methods for such pricing, and there is undoubtedly much progress
still to be made.

The overall level of this book is such that a technical graduate with a
reasonable understanding of mathematics should be able to follow almost all
of it, and no particular background in meteorology, statistics, mathematics
or finance is required. We hope that, if you read this book, you will learn
something of each of these subjects.

This chapter proceeds with a brief introduction to the weather derivatives
market, a description of the various weather indices used by the market, a
description of how these weather indices are related to the pay-offs of weather
derivative contracts, and an overview of the methods used for the valuation
of weather contracts.

1.1.1 The impact of weather on business and the

rationale for hedging

The types of impact of weather on businesses range from small reductions
in revenues, as might occur when a shop attracts fewer customers on a
rainy day, to total disaster, such as when a tornado destroys a factory. Tor-
nadoes are an example of what we will call catastrophic weather events.
Such weather events also include severe tropical cyclones, extra-tropical wind
storms, hail storms, ice storms and rain storms. They often cause extreme
damage to property and loss of life. Companies wishing to protect them-
selves against the financial impact of such disasters can buy insurance that
will pay them according to the losses they sustain. Weather derivatives,
however, are designed to help companies insure themselves against non-
catastrophic weather events. Non-catastrophic weather fluctuations include
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warm or cold periods, rainy or dry periods, windy or calm periods, and so
on. They are expected to occur reasonably frequently. Nevertheless, they can
cause significant discomfort for (or bring significant benefits to) businesses
with profits that depend in a sensitive way on the weather. Hedging with
weather derivatives is desirable for such businesses because it significantly
reduces the year-to-year volatility of their profits. This is beneficial for a
number of reasons, including:

� low volatility in profits can often reduce the interest rate at which companies
borrow money;

� in a publicly traded company low volatility in profits usually translates into low
volatility in the share price, and less volatile shares are valued more highly;

� low volatility in profits reduces the risk of bankruptcy.

Although a company hedging its weather risk using weather derivatives will
typically lose money, on average, on the hedge, it can still be very beneficial
to hedge for these reasons.

Governmental and non-profit use of weather derivatives

Weather derivatives can also be used by non-business entities, such as local
and national government organisations and charities. In these cases it would
typically be weather-induced fluctuations in costs that would be hedged.
Such hedging can reduce the variability of costs from season to season or
year to year, and hence reduce the risk of unexpected budget overruns.

1.1.2 Examples of weather hedging

Weather variability affects different entities in different ways. In many busi-
nesses weather is related to the volume of sales transacted. Examples of this
would include:

� a natural gas supply company, which would sell less gas in a warm winter;
� a ski resort, which would attract fewer skiers when there is little snow;
� a clothes retailing company, which would sell fewer clothes in a cold summer;
� an amusement park, which would attract fewer visitors when it rains.

But weather can also affect profits in ways other than through changes in
the volume of sales. Examples include:

� a construction company, which experiences delays when it is cold or raining be-
cause labourers cannot work outside;

� a hydroelectric power generation company, which generates less electricity when
rainfall is reduced;
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� a vehicle breakdown rescue company, which has increased costs on icy days, when
more traffic accidents occur;

� a fish farm, where fish grow less quickly when the sea temperature is lower.

All these risks could be hedged using weather derivatives.

1.1.3 The definition of a weather derivative

A standard weather derivative contract, as might be used to hedge the risks
described above, is defined by the following attributes:

� the contract period: a start date and an end date;
� a measurement station;
� a weather variable, measured at the measurement station, over the contract
period;

� an index, which aggregates the weather variable over the contract period in some
way;

� a pay-off function, which converts the index into the cashflow that settles the
derivative shortly after the end of the contract period;

� for some kinds of contract, a premium paid from the buyer to the seller at the
start of the contract.

These basic attributes are supplemented by:

� a measurement agency, responsible for measuring the weather variable;
� a settlement agent, responsible for producing the final values of the index on the
basis of the measured values; according to defined algorithms that (hopefully)
cope with all eventualities, such as a failure of the measuring equipment;

� a back-up station, to be used in case the main station fails;
� a time period over which the settlement takes place.

It is not the purpose of this book to describe the legal and administrative as-
pects of weather derivatives, although these are, clearly, of vital importance
for companies trading these contracts. Rather, we intend to investigate the
methods that can be used to set reasonable prices for and assess the value
of the various types of contracts available in the market today.

1.1.4 Insurance and derivatives

Weather derivatives have a pay-off that depends on a weather index that
has been carefully chosen to represent the weather conditions against which
protection is being sought. The economic effect of hedging using weather
derivatives can also be achieved using an insurance contract that has a
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pay-off based on a weather index. Nevertheless, we will use the phrase
weather derivatives throughout this book, although all the analysis pre-
sented applies equally well to both types of contract.

There are some differences between weather derivatives and index-based
weather insurance that may mean that one is preferable to the other in
certain circumstances. Some companies may not be happy with the idea of
trading derivatives but comfortable with buying insurance, for instance.

Other ways in which insurance and derivatives differ include the following:

� it may be necessary to perform a frequent (daily, weekly or monthly) revaluation
of derivative positions, known as mark to market or mark to model, but this is
usually not necessary for insurance;

� tax liabilities may be different (most commonly, insurance incurs a tax but deriva-
tives do not);

� the accounting treatment may be different;
� contractual details may be different.

All of these vary to a certain extent from country to country.

Indemnity-based weather insurance

There is also a kind of weather insurance in which the pay-off is related to
financial loss rather than to a weather index. Such contracts are less suitable
for the hedging of weather-related fluctuations in profits, because a lack of
profit cannot necessarily be classified as a weather-induced loss. The mod-
elling and pricing of these contracts are rather more complicated than those
of weather derivatives, since they involve understanding the relationships
between weather and loss, and the likelihood that the insured entity will
make a claim. Such pricing is more akin to the pricing of catastrophe-related
weather insurance (Woo, 1999) and is not covered in this book, although the
analysis we present does form a good first step towards the pricing of such
contracts in some cases.

1.1.5 Liquidity and basis risk

Because the pay-off of a weather derivative depends on a weather index, not
on the actual amount of money lost due to weather, it is unlikely that the
pay-off will compensate exactly for the money lost. The potential for such a
difference is known as basis risk. In general, basis risk is smallest when the
financial loss is highly correlated with the weather, and when contracts of
the optimum size and structure, based on the optimum location, are used
for hedging.
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For a company deciding how to hedge its risk there is often a trade-off
between basis risk and the price of the weather hedge. Weather contracts on
standard indices on London, Chicago and New York temperatures are traded
frequently, and consequently it is usually easy to trade such contracts at a
good price. However, except in lucky cases, it is unlikely that such contracts
will minimise basis risk for the hedging company. Hedgers then have a choice
between, on the one hand, getting the best price but trading a contract
that may not hedge their business particularly well and, on the other hand,
hedging their business as well as possible but not necessarily getting such a
good price.

1.1.6 Hedgers and speculators, primary and secondary markets

Every weather derivative is a transaction between two parties. We will clas-
sify all such parties as being either hedgers, who have weather risk they want
to reduce or eliminate, or speculators, who are making a business by writing
weather contracts. This separation of all traders of weather derivatives into
hedgers and speculators is useful, but is also a simplification of reality. For
instance, many hedgers also trade speculatively, partly in order to ensure
that they understand the market before they buy a hedge, partly to disguise
their hedging intentions to other traders and partly just to try and make
money. Similarly, speculators may become hedgers if they decide that their
speculative trading has led them to a position where they hold too much
risk.

Transactions between hedgers and speculators are referred to as the pri-
mary market, while transactions between speculators and other speculators
are known as the secondary market. The speculators trade contracts with
each other either because they want to reduce the weather risk they have
that arises from holding previously traded weather derivatives (in which
case, they are also becoming hedgers), or simply because they think they
can make money by doing so.

Very occasionally contracts are exchanged directly between two hedgers,
who, by doing so, can hedge each other’s risks simultaneously. However, this
is extremely uncommon, since it is rare for two companies to have exactly
equal and opposite weather risks.

From the point of view of the speculator, who may be a bank, insur-
ance company, reinsurance company, energy company or hedge fund, trading
weather derivatives forms an attractive proposition for two reasons. First,
weather derivative pay-offs are generally uncorrelated with other forms of
insurance or investment. As a result of this an insurance company can issue
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weather derivatives cheaply relative to other forms of insurance because the
overall company risk will increase less. Similarly, a hedge fund can invest
in weather derivatives knowing that their return is uncorrelated with the
return on the other financial assets it may hold, such as equities and bonds.

Second, a portfolio of weather derivatives can, in itself, be very low risk
because of the potentially offsetting nature of weather contracts. An ideal
weather market would be driven by businesses that are, in aggregate, seek-
ing to hedge against equal and opposite amounts of each weather risk. In
principle this could lead to a situation in which the speculators hold very
little risk because they would simply be middlemen passing weather risk
from one hedger to another. The risk would be exchanged almost at cost
price, with little or no risk premium.

1.1.7 Over-the-counter and exchange trading

There are a number of ways in which a weather derivative trade can take
place. Primary market trades are usually ‘over the counter’ (OTC), mean-
ing that they are traded privately between the two counterparties. Much
of the secondary market is traded through voice-brokers, who act as in-
termediaries and cajole participants in the market to do deals, but do not
actually trade themselves. These trades are also described as OTC. Finally,
a growing part of the secondary market is traded on the Chicago Mercantile
Exchange (CME), which currently lists weather derivatives for fifteen US,
five European and two Japanese locations based on temperatures for each
month of the year. The CME plays the dual roles of bringing transparency
(the prices are freely available on the Internet) and eliminating credit risk
(since you trade with the CME rather than with the other counterparty, and
make margin payments on a daily basis).

Secondary trading and the Pareto optimum

Trading between speculators in the secondary market may, at first look,
appear to be a zero-sum game, and have little net economic benefit. This may
be the case with certain trades, but is not the case in general. A secondary
market trade can quite conceivably reduce the risk of both parties to the
trade, or at least reduce the total risk held by the two parties (i.e. the risk
decrease on one side is greater than the risk increase on the other). And
the lower the risk held by parties in the secondary market, the lower the
premiums that can be charged to hedgers. In this way, it is in both hedgers’
and speculators’ interest for secondary trading to occur until an optimum
situation has been achieved in which the total risk held by the players in
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the secondary market is the least. Reaching such a situation may take many
secondary market trades, even in a market with only a few players, and this
is reflected in the fact that there are typically many more secondary market
trades than primary market trades.

Mathematical models of this idea have been studied by economists. When
considered in terms of economic utility, secondary market trading is certainly
not a zero-sum game, and one can idealise secondary trading as moving
the entire market towards the situation where the total expected utility
of the participants is the greatest possible. This is known as the Pareto
optimum.

1.1.8 Hedging and forecasts

At this point the reader may be wondering about the relationship between
the hedging of weather risk and the use of weather forecasts. Meteorologi-
cal forecasts contain information about the weather a few days in advance
(in the case of weather forecasts) or a few months in advance (in the case
of seasonal forecasts). For certain business decisions, especially those on
timescales of a few days, such forecasts can be very useful. The appropriate
use of forecasts can both increase the expected profits and reduce the risk of
making a loss, while weather derivatives, in most cases, only reduce the risk
of making a loss. However, a company making plans for the month, quarter
or year ahead cannot make much use of forecasts. Weather derivatives, on
the other hand, are ideally suited to all periods in the future. Meteorological
forecasts and weather derivatives are thus perfect complements: what can
be predicted with accuracy should be, and action should be taken on the
basis of such predictions. Everything else can be hedged.

There are also two ways in which weather derivatives can be used to
enhance the usefulness of weather forecasts. One is that a forecast can be
used to determine the best course of action, and a weather derivative can
hedge against the possibility that the forecast is wrong. The derivative would
pay out according to the size, and possibly direction, of the forecast error.
For example, consider a supermarket that buys certain perishable fruits and
vegetables on short notice according to the weather forecast. If the forecast
is wrong and the supermarket sells less than predicted it will lose revenue
relative to the situation in which the forecast is correct. This revenue at
risk could be hedged using a weather derivative that pays according to the
forecast error.

The other way that weather derivatives can be used to enhance forecasts is
that a forecast can be used to determine the course of action, and a weather
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derivative can hedge against the occurrence of forecasts that lead to a high
cost being incurred. An example of this might be an oil platform in the Gulf
of Mexico that evacuates staff when there is a hurricane forecast. A weather
derivative could be structured to cover the cost of such an evacuation. In-
terestingly, in this case the actual weather does not influence the pay-out of
the contract, only the forecast.

A final aspect of the relationship between meteorological forecasts and
weather derivatives is that forecasts play a major role in the valuation of
weather derivatives in certain circumstances. This is addressed in detail in
chapter 10.

1.1.9 Hedging weather and price

The situation often arises that a company is exposed to both weather and
the price of some commodity in a connected way. Consider a company that
has to buy more natural gas when it is cold. If the gas is being bought at a
fixed price, then this purchase involves only weather risk. The total cost of
the gas bought is given by

cost = P0V (1.1)

where P0 is the fixed price and V is the weather-dependent amount of gas.
But if the gas is being bought at a varying price then the company is

exposed not only to the weather but also to fluctuations in that price. The
total cost is now given by

cost = PV (1.2)

where P also varies. One can say that the level of weather risk depends on the
gas price, or that the level of gas price risk depends on the weather. In some
cases the variability of the weather and the gas price may be independent,
which simplifies the analysis of these situations. However, often the changes
in the gas price are partly affected by the weather as well (since cold weather
increases demand for gas, which in turn increases the price). Hedging com-
bined weather and price risk is more complex than hedging straightforward
weather risk or price risk alone, and ideally involves contracts that depend
on both the weather and the price. Only a few contracts of this type have
been traded to date. The pricing of such contracts is discussed briefly in
chapter 11.
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1.2 Weather variables and indices

As we have seen, weather affects different entities in different ways. In or-
der to hedge these different types of risk, weather derivatives are based on
a variety of different weather variables and can also be structured to depend
on more than one weather variable. The most commonly used weather vari-
able is the temperature, as either hourly values, daily minima or maxima, or
daily averages. Of these, daily average is the most frequently seen. In most
countries daily average is defined by convention as the midpoint of the daily
minimum and maximum. However, in some countries daily average is defined
as a weighted average of more than two values of temperature per day. Defi-
nitions based on three, twelve, twenty-four or more values per day are all in
use. The exact time period over which the minimum and maximum temper-
ature are measured, and exactly how minimum and maximum are defined,
also vary from country to country. To participate in the weather market one
has to do thorough research into the weather measurement conventions in
use in each country in which one operates.

As an example of minimum and maximum temperature values, figure 1.1
shows daily minimum, maximum and average temperatures measured at
London’s Heathrow Airport for the year 2000.

In addition to temperature, wind and precipitation measurements are also
used as the weather variables underlying weather derivatives. Wind-based
hedges are, for instance, of interest to wind farms, which want protection
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Figure 1.1. Daily minimum (dotted line), maximum (dashed line) and av-
erage (solid line) temperatures for London Heathrow, 2000.
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against lack of wind, and construction companies, which may have to stop
work in high winds. They can also be used to replace more traditional prop-
erty insurance contracts, which cover building damage due to extreme winds.
Rain-based hedges are used by the agricultural and hydropower generation
industries, among others. Snow-based hedges are important for ski resorts,
local councils that need to clear snow from roads, and companies that sell
equipment related to snow, such as winter sports gear or snow tyres for cars.

Hedges based on other weather variables, such as the number of sunshine
hours, streamflow or sea surface temperature, are also possible. All that is
required is a source of reliable and accurate measurements and it is possible
for a derivative structure to be created.

The exact relationship between the relevant weather variable and the
impact on the business that needs a hedge will be different for different
variables and different companies, and particular hedges are structured using
an index that has been designed to capture the relevant dependence as
well as possible. The indices most commonly in use for temperature-based
contracts are degree day indices, average temperature indices, cumulative
average temperature indices and event indices. These are discussed below.
Indices based on other variables are discussed in chapter 13.

1.2.1 Degree day indices

Degree day (DD) indices originated in the energy industry, and are designed
to correlate well with the domestic demand for heating and cooling.

Heating degree days

In winter, heating degree days (HDDs) are used to measure the demand for
heating, and are thus a measure of how cold it is (the colder it is, the more
HDDs there are). There are a number of different definitions of HDDs used
in the energy industry, reflecting the fact that patterns of energy usage vary
from location to location and that there is a trade-off between the simplicity
of the definition and how well it represents the demand. The definition used
in the weather market is that the number of HDDs zi on a particular day i

is defined as

zi = max(T0 − Ti, 0) (1.3)

= (T0 − Ti, 0)+

where Ti is the average temperature on day i and T0 is a baseline tempera-
ture.
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Figure 1.2. Heating and cooling degree days for London Heathrow, 2000.

In the United States, where temperature is measured in Fahrenheit,2 the
baseline is usually taken to be 65oF (18.33oC), while in all other countries,
where temperature is measured in Celsius, the baseline is usually taken to
be 18oC (64.4oF).

Throughout this book we will assume these definitions for daily HDDs.
An HDD index x over an Nd day period is usually defined as the sum of the
HDDs over all days during that period:

x =
Nd∑
i=1

zi (1.4)

The HDDs per day for London Heathrow during 2000 are shown by the
lengths of the bars extending below the horizontal line in figure 1.2. We see
large numbers of HDDs in winter, and fewer, or none, in summer.

Many of the locations commonly traded in the weather market are cold
enough at certain times of year that the temperature never rises as high as
the 18oC/65oF baseline, and hence the number of HDDs per day is always
positive. This is the case for London Heathrow in the winter months, as
can be seen in figure 1.2. Table 1.1 shows the estimated expected number

2 Degrees Fahrenheit (F ) and degrees Celsius (C) are related by the equations C = 5(F − 32)/9
and F = 32 + 9C/5.
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Table 1.1. Expectations of monthly numbers of days above a baseline,
estimated using thirty years of data with linear detrending and one year of
extrapolation, at various locations in Europe and Japan (for a baseline of

18 oC) and in the United States (for a baseline of 65oF).

Station/
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amsterdam 0.0 0.0 0.0 0.2 4.4 3.8 11.5 12.1 3.1 0.1 0.0 0.0
Essen 0.0 0.0 0.1 1.0 6.0 7.8 14.9 17.5 3.5 0.8 0.0 0.0
London 0.0 0.0 0.0 0.0 3.6 6.2 17.9 19.7 4.7 0.5 0.0 0.0
Paris 0.0 0.0 0.0 0.4 8.1 13.0 23.2 24.4 6.4 1.3 0.0 0.0
Rome 0.0 0.0 0.2 0.5 16.7 28.9 31.0 31.0 27.4 13.9 2.1 0.0
Stockholm 0.0 0.0 0.0 0.1 1.4 6.9 18.9 15.0 2.6 0.0 0.0 0.0
Atlanta 0.5 0.9 3.4 12.8 25.5 29.2 31.0 31.0 27.3 15.3 2.8 0.7
Chicago 0.0 0.0 0.7 2.1 10.8 23.4 30.8 30.5 18.3 4.4 0.3 0.0
Covington 0.0 0.0 0.8 3.6 13.6 25.5 30.7 30.2 18.4 5.0 0.3 0.2
Houston 4.2 6.7 12.4 22.0 31.0 30.0 31.0 31.0 29.2 24.7 10.1 6.1
New York 0.0 0.0 0.5 1.8 10.9 26.9 30.8 30.7 24.4 7.2 0.6 0.2
Philadelphia 0.0 0.0 0.6 2.9 12.8 27.3 30.9 30.8 22.3 6.0 0.4 0.0
Tokyo 0.0 0.0 0.2 6.2 23.6 27.8 31.0 31.0 29.2 19.9 1.4 0.1

of days per month that the average temperature rises above 18oC/65oF for
thirteen commonly traded locations. We see that in several of these locations
the temperature never rises above 18oC/65oF during certain months. In
particular, in northern Europe and the northern United States it is very
unusual to see a daily average temperature above 18oC/65oF during the
period from November to March. This means there is a precise relationship
between HDD indices and average of average temperature indices during
these periods, as we shall see below. Table 1.2 shows the estimated expected
number of HDDs per month for these thirteen locations. Highest numbers
of HDDs occur during the winter months, as would be expected.

HDDs are used in the United States and Europe but seldom in Japan.

Cooling degree days

Cooling degree days (CDDs) are used in summer to measure the demand
for energy used for cooling, and are thus a measure of how hot it is (the
hotter it is, the more CDDs there are). Although heating systems can be
driven by electricity or gas, cooling is almost invariably driven by electricity,
and so CDDs are most relevant to the electricity market (although more
and more electricity is being generated from natural gas, and so CDDs are
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Table 1.2. Expectations of monthly sums of daily HDDs, estimated using
thirty years of data with linear detrending and one year of extrapolation, at
various locations in Europe and Japan (in Celsius degree days) and in the

United States (in Fahrenheit degree days).

Station/
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amsterdam 450.6 375.0 343.0 259.8 145.2 97.2 45.0 36.7 96.7 203.7 333.0 432.6
Essen 473.8 393.1 337.1 243.5 121.1 82.6 34.3 29.9 106.3 206.2 351.0 454.2
London 385.0 327.7 291.3 235.9 130.3 68.0 22.0 19.3 74.6 169.3 292.3 372.5
Paris 419.8 347.2 270.5 217.3 92.0 43.3 13.8 10.4 69.5 156.2 312.7 387.9
Rome 319.8 286.8 220.5 141.4 29.8 1.7 0.1 0.0 3.9 33.2 159.9 291.7
Stockholm 580.8 522.6 487.9 344.8 195.6 75.4 22.0 37.0 151.7 310.4 455.3 571.6

Atlanta 608.6 430.1 335.3 130.5 19.9 2.3 0.0 0.4 9.7 103.6 339.2 573.3
Chicago 1140.5 908.7 789.9 431.5 166.1 34.9 1.2 2.8 61.8 328.8 697.1 1046.7
Covington 1003.1 788.2 695.1 353.8 127.4 19.5 0.4 2.4 66.4 308.5 628.7 941.5
Houston 350.1 236.2 158.6 35.9 0.8 0.0 0.0 0.0 1.5 32.3 174.6 358.7
New York 914.0 780.7 685.9 358.2 124.2 11.4 0.4 1.0 24.9 210.6 499.6 786.3
Philadelphia 918.5 764.0 651.8 330.3 109.3 9.4 0.4 1.2 36.7 237.4 528.6 820.5

Tokyo 346.1 301.4 243.7 91.0 19.1 2.7 0.2 0.0 0.6 18.6 131.2 275.2

also becoming relevant for the gas industry). The number of CDDs zi on a
particular day i is defined as

zi = max(Ti − T0, 0) (1.5)

= (Ti − T0, 0)+

As for HDDs, a CDD index x over a period is defined as the sum of the
CDDs over all days during that period:

x =
Nd∑
i=1

zi (1.6)

The CDDs per day for London Heathrow during 2000 are shown by the
length of the bars extending above the horizontal line in figure 1.2. We
see that non-zero numbers of CDDs at this location occur only during the
warmest months of the year.

Although, as we have seen, several locations never go above 18oC/65oF
in winter, very few commonly traded locations are warm enough that the
temperature never goes below 18oC/65oF in summer (i.e. the situation is
not symmetrical). To illustrate this, table 1.3 shows the expected number of
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Table 1.3. Expectations of monthly numbers of days below a baseline,
estimated using thirty years of data with linear detrending and one year of
extrapolation, at various locations in Europe and Japan (for a baseline of

18 oC) and in the United States (for a baseline of 65oF).

Station/
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amsterdam 31.0 28.0 31.0 29.8 26.6 26.4 19.9 19.0 27.2 31.0 30.0 31.0
Essen 31.0 28.0 30.9 29.0 25.2 22.3 16.2 13.7 26.9 30.3 30.0 31.0
London 31.0 28.0 31.0 30.0 27.7 24.1 13.1 11.4 25.4 30.5 30.0 31.0
Paris 31.0 28.0 31.0 29.7 23.0 17.2 8.3 6.8 23.8 29.7 30.0 31.0
Rome 31.0 28.0 30.9 29.6 15.0 1.7 0.2 0.1 3.2 17.3 28.0 31.0
Stockholm 31.0 28.0 31.0 29.9 29.7 23.3 12.0 16.0 27.6 31.0 30.0 31.0
Atlanta 30.7 27.3 27.9 18.6 5.7 1.0 0.0 0.1 3.1 17.1 27.5 30.4
Chicago 31.0 28.0 30.3 28.1 20.6 7.0 0.7 1.3 12.4 27.4 29.9 31.0
Covington 31.0 28.0 30.6 26.8 18.1 4.7 0.5 1.1 12.2 26.4 30.1 30.8
Houston 27.1 21.9 19.3 8.2 0.4 0.0 0.0 0.0 0.7 7.0 20.7 25.1
New York 31.0 28.0 30.5 28.5 21.2 3.8 0.2 0.5 6.4 24.4 29.7 30.9
Philadelphia 31.0 28.0 30.4 27.5 19.2 3.7 0.2 0.6 8.7 25.7 30.0 31.0
Tokyo 31.0 28.0 30.8 23.7 8.0 2.3 0.2 0.0 0.9 11.4 28.6 30.9

days per month on which the temperature falls below 18oC/65oF. Only for
Atlanta, Houston and Tokyo are there any periods when this number is zero.

Table 1.4 shows the expected numbers of CDDs for our thirteen locations.
The highest values occur in summer. By comparing with table 1.2 we can see
that the monthly totals for CDDs for summer are generally lower than the
monthly totals for HDDs for winter (except for Houston, which is the most
southerly, and warmest, of our thirteen stations). This difference between
the behaviour of HDDs and CDDs arises because the 18oC/65oF baseline is
higher than the mean temperatures for most of these locations.

CDDs are mainly used in the United States and seldom in Europe and
Japan.

Relations between HDDs and CDDs

The sum of the number of HDDs and CDDs on a particular day is simply
the unsigned magnitude of the deviation of that day’s average temperature
from the baseline: one of the number of HDDs or the number of CDDs on
a particular day is always zero, and both are zero when the temperature is
exactly equal to the baseline value.

Finally, we note that neither CDDs nor HDDs can ever be negative.
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Table 1.4. Expectations of monthly sums of CDDs, estimated using thirty
years of data with linear detrending and one year of extrapolation, at

various locations in Europe and Japan (in Celsius degree days) and in the
United States (in Fahrenheit degree days).

Station/
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amsterdam 0.0 0.0 0.0 0.3 7.7 7.6 25.8 31.0 2.9 0.0 0.0 0.0
Essen 0.0 0.0 0.1 1.0 10.6 18.7 49.9 54.7 7.1 0.8 0.0 0.0
London 0.0 0.0 0.0 0.0 4.3 11.9 48.1 49.3 5.7 0.4 0.0 0.0
Paris 0.0 0.0 0.0 0.4 15.6 32.5 75.5 82.8 10.3 1.4 0.0 0.0
Rome 0.0 0.0 0.2 0.3 30.4 120.4 207.2 233.0 86.4 25.1 2.1 0.0
Stockholm 0.0 0.0 0.0 0.1 1.8 12.2 54.3 44.8 4.9 0.0 0.0 0.0

Atlanta 0.6 1.2 11.8 67.2 210.6 373.3 510.3 466.1 273.1 69.2 6.7 1.3
Chicago 0.0 0.0 2.1 12.8 72.9 239.1 365.9 303.5 137.1 14.2 0.4 0.0
Covington 0.0 0.0 2.4 15.9 69.1 231.3 337.2 294.6 131.4 18.4 0.7 0.4
Houston 16.8 31.9 59.7 186.6 388.1 514.9 612.6 614.2 446.6 211.0 49.8 29.7
New York 0.0 0.0 1.6 8.5 68.5 263.7 404.0 376.7 179.2 29.0 0.8 0.2
Philadelphia 0.0 0.0 1.7 12.7 73.4 278.3 421.6 364.6 164.2 26.9 0.8 0.0

Tokyo 0.0 0.0 0.1 10.7 64.8 137.8 284.2 311.4 193.2 56.1 1.3 0.1

1.2.2 Average of average temperature indices

Average of average temperature indices are designed to be a more intuitive
measure of temperature variability than the degree day measures, which
are well known only in the energy industry. Average of average temperature
indices are defined as the average (or mean) of the daily average temperature
values over the period of the contract. Note that the first ‘average’ in the
phrase ‘average of average’ refers to a mean, while the second ‘average’
refers to a midpoint. Writing the average of average temperature as T we
have

T =
1
Nd

Nd∑
i=1

Ti (1.7)

Table 1.5 shows expected values for the average of average temperatures for
our thirteen locations.

As discussed above, there are many locations that are cold enough that
the number of HDDs per day is always positive at certain times of year
because the daily average temperature is always below 18oC/65oF. If this
is the case, then an average of average temperature index T and an HDD
index x are simply related by
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Table 1.5. Expectations of monthly averages of daily average temperatures,
estimated using thirty years of data with linear detrending and one year of

extrapolation, at various locations in Europe and Japan (in degrees
Celsius) and in the United States (in degrees Fahrenheit).

Station/
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Amsterdam 3.5 4.6 6.9 9.3 13.6 15.0 17.4 17.8 14.9 11.4 6.9 4.0
Essen 2.7 4.0 7.1 9.9 14.4 15.9 18.5 18.8 14.7 11.4 6.3 3.3
London 5.6 6.3 8.6 10.1 13.9 16.1 18.9 19.0 15.7 12.6 8.3 6.0
Paris 4.5 5.6 9.3 10.8 15.5 17.6 20.0 20.4 16.0 13.0 7.6 5.5
Rome 7.7 7.8 10.9 13.3 18.0 22.0 24.7 25.5 20.8 17.8 12.7 8.6
Stockholm -0.7 -0.7 2.3 6.5 11.7 15.9 19.1 18.3 13.1 8.0 2.8 -0.4
Atlanta 45.4 49.7 54.6 62.9 71.2 77.4 81.5 80.0 73.8 63.9 53.9 46.5
Chicago 28.2 32.5 39.6 51.0 62.0 71.8 76.8 74.8 67.5 54.9 41.8 31.2
Covington 32.6 36.8 42.6 53.7 63.1 72.1 75.9 74.4 67.2 55.6 44.0 34.6
Houston 54.2 57.7 61.8 70.0 77.5 82.2 84.8 84.8 79.8 70.8 60.8 54.4
New York 35.5 37.1 42.9 53.3 63.2 73.4 78.0 77.1 70.1 59.1 48.4 39.6
Philadelphia 35.4 37.7 44.0 54.4 63.8 74.0 78.6 76.7 69.2 58.2 47.4 38.5
Tokyo 6.8 7.2 10.1 15.3 19.5 22.5 27.2 28.0 24.4 19.2 13.7 9.1

x =
Nd∑
i=1

max(T0 − Ti, 0) (1.8)

=
Nd∑
i=1

(T0 − Ti)

= NdT0 −NdT

The equivalent equation that relates CDDs to mean temperature indices in
the case where the temperature is always above 18oC/65oF is

x = NdT −NdT0 (1.9)

However, as we have seen, very few locations never go below 18oC/65oF,
even in the summer, and so this equation is less useful than equation 1.8.

Average of average temperature indices are mainly used in Japan, and
seldom in the United States and Europe.

1.2.3 Cumulative average temperature indices

Cumulative average temperature (CAT) indices are defined as the sum of
the daily average temperatures over the period of the contract

x =
Nd∑
i=1

Ti (1.10)

CAT indices are mainly used in Europe in the summer.
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1.2.4 Event indices

Event indices, also known as critical day indices, are usually defined as the
number of days during the contract period that a certain meteorological
event occurs. A typical event would be the temperature exceeding (or going
below) a threshold. Another more complex definition of ‘event’ counts the
number of times a sequence of days of a certain length experiences temper-
ature above or below a threshold.

Very exotic event indices are often designed in the primary market. For in-
stance, a well-known recent weather contract (designed to provide insurance
for construction workers) depended on the number of ‘frost days’ during the
November to March period, where a ‘frost day’ was defined as occurring if
the temperature at 7 a.m. was below −3.5oC, or the temperature at 10 a.m.
was below −1.5oC, or the temperatures at 7 a.m. and 10 a.m. were both
below −0.5oC. A further complexity of this deal was that the weather on
weekends and holidays was not included.

1.2.5 A general classification of indices

From the point of view of the mathematical analysis of weather contracts it
is useful to classify indices in two ways. First, indices are either additively
separable or not. ‘Additively separable’ means that the aggregate index is a
sum of the daily indices. Second, indices are either linear or not. ‘Linear’ in
this context means that the daily value of the index is a linear function of
the daily weather variable.

To give some examples:

� CAT indices are both additively separable and linear;
� DD indices are additively separable but not linear – although, as we have seen
above, they are often effectively linear if the temperature never reaches the base-
line, in which case either equation 1.8 or equation 1.9 will hold;

� an event index that counts the number of days on which the temperature exceeds
a certain level is additively separable, but not linear;

� an event index that counts the number of periods of three days on which the max-
imum temperature over the three days exceeds a certain level is neither additively
separable nor linear.

These concepts are useful because, if an index is additively separable, then
the expected value of the index is the sum of the expected values of the daily
indices, and, if it is linear, then the expected value of the daily index is a
linear function of the expected values of the daily weather variable. These
concepts will be used later in our analysis when we wish to estimate the
expected values of weather indices.
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Figure 1.3. The pay-off functions for the various contracts described in the text.

1.3 Derivative pay-offs

The indices described above define how weather variability is encapsulated
for the purposes of a weather derivative contract. The contract is then fi-
nancially settled using the measured value of the index as the input to a
pay-off function. This function defines precisely who should pay what to
whom at the end of the contract. Any function could be used as a pay-off
function, but in practice only a small number of simple structures, with
straightforward economic purposes, are common. We will consider the pay-
off for each of these structures from the point of view of the buyer of the
contract, who is said to take the ‘long’ position. The seller of the con-
tract, who takes the ‘short’ position, will have exactly the opposite pay-off.
Of the contracts described, the swap, call and put options are by far the
most common. All the pay-off functions described below are illustrated in
figure 1.3.

1.3.1 Swaps

The pay-off, p, from a long swap contract is given by

p(x) =

⎧⎨
⎩

−L$ if x < L1

D(x−K) if L1 ≤ x ≤ L2

L$ if x > L2

(1.11)
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where x is the index, D is the tick, K is the strike, L$ is the limit expressed
in currency terms and L1 and L2 are the upper and lower limits expressed
in units of the index. L$ and L1 are related by L$ = D(K − L1), and L$

and L2 are related by L$ = D(L2 −K). It is common practice for all types
of contract to quote limits in terms of currency values (e.g. L$) rather than
in index values (L1 and L2).

This pay-off can also be written more succinctly as

p(x) = max(−L$,min(D(x−K), L$)) (1.12)

or as

p(x) = min(L$,max(D(x−K),−L$)) (1.13)

or even

p(x) = median(−L$, D(x−K), L$) (1.14)

These one-line expressions are useful for calculating pay-offs in some com-
puter languages and spreadsheets. We have set the upper and lower limits
(in monetary terms) to be equal and opposite. More generally, it would be
possible to structure a swap contract (and also all the other contract types
considered below) with limits of different sizes on the two sides, although
this is very unusual.

It is also possible to structure swaps without financial limits; the pay-off
is then a linear function of the index, given by

p(x) = D(x−K) (1.15)

We call this a linear swap. Even for swaps with limits the limits are usually
set at rather extreme values, and so expression 1.15 may be a good ap-
proximation. OTC contracts are usually traded with limits while the CME
contracts do not have limits.

Most swaps are costless: there is no premium, and the profit or loss from
a swap is equal to the pay-off. When the contract is set up the two coun-
terparties simply exchange a contract agreeing to pay each other according
to the weather at some point in the future. In this sense, a swap is like a
spread bet on the future weather. A long swap contract has the economic
function of insuring against high values of the index. The downside for the
buyer of a swap is that he3 has to pay the seller for low values of the index.
In this way, the buyer and the seller can be said to be swapping risks, and

3 Throughout this book we will use ‘he’ to mean ‘he or she’.
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they play a symmetrical role. Swap contracts traded on exchanges such as
the CME involve daily settlement as the index develops during the contract
period, while swap contracts traded OTC usually involve settlement only
at the end of the contract. Technically speaking, the former are known as
futures contracts while the latter are known as forward contracts.

If, as described above, a swap contract is to be traded without premium,
then the strike would likely be set at a level where the expected pay-off is
close to zero, possibly shifted slightly to compensate one or other party for
the risk they are taking on. In many cases, but not all, the strike value that
gives an expected pay-off of zero will be close to the expected value of the
index for the swap. Swaps can also be traded with a premium paid, although
this is very rare.

The ‘pricing’ of a costless swap prior to trading consists of determining
the strike. Once the swap has been traded valuation consists of calculating
the distribution of possible financial outcomes, and specific aspects of this
distribution. This is covered in detail in subsequent chapters.

If a hedger is using a linear swap contract to hedge a business risk then
the optimum size of the hedge (defined as the hedge that minimises the
variance of the basis risk) is given by the regression coefficient obtained by
regressing the profits of the business onto the weather index.

1.3.2 Call options

The pay-off, p, from a long call contract is given by

p(x) =

⎧⎨
⎩

0 if x < K

D(x−K) if K ≤ x ≤ L

L$ if x > L

(1.16)

where L$ and L are related by L$ = D(L−K).
This can also be written more succinctly as

p(x) = min(L$,max(D(x−K), 0)) (1.17)

or as

p(x) = max(0,min(D(x−K), L$)) (1.18)

and

p(x) = median(0, D(x−K), L$) (1.19)

For the buyer, this has the economic function of providing insurance against
high values of the index. At the start of the contract the buyer pays a
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premium to the seller. At the end of the contract the seller pays the buyer
a pay-off dependent on the value of the index. For low values of the index
there is no pay-off. The buyer, if he is a hedger, presumably does not mind
this outcome: if he is using the contract to hedge these low values of the
index should be good for his business. For values of the index above the
strike the seller pays the buyer an amount that is proportional to the extent
to which the strike is exceeded. The constant of proportionality is given by
the tick. Beyond a certain financial limit, the pay-off stops increasing for
increasing index value (although, as we have already mentioned, unlimited
contracts are also possible, and the CME contracts are all unlimited). The
strike is typically set at between zero and one standard deviation above the
estimated expected index and the limit at around two standard deviations,
or at the most extreme historical value for the index. The overall profit for
the buyer of an option is equal to the pay-off minus the premium.

We have seen that both long calls and long swaps can be used to hedge
against high values of the index. The difference is that long calls involve
the payment of a single, fixed up-front premium, while for long swaps the
entire pay-off is random in both directions. Many corporations hedging their
weather risk prefer to use options rather than expose themselves to the
possibility of having to make a large and unpredictable pay-off at the end
of a swap contract.

The pricing of a call option consists of determining the premium. Once
the call option has been traded the valuation consists of calculating the
distribution of possible future financial outcomes, and specific aspects of
this distribution.

1.3.3 Put options

The pay-off, p, from a long put contract is given by

p(x) =

⎧⎨
⎩

L$ if x < L

D(K − x) if L ≤ x ≤ K

0 if x > K

(1.20)

where L$ and L are related by L$ = D(K − L).
This can also be written more succinctly as

p(x) = min(L$,max(D(K − x), 0)) (1.21)

or as

p(x) = max(0,min(D(K − x), L$)) (1.22)
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or

p(x) = median(L$, D(K − x), 0) (1.23)

For the buyer, this has the economic function of providing insurance against
low values of the index. At the start of the contract the buyer pays a pre-
mium to the seller. At the end of the contract the seller pays the buyer
a pay-off dependent on the value of the index. For high values of the in-
dex, there is no pay-off. For values of the index below the strike the seller
would pay the buyer an amount that is proportional to the amount by which
the index is below the strike. Beyond a certain financial limit, the pay-off
stops increasing for decreasing index value. The strike is typically set at
between zero and one standard deviations below the estimated expected
index.

1.3.4 Collars

A long collar position consists of a combination of a long call and a
short put, usually with different strikes but the same tick and limit (al-
though different ticks and limits are also possible). Collars have the pay-off
function

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−L$ if x < L1

D(x−K1) if L1 ≤ x < K1

0 if K1 ≤ x < K2

D(x−K2) if K2 ≤ x ≤ L2

L$ if x > L2

(1.24)

where L$ and L2 are related by L$ = D(L2 −K2), and L$ and L1 are related
by L$ = D(K1 − L1).

This can also be written as

p(x) = max(−L$,min(D(x−K1),max(0,min(D(x−K2), L$)))) (1.25)

or by combining the expressions for calls and puts given above.
A long collar position provides a hedge against high values of the index

for values beyond a certain threshold. Collars, like swaps, are usually cost-
less.
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1.3.5 Straddles

A long straddle position consists of a long call and a long put with the same
strike, tick and limit. Straddles have the pay-off function

p(x) =

⎧⎪⎪⎨
⎪⎪⎩

L$ if x < L1

D(K − x) if L1 ≤ x < K

D(x−K) if K ≤ x ≤ L2

L$ if x > L2

(1.26)

where L$ and L1 are related by L$ = D(K − L1), and L$ and L2 are related
by L$ = D(L2 −K).

This can also written as

p(x) = min(L$,max(D(K − x),min(D(x−K), L$))) (1.27)

or by combining the expressions for call and puts.
A long straddle position hedges against both high and low values of the

index, and is hence typically rather expensive in terms of premium since the
buyer receives a pay-off for all values of the index except x = K.

1.3.6 Strangles

A long strangle consists of a long call and a long put but with different
strikes (unlike a straddle, where the strikes are the same). The strike for the
put is usually lower than that for the call.

Strangles have the pay-off function

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L$ if x < L1

D(K1 − x) if L1 ≤ x < K1

0 if K1 ≤ x < K2

D(x−K2) if K2 ≤ x ≤ L2

L$ if x > L2

(1.28)

where L$ and L1 are related by L$ = D(K1 − L1), and L$ and L2 are related
by L$ = D(L2 −K2).

This can also be written as

p(x) = min(L$,max(D(K1 − x),max(0,min(D(x− L), L$)))) (1.29)

or by combining expressions for the call and the put.
A long strangle position hedges against both high and low values of the

index in a similar way to a straddle, but pays out only when the index moves
a certain distance. They are thus typically a little cheaper than straddles.
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1.3.7 Binaries

A long binary option has a pay-off function of the form

p(x) =
{

0 if x < K

L$ if x ≥ K
(1.30)

A long binary option can be considered to be a special case of a call option.
In the case in which the index x is considered to be continuous, it is a call
option with infinite tick. In the case in which the index x is discretised to
certain values with spacing ∆x the tick is equal to L$

∆x .

1.3.8 Other piecewise linear pay-off functions

Derivatives other than weather derivatives are often written on other piece-
wise linear pay-off functions, such as ‘condors’ and ‘butterflies’. However, at
the point of writing these are seldom seen in the weather market.

1.3.9 Non-piecewise linear swaps and options

All the pay-off functions we have seen so far have been piecewise linear.
Non-piecewise linear functions are also occasionally used. Wind power pro-
duction, for example, depends on the cube of the wind speed. Thus one
way to structure a hedge for a wind power plant would be to define a swap
or an option based on wind speed, with a cubic polynomial for the pay-off
function (although a more common way to deal with this situation would be
to define the index using a cubic polynomial and use a standard piecewise
linear pay-off). Such structures may occur in the primary weather market,
but are not seen in the secondary weather market at this point.

1.3.10 Spreads

Spreads are contracts designed with a pay-out that is a function of the dif-
ference of the weather between two locations. For instance, a Paris-London
spread might depend on an index that is the difference in HDDs between
Paris and London.

1.3.11 Baskets

Baskets are single contracts that depend on multiple locations. For instance,
a US basket might depend on temperatures in New York, Chicago and San
Francisco. They are appropriate for end-users who have risk at a number
of locations but want to minimise the number of transactions they do to
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hedge that risk. Trading a single basket on ten locations may have lower
transaction costs than trading ten single contracts.

1.3.12 Complex contracts

Complex contracts are contracts defined on the pay-offs from other contracts.
For instance, the index for a single option contract may be taken to be the
total pay-off from ten other contracts. Such structures usually occur when
speculators in the weather market want to pass some of their risk on to an
insurer or reinsurer. This transaction can be structured as a single complex
contract that depends on the performance of a selection of contracts from
the speculator’s portfolio.

1.3.13 Moneyness

Once a call or a put option contract is in progress, the expected settlement
index or market swap price may move towards or away from the values that
would lead to a pay-off. In the jargon of derivatives trading, this is known
as the ‘moneyness’ of the contract. ‘In the money’ (ITM) refers to situations
where the expected index has moved into the range of values that would lead
to a pay-off, while ‘out of the money’ (OTM) refers to situations where the
expected index has moved into a range of values that lead to zero pay-off. ‘At
the money’ (ATM) is in between. An ITM contract will typically be worth
more than an OTM contract, but until final settlement of the contract a
positive pay-off is still not guaranteed since the expected index can go down
as well as up.

Weather contracts that depend on aggregating degree-day-type indices
have the additional characteristic that the index so far (rather than the
expected final index) can be in or out of the money. DD indices cannot go
down, and so, once a DD index for a call option is in the money, it cannot
go out of the money again and a pay-off is guaranteed. This does not apply
to CAT indices, or average of average temperature indices, since they can
also decrease with time.

1.3.14 Long and short

We have already used the phrase ‘long’ to describe the situation of the buyer
of a contract and the phrase ‘short’ to describe the situation of the seller.
However, these phrases are also used with respect to indices. For instance,
if I buy a call option I am long the underlying index (if the index increases
my expected profit increases). This occasionally creates confusion: if I buy
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a put contract I am long the put, but short the index underlying the put.
Beware!

1.3.15 Parity relations

The prices of the options and swaps contracts described above are not com-
pletely unrelated. A combination of the pay-offs of a long call and a short
put with the same strikes is equivalent to the pay-off from a long swap. This
relationship is known as put-call parity and puts constraints on the prices of
the three contracts, because the swap can be replicated using the call and
the put.

Other parity relations are also possible. As we have seen above, collars,
straddles and strangles are all combinations of puts and calls. Again, these
relationships put constraints on the prices of these options if all the contracts
are available in the market.

In financial derivatives markets such parity relations are very important.
However, in the weather market the strikes of calls tend to be higher than the
strikes of puts on the same index. This means that the constraint between
the prices of puts, calls and swaps described above is not exact: the swap
can only approximately be replicated using the put and the call, and there
is some residual risk. As a result the parity relations have only a weak effect
on market prices.

1.3.16 Terminology

Contract naming conventions

There are a few differences between the terminology typically used in the
weather derivatives market and that used in other financial markets, and
these may puzzle readers from some backgrounds. For instance, traditional
financial options do not usually have limits, and options that do have limits
are usually described either as caps, call spreads or bull spreads (for calls
with limits) and floors, put spreads or bear spreads (for puts with limits).
However, since weather options almost always do have limits, this is usually
just assumed and not reflected in the name.

Mean and expectation

We have already used the phrases ‘expected index’ and ‘expectation of the
index’ several times. We use these phrases in a purely mathematical sense,
to represent the arithmetic mean of the possible values of the index. We note
that the expectation of an index should not be expected to occur. In fact,
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it is easy to create cases in which the expected value can never occur. For
example, the expected pay-off you have when buying a lottery ticket for £2
may be £1, but you cannot actually win £1.

1.3.17 Discounting

Cashflows that occur at different points in time (such as the premium and
the pay-off of an option) cannot be compared directly because of the effects
of interest rates. Instead they should be converted, using the process of
discounting, to a common point in time. Given a constant interest rate r, and
using continuous compounding of interest rates, a cashflow of X at time T is
equivalent to a cashflow of Y = er(t−T )X at time t. One common approach
is to convert all future cashflows to equivalent present values, known as the
net present value (NPV).

For reasons of simplicity we will ignore issues of discounting until chap-
ter 11 of this book. The timing of the cashflows that will be discussed is
very straightforward and the discounting can be applied after all other cal-
culations are complete. For options, a premium is paid at the start of a
contract, and a pay-off is paid at the end. When calculating the premium
of an option from the distribution of the pay-offs, one should discount the
pay-offs to the point in time at which the premium will be paid. For swaps
(but not including futures) there is no initial premium, and a pay-off is
made at the end. Discounting is thus not used when calculating the fair
strike value for a swap. When calculating the distribution of outcomes
from a swap contract, the final pay-offs should be discounted, however.
For futures daily balancing payments have to be made to an exchange,
and in theory these should be discounted individually. In practice this is
sometimes ignored when interest rates are low and the tenor of the swap
is short.

In chapter 11 we will consider trading strategies in which many trades are
made at different points in time. Discounting will then have to be considered
as an integral part of the pricing theory.

1.4 Principles of valuation

We will now address the main theme of this book, which is how to value a
weather derivative or a portfolio of weather derivatives and how to calculate
the risk associated with a portfolio of weather derivative positions.

There are three main reasons why participants in the market need to
value weather derivative contracts and portfolios of contracts. The first is
for pricing: to determine an appropriate strike for a costless swap, or an
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appropriate premium for an option prior to trading. The second is that once
one or more contracts have been traded it is important to know the current
value of all holdings based on the latest weather and forecasts, and how those
values are likely to develop. The final reason for valuing weather derivative
contracts is that both internal and external regulators often need to monitor
the risk a weather trading organisation is facing due to the contracts they
have traded.

To help us understand how weather derivatives might be valued we start
with a quick tour of valuation principles for some other financial instruments.

Equity valuation

Equities can be valued in two ways. First, so-called fundamental valuation
involves estimating how much money the equities will make for the investor
through capital appreciation and dividends. Both the future value and the
future dividends from an equity are unknown, and can take a wide range of
values. A valuation depends on an assessment of that possible range, with
values discounted to today.

Second, one can perform a market-based valuation of equities just by
looking at the value of the equity quoted on an exchange. Fundamental and
market-based valuation methods serve two very different purposes. Funda-
mental valuation is appropriate if we want to judge whether the values on
the exchange are too high or too low, and whether we should be buying or
selling the equity. The market-based approach is appropriate if we simply
want to know the level at which we could expect to buy more equity or sell
our current holding.

Insurance valuation

Insurance is valued by the purchaser in terms of how much he appreciates
the reduction in his risk, and by the issuer in terms of whether, by issuing
many such contracts, he can make money. Prior to selling insurance the
issuer might make an attempt to estimate the probabilities of all the possible
outcomes of a contract, and might then calculate the expectation and some
measure of spread of these outcomes in order to derive a premium. Once a
contract has been sold, the issuer might estimate the probabilities of all the
possible outcomes in order to calculate how much he could lose if he has to
pay out.

Equity option valuation

Equity options can be valued in three ways. First, we could apply a fun-
damental valuation based on a calculation of the probabilities of different
pay-offs from the option. This method makes sense as an internal valuation



30 Weather derivatives and the market

procedure if the option is being used as a way of investing in the underly-
ing equity. However, this is rather unusual, and fundamental valuation of
equity options is not very commonly used. Second, if there is an observable
market for the equity option then one could take the price from this market.
Third, if there is no market price for the option but there are market prices
for the equity underlying the option, and possibly for other options on the
same equity, then one can use a so-called no-arbitrage model based on these
observed prices. Such a model calculates the price that the equity option
should have to avoid the possibility that someone in the market could cre-
ate a risk-free profit by trading the option and then making very frequent
trades of the equity (known as dynamic hedging) to hedge away the risk of
the option. It is based on different principles from fundamental valuation,
since it depends only on setting the price of the option correctly relative to
other prices in the market, rather than in any absolute sense. It is far more
commonly used than fundamental valuation.

Actuarial, market-based and arbitrage pricing

These three examples show two very different valuation methods. The first,
used for the fundamental analysis of equities, equity options and the pric-
ing of insurance, is based on an evaluation of the probabilities of all future
outcomes of the share, option or insurance contract. We will refer to this as
actuarial pricing. The second method, used for equities and equity options,
is based on prices observed in a market, which we will call market-based
pricing. For equities, market-based pricing consists of simply looking at the
market price. For equity options, market-based pricing may consist of us-
ing the market price of the equity along with an appropriate model to de-
rive the no-arbitrage price. This is often known as arbitrage or no-arbitrage
pricing.

Which of these methods is appropriate for weather derivatives? The an-
swer depends on the state of the market and the type of contract.

For weather swaps, there are two possible methods of valuation, analogous
to the two ways of valuing equities. As with equities, they have very different
purposes. First, we can calculate value on the basis of the probabilities of all
possible outcomes (actuarial pricing). This is performed by using historical
meteorological data and meteorological forecasts to predict the distribution
of the possible outcomes of the index. Second, we can look at the prices of
the swap being traded in the market. This is possible only if there is an
observable market.

Now we consider weather options. In this case there are three possibili-
ties. First, we can again, as with weather swaps, value on the basis of the
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probabilities of all possible outcomes, and this is usually the starting point
for all weather option valuation.

Second, if an observable market for the option exists then we could con-
sider using that market price as the value.

Third, we can also consider arbitrage pricing, as with equity options. The
pay-off of a weather option depends on an index derived from meteorological
variables. This index is not the price of a traded quantity and so, at first
sight, weather options are not analogous to equity options. However, if there
is also a swap contract defined on the index, then, under certain assumptions,
dynamic hedging of the risk in a weather option is possible using swaps in
exactly the same way that equities can be used to hedge equity options.
To allow such dynamic hedging the swap market has to be fairly liquid,
otherwise the costs involved are prohibitively large. At the point of writing
very frequent dynamic hedging is rather difficult because of a lack of liquidity
and because of the discrete sizes of swap contracts. However, this will change
as the weather market develops, and even now a certain amount of dynamic
hedging is possible, albeit at rather large intervals in time.

We conclude that weather option pricing is a mixture of actuarial and
market-based techniques, with more emphasis on the actuarial side in most
cases. For locations where the swap is not traded, and which are not highly
correlated with locations on which swaps are traded, actuarial valuation of
options is the only choice. For locations where the swap is traded actively
arbitrage pricing has some relevance because of the possibility of dynamic
hedging using the swap. Finally, for locations in which the option is actively
traded one may be able to take the option valuation directly from the
market.

1.4.1 Other paradigms for weather pricing

There have also been other suggestions for ways that weather derivatives
could be priced, and we will mention some of them briefly here. Henderson
(2002) suggests a general equation for the pricing of all weather deriva-
tives that incorporates discounting, risk loading, the cost of hedging and the
current portfolio position. To quote the author: ‘[This equation] is compre-
hensive, but too general to be applied in its current form.’ The equation is
a formalisation of the discussion above and in a sense the rest of this book
is about methods that can be used to evaluate this equation in practice.

Cao and Wei (2000) use an equilibrium argument to conclude that the
appropriate price for weather options is the expected pay-off. This idea is
unlikely to be popular with speculators, since they would not make any
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money in the long run under such a pricing scheme but would increase their
risk. We discuss the relevance of such equilibrium pricing models in more
detail in section 1.4.2.

A more plausible suggestion, due to Geman (1999a), is that weather
derivatives could be hedged using electricity contracts that have prices cor-
related with the weather and that the price of the electricity contracts could
be used to fix the price of the weather derivative contracts. This cannot pro-
vide a perfect hedge since the prices of electricity contracts depend on more
than just the weather, but it could potentially reduce the risk of a weather
derivative position to a more acceptable level. Undoubtedly, some energy
companies that trade weather and electricity contracts do attempt to create
low-risk portfolios in this way. However, to our knowledge such trading does
not have a strong effect on the market prices of weather derivatives, and it
does not lead to an arbitrage possibility, and so it cannot be considered as
a practical method for pricing.

A similar suggestion was made by Davis (2001), who proposed that
weather derivatives should be priced using the utility function of a port-
folio of gas and weather contracts. Again there is no doubt that certain
energy companies do trade correlated gas and weather contracts in a com-
bined portfolio (and some probably trade all gas, electricity and weather
contracts in a combined portfolio), but, again, it seems that such trading
does not determine weather market prices nor create an arbitrage possibility
and hence the analysis of gas prices does not lead to a general method for
the pricing of weather contracts.

1.4.2 CAPM and the price of weather derivatives

The capital asset pricing model (CAPM: Sharpe, 1964) is a theory of the
statistical behaviour of the prices of investments. It has received a certain
amount of criticism in recent years and some authors consider it not useful
at all, mainly because it assumes that all investors have more or less the
same portfolio of investments, and that returns are normally distributed.
Nevertheless, it is interesting to consider what the theory has to say about
the likely market prices of weather derivatives. The principal result of the
theory is that, under certain assumptions, the excess return over the risk-
free rate given by an investment is proportional to the regression coefficient
between the performance of that investment and the performance of some
wider market. Thus investments with high correlation with the wider mar-
ket will have a return well above the risk-free rate, while investments with a
low correlation with the wider market will have a return much closer to the
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risk-free rate. The justification for this is that the low-correlation invest-
ments are much more desirable, and this has pushed up their price until
their return drops below that of the less desirable high-correlation invest-
ments. The market we observe is supposedly an equilibrium that results
from these effects. In this model all investments become a trade-off between
correlation and return: because of market dynamics you cannot have both
low correlation and high return.

As was mentioned in section 1.1.6, and is discussed further in section 1.5,
the weather is largely uncorrelated with the financial markets, and thus
the performance of weather derivatives is also largely uncorrelated with the
financial markets. Applying CAPM, this would suggest that weather deriva-
tives should be extremely popular as an investment class, and that this
popularity would push the return on weather contracts down to the risk-
free rate.

In fact, CAPM does not apply particularly well to the real weather mar-
ket. There are a number of reasons for this, including:
� weather derivatives are not considered as an investment class by the majority of
investors, and thus there is less demand for weather derivatives as investments
than the low correlation and CAPM might suggest;

� those organisations that do invest in weather derivatives often manage their
weather businesses as separate entities rather than as a part of the whole busi-
ness, and expect them to earn a decent return above the risk-free rate in spite of
the low correlation with other assets;

� the prices charged for weather derivatives are strongly influenced by the targets
for the rate of return of the various speculators in the weather market; this is
more a managerial decision than a question of market dynamics.

To summarise, the assumptions that lie behind CAPM (and other equilib-
rium models, such as that of Cao and Wei, 2000) do not apply in practice.
Weather derivatives can defy the theory and give both a low correlation
and a high return. Equilibrium theories provide interesting frameworks for
understanding how markets may perform, and they certainly contain some
elements of truth, but they are not close enough to the real world to be
applied in practice for fixing prices.

One could also apply CAPM to the weather market alone; in this sense
the price of an individual weather contract might be considered to be pro-
portional to the regression coefficient between the pay-off of that contract
and the wider weather market. Exotic weather contracts on exotic locations
would thus be cheaper than standard contracts on standard locations be-
cause they are uncorrelated with this wider weather market. This dynamic
may be relevant in some cases. However, it is strongly counterbalanced by
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the fact that trading standard contracts is generally preferred because of
the greater price transparency, the lower overhead costs and the possibility
of hedging one’s position in the secondary market.

1.5 The correlation between weather and the stock market

We have argued in this chapter that (a) many companies can hedge them-
selves using weather derivatives, and that this will reduce the volatility of
their stock price, and (b) weather derivatives are a good investment because
they are not correlated with the stock market. It might be said that these
statements are somewhat contradictory. In fact, however, both are more or
less correct. Certainly, individual stocks of companies that do not hedge
themselves against weather fluctuations would be expected to be correlated
with the weather that affects them. And many companies in the stock mar-
ket are affected by the weather. However, each company is affected in a
different way, and in a diversified portfolio of stocks of many companies the
weather-driven part of the variability of the portfolio performance is likely to
disappear almost completely. Thus a company investing in a diversified port-
folio of stocks can indeed invest in weather derivatives under the assumption
of zero correlation between the two.

1.6 Overview of contents

In this introduction we have explained the reason for the existence of the
weather derivatives market, and we have introduced the various types of
weather derivative contract available. The rest of the book now discusses
the valuation of these contracts. In chapter 2 to chapter 12 we will focus
on contracts based on average temperature, which form the bulk of the
market, and in chapter 2 to chapter 10 we will concentrate on actuarial
pricing methods. Chapter 2 looks in more detail at the historical meteoro-
logical data that is used for the actuarial pricing of weather contracts, and
in particular describes how this data can be cleaned and detrended before
use. Chapter 3 considers the pricing of a single weather derivative using
the simplest possible actuarial method, known as ‘burn analysis’. Chapter 4
then discusses how burn analysis can be extended to the modelling of the
settlement index, a method we call ‘index modelling’. Chapter 5 uses the
methods described in these two chapters to address various issues that arise
in the pricing of weather contracts and to introduce the greeks. Chapter 6
approaches the question of whether we can price weather derivatives us-
ing daily temperature simulation models. Chapter 7 generalises much of the
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material in the earlier chapters to portfolios of weather derivatives. Vari-
ous issues in weather portfolio management such as risk and return, pricing
against an existing portfolio and hedging the risk in a portfolio are then
considered in chapter 8. Before chapter 9, no consideration is given to the
use of meteorological forecasts in the pricing of weather derivatives. It is
assumed that the relevant contract period is sufficiently far in advance that
forecasts are not useful. After describing the relevant types of meteorolog-
ical forecasts in chapter 9, this assumption is relaxed in chapter 10, where
there is a detailed discussion of how to use both weather and seasonal fore-
casts to improve weather derivative valuation. Chapter 11 moves away from
the actuarial pricing methods of chapters 2 to 10 and discusses arbitrage
pricing methods based on the idea of using swap contracts to hedge, fully
or partially, the risk in options. Chapter 12 then covers the subject of risk
management. This is aimed at those organisations that issue weather deriva-
tives and need to have an up-to-date picture of the performance and value
of the contracts on their books. Marking a portfolio to model and to mar-
ket, value at risk and expiry value at risk are discussed. Finally, in chap-
ter 13 we briefly consider weather derivatives based on variables other than
temperature.

1.7 Notes on citations

We have avoided heavy use of citations within the main text, except when
we are describing a method or idea that was first suggested by a particular
author or authors. At the end of each chapter we have included a short
‘further reading’ section in which we list references and articles that might
be of use or interest to the reader. Inevitably, we have ended up citing
ourselves in a large number of places; this book is, in large part, based on
the research we have carried out in this area over the last four years and the
technical reports we have published that describe the results of this research.
However, we have tried to apply the same standards when discussing our
own work as when discussing the work of others. Where possible we have
given preference to citing open-access publications since these are of much
greater use to the reader. Unfortunately, much of the academic literature
is not open access and can be rather difficult to get hold of for non-academics.
We have tried to be reasonably comprehensive in our references section: the
body of work covering weather derivatives is still sufficiently small that one
could reasonably try and read it all. If the reader knows of any important
citations that we have missed we will be happy to include them in a future
edition.
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1.8 Further reading

Many articles have been written about weather derivatives, covering all as-
pects of the weather derivative industry. Four useful sources for such articles
are the Environmental Finance monthly magazine, the Energy Power and
Risk Management Weather Risk Special Report (published annually), the
Social Sciences Research Network (SSRN) at http://www.ssrn.com and the
Artemis Website at http://www.artemis.bm.

There are three books in English that contain collections of articles on
weather derivatives. The first – chronologically – is Insurance and Weather
Derivatives (Geman, 1999b), which has four chapters that introduce ba-
sic weather derivatives concepts. The second is Weather Risk Management
(Element Re, 2002), which has fourteen chapters covering everything from
basic meteorology to a discussion of the legal, accounting and tax issues
relevant to weather derivatives. The third is Climate Risk and the Weather
Market (Dischel, 2002), which has seventeen chapters that, again, cover a
wide range of topics.

For readers of Japanese there are three books on weather derivatives pub-
lished in that language: Hijikata (1999), Hijikata (2003) and Hirose (2003).
The last is a collection of essays by five different authors. Finally, in French
there is a book that covers the basics of the market and of valuation: Marteau
et al. (2004).

The main difference between these books and this one is that we focus
purely on the valuation aspects of weather derivatives, and consequently are
able to discuss such issues in much greater depth than they receive elsewhere.
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Data cleaning and trends

Actuarial pricing methods for weather derivatives depend on statistical mod-
elling of stationary time series of historical meteorological data. This is de-
scribed in chapters 3 to 6 for single contracts, and chapters 7 and 8 for
portfolios. However, historical meteorological data is anything but station-
ary, and we must process it in a number of ways before the pricing methods
can be applied. Firstly, we must clean the data to remove absurd values and
fill gaps. Secondly, we must identify (and perhaps attempt to remove) jumps
in the data that occur as a result of station changes. Finally, we may need
to remove gradual trends from the data. Our discussion of the methods used
for identifying and replacing absurd values, filling gaps and identifying and
removing jumps will be rather cursory; a more thorough explanation is given
in Boissonnade et al., 2002. We will, however, discuss the identification and
removal of trends in some detail.

2.1 Data cleaning

Meteorological data measurements are usually made by national meteorolog-
ical services (NMSs), and occasionally by universities, private companies or
military organisations. We will restrict ourselves to a discussion of the data
measured by the NMSs since this is what is generally used in the weather
market. In many parts of the world measurements exist that go back at least
fifty years, and in some cases much longer. However, as we shall discuss be-
low, even very recent data already has significant problems with reliability
and homogeneity, and earlier data is usually significantly worse.

The extent to which meteorological data is readily available for use by the
weather derivative industry varies by country. In the United States data and
information about the data, such as the logbooks kept by the observers (an
example of metadata), are either freely available or available at a nominal
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cost, and the infrastructure for disseminating the data is well developed.
This is one of the reasons why the US weather market, and other commercial
applications of meteorology in the United States, have been able to expand
very rapidly. By contrast, in most countries in Europe meteorological data is
expensive, and in some cases extremely so. The metadata is generally hard
to obtain, and is usually available only in hard-copy format rather than
digital electronic format. The infrastructure for disseminating the data is
also fragmented and disorganised, with different systems operating in each
country. Some of the difficulties involved in obtaining European data have
been reduced, however, by the recent emergence of private sector companies
acting as intermediaries between the NMSs and the rest of the private sector.
Finally, in Japan data and metadata are generally expensive but are easy
to obtain from a number of private meteorological companies.

We will focus our discussion on temperature data. There are two main
kinds of observed temperature data that can be obtained: ‘synoptic’ and
‘climate’ data. They may or may not be derived from the same underly-
ing measurements; this varies from country to country. Synoptic data is
used primarily for feeding immediately into weather forecasts. Since it is
crucial that weather forecasts are based on the latest measurements there
is no time for comprehensive quality control or checking of this data, and
so synoptic data does not form a particularly reliable historical record of
past temperatures. Climate data, on the other hand, is created purely for
the purpose of having just such a historical record, and goes through sev-
eral levels of quality control and checking in most countries. Although these
checking procedures often delay the release of the data by days, weeks or
even months after the data has been measured, this is the data that is gen-
erally used in the weather market for the settlement of weather contracts
because of its higher level of accuracy and reliability. Only in cases where
quality-controlled climate data is not available, or is not available within a
reasonable time-frame, is synoptic data used.

If historical climate data is obtained from an NMS or private meteorolog-
ical service provider it may or may not have been cleaned to the standards
necessary for use in weather pricing. This should be ascertained when the
data is purchased. The various stages of the necessary cleaning are outlined
below.

2.1.1 Gap filling

Almost no meteorological stations have continuous measurement series with-
out a break during the last forty or fifty years. Any number of reasons, from
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power cuts to data transmission failures, can result in gaps in the historical
data record. If the number of gaps is large relative to the amount of data
available, and especially if there are big gaps in recent years, one may con-
clude that the station is not suitable for use in the weather market. This
is partly because the gaps in the data will make a statistical analysis less
accurate, and partly because a station that has many gaps in the past may
be more likely to have gaps in the future, and this can cause problems with
the final settlement of the weather contract.

If, on the other hand, the gaps are a small fraction of the available data
(perhaps less than 10 per cent), then it is usually possible to proceed with
using a station to structure and trade weather derivatives. Statistical meth-
ods such as detrending and distribution modelling (to be described later)
can, in principle, be performed on data with gaps, and this would be the
most accurate approach. However, this is usually difficult, and the preferred
method is to fill the gaps using spatial interpolation procedures to cre-
ate a complete data set prior to detrending and distribution fitting. When
the number of gaps is a small fraction of the total amount of data this
is likely to be only slightly less accurate than performing analysis on the
true data including gaps, and the difference is assumed to be immaterial.
Gap filling is done using spatial regression models that can estimate missing
data at a particular station based on information from surrounding loca-
tions. Such models are easy to build using standard multivariate regression
techniques.

2.1.2 Value checking

It is fairly common to find absurd or implausible temperature values in his-
torical records. If left uncorrected, such values can cause severe mis-pricing
of weather derivatives. Some of the types of checks that can be performed
to detect incorrect values are:

� a check that the daily maximum is not less than the daily minimum (although
note that in the United Kingdom this is only just about possible because minimum
and maximum are measured over non-overlapping time periods);

� a check that the temperature values lie within reasonable ranges for the time of
year for that location;

� a check that the temperature differences between nearby locations are not im-
plausibly large.

Once detected, incorrect values can be replaced using the same spatial-
regression-based methods as are used for gap filling.
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2.1.3 Jump detection

Having filled gaps and removed obviously incorrect values, the next stage
in data cleaning is the identification and possible removal of jumps. The
jumps in historical temperature measurements are caused by changes at
meteorological stations, and our experience suggests that all meteorological
data is affected by such jumps. Such changes mainly consist of changes in the
location of the station (both horizontal and vertical movements) and changes
of instrumentation (updating equipment or replacing broken equipment).
Other changes include changes in the housing of the equipment and changes
in the immediate environment surrounding the housing (such as grass being
replaced by tarmac). The jumps in the measurement series that are caused by
such changes can be up to several degrees Centigrade in the worst case, and
it is essential to identify these jumps before using data for weather pricing.
To price weather derivatives using data containing large jumps would expose
an organisation to significant disadvantages in the secondary trading market
and to adverse selection in the primary market (adverse selection is the
process by which, in a competitive market, the only weather deals that
one succeeds in selling are those that one has unknowingly underpriced).
For those stations at which large changes have occurred this single issue is
more important than any other in determining reasonable weather derivative
prices.

Daily data obtained directly from NMSs has, almost without exception,
not been corrected for such jumps.1 For some station changes, especially
when measurement stations are being replaced or updated, it is common me-
teorological observing practice to run the new station configuration alongside
the old to check that the measurements from the new station are sufficiently
close to the old for the records to be concatenated. However, this does not
address the problem of station changes and associated jumps fully for two
reasons: (a) it is often decided that the measurements from the new sta-
tion are sufficiently close to those from the original station even if there are
small differences, and these small differences are not usually used to adjust
the original data; and (b) such parallel measurements are performed only
in certain cases, but not in cases of broken equipment or changes in the
immediate environment of a station.

One of the reasons for this apparent lack of care on the part of meteoro-
logical services and the World Meteorological Organization (WMO) is that
their main concern is making weather forecasts, and providing data for such
1 We say almost without exception because the Swiss Meteorological Service has apparently

carried out such an analysis.
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forecasts. A change in measured temperatures of 0.5oC is more or less neg-
ligible relative to the sizes of errors in such forecasts. However, a change of
0.5oC is large relative to the size of the standard deviation of mean temper-
ature calculated over a long time period, and is thus very important from
the point of view of the weather market.

Methods for the identification of jumps usually proceed along the follow-
ing lines:

� analysis of any available historical metadata (textual information about the his-
tory of the station) to identify dates when changes occurred that might have
resulted in jumps;

� statistical testing of the data around these dates to determine if a jump occurred;
� analysis of all other dates in order to detect jumps due to changes not recorded in
the metadata (many such jumps appear to exist in observed meteorological time
series);

� estimation of the sizes of all detected jumps using data before and after the jump.

The testing and estimation procedures used for estimating the size of jumps
are usually based on an analysis of the linear dependences between the tar-
get station and surrounding stations. Data from the surrounding stations
can then be used to replicate the target station using regression, and a
difference time series produced by subtracting the replica time series from
the actual. Any jumps in the original time series show up clearly in this
difference time series, and can be identified visually or using statistical
tests.

Having identified a jump in a data set one has three choices:

� ignore it; this is appropriate only if the jump is too small to have a significant
effect on final index values, relative to other causes of uncertainty;

� use data from after the jump only; if the jump is far back in the past this is
certainly the best course of action;

� attempt to adjust the data prior to the jump to the present-day levels, using the
estimated size of the jump.

Which of the second and third of these choices is more appropriate to use
for the treatment of large jumps depends on a number of factors, such as
the accuracy with which the size of the jump can be estimated, when the
jump occurred and what contract the data is to be used to price.

Data from which jumps have been identified and removed is avail-
able from private sector companies for those stations commonly traded in
the weather market, and most weather pricing is carried out using such
data.
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2.2 The sources of trends in meteorological data

We have described how raw meteorological data can be corrected for gaps,
incorrect values and jumps. There is one more major issue to be addressed
before we have a data set that can be considered representative of the likely
climate during the contract period for a weather derivative: gradual trends,
or shifts in the mean level of the data.

Historical meteorological data is not used in weather derivative pricing
because we care about what the climate was doing twenty years ago but
because we need to know what the climate might do in the near future.
Studying historical data is one of the few ways we have to answer that ques-
tion: the basic assumption is that the climate in the future is going to behave
in ways somewhat similar to how it has behaved in the past. However, even
the most cursory investigation suggests that it is not true that climate data
is stationary. Almost all measurement time series appear to show trends
and fluctuations on long timescales, and for temperature these trends are
mostly positive (hence the phrase ‘global warming’). As an example, fig-
ure 2.1 shows a CDD index at New York’s LaGuardia Airport that shows a
large apparent trend. There are a number of possible explanations for such
trends, which we discuss in detail below.

1. Random internal climate variability. The simplest explanation for an apparent
trend is that it is part of the random internal variability of the climate system.
This is not a possibility to be taken lightly; figure 2.2 shows a short sample
of white noise, representing index values for a weather derivative for the last
thirty-five years. There is apparently a trend during this period, but we know
that the data is actually random, and that this apparent trend has no underlying
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Figure 2.1. CDDs for New York LaGuardia over the last thirty-five years.
There is apparently a large upward trend in the number of CDDs, indicating
warming.
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Figure 2.2. A segment of stationary white noise. The values have been
chosen to look like the number of CDDs at New York LaGuardia. The
apparent trend illustrates the difficulty of distinguishing between real and
purely statistical trends.

cause; in this sense, the trend is not ‘real’. There is no reason to suppose, if we
continued this time series, that this trend would continue. Simple random models
like this can be used to put error bounds on the estimates of trends, and it is quite
useful to generate random numbers in a spreadsheet to become familiar with this
effect.

2. Urbanisation. Many meteorological measuring stations are now in, or near, more
urban environments than they were twenty or thirty years ago, and this may have
changed their local climate. Such urbanisation generally has a warming effect
and is related to (a) increased coverage of the ground surface with concrete,
tarmac and buildings, which both increases the absorption of solar radiation
and decreases cooling evaporation, and (b) the emission of heat from buildings,
vehicles and aircraft. Urbanisation effects are not only local, and urbanisation
warming can often be seen many miles downwind of major cities.

3. Anthropogenic climate change. This is the idea that man’s activities, mainly the
release of carbon dioxide (CO2) into the atmosphere from burning fossil fuels,
have had an effect on the climate system. Such effects may include warming in
some regions, cooling in others, and possible changes in the atmospheric circu-
lation. Mechanistic computer models of the climate system (known as general
circulation models, or GCMs) have been used to test this idea. The models are
simple relative to the real climate system, and their results cannot be entirely
trusted. But to the extent that the models are realistic they prove that increasing
levels of CO2 over the last century have caused a warming, on average, over the
whole globe. However, these models are not accurate enough on smaller spatial
scales to tell us whether there has been a CO2-induced warming in any particular
location, or a change in any particular phenomenon (such as hurricanes or extra-
tropical storms). As a demonstration of this inaccuracy on small scales, models
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from different scientific research groups that give roughly the same warming for
the planet as a whole often give very different results at individual sites. Un-
til independent models start to agree in terms of the spatial patterns and local
details of climate change, it is wise to assume that these patterns are not correct.
The main objections to the theory that the observed warming is mostly due to
CO2 are that it is caused by urbanisation (see 2 above) or long-term climate
variability (see 4 below).

4. Predictable internal climate variability. This is the possibility that predictable
long-timescale changes are occurring in the climate due to internal climate pro-
cesses alone. The discussion on random internal climate variability (1 above)
was concerned with those trends caused by the unpredictable (random) parts of
climate variability. Climate variability on long timescales of years and decades
is dominated by such random effects, which arise from sampling short-timescale
phenomena that occur randomly in time. However, it may be that there is also
a component of long-term climate variability that is predictable. For instance,
slow changes in the ocean, on timescales of decades, could affect the atmosphere.
These oceanic changes could be oscillatory, in which case we might see periods
of ten or twenty years of upward trends, followed by ten or twenty years of the
reverse.

5. Variability in solar forcing. The radiation output from the sun varies periodically
in time. This has only a small effect on climate, and can be ignored for our
purposes.

For the purpose of pricing weather derivatives it is helpful, to a certain
extent, to try and understand the origin of trends in order to decide whether
the trends should be removed (or not) and whether they should be extrap-
olated appropriately into the future. To the extent that observed trends are
not real but are created by sampling variability (1 above) they should not
be removed or extrapolated. To the extent that they are due to urbanisation
(2 above) they should possibly be removed, and also perhaps extrapolated,
depending on the likely future rate of urbanisation. To the extent that they
are anthropogenic (3 above) they should possibly be removed and extrapo-
lated into the future, perhaps at an increasing rate. And finally, to the extent
that they are due to predictable internal climate variability (4 above) one
should attempt to predict that variability. In the absence of a prediction it
probably makes most sense to remove the effects of past climate variabil-
ity but not to extrapolate into the future (this is known as a persistence
forecast).

How, then, are we to distinguish between the different possible causes of
trends in the historical data? Unfortunately, a complete decomposition of
trends into their various causes is not possible. There are, however, a few
ways that we can shed some light on the issue.
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2.2.1 The spatial structure of trends

Using station data for a large number of locations throughout the world
we can study the spatial variations of trends, and this can give us some
partial information about their causes. For instance, anthropogenic effects
would be expected to create fairly large-scale patterns in the trends (up to
continental scales), while urbanisation effects would be expected to be more
localised, on scales the size of urban areas. However, the distinction between
random climate variability, predictable climate variability and anthropogenic
effects will certainly not be clear simply from looking at the spatial scales
of changes, since all of these effects would be expected to impact on large
scales.

We have mapped the trends in minimum, maximum and average temper-
atures in winter and summer over the United States in Jewson and Brix,
2004a. As an example, figure 2.3 shows the rate of a linear trend in November
to March HDDs over the last thirty years.

The results from this study were:

� most but not all locations show warming trends;
� winter trends tend to be stronger than summer trends;
� winter trends tend to show a high degree of spatial coherence while summer trends
do not;

� summer maxima show only very weak trends;
� summer minima show stronger trends than summer maxima;

Figure 2.3. The rate of November to March HDD trends over the last thirty
years for two hundred US locations.
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� in some regions winter minimum and maximum temperatures behave the same
way (e.g. the northern United States);

� in other regions winter minimum and maximum temperatures behave very differ-
ently (e.g. the southern United States).

2.2.2 Climate models

We have argued above that climate models are not, at present, sufficiently
accurate to give useful information about climate change trends at individual
locations. However, these models are becoming more accurate as the avail-
able computer power increases, and at some point the results from different
models will – hopefully – start to agree. At this point it would be possible
to include information from such models into the study of local trends. The
most important use of such models from the weather derivative pricing point
of view is not to produce forecasts for the next fifty years but, rather, to
shed light on the causes of what has already happened. The models can be
run in such a way as to simulate the climate of the last fifty years, and can
then be used to ask questions about the causes of different trends in different
regions. Suppose, for example, that as a result of a climate modelling study
using a number of different models it was concluded that the warming trend
at a certain location over the past thirty years was almost entirely due to
anthropogenic climate change. This would justify removing the trend and
extrapolating it into the future. It would also give an idea of the shape of the
trend to be removed. If, on the other hand, it was concluded that most of
the trend was due to predictable climate variability as part of a twenty-year
cycle then it would make sense to remove the trend using the shape of the
cycle, and use any available predictions of the cycle for the upcoming year
or years. Such predictions may involve increases or decreases in future tem-
perature. Finally, if it was concluded that the apparent trend was consistent
with the levels of random internal variability in the climate then it would
be justifiable not to remove the trend.

It should be stressed again that such a study is, at present, not possible
because of the limitations of the climate models and computer power, but
may become practical in the next few years.

2.2.3 Urbanisation studies

By studying the physical environment of individual measurement sites we
can decide whether or not they are likely to have been influenced strongly by
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Figure 2.4. Historical values for summer CDDs at New York LaGuardia
and New York Central Park. Even though these stations are physically
reasonably close, one shows a very significant warming trend while the
other shows no warming trend. This suggests that the trend at LaGuardia
is due to urbanisation rather than large-scale climatic effects.

urbanisation. If we can find two nearby sites, one of which has experienced
urbanisation while the other has not, then differences between the two can,
in principle, give us an indication of the extent to which the former has been
influenced by such changes. If, on this basis, it is concluded that one site
has been strongly affected by urbanisation then this trend should probably
be removed, unless there are reasons to believe that the urbanisation will be
reversed in the near future.

As an example we will compare the CDD index for New York LaGuardia
with the corresponding index for New York Central Park. These two stations
are only a few miles apart, but whereas much has been built in the LaGuardia
area over the last thirty to forty years not much has changed over the same
period around Central Park. Figure 2.4 shows the historical CDD indices for
the two locations with linear trends overlaid. Visually, the difference between
the two plots is striking, and a test of the significance of the slope of the
trendlines reveals that the trend for Central Park is not significant (p =
34 per cent) while the trend for LaGuardia is highly significant (p = 0.06
per cent).

2.3 Removing trends in practice

We have discussed some of the possible causes of trends, and suggested
a number of ways that one can try to understand trends in more de-
tail. It is clear that, at present, there are no easy ways to identify the
origins of trends. The two most important conclusions are simply that
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(a) real (not random) trends do exist in many data sets and (b) for now
these trends are best accounted for using statistical methods rather than
by the use of climate models. We now move on to the practical subject
of how actually to identify, model and remove trends from historical time
series.

The most mathematically consistent approach to modelling a trend and
the distribution of the residual data around the trend is to postulate a para-
metric shape for the trend and a parametric distribution for the residuals
and to estimate all the parameters at once using maximum likelihood meth-
ods. However, this approach is seldom used in the weather market because
of its relative complexity. Rather, a simplified approach is used in which
the two steps of trend and distribution estimation are performed separately,
and this is the approach that we will describe below. There are some small
mathematical inconsistencies in taking this separate approach, but it has
some practical advantages and is easier to apply. Trend fitting is discussed
below while distribution fitting is discussed in chapter 4.

In the context of weather derivatives based on daily measured values there
are two possibilities for how to remove trends: (a) removing trends from
the historical daily data series; or (b) removing trends from the historical
index time series. Understanding daily temperature trends is more complex
because of seasonality and so we will consider trends in the historical index
time series first.

2.3.1 Detrending index time series

The main advantage of detrending at the index level rather than the daily
level is that the effects on the index of the different types of possible
trends in the underlying daily temperature are combined. In other words,
if we deal with daily temperatures we should ideally consider trends in
the mean, the variability, the correlation structure, the extremes, trends at
different times of year, etc. If we deal with index values then, at least in terms
of the estimates of the expected index, one can ignore these various sources
of trends and consider simply the trend in the mean level of this single
number.

There are an infinite number of different shapes of trend that can be
used to detrend the index time series, and we cannot catalogue them all
here. Rather, we choose a selection of the most commonly used techniques:
linear, piecewise linear, quadratic, exponential, moving average and loess.
To illustrate these shapes, we show these trends fitted to London Heathrow
historical HDD indices in figure 2.5.
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Figure 2.5. Examples of the six trend shapes discussed in the text, all fitted
to London Heathrow November to March HDDs, 1972 to 2001.

For all shapes of trend our model assumption is that a historical index
xi for year i can be represented as a sum of a trend ri and some random
variation ei.

xi = ri + ei, i = 1, . . . , Ny (2.1)

where Ny is the number of years of data.
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The ei are assumed to be independent and identically distributed with
expectation zero. The detrended indices, x′i, are then defined as

x′i = xi − r̂i + r̂Ny
(2.2)

Adding r̂Ny
in this way ensures that all indices are brought to the level of

the last index – i.e. the detrended indices are consistent with the climate
in year Ny. r̂Ny

is sometimes known as the pivot. Often the contract will
commence a year, or more, ahead of the end of the historical indices, and in
such cases it may be desirable to extrapolate the trend to year Ny + k using
the alternative equation

x′i = xi − r̂i + r̂Ny+k (2.3)

in which we have replaced r̂Ny
by r̂Ny+k.

Parametric trends

Linear, piecewise linear, quadratic and exponential trends are all parametric
trends, in that they have a fixed shape that is partly adjustable with a
small number of parameters. These parameters are usually estimated from
historical data using either analytical or numerical minimisation of the sum
of the squared errors

∑Ny

i=1 e
2
i .

2

With yi denoting the year of index i, linear, quadratic and exponential
trends ri are parameterised by

ri = a + byi (linear)
ri = a + byi + cy2

i (quadratic)
ri = aexp(byi) (exponential)

while piecewise linear trends are parameterised by

ri =
{
a1 + b1yi if i ≤ i0
a2 + b2yi if i ≥ i0

(2.4)

The definition of piecewise linear trends also includes the constraint that
the trend is continuous at the breakpoint – i.e. that a1 + b1yi0 = a2 + b2yi0 .
The year at which the two parts of the trend join, i0, is fitted as a parameter
along with the other parameters.

2 It was mentioned above that removing trends and fitting distributions to the residuals separately
leads to small mathematical inconsistencies. One of these is that by fitting a trend by minimising
the sum of squared errors we are essentially assuming that the residuals are normally distributed.
However, later we may fit a distribution other than normal to the residuals. If the residuals are
not normally distributed then fitting the trend by minimising the sum of square errors is not a
maximum likelihood method. If the residuals are close to normally distributed then this does
not matter. However, if they are far from normally distributed it may.
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For the linear trend case, the parameters a and b are estimated by

â =
SyySx − SySxy

∆
, b̂ =

NySxy − SxSy

∆
(2.5)

where

∆ = NySyy − S2
y , Sy =

Ny∑
i=1

yi, Sx =
Ny∑
i=1

xi,

Syy =
Ny∑
i=1

y2
i , Sxy =

Ny∑
i=1

yixi (2.6)

Expressions for the parameter estimates in the other cases can be derived
from the general expressions given in appendix A.

Non-parametric trends

Moving average and loess are non-parametric trends that have no fixed shape
but take their shape more directly from the data. They can be used if there
is reason to believe that the parametric trends do not provide a satisfactory
approximation for the shape of the trend during the period considered. In
practice, it often makes sense to fit a non-parametric trend when using
many (i.e. forty or fifty) years of historical data. For shorter periods of data
a parametric trend may be a good approximation to the real trend, but
as the number of years of data is increased it becomes less likely that the
approximation will remain good. The simpler of the two non-parametric
trends is the moving average method, where the trend in year i is estimated
as the average of the neighbouring years:

ri =
1

2w + 1

w∑
i=−w

xi+w (2.7)

The number of neighbouring years, 2w + 1, is usually called the window
length. In an extension of this method the years may be weighted such that
years closer to the base year contribute more than years that are further
away. The main disadvantage of moving average estimation is that it does
not extrapolate the trend beyond the last historical year.

Loess trends (Cleveland and Devlin, 1988) use local parametric regres-
sion. Linear loess, for example, estimates the trend for year i by weighted
linear regression, with most weight on nearby years. One advantage of the
loess method over moving averages is that it does allow extrapolation be-
yond the last historical year. Loess has a single parameter that controls the
smoothness of the fitted trend. At one extreme of this parameter the trend
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Table 2.1. The mean and standard deviation of the settlement index for
London Heathrow November to March HDDs, estimated using different
numbers of years of historical data and different trend assumptions.

10-yr mean 10-yr SD 20-yr mean 20-yr SD 30-yr mean 30-yr SD

No trend 1712.65 116.91 1764.18 140.48 1794.16 132.99
Linear 1672.92 120.72 1654.88 126.26 1694.34 120.47
Pw Linear 1672.92 120.72 1689.61 126.19 1656.36 113.46
Quadratic 1669.40 129.03 1684.19 128.86 1632.23 118.34
Exponential 1671.25 117.14 1654.68 118.72 1690.70 114.39
MA 1709.73 116.75 1709.73 131.66 1709.73 116.89
Loess 1670.84 131.01 1681.94 129.76 1660.75 117.95

comes close to passing through every data point, while at the other extreme
the trend becomes linear. This allows a range of results from a single trend
model just by varying this parameter.

Table 2.1 shows the estimated mean and standard deviation for HDDs
at London Heathrow, calculated using ten, twenty and thirty years of data
and seven different methods: no trend and the six trend methods described
above. We see significant differences between the results from the different
models, but it is very difficult to know which are the most accurate. We will
discuss in section 2.4 some of the ways one can try and answer this question.

Combined trend models

Trend models are sometimes used that combine two of the trend types de-
scribed above. One model is used to define the pivot while another defines
the residuals. The justification for this approach is that some models are
better at defining the correct mean index while other models are better at
defining the variability about the mean.

2.3.2 The sensitivity of trends

One of the major problems with estimating parametric trends is that the pa-
rameters that result from the estimation procedure can be inexact. Using the
mathematical techniques described in appendix A we can derive estimates
for this uncertainty. As an example, the uncertainty in the parameter esti-
mates â and b̂ of a linear trend, represented by the variance of the estimates
of these parameters, is given by

σ2
a =

Sxx

∆
(2.8)

σ2
b =

Ny

∆
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These parameter estimates are correlated with correlation given by ρ =
−Sx√
NySxx

.

It is instructive to plug in some numbers to see how large these uncertain-
ties can be in practice. For London Heathrow and an HDD index based on
November to March data for the last thirty years, we find that â = 3559.1,
b̂ = −0.93275, σa = 71.04 and σb = 1.594.

We see that the estimated trend parameter b̂ is negative, indicating a
downward (warming) trend, but is also extremely uncertain. This leads to
significant uncertainty in our estimate of the trend values r̂Ny

, the detrended
indices x′i and the mean and standard deviation of the detrended indices.

For this example the estimated expected index from this trend model has
a value of 1694.34, but with uncertainty of 42.9.

These expressions for parameter uncertainty given above suggest that us-
ing more years of data is preferable because the parameters will be estimated
more accurately. However, this is true only if the trend model is exactly cor-
rect, and this is less likely the more years of data we use. The optimum
number of years for a particular trend is presumably, therefore, a trade-off
between these two effects.

2.4 What kind of trend and how many years
of historical data to use?

Up to now we have not addressed the question of how many years of data
to use (is ten better than fifty?) or which trend to fit (linear or loess, etc.?).
These two questions are closely related. If the data is good quality and we
are confident that we can remove trends then we should use as many years
of data as possible to make our statistical estimates more accurate. On the
other hand, if we are uncertain about what the shape of the trend is then
using fewer years of data may make sense: using extra data that has not had
the trend removed correctly may reduce the accuracy of our results. Also,
whatever the shape of the trend, then as long as it is slowly varying it will
be well approximated by a linear trend over short time periods, but not over
long time periods.

One way to assess the number of years to use is to plot a graph showing
the mean and standard deviation of the index derived from detrending as a
function of the number of years used. An example of this is given in figure 2.6.
We have also shown the uncertainty around the mean and standard deviation
of the index, derived using equation (2.8).

These graphs tell us, at a glance, the sensitivity of our results to the
number of years of data used. They do not, however, give us any indication
as to which choice is the best.
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Figure 2.6. The upper panel shows the estimated mean index for London
Heathrow November to March HDDs as a function of the number of years
of historical data used. For each period of data a linear trend was removed.
The dashed lines show the uncertainty around the estimate of the mean rep-
resented as plus and minus one standard deviation. The lower panel shows
the same as the upper panel, but for estimates of the standard deviation
of the HDD index.

2.4.1 Backtesting

Perhaps the only way to attempt to answer the question of how many years
of data and what trend to use is to perform backtesting, or hindcasting,
studies. These ask the question: what combination of trends and number
of years of data would have worked well in the past?3 The major assump-
tion behind such a backtesting approach is that what would have worked
in the past will work in the future: in other words that next year’s val-
ues will be influenced by the same type of trends that affected the values
over the last few years. This is not necessarily correct. Using results from
backtesting does, however, free us from having to make subjective assump-
tions about the type of trend and length of data to be used; various types
and lengths can be tried, and the optimum choices are determined by the
method.

3 Unfortunately, we still have to decide how far back in the past to run the backtesting comparison,
and so the decision about how many years of data to use is, in some sense, only pushed to a
different level.
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We have attempted such a backtesting study based on temperature data
for two hundred US stations, and the results are described in detail in
Jewson and Brix, 2004b. For the stations and time period considered we
find that using no detrending leads to a mean error, or bias, because of the
warming trends in the data. This problem gets worse the longer the period of
data that is used. Using detrending can remove this bias: the loess methods
with extrapolation remove the bias most effectively. However, detrending
introduces a different problem, which is an increase in the standard devia-
tions of the errors. This is worst for short periods of data and non-parametric
methods and is made worse still by extrapolation. Two measures that look
at the size of typical errors, and hence incorporate information about both
the mean and the standard deviation of the errors, are mean absolute er-
ror (MAE) and root mean square error (RMSE). When we consider these
measures we find that the best of the no-trend methods are those that use
between five and twenty years of data. For fewer years of data the bias is
smaller, but the RMSE and MAE increase because of increases in the stan-
dard deviation of errors. For more years of data the standard deviation is
smaller but the RMSE and MAE increase because of increases in the bias.
The detrending methods considered (linear and loess) become better and
better the more data is used, presumably because the trend is better and
better estimated. Of all the methods we consider (which include methods
using up to thirty years of data), the best methods overall are no trend
with ten years of data and linear trend with thirty years of data. Figure 2.7,
which shows the results for winter HDD values, illustrates this. The solid
line shows the RMSE score for no detrending, the dashed line for linear
detrending, the dot-dashed line for loess-0.9 detrending and the dotted line
for loess-0.6 detrending.

In another article (Jewson, 2004i) we build a simple model to explain
these backtesting results. This model makes it clear that the results of our
backtesting study show the generic behaviour that is to be expected when
detrending a series of data with a weak trend. The conclusion is that it is
only worth trying to model the trend if we use many years of data. Mod-
elling the trend with only a few years of data can do more harm than good
even if the trend is real because of the increased standard deviation in the
predictions.

2.4.2 Detrending daily time series

Up to now we have considered detrending the historical index time series.
However, if we are planning to model a weather derivative pay-off by fitting
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Figure 2.7. The RMSE for different detrending methods applied over the
last fifty years, averaged over two hundred US locations.

a statistical model to daily values of temperature (this method will be dis-
cussed in chapter 6) then we need to use a trend model that works with
these daily values rather than with the index values. Also, whatever mod-
elling method we plan to use, for short contracts of only one month’s or one
week’s duration modelling trends at the daily level may be better because it
makes better use of the available data. Figure 2.8 shows trends calculated for
the temperature at Chicago’s O’Hare Airport for each week of the year using
only data from that week for the past thirty years (i.e. using an index-based
detrending method). The estimated trends vary widely from large positive
values to large negative values. We do not believe that this is reasonable;
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Figure 2.8. The slope of the linear trend in the average temperature at
Chicago O’Hare for different weeks of the year, based on data from 1972
to 2002. We see that the trend estimates vary very widely from positive to
negative, indicating the great uncertainty around such estimates.
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presumably, trends are fairly constant, at least from week to week and month
to month, even if they do vary from season to season. We could incorporate
this idea into our index-based detrending by smoothing the weekly estimates
to give a smooth curve for trends at different times of year. This would bring
information about the trend from outside the week of the contract to bear
on the week of the contract itself, and allow us to estimate the trends for
that week more accurately. This smoothing is done automatically, however,
if we use a daily-temperature-based detrending method with a trend that
varies slowly with season.

As with index detrending, linear trends represent the most simple daily
detrending model. We can then generalise the linear trend model to include
trends that vary in slope with the time of year, and can also use more
complex shapes such as loess, just as with index trends.

It would also be possible to remove trends from higher-order statistics
of temperature. For instance, one might attempt to estimate trends in the
standard deviation. It is certainly plausible that such trends could exist as a
result of any of the underlying hypotheses for trends. Anthropogenic effects
could be causing shifts in the storm track, which would certainly change
variability of weather, either up or down, over large regions. Urbanisation
effects could consist, in part, of daily and seasonal changes in car traffic or
air traffic, which might increase variability. Predictable climate variability
might also have an impact on sources of atmospheric instability and variabil-
ity, and, finally, in any short time series of random noise, we would expect
estimates of the standard deviation or variance based on different sections
of the series to show different values, possibly giving the illusion of a forced
trend with varying variance.

2.5 Conclusions

The main conclusion that we come to concerning trends is that it is difficult
to analyse precisely what the best strategy is in terms of how many years
of data and what trends to use. Backtesting studies have given us some
indication of what would have worked well in the recent past but do not
precisely determine what will work for a specific station in the future, be-
cause they involve averaging over many stations and because the future may
not behave like the past anyway. Beyond that, all we can do is to make some
assumptions that seem intuitively reasonable, and make sure we understand
the effects of uncertainty within those assumptions, and the effects of that
uncertainty on pricing.
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2.6 Further reading

Unfortunately, there is no single source of information about meteorological
data: the information has to be tracked down on a country-by-country basis.
The only attempts to consolidate such information have been in the private
sector; it is possible that the metadata for a number of countries can be
purchased from private suppliers.

The differences between synoptic and climate data are discussed in
Jewson and Whitehead (2001). There is a small academic literature that has
looked at the question of how to identify jumps in meteorological time series
in idealised situations, such as the articles by Karl and Williams (1987),
Easterling and Peterson (1995) and Allen and DeGaetano (2000). A general
article on the problems encountered when dealing with observational data
is that by Jones (1999). Articles that discuss data issues in the context of
weather derivatives are Boissonnade et al. (2002), Henderson et al. (2002)
and Jewson et al. (2003c).

Much of the research into global warming is reported in the Inter-
governmental Panel on Climate Change (IPCC) report (IPCC, 2001), al-
though the economic assumptions that underlie the climate forecasts pre-
sented in this report have recently come in for heavy criticism from some
economists (The Economist, 2003). An interesting outsider’s view on the
science of global climate change is given in Baker (2003). If you want to
run a climate model on your PC, then you can read Allen (1999) and visit
http://www.climateprediction.net. There has been a lot of research into the
possible predictability of long-term climate variations, such as by Sutton
and Allen (1997).

A recent review article on trends in climate, with emphasis on extremes, is
by Easterling (2001). Some of the issues to do with detrending temperature
indices are discussed by Brix et al. (2002) and Henderson et al. (2002).
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The valuation of single contracts
using burn analysis

We saw in the introductory chapter that, in most cases, weather derivative
pricing is based on actuarial methods that estimate the probabilities of the
various financial outcomes of a contract or a portfolio of contracts. In this
chapter we explore the most straightforward method by which the prices
and the distribution of financial outcomes of individual contracts can be
estimated, which is burn analysis. We also investigate the level of uncertainty
inherent in such estimates.

3.1 Burn analysis

Burn analysis, or just ‘burn’, is based, very simply, on the idea of evaluating
how a contract would have performed in previous years. In its most straight-
forward form there is nothing more to it, and as a result it can be calculated,
quite literally, with pencil and paper – or, slightly more practically, in a sim-
ple spreadsheet. We extend this basic form of burn to include those cases
where we also detrend the data prior to evaluating how the contract would
have performed. Burn explicitly does not include fitting distributions and
using Monte Carlo simulations, however.

Although there are cases when other methods may be more accurate or
give more information, burn analysis is nevertheless a good first step in
pricing almost any contract. We will describe the steps involved in burn
analysis for swaps and options, and then give some examples.

3.1.1 Burn analysis for swaps

Estimating the fair strike for linear swaps

The fair strike for a swap is defined as that strike that gives an expected
pay-off of zero. Calculating the fair strike for a linear swap is trivial, since

59
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the fair strike is just the expected index. This is because

E(p(x)) = E(D(K − x)) = DE(K − x) = D(K − E(x)) (3.1)

This is equal to zero if K = E(x).
So, to calculate the fair strike we have to perform two operations.

1. Produce detrended historical index values xi, as described in chapter 2. Detrend-
ing can be applied either to the daily temperatures, or to the index values.

2. Calculate the mean of the historical index values. This is an estimate for the
expected index.

Estimating the fair strike for capped swaps

In most cases the caps of capped swaps are sufficiently extreme that one
can ignore them, at least at the start of a contract (during the evolution
of a contract the expected index can move close to or reach the caps if the
weather is extreme). The fair strike can then be estimated in the same way
as for uncapped swaps. However, to take the caps into account one should
properly replace step 2 with another operation.

2. Calculate the strike that gives an expected pay-off of zero using an iterative
procedure.

The iterative procedures that can be used for this are discussed in section 5.8.

Adding a risk loading

Given the results from the above calculations, what is the appropriate strike
for a swap contract? Setting the strike to the fair strike means that neither
party gains or loses in the long run if the contract is traded many times.1

However, the fair strike is not necessarily the appropriate level at which
to trade the swap. If the swap is being sold in the primary market, and
one party is a hedger and the other a pure speculator, then one would
expect the strike to be shifted away from the fair value in favour of the
speculator to reward the speculator for taking on the hedger’s risk. The
simplest method for calculating such a shift would be as a percentage of
the standard deviation of the index of the swap – e.g. the strike might
be set at the mean plus 20 per cent of the index standard deviation (the
choice of 20 per cent is arbitrary). For a linear swap the expected pay-off for

1 Although it is not commonly used, we note that an alternative definition could be that the
fairest strike is that which gives a median pay-off of zero. Setting the strike so that the median
pay-off is zero means that there is a 50 per cent chance of making or losing money for each
party for this particular transaction. But, if the distribution is not symmetric, it will lead to
one party having an advantage on average over many transactions.
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the speculator is then 20 per cent of the standard deviation of the pay-off
distribution, and the standard deviation of the pay-off distribution is the
tick multiplied by the standard deviation of the index distribution. If the
contract is repeated many times the speculator will now make money and
the hedger will lose money on average.

Using fractions of the standard deviation as described above is just one
way to add a ‘risk loading’. Other ways of adding risk loading are dis-
cussed in chapter 8. In particular, we will discuss how the risk loading is
more appropriately calculated by the speculator by looking at the change
in the risk of his whole portfolio, rather than just the risk of the individual
contract.

Based on the use of a risk loading principle, a market maker might quote
two values for the strike of a swap, one at which he is prepared to sell and
one at which he is prepared to buy. Typically these would be above and
below the fair strike respectively. This means that buying a contract from a
market maker and then selling the same contract straight back again would
incur a small loss, and a small profit for the market maker.

The distribution of pay-offs

If we already know the strike of a swap and want to know the expected
pay-off or the distribution of pay-offs, then we add steps 3 and 4.

3. Calculate the historical pay-offs2 of the swap.
4. Calculate the mean of the historical pay-offs, and any other aspects of the pay-off

distribution that are required. Exactly how to use historical pay-offs to estimate
the pay-off distribution is discussed in section 3.1.3.

3.1.2 Burn analysis for options

What is the appropriate premium for an option? The fair premium, or
fair price, is usually defined to be that for which the expected profit on the
contract is zero – i.e. the premium is equal (and opposite) to the expected
pay-off. We will see in chapter 11 that this is not what is considered the
‘fair price’ for an equity option, because of the possibility of arbitrage in the
equity/equity option market. Arbitrage may also be possible in the weather
swap/option market under certain circumstances, and we will consider that
possibility later, but in most cases defining the fair price as the expected
pay-off is appropriate.

2 Note that we use the phrases ‘historical indices’ and ‘historical pay-offs’ even when the indices
have been detrended and so are not, strictly speaking, what occurred historically.
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To calculate the fair premium we can use the following steps.

2. Calculate the historical pay-offs of the option.
3. Calculate the mean of the historical pay-offs: this is an estimate for the expected

pay-off.

Adding a risk loading

If the issuer charges the expected pay-off as a premium, then, in the long-
run average over many trades, he will neither make nor lose money. As with
swaps, this fair premium may not be the most appropriate level at which to
trade. The seller of the option would probably expect a reward for taking
on the risk of having to pay out, and hence the premium would probably be
slightly higher than the expected pay-off by a risk loading.

The simplest method for determining this risk loading is as a fraction of
the standard deviation of the pay-off of the contract, and so, for example,
the price might be given by the expected pay-off plus 20 per cent of the
standard deviation of the pay-offs.

As with swaps, a market maker might quote values for the premium above
and below the expected pay-off by a risk loading. Unlike with swaps, it is
likely that the market maker would be more willing to buy than to sell,
since only selling incurs a risk of having to make a large pay-off. The prices
quoted might be adjusted to reflect this, and may not be symmetric about
the fair price.

3.1.3 The distribution of pay-offs

It is often useful to be able to estimate the distribution of possible pay-offs of
a swap or an option contract – for example, to estimate the probabilities of
various outcomes. To do this with burn analysis the historical pay-off values
are sorted and used to create the cumulative distribution function (CDF) for
the pay-off distribution. This is done by giving each of the sorted values a
probability between 0 and 1. Because the years are considered independent,
we spread the probabilities equally. To fix the probabilities precisely we need
a model, and there are a number of models we can choose from. One method,
which we will use throughout this book, is to put the first probability at
0 and the last at 1. The probability of the i’th sorted pay-off value is then
given by i

Ny
, where Ny is the number of years. This model gives unbiased

estimates of the real probabilities.
Having estimated the CDF of pay-offs, we can then read off the prob-

abilities of various events, such as hitting the strike or the limits. We can
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also read off the pay-off at a given percentage, such as the median pay-off
(pay-off at 50 per cent).

3.1.4 Assumptions used in burn analysis

What are the assumptions we must make to use burn analysis? Prior to
burn analysis the underlying historical data may be cleaned and detrended
according to the methodologies described in chapter 2. We can thus assume
that the historical index time series is stationary, and statistically consis-
tent with the climate that will occur during the contract period. We then
need to make just one assumption to apply burn analysis: that the data
values for different years are independent and identically distributed (in
fact, this assumption has already been used in the fitting of the trend: see
section 2.3.1).

How valid is this assumption of the independence of years? Historical in-
dex values for one-month contracts are separated by eleven months, those for
five-month contracts by seven months, etc. In Europe, the autocorrelation of
climate anomalies falls to values close to zero after about one month, imply-
ing that the independence of years assumption would be valid for contracts
up to eleven months in length. In the United States, climate autocorrela-
tions last up to at least six months, principally due to the effects of the El
Niño Southern Oscillation (ENSO).3 If ENSO effects are not removed from
historical data then this means that historical indices for contracts of longer
than around six months cannot really be considered independent. However,
in chapter 10 we will discuss ways in which the effects of ENSO can be re-
moved from historical data (albeit imperfectly). This then justifies the use of
the independence of years assumption for contracts of up to eleven months
in length, as in Europe.

For twelve-month contracts it would not be completely appropriate to
assume independence between years since the last days of one year are cer-
tainly correlated with the first days of the next. However, such contracts are
very rare.

3.1.5 Examples

We now give an example of a burn calculation for a swap, a capped swap
and an option. We consider winter contracts for London Heathrow for the
period November to March, based on an HDD index. We use forty-four years

3 The effects of ENSO are discussed in detail in chapter 9.
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of data that has already been cleaned to remove gaps and jumps. The first
stage of the analysis is to convert this data into index values: our forty-four
years of data has only forty-three full November to March periods, and so we
calculate forty-three historical index values based on these periods. These
are shown in the first panel of figure 3.1. These index values show a clear
downward (i.e. warming) trend, and we remove this trend using a linear trend
model.4 The detrended values are shown in the second panel of figure 3.1.

A linear swap example

We now define a linear swap with a tick of £5000/HDD. For pricing the linear
swap, we calculate the mean and standard deviation of the detrended his-
torical index values, giving 1698HDDs and 128HDDs. The fair strike would
thus be 1698HDDs. A market maker might be willing to buy and sell the
swap at 20 per cent of the standard deviation below and above the fair price,
giving 1672HDDs and 1724HDDs respectively.

To estimate the distribution of outcomes for the swap with strike at
1698HDDs we convert the index values into swap pay-offs, which are shown
in the third panel of figure 3.1. Since the swap pay-off is linear, the graphs
of index value and pay-off are the same, except for shifting by the strike and
scaling by the tick of the swap.

The fourth panel of figure 3.1 shows the estimate of the CDF of pay-outs
from the swap contract.

A capped swap example

We now imagine that the swap contract described above has limiting pay-
offs of £100,000. In practice, limits are set to much more extreme values
than this (for this contract the limits would usually be set at £1,000,000);
this value is chosen because it makes the possible effects of caps very clear.
As we have mentioned, very often in practice the limits of capped swaps are
sufficiently extreme that one can consider capped swaps to be linear swaps
and use the methods described above.

We calculate the historical pay-offs for the capped swap and use them to
estimate the CDF. Using this CDF we can calculate that setting the strike
to be the expected index gives an expected pay-off of the swap of −£2572,
rather than zero. This is because the historical index values are not dis-
tributed evenly around the expected index, and the pay-offs from below the
expected index do not balance those from above.

4 Note that our use of forty-four years of historical data and a linear trend in this example is
purely for illustration. We do not necessarily think that this would be a good way to value
contracts on this index in practice.
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Figure 3.1. The results of burn analysis on three contracts based on London
Heathrow. Panel 1 shows forty-three years of undetrended historical index
values. These values show a clear trend. Panel 2 shows the same index
values with a linear trend removed. Panel 3 shows the historical pay-offs of
a linear swap based on this index. Panel 4 shows the CDF estimated from
these historical pay-offs. Panel 5 shows the historical pay-offs of a capped
swap based on this index; the cap is deliberately set at an unrealistically
low level to illustrate the point. Panel 6 shows the CDF estimated from the
historical pay-offs of the capped swap. Panel 7 shows historical pay-offs of
a call option based on the index, and panel 8 shows the CDF of pay-offs
for the call option.
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When we use an iterative method to calculate the strike that gives ex-
pected pay-offs of zero we get 1694 HDDs, which is slightly below the value
for the expected index. This would be the fair strike for the capped swap.

The time series and distribution of pay-offs of the capped swap are shown
in the fifth and sixth panels of figure 3.1.

An option example

We now extend our example to an option contract structure. We define a
call option with a strike at 25 per cent of the standard deviation above the
expected index – i.e. strike at 1730. The option has a tick of £5000 and a
limit of £1,000,000.

The burn pay-offs in this case are shown in the seventh panel of figure 3.1.
The expectation of these payoffs is £116,731, and the standard deviation is
£191,025. The fair premium is thus £116,731, and a market maker who adds
a risk premium of 20 per cent of the standard deviation might offer to buy
and sell at £78,526 and £154,936.

The estimated pay-off CDF is shown in the final panel of figure 3.1. Note
the vertical section representing a large probability of zero pay-off.

Discussion

What are the advantages and disadvantages of burn analysis? The advan-
tages are that burn analysis is very simple and, as discussed above, is based
on very few assumptions. This minimal set of assumptions is important:
when we make assumptions in modelling data we may add something, but
no assumptions are ever exactly correct, and so we also introduce errors.
Later we will show methods that are more accurate than burn analysis in
some situations, because the assumptions they use add information or allow
us to use the available data more effectively, or both. However, when these
assumptions are wrong these methods can give worse results than burn,
even though they are much more complex. Complexity does not necessarily
mean accuracy. The main disadvantages of burn analysis are that we have
no idea of the probabilities of events more extreme than those that occurred
during the historical period that has been considered, and that the stepped
estimate of the CDF is rather unrealistic.

3.1.6 Trading simulations, and the benefits

of trading large portfolios

We now consider what kind of business can be achieved by selling only one
contract at a time. Figure 3.2 shows the result of a numerical experiment in
which we simulate the trading of a single option contract repeatedly. At each
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Figure 3.2. The results of a trading simulation in which we trade the same
option over and over again for independent realisations of the index. In the
upper panel we imagine that the option is traded at the fair price, and so
the profit and loss eventually converges to zero. In the lower panel we add
a risk loading of 10 per cent of the standard deviation, and so the profit
eventually converges to a positive value. However, there are considerable
fluctuations before we reach the final value, and there is a period where we
are making a loss.

point in time the issuer issues an option contract, receives a premium equal
to the fair value and pays out a claim if necessary. Consecutive settlement
indices are considered independent. We plot the profit divided by the number
of claims, and we see that it gradually tends towards zero.

Clearly, the issuer should charge more than the expected pay-off in order
to make money in the long run. For instance, he may choose to charge
a premium equal to the expected pay-off plus 10 per cent of the standard
deviation. Over the long run he will now make an average profit of 10 per cent
of the standard deviation. However, over the short run it is still quite possible
to lose money. The second curve in the trading simulation shows this: even
when we add this risk loading to the premium the speculator does not make
a profit until the twenty-second year.

Most speculators are far more concerned with the results from this sea-
son’s contracts than about the long run. Without good results in the short
run the long run will never exist, because the business will be closed down
by the owners. There are two conclusions we can draw from this.

1. Single contracts are very risky for the issuer, since there is a very significant
chance of losing money. Charging a very large premium would solve this problem,
but then nobody would buy the contract. In chapter 7 we consider some more
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reasonable strategies for making money selling weather derivatives based on the
ideas of diversification and hedging.

2. The estimated expected pay-off is not necessarily a very useful gauge for what
premium to charge, nor, on its own, a good way to monitor a portfolio, since the
only information it gives us is about what will happen in the long-run average.
But long-run averages are not usually what we care about most. The probabilities
of making or losing money this season may be more important.

3.1.7 Price uncertainty: the effects of sampling error

We now consider the effects of statistical or sampling uncertainty on burn
analysis.

The mean of the historical indices is only an estimate of the actual ex-
pected index, and the mean of the burn pay-offs is only an estimate of the
actual expected pay-off for a contract. In the examples above, we used forty-
four years of data. These years might have been, by chance, unusually warm
or cold, and our results may thus have not been very representative of the
distribution of possible outcomes in the future. We now explore the extent
to which such uncertainties affect our estimates of the expected index, the
expected pay-off and the pay-off distribution. We assume that the index
distribution follows a normal distribution with expectation µ = 1700 and
standard deviation σ = 120.5

Uncertainty on the expected index

We start by considering the expectation of the index. In the case where no
detrending has been applied to the index, there is a well-known mathemat-
ical theory that tells us that our sample-based estimates of the expected
index will follow a normal distribution, which has a mean equal to the ac-
tual unknown mean, µ, and a standard deviation of σx√

Ny

, where σx is the
actual unknown standard deviation. This standard deviation is often called
the standard error. Applying this equation shows us that using nine years
of historical data gives a standard error on the expectation of a third of the
standard deviation of the index, sixteen years of historical data gives a quar-
ter, twenty-five years gives a fifth, and so on. As an example, we tabulate the
levels of uncertainty on the expectation calculated from ten, twenty, thirty
and forty years of data for our example in the second column of table 3.1.
We evaluate σx√

Ny

using our estimate of σx from the data.

In the case where detrending has been used this formula no longer applies
exactly, because the number of degrees of freedom of the data has been

5 Roughly the correct values for a London Heathrow November to March HDD index.
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Table 3.1. The estimated sampling uncertainty on the mean and
the standard deviation of a weather index estimated using ten,
twenty, thirty and forty years of data. We assume a mean of

1700 and a standard deviation of 120.

No. of years Uncertainty on the mean Uncertainty on the SD

10 37.9 26.8
20 26.8 19.0
30 21.9 15.5
40 19.0 13.4

changed. Instead, for trends that are linear in the covariates (such as linear
or loess) one can use either analytic expressions or Monte Carlo methods,
as described in appendix A.

However, the uncertainty in the detrended case can also be estimated
approximately using the σx√

Ny

rule. This will tend to underestimate the un-
certainty a little, but the differences are not large in most cases, and the
method is certainly much simpler.

Uncertainty on the standard deviation of the index

Now we consider the estimate of the standard deviation. This also comes
from a distribution. In the case of no detrending there is, again, a simple
equation for the standard deviation of this distribution: σx√

2Ny

. This shows
us, rather surprisingly, that the standard deviation is estimated more accu-
rately than the expectation. Table 3.1 also gives us the levels of uncertainty
on the standard deviation for our example.

Uncertainty on the quantiles of the index

Now we consider estimates of the quantiles of the distribution of the index.
The variance of our estimate for the quantile at probability p is

variance ≈ σ2
x

2Ny
(2 + [Φ−1(1 − p)]2) (3.2)

where Φ−1 is the inverse of the CDF of the normal distribution.

Uncertainty on the option premium

What is the uncertainty on the estimate of the fair premium for an option?
To illustrate how this uncertainty can be estimated we consider a call option
with strike at the expected index plus 25 per cent of the standard deviation.
We assume that we have estimated the mean and standard deviation of the
index to be 1700 and 120, as before.
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Figure 3.3. If we estimate the fair price for an option on an index with
a mean of 1700, a standard deviation of 120, a strike 25 per cent of
the standard deviation above the mean and a limit two standard devia-
tions above the mean, using forty years of data, this is the distribution
from which our estimate of the fair price will come. The correct value
is 33.34.

In order to estimate the uncertainty on the option premium we will ini-
tially resort to the somewhat ‘brute force’ method of using simulations.

The simulations work as follows. We simulate a million years of indices
from the fitted index CDF and then sample sections of forty years’ length
to simulate the burn process. We use each section of forty years to give us
an estimate of the expected pay-offs of the option.

We can also estimate the mean pay-offs of the option, and the distribution
of these pay-offs, using the full million years of simulated data. We consider
these estimates as ‘truth’, and use them as a basis of comparison for the
estimates based on the forty-year sub-samples.

One million years of data divided into forty-year sections gives us
25,000 series. Thus we have 25,000 estimates for the means, standard devi-
ations and distributions of index and pay-offs.

The distribution of expected pay-offs for the option, derived from the
simulations, is shown in figure 3.3. Of the 25,000 values, the lowest value
is 4.0 and the highest value is 76.8. The expectation of this distribution is
33.37 and the standard deviation is 8.8. There is a 10 per cent chance that
the estimate of the expected pay-off will be too high by more than 8.8, or
too low by more than 8.6.

Linear theory for option pricing uncertainty

We can also estimate the spread of the distribution of possible option pay-
offs analytically using the concept of the propagation of errors, which avoids
using simulation and is much more convenient.
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The standard deviation of the pay-off can be written in terms of the stan-
dard deviations of the estimates of the index mean and standard deviation.
We write

µp = f(µx, σx) (3.3)

where µp is the expected pay-off of the contract, and µx and σx are the
mean and standard deviation of the index respectively. If we calculate an
estimate µ̂p for the expected pay-off µp using estimates µ̂x and σ̂x for the
mean and standard deviation of the index, then the error in an estimate of
the expected pay-off is

µp − µ̂p = f(µx, σx) − f(µ̂x, σ̂x) (3.4)

=
∂f

∂µ
dµ +

∂f

∂σ
dσ + . . . (3.5)

where dµ = µx − µ̂x and dσ = σx − σ̂x.
Ignoring second-order terms, squaring both sides and taking expectations

in order to calculate the variance of the error, we get

σ2
µp

=
(
∂f

∂µ

)2

σ2
µx

+
(
∂f

∂σ

)2

σ2
σx

(3.6)

=
(
∂f

∂µ

)2 σx
Ny

+
(
∂f

∂σ

)2 σx
2Ny

We see that, under the approximation that errors in the expected pay-off are
small, the variance of errors of the estimates of the expected pay-off can be
written as a linear combination of the variance of the error on the estimates
of the mean index σµx

and the variance of the error on the estimates of
the standard deviation of the index σσx

. Hence errors in the estimate of the
expected pay-off can be considered to be due to errors in the estimate of
the mean index and errors in the estimate of the standard deviation of the
index.

For our option, the partial derivatives ∂f
∂µ and ∂f

∂σ have values of 0.296 and
0.204 (we will discuss ways of calculating these values in section 5.1). This
gives

σ2
µp

= (0.296 ∗ 120)2/40 + (0.204 ∗ 120.0)2/80 (3.7)

= 31.5 + 7.5

= 39

= 6.22
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We see that, for this option, uncertainty in the mean index is a much greater
driver of uncertainty in the expected pay-off than uncertainty in the standard
deviation of the index.

We also see that this linear theory gives a reasonable approximation to
the more accurate result calculated from the simulations, although it under-
estimates a little.

In practice, the linear theory is a useful way to calculate a quick estimate
of the uncertainty around option prices, and it makes sense to calculate
σ2
µp

using equation (3.6) whenever an option is priced to get a feel for this
uncertainty.

A summary of uncertainty issues

We see that burn analysis is a reasonably inaccurate method for estimating
either the expected pay-off or the distribution of pay-offs. This translates into
significant uncertainty in pricing, and, in turn, into significant uncertainty
about what the profit or loss from a weather contract or portfolio of contracts
may be, even in the long-run average.

The pricing methods discussed in chapters 4 and 6 can reduce this uncer-
tainty a little in some cases. However, they do not reduce it very much even
in the best cases, and the analysis of uncertainty given above can reasonably
be applied even if methods other than burn are being used. This uncertainty
in pricing is a fundamental characteristic of the weather market, and should
be borne in mind throughout the whole process of the pricing and trading
of weather derivatives.

3.2 Further reading

The analysis of uncertainty on indices and on the option price comes
from Jewson (2003j).



4

The valuation of single contracts using
index modelling

4.1 Statistical modelling methods

We now investigate the possible use of statistical modelling in the hope that
it might be more accurate than burn, and perhaps have other benefits too.
We could, in principle, use a statistical model at any stage of the settlement
process of a weather derivative. For example, for an HDD-based contract
the settlement process consists of the following stages.

1. Collect daily Tmin and Tmax values.
2. Calculate Tavg.
3. Calculate daily HDD values.
4. Calculate the total HDD value.
5. Calculate the pay-off.

We could thus use a statistical model for any of the following.

1. Daily Tmin and Tmax.
2. Daily Tavg.
3. Daily HDD values.
4. The total HDD value.
5. The pay-off value.

We now discuss each of these in turn. The Tmin and Tmax time series could
be modelled as stochastic time series. Looking at figure 1.1 we see that they
show significant seasonal cycles in mean and variance, and correlations in
time (autocorrelations). They are also cross-correlated at a range of lags.
This is a hard statistical modelling problem, and a discussion of the methods
that could be used is postponed until chapter 7. Tavg is simpler to model
since there is now only one series, and hence no cross-correlations. But even
modelling Tavg alone still turns out to be reasonably challenging because
of the seasonality and autocorrelation of observed temperatures. Models for
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Tavg are considered in detail in chapter 6. A daily time series of HDD values
was shown in figure 1.2 (by the lengths of the bars below the line). This is
an odd-looking time series, with many zero values. Although Tmin, Tmax
and Tavg, at least at first look, may be normally distributed, it is quite clear
that the distribution of HDDs is certainly not normal, because of the cut-off
at the baseline. For this reason it is likely to be complex to model, and hence
we will not consider any statistical models for the daily HDD time series.

Total HDD values are shown in the first two panels of figure 3.1. Consec-
utive years would appear to be reasonably independent (as has already been
discussed), and the distribution of values, which has the same shape as the
CDF in panel 4 of figure 3.1, would appear to be reasonably smooth and
tractable. This would imply that the total HDD values might be modelled
reasonably well using a univariate distribution, and indeed this turns out to
be the case. This is already looking like the simplest modelling solution, and
it is widely used by practitioners in the weather market. We investigate such
index modelling in detail in this chapter. As a final possibility we consider
modelling the pay-off distribution. For a swap contract the pay-off distribu-
tion is reasonably simple, and, indeed, modelling the pay-off distribution is
almost the same as modelling the index distribution. Modelling the index
distribution is, however, slightly preferable because the index distribution
has smooth tails whilst the pay-off distribution for capped swaps stops at
the limiting values. For a call option contract the pay-off distribution con-
sists of two spikes (‘point masses’ to a statistician, ‘delta functions’ to a
physicist) at the limits of the contract, with a smooth curve in between, and
is thus difficult to model directly, so, again, modelling the index distribution
is preferable.

4.2 Modelling the index distribution

We have seen that, of all the possible statistical modelling approaches, mod-
elling the index distribution would appear to be the simplest. Is such an
approach likely to be any better than the burn analysis of chapter 3? This
is not an easy question to answer. If we knew the distribution that should
be fitted to the historical indices, and we could estimate the parameters
of that distribution with a high degree of accuracy, then index modelling
would certainly be more accurate than burn analysis. The resulting distri-
bution would be smoother (which is more realistic) and would extend into
the tails beyond the data in a realistic way. However, there is only a little
theory to guide us in terms of what distributions to fit to the indices, and
little data with which to estimate the parameters of those distributions (the
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same data as is used for the burn analysis). As a result, there is significant
danger that we fit a distribution that is not very close to the (unknown)
actual distribution. In this case, modelling of the index could certainly give
worse results than burn.

The question of whether burn or index modelling is more accurate also
depends on what is being calculated. This question is addressed in some
detail in chapter 5, and we will see there that the relative accuracy of burn
and index modelling is different for the expected pay-off and the greeks.
There is another reason to use index modelling, however, quite apart from
accuracy. This is that the fitting of a distribution, especially the normal
distribution, allows us to summarise data very efficiently. As we shall see,
this allows us to calculate many useful results quickly and simply. We have
already seen (in section 3.1.7) how summarising the index data in terms of
mean and standard deviation can help us understand the uncertainty on
the estimated expected pay-off, and we will see many more examples of this
type of simplification below.

The index modelling methodology

We will now introduce the index modelling methodology in more detail.
The first stage of index modelling is to choose a distribution that is likely

to be an accurate representation of the real unknown index distribution. The
parameters of this distribution can then be estimated, the hypothesis that
the observations could come from this distribution can be tested (at least
for parametric models), and, if all is well, the distribution can be used to
represent the unknown index distribution.

Discrete or continuous distributions?

Firstly, we ask the question: should we be using discrete or continuous dis-
tributions? Temperature variability can be considered to be a continuous
random variable, but measurements of it are typically rounded to a certain
degree. In the United States, temperature measurements of Tmin or Tmax
are rounded to a whole number of degrees Fahrenheit. When Tavg is cal-
culated as the midpoint, it can then be either an integer or a half-integer.
In Europe, the measurements of Tmin and Tmax are usually rounded to
one decimal place in Celsius, and consequently Tavg has two decimal places,
with the final digit being either a zero or a five. As a result of this rounding
there is only a discrete number of possible outcomes for the measured tem-
perature during a given period, and hence only a discrete number of possible
index values can be achieved. This might lead one to conclude that all index
distributions should be modelled using discrete distributions. However, the
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actual number of different possible index values is often very large, in the
thousands, and to fit a discrete distribution to such data, and run simula-
tions, can be very slow. Instead, it is often a reasonable approximation to use
a continuous distribution. We apply the following rule of thumb: in any case
where there are more than one hundred possible values for the index we use
a continuous distribution; in all other cases we use a discrete distribution.

Parametric or non-parametric distributions?

Secondly, we ask: should we be using a parametric or a non-parametric
distribution? Parametric distributions use a particular shape, or family of
shapes, for the distribution, and then use the historical data to estimate a
small number of parameters that pin down the exact form within the avail-
able family. Part of the rationale for this approach is that the number of
parameters estimated is much lower than the number of data points being
used and so these parameters will be estimated reasonably accurately pro-
vided the model is approximately correct. The fitted distribution can also
be tested for goodness of fit.

A general rule is that, if we have a good reason to believe that a certain
parametric distribution is the right one before we look at the data (based on
some previous experience, or theoretical rationale), then we should test that
distribution against the data, and, if it cannot be rejected, we should use it.
In this way we are bringing extra information to bear on the problem.

If, on the other hand, we have little a priori reason to believe that any
particular parametric distribution is appropriate for the data then there is
less reason to apply parametric methods, apart from the convenient way in
which they summarise data. We can test a number of arbitrary parametric
distributions but the data is generally insufficient for testing to be very
conclusive. In such cases we can use a non-parametric method.

Non-parametric methods constrain the shape of the fitted distribution to
a much lesser degree than parametric methods by doing little more than
smoothing the index CDF calculated directly from the historical data. One
such method is the kernel density approach. Kernel densities work by creat-
ing a small ‘density’, of specified shape, around each data point, and then
combining these together. This both interpolates between points on the his-
torical CDF and extrapolates a little at the extremes. One of the disadvan-
tages of non-parametric methods is that the fitted distribution cannot be
tested, since it always fits the data closely by design.

We will now discuss both parametric and non-parametric methods in more
detail.
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4.3 Parametric distributions

4.3.1 Methods for fitting parametric distributions

How should we go about fitting the parameters of a parametric distribution?
There are two standard methods for fitting the parameters of distributions:
the method of moments and the method of maximum likelihood. The method
of moments consists of estimating the moments of the data and deriving
analytical expressions for these moments in terms of the parameters of the
distribution. It may be possible to solve the resulting equations to derive
estimates of the parameters of the distribution in terms of the moments.
Examples of such solutions are available for a number of simple distributions:
see the references at the end of this chapter.

Although adequate in many cases, the disadvantage of the method of mo-
ments is that it can be difficult to derive information about the uncertainty
of the parameter estimates.

This problem is overcome by the method of maximum likelihood, and
hence maximum likelihood is the ideal procedure for estimating parame-
ters, especially when the distributions get complex. It works as follows: for a
given distribution, and for any set of parameters, we can calculate the prob-
ability density (for a continuous distribution) or probability (for a discrete
distribution) of getting the observed data. Trying different values for the
parameters may increase or decrease this probability; maximum likelihood
parameter estimates for the parameters are those that give the highest prob-
ability. Studying the shape of the likelihood function around the optimum
parameters can give information about the uncertainty of the parameters
and the correlations between their errors. A more detailed description of the
maximum likelihood method is given in appendix B.

4.3.2 Variance estimation

For many distributions the method of moments involves estimating the vari-
ance of the data. How should this be done? The detrending methods de-
scribed in chapter 2 reduce the number of degrees of freedom of the historical
index values, and this must be taken into account. The simplest unbiased
estimator of the variance is

σ2
x =
∑Ny

i=1(xi − µ)2

Ny −M
(4.1)

where M is the number of degrees of freedom removed in the detrending
procedure. In the case where only a mean is removed the number of degrees
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of freedom is reduced by one, and this expression becomes the standard
expression for the variance, which is

σ2
x =
∑Ny

i=1(xi − µ)2

Ny − 1
(4.2)

Getting the number of degrees of freedom right is most important ei-
ther when only small amounts of historical data are being used or
with non-parametric detrending methods, which remove many degrees of
freedom.

4.3.3 Testing goodness of fit

Having estimated the parameters of a distribution using either the method
of moments or of maximum likelihood, the next step is to evaluate whether
the distribution, with these optimal parameter estimates, gives a good fit to
the data. The most useful methods for doing this are graphical. First we can
compare the histogram from the data with the probability density function
(PDF) (for a continuous distribution) or probability mass function (PMF)
(for a discrete distribution) from the model. The first panel in figure 4.1
gives an example. However, it is virtually impossible to judge whether the
fit is good from this graph, and the impression depends very heavily on the
number of bins used for the histogram. An improvement is to compare
the cumulative distribution function from the data and from the model
(see the second panel in figure 4.1). In this case both the model CDF and
the empirical CDF appear as S-shaped curves. Comparison is easier than
for the PDF/histogram plot, but still difficult. Better still, there are two
methods that rely on a comparison of straight lines. The first of these is
the QQ plot, which plots quantiles from the historical data and the model
against quantiles from the model. A correct fit shows a straight line (see the
third panel in figure 4.1). The second is the PP plot, which plots probabil-
ities from the historical data and the model against probabilities from the
model. Again, a correct fit shows a straight line. Both QQ and PP plots can
be considered as CDF plots with one of the axes stretched by a non-linear
transformation (which is based on the model, and straightens out the model
CDF). For this reason it is convenient to orient the axes of QQ and PP plots
so that the lines appear in the same order as in the CDF plot (as we have
done in our examples). Someone used to reading a CDF can then read QQ
and PP plots relatively easily, and vice versa.

We note the following rules for the interpretation of QQ and PP plots
(when plotted using the convention described above).
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Figure 4.1. Various ways of comparing a fitted distribution with data. The
first panel shows a comparison between a fitted PDF and a histogram from
the data. The second panel shows a comparison between the fitted CDF
and an empirical CDF from the data. The third and fourth panels show
PP and QQ plots respectively. The PP and QQ plots are the easiest to use
for assessing the goodness of fit of the distribution because they rely on the
comparison of straight lines.

1. Observed above model for low values, and below for high values: this implies that
the model has too low a spread.

2. Observed below model for low values, and above for high values: this implies that
the model has too high a spread.

3. Observed above model for low values, and above for high values: this implies that
the model is skewed to the right relative to the observations.

4. Observed below model for low values, and below for high values: this implies that
the model is skewed to the left relative to the observations.

Confidence intervals

One of the difficulties of the graphical testing of the distributions we have
described above is that it is difficult to say whether a difference between the
modelled and empirical distribution is significantly large. Even if the model
really is correct, the observed data will not agree with the model exactly
because it comes from a finite sample. To get round this problem, confidence
intervals could be attached to the observed distribution. The logic works
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Figure 4.2. The first panel shows a CDF estimated from data and a fitted
distribution. The second panel shows a number of CDFs simulated from
the fitted model. The third panel shows the confidence limits around the
observed CDF based on simulations.

like this: when we fit and test a distribution, we are making the assumption
that the data comes from the distribution. On the basis of this assumption
(that the fitted distribution is correct) we can use simulation techniques
to generate an arbitrarily large number of samples from the distribution of
the same length as the historical data that we started with. For each of
these samples we can plot the directly estimated CDF. By comparing the
CDF from historical data with these simulated CDFs, we can assess whether
or not the historical CDF is consistent with the hypothesis. Rather than
plotting all the simulated CDFs, we may choose to derive confidence levels
at, say, 90 per cent, 95 per cent or 99 per cent. Figure 4.2 illustrates this
method for the CDF, although the same can also be done for PP and QQ
plots. The first panel shows a historical CDF, with the fitted distribution
over the top. The second panel shows a number of CDFs generated from
the fitted model, and the third panel shows 90 per cent confidence intervals
based on the simulated CDFs. The confidence intervals were generated by
picking the fifth lowest and the fifth highest out of one hundred simulated
CDFs, for each point on the axis. In this case, we see that the historical data
lies well within the range that is consistent with the model. In particular,
we see that the deviation between model and observations around values of
1650 are not a cause for concern. Our conclusion is that we cannot reject this
model using the historical data available. This is a much weaker statement
than saying that this model is correct, which is impossible to prove. All
we can ever do is to test the model with more and more tests, and if we
always find that we cannot reject the model then our confidence in the model
grows.

This method for generating confidence intervals does have one flaw: if
we test a model with ten tests at the 90 per cent confidence interval,
then we would expect it to fail at least one, on average, even if it is the
correct model. To correct for this, ideally we need to change our confidence
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levels as the number of tests is increased. This is done occasionally but is
difficult.

Standard numerical tests of goodness of fit

In addition to such graphical methods one can also perform numerical tests
of goodness of fit. These tests are very specific: each test looks at one par-
ticular aspect of the distribution. They are useful if one must produce a
quantitative ranking of different models, but are not necessarily better than
graphical methods. The main tests in use are:

� chi-squared – applies to all distributions but has little power, meaning that it
is very easy to pass and very hard to fail;

� Kolmogorov–Smirnov – also applies to all continuous distributions but, like
the chi-squared, has little power;

� Anderson–Darling – applies to all continuous distributions, and is more pow-
erful than the previous two tests; the drawback is that it is more difficult to
apply;

� Shapiro–Wilk – this is a powerful test, but applies to the normal distribution
only.

Each test gives a test probability. The distribution can then be accepted
or rejected at different confidence levels. High values mean close agreement,
and low values mean little agreement. Values below 5 per cent are typically
taken to indicate failing the test. More details on these tests are given in
appendix C.

4.3.4 Normality of standard degree day and CAT contracts

Is there any rationale that can help us choose distributions for stan-
dard contracts? In the next section we discuss whether it is appropri-
ate to use the normal distribution for the standard seasonal and monthly
indices.

Arguments for and against the normal distribution

The standard seasonal indices in the US weather market are HDDs for
November to March and CDDs for May to September. In the European
weather market they are HDDs for November to March and CAT for May
to September. Each index value is a sum of daily index values for the pe-
riod, which is around one hundred and fifty days in length. The number of
possible different index values is in the hundreds or thousands, and hence
continuous distributions are an appropriate approximation. As we shall see
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in the next chapter, the autocorrelation of daily temperature values reduces
to 0.5 within two days, and so we might consider that these periods contain
a large number of effectively independent samples. We will also see that
temperature is, typically, close to normally distributed. As sums of moder-
ately independent random variables, we might then be tempted to invoke the
central-limit theorem (CLT) and argue that the aggregate index can be well
modelled by a normal distribution. The fact that the individual distributions
are close to normal would be expected to speed up convergence. It will be
very convenient if we can conclude that we can use the normal distribution
because it offers a very simple and concise method for summarising data,
and a number of closed-form solutions have been derived for the normal.
Before we do assume normality on the basis of the CLT, however, there are
other factors that need to be taken into account: (a) because of the seasonal
cycle of temperature, the daily degree day values cannot be considered a
stationary process (see figure 1.2, which shows the clear seasonal cycle in
daily degree day values); (b) for some stations, many of the daily degree day
values may be zero; and (c) although the autocorrelations drop very quickly
initially, they remain non-zero even at very long leads. As a result, the CLT
is not, per se, of any use other than as a general indication that we should
at least try the normal, and to find out if the normal can really be used we
have to assess the data itself.

The normality of standard seasonal and monthly indices on US tempera-
tures was analysed in Jewson (2004g), with the following conclusions:

� for winter HDD and CAT indices, and summer CDD and CAT indices, the normal
distribution gives a reasonable fit at almost all locations;

� for CAT and HDD indices based on the individual winter months, November,
January, February and March are well modelled by the normal distribution for
most if not all locations, whereas December is definitely not normal, many loca-
tions having a heavy cold tail;

� for CAT indices based on the individual summer months the normal distribution
does well everywhere;

� for CDD indices based on the individual summer months the normal distribution
does not do particularly well overall, presumably because temperatures frequently
cross the baseline; only in July does the normal seem to be reasonably safe.

We conclude that one may be able to use the normal distribution for
seasonal contracts fairly blindly, but for monthly contracts that would not be
advisable. In particular, for any contract based on December temperatures,
and any contract based on summer monthly CDDs, it would be very wise
to check the validity of the normal before using it.
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4.3.5 Parametric alternatives to the normal distribution

for standard contracts

If a distribution fails the tests for normality then theory deserts us, and it
seems that if we really want to use a parametric distribution all we can do
is to try a number of standard distributions in the hope that something fits.
There are a range of distributions to choose from that are close to the normal
distribution but include some asymmetry. These include the skew-normal
distribution, the gamma distribution and the log-normal distribution.

4.3.6 Parametric distributions for event contracts

The typical index values that result from event indices are much lower than
those that result from degree day indices. As a result, discrete distributions
are usually appropriate. We review three parametric distributions that one
might use for such contracts: Poisson, binomial and negative binomial.

The Poisson distribution

A stochastic process consisting of completely random events is known as a
Poisson process. The number of events of a Poisson process during a finite
period of time is distributed with the Poisson distribution, and the intervals
between events of a Poisson process are distributed with an exponential
distribution. At first sight, the Poisson process seems as though it may be a
reasonable model for meteorological events such as temperature exceeding
a certain threshold. The two problems with this are that (a) the number
of times the daily temperature can exceed a threshold during a specified
period clearly cannot exceed the number of days in the period, while the
Poisson distribution can give an arbitrarily large number of events during
any period, and (b) meteorological events are not entirely independent in
time, while events in a Poisson process are independent.

The first of these problems may not kill the idea of using a Poisson
distribution. As long as the average number of events is fairly small relative
to the length of the period then the probability of a Poisson distribution
giving silly results (more events than the number of days) is very low. The
second problem with the Poisson distribution, however, turns out to be
more serious. The first panel in figure 4.3 shows a QQ plot for a Poisson dis-
tribution fitted to the number of days on which temperature exceeds 20◦C
at London Heathrow during the summer. The mean of the distribution over
the ninety-two-day period is 15.6 days. The fit is clearly very bad indeed,
and the actual distribution has much fatter tails than the Poisson. This
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Figure 4.3. QQ plots showing the goodness of fit of Poisson, binomial and
negative binomial distributions to an index of extreme weather.

means that extreme events are much more common than would be given by
a Poisson process. This is exactly what we would expect if autocorrelation
in the events is playing a role, and this fits with our intuition about weather:
hot days come in groups. The variance of a Poisson distribution equals the
mean, and one consequence of a clustering of events is that the variance of
the indices will tend to be higher than would be expected for a Poisson dis-
tribution. Statisticians say that the observations are over-dispersed in this
case.

Parametric alternatives to the Poisson distribution for event contracts

We mentioned above that one problem with the Poisson distribution is that,
in theory, the model could produce more events than the number of days
in the contract period. Although this may not be a practical problem if the
mean number of events is much smaller than the number of days, one could
still think of fixing the problem by forcing the number of events to be less
than or equal to the number of days. In mathematical terms we can model
this by a Poisson process conditioned on the number of events being less than
or equal to the number of days. Such a process is called a binomial process,
and the total number of events follows a binomial distribution. Use of the
binomial distribution thus overcomes the first problem with the Poisson
distribution (that the Poisson distribution can give an infinite number of
events in a finite period) and can be used for contracts where having as
many events as there are numbers of days is reasonably likely. The main
disadvantage of using the binomial distribution relative to the Poisson is
that it assumes so-called under-dispersion – i.e. the variance is less than the
mean. Because of the autocorrelation that is often seen in meteorological
events (and the resulting over-dispersion of the observations that we have
already seen) the binomial is therefore typically less useful than the Poisson
distribution. This can be seen in the second panel of figure 4.3, which shows
the binomial fitted to the same exceedence data as used above, and again
we see that the fit is very bad indeed.
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One way to model over-dispersion for event data is by using a Poisson
distribution with a random mean. This is guaranteed to produce over-
dispersion, since, if we let X follow a Poisson distribution and let Y be
the random mean, then

VX = EV(X|Y ) + VE(X|Y ) ≥ EV(X|Y ) = EE(X|Y ) = EX

Such a model is called a mixed Poisson distribution. A common choice of
distribution for the mean is a gamma distribution, which results in a negative
binomial distribution for the number of events. We could consider our pro-
cess made up of extreme autocorrelated temperature events to be a Poisson
process for which the expectation is changing in time over timescales of a few
days. A hot period, during which we get a larger number of extremely hot
days, has a high expectation. In reality, the expectation probably does not
follow a gamma distribution, but it may be a good approximation, especially
since the gamma is a fairly general distribution that covers a wide range of
shapes. Based on this reasoning we try fitting a negative binomial distri-
bution to the temperature exceedences in the example considered above.
The results are shown in the third panel of figure 4.3. It turns out that the
negative binomial gives a very good fit to the observed data.

On the basis of this example (and other similar examples) we conclude
that the negative binomial is a reasonably good candidate for modelling
event indices.

4.4 Non-parametric distributions

We now consider the kernel density approach to non-parametric distribution
modelling. Kernel densities estimate the unknown density using a weighted
sum of densities (or kernels) that are centred around each data point. We
will discuss two versions. The first, and most commonly used, simply places
a density around each data point. This, however, has the flaw that the
variance of the fitted distribution can be larger than the unbiased estimate
of the variance. An alternative version adjusts the variance so that this is
no longer the case.

The major benefits of the non-parametric approaches are as follows:

1. They involve making fewer assumptions about the overall shape of the distribu-
tion than a parametric method. Such assumptions can cause as much harm as
good.

2. They can be applied to absolutely any index in any situation (although they
always give a continuous distribution).
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On the other hand, if the normal, or negative binomial, really is a good
model for the index, they will tend to give better results. Non-parametric
methods also do not provide a convenient summary of the data in the way
that parametric methods do, and are more difficult to validate than para-
metric distributions.

4.4.1 The basic kernel density

The basic kernel density models the density as

f(x) =
1

λNy

Ny∑
i=1

K

(
x− xi

λ

)
(4.3)

where K is a probability density. A common choice for the kernel K is the
normal distribution which then gives

f(x) =
1

λNy

Ny∑
i=1

1√
2π

exp
(
−(x− xi)2

2λ

)
(4.4)

There is one free parameter in our kernel density, the bandwidth λ. A value of
λ = 0 yields a stepped CDF equivalent to the empirical CDF, and a density
consisting of delta functions (point masses) at each data point. Small values
of λ smooth the CDF a bit, and typically produce finite but multimodal
densities. Large values of λ create a smooth CDF and a unimodal density,
and for very large values of λ the density is almost uniform.

There are a number of methods commonly used for choosing λ, all of
which are more or less ad hoc. One is ‘Silverman’s rule of thumb’, which is

λ =
0.9
1.34

min(s, q)Ny
− 1

5 (4.5)

where s is the sample standard deviation of the data xi, and q is the in-
terquartile range. This equation comes from Silverman (1986, equation 3.31).

Another comes from Jones (1991, equation 6):

λ = 1.034sNy
− 1

5 (4.6)

Both Silverman and Jones give some rationale for using the expressions that
they give.

An example of a kernel distribution fitted to historical HDD values for
London Heathrow, for four different bandwidths, and using a Gaussian ker-
nel, is given in figure 4.4.
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Figure 4.4. A histogram and three different kernel densities fitted to thirty
years of loess detrended historical data for the November to March HDD
index for London Heathrow. The bandwidths for the kernels are 10, 47.5
and 200. 47.5 is the optimal value from equation (4.5).

4.4.2 The adjusted kernel density

The variance of f is given by

variance of fitted kernel = sample variance + λ2 (4.7)

We see that, as the λ increases, the variance of the fitted distribution also
increases, and quickly exceeds the unbiased estimate of the variance given
by
∑

x2

Ny−M , where Ny −M is the number of degrees of freedom in the data
after detrending. This overestimation of the variance is, perhaps, unfortu-
nate, and certainly means that large values of λ do not make sense. To
rectify this, one can force the variance to be exactly equal to the unbi-
ased estimate of the variance. We call this method the adjusted kernel
density.

In the adjusted kernel density λ becomes a pure shape parameter, and as
λ → ∞ the shape tends towards a normal distribution.

4.5 Estimating the pay-off distribution
and the expected pay-offs

We have now investigated in some detail the issues that arise when fitting
distributions to historical index values. Having fitted such a distribution, we
proceed by combining this with the pay-off structure to calculate the distri-
bution of the financial outcomes of the contract and statistics such as the
expected pay-off, the standard deviation of the pay-offs, the probability of
hitting the strike and limit, and so on. There are a number of ways that this
can be done: by deriving closed-form expressions, by numerical integration,
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or by simulation. Each of these is discussed below. We start by considering
the closed-form expressions.

4.5.1 Closed-form expressions for the pay-off distribution

Given the distribution of the index, it is possible to derive closed-form ex-
pressions for the distributions of the pay-offs of the seven contract types
described in chapter 1. These expressions are derived in appendix D. We
illustrate some of these distributions graphically in figure 4.5.

We see from the expressions in appendix D that the distribution of pay-
offs, over the range between the limits (for a swap) and between the strike
and limit (for the call option), has exactly the same shape as the original
index distribution.
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Figure 4.5. The CDFs and PDFs for the pay-off from a capped swap (upper
panels) and a capped option contract (lower panels). The underlying index
is London Heathrow HDDs, thirty years of historical data, detrended with
loess (1,0.9). This gives a mean of 1665 HDDs and a standard deviation
of 114. The swap strike is set at the mean index and the swap limit is
set at 1.5 standard deviations. The option strike is set at 0.25 standard
deviations above the mean, and the option limit is set at 1.5 standard
deviations from the mean. Note that the limits are set unusually low for
illustrative purposes.
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4.5.2 Closed-form expression for the expected pay-off

and pay-off variance

It is possible to derive closed-form solutions for the expectation and variance
of the pay-off distribution for certain contracts and certain distributions,
although not for all contracts and all distributions. The most important
cases are the normal distribution and the kernel density.

Derivations for closed-form solutions for these distributions, and the ex-
pressions themselves, are given in the appendices. In appendix D we give
closed-form expressions for the expected pay-off of the seven contract types
for a normal distribution. In appendix E we give closed-form expressions for
the pay-off variance of the seven contract types for a normal distribution.
In appendix G we give expressions for the expected pay-off and the pay-off
variance for the kernel density.

For other distributions it is generally more difficult, and may be im-
possible, to calculate exact expressions, and numerical methods are used
instead.

4.5.3 Use of the limited expected value function

Our derivations of the closed-form expressions for the expected pay-off and
the pay-off variance are all based on direct evaluation of the integrals that
define these quantities. We now describe a slightly different but equivalent
approach for deriving closed-form expressions for the expected pay-offs of
weather contracts.

We define a function known as the limited expected value (LEV) function
as

Lx(m) = Emin(x,m) (4.8)

=
∫ m

−∞
xdF (x) + m(1 − F (m)) (4.9)

where m is the argument of L. The limited expected value function gives
the expectation of the variable x for values of x less than m only, ignoring
values of x greater than m. As m becomes large, the LEV function converges
to the expectation of x.

Taking the expectations of equation (1.16) we find that the expected pay-
off of a call option is given by

µp = D(Lx(L) − Lx(K)) (4.10)

This expression is an alternative way to write expression (D.33).
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If other moments of the pay-off distribution are of interest, they can
be calculated using higher-order limited expected value functions, such as
Emin(m, I)k.

The use of the LEV has its origins in the actuarial literature, where it is
used to calculate the expected excess of loss for reinsurance programmes.

4.5.4 Numerical estimates of the expected

pay-off and pay-off distribution

We now discuss how numerical integration and Monte Carlo simulation can
be used to estimate expected pay-offs and pay-off distributions for any index
distribution.

Numerical integration

Numerical integration works as follows. The range of possible index values is
divided into intervals. These intervals may or may not be equal. One index
value within each interval is converted to a pay-off using the pay-off function.
A probability is also calculated for each interval using the index CDF, and
a probability density using the index PDF. To estimate the distribution of
pay-offs, the pay-off values are sorted and the probabilities are allocated
from the CDF. To estimate the expected pay-off, the pay-offs are combined
with the probability densities from the PDF.

One advantage of numerical integration is that it can be numerically ef-
ficient because the sampling of the index values can be adjusted to include
only relevant values. For instance, for options the sampling of the index
values need not include any index values for which the pay-off is zero. How-
ever, given that fast computers are readily available, this issue of numerical
efficiency is not particularly important.

One disadvantage of numerical integration is that it does not extend very
practically to large portfolios, unlike simulation.

Simulation

Simulation works slightly differently from numerical integration. First,
pseudo-random numbers are generated from the index distribution using
standard packages available in most computer languages or spreadsheets
(details of the mathematics behind some of the commonly used simulation
methods are given in appendix I). Each simulated index is converted into a
pay-off. The pay-offs can be sorted to create the estimated CDF of pay-offs
in the same way that historical pay-offs are used to create the CDF in burn
analysis (see section 3.1.3). The mean of these pay-offs is calculated. In this
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Figure 4.6. The top left panel shows the convergence of a simulation-based
estimate of the mean index for an option contract versus the number of
simulations. The top right panel shows the convergence of the standard
deviation of the index, the lower left panel shows the convergence of the
expected pay-off and the lower right panel shows the convergence of the
standard deviation of the pay-offs.

case the information about the shape of the distribution is included in the
random sampling, and so probabilities are not needed.

The convergence rate of the simulations is given by σx√
Ns

for the expected
index and σx√

2Ns
for the standard deviation of the simulated index, where Ns

is the number of simulations used (we have seen these expressions already
in section 3.1.7). Convergence of the expected pay-off and the standard de-
viation of the pay-off are given by σp√

Ns
and σp√

2Ns
, where σp is the standard

deviation of the pay-off distribution. Figure 4.6 shows examples of the con-
vergence of the mean and standard deviation of an index and the pay-offs
of an option against the number of simulations used.

The high level of convergence that can be achieved using many simula-
tions can be misleading if not interpreted correctly: it is the level of accuracy
given by the simulations, assuming that the underlying model is exactly cor-
rect. But the underlying model is never correct. However many simulations
we use we are fundamentally limited by the amount of information in the
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original historical data and by the sampling errors on the parameters of the
distribution. These sources of error are typically much larger than the er-
rors associated with too few simulations, and the uncertainty on the option
prices is still given, more or less, by equation (3.6).

If the speed of simulations is important, then methods exist for speeding
them up. However, the widespread availability of powerful computers means
that such methods are generally not necessary for the simple simulation
analyses that we are considering here.

One big advantage of simulation that will become apparent in chapter 7 is
that it is the only practical method for the valuation of portfolios of weather
derivatives.

A comparison of methods

When a normal distribution is being used for the index then for a given
amount of computer time much greater accuracy can be obtained with the
closed-form expressions than with numerical integration or simulation. How-
ever, the issue is moot unless extreme speed is required. For instance, most
personal computers can simulate several million values from a given distribu-
tion within a few seconds, giving high accuracy to the simulation approach.
Simulation has the added advantage that it can be extended to portfolios,
and so it is common to use simulations for all pricing because of their general
applicability to all contracts, distributions and portfolios.

The closed-form expressions still have several uses, however. First, they
can be used to check that simulation or numerical integration models are
working correctly. Second, they are useful in situations in which a very large
number of pricing calculations are needed, which often occurs when making
studies of the behaviour of weather derivative prices (we ourselves make
extensive use of the closed-form solutions for this reason). Third, they are
useful when ‘inverting’ the premium of a weather option to derive the implied
standard deviation (see section 11.4.9). This is a calculation that requires
many accurate calculations of the expected pay-off in succession, which could
be slow with a simulation approach. Finally, closed-form solutions can be
studied and allow us to develop understanding into how prices depend on the
various determining factors, without having to write computer programmes
and perform vast numbers of simulations to answer every question.

4.6 Further reading

Useful actuarial references for the details of some of the distributions used
in this chapter are Hogg and Klugman (1984) and Klugman et al. (1998). A
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reference for univariate discrete distributions is Johnson et al. (1993), and
for univariate continuous distributions is Johnson et al. (1994).

The closed-form expressions for the expected pay-off under a normal dis-
tribution have been in use in the weather market since the very start. Exam-
ples in certain special cases are given in McIntyre (1999), Moreno (2001b),
Henderson (2002), Jewson (2003t) and Brix et al. (2002). A comprehensive
set of derivations and expressions is given in Jewson (2003a), Jewson (2003c)
and Jewson (2003d).

The adjusted kernel density is described in Jones (1991), and the first
description of its use in weather pricing is in Jewson (2003q). The use of the
LEV function for weather pricing comes from Brix et al. (2002).



5

Further topics in the valuation of single contracts

In the previous two chapters we described burn analysis and index mod-
elling. These are the most commonly used methods for the pricing of weather
derivatives. Before we consider other more complex pricing methods based
on the statistical modelling of daily temperatures we now digress and look
at a number of interesting issues that arise in the pricing of single weather
derivatives contracts. We start by discussing the so-called ‘greeks’. We then
look at the relative importance of decisions concerning the choice of trend
and the choice of distribution. We look at the relative accuracy of burn and
index modelling, and the correlations between results from these two meth-
ods. We investigate the effects of varying the parameters of an option on the
expected pay-off in order to develop some intuition about the different prices
that occur for different contracts. Finally we address a number of other is-
sues, including how to price multi-year contracts, how to use market data in
pricing, how to perform static hedges and how to cope with leap-year-related
issues.

5.1 Linear sensitivity analysis: the greeks

The pricing, trading and risk management of most kinds of financial options
is based on the idea of maintaining a very low-risk portfolio using hedging,
and, very often, frequent rehedging.1 In order to achieve effective hedging
it is useful to calculate various partial derivatives of the arbitrage price of
options, known as the ‘greeks’. These show us how the value of the option
(or portfolio of options) can change due to small changes in the underlying
price, time, interest rates or volatility. Partial derivatives are useful because

1 In most cases this strategy cannot be applied to weather options because very frequent rehedging
is not financially viable (this is discussed in more detail in chapter 11).
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options are typically rehedged on an extremely frequent basis – frequently
enough for the small changes predicted by such a linear theory to be relevant.

The derivative of the arbitrage price with respect to the underlying index
is known as delta (∆); a small value for delta implies that a contract is not
greatly affected by small changes in the index. The derivative of delta with
respect to the underlying is known as gamma (Γ); small values for gamma
imply that delta is not greatly affected by small changes in the index. The
derivative of the arbitrage price with respect to time is known as theta (Θ),
with respect to interest rates is known as rho (ρ), and with respect to the
volatility of the underlying index as vega (which has no symbol because it
is not a real Greek letter).

We have not yet considered arbitrage pricing theories for weather. These
theories involve the greeks in exactly the same way as do the arbitrage
theories for other kinds of options. This will be discussed in chapter 11.
For the moment, however, we will consider the relevance of the greeks to
actuarial pricing. In actuarial pricing theory it is not possible to define
exact analogues for the greeks. This is because actuarial pricing does not
lead to a single price in the same way that arbitrage pricing does; as we
saw in chapter 3, there may be a subjectively determined risk loading on
every price. In addition, partial derivatives of prices are slightly less relevant
because the actuarial management of weather contracts and portfolios is
as much concerned with the final distribution of outcomes and with large
changes in the underlying indices as it is with small changes.

However, there are situations in actuarial pricing and portfolio manage-
ment in which it may be useful to calculate various partial derivatives of
estimates of the value of contracts, and because the resulting expressions are
somewhat similar to the greeks (and because many weather traders come
from a financial options background) they are often given the same names.
The exact definitions and actual application of the greeks are, however, often
rather different from those seen in an arbitrage context.

We will now consider some of the practical questions that can be answered
using partial derivatives of the actuarial value of a weather contract, and
will then look at how they can be calculated.

1. How can I best hedge an option contract using a swap contract on the same
index? One answer to this is that the tick size of the swap should be equal to
the partial derivative of the value of the option with respect to the index (or the
expected index), which we might call the ‘delta’ of the contract. Other possible
answers to this question are discussed in section 5.13.2.

2. How would my contract valuation change if the weather forecast suddenly
changed? We will describe in more detail how to use weather forecasts to value
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Figure 5.1. Eight realisations of the possible development of the expected
index for a call option contract. See section 5.4 for details.

weather contracts in chapter 10. However, for now we imagine that we are valuing
a contract in progress using a weather forecast and historical data. The partial
derivative of the value with respect to the index (delta) can help us calculate the
approximate sensitivity of the value of the contract to a 1◦ change on one day
of the forecast. If we wish to know the likely size of the changes due to changes
in the weather forecast, then we also have to consider the possible distribution
of changes in the weather forecast, in combination with delta.

3. If I change nothing in my portfolio, and the underlying indices do not change,
how is the value likely to change between today and tomorrow? To answer this
we can calculate the partial derivative in time, and the result might be called
‘theta’ by analogy with theta from arbitrage pricing. The change of the value of
the portfolio from day to day is then given approximately by theta times one
day.

4. How important is it that I estimate the standard deviation of an index accu-
rately? This question arises in chapter 10, where we present various methods for
estimating the in-contract standard deviation. We will see that there is a trade-
off between simplicity and accuracy. Differentiating the value of a contract with
respect to the standard deviation can give us some indication of how errors in
the standard deviation become errors in the expected pay-off.

All these questions depend on identifying some definition of the value of
a weather contract. The simplest definition of value is the expected pay-
off (or expected profit), and this definition has the advantages that it is
independent of whether the contract is being held as a long or short po-
sition and does not have a subjective component. Also, as we will see in
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chapter 11, it means that there is agreement with certain arbitrage pric-
ing theories for weather. However, it does not really represent the actual no-
tion of value that most weather traders have in mind when they trade, which
involves a trade-off between risk and return. This can be incorporated into
the definition of value, by, for instance, defining value as the expected pay-
off minus some fraction of the standard deviation of pay-offs. This definition
has the advantage that it captures the necessary trade-off between risk and
return in a reasonable way. But, using this definition, the value of a con-
tract now depends on both the risk aversion of the trader, which is reflected
in the fraction of the standard deviation used, and whether the contract
is held long or short, which affects whether the risk loading is added or
subtracted. Using this more complex definition of value means that calcu-
lations of the greeks would be different for different traders and different
positions.

As long as value is defined as the expected pay-off, then it is additive (the
value of two contracts is the sum of the values of the individual contracts).
The partial derivatives of value are then also additive. If value is defined
in terms of both the expected pay-off and the standard deviation of the
pay-off, then it ceases to be additive and the partial derivatives are also not
additive.

We now define various ‘greeks’ for weather. For simplicity, and based
on the considerations given above, we will use definitions that are based
on the expected pay-off alone and do not include a risk loading. However,
practitioners may, in some cases, prefer to use a definition based on a trade-
off between risk and return, and, indeed, it may be useful to look at both
definitions in some situations.

Delta

We define delta as the partial derivative of the expected pay-off with respect
to the current value for the index, at constant σx.

∆ =
∂µp

∂x
(5.1)

This is equivalent to defining it as the partial derivative of the expected
pay-off with respect to the expected value for the index, since changes in the
current value of the index lead to changes in the expected value of the index.
It is often more appropriate to consider the underlying index for an option
to be our current estimate for the expected index, or even to be the market
value for the swap price, rather than the current index. We will return to
this point in chapters 10 and 11.
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Figure 5.2. Eight realisations of the possible development of delta for a call
option contract.

Eight examples of how delta might develop during the course of an option
contract are given in figure 5.2, and are discussed in section 5.4.

Gamma

We define gamma as the partial derivative of delta with respect to the current
value for the index, at constant σx.

Γ =
∂∆
∂x

=
∂2µp

∂x2
(5.2)

Eight examples of how gamma might develop during the course of an option
contract are given in figure 5.3.

Zeta

We define zeta, which is unique to weather derivatives, to be the partial
derivative with respect to the standard deviation of the index σx at constant
µx.

ζ =
∂µp

∂σx
(5.3)

Zeta is sometimes called ‘index vega’, but we prefer to use the name ‘zeta’
because it comes with a symbol.

Eight examples of how zeta might develop during the course of an option
contract are given in figure 5.4.
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Figure 5.3. Eight realisations of the possible development of gamma for a
call option contract.
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Figure 5.4. Eight realisations of the possible development of zeta for a call
option contract.

Theta

We define theta to be the partial derivative of the expected pay-off with
respect to time at constant µx.

Θ =
∂µp

∂t
(5.4)

=
∂µp

∂σx

∂σx
∂t

= ζ
∂σx
∂t
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Vega

In standard arbitrage theory vega is defined as the derivative of the arbitrage
price with respect to the volatility of the underlying index. To define vega
for weather derivatives we first need to create a reasonable surrogate for an
underlying index. The most obvious choice is the stochastic process defined
by the conditional expectation of the settlement index given our knowledge
up to time t. This can be modelled as a deterministic function of Brownian
motion, given by dµx = σdW (see chapter 9 for a more detailed discussion of
this), and thus it has a well-defined volatility σ. Vega is then the derivative
of the expected pay-off by this volatility.

We then have

vega =
∂µ

∂σ
(5.5)

=
∂µ

∂σx

∂σx
∂σ

= ζ
∂σx
∂σ

We see from this that vega is related to zeta as defined above.

Modelling the volatility

To calculate theta and vega we must relate the standard deviation of the
index σx to the volatility σ and time t. This is discussed in detail in chapter 9,
where we present a number of models for this relationship, but for now we
note that the simplest relation between the standard deviation of the index
and the volatility of the expected index would be that the volatility is zero
outside the contract period and constant during the contract period. This
is not entirely accurate, since forecasts affect our estimate of the expected
index before the contract has started, but it is a useful starting point. We
then have

σx =

{
(T − t0)

1
2σ if t ≤ t0

(T − t)
1
2σ if t ≥ t0

(5.6)

where T − t0 is the length of the contract and σ is the volatility of the
expected index. We call this relation the ‘volatility-variance’ constraint. We
give the form of this constraint for other models in chapter 9. Differentiating
gives

∂σx
∂t

=
{

0 if t ≤ t0
−1

2(T − t)−
1
2σ if t ≥ t0

(5.7)
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and

∂σx
∂σ

=

{
(T − t0)

1
2 if t ≤ t0

(T − t)
1
2 if t ≥ t0

(5.8)

and hence

θ =

{
0 if t ≤ t0
− ζσx

2(T−t) if t ≥ t0
(5.9)

and

vega =

{
ζ(T − t0)

1
2 if t ≤ t0

ζ(T − t)
1
2 if t ≥ t0

(5.10)

Temperature delta

A final point about delta is that occasionally it is useful to consider the
partial derivative of the expected pay-off with respect to temperature rather
than just the index. This has the advantage that deltas for different indices
based on the same underlying variable (such as CAT and HDD indices for the
same time period) can then be combined. To define the derivative properly
it is necessary to specify exactly which temperature is being used. The most
obvious case would be to consider variations in the most recently measured
temperature. One could also consider varying the mean values of future
temperatures, however.

Starting from

µp = µp(µx, σx) (5.11)

and differentiating with respect to temperature T gives

∂µp

∂T
=

∂µp

∂µx

∂µx

∂T
+

∂µp

∂σx

∂σx
∂T

(5.12)

= ∆
∂µx

∂T
+ ζ

∂σx
∂T

We see that temperature delta is, in general, related to both ∆ and ζ.

Total derivatives of the expected pay-off

We now consider actual changes in the expected pay-off.
If we consider the expected pay-off to be a function of the mean and

standard deviation of the index (this would apply to normal, log-normal
and gamma distributions for the index, among others), then

µp = µp(µx, σx) (5.13)
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There are two kinds of derivative one can consider. The first looks at changes
in µp due to random changes in µx and σx, such as those caused by sampling
error. This gives

dµp =
∂µp

dµx
dµx +

∂µp

dσx
dσx (5.14)

= ∆dµx + ζdσx

In other words, the total change depends on delta and zeta.
We have already used this expression in chapter 3 to evaluate how sam-

pling error on µx and σx causes errors in the estimated expected pay-off.
The second kind of derivative looks at changes in µp due to changes in

time. In this case we have to consider µx as a stochastic process, as described
above and in more detail in chapter 9. In fact, µx can be considered as a kind
of stochastic process known as a diffusion process. When differentiating a
function of a diffusion process we have to use Ito’s lemma, and there is an
extra term relative to the expression for the total derivative of a function of
deterministic processes.

Starting from a Taylor expansion of µp we have

dµp =
∂µp

∂µx
dµx +

∂µp

∂σx
dσx +

1
2
∂2µp

∂µ2
x

dµ2
x + . . . (5.15)

= ∆dµx + ζdσx +
1
2
Γdµ2

x + . . .

= ∆σdW + Θdt +
1
2
Γσ2dW 2 + . . .

= ∆σdW + Θdt +
1
2
Γσ2dt + . . .

= ∆σdW + dt(Θ +
1
2
σ2Γ) + . . .

For infinitesimal changes we have Ito’s lemma, which in this case gives

dµp = ∆σdW + dt(Θ +
1
2
σ2Γ) (5.16)

We see that changes in µp are driven by stochastic changes (the dW term)
and by a deterministic drift (the dt term).

But µp is a conditional expectation, and so it cannot have a drift (this is
discussed in more detail in Jewson (2003s)), and therefore the coefficient of
dt in this equation must be zero.

This gives two interesting results. First,

Θ +
1
2
σ2Γ = 0 (5.17)
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or, re-expanding in terms of the full notation,

∂µp

∂t
+

1
2
σ2∂

2µp

∂µ2
x

= 0 (5.18)

We conclude that the fair price of a weather option satisfies a partial dif-
ferential equation (PDE), which is a backwards diffusion type of equation.
The diffusion coefficient comes from the volatility. This PDE will come up
again in a slightly different context in chapter 11.

Second,

dµp = ∆σdW (5.19)

In other words, changes in the fair price of a weather derivative over short
time horizons are normally distributed around the current fair price, and
have a volatility given simply in terms of the ∆ of the contract and the σ of
the underlying expected index. This can be used to estimate how the value of
a contract might change over a short time period, which is a question often
asked in the context of risk management. We extend this idea to portfolios
in chapter 12.

5.1.1 Estimating the greeks

We now discuss how the greeks defined above can be estimated.
Perhaps the simplest way to estimate delta is to price a contract twice,

with a small difference in the expected index. This will lead to a small
difference in the expected pay-off. Delta is then estimated as the ratio of the
differences in the prices to the differences in the expected index.

delta ≈ µp(µx + ∆x) − µp(µx)
∆x

(5.20)

Gamma can then be estimated in a similar way from the difference between
two values of delta. Zeta can be estimated by making a small change in the
standard deviation.

These estimates are exact only in the case that the expected pay-off is
a linear function of the index (or standard deviation), which is true only
for unlimited swap contracts. For all other contracts these estimates are
approximations that converge to the real value as the change in the index
(or standard deviation) tends towards zero. For degree day contracts, with
typical index values in the thousands, it would be reasonable to use a dif-
ference in the index of one degree day. For event contracts, where, typically,
index values may be below 10, a change in the index of 1 will probably not
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give results close to the correct result, and a much smaller value should be
used.

When calculating estimates of the greeks using these difference methods,
it is wise to check that the results have converged sufficiently. The simplest
way to do that is to double the spacing used and repeat the estimate. If the
estimate remains the same then our original estimate was probably quite
accurate. If not, then it was probably not and a smaller spacing should be
used.

Closed-form expressions for the greeks

It is also possible to derive closed-form expression for the greeks for the
normal distribution. We derive closed-form expressions for the seven contract
types in appendix F. We also derive closed-form expressions for the greeks
for the kernel density in appendix G.

5.2 The interpretation of delta and gamma

5.2.1 Delta and the probability of being in the money

We now show that for almost any index distribution, when the tick is 1, the
delta of a call option is equivalent to the probability of hitting the strike but
not hitting the limit.

∆ =
∂µp

∂µx
(5.21)

=
∂

∂µx

∫ ∞

−∞
p(x)f(x)dx

=
∫ ∞

−∞
∂

∂µx
(p(x)f(x))dx

=
∫ ∞

−∞
p(x)

∂f

∂µx
dx

For many distributions (those for which µx is a location parameter – i.e.
f(x, µx) = f(x− µx)) we have it that ∂

∂µx
f(x) = − ∂

∂xf(x), and so

∆ = −
∫ ∞

−∞
p(x)

∂f

∂x
dx (5.22)

Integrating by parts gives

∆ =
∫ ∞

−∞
f(x)

∂p

∂x
dx (5.23)
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For a call structure this gives

∆ =
∫ ∞

−∞
f(x)

∂p

∂x
dx (5.24)

=
∫ L

K
f(x)Ddx

= D

∫ L

K
f(x)dx

= D(F (L) − F (K)) (5.25)

And so, when D = 1, we have ∆ = F (L) − F (K), which is the probability of
hitting the strike but not the limit. In the case of uncapped calls ∆ = F (K),
and so delta is the probability of ending up in the money.

We note the following two points.

1. Similar relations exist for other option structures; the crucial ingredient is that
the pay-off must be piecewise linear.

2. This relation is often discussed in more traditional Black–Scholes option pricing.
However, in that case it is true only under risk-neutral, rather than true, prob-
abilities. In the weather case it holds under true probabilities because delta is
defined in terms of the expected pay-off under true probabilities.

5.2.2 Gamma and the curvature of the pay-off function

Because

∆ =
∫ ∞

−∞
f(x)

∂p(x)
∂x

dx (5.26)

we see that delta can also be interpreted as the average slope of the pay-off
curve, weighted by the probabilities of the different possible outcomes for
the index.

Similarly, gamma is the weighted average of the curvature of the pay-off
curve:

Γ =
∂

∂µ

∫ ∞

−∞
f
∂p

∂x
dx (5.27)

=
∫ ∞

−∞
∂f

∂µ

∂p

∂x
dx

= −
∫ ∞

−∞
∂f

∂x

∂p

∂x
dx

=
∫ ∞

−∞
f
∂2p

∂x2
dx
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5.3 A summary of the interpretation of the greeks

We now briefly summarise how the different greeks can be interpreted and
used.

Delta:
� is the partial derivative of the expected pay-off with respect to the expected
index, with the index standard deviation (or the daily volatility and time) held
constant;

� is the probability of hitting the limit but not the strike for call and put options,
under many index distributions, and for a tick of 1;

� is the mean of the slope of the pay-off, weighted by the probabilities of the various
possible outcomes for the index;

� is (minus one times) the size of the best linear hedge of an option (where ‘best’
means variance minimising);

� can be used to derive a good indication of the likely size of the random changes
in the expected pay-off over one day, which are given by delta multiplied by the
daily volatility (see equation (5.19));

� can be used to derive an indication of the likely size of random changes in the
expected pay-off over n days, by multiplying the above estimate by the square
root of n;

� is an indication of the likely size of the errors in our estimate of the expected
pay-off induced by an error in the estimate of the expected index of 1 (see equa-
tion (5.14) and section 3.1.7).

Gamma:
� is the partial derivative of delta with respect to the expected index, with the
index standard deviation held constant;

� is the mean curvature of the pay-off, weighted by the probabilities of the various
possible outcomes;

� can be used to derive a good indication of the likely size of the random changes
in delta over one day, which are given by gamma multiplied by the daily
volatility;

� can be used to derive an indication of the likely size of random changes
in delta over n days, by multiplying the above estimate by the square root
of n.

Zeta:
� is the partial derivative of the expected pay-off with respect to the standard
deviation of the settlement index;

� is an indication of the likely size of the errors in our estimate of the expected pay-
off induced by an error in the estimate of the standard deviation of the settlement
index of 1 (see equation (5.14) and section 3.1.7);

� is used in the calculation of theta and vega (see equations (5.4) and (5.5)).
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Theta:

� is the partial derivative of the expected pay-off with respect to time, hold-
ing the mean index fixed but allowing the standard deviation of the index to
vary;

� for normally distributed indices, is related to gamma via equation (5.18).

Vega:

� is the partial derivative of the expected pay-off with respect to the volatility of
the underlying index.

5.4 Examples of the greeks

We now show some simulations of possible realisations for the greeks through
the development of a single-month call option contract, taken from Jewson
(2003k).

The index has an unconditional (pre-contract) mean of 373 and a standard
deviation of 48 (chosen to reflect the typical values for London Heathrow
November HDDs), and the development of the expected index is simulated
using a deterministic function of Brownian motion, justification for which
is given in chapter 10. Figure 5.1 shows the development of the underly-
ing expected index, and figures 5.2, 5.3 and 5.4 show the corresponding
development of delta, zeta and gamma. The development of the expected
pay-offs for the option, along with 10 per cent and 90 per cent quantiles of
the distribution of pay-offs, are shown in figure 12.1. The development of
the relative value at risk (VaR) is shown in figure 12.2. In each graph the
dotted line shows the pre-contract, or unconditional, value. In figure 5.1 the
dashed line shows the option strike. It is instructive to interpret these graphs
in some detail: for instance, in panel 1 the expected index does not stray
very far from the initial value, and finishes only slightly above the strike.
Around day 0 the mean index is fairly large, and this leads to a large value
for the expected pay-off at that point. Later, the expected pay-off reduces
and finishes at a low settlement value, below the fair value. The quantiles
of the pay-off distribution show that, until the very end, there is always the
possibility that the final pay-off will be zero. Delta finishes on a high value
because we finish with a non-zero pay-off, and right to the end the pay-off
is still liable to change as the expected index changes. Gamma is very large
just before expiry because we are fairly close to the strike at this point, and
there is still a probability of a zero pay-off. The other seven panels can be
interpreted in a similar way.
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5.5 The relative importance of choosing data,
trends and distributions

Having described the use of trends and distributions in weather pricing we
can now ask the question: which of the two makes the greater difference to
the final prices attained? For a linear weather swap priced at the expected
index, there is no need to fit a distribution to the index values at all; the
expected index is calculated directly from the detrended historical values.
For capped weather swaps the choice of distribution has a small influence on
the final result. For options one would expect different distributions to have
a greater effect on pricing because of the non-linear shape of the option pay-
off. We investigated this issue in Jewson (2004f) by studying the sensitivity
of the expected pay-off of a number of option contracts to changes in the
number of years of data, trend and distribution. We restricted ourselves to
a small number of reasonable trends and distributions. The distributions
could not be rejected using the chi-squared test. We defined a measure of
the ratio of the sensitivity to trends to the sensitivity to distributions, and
values for this measure are shown in figure 5.5 versus strike for four locations
(London, New York, Chicago and Tokyo). The strike values in this figure
are non-dimensionalised so that the mean index is zero and the standard
deviation of the index is 1. We see that for values of the strike that are
near the mean the expected pay-off is around twenty times more sensitive
to the trend than to the distribution. As the strike moves away from the
mean the distribution becomes more important until the strike is at around
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Figure 5.5. The ratio of the sensitivity of the expected pay-off of call option
contracts due to changes in the trend to the sensitivity of the expected pay-
off due to changes in the distribution, versus the strike in non-dimensional
units, for London, New York, Chicago and Tokyo.
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Figure 5.6. The ratio of the sensitivity of the expected pay-off of call option
contracts due to changes in the trend to the sensitivity of the expected pay-
off due to changes in the number of years of data used, versus the strike in
non-dimensional units, for London, New York, Chicago and Tokyo.

2 standard deviations from the mean, when the trend and the distribution
are equally important.

We then repeated the analysis comparing the sensitivity of the expected
pay-off to changes in the trend and in the number of years of data used. The
results are shown in figure 5.6. In this case we find that the two factors are
equally important, independent of where the strike lies.

We conclude by suggesting that, for contracts with a strike near the mean,
it is not sensible to spend a disproportionate amount of time trying to un-
derstand which the most appropriate distribution is, or what the effect of
distribution is on model risk is, when the choice of trend and number of years
of data used tend to dominate the final results. In these cases this conclusion
justifies the use of the normal distribution whenever reasonable: if it does
not make a material difference which distribution is used (as long as the
distribution fits the data), then why not use the most convenient one?

For contracts with a strike far from the mean this does not apply, and the
choice of distribution becomes much more important.

5.6 Comparing the accuracy of burn analysis and index
modelling for option pricing

In the two previous chapters we have shown how to estimate the distribution
of pay-offs and the expected pay-off using both burn and index modelling
methods. Which is more accurate? We have argued so far that index mod-
elling may be more accurate, because it smoothes the index distribution and
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extrapolates the tails in a reasonable way. But we have also emphasised that
by enforcing a certain family of shapes onto the distribution we are making
an assumption, which is bound to be at least slightly wrong and introduces
an extra source of error.

Although comparing burn and index modelling in a rigorous way is prac-
tically impossible, there are certain things we can investigate. One is the
question: if we fit the correct family of distributions (i.e. the data really
is from a normal distribution, and we fit a normal distribution), then how
much better is index modelling than burn? We call this the potential ac-
curacy of index modelling: ‘potential’ because, in practice, we will never
fit exactly the right distribution. This method shows us how much better
index modelling could be in the best possible case. This question was ad-
dressed in some detail in Jewson (2003f). The conclusions from that study
were:

� when estimating the expected pay-off for options with strikes that are near the
expected index there is very little, if any, benefit to be had from using modelling;

� there is also very little benefit to be had when there is only a small amount of
data being used (e.g. ten years or fewer);

� when more data is being used, and for options with strikes away from the mean,
there may be significant benefit from using modelling;

� when estimating delta, the benefits of using modelling are greater than the ben-
efits when estimating the expected pay-off;

� when estimating gamma, burn is almost completely useless, and modelling has to
be used;

� when estimating the variance of pay-offs, modelling gives significantly better re-
sults than burn.

The results for the expected pay-off are summarised in figure 5.7, which
shows the potential accuracy of modelling relative to burn for different num-
bers of years of data and different strikes.

5.7 The correlation between the results from
burn and index modelling

Another result from the study cited above is that the correlation between
the results from burn and index modelling is very high (see figure 5.8). In
other words, if we estimate the fair premium for an option using burn and
index modelling, and one of them is higher than the true value, then the
other one is almost definitely higher than the true value too. There is no
sense in which the two values will bracket the pay-offs, or in which using
one method and then the other gives a useful second opinion.
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Figure 5.7. The variation of the reduction in error with number of years
of historical data for index modelling versus burn against strikes for a call
option in non-dimensional units. From top down the lines correspond to
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below 100 show a greater potential accuracy for index modelling than burn.
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Figure 5.8. The correlation between burn and modelling estimates of the
expected pay-off for a call option.

5.8 Pricing costless swaps

We have mentioned in section 3.1 that for swaps with limits it is often
necessary to use iterative methods to derive the fair strike. In the case in
which the index distribution is normal and the swap structure is symmetric
the strike with zero expected pay-off is just the expected index. However,
if either the distribution is skewed or the swap structure is not symmetric,
this is not the case, and calculating the zero-cost strike can be carried out
only by using iterative methods.

If we represent the expected pay-off from a swap contract as a function
of the strike s as H(s), then the strike at which the pay-off is zero is the
solution of the equation H(s) = 0. Fortunately, this is a very numerically
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tractable problem: in almost any reasonable situation H(s) = 0 will have
only one solution, and any gradient descent type of numerical method can
be used to find it. Basically, these methods work as follows.

1. Calculate an initial estimate s (the expected index is a good start).
2. Calculate H(s) (using the methods described in the previous two chapters).
3. If H(s) is not sufficiently close to zero, then calculate H(s + ds) and H(s− ds).

One of these will be less than H(s). Use the corresponding argument as the new
value of s – i.e. if H(s + ds) is less than H(s), then let s become s + ds.

4. Use this new value of s, and repeat from step 2, until H(s) is close to zero.
5. s now gives the fair strike.

A slightly more complex method that estimated the gradient of H(s) from
analytical considerations would be faster. But, given the ease with which
we can calculate H(s), and the speed of the method given above, there is
probably not much point in making the effort to derive and implement such
a scheme.

5.9 Multi-year contracts

In the primary market, multi-year contracts are relatively common. These
almost always consist of one partial-year deal repeated every year.

One of the reasons that such ‘bulk buying’ of one-year deals is common
is that buying five one-year deals at once is likely to be less expensive than
buying them each year for the next five years, because of diversification
between the deals. The expected pay-off for a five-year deal will be five
times the expected pay-off for a one-year deal, but the risk loading for a
five-year deal should be closer to

√
5 times the risk loading for a one-year

deal since the pay-offs are independent (and assuming the risk loading is
proportional to the standard deviation of pay-offs).

Pricing multi-year deals gets more difficult the further out they extend
into the future, mainly because the uncertainty about future temperatures
increases. Different trend models, using different numbers of years of data,
and the decision of whether and how to extrapolate the trend make very
large differences in the prices derived. Credit risk also becomes much more
important: will your counterparty still be around to pay you in five or ten
years’ time?

Some more exotic multi-year deals contain complex features, such as
clauses that limit the total amount paid from one counterparty to the other
and strikes and limits that adjust according to the weather on the way
through the deal.
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5.10 Derived prices

Swaps on certain indices are traded sufficiently frequently that one can ob-
serve the market swap strike for these indices. But for most swaps on most
indices there is no such market price. However, it is possible that the mar-
ket prices that are available on the frequently traded indices can tell us
something about what the prices should be for the non-traded indices. In
particular, if a non-traded index is reasonably well correlated with a traded
index then the price of contracts based on the non-traded index is likely to be
related to the price of contracts on the traded, index. For instance, the price
of HDD swaps on Birmingham, United Kingdom, which are not traded in the
market, is likely to be closely related to the price of HDD swaps on London
Heathrow, which is only one hundred and twenty miles away. Similarly, the
price of some event indices on London Heathrow temperatures are likely to
be closely related to the price of HDD swaps on London Heathrow, since the
number of events and the number of HDDs are likely to be highly correlated.

This effect arises because a speculator offering a price on the non-traded
index can immediately hedge part of his risk using the traded index. The
only risk this leaves him with is due to the lack of perfect correlation between
the two trades, and the price on the non-traded index is likely to be higher
than the price on the traded index by a factor that is proportional to this
risk.

More generally, a speculator might immediately hedge himself using more
than one location. In this case the price on the non-traded index is likely to
depend on the market prices of all the locations used to hedge.

5.11 The pay-off integrand

The expectation of the pay-off distribution of a weather contract µp is defined
by

µp =
∫ ∞

−∞
p(x)f(x)dx (5.28)

=
∫ ∞

−∞
p(x)

dF

dx
dx

=
∫ ∞

−∞
p(x)dF (x)

The third of these expressions is the most general because it can be used
even when F (x) is not smooth (i.e. cannot be differentiated). In this case
f(x) has the value of infinity at some points. This can be represented using
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Figure 5.9. The shape of the pay-off integrand for the swap and option
contracts described in the text.

the delta functions of mathematical physics. Alternatively, measure theory
provides a framework for handling mixed and discrete distributions.

Note that, since the index distribution is in fact discrete, this should be
a sum rather than an integral. We use integral notation on the basis that it
is easier to read and manipulate.

Defining a single function of the index fp(x) = f(x)p(x) the integral can
be written as

µp =
∫ ∞

−∞
fp(x)dx (5.29)

It is instructive to plot this function fp(x), which we will refer to as the
pay-off integrand. Figure 5.9 shows the form of this function for a swap
and a call option, with a normal distribution. For the swap, the strike is
at the expectation and the limits are at +/−1.5 standard deviations. For
the option, the strike is at 0.25 standard deviations and the limit is at 1.5
standard deviations. We can use the pay-off integrand to tell us the relative
importance of different parts of the index distribution in determining the
expected pay-off. For instance, for the option the largest contribution to the
expected pay-off comes from values of the index around 1800. This indicates
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that modelling the index for these values is crucial. These considerations
can contribute to the decision about which distribution to use. When using
graphical methods for distribution fitting one can check that the distribution
gives a good fit in the most important range of values.

5.12 Pricing options using the swap price

As we have seen, one of the major challenges in pricing an option is to esti-
mate the distribution of the underlying index. Part of this is the estimation
of the expectation of the distribution. Small changes in the estimate of the
expected index can cause large changes in the estimated expected pay-off.
The only method we have presented so far for calculating the expectation of
the index is to look at historical index data and, perhaps, remove a (fairly ad
hoc) trend. In this section we describe an interesting alternative: to let the
market do the work, and tell you the expectation of the index. The assump-
tion behind this method is that there is a fairly liquid swap contract based
on the index underlying the option. If we assume that (a) the distribution
of the index is fairly close to normal, (b) the swap is defined symmetrically
about the expected index, and (c) the swap market is trading with no risk
premium, then the market strike of the swap can be taken to be the market
estimate of the expected index. If we believe in efficient markets, then we
might even think that this is a good estimate, and a better one than we
could hope to come to ourselves by analysing historical data. At the very
least, it is an estimate that a number of people apparently believe in. Note
that, using the iterative swap pricing methods described in section 5.8, we
can even relax the first two assumptions and derive the expected index even
in the case where the index distribution is non-normal and the swap contract
has asymmetric limits.

We should add that it is not uncommon for the third assumption listed
above to be entirely incorrect even for the most commonly traded contracts.
During January 2003, for instance, the market strike for the London Jan-
uary swap contract was consistently twenty degree days below the lowest
reasonable estimates for the fair strike. Apparently there was a significant
imbalance in supply and demand for the swap contract, which was driving
the swap price well away from the expected index, and there seemed to be
insufficient liquidity in the market to move it back.

However, if we do accept the market estimate for the expectation of the
index we can then price the option using this expectation combined with
the historical data-based estimate of the standard deviation of the index.
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If we use this method then our option prices are no longer as highly
sensitive to our fairly arbitrary choices of number of years of data and
trend, since these now only affect the standard deviation and not the
expectation.

In the next section, and in chapter 11, we will see that there may even
be situations in which we should use the market swap price instead of the
estimated expected index even if we do not think it is a good estimate of the
expectation. This occurs either (a) when one wants to calculate liquidation
values for swaps or (b) when one wants to calculate prices for options that
take into account the cost of hedging.

5.13 Hedging options with a single swap

A speculator selling options on an index for which the swap contract is
liquidly traded will often immediately hedge his position by trading that
swap contract. The new position, consisting of a put and a swap or a call
and a swap, is sometimes called a ‘covered put’ or a ‘covered call’. This is
not by any means a perfect hedge, but can nevertheless reduce the risk of
holding a short option position significantly. What size should the tick of
the swap be?

We offer two ways that one can think about this question. The first is to
choose the tick so that small changes in the expected index will not have
a big impact on the new hedged position – i.e. the size of the swap is such
that, if a change in the expected index causes the value of the option to
increase, the value of the swap will decrease by the same amount. This is
known as delta hedging. For large changes in the expected index the hedging
is not exact, because the changes in the option price cease to be linear in
the changes in the expected index.

The second rationale for hedging is to think about the distribution of
pay-offs at expiry and to consider reducing the risk of this distribution. This
is known as static hedging.

5.13.1 Delta hedges

If we define the value of the hedged portfolio V to be the expected profit on
the option plus the expected profit on the swap, we assume that the option
position is short and the swap long, and that the swap is uncapped; then V

is given by

V (µx) = µp(µx) + D(µx −K) (5.30)
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where we have written the expected pay-off of the option µp as a function
only of µx, and have suppressed the dependency on σx.

Suppose µx changes by a small amount ε, then

V (µx + ε) = µp(µx + ε) + D(µx + ε−K) (5.31)

= µp(µx) + ε∆ + . . . + D(µx + ε−K)

where we have made a Taylor expansion of µp around µx and ignored
terms smaller than ε. We can now see that if we choose D = −∆ our
portfolio will be insensitive to small changes in µx (the ε terms cancel),
and in this sense the risk has been reduced. We now see the reason for the
name ‘delta hedging’: the delta of the option gives us the optimum size of
hedge.

Before the speculator sells the option contract, he might want to adjust
the price he charges in the knowledge that he is going to hedge with the swap.
If we ignore risk loading then we can take the price to be the expected profit
on the option and the swap together. This is given by

price = µp(µx) + D(µx − S) (5.32)

If we define e = S − µx to be the difference between the current swap price
and the fair swap price then

price = µp(µx) + ∆e (5.33)

= µp(µx + e) + . . . + O(e2)

≈ µp(S)

Thus we see that the price is given roughly by µp(S) – i.e. by calculating the
expected pay-off of the option but substituting S, the current swap price,
instead of the expected index, even though S does not necessarily equal the
expected index.

This is now a justification for pricing an option using the swap price
in place of an estimate of the expected index, even if we believe that the
swap price is not equal to the expected index. It says that if the swap is
overpriced then our hedge will be more expensive, and we should reflect this
in the option price that we charge.

5.13.2 Static hedging

The delta hedging argument given above makes most sense when it is pos-
sible to rehedge fairly frequently during the course of the option contract.
Such a situation is considered in more detail in chapter 11. If, on the other
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Figure 5.10. The optimum size of a static hedge for an option contract for
different risk measures. The solid line applies to the standard deviation,
the dotted line to the expiry VaR, the dashed line to the semi-standard
deviation and the dot-dashed line to the tail VaR.

hand, rehedging is likely to be impossible then we should consider the effect
of our hedge on the final pay-off distribution right from the start. This ques-
tion was addressed in Jewson (2004c), where the benefits of static hedging
were considered using four different possible measures of risk. The four mea-
sures of risk were standard deviation, semi-standard deviation, expiry value
at risk and tail value at risk (tail VaR). Figure 5.10 shows the sizes of the
optimum swap hedge in each case. We see that if the option is struck at the
expected index (1660 in this case) it doesn’t make any difference which risk
measure we use: the size of the optimum hedge is the same. On the other
hand, if the option is struck far out of the money then it can make quite
a big difference. The hedges that are needed to minimise the variance are
the smallest, while the hedges that are needed to minimise either the semi-
standard deviation or the tail VaR are the largest. Since hedging usually
costs money, it is likely to be more expensive to hedge the semi-standard
deviation or the tail VaR.

In the case of static hedging in order to minimise the variance, if the index
is normally distributed then the size of the hedge is exactly the same as the
delta hedge of the previous section.

5.14 Sampling error and structuring

In this section we turn the discussion of sampling error from chapter 3
around and look at it from another point of view. What we considered there
was the idea that we have a swap defined with the strike at exactly the true
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expected value of the index, or an option with the strike limit defined in
terms of the exact expectation and standard deviation of the index. This is,
of course, never the case in reality. Rather, whoever structures the option
uses estimated values of the expectation and standard deviation to fix the
position of the strike and limits. This could result in the position of the strike
and limits being rather far from the intended position, due to errors in the
estimates of the expectation and standard deviation of the index. We have
already seen that our estimates of the expectation have a standard error
given by σx√

Ny

and our estimates of the standard deviation have a standard

error given by σx√
2Ny

, and we can use these to derive the levels of uncertainty

on the estimated strike and limits for swaps and options.
For a swap, if we are trying to set the strike at the expectation of

the index then our estimate of the expectation will have a standard er-
ror of σx√

Ny

. If we are trying to set the limit at the expectation of the

index plus two standard deviations of the index then there will be uncer-
tainty due to both the uncertainty on the expectation and the uncertainty
on the standard deviation of the index. For the normal distribution these
sources of uncertainty are independent, and the total uncertainty is given
by

s.e. on limit =

√
σ2
x

Ny
+ 4

σ2
x

2Ny
(5.34)

=
√

3
σx√
Ny

In other words, the uncertainty on the limit is about 1.7 times larger than
the uncertainty on the strike, and most of this uncertainty comes from the
uncertainty on the standard deviation.

For a call option, if we are trying to set the strike at the expectation plus
half of 1 standard deviation then the total uncertainty is given by

s.e. on strike =

√
σ2
x

Ny
+

1
4

σ2
x

2Ny
(5.35)

=

√
9
8

σx√
Ny

In other words, the uncertainty on the strike is about 1.06 times larger than
the uncertainty on the expected index, and most of this uncertainty comes
from the uncertainty on the expected index.
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5.15 Leap years

The existence of leap years is slightly annoying when calculating historical
indices. Consider, for instance, a January to March contract. In most years
this period has ninety days (= 31 + 28 + 31). But in a leap year it has ninety-
one days (= 31 + 29 + 31). When calculating historical indices, the historical
HDD values for this period for leap years will therefore be higher on average,
simply because they are based on more days. When performing a historical-
data-based pricing analysis this is not ideal. For seasonal contracts the effect
is so small it can be ignored, but for monthly contracts it is large enough to
be worth addressing correctly.

One simple method works as follows:

� if the contract to be priced is not in a leap year, then one should use only ninety
days of data from each historical year; these ninety days will not then have exactly
the same dates as the dates of the contract;

� if the contract to be priced is in a leap year, then one should use ninety-one days
of data from each historical year; again, the dates won’t match exactly.

Exactly which days of data to use needs careful thought to avoid inconsis-
tencies between burn values calculated for monthly and seasonal contracts.

5.16 Further reading

There is some discussion of the role of the greeks in weather pricing
in Moreno (2003).
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The valuation of single contracts
using daily modelling

In chapter 4 we considered methods for the pricing of temperature-based
weather derivatives that involve statistical modelling of the historical values
of the contract settlement index. In this chapter we investigate methods
that involve statistical modelling of the underlying temperature. Since the
temperature measurements used for most weather contracts are daily values
we will focus on the modelling of daily temperatures.

Using models of daily temperature to price weather derivatives has a
number of advantages and disadvantages relative to using models of the
contract settlement index.

The potential advantages include:

� more complete use of the available historical data;
� more accurate representation of the index distribution;
� more accurate extrapolation of extremes;
� more accurate mark to model estimates during the contract;
� consistent use of one model for all contracts on one location;
� easier incorporation of meteorological forecasts into the pricing algorithm.

The main disadvantage of using daily models is the added complexity; as we
will see, daily models are significantly more complex than the index mod-
elling methods of chapter 4. This, in turn, leads to greater risk of model error.

In practice, because of this disadvantage, daily models are currently used
much less frequently than index models. However, as more research is done
into these models their use is likely to increase.

6.1 The advantages of daily modelling

We now describe in more detail the advantages of using daily temperature
modelling methods.
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6.1.1 Higher potential accuracy

A desire for higher accuracy in pricing is probably the main reason why
there is interest in daily temperature modelling methods for weather deriva-
tive pricing. However, the question of whether daily modelling gives higher
accuracy or not is a difficult one to answer. Certainly, there are contracts for
which it does, but, equally, there are contracts for which it probably never
will. To help understand the issues that affect whether a model is accurate
we again (as in section 5.6) distinguish between accuracy, which is the abil-
ity of a model to represent the real world, and potential accuracy, which is
the ability of a model to represent the real world, if the model is correct.1

By a model being correct, we mean that the model has the right form, even
if we do not know the right values for the parameters.

Daily models very often show greater potential accuracy than burn and
index models (we show this in section 6.8). To the extent that the model is
correct, this then translates into actual accuracy. But all models are wrong,
and so the actual accuracy is always less than the potential accuracy. The
question is: how close is the actual accuracy to this potential? This is gener-
ally impossible to answer in a completely precise way. The potential accuracy
of a model can be evaluated very precisely by fitting the model to its own
output. The actual accuracy can be partly assessed using model validation
but can only be fully assessed using out-of-sample testing on real data, which
is very difficult because of the presence of trends.

More complete use of the available historical data

Consider a one-week weather contract: the index-based analyses described in
chapter 4 discard the historical temperature data from all the other weeks of
the year when the historical indices are calculated. Thus roughly 98 per cent
of the available data, which may contain useful information, is simply being
thrown away. A daily model, on the other hand, could use data from the
whole year to fit the parameters of the model. If the extra data is relevant,
then the model will be more accurate because the parameters will be better
estimated. Of course, fitting models using more data is not necessarily better:
we could price a London contract by taking extra data from Beijing, but
this would be nonsensical since the statistics of temperature variability in

1 Climate modellers will appreciate that this distinction is similar to the distinction between
predictability and potential predictability: the former is the ability to predict the real world,
the latter is the ability of a model to predict itself. If the model is correct (which, of course,
they never are) then these are equal. Models always show a greater ability to predict themselves
than they do the real world; there is always a danger that the skill with which a model predicts
itself is mistaken for the skill of real predictions.
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the two locations are very different. Similarly, if summer and winter data are
not very similar then using both to fit a model intended for use on a summer
contract may not increase the accuracy for that contract, and may decrease
it. Assessing whether using extra data from outside the contract period
improves or degrades the model is an important part of daily modelling.

To introduce another aspect of the complete use of available data possible
with daily modelling, consider a CDD index based on a baseline temperature
of 65◦F/18◦C. It may be that, for the location in question, only half the days
in the contract period typically lie above the baseline. In an index-based
analysis the information contained in the data below the baseline would
not then be fully utilised. By using a daily model we avoid this problem
of the incomplete utilisation of the data on one side of the baseline and
make full use of the data from every day. However, the flip side is that the
distribution we assume for the daily model may be significantly wrong for
the values below the baseline, and by including those values when we fit the
distribution we actually reduce the accuracy of the model. Again, evaluating
whether using the data from the wrong side of the baseline improves or
degrades the model is an important step.

As an extreme case of the point made in the previous paragraph, consider
an event index. It may be that only one day in a hundred of the histori-
cal data gives us an event, and hence that we are not making full use of
99 per cent of the data when using an index-based pricing method. Fitting
a daily model to all the data can give us accurately estimated parameters.
As before, whether the model is more accurate depends on how close the
distribution we fit to the daily values is to the correct distribution, and, in
particular, how close the fit is for the extreme values that drive the events.

The most extreme case of this situation is when we are pricing a deal based
on events that have never occurred historically. Neither index modelling nor
burn can be used in these situations, but daily modelling could potentially
give reasonable results by generating such events.

Better representation of the index distribution

The goal of both index and daily modelling is the accurate representation
of the index distribution, from which accurate prices can be determined.
This distribution is controlled by the distribution (both the marginal daily
distribution and the dependence in time) of the daily temperature, along
with the definition of the index. These two factors may combine to create
index distribution shapes that cannot be represented perfectly by any of the
standard parametric distributions of statistics, and in that case no paramet-
ric index model will ever do a particularly good job. A daily model that
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captures the distribution of the daily weather variable is less restricted, and
we may, as a result, be able to get closer to the actual distribution of the
index. Given the results described in section 5.5 this is most likely to be
important for contracts that depend heavily on the tails of the distribution.

Better extrapolation of extremes

Index models capture extreme events by extrapolating beyond the available
historical index data. For instance, if we fit a normal distribution to the
historical indices then we are extrapolating using the tails of a normal dis-
tribution, etc. This extrapolation is ad hoc, and it is very hard to argue
that any one distribution gives a better extrapolation than any other. Daily
models overcome this to a certain extent: extremes of the index often depend
on certain sequences of daily values. A daily model can create entirely new
sequences of daily values that do not occur in the historical data, and that
will translate to new extreme index values. If the daily model is realistic
then these extremes will be realistic too. Such issues are clearly of more
relevance to contracts based on indices that depend strongly on extreme
values.

6.1.2 Better mark to model estimates

Marking contracts to model is the process of evaluating the current worth
of a contract or portfolio of contracts given the available historical data and
forecasts. This topic will be discussed in more detail in later chapters. For
now we note that daily models allow better representation of the correlations
between past and future temperature data than index models, and can hence
potentially improve the accuracy of mark to model estimates.

6.1.3 Use of one model for all contracts on one location

If a number of different contracts are written on one location then it may
be considered necessary to ensure consistent pricing between the different
contracts. This is particularly important if some contracts are being used to
hedge others. In chapter 7 we will discuss how index models can be extended
to cover multiple contracts, but we will also see that there are some situa-
tions where the multivariate index models we describe are unable to capture
the dependences between the indices exactly, while a daily model would
do so.

Also, once a good daily model has been found for a particular location it
can be used for all contracts on that location, whatever the index type or
duration. Thus the statistical fitting process can be done once and for all, and
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many different types of contracts can be priced thereafter with confidence.
This is not true for the index models, which have to be refitted for each new
index.

6.1.4 The incorporation of meteorological forecasts

Meteorological forecasters produce forecasts of temperature in terms of daily
values. It is efficient for the forecasters to produce their predictions in terms
of daily temperature rather than in daily or aggregate degree days because
the forecasts can then be used by everyone, from traders pricing derivatives
to families planning a trip. As we shall see in chapter 10, it is easier to
incorporate these forecasts into pricing models if the pricing model is also
based on daily temperatures rather than on settlement indices.

6.2 The disadvantages of daily modelling

In addition to the advantages listed above, daily models have certain disad-
vantages relative to index models.

The complexity of the models

Daily models, are, because of the complex nature of daily temperature vari-
ability, harder to design, build, fit, validate and use. They may also be slower
to run.

The risk of model error

Because of the greater complexity of daily models, there is a much greater
danger of model error than with index models (index models, in turn, have a
greater danger of model error than burn analysis). Model error can take two
forms: first, that the mathematical model itself is a good one (i.e. close to
reality) but has been implemented wrongly (i.e. coding errors); and, second,
that the mathematical model itself is poor (i.e. far from reality).

6.3 Modelling daily temperatures

Having discussed the pros and cons of pricing using daily temperature mod-
els, we will now present a number of such models. The accuracy and poten-
tial accuracy of these models will be evaluated using a range of techniques.
The final decision as to which model is likely to be best and whether the
best daily model is likely to be better than the index models is a subjec-
tive one, based on all the available information plus a certain amount of
intuition.
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Figure 6.1. The process of the deseasonalisation of daily temperatures. The
top panel shows four years of daily temperatures, with a seasonal cycle in
the mean imposed. The second panel shows the fourier power spectrum of
daily temperatures, with a large peak at forty-four oscillations in forty-four
years of data – i.e. a period of one year. The third panel shows the fourier
power spectrum of the squared intermediate anomalies, and the fourth
panel shows the temperatures anomalies after the seasonal cycles in the
mean and the variance have been removed.

Methods for simulation from these models are discussed briefly in ap-
pendix I.

6.3.1 Modelling the seasonal cycle

The first striking thing about time series of temperature variability in ex-
tratropical locations is that there is a strong seasonal cycle with small per-
turbations about it (see the first panel in figure 6.1). This motivates us to
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model the seasonal cycle first and the perturbations separately.2 The hope
is that, by removing the non-stationary seasonal cycle, what is left will be
stationary.

The approach we take is to model the seasonal variations as deterministic
and the same every year (seasonally stationary). The stochastic variability
of temperature is then moved entirely into the residuals from the seasonal
cycle. Such deterministic seasonal cycle modelling is the approach generally
used in meteorology.

Having decided to model the seasonal cycle deterministically there are
then three basic approaches one can take.

The averaging method
The simplest method for removing the seasonal cycle would consist of the
following steps:

� calculate an average year by averaging together all Jan 1sts, all Jan 2nds,
etc.;

� smooth this average year using a sliding window to create a plausibly smooth
seasonal cycle.

The main advantage of such an approach is simplicity. The main disadvan-
tage is that leap years are not well accounted for; the irritating occurrence
of an extra day at the end of February once every four years cannot easily
be dealt with in this framework.

The DFT method

When 4N years of temperature variability is transformed into the frequency
domain using a forward discrete fourier transform (DFT) and the power
spectrum is plotted, the seasonal cycle shows up as very distinct peaks at
harmonics of the annual cycle of 365.25 days (see figure 6.1, panel 2). The
first harmonic at one year is by far the largest, with several distinct sub-
harmonics at much smaller amplitudes. A simple way to remove the seasonal
cycle is to set the power of these harmonics to zero and transform the power
spectrum back into real time using the inverse DFT (forward and inverse
DFTs are readily available as software packages). The back-transformed
temperatures no longer show the strong seasonal cycle. Our own experience
suggests that removing one, two or three harmonics in this way is usually
sufficient to remove all traces of seasonality in the mean. The signal that

2 Although one could argue that modelling the whole lot together is more mathematically con-
sistent.
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has been removed can be constructed as the difference between the original
signal and the back-transform.

Having removed the seasonal cycle in the mean as described above, we are
left with residuals, which we call the ‘intermediate anomalies’ or the ‘anoma-
lies from the mean seasonal cycle’. These anomalies also show seasonality,
now in the variance rather than in the mean, because winter temperature is
more variable than summer temperature. We can remove this seasonality in
almost the same way as with the seasonality in the mean:

� the variance process is calculated by squaring the time series of the intermediate
anomalies;

� the power spectrum of this variance process is estimated (see figure 6.1,
panel 3);

� the peaks in this power spectrum are reduced to the level of the background;
� the adjusted power spectrum is inverted back to real time.

More harmonics are needed than for removing the seasonal cycle in the
mean; our experience suggests that three or four work well.

The regression method

A third method for removing seasonality is to regress the temperatures onto
harmonics of 365.25 days. This has the advantage that it can be applied to
any number of years of data. It can be used to remove the seasonal cycle in
both the mean and the variance, as with the DFT method.

The results of deseasonalisation

The result of applying the DFT deseasonalisation process to Chicago tem-
peratures is shown in the 4th panel of figure 6.1. We will refer to these
values as ‘anomalies’. These anomalies capture the random variability of
weather from day to day, with most of the deterministic seasonal variability
removed. We can now write the general form of the model we use for daily
temperatures as

Ti = mi + siT
′
i (6.1)

where Ti are the temperatures, mi is the seasonal cycle in the mean, si is
the seasonal cycle in the standard deviation and T ′

i are the temperature
anomalies.

At this stage the straightforward modelling has been done. The anomalies
have complex statistical properties that cannot be modelled particularly
easily, especially not in a fully general way. We will now investigate some of
these statistical properties.
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Figure 6.2. QQ plots showing the annual distribution of temperatures for
Chicago and Miami. We see that Chicago is reasonably close to normally
distributed (but with slightly lighter tails) while Miami is very far from
normally distributed, with a very heavy left tail.

6.4 The statistical properties of the anomalies

First, we investigate the annual distribution of the the anomalies. Having
removed the seasonal cycle in the mean and the standard deviation, we
have, to the extent that the seasonal cycle has been modelled accurately,
enforced a mean of zero and a standard deviation of one at all times of the
year. The annual distributions of anomalies from Chicago and Miami are
shown in figure 6.2. They are compared with normal distributions using QQ
plots.

We see that in neither case is a normal distribution a perfect fit to the
distribution of the anomalies: for Chicago it is fairly reasonable, while for
Miami it is fairly poor.

We now break down the annual distribution into seasonal distributions.
The upper panels of figure 6.3 show the winter and summer distributions
for Chicago. There are slight deviations from normality in both seasons,
and the deviations are different in summer and winter. Figure 6.4 shows the
distributions for all four seasons for Miami. In this case, there are marked
deviations from normal in all four seasons, and particularly in winter. We
conclude that the annual distributions shown in figure 6.2 are composites of
different distributions at different times of year.

Next, we consider the annual anomaly autocorrelation function (ACF).
The ACF shows how a time series is correlated with itself at different lags.
Figure 6.5 shows the annual ACFs for Chicago and Miami. We note that
the ACFs do not decay to zero until beyond thirty days.

Finally, we consider the seasonality of the ACF. The lower panels of fig-
ure 6.3 show the ACFs for Chicago calculated separately using winter and
summer data, along with the annual ACF. There do not seem to be big
variations in the ACF from winter to summer.
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Figure 6.3. The upper panels show QQ plots of Chicago surface air tem-
perature anomalies for summer and winter. The horizontal axes show the
observed quantiles, while the vertical axes show the modelled quantiles
from a normal distribution. In both cases we can see that the distribution
of temperatures is close to normal, and hence that Gaussian models are rea-
sonably well justified (although the tails of the temperature distribution in
summer do show some departures from normal). The lower panels show the
ACFs for Chicago surface air temperatures for summer and winter (solid
line), along with the ACF fitted to data for the whole year (dotted line, the
same in each graph), and with the 95 per cent confidence intervals (dashed
lines) calculated using the method proposed in Moran (1947). We see that
the ACF does not vary much from winter to summer, and what variations
there are may be due to sampling error.
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Figure 6.4. The four panels show QQ plots for temperature anomalies in
Miami for the four seasons. The horizontal axis shows the observed quan-
tiles, while the vertical axis shows the modelled quantiles. We see that in
all seasons the cold tail of the distribution is heavy-tailed (cold events are
more likely than predicted by the normal distribution) while the warm tail
of the distribution is light-tailed (warm events are less likely than predicted
by the normal distribution). The most significant departure from normal
is the warm tail in winter.
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Figure 6.5. The annual ACFs for temperature anomalies in Chicago and
Miami.
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Figure 6.6. The four panels show the observed ACFs for Miami for the four
seasons. In each panel the solid black line is the annual ACF, which is the
same in each panel, and is included for reference. The dotted line is the
observed ACF for that season. The dashed lines show the 95 per cent con-
fidence intervals around the observed estimate. We see strong seasonality
in the temperature memory, with stronger memory in summer and weaker
memory in other seasons.

Figure 6.6 shows the ACFs for Miami for all four seasons, with the annual
ACF. In this case there are large variations in the ACF from season to season.
In particular, there is much longer memory in summer.

6.4.1 The inherited properties of the index

We now ask: how do the statistical properties of the anomalies affect the final
index distribution? This is an important question, because the answer tells
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us which properties of the anomalies are most important to capture with
our models and, in fact, whether we need to care at all about capturing
the more complex aspects of temperature variability. In general, relating
the properties of the anomalies to the properties of the index is difficult.
However, for the simple case of a CAT index (or other linear separable
index) based on normally distributed temperatures there are some simple
results, which will be helpful in guiding our intuition and our choice between
models. Consider a CAT index x based on temperature T . The expectation
of the index E(x) is given by

E(x) =
Nd∑
i=1

E(Ti) (6.2)

In other words, the expectation of the index is simply the sum of the means
of the temperatures. Since the means of the temperatures in equation (6.1)
are fixed by the seasonal cycle, the properties of the anomalies described
above are entirely irrelevant in fixing the expectation of the index. This
means that, for calculating the expected value of a CAT index, and hence
the fair price for a linear swap based on such an index, we need consider only
the seasonal cycle. The same conclusion can be drawn for degree day indices
when there is no chance of the temperature crossing the baseline. The benefit
of using a daily model in these cases is that we are modelling the shape of the
seasonal cycle using data from both inside and outside the contract period,
and so may capture the seasonal mean index more accurately, especially for
short contracts.

We now consider the variance of the CAT index

V (x) = E((x− E(x))2 = E(x2) − (E(x))2 (6.3)

where

E(x2) = E

⎛
⎝( Nd∑

i=1

Ti

)2
⎞
⎠ (6.4)

= E

⎛
⎝ Nd∑

i=1

Nd∑
j=1

TiTj

⎞
⎠

=
Nd∑
i=1

Nd∑
j=1

E(TiTj)

=
Nd∑
i=1

Nd∑
j=1

cij + E(Ti)E(Tj)
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where cij is the covariance between the temperature on day i and the tem-
perature on day j. We see that the variance of the index is fixed by these
temperature covariances.

Using the expansion in terms of the seasonal cycle and anomalies given
by equation (6.1) gives

E(x2) =
Nd∑
i=1

Nd∑
j=1

E(TiTj) (6.5)

=
Nd∑
i=1

Nd∑
j=1

E((mi + siT
′
i )(mj + sjT

′
j))

=
Nd∑
i=1

Nd∑
j=1

mimj + sisjE(T ′
iT

′
j)

where E(T ′
iT

′
j) is the ACF. This now shows that the variance of the in-

dex is determined by the mean seasonal cycle, the seasonal cycle in the
variance, and the ACF of temperature anomalies. Since we have assumed
for this analysis that the temperatures are normally distributed, and we
know that the sum of normal distributions is always a normal distribution,
a CAT index will also be normally distributed. The index distribution is
thus fully specified by the expectation and standard deviation. This implies
that to capture the distribution for these indices we have to both model
the seasonal cycle and the ACF of temperature correctly. This motivates
us to focus on the ACF in the validation and comparison of our models
below.

We note that the physical interpretation of equation (6.5) is simple: if the
autocorrelation of the anomalies is high then the temperature will wander
away from the seasonal cycle for long periods. This can result in both large
and small values for the index, and the index standard deviation will be
high.

Our discussion above is based on the assumption that temperatures are
normally distributed. More generally, real temperatures are not exactly nor-
mally distributed (as we have seen), and this will lead to non-normal index
distributions, even for CAT indices. The behaviour of temperatures may
then not be completely specified by the mean, standard deviation and ACF.
In these cases an ideal daily model would do more than just capture the
seasonal cycle and the ACF, and would also capture the correct distribution
of daily temperature, and temperature dependences in time more complex
that those captured by linear correlations.



134 Valuing single contracts: daily modelling

6.5 Modelling the anomalies

We have seen that temperature anomalies may show complex seasonal and
non-normal behaviour. This means that complex models and modelling tech-
niques are needed to represent them. First, we consider transformations that
can render the daily temperature anomalies close to normally distributed in
almost all cases. Then we describe linear Gaussian parametric modelling of
the transformed anomalies. We will see that it works surprisingly well in
many cases. For those where it does not, we will consider non-parametric
modelling as an alternative. There are many other types of time series mod-
els we could have considered too, such as linear models with non-Gaussian
anomalies or non-linear parametric models. Evaluation of these models in
those cases where the linear parametric models do not work well is an area
of active research.

6.5.1 Transforming temperature anomalies

to a normal distribution

As we saw in section 6.4, temperature variability often shows a non-normal
distribution. This is generally hard to model. A convenient approach is to
transform the temperatures so that they are much closer to normal and then
apply a normal model. The disadvantage of such an approach is that the
model is not then being fitted in such a way as to maximise the likelihood
of the original data, although if the temperature anomalies are close to
normal, as they usually are, this probably does not matter. If the non-
normality is constant throughout the year, then a fixed transformation is
sufficient. However, in most cases the non-normality varies from season to
season (as we have seen above) and a seasonally varying transform needs to
be used. Ideally, one would use a parametric form such as the well-known
Box–Cox (Box and Cox, 1964) transformations. However, the non-normality
is generally sufficiently complex for such simple parametric transformations
not to work. A general non-parametric transform is described by Jewson and
Caballero (2003a), some results of which are shown in figure 6.7. We see that
the seasonally varying non-normality apparent in figure 6.4 has largely been
removed by this transformation. This means that we can now proceed to
model the transformed anomalies using Gaussian models. Simulations from
such models can then be transformed back to the correct distribution using
the inverse of the distribution transform.

For stations such as Chicago it may not be necessary to apply a dis-
tribution transform at all, and Gaussian time series models can be used
directly since the temperatures are already reasonably close to normally
distributed at all times of year. For stations such as Miami, however, it
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Figure 6.7. The four panels show QQ plots for temperature anomalies in
Miami for the four seasons, after having been transformed using the non-
parametric, seasonally varying transform described in the text. Relative to
figure 6.4, we see that most of the non-normality has been removed.

would be extremely inaccurate to apply a Gaussian model without using
such a transformation first.

6.5.2 Parametric modelling of temperature anomalies

Either temperature anomalies are close to Gaussian or we transform them
so that they are close to Gaussian, as described above. The challenge is then
to model the time dependences of the anomalies. The simplest discrete time
series model for a Gaussian random time series is

T ′
i = εi (6.6)

where εi is Gaussian white noise. Such a model was suggested in a weather
derivative context by Davis (2001). This model gives temperature anomalies
that are uncorrelated in time and normally distributed. Given the observed
autocorrelations of temperature anomalies and the importance of the ACF
in determining the index standard deviation, as shown by equation (6.5),
this model will clearly not do.

6.5.3 ARMA models

A more complex class of models are the ARMA (autoregressive moving
average) time series models of the form

φ(B)T ′
i = ψ(B)εi (6.7)
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where B is the backstep operator, defined such that

BT ′
i = T ′

i−1 (6.8)

and φ and ψ are polynomials of order p and q known as the autoregressive
(AR) and moving average (MA) polynomials.

They are given by

φ(x) = 1 −
p∑

i=1

φix
i (6.9)

and

ψ(x) = 1 +
q∑

i=1

ψix
i (6.10)

(where the two polynomials should have no roots outside the unit circle to
ensure stationarity and invertibility).

Using these definitions equation (6.7) can be expanded to give

(1 − φ1B + φ2B
2 + . . . + φpB

p)T ′
i = (1 + ψ1B + ψ2B

2 + . . . + ψqB
q)εi
(6.11)

and using the definition of B this gives

T ′
i − φ1T

′
i−1 − φ2T

′
i−2 − . . .− φpT

′
i−p = εi + ψ1εi−1 + ψ2εi−2 + . . . + ψqεi−q

(6.12)

or

T ′
i = φ1T

′
i−1 + φ2T

′
i−2 + . . . + φpT

′
i−p + εi + ψiεi−1 + ψ2εi−2 + . . . + ψqεi−q

(6.13)

In this last expression we can see that today’s temperature T ′
i is written as

a linear combination of temperatures over the previous p days, plus a linear
combination of noise terms over the previous q days.

By inverting the MA polynomial equation (6.7) can be rewritten as

ψ−1(B)φ(B)T ′
i = εi (6.14)

in which today’s temperature is given as a weighted sum of all previous
temperatures and a single random noise term (in other words, an infinite-
order AR model).

Alternatively, by inverting the AR polynomial equation (6.7) can be
rewritten as

T ′
i = ψ−1(B)φ(B)εi (6.15)
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in which today’s temperature is given as a weighted sum of all previous
random forcing terms (an infinite-order MA model).

The simplest examples of ARMA models are the ARMA(1,0) or AR(1)
model, which is

T ′
i = φ1T

′
i−1 + εi (6.16)

and the ARMA(0,1), or MA(1) model, which is

T ′
i = εi + ψ1εi−1 (6.17)

Use of the AR(1) model for modelling temperatures for weather deriva-
tive pricing has been suggested by a number of authors, including Dischel
(1998a), Alaton et al. (2002), Cao and Wei (2000) and Torro et al. (2001).
Dornier and Querel (2000), Moreno (2000) and Moreno and Roustant (2002)
suggest more general versions of the ARMA model.

ARMA models can capture autocorrelation of time series in a very flexible
way. At a mathematical level one can prove that any stationary ACF can
be captured to any desired level of accuracy by an ARMA model, given
enough p and q terms. However, at a practical level this is not a useful
result: for many ACF shapes the number of parameters required by the
model is extremely large, and the parameters cannot be estimated reliably
with available data.

We show the performance of some simple AR models for temperature
anomaly time series. The models are fitted using the well-known Yule–
Walker equations and we validate them by considering the ACF, the resid-
uals and the index distribution. The residuals of a parametric time series
model such as (6.7) are calculated as follows:

� the parameters of the model, including the noise variance, are fitted;
� the model is used to make one-step, in-sample forecasts with no innovations;
� the errors in these forecasts are calculated: these are the residuals.

The distribution of these residuals should then, for internal consistency
within the model, agree with the distribution of the innovations (the ε

terms). This can be evaluated using a QQ plot. If these distributions are not
consistent, this shows that there is an inconsistency in the form of the model.

Figure 6.8 shows the observed and modelled ACF using four simple AR
models. The modelled ACFs severely underestimate the observed in three
out of the four cases. Figure 6.9 shows the residuals: we see that the residual
distributions do not agree well with the fitted noise in any of the four cases.
Finally, figure 6.10 shows the index distributions for an average temperature
index for this location from historical data and the four models.
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Figure 6.8. The observed (solid line) and modelled (dashed line) ACFs from
ARMA models applied to Chicago daily temperatures.
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Figure 6.9. The residuals from the ARMA models shown in figure 6.8.

We can see that in three of the four cases the modelled distributions are
steeper than the historical, indicating lower variance – exactly as would be
expected from the underestimation of the ACF shown in figure 6.8 together
with equation (6.5).
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Figure 6.10. QQ plots of indices derived from the ARMA models shown in
figure 6.8.

It is clear from these examples that the ARMA models do not model daily
temperatures well. The best of the models considered is the ARMA(2,2)
model, which gives a good fit for the ACF but at best only a reasonable
fit for the residuals (our tests are based on over 16,000 days of data, so we
would expect almost exactly a straight line if the model were good). In three
of the ARMA models the errors show up clearly in the index distribution
and would cause significant mis-pricing of weather contracts. Since any ACF
can be represented if we use enough AR parameters, it would seem sensible
to try more parameters. This turns out not to work in practice. Long before
we get close to getting good results for both the residuals and the ACF, the
number of parameters exceeds the number that can be reliably estimated.

6.5.4 ARFIMA models

Having shown that the ARMA models do not do a particularly good job
in modelling daily temperatures, we now discuss another class of models,
known as ARFIMA (autoregressive fractionally integrated moving average),
which performs somewhat better. The application of these models to daily
temperature was first described by Caballero et al. (2002). Independently,
Brody et al. (2002) have described the use of a continuous analogue to the
ARFIMA(0,d,1) model.
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The ARFIMA models are specified by

φ(B)(1 −B)dT ′
i = ψ(B)εi (6.18)

where (1 −B)d is to be interpreted as an infinite sum of powers of B

(1 −B)d =
∞∑
k=0

(
d

k

)
(−1)kBk (6.19)

where
(
d

k

)
is a binomial coefficient. There are certain conditions on φ and

ψ (see Beran, 1994).
This model is an extension of the ARMA model, and is stationary for

0 ≤ d < 0.5. For d = 0 it is the same as the ARMA model. One interpretation
of the ARFIMA model is that before we apply an ARMA model we difference
the temperatures a fractional number of times d, where the meaning of
fractional differencing is given by equation (6.19). Another interpretation is
that ARFIMA is an ARMA model with correlated innovations εi.

The feature of ARFIMA models that makes them of use for the modelling
of daily temperature anomalies is that the ACF decays very slowly at long
lead times, which is exactly what we saw in the observations in figure 6.5.

As an example, we fit an ARFIMA(1,d,0) model to Chicago temperatures.
The ACF of observations and the model are shown in figure 6.11; we see that
the model captures the slowly decaying ACF reasonably well. The residuals
are shown in figure 6.12; there is very good agreement between the residual
distribution and the innovations. The results are better than those from
the ARMA(2,2) model, even though there are only three parameters rather
than five. Finally, we show an index distribution derived from the ARFIMA
model in figure 6.13, which shows good agreement.

Our experience suggests that the ARFIMA model works well for many sta-
tions and, as such, forms a very reasonable standard model for the modelling
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Figure 6.11. The observed and modelled ACF for Chicago temperature
anomalies using an ARFIMA model.
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Figure 6.12. The residuals for the ARFIMA model shown in figure 6.11.
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Figure 6.13. QQ plots of indices derived from the ARFIMA model shown
in figure 6.8.

of temperature anomaly time series. However, for certain situations, such as
Miami, we have seen that the ACF varies significantly between seasons. This
cannot be captured by the ARMA or the ARFIMA models, and, indeed, us-
ing either model for Miami would give rather inaccurate results, since the
models would try to fit all seasons well and end up performing badly for all
of them.

6.5.5 AROMA and SAROMA models

Another class of models that appear to capture the slow decay of the ACF
of temperature are the AROMA (autoregressive on moving average) and
SAROMA (seasonal AROMA) models of Jewson and Caballero (2003a). The
advantage of these models over the ARFIMA models is that they include
the case where the ACF varies seasonally too. We have seen that the slow
decay of the observed ACF of temperature could potentially be modelled
by an ARMA model with many parameters but that many of the param-
eters would be unidentifiable due to over-fitting. One possible solution to
this problem would be to put restrictions on the parameter space. One can
think of many such restrictions, such as setting some parameters to zero or
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Table 6.1. Eight US weather stations, with the
optimum lengths of the four moving averages, as

selected automatically as part of the fitting procedure
for the AROMA model.

Location m1 m2 m3 m4

Chicago Midway 1 2 3 17
Miami 1 2 4 28
Los Angeles 1 2 9 33
Boston 1 2 5 32
New York Central Park 1 2 4 18
Charleston 1 2 4 22
Detroit 1 2 3 24
Atlanta 1 2 7 27

requiring some subsets of the parameters to be equal. Since it usually not
possible to base such restrictions on physical mechanisms they inevitably be-
come somewhat arbitrary. The class of AROMA models is one such attempt
to impose restrictions on the parameters of AR models with many lags; the
choice of restrictions is still arbitrary, but the model is easy to interpret.

The AROMA(m1,m2, . . . ,mM ) model is specified by

T ′
i =

M∑
n=1

αn

i−mn∑
j=i−1

T ′
j (6.20)

In other words, the temperature on day i is written as a weighted sum of
M running means of previous temperatures. The first running mean covers
days i− 1, i− 2, . . . i−m1, the second covers days i− 1, i− 2, . . . , i−m2,
and so on. Optimum values for the mi when M is set to 4 are given for a
number of US locations in table 6.1.

Figure 6.14 shows the observed ACF for Chicago, along with the simulated
ACF from the AROMA model and the ARFIMA model. We see that the
AROMA model simulates the observed ACF as well as the ARFIMA model.

Extension to SAROMA

The advantage of the AROMA model over the ARFIMA model is that it
can be readily extended to include seasonality in the ACF. This is achieved
by making the coefficients αi vary slowly from season to season.

Figure 6.15 shows the seasonally varying coefficients of a SAROMA model
applied to Miami. We see that these coefficients vary significantly from sea-
son to season.
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Figure 6.14. The observed (solid line) and modelled ACFs for Chicago. The
modelled ACFs were produced using the ARFIMA model (dotted lines) and
the AROMA model (circles). We see that both models give a good fit to
the observed ACF.
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Figure 6.15. The seasonal variation of the four regression parameters for the
SAROMA model for Miami. The solid lines show the estimated parameter
values, while the dotted lines show the 95 per cent error bounds. We see
that each of the parameters shows a strong seasonal cycle, corresponding
to the strong seasonal cycle seen in the observed and modelled ACFs.

Figure 6.16 shows the seasonal ACFs for Miami from observations and
from the SAROMA model. We can see that the SAROMA model does rea-
sonably well in capturing the seasonal variation in the ACF.

6.6 Non-parametric daily modelling

We have described daily models that do a good job of modelling temperature
in many cases, but in some cases these models fail, particularly for stations
that show strong non-normality and seasonality. We now present a non-
parametric model that can be used in these difficult cases.
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Figure 6.16. The four panels show observed and modelled ACFs for Miami
for the four seasons. The observed data is the same as in figure 6.6. In each
panel the dotted line is the annual ACF, which is included for reference.
The solid line is the observed ACF for that season, and the circles are the
modelled ACF for that season. We see that the observed and modelled
ACFs show good agreement, and that the model captures the seasonality
well. Confidence limits are omitted for clarity, but it seems likely that
the differences between the observed and modelled ACFs can probably be
explained by sampling errors.

6.6.1 Sliding window resampling

Consider again a one-week contract. We have argued that standard index
modelling throws away 98 per cent of the historical data. ARFIMA mod-
elling, on the other hand, uses all the data. In some cases this may be
beneficial but in others it may be inappropriate, especially when there is
strong seasonality and the summer data has a very different distribution
from the winter data. SAROMA modelling is an improvement: because the
parameters vary seasonally, only data that is reasonably local in terms of
the time of year is used. However, if the distribution or ACF is chang-
ing very rapidly with season then neither the distribution transform of sec-
tion 6.5.1 nor the SAROMA model can capture that. As an alternative,
the sliding window resampling method (described in Jewson and Caballero,
2003a) allows a flexible way to use exactly the data desired. It works as
follows:

� the methods described above are used to separate the seasonal cycle and the
anomalies;

� plots of the seasonal variation in the skewness, kurtosis and ACF are used to
determine the ‘relevant data period’ – the period during which the distribution
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and ACF of the data are reasonably close to the distribution and ACF during the
contract period;

� a window of the same length as the contract is moved through all the possible
positions within the relevant data period;

� for each position of the window, an index value is calculated by adding anomalies
from within the window to the seasonal cycle for the contract period;

� these index values are used to define the estimate of the index distribution.

It must be emphasised that the very many historical index values calculated
using this method are not independent. Nevertheless, they can be used to
create an estimate of the index distribution, since they come in groups from
different years, and the different years are independent.

The advantages of this method are that it allows the user to control
exactly how much data is used and from what part of the year, it can
allow the use of much more data than index modelling, it automatically
accounts for seasonality and non-normality in the temperature distribution
and seasonality in the ACF, and it is extremely simple to implement. It will
tend to extrapolate and smooth the index distribution more than the basic
index method, but in very realistic ways (any extrapolation is based on a
real period of days). The main disadvantage comes if we try and combine
this method with forecasts in a sophisticated way.

6.7 The use of daily models

When should daily models be used to price contracts in preference to the
burn or index models of chapters 3 and 4? This is a very difficult question
to answer. The only clear answer we can give is that, in cases where the
daily models clearly do not work for some reason (i.e. the seasonal ACFs or
seasonal distributions from the model do not agree well with reality), they
should not be used. In cases where they work very well (all the relevant
statistics have been thoroughly checked) they can be used confidently, and
the results given more weight than the results of the index-based approaches.
For cases in between these two extremes the most sensible approach is prob-
ably to use a combination of index and daily models.

6.8 The potential accuracy of daily models versus index models

Finally, we investigate the question of the potential accuracy of daily mod-
els. As discussed above, high potential accuracy, combined with a realistic
model, gives accurate results. The realism of the model can be judged us-
ing the methods described above: the comparison of distributions and ACFs
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Figure 6.17. The potential accuracy for an index model and a daily model
applied to a thirty-day (top two panels) and a ninety-day contract (bottom
two panels).

with reality. Potential accuracy is calculated by fitting a model to its own
simulated output in an imitation of the way that the model is fitted to his-
torical data. If this is done many times one can build up a picture of the
statistics of the accuracy of the model, under the assumption that the model
is perfect.

The potential accuracy of daily modelling in this way has been investi-
gated in Jewson (2004h). Figure 6.17 shows the potential accuracy of a daily
model and an index model for a thirty-day and a ninety-day contract. We see
that the potential accuracy of the daily model is higher in both cases, but the
difference is greater for the thirty-day contract. The reason for this is that the
potential accuracy of the daily model depends on the amount of data avail-
able relative to the length of the contract. For a thirty-day contract we have
twelve times as much data as the length of the contract, while for the ninety-
day contract we only have four times as much. For a one-year contract, the
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potential accuracy of a daily model is therefore the same as that of an index
model.

6.9 Further reading

A standard reference on the statistical modelling of time series, covering
the ARMA model but not the ARFIMA model, is Box and Jenkins (1970).
A standard reference on long-memory modelling of time series, including
the ARFIMA model of Granger and Joyeux (1980), is Beran (1994). Other
useful references are Brockwell and Davis (1999) and Davison and Hinkley
(1997); the latter has a section on non-parametric time series modelling.

There has been interest in the statistical modelling of daily temperatures
for many years for use in crop growth simulation models. Models developed
for this purpose are reviewed by Wilks and Wilby (1999). A discussion of
the importance of using the correct frequency when deseasonalising daily
temperatures is given in Villani et al. (2003).

Finally, we note that a shorter discussion of some of the issues presented
in this chapter is given in Brix et al. (2002).
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Modelling portfolios

Up until now we have looked exclusively at individual weather contracts,
and how to model and price them on a stand-alone basis. However, we
saw in chapter 3 that, from a speculator’s point of view, individual weather
contracts are very risky investments. For swaps there is around a 50 per cent
chance of losing money while for short options there is typically a 20 per cent
to 40 per cent chance, depending on the location of the strike. The addition
of risk loading can make these risks a little less severe, but these are still
worse risks than even the lowest-rated junk bonds.

There are two ways that speculators can overcome this problem and use
weather derivatives to have a favourable impact on their overall levels of risk
and return. The first is to view the weather derivative business as part of
a larger enterprise. Although the weather business on its own might have a
large risk relative to return, it could be that the marginal contribution to
the total risk and return of the whole business makes it a good investment.
This is possible because of the lack of correlation between weather events
and other forms of investment. For instance, an insurance company that
writes weather derivatives may value them because they are uncorrelated
with the other forms of insurance being written; a bank that writes weather
derivatives may value them because they are uncorrelated with most of the
other trading the bank is doing; and a hedge fund that invests in weather
derivatives may value them because they are uncorrelated with the other
investments the fund holds.

The second way that organisations can build a reasonable business from
writing weather contracts is by viewing weather as a stand-alone business,
and building a portfolio of weather contracts that is sufficiently well diversi-
fied or hedged that the risk/return profile of that part of the business alone
justifies it as a reasonable investment.

148
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There are, then, a number of different strategies a speculator can follow,
including the following.

1. Originating primary market end-user deals, passing off the risk immediately to
other speculators in the secondary market, and keeping some of the premium as
profit (known as a back-to-back strategy).

2. Trading swaps and options in such a way that the total portfolio risk is very low
because of hedging effects.

3. Building a large, diversified book of contracts on many different locations, vari-
ables and time periods.

4. Attempting to price using forecasts and historical data more accurately than the
other traders in the secondary market, and trading on that basis.

5. Trading weather with correlated gas, electricity or emissions contracts in such a
way that the total risk is very low.

In this chapter and the next we consider the weather derivatives trading
activities of a business as a stand-alone venture, and consider the behaviour,
in terms of risk and return, of a portfolio of weather contracts.

Portfolio-based analysis changes many things about the way we view
weather contracts: in particular, it changes the way that risk loading is
calculated, and it changes which contracts we decide to trade. It also tells
us what the sources of risk are within our portfolio, and gives us ways of
reducing that risk.

In this chapter we focus mainly on the modelling issues related to port-
folios, while in the next we focus on portfolio management.

7.1 Portfolios, diversification and hedging

Before we delve into the details of how to model a weather portfolio we will
first review the basic mathematical principles behind portfolios, diversifica-
tion and hedging. Much of this can be introduced using the equations for
the mean and variance of the sum of two random variables.

mean(a + b) = mean(a) + mean(b) (7.1)

and

var(a + b) = var(a) + var(b) + 2cov(a, b)

or

µa+b = µa + µb (7.2)

σ2
a+b = σ2

a + σ2
b + 2ρσaσb
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where a and b are random variables with means and standard deviations of
µa, µb, σa and σb, and ρ is the linear correlation between them.

We will come back to these equations several times during this chapter.
We start by considering a to be the pay-offs from a portfolio, and b to be the
pay-offs of a contract to be added to the portfolio. We consider the variance
to be a measure of risk, and the mean to be a measure of the (expected)
return. We can rearrange the above equations to emphasise the changes in
the portfolio when contract b is added.

change in mean = µa+b − µa = µb (7.3)

and

change in variance = σ2
a+b − σ2

a = σ2
b + 2ρσaσb

The equations show that when we add the contract b to the portfolio the
return increases by the return of the new contract, while the risk changes
through the effects of two terms. The first term (term A, σ2

b ) shows that
the variance increases with the variance of the added contract. This term
is always positive. In the diversified case, where the contract and the port-
folio are uncorrelated, this is the only term, since the second term is zero.
The second term (term B, 2ρσaσb) encapsulates the interaction between
the risk in the contract and the risk in the portfolio. This term can be
either positive or negative, depending on whether the contract and the
portfolio are positively or negatively correlated. This is the term that can
be used to create hedged portfolios, with even less risk than diversified
portfolios.

We can compare the sizes of these two terms. If term A is greater than
term B, then the overall effect of adding contract A to the portfolio is to in-
crease the risk. If, however, term A is less than term B, then the overall effect
is to reduce the risk in the portfolio. This is unusual, and can happen only
when the correlation between the contract and the portfolio is sufficiently
negative. In particular, for the total variance to reduce, the correlation has
to obey

ρ < − σb
2σa

(7.4)

In other words, the larger the size of the new contract relative to the size
of the portfolio (where size is measured in terms of the standard devia-
tion of pay-offs), the more negatively correlated it has to be to reduce
the overall risk. Very small contracts need to be only very slightly nega-
tively correlated to reduce the risk, but will reduce the risk only by a small
amount.



Portfolios, diversification and hedging 151

If we apply equation (7.2) contract by contract to all the contracts in the
portfolio we find that

µtotal =
Nc∑
i=1

µi (7.5)

where Nc is the number of contracts, and

σ2
total =

Nc∑
i=1

Nc∑
j=1

cij (7.6)

=
Nc∑
i=1

Nc∑
j=1

ρijσiσj

=
Nc∑
i=1

Nc∑
j �=i

ρijσiσj +
Nc∑
i=1

σ2
i

The double sums run over all pairs of contracts in the portfolio. The terms cij
form the covariance matrix, and the terms ρij form the correlation matrix.
What we see is that the total return of the portfolio is the sum of the
returns on the individual contracts while the total variance of the portfolio
pay-off is given by the sum of all the terms in the covariance matrix: the
diagonal terms are the variances of each individual contract, while the off-
diagonal terms are the covariances between contracts. If all the correlations
between contracts are zero, then the correlation matrix is diagonal (ρij =
ρiiδij) and the portfolio is diversified. We can see clearly in these equations
how the interactions between contracts in a portfolio contribute to creating
the total risk, while the total return does not depend on interactions between
contracts at all.

Let us interpret these ideas in greater detail. We will now switch to mea-
suring risk using the standard deviation of the profit rather than the vari-
ance. Variance and standard deviation are not necessarily the best risk mea-
sures in practice but are useful for simple examples because the mathematics
is very easy. The mathematics of standard deviations is slightly more com-
plicated than that for variances, but we prefer to use the standard deviation
because it has the same units as the pay-off. We have already seen other
ways of measuring risk in section 5.13.2, and will discuss the issue further
in chapter 8.

First, let us consider building a portfolio with a large number of identical
contracts. As the portfolio gets larger, how do the expectation and standard
deviation of the profits change? We have Nc contracts in our portfolio, each
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with expected profit µ and with standard deviation of profit σ. Because the
contracts are identical the correlation matrix is full of 1s. Equations (7.5)
and (7.6) show us that the expected profit of the portfolio increases as Ncµ

and the standard deviation of the profit increases as Ncσ. The ratio of these
two, which is the simplest way to trade off risk against return, is a constant
value of µ

σ . There is no diversification effect whatsoever: increasing the size
of the portfolio has no impact on this ratio and the whole portfolio behaves
like one large contract.

Secondly, let us consider building a portfolio with a large number of inde-
pendent contracts. How do the risk and return increase in this portfolio? The
return is the same as in the previous example and increases as Ncµ. How-
ever, all the off-diagonal elements in the correlation matrix are now zero
and the risk increases much more slowly than before, as

√
Ncσ. The ratio

of return over risk is now given by
√
Nc

µ
σ , which increases as Nc increases.

This shows that, the bigger the portfolio, the more diversified it becomes,
and the better it becomes as an investment. This is the principle behind
most of investment theory, and explains why there is a natural economy of
scale for insurance and reinsurance companies that sell many uncorrelated
insurance contracts.

Finally, let us consider building a portfolio with a large number of con-
tracts that have been chosen so that the risk in the various contracts cancels
out completely. One way to do this would be to trade contracts in pairs.
Within each pair, identical contracts are bought and sold. Assuming the
returns are equal, the return of this portfolio is given by the same equa-
tion as the other two cases (Ncµ), while the risk is now zero for all sizes of
the portfolio. The contracts in the portfolio are perfect mutual hedges. The
risk/return ratio goes to infinity.

These are three limiting cases that illustrate how diversification and hedg-
ing work in portfolios. Shares in different companies typically have correla-
tions of between zero and one, and hence portfolios of shares lie somewhere
between the first two cases: completely undiversified and diversified. The
portfolios of insurance contracts held by insurance companies are typically
much closer to the second, diversified, case. Finally, the portfolios of deriva-
tives and underlying instruments held in banks are much closer to the third
example, with almost no risk (at least in principle).

How weather derivative portfolios behave depends entirely on how they
are managed. A (foolish) company that decides to issue only one type of
contract, in one direction, will be completely undiversified. More realistically,
a company that issues only long options on various locations, variables and
time periods, as an insurance company might, would be more diversified. A
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company that trades both sides of contracts, and concentrates on reducing
its own risk, could be quite well hedged; and, finally, a company that trades
only back to back will end up holding no risk at all (bar some credit risk).

7.2 Index dependences

The correlations between the pay-offs of different weather contracts arise
because of statistical dependences between the indices that underly the con-
tracts, and these dependences arise because of dependences between the
fundamental weather variables – such as temperature and precipitation – at
different times and different locations. Temperature is correlated for a few
days in time (if it is warm today, it will probably be warm tomorrow) and
for many hundreds of kilometres in space (if it is a warm summer in London,
it is probably also a warm summer in Paris).

In figure 7.1 we show correlations and lag correlations between Chicago
and other locations in the United States for daily temperatures. We see
patterns over large areas in space, and decaying in time. These correla-
tions in temperature lead to similar patterns of correlation for HDDs and
CDDs.

As well as correlations between the same index across different locations,
there are significant correlations between different indices at the same lo-
cation, and there may be correlations between different indices at different
locations. Indices that only partially overlap in time will also be correlated,
and indices that are adjacent in time but do not overlap are also often cor-
related.

As some simple examples, we show the correlations for winter HDD indices
between US cities in table 7.1, between London Heathrow and various US
locations in table 7.2 and between various European locations in table 7.3.
These correlations were estimated using thirty years of data.

7.2.1 Relating index and temperature correlations

Relating the correlations between fundamental weather variables to correla-
tions between indices is, in general, very difficult. This is partly because there
are a number of different aspects to the correlations between the weather
variables: all weather variables are correlated because of the seasonal cycle,
but this is not the correlation that creates correlations between annual in-
dices; rather, it is the differences from the seasonal cycle (i.e. the anomalies)
at different locations that create index-to-index relationships. The non-linear
nature of many index definitions also affects the correlation between indices.



154 Modelling portfolios

Table 7.1. Winter HDD correlations between a number of US locations.

NewYork New York

Location Atlanta Chicago Cincinatti Houston Miami CP LGA Philadelphia

Atlanta 1.00 0.60 0.78 0.82 0.73 0.71 0.72 0.75

Chicago 0.60 1.00 0.88 0.49 0.50 0.79 0.82 0.85

Cincinatti 0.78 0.88 1.00 0.62 0.61 0.88 0.89 0.92

Houston 0.82 0.49 0.62 1.00 0.56 0.52 0.57 0.56

Miami 0.73 0.50 0.61 0.56 1.00 0.52 0.57 0.64

New York 0.71 0.79 0.88 0.52 0.52 1.00 0.95 0.93

CP

New York 0.72 0.82 0.89 0.57 0.57 0.95 1.00 0.95

LGA

Philadelphia 0.75 0.85 0.92 0.56 0.64 0.93 0.95 1.00

Figure 7.1. Correlations between Chicago temperature and temperature at
other locations in the United States at different daily lags. Positive cor-
relations are shown with solid lines and negative correlations with dashed
lines. The zero correlation line has been omitted and the contours show
correlations on intervals of 0.1.
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Table 7.2. Winter HDD correlations between
London and a number of US locations.

Heathrow 1.00
Atlanta 0.38
Chicago 0.60
Cincinatti 0.47
Houston 0.28
Miami 0.50
New York CP 0.44
New York LGA 0.48
Philadelphia 0.54

Table 7.3. Winter HDD correlations between a number
of European locations.

Location Amsterdam Essen Heathrow Paris Rome Stockholm

Amsterdam 1.00 0.97 0.93 0.87 0.22 0.83
Essen 0.97 1.00 0.91 0.91 0.28 0.83
Heathrow 0.93 0.91 1.00 0.87 0.21 0.77
Paris 0.87 0.91 0.87 1.00 0.46 0.72
Rome 0.22 0.28 0.21 0.46 1.00 0.25
Stockholm 0.83 0.83 0.77 0.72 0.25 1.00

However, in the simple case of two CAT indices we can break the index cor-
relation down very simply as follows. The covariance between indices x and
y is defined as E(xy) − E(x)E(y). Plugging the definitions of the two indices
into E(xy) we get

E(xy) = E

⎛
⎝ Nd∑

i=1

Ti

Md∑
j=1

Uj

⎞
⎠ (7.7)

where Ti is the temperature on day i of the first contract and Uj is the
temperature on day j of the second contract. Rearranging the sums gives

E(xy) = E

⎛
⎝ Nd∑

i=1

Md∑
j=1

TiUj

⎞
⎠ (7.8)

=
Nd∑
i=1

Md∑
j=1

E(TiUj)

=
Nd∑
i=1

Md∑
j=1

(cij + E(Ti)E(Uj))
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where cij is the cross-covariance matrix between temperature at the two
locations. What we see is that the covariance (and hence the correlation)
between these two indices depends on the cross-covariances between the
daily variables. This equation is a general case of equation (6.5), which
showed the relationship between the autocorrelation function of the variable
and the variance of a single index. Setting U = T in the above expression
recovers that equation. To interpret equation (7.8) in words: when the indices
are aggregates over time, a relationship whereby temperature in Chicago is
correlated with temperature in New York a day later (such as we see in
figure 7.1) contributes to the correlation between the indices.

7.2.2 Relating index and pay-off correlations

Relating correlations between indices to correlations between pay-offs is easy
in some cases. Two unlimited swaps will have pay-offs that are correlated
in exactly the same way as the underlying indices. The pay-offs from pairs
of call and put options will have different linear correlations from their
underlyings, but the rank correlation will stay the same because applying
the pay-off function does not change the ordering of outcomes. However,
no simple relation exists for the pay-off correlations between straddles and
strangles and other contracts.

We have made some progress in deriving closed-form expressions for the
correlations between the pay-offs of weather contracts; this is described
in Jewson (2004b).

7.3 Burn analysis for portfolios

We now address the question of how to calculate the distribution of the
pay-offs of a weather portfolio, and how to calculate the risk and return.

When we were looking at methods for estimating the pay-off distribu-
tion for a single weather derivative contract the simplest method presented
was burn analysis. This is also the simplest method for analysing portfo-
lios. The historical data for all the indices underlying the contracts in a
portfolio is converted to index values (possibly with detrending of either
the daily temperature or the index values), and these indices are converted
into historical pay-offs. Using thirty years of data will give thirty histor-
ical pay-offs for the whole portfolio. The time lags between the contract
settlement periods must be translated into appropriate time lags in the his-
torical data when the pay-offs of the individual contracts are aggregated to
make the pay-offs of the portfolio. For instance, if a two-contract portfolio
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consists of a winter contract and a summer contract for the following sum-
mer, then the historical indices for the two contracts must be aligned in
such a way that the summers follow winters. The thirty historical pay-
off values for the portfolio can then be used to estimate the distribution
of the pay-offs for the portfolio and various parameters that summarise
that distribution, such as the expectation and the standard deviation of the
pay-offs.

As with burn analysis for single contracts, portfolio burn has certain ad-
vantages and disadvantages relative to more complex modelling methods.
The advantages are that it is simple to implement and involves assump-
tions only at the detrending stage. The biggest disadvantage of burn anal-
ysis for portfolios is with respect to the estimation of extreme outcomes.
Thirty years of data will give us enough data only to estimate the probabil-
ity of a one-in-thirty-year extreme event. This is also a problem for single
contract analysis, but much less so: most weather derivatives are capped,
and so we know what the largest extreme outcome will be and can typi-
cally make a reasonable estimate of the probability of it from the available
data. For a portfolio, the most extreme outcome would occur when all the
contracts hit their limits at once (i.e. all give maximum profit or all give
maximum loss); this is very unlikely to have happened in the historical
record.

Since financial institutions usually like to estimate their extreme risks at
much smaller probability levels (higher risks) than one in thirty (often up
to levels of one in five hundred) it becomes essential to go beyond burn
analysis.

Extended burn analysis
In the portfolio case there is an extension to burn analysis, which we will
call extended burn analysis, that, in some cases, goes some way towards
providing information about the extremes. Extended burn analysis involves
running a standard burn analysis and then fitting a normal distribution
to the portfolio pay-offs. The fitted distribution then gives probabilities of
profit and loss at any required probability level. This method works, how-
ever, only if the pay-off distribution really is normally distributed, or close
to normally distributed. This is extremely unlikely to be the case for the
following reasons:

� even in a situation where a portfolio consists of independent and identically sized
option contracts, the convergence to a normal distribution is fairly slow because of
the non-normality of the option pay-offs (see Jewson, 2003g, for some numerical
tests we have performed on this case);
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� most real weather portfolios are very unbalanced in terms of the sizes of the
contracts, and the portfolio distribution is often driven by a small number of such
contracts;

� there are certain situations in which the dynamics of trading encourage the distri-
bution of portfolio pay-offs to become non-normal (in particular, risk management
using only the expectation and VaR).

We conclude that extended burn analysis is not a useful practical tool for
the modelling of extreme loss quantiles of real weather portfolios, except in
very unusual circumstances.

7.4 Modelling the multivariate index distribution

We now consider how the index modelling methodology, described for single
contracts in chapter 4, can be extended to a portfolio. The added complexity
is that, as we saw in section 7.2, the indices for the contracts in a portfolio
may well be correlated. We have to take this into account: not doing so
would be acceptable if we were interested only in the expected pay-off for
the portfolio, but not if we are interested in the distribution, or the standard
deviation, of pay-offs. How, then, to model the correlations between indices?
We start by considering the special case in which all the indices within a
portfolio can be assumed to be normally distributed.

7.4.1 Normally distributed indices

In this case, modelling the portfolio consists of the following steps.

1. Estimate the expectation and standard deviation for each index in the portfolio.
2. Estimate the linear correlation matrix between these indices.
3. Simulate, for example, 100,000 years of surrogate data that captures these cor-

relations using standard simulation methods.

By using 100,000 years of simulations (or more) we can, hopefully, create
extreme scenarios in which many of the contracts hit their downside limits
at once. If it is crucial to capture the absolute worst-case scenario, then the
number of simulations should be increased until there are a few instances
where all contracts hit their limits. This might entail a vast number of
simulations for large portfolios.

The simulation methodology used in step 3 can work as follows. We write
the historical index values for the contracts in the portfolio in a single ma-
trix X with dimensions n (number of contracts) by t (number of years).
Removing the mean gives us X ′. We imagine we can factorise this matrix
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into the form

X ′ = ABt (7.9)

where A is an n by k matrix (of k patterns across the various indices), B is a
t by k matrix (of k time series that correspond to each of the patterns) and k

is the rank of X ′ (the number of independent rows or columns). We also add
the constraint that BtB = I (i.e. that the time series in B are orthogonal),
which means that X ′X ′t = AAt. Is this factorisation actually possible? In
fact, there are an infinite number of ways of doing this factorisation, as can
be seen by counting the number of equations and the number of unknowns.
Having found any one of these ways, we can simulate surrogate X ′’s, which
will have the correct covariance matrix, by replacing the matrix B with
normally distributed random numbers.

To see that the covariance matrix of the simulated indices is correct, let
the simulated values be X̂ ′, where

X̂ ′ = AB̂t (7.10)

where the time dimension of X̂ ′ and B̂ is as long as desired (e.g. 100,000).
The covariance matrix of the simulated data X̂ ′X̂ ′t is given by

X̂ ′X̂ ′t = AB̂tB̂At (7.11)

= AAt

= X ′X ′t

and we see that the simulated data has the same covariance matrix as the
original data. The reason this works is that the factorisation in equation (7.9)
splits X ′ into the index-to-index correlation information in A (which we want
to keep) and the temporal correlation information in B (which we can ignore
because we are treating years as independent).

Of the infinite number of ways of factorising a given matrix X ′, only two
seem to be in common use: Choleski factorisation, in which the equations
are made uniquely solvable by setting as much of A to zero as possible, and
singular value decomposition, in which the equations are made uniquely
solvable by adding the extra constraint that AtA = I.

In cases where one or more of the index distributions are not normally
distributed the method described above does not work, and so it is not
really useful in practice except in special cases. There are, however, two
generalisations that extend the method to the cases we are interested in.
These methods are rank correlations and copulas.
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7.4.2 Rank correlations

Rank correlation (also known as Spearman’s rank order coefficient or
Spearman correlation) is an alternative to linear correlation for measuring
dependence. It is more appropriate than linear correlation when the vari-
ables being considered have non-normal distributions. In the normal dis-
tribution case, rank and linear correlations are equivalent (up to a simple
transformation) and have a range from −1 to 1. In the non-normal case the
range of possible values of linear correlations may be reduced, and this then
makes it unhelpful to use linear correlation to measure dependence. Rank
correlations, on the other hand, have a range from −1 to 1 whatever the
distributions being considered. As an example consider y = ex, where x is
normally distributed. This fixes y to be log-normally distributed. Clearly, y
is totally dependent on x, but the linear correlation is only 0.76. The rank
correlation, however, is 1. One way of defining rank correlation is as the lin-
ear correlation of the ranks of the data. It is obvious from this definition why
rank correlation works for all distributions: the actual values of the data are
ignored, and only the ordering matters. The actual values can be adjusted to
change the distribution, but as long as the rank ordering remains the same
the rank correlation is unchanged.

There is a simple simulation method for use with rank correlations that
allows us to simulate indices with whatever distributions we require.

1. Transform the historical values of each index to a normal distribution using a
combination of the modelled CDF for that index and the inverse of the CDF for
the standard normal distribution.

2. Simulate from the resulting multivariate normal distribution (e.g. using the
method given above in section 7.4.1).

3. Transform the simulated values back to the correct marginal distributions using
the CDF for the standard normal distribution and the inverse CDF for the index.

Why does this work? Step 1 will not affect the rank correlations, since it
does not affect the rank ordering of the data. In step 2 we simulate linear
correlations; but for a multivariate normal distribution there is a one-to-
one relationship between linear and rank correlations, and so we are also
simulating the right rank correlations. In step 3 we ensure that the marginal
distributions are correct without changing the simulated rank correlations.

This method can be simplified further, since there is a known algebraic
relationship between rank and linear correlation values for multivariate nor-
mal distributions, given by

ρrank =
6
π

arcsin
(ρlinear

2

)
(7.12)
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Using this, the first step can be simplified, and the method becomes:

1. Calculate the rank correlations and convert them to linear correlations using
equation (7.12).

2. Simulate a multivariate normal distribution with these linear correlations.
3. Transform the simulated values back to the correct marginal distributions.

7.4.3 Copulas

Rank correlation provides a useful way of modelling dependences between
indices but does not completely specify the possible structure of that depen-
dence. For instance, two pairs of indices could have the same rank correla-
tions but a different dependence structure in detail.

One way to give a complete specification is by using a copula, which is
the multivariate distribution of the indices once they have been transformed
to uniform distributions using their CDFs. By using the rank correlation
simulation method we are actually making an ad hoc choice of one partic-
ular copula (the Gaussian copula), whereas, in fact, another copula could
– in theory – be a better representation of the observed relationships. This
is, however, rather a technical point: there is typically not enough data to
distinguish satisfactorily between different copulas, and so it makes sense
to use the one that can be handled most easily. The main practical use
for alternative copulas in this context seems to be as a sensitivity test.
By replacing the Gaussian copula with another copula we can get a rough
idea of the impact of the assumption that the Gaussian copula is the cor-
rect one. A simple copula to use as an alternative is the multivariate t
copula.

7.4.4 Conversion to pay-offs

Having created a large number (e.g. 100,000 years) of simulated indices (xij)
using the methods described above we convert these to simulated pay-offs
for each contract in the portfolio:

pij = pj(xij) (7.13)

where pij is the i′th simulated pay-off for the j′th contract. These pij ’s can
then be used to calculate the pay-offs for the entire portfolio, as

Pi =
Nc∑
j=1

pij (7.14)
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where Pi is the i′th simulated pay-off for the whole portfolio. Sorting the
Pi’s gives the distribution of outcomes for the portfolio. The P ′

i ’s can also
be used to calculate the expectation, standard deviation and quantiles of
the portfolio pay-off distribution. Furthermore, we can use the individual
contract pay-offs, the pij ’s, to derive a wide variety of diagnostics for our
portfolio, which can help us understand, for example, what the main factors
are driving the risk and return. Many of these diagnostics are explored in
the next chapter.

7.4.5 The consistency of simulations and constraints

We now discuss one of the limitations of the rank correlation and copula
methods described above. Consider a portfolio of three contracts on the
same location. The indices for the three contracts are November HDDs,
December HDDs and November to December HDDs. Clearly, the number of
HDDs for the two-month contract is the sum of the numbers of HDDs for the
other two contracts. Thus, one can exactly hedge a linear swap position on
the two-month contract with two individual monthly linear swap contracts.

Now consider simulations for this example portfolio. If we fit normal dis-
tributions and use linear correlations then the simulations will preserve the
sum of HDDs constraint exactly; they have to, since to run the simulations
we specify the means, variances and covariances, and the multivariate nor-
mal distribution is exactly specified.

However, now consider fitting non-normal distributions to each index and
using the rank correlation or copula simulation methods. In this case the
simulation will probably not satisfy the sum of HDDs constraint exactly.
There is no reason why they should, because the information provided to
the simulation algorithm is not enough to define the multivariate distribution
uniquely. Thus the simulation algorithm produces simulations that have the
right marginal distributions and rank correlations or copula but may not
satisfy other constraints, such as the sum of HDDs constraint. In fact, this is
not usually a problem, and the constraint will almost be satisfied anyway; the
information provided does pin down the possible multivariate distributions
to a fairly narrow range (in some sense). But, in a situation where one is
attempting to model complete cancellation of risk between these contracts,
it could matter. There are a number of solutions to this problem:

� to use normal distributions and linear correlations;
� to simulate indices for individual months only and construct the two-month in-
dices as a sum of the simulated monthly indices;

� to simulate daily values for the whole two-month period, and build all the indices
from the same set of daily values (i.e. use a daily model).
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7.5 The daily modelling of portfolios

In the same way that daily modelling offered an alternative to index mod-
elling for single contracts, so it can be used for portfolios. In addition to the
advantages of daily modelling described in chapter 6, the daily modelling
of portfolios offers the additional benefit that dependences between indices
may be estimated more accurately, especially for short contracts. There are
two reasons for this, which are analogues of two of the reasons given as ben-
efits of the use of daily modelling for single contracts. The first is that we
can bring more data to bear on the estimation of the dependence. To illus-
trate this, consider two one-week contracts. Using the index-based methods,
the correlation is estimated using only historical data from that week of the
year; 98 per cent of the data is discarded. One would imagine that correla-
tions between adjacent weeks are likely to be very similar, and that using
these weeks as extra data could improve our estimates. A daily modelling
method can allow the use of all the available data for calculating these cor-
relations. The second reason is to do with the shape of this dependence. If
the dependence between two indices is not simple, then rank correlations,
however much data is used to estimate them, will never be able to capture
the detailed structure of the dependence; this relates to the discussion in
section 7.4.3 on copulas. Dependences estimated and simulated at the daily
level, however, will be more able to capture such details.

7.6 Parametric models for multivariate temperature variability

In the single station case we presented the ARMA models as a simple and
straightforward time series model. We also showed that these models do
not work well for temperature, but showed two other classes of models, the
ARFIMA and SAROMA models, that work well in many cases.

The multivariate equivalents of the ARMA models are the so-called
VARMA (vector ARMA) models, in which the single temperatures Ti are
replaced by a vector of temperatures at multiple locations Ti, and the au-
toregressive and moving average polynomials become polynomials of matri-
ces. The simplest of these models is the VARMA(1,0) model (or VAR(1)
model), which has the form

Tn+1 = ATn + E (7.15)

This model can capture exponentially decaying autocorrelations at each
location, as well as lag zero and lag one cross-correlations. The cross-
correlation functions (CCFs) are also exponentially decaying beyond lag one.
The problems with VARMA models for use in modelling daily temperatures
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Figure 7.2. The d parameter from the VARFIMA model.

are very similar to the problems seen with the ARMA models for single
stations: the observed autocorrelation and cross-correlation functions decay
much more slowly than those of the VARMA model.

In the same way that the slow decay of the observed autocorrelations
can be modelled using the ARFIMA model, so the slow decay of the
cross-correlation functions can be modelled using the VARFIMA (vector
ARFIMA) model (Jewson and Caballero, 2002), which is a multivariate ex-
tension of the ARFIMA model. This model allows each location to have a
different value for the fractional differencing parameter d. Values of d for the
whole of the United State are shown in figure 7.2. It can be seen that d has
the largest values near the coasts and in lower latitudes. This is presumably
because much of the long memory is due to the influence of the ocean on
the atmosphere, which depends on ocean temperature and is hence greater
near the equator, where the ocean is warmer.

Figure 7.3 shows the observed and modelled ACFs and CCFs for a group
of three US locations modelled using a VARFIMA(1,d,1) model. Both the
ACFs and the CCFs are captured reasonably well.

The VARFIMA model can be fitted as follows:

� an ARFIMA model is fitted at each location separately
� the d’s from each location are used to fractionally differentiate the temperatures
at that location;

� the differentiated temperatures are fitted using a VARMA model.

7.7 Dimension reduction

A potential problem with VARMA and VARFIMA models is that the num-
ber of parameters in the model increases very rapidly as we use the model
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Figure 7.3. ACFs and CCFs from observations and from the VARFIMA
model fitted to these three US locations.

for more locations. A VARMA(1,1) model applied to N stations has 2N2 pa-
rameters. As we add more stations the amount of data being used increases
with N, but the number of parameters increases as N2. The ratio of data
to parameters gets worse and worse, and the model fitting time increases
dramatically. Our experience suggests that it is not possible to fit VARMA
models to more than five stations at once because of these problems.

One way around this is to pre-filter the data so as to reduce the number
of dimensions in the data set. The reasoning behind this in the current ap-
plication is that temperature variability is highly correlated in space. The
temperature variability across a hundred locations can be accurately approx-
imated by many fewer than a hundred independent patterns and variables.

Mathematically this works as follows. We write the historical temperature
anomalies at one hundred locations using a single matrix X with dimensions
space n by time t.

Applying singular value decomposition (SVD) to this matrix we can de-
compose it into three matrices:

X = EΛP t (7.16)

where EtE = I, Λ is diagonal and P tP = I. The dimensions of E are n

by k, the dimensions of Λ are k by k and the dimensions of P are t by k.
This decomposition can be understood more clearly if we write the matrix
multiplication out in terms of sums:

xij =
k∑

n=1

einλnpjn (7.17)
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From this sum representation we see that X has been written as the sum
of k patterns, each with an associated amplitude and time series. There are
an infinite number of ways of decomposing any given matrix into a product
of three matrices. Singular value decomposition is uniquely useful because
(a) the patterns and the time series are orthogonal (i.e. independent) and
(b) the first of the pattern/time series pairs captures as much of the variance
as is possible to capture in a single pair, while the second captures as much
as is possible of what is left, and so on.

Another way to understand SVD is that the patterns E are the eigenvec-
tors of the spatial correlation matrix Cs = XXt and the time series P are
the eigenvectors of the temporal correlation matrix Ct = XtX.

The number k is the rank of the matrix X. In our example it is extremely
unlikely that the matrix is not full rank, and hence k = min(t, n).

Because of the variance-maximising property of SVD we can use it as an
efficient filter. By constructing an approximation for X,

x̂ij =
k′∑

n=1

einλnpjn (7.18)

using only the first k′ pattern/time series pairs (ordered by the largest sin-
gular values), we can capture a large amount of the variability in X using
only a small number of patterns. Since it is usually patterns with large spa-
tial scales that contribute the most to the overall variance, this truncation
effectively truncates small-scale features.

Our multivariate time series modelling methodology can then be applied
to the time series corresponding to the leading patterns, while univariate
modelling is applied to the rest. The multivariate problem now has a much
reduced dimensionality compared to modelling the original data, and it is
more likely that VARMA or VARFIMA can be successfully applied.

We have obtained good results using the following sequence of steps:

� pre-filter the temperature data to remove the long memory;
� apply the dimension reduction algorithm above;
� model the first few time series using VARMA, and the rest using ARMA;
� simulate VARMA and ARMA time series;
� convert back to patterns by reversing the dimension reduction step;
� add back the long memory.

As an example, we show results from the modelling of twenty locations
of temperature variability in the United States using VARFIMA(1,d,1).
Without dimension reduction we would have to estimate 800 parameters.
In fact, just five patterns capture 72 per cent of the total variance. We thus
choose to truncate at five patterns and model the time series using five
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Figure 7.4. ACFs and CCFs from model and observations for three US
locations; the model is the SVD-VARFIMA model fitted to twenty US
locations.

dimensional VARMA(1,1). Figure 7.4 shows the ACFs and CCFs as cap-
tured by this model for three of the stations; all are simulated reasonably
well.

7.8 A general portfolio aggregation method

We present one final method for modelling portfolios of weather derivatives
that is a hybrid between the index and daily modelling methods described
above and is the most practical approach for modelling large and varied
portfolios.

In a large portfolio of weather derivatives there are likely to be contracts
based on a number of underlying variables, with a number of different index
definitions. For some of these contracts the best modelling method may well
be to use daily simulations. For others index modelling may be better, or
may even be the only available option. We would like to be able to mix these
different approaches for different contracts. In fact, this is very easy to do.

The general aggregation method consists of the following steps:

� use whatever is the most appropriate method to estimate the marginal distribu-
tion of the index for each contract in the portfolio (this could be index or daily
modelling);

� estimate the rank correlations between these index distributions using historical
index data;

� simulate from these marginal index distributions using the estimated rank corre-
lations.
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The advantage of this method is that it allows us to combine distributions
that have been accurately estimated using daily modelling with distributions
for other contracts that are based on index modelling. The disadvantage is
that the estimates of rank correlation are made entirely at the index level.

7.9 Further reading

The first reference to the use of the multivariate normal for weather port-
folios that we could find is in Goldman-Sachs (1999), although one would
imagine that it was in use before then. The first reference to the use of rank
correlations for weather portfolios is in Jewson and Brix (2001), although,
again, it may have already been in use when we wrote that article. A general
discussion of some issues to do with weather portfolios is given by Zeng and
Perry (2002). Simulating using rank correlations was apparently originally
suggested by Iman and Conover (1982), and it has been described more re-
cently by Wang (1998) and Embrechts et al. (2002). The general method
for combining daily and index modelling was first described in Jewson et al.
(2002a).

A useful reference for discrete multivariate distributions is Johnson et al.
(1997), and for continuous multivariate distributions see Kotz et al. (1994).



8

Managing portfolios

In the previous chapter we discussed the methods that can be used to model
the pay-offs of a portfolio of weather derivatives, taking into account the
distributions of each weather index and the correlations between the indices.
We now turn to the question of how portfolios can be managed. We start with
a discussion of some of the different ways for measuring the performance of a
portfolio. These methods are then applied to the question of how to expand
a portfolio (which contracts to add) and how to price contracts against a
portfolio. We then discuss various methods for understanding portfolios, and
look at the hedging of portfolios using swap contracts.

8.1 Risk and return

Having modelled a portfolio using either an index-based method, a daily-
simulation-based method or the general method of section 7.8 that mixes
the two, there are a lot of questions we can ask to understand better what
is creating the total risk and return profile in the portfolio. However, before
describing these questions, and how to answer them, we need to look in more
detail at how actually to measure risk and return.

Defining return

The word ‘return’ itself is used in a number of different ways in finance.
First, we can look back at the performance of an investment that has now
run its course. We might calculate the absolute return, which is simply the
profit, in monetary units, that the investment yielded. More commonly this
is expressed as a percentage relative to the amount of money invested and
is called the relative return. This percentage can also be given in terms of
the excess relative to the risk-free rate of return (the interest rate paid by
safe government bond issues), known as the excess relative return. Making
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£110 in one year on a £100 investment would be a £10 absolute return, a
10 percent relative return, and would be 6 per cent in excess of a risk-free
rate of 4 percent. This is also referred to as a spread of 600 basis points over
the risk-free rate.

Second, we can look forward at the likely levels of return an investment
may yield in the future. The actual returns, in the senses of the word used
above, are now random variables, and all we can do is to attempt to estimate
the distributions, or aspects of the distributions, of these random variables.
For instance, we could estimate the expected profit. If we know the initial in-
vestment, we can convert that into the expected relative return, and if we are
confident about estimating the risk-free rate over the future period we could
express it as the expected excess relative return above the risk-free rate.

As we have seen already, the ‘expected profit’ is the value that you would
receive on average if you could repeat an investment in identical circum-
stances many times over. Since you cannot do this, it can be said that the
expectation is not a very good measure of the future performance of an in-
vestment. We have already argued that it may be more important to know
the probabilities of various levels of return this time round. In that case, a
reasonable alternative to the expected profit is the median profit: this has a
precise meaning in terms of this particular investment cycle, and is the level
of profit that you will get with a probability of 50 per cent.

In practice, we will often refer to measures of the likely future performance
of an investment simply as the ‘return’. The context will make clear whether
the word ‘return’ is being used in a backward- or forward-looking sense.

Defining risk

Just as the return can be defined in a number of different ways, so can
the risk. Looking forward or backward, the risk is usually defined as some
measure of the spread, or dispersion, of the distribution of possible outcomes.

The most common measures of risk, both of which we have seen already,
are the variance and the standard deviation. They have the benefit of being
extremely tractable mathematically (using equation (7.1)) and are a good
starting point for understanding many of the mathematical issues pertaining
to risk. Furthermore, the standard deviation has the nice property that the
total standard deviation cannot be more than the sum of its parts (this
property is sometimes known as ‘coherency’). To illustrate this, consider a
portfolio with two weather derivatives in it. If the standard deviations of
the pay-offs are £100 and £50 respectively, then by equation (7.1) there is
no way that the total standard deviation can be more than £150, however
highly correlated these two derivatives are. Even without knowing anything
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about the details of the risks and their interdependences, we can quickly
get an upper limit for the total risk. We will see that not all risk measures
possess this nice property. One disadvantage of the standard deviation is
that it does not tell us very succinctly how much money we could lose.
Consider an investment with an expected profit of £100 and a standard
deviation of £80. What could we lose? If we can assume that the distribution
of profit is a normal distribution then we can say that there is a 2.5 per
cent chance of losing £60 or more. But in the general case of non-normal
distributions we cannot say anything without further information. Another
shortcoming of the standard deviation (and the variance) is that it can lead
to ridiculous decisions in certain circumstances. Examples of this are given
in section 8.1.2.

To overcome the limitation of the standard deviation that it does not tell
us clearly how much we could lose, it is common to use profit/loss quan-
tiles at certain levels of probability. So, for example, we might consider the
2.5 per cent level of loss. In the example above, this would be a loss of £60
in the case of a normal distribution, or maybe £30, or £90, for other distri-
butions. The advantage of quantiles is that they communicate very clearly
how much could be lost, especially if we use several levels (maybe 5 per
cent, 1 per cent and 0.1 per cent). The major disadvantage of quantiles is
that the total can be more than the sum of the parts: a portfolio of two
weather derivatives with 5 per cent quantiles of −£100 and −£50 could
have a portfolio 5 per cent quantile of less than −£150.

Loss quantiles can be presented in several different ways.

1. As the quantile itself, with positive values for profit and negative for loss (i.e.
‘the 5 per cent quantile is a profit of −£200’).

2. As a loss value, with positive values for loss (i.e. ‘the 5 per cent quantile is a loss
of £200’).

3. Relative to either the expectation or the median of the distribution. If the median
is £500, and the 5 per cent loss level is −£200, we could represent this relative
to the median as −£700.

How quantile loss levels relate to the well-known VaR is described in more
detail in chapter 12.

In addition to evaluating the pay-off at a certain quantile one can also
monitor the quantile of a certain pay-off – e.g. monitor the probability of
losing more than £10 million.

Two other risk measures that are less commonly used than the standard
deviation, variance, or quantiles, but that have certain advantages, are the
downside semi-standard deviation and the downside semi-variance.
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Whereas variance of a random variable x with density f(x) is defined as

σ2 = variance(x) =
∫ ∞

−∞
f(x)(x− E(x))2dx (8.1)

downside semi-variance is defined as

σ2
d = downside semi-variance(x) = 2

∫ E(x)

−∞
f(x)(x− E(x))2dx (8.2)

And while standard deviation is defined as

σ = standard deviation(x) =
(∫ ∞

−∞
f(x)(x− E(x))2dx

) 1
2

(8.3)

downside semi-standard deviation is defined as

σd = downside semi-standard deviation(x) =

(
2
∫ E(x)

−∞
f(x)(x−E(x))2dx

)1
2

(8.4)

For a normal distribution (and other symmetric distributions) these are
equal to the standard deviation and the variance respectively, while for other
distributions they may be different, and emphasise departures from the ex-
pected value on the side of losses rather than profits.

Risk and return

We have discussed how to measure risk and return separately. We will now
review three frameworks that can be used for managing risk and return at
the same time. These frameworks are risk-adjusted return, utility theory and
stochastic dominance. We will also consider some of the connections between
these three frameworks. Then, in sections 8.2 and 8.3, we will describe how
to apply each of the frameworks to the practical decisions that portfolio
managers have to make, such as whether to trade a particular contract, given
the premium, or at what level to set the premium of a new contract. Finally,
in section 8.6, we will discuss some of the ways that complex portfolios can
be understood, and look at how total portfolio risk can be reduced.

8.1.1 Risk-adjusted return

Managing a weather portfolio – or, indeed, any portfolio of investments –
is about creating the greatest return (however measured) for the least risk
(however measured). Portfolio managers must decide how much risk is jus-
tified for a given increase in return, or how much return should be expected
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for a given increase in risk. This can be done on a purely intuitive basis,
but there are also a number of ways to attempt to answer this question
analytically.

One simple method is to define a single number that increases with return
and decreases with risk. The goal is then to maximise this number, which
we will call the risk-adjusted return (RAR).

The simplest formulae that encapsulate this basic idea are

RAR = µ− λσ2 (8.5)

which uses the expectation to measure return and the variance to measure
risk, and

RAR = µ− λσ (8.6)

which uses the expectation to measure return and the standard deviation to
measure risk.

For dimensional consistency, λ in equation (8.5) has the units of $−1,
while λ in equation (8.6) is unitless.

Using downside semi-variance instead of variance and downside semi-
standard deviation instead of standard deviation these definitions become:

RAR = µ− λσ2
d (8.7)

and

RAR = µ− λσd (8.8)

In all these formulae λ must be specified by the portfolio manager. A large
value indicates low tolerance for risk and a small value indicates high toler-
ance for risk. These formulae use absolute values of return, and hence can
be used when we do not know the exact level of initial investment (this is
not uncommon: if weather derivatives trading is part of a larger business it
is not necessarily possible to say how much capital has been set aside for
it). One shortcoming of these formulae is that, precisely because we do not
know the initial level of investment, we cannot compare with the risk-free
rate of return. If we do have the initial investment then the Sharpe ratio
(SR) is a more appropriate definition of RAR, because we can relate risk
to returns in excess of the risk-free rate (and only returns above the risk-
free rate should entail taking on risk). The Sharpe ratio can be written in
terms of the expected pay-off, the standard deviation of the pay-off, and the
expected pay-off µr that would be achieved from a risk-free investment:

SR =
µ− µr

σ
(8.9)
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Dividing the numerator and denominator of the right-hand side by the ini-
tial investment, we can rewrite using relative values of return (this is more
standard).

With any of the above definitions, the goal is to increase the RAR, or to
keep it above a certain level. When we evaluate whether the contracts in
our portfolio are good or bad, we look at their contribution to the RAR.
When we are considering whether or not to trade a new contract, we look
at the impact it would have on the RAR. And, finally, when we are setting
the premium to be charged we must set it high enough that the RAR either
increases or stays above a certain specified level.

We look at all these situations in more detail later in this chapter.

8.1.2 Problems with mean-variance and mean-standard

deviation approaches

We now investigate one of the shortcomings of the mean-variance and mean-
standard deviation approaches to risk-adjusted return, which is that in cer-
tain circumstances they lead to obviously ridiculous decisions.

Imagine that someone offers you a free lottery ticket with pay-off L and
probability of winning p. Of course you should take it, under any frame-
work for measuring risk and return, since it will increase your return with
no adverse effects. When we apply the mean-variance framework we find
that

µ = Lp, σ2 = L2p(1 − p) (8.10)

and so

RAR = µ− λσ2 (8.11)

= Lp− λL2p(1 − p) (8.12)

= Lp(1 − λL(1 − p)) (8.13)

If L > 1
λ(1−p) the RAR becomes negative: very large free lottery tickets re-

duce our RAR! This is clearly a failure of the mean-variance framework to
indicate the right decision. A similar problem occurs if we try and use the
mean-standard deviation framework.

These problems arise because the distribution of pay-offs being considered
in this example is highly skewed, and both standard deviation and variance
do not distinguish between the upside and the downside.

The downside semi-variance and downside semi-standard deviation can
also lead to problems of this type.
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Are these problems with RAR likely to occur in practice? In most cases,
probably not. But it is clear that certain contracts, with low probabilities of
large pay-outs, are not well represented using a RAR based on either mean-
variance or mean-standard deviation, and this is a reasonable argument for
investigating the possibility of using other methods.

8.1.3 Utility theory

In the previous section we discussed how to manage risky investments under
a framework in which we separate risk and return. One can argue, however,
that this is not entirely adequate, and that it would make more sense to
consider the whole distribution of possible outcomes, their relative proba-
bilities, and our reaction to each possible outcome. This is the approach
taken in utility theory. Utility theory is a mathematical framework used by
economists to understand risk preferences in theoretical models of economic
behaviour. It is more general than the measures described above, but is usu-
ally considered too abstract to use in practice. However, we will see that it
can help us understand some of the limitations of the RAR methods, and
will lead to a useful new way of analysing risk. It is also necessary to un-
derstand utility theory to some extent in order to understand many of the
academic papers on option pricing in incomplete markets, including some
academic papers on weather pricing.

The basic idea of utility theory is that every level of wealth has a level of
utility (usefulness, or value) to the holder of that wealth. Writing the wealth
as w and the utility as u we have u = u(w). The function u(w) describes
one person’s (or one organisation’s) risk preferences. By definition, decisions
are then made on the basis of the expected utility, where expectations are
calculated over all possible values of w. If the probabilities of different levels
of wealth lead to one decision having a higher expected utility than another,
then it is to be preferred. If the expected utilities are the same, then we are
indifferent.

There are a number of properties that utility functions are usually re-
quired to have in order to give a reasonable representation of real attitudes
to risk.

1. Wealth preference: more wealth is always better. As w increases, so u increases –
i.e. u′ > 0.

2. Risk aversion: the marginal benefits of increasing wealth decrease with increasing
wealth. As w increases, u′ decreases – i.e. u′′ < 0. To put it another way, losing
a fixed amount of wealth becomes worse the poorer you are.

3. Ruin aversion: the poorer you are, the more risk averse you become. Putting it
another way, as w increases, u′′ increases, or u′′′ > 0.
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Figure 8.1. Graph of exponential utility for values of a of 1 and 2.

The most commonly used function with these properties is the so-called
exponential utility

u(w) = 1 − e−aw (8.14)

where a is a positive parameter that measures risk aversion and has units
of inverse money. The shape of this utility function is given in figure 8.1 for
two different values of a (1 and 2).

Utility can be used to compare risk-free and risky choices using the cer-
tainty equivalent c, defined by

u(c) = E(u(w)) (8.15)

The certainty equivalent for a certain distribution of wealth is the single
fixed value of wealth that would give the same expected utility; c is the
maximum price we would pay to attain a certain distribution of wealth.

The relation between utility and risk-adjusted return

We can attempt to interpret the simple risk measures described in section 8.1
in terms of utility.

For small changes w′ in wealth around the current wealth w0 we can
expand the utility function using a Taylor expansion:

u(w) = u(w0) + w′u′(w0) +
1
2
w′2u′′(w0) + . . . (8.16)

Taking the expectations of this equation gives

Eu(w) = u(w0) + u′(w0)Ew′ +
1
2
u′′(w0)Ew′2 + . . . (8.17)

The units in which utility are measured are arbitrary, and so we can assume
that u(w0) = 0 and u′(w0) = 1, which gives

Eu(w) = Ew′ +
1
2
u′′(w0)Ew′2 + . . . (8.18)
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If we neglect the higher-order terms, this equation is now of the same form
as equation (8.5), in that it measures value using the mean and variance,
with a negative weight on the variance (since u′′ is negative). This shows
that for small changes in the level of wealth (for which approximating the
utility function locally with a quadratic is a good approximation) the mean-
variance approach is consistent with a utility approach. There are various
other insights that come from this comparison, such as the observation that
the λ in equation (8.5) should perhaps reduce as wealth increases in the
same way that u′′ does.

8.1.4 Stochastic dominance theory

The main difficulties of applying utility theory directly in practical situations
are that (a) nobody knows what shape utility function they have (e.g. what
value a they should take in equation (8.14), or even if exponential utility is
the right class of shapes at all) and (b) the whole method is reasonably ‘black
box’; it may give an answer, but it is difficult to see how that answer arises.

The authors are not aware of any organisation that uses utility theory
in practice to make pricing decisions in the weather market. However, we
now describe an extension of utility theory, known as stochastic dominance
theory (SDT), that overcomes these problems, and that is occasionally used
in practice. The idea behind SDT is to accept that, while it is difficult to
identify one’s utility function, it does seem reasonable to assume that we
possess the three properties often required of utility that were described
above: wealth preference, risk aversion and ruin aversion. It turns out that
assuming that our unknown utility function satisfies these properties can
still help us make decisions without having to specify exactly which utility
function we have.

Stochastic dominance, then, is applied by testing for dominance, and
first-, second- and third-degree stochastic dominance. We consider how to
use stochastic dominance to compare two scenarios, which might be (1) keep
our current portfolio unchanged and (2) add a new contract to our portfolio.

Dominance

The dominance test is applied by comparing the worst outcome of scenario
2 with the best outcome of scenario 1. If the worst outcome of scenario 2 is
better than the best outcome of scenario 1, then we say that scenario 2
dominates scenario 1. If this is the case, then we should choose scenario 2.
Otherwise, we should test first-degree stochastic dominance, which is more
subtle.
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First-degree dominance

The first-degree stochastic dominance test is applied by comparing the CDF
of the pay-off under scenario 1 with the CDF of the pay-off under scenario 2.
If the CDF under scenario 2 is less than the CDF under scenario 1 for all
values of wealth then scenario 2 stochastically dominates scenario 1 at the
first degree, and we should choose scenario 2. Otherwise we should test
second-degree stochastic dominance.

Second-degree dominance

The second-degree stochastic dominance test is applied by comparing the
indefinite integral of the CDF of the pay-off under scenario 1 with the indefi-
nite integral of the CDF of the pay-off under scenario 2. If the integral of the
CDF under scenario 2 is less than the integral of the CDF under scenario 1
for all values of wealth then scenario 2 stochastically dominates scenario 1
at the second degree, and we should choose scenario 2. Otherwise we should
test third-degree stochastic dominance.

Third-degree dominance

The third-degree stochastic dominance test is applied by comparing the
second indefinite integral of the CDF of the pay-off under scenario 1 with
the second indefinite integral of the CDF of the pay-off under scenario 2.
If the second integral of the CDF under scenario 2 is less than the second
integral of the CDF under scenario 1 for all values of wealth, then scenario 2
stochastically dominates scenario 1 at the third degree, and we should choose
scenario 2. Otherwise we conclude that the two scenarios are equivalent.

Possible outcomes of stochastic dominance testing
We denote the result of each test as:
� ‘F’ (fail) if scenario 1 dominates scenario 2;
� ‘N’ (neutral) if neither scenario dominates;
� ‘P’ (pass) if scenario 2 dominates scenario 1.

We can then write the results of the four tests as a string of four characters,
such as ‘NNNF’, which means that the first three tests are neutral and the
last is failed. Outcomes such as ‘FF’ are equivalent to ‘F’, since once we fail
the dominance test there is no point in applying the first-degree stochastic
dominance test, and so the number of possible outcomes reduces to nine.

1. F
2. NF
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3. NNF
4. NNNF
5. NNNN
6. NNNP
7. NNP
8. NP
9. P

If we are considering switching from scenario 1 to scenario 2 then we would
do so under outcomes 6 to 9. A useful stochastic dominance score can be
created by subtracting five from all the numbers above. Negative scores mean
‘do not switch’, and positive scores mean ‘switch’. A zero score means that
we are ambivalent about switching.

Relations between SDT and mean-variance approaches

There are various relations between SDT and the mean-variance approaches
to managing risk. These are discussed in Ogryczak and Ruszczynski (1997).

Pricing using SDT

In order to price a (short) option contract using SDT the minimum pre-
mium charged should be the amount that ensures that we are (just) bet-
ter off with the new contract than without, where ‘better off’ means we
achieve at least dominance at the third level. This can be found by start-
ing with a low premium and increasing it until third-degree dominance is
achieved.

Comparing RAR, utility theory and SDT

The main practical differences between making decisions using risk-adjusted
return or utility theory on the one hand and SDT on the other are that
(a) RAR and utility theory both need us to specify an arbitrary param-
eter that measures our risk aversion while SDT does not, and (b) util-
ity theory and RAR always give a clear-cut decision, while SDT is often
undecided.

For many classes of investment stochastic dominance is often not con-
sidered particularly useful, because it can be applied only if we have an
estimate of the whole CDF of outcomes. However, in weather we always do
have an estimate of this CDF as an output of the modelling methods de-
scribed earlier, and so stochastic dominance can be used particularly easily.
SDT is so easy to apply, and so objective, that it is hard to argue that one
shouldn’t use it to help with all portfolio decisions (perhaps in addition to
other methods).
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8.1.5 The significance of stochastic dominance results

One final extension of the stochastic dominance framework described above
is to attempt to add statistical significance tests to the differences between
the various curves that we are comparing.

Without significance tests the results of a first-degree SDT analysis are:

� scenario 1 is better than scenario 2;
� we are uncertain which decision is better;
� scenario 2 is better than scenario 1.

If we use statistical testing on the differences this then expands to five pos-
sibilities:

� scenario 1 is significantly better than scenario 2;
� scenario 1 is better than scenario 2, but not significantly;
� we are uncertain which decision is better;
� scenario 2 is better than scenario 1, but not significantly;
� scenario 2 is significantly better than scenario 1.

These significance tests can be generated using simulation methods.
One disadvantage of using such tests is that one has to set a subjective

level at which the test is passed or failed.

8.1.6 Examples of stochastic dominance

To illustrate SDT, consider the following example. We have two fair six-sided
dice, A and B.

Dominance

If A is labelled with 1 to 6 and B with 7 to 12, then B dominates A. Whatever
happens, B will be higher than A.

First-order stochastic dominance

If A is labelled with 1 to 6 and B with 2 to 7, then B does not dominate A,
but it does stochastically dominate it. It is very possible that A will end up
higher than B, but at any fixed level of probability B is higher than A. B
should be preferred to A by anyone who thinks more wealth is better.

Second-order stochastic dominance

If A is labelled with 1 to 6 and B is labelled with all 4s, then B does not
dominate A, nor does it stochastically dominate A. However, by looking at
the integrated values, which are 1, 3, 6, 10, 15, 21 and 4, 8, 12, 16, 20, 24,
we see that B does dominate A stochastically at the second order.
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Third-order stochastic dominance

If A is labelled with 1 to 6 and B is labelled with all 3s, then B does not
dominate A, nor does it stochastically dominate at the first or second order.
However, by looking at the twice integrated values, which are 1, 4, 10, 20,
35, 56 and 3, 9, 18, 30, 45, 63, we see that B does dominate A stochastically
at the third order. Even though the mean outcome of B (3) is lower than
that of A (3.5), B is preferred by anyone who is ruin-averse.

8.2 Expanding a portfolio

We now have all the information we need to apply the various frameworks
described above to practical portfolio management decisions. First we look
at expanding a portfolio.

Let us imagine that we have a large portfolio of weather contracts, and
are considering adding one more. The premiums for this contract have been
fixed and are non-negotiable. Should we add the contract or not? We can
use either RAR, utility theory or SDT for addressing this question.

Applying risk-adjusted return

There are two ways we can apply the RAR approach to answer this question.
In the first, we stipulate that we will trade this contract only if the RAR
of the portfolio increases. In the second, we stipulate that we will trade this
contract only if the RAR remains above a fixed level. Either approach is very
easy to implement in practice: we model the portfolio with and without the
contract, and evaluate the risk-adjusted return in both cases.

Applying utility theory

In this case we would model the portfolio and evaluate the portfolio utility
with and without the contract. If the expected utility increases, then we
should add the contract.

Applying SDT

With SDT we would model the portfolio and compare the distributions
of pay-offs before and after adding the contract. If the new distribution
dominates, or stochastically dominates at the first, second or third level, then
we should add the contract. If the old distribution dominates, or dominates
at the first, second or third level, then we should not add the contract. If
neither dominates, then it does not matter what we do, and we can make
the decision based on factors other than the financial returns.
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Efficient modelling

When modelling a portfolio first without and then with a contract, as we
have to in all these cases, there are efficient ways of performing the necessary
calculations that avoid having to simulate the whole portfolio twice. This can
save time for large portfolios. These methods are described in section 8.5.

8.3 Pricing against a portfolio

Let us imagine that we have a large portfolio of weather contracts and that,
again, we are considering trading one more contract, but this time we are
in the position to set the premium. What level should we set it at? As we
have seen, it is very important to consider this question in the context of
the whole portfolio: if the contract is very highly correlated with what we
already have then trading it will be a good idea only if we can charge a
high premium. Similarly, if this contract is very anticorrelated with what
we already have, and might even reduce our risk, then we should be happy
to charge a lower premium. We can calculate appropriate premiums in any
of the decision frameworks described above. Again, we model the portfolio
with and without the contract.

Applying risk-adjusted return

When selling an option contract, we choose the premium (which we will
receive) so that the RAR must either increase, or must stay above a certain
level.

In the mean-standard deviation framework, applying the first of these
rules gives

RAR2 > RAR1 (8.19)

or

µ2 + ps − λσ2 > µ1 − λσ1 (8.20)

where ps is the premium, µ1 and σ1 are the expectation and standard devi-
ation of the pay-offs of the portfolio before adding the contract, and µ2 and
σ2 are the standard deviations of the pay-offs after adding the contract, but
without the premium. Rearranging this gives

ps > µ + λ(σ2 − σ1) (8.21)

where µ = µ1 − µ2 is the expected pay-off of the contract (with the sign
convention defined so that µ is positive). We see that the minimum premium
to be charged is given by the marginal changes in the expected pay-off
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and the standard deviation of pay-offs of the portfolio. Both of these terms
would usually be positive, in which case the selling price would be above
the expected pay-off of the contract by a factor dependent on the marginal
change in the risk. For this value of the premium our RAR would stay the
same. For premiums above this value the RAR would increase.

For a contract that is very beneficial to our portfolio σ2 − σ1 might be
negative; trading the contract would reduce our risk. In this case, we can
charge a premium below the expected pay-off and still increase our RAR.

When buying an option contract for a premium pb we get

pb < µ− λ(σ1 − σ3) (8.22)

where σ3 is the standard deviation of the pay-offs of the portfolio after adding
the contract, and µ = µ3 − µ1 is the expected pay-off of the contract (again,
defined with the sign convention so that µ is positive). The σ1 − σ3 term is
usually positive, in which case the buying price would be below the expected
pay-off of the contract by a factor dependent on the marginal change in the
risk.

Again, for a contract very beneficial to our portfolio σ1 − σ3 might be
negative, and we could pay a premium above the expected pay-off and still
increase our RAR.

Applying utility theory

In the utility context, the minimum price at which we would sell a contract,
or the maximum price at which we would buy, would be the price at which
our expected utility does not increase. This argument is sometimes known
as a utility-indifference argument.

Applying stochastic dominance theory

With stochastic dominance, the minimum price at which we would sell a
contract would usually be set by the point at which the new portfolio starts
to dominate at the third level (although the second or first level could also
be used).

Sources of uncertainty

It is useful to appreciate that there is additional sampling uncertainty when
pricing contracts against a portfolio relative to pricing a contract on a ‘stand
alone’ basis. When pricing a single contract stand alone, the source of sam-
pling uncertainty is the uncertainty in the estimation of the distribution of
the contract index. When pricing against a portfolio, there is an additional
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source of uncertainty due to the estimate of the correlation between the
contract and the portfolio.

8.4 Market making

Making markets is very similar to pricing against a portfolio, except that
we price both long and short positions. As we saw in section 8.3, the selling
price for an option would typically be above the expected pay-off, and the
buying price would typically be below the expected pay-off.

In the unlikely case that the new contract is exactly uncorrelated with
the old portfolio then the buying and selling prices are symmetrical about
the expected pay-off (at least in the mean-standard deviation framework).
However, in the general case of non-zero correlations they will not be sym-
metrical: the market maker will have a preference for buying or selling
depending on the sign of the correlation between the new contract and the
portfolio. In the extreme case where trading the contract in one direction
actually reduces the risk in the portfolio then the expected pay-off will lie
outside the buying and selling prices.

A market maker who rigorously follows such a quantitative approach
should adjust his prices every time he does a new trade, because each trade
changes the base portfolio.

When making markets for swaps, rather than calculate the premiums that
give a change in the RAR of zero, a market maker calculates the swap strikes
for long and short positions that give a change in the RAR of zero. These
strikes can be calculated using iterative methods similar to those described
in section 5.8, but now considering the RAR of the whole portfolio.

8.5 Efficient implementation methods for adding single
contracts to a portfolio

In sections 8.2 and 8.3 we considered the question of whether or not to add
contracts to our portfolio. The answer to this question involved evaluating
either the risk-adjusted return, the utility or the CDF with and without the
extra contract. If we use burn analysis then the necessary calculations can
be performed very quickly. However, if we are using index modelling then,
for a large portfolio, modelling the whole portfolio twice in this way could
be extremely time-consuming, and we might need to ask this question many
times every day. Fortunately, there are ways that we can make the modelling
more efficient. We present two methods by which this can be done. The first,
and preferred, method we call ‘index regression’. This involves saving all



Adding single contracts to a portfolio 185

the simulations of the original portfolio and using these to price subsequent
contracts without resimulation. It relies on the ability to store a large number
of simulations. If this is not possible, one can use the second method, which
we call ‘pay-off regression’, which saves only the portfolio pay-offs.

Index regression

The basic idea behind the index regression method for efficient pricing
against the portfolio is to extend the rank correlation simulation method
described in section 7.4.2. The normally distributed simulations used in that
method are stored. When a new contract needs to be priced, linear combi-
nations of these simulations are combined with random numbers to create
a simulation for the new contract with the correct correlations with the
original portfolio. These new simulations are then transformed to the cor-
rect marginal distribution and converted to pay-offs for the contract. This
method gives the same results (up to differences in the random number feeds
used) as repricing the whole portfolio with and without the extra contract,
but is much faster because it avoids resimulating all the contracts in the
portfolio. More details of this method are given in appendix J.

A limitation of this method is that the matrix of stored simulations could
be very large: for a portfolio of one hundred contracts, using ten thousand
simulations and storing as eight-byte floating-point numbers, this would need
eight million bytes of storage. Although such storage is readily available,
reading such large arrays into computer memory can be very slow, and may
even be slower than a resimulation of the whole portfolio. To circumvent
these problems, one can use a slightly different method.

Pay-off regression

The basic idea behind this method is to extend the rank-correlation-based
simulation method by modelling the new index as a linear combination of
the portfolio pay-offs and random numbers. Details are given in appendix J.

This method is extremely light on storage and processing, and is hence
extremely fast. The disadvantage is that the assumptions in the method
are slightly different from the assumptions in the original rank correlation
simulations. Whereas we originally assumed that the dependences between
indices are best captured by using rank correlations, in this method we use
rank correlations for the dependence between the new index and the pay-
offs of the other contracts. This may give different results from repricing
the whole portfolio with and without the extra contract. Although these
different assumptions may not be any less justifiable, it is generally better
to stick with one approach to avoid contradictory and confusing results.
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8.6 Understanding portfolios

We now consider techniques that can be used to understand what is going
on in a portfolio of weather derivatives. When portfolios are small, with
only a handful of contracts, it may not be necessary to apply mathematical
methods in order to understand what drives the risk and return, since it
may be obvious. But for large portfolios, of tens or hundreds of contracts,
it rapidly becomes extremely difficult to understand these issues without
further analysis. There are many different aspects of portfolios that we can
look at, and a few of these are discussed below.

8.6.1 Breaking down risk and return (risk budgeting)

The first question we ask is: which of the contracts in our current portfolio
contribute the most to the risk and return? Identifying contributions to the
return is easy if we are measuring return using the expectation, since the
total return is then the sum of the returns on the individual contracts. A
contract with return that is a high percentage of the portfolio return can be
said to be driving that percentage of the total return.

Identifying contributions to risk is more complicated, since a contract
may have a high risk when considered alone, but this risk may be wholly
or partly cancelled by other contracts and the contribution to the total risk
of the portfolio can then be zero or negative. We can avoid this difficulty
by noting that we are usually considering adding or removing contracts
one by one; it is then the marginal change in the risk that matters. Al-
though the marginal changes in risk due to all the contracts in the portfolio
do not sum to give the total risk, they can still tell us which individual
contracts we should hedge to reduce the total portfolio risk by the largest
amount.

In practice, we might tabulate the marginal contribution to the expected
pay-off and the marginal contribution to the standard deviation of the pay-
off for all contracts in our portfolio. We might also look at the marginal con-
tribution to the RAR or the utility. Contracts with a large positive marginal
contribution to the RAR or the utility are good, those with a large negative
marginal contribution are bad. If we see that a small number of contracts
are distinctly worse than others we may consider taking proactive steps to
hedge the risk in those contracts. This is addressed in section 8.7.

The second, and very similar, question we ask is: which of the groups of
contracts in our current portfolio contribute the most to the risk and return?
The analysis described above can be repeated but for the marginal effects
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of whole groups of contracts. There are a number of situations in which this
may interest us: we may want to know whether we have a particularly high
level of exposure to one counterparty or region, or whether one trader is
taking on more risk than the others.

8.6.2 Portfolio beta

In section 5.1 we introduced delta, and explained that it can be used either
to give a quick estimate of how a new forecast might affect the value of a
portfolio, or to indicate the size of swap contract that should be used as a
hedge. It would be useful to extend the concept of delta to portfolios. For a
portfolio of contracts on one index this is easy: the delta of the portfolio is
equal to the sum of the deltas on the individual contracts. However, deltas
for different indices should not be added together. The appropriate extension
to portfolios based on a number of different indices is to beta, or regression,
analysis.

The vector of pay-offs for a whole portfolio, Pi, can be regressed onto a
single index, xi, as

Pi = α + βxi + εi (8.23)

The regression coefficient β is the equivalent of delta with respect to the
index x for the whole portfolio. In the case in which all the contracts in the
portfolio are based on the same index, and the index is normally distributed,
this is exactly the delta. In the general case, the value of beta depends in
a complex way on the non-linear pay-off functions in the portfolio and the
correlations between locations. As with delta, beta can be used either to
assess the impacts of weather forecasts on the portfolio or to design hedging
strategies.

Multiple beta values can be calculated for different indices. This can
be done using multiple regression rather than several steps of univariate
regression:

Pi = α +
Nc∑
j=1

βjxij + εij (8.24)

The beta values for each location are now different from the values calculated
at single locations. These values can be used to understand how to hedge a
portfolio using more than one contract at once.

There is a difference in interpretation between the univariate and the mul-
tivariate values for the beta. The univariate values apply if we are considering
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changes in one index, while still allowing other indices to vary. If, however,
we want to understand how the portfolio responds to changes of one index,
with other indices held fixed, we should use the multivariate beta values.
Holding the other indices fixed reduces the extent to which the main in-
dex can vary, because of the correlated variability of indices, and so the
multivariate values are generally smaller.

8.6.3 Portfolio greeks

In chapter 5 we discussed the greeks for individual contracts. We now discuss
how greeks can be used for portfolios.

For a portfolio of contracts on a single index only all the greeks can be
calculated, and are simply the sums of the greeks for the individual contracts.
The whole portfolio behaves like a single contract. More generally, however,
for a portfolio of contracts on different indices one has to be slightly more
careful. Delta, gamma and zeta should not be added together for contracts on
different indices, and the only greeks that can be added across the contracts
in a portfolio are theta and rho. The appropriate generalisation of delta
is, instead, the portfolio beta that we discussed in section 8.6.2, and one
could consider generalising gamma in the same way. It is less obvious how
to generalise zeta.

8.6.4 The dominant patterns of risk

We have described in section 8.6.1 how we can analyse the impact of indi-
vidual contracts on our portfolio. However, it could be that no individual
contract has much of an impact, while a group of contracts together might be
creating a very large risk. Although we described how to assess the impacts
of groups of contracts too, the groups were prescribed by us in advance. It
could be that a group of contracts that we have not considered are con-
spiring together, through the covariance matrix, to have a major effect on
the risk. How could we detect this? There are a number of possible meth-
ods, but one particularly simple one is based on a mathematical technique
known variously as principal components analysis (PCA), empirical orthog-
onal analysis (EOF analysis) or singular value decomposition analysis.1 The
application of PCA to weather portfolios has been described in Jewson
(2004a). It works as follows.

1 We have already come across the mathematical process of SVD in section 7.4; however, in that
case we applied it to indices, not pay-offs.
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We calculate the matrix of pay-offs of the whole portfolio, P , with ele-
ments Pij . We then remove the expected pay-off of each contract, so that
the expected pay-offs are all zero, and we are left only with the risk:

p′ij = pij −
∑Nc

i=1 pij
Nc

(8.25)

Singular value decomposition is then applied to the matrix P ′ with elements
p′ij :

P ′ = EΛQt (8.26)

The first of the patterns (the first column in matrix E, which is the first
singular vector) is the dominant pattern of risk. The contribution it makes
to the total risk is given by the first singular value in matrix Λ.

When PCA analysis is used for portfolios of liquidly traded contracts
such as equities one can proceed to hedge the first principal component by
trading an appropriately weighted basket of contracts. This is usually not
possible for weather, however, because the necessary basket of contracts may
not be tradable at any reasonable price.

8.7 Reducing portfolio risk

Having explored a number of ways in which we might better understand the
sources of risk and return in our portfolio we finally turn to the question
of what we might do with that knowledge: how we might trade further
contracts in an attempt to make things better.

The simplest solution to that question is to consider all the contracts
available in the market, and to apply the pricing against the portfolio
methodology developed in section 8.3. This will tell us which of these con-
tracts would benefit our portfolio, and to what extent. If there are contracts
that give a large benefit, we can trade them, and then repeat the exer-
cise iteratively. One can also consider adding groups of contracts at once,
although the number of permutations to be tested rapidly becomes very
large.

However, it may well be that none of the contracts in the market is very
effective in reducing the risk of our portfolio. In that case it might be worth
creating new contracts based on what risk we really need to hedge, and then
trying to find a willing counterparty. There are a number of ways one might
attempt this.

The most general approach would be to consider all possible contracts,
on all possible indices, and see which would benefit us most. This is likely to
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be very impractical in terms of calculation time. The challenge is to develop
a streamlined version of this approach.

One simpler possibility is to compare the pay-offs of our portfolio (either
historical or simulated) with a number of indices based on different locations
using the univariate beta analysis described above. This reduces the number
of comparisons that have to be made. If one further restricts the number
of comparisons to only commonly traded indices (e.g. in the United States
one might consider degree day indices for monthly contracts), the resulting
algorithm becomes quite feasible to apply quickly. Having found an index
that correlates or anticorrelates highly with one’s portfolio, it is then easy to
design a contract – either a swap or an option, and either long or short – on
that index such that the pay-offs will be anticorrelated with the portfolio.
Trading such a contract may lead to a significant reduction in risk, and if
it can be traded at a reasonable price it may result in an increase in the
RAR.

Beta neutrality

A special case arises when liquidly traded swap contracts are available on
a certain number of locations. If we assume that these are trading at fair
value then trading such contracts affects only our risk, not our return. A
portfolio manager can endeavour to stay ‘beta-neutral’ to each of these con-
tracts as follows. On a frequent basis, the portfolio beta is evaluated relative
to these contracts. If any of the beta values are significantly non-zero, then
the appropriate contracts are traded to reduce those betas to close to zero.
The main limitation to achieving exact beta neutrality in the current weather
market is that even the most liquidly traded contracts are traded only in
discrete sizes. Until one’s beta is large enough to justify trading one lot of a
contract, it cannot be reduced. This is often known as ‘gapping’.

The portfolio start-up problem

One of the difficulties with all the portfolio management techniques de-
scribed above is that they work well only when one has already built a
large portfolio of contracts. If one starts from a position of an empty portfo-
lio then applying pricing against the portfolio methods will tend to lead to
rather extreme prices, and there would be a danger of never doing any trades
as a result. There is no easy answer to this problem. A work-around is to
price the first few contracts using assumptions about what the composition
of the final portfolio will probably be. In this way one can take advan-
tage of likely future diversification of the portfolio and offer much lower
prices.
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8.8 Further reading

The theory behind mean-variance modelling of portfolios comes
from Markowitz (1952) and Markowitz (1959). There are many books in
economics and finance that discuss utility theory and stochastic dominance;
two examples are Wolfstetter (2000) and Elton and Gruber (1995). A re-
cent overview paper is by Tsanakas and Desli (2003). The use of stochastic
dominance theory in the weather market seems to have come from the (no
longer extant) weather derivatives group at Aquila, Inc. We learnt about it
from Heyer (2001).
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An introduction to meteorological forecasts

In this chapter and the next we will consider how weather forecasting and
seasonal forecasting can potentially improve our valuation of weather deriva-
tive contracts. This chapter starts with a discussion of which weather fore-
casts are relevant to weather derivatives, and how these forecasts are made.
We discuss forecasts of the expected temperature first, and forecasts of the
whole distribution of future temperatures (probabilistic forecasts) after that.
In each case we describe how to compare two forecasts to find out which is
better, and briefly mention statistical methods with which one can try to im-
prove forecasts. In the second part of this chapter we give a brief description
of seasonal forecasts.

It is interesting to note that weather is somewhat different from financial
market prices in the extent to which it is predictable. Forecasts of changes
in financial market prices are possible, and may be successful, but there is a
feedback between the forecast and the price, which means that, over time,
all forecasting systems are likely to fail. Weather, on the other hand, is not
affected by weather forecasts, and the dynamics of weather is constant.1

This allows forecast systems to be constructed that will continue to make
useful predictions now and into the future. There is, however, a parallel
between the unpredictability of changes in market prices and weather in
that changes in expected weather are unpredictable. We have touched on
this idea in chapter 5 and will elaborate on it further in chapter 10, as it
has some useful applications.

9.1 Weather forecasts

We will now look in some detail at weather forecasts – that is, forecasts that
cover the immediate future up to around fifteen days.

1 At least on the timescales that we are interested in.
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9.1.1 Physical background

Meteorological forecasts are possible because of the predictability of the
physical processes that drive the weather and climate. In the case of weather
forecasts the dominant process that creates predictability is the dynamics
of air masses in the atmosphere. Fifteen-day weather forecasts that are on
average better than either random guessing or predictions of ‘normal’ con-
ditions are possible mainly because it is possible to predict the motions of
large air masses around the planet that far in advance. Other relevant phys-
ical processes are solar radiation, the behaviour of clouds, the capacity of
the ground to retain heat and moisture, and the effect of the ocean on the
atmosphere.

9.1.2 Forecasting methods

Most weather forecasts are produced by dynamical models of the atmosphere
known as atmospheric general circulation models (AGCMs). These models
are based on discrete numerical methods for attempting to solve the con-
tinuous equations that are believed to govern large-scale atmospheric flows.
The calculations are made on a grid that divides the whole global atmo-
sphere into boxes with perhaps a hundred values in the east–west direction,
a hundred values in the north–south direction and twenty levels in the ver-
tical. The models step forward in time with steps of around ten minutes.
In addition to those parts of the model explicitly representing atmospheric
dynamics, there are statistical representations of clouds and other processes
that are too small or too fast to be resolved by these discrete spatial and
temporal grids.

To make a prediction the models are started off from a best guess of the
current state of the atmosphere. This best guess, known as an ‘analysis’,
is based on a combination of previous forecasts and recent measurements.
Much of the time and effort spent in making a forecast is involved in cre-
ating this initial state. The forecast is then produced by integrating the
equations of the model forward in time, generating simulations of subse-
quent atmospheric states. At this stage the forecast consists of predictions
of atmospheric variables such as temperature, pressure and wind on the
grid of the numerical model. The final stage of making the kinds of predic-
tion that are useful for the weather derivatives industry is that these grid
forecasts are downscaled, using statistical methods, to produce predictions
at individual locations, such as at the meteorological station at London’s
Heathrow Airport.
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Ensemble forecasts involve running an AGCM a number of times in dif-
ferent configurations. This then gives an ensemble of alternative forecasts,
and the mean of this ensemble is almost always a better forecast than any
of the individual members. The different configurations in the ensemble are
usually created by varying the initial conditions slightly to represent the
uncertainty in the estimates of the current state of the atmosphere. It is
also possible to create different configurations by perturbing the physical
representations in the model using random numbers.

9.1.3 The leading models

At the time of writing, the leading ensemble weather forecasting systems are
(in alphabetical order):

� CMC (Canadian Meteorological Centre), based in Canada (http://www.msc-
smc.ec.gc.ca/cmc/op systems/global forecast e.html);

� ECMWF (European Centre for Medium-range Weather Forecasting), based in
the United Kingdom (http://www.ecmwf.int);

� NCEP (National Centers for Environmental Prediction), based in the United
States (http://www.emc.ncep.noaa.gov/gmb/ens/).

The leading single forecast systems (again in alphabetical order) are:

� Canadian (http://www.ec.gc.ca);
� DWD (Deutsche Wetterdienst) (http://www.dwd.de);
� ECMWF (http://www.ecmwf.int);
� JMA (Japan Meteorological Agency) (http://www.jma.go.jp);
� Meteo-France (http://www.meteo.fr);
� NCEP (http://www.emc.ncep.noaa.gov/gmb/ens/);
� UKMO (United Kingdom Meteorological Office) (http://www.metoffice.com).

Both ECMWF and NCEP create a single forecast with their best (highest-
resolution) model, and an ensemble forecast with a slightly inferior (lower-
resolution) model.

We have deliberately not given information about the sizes of the ensem-
bles, the lengths of the forecasts or the frequency at which forecasts are
produced, since these details are liable to frequent change.

Organisations involved in pricing weather derivatives do not usually ob-
tain forecasts directly from the above organisations but buy them through
intermediary commercial forecast providers, who perform value-added ser-
vices such as converting the forecasts on the model grids to site-specific
forecasts. Users of forecasts do occasionally buy forecasts directly from the
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modelling agencies listed above and produce their own site-specific forecasts,
but this is a costly and difficult activity.

Commercial forecast providers typically use a selection (but seldom all) of
the models listed above to produce the forecasts that they sell. The NCEP
forecasts are the most commonly used, mainly because they are available
free of charge, and, at this point, are the longest. The ECMWF forecasts
are often believed to be the best because the ECMWF has the largest en-
semble and the highest resolution models. However, the ECMWF forecasts
are expensive.

9.1.4 Downscaling

The process by which forecasts on a dynamical model grid are converted
to forecasts at specific physical locations is known as ‘downscaling’. The
simplest methods for downscaling involve linear regression models between
AGCM grid values and observed values (Leith, 1974). It is also possible
to convert model values to site-specific forecasts using subjective methods,
and this is what a number of forecasting agencies employ meteorological
forecasters to do. The argument for subjective methods is that a skilled
forecaster can learn which models do well in certain weather situations, and
what types of errors the various models typically make, and adjust for those
more efficiently than objective algorithms can.

9.1.5 An example forecast

For all our illustrations of weather forecasts we will use ECMWF zero- to ten-
day ensemble forecasts for London Heathrow for 2002.2 These forecasts have
been downscaled to the London Heathrow location using linear interpolation
from the model grid, but with no regression or bias correction. We calculate
the mean of this ensemble forecast as an example of a single forecast.

9.1.6 Forecast terminology: lead time, target day

and forecast day

Imagine that today is a Monday, and we obtain a forecast early in the
morning that predicts the weather over the next few days. The first day of
the forecast will be a forecast for today, which we will refer to as a lead
0 forecast. The forecast for Tuesday will be lead 1, etc. The day on which

2 Kindly provided to the authors by Ken Mylne and Caroline Woolcock.
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the forecast is made (Monday in this case) is the ‘forecast day’. The day
being predicted we will call the ‘target day’. The number of days in between
the target day and the forecast day is the ‘lead time’.

9.2 Forecasts of the expected temperature

The simplest kind of meteorological forecast is a single number (for example,
that the day after tomorrow will be 15◦C in London), and we will start by
considering this type of forecast. Forecasts for general use do not usually
specify a very precise location or precisely defined weather variable. Weather
derivatives, however, are based on precisely defined measurements made at
individual stations, and consequently the forecasts used in weather derivative
pricing need to reflect that. For example, the forecast might be one for
London Heathrow, weather station WMO 03772, maximum temperature
between 9 a.m. and 9 a.m. the following day.

Forecasts are sometimes presented as anomalies, and such anomaly fore-
casts are often much easier to understand than full-field forecasts. An
anomaly forecast would say that tomorrow is going to be 3◦C warmer than
normal, rather than just 15◦C. However, there is a lot of subjectivity about
how ‘normal’ is defined. If you receive an anomaly forecast it is crucial to
understand what normal, or climatology, has been used. The common me-
teorological practice of using climatologies based on thirty-year periods can
be misleading, since almost all measured temperature series show upward
trends and will appear warm relative to such a long-term average. Use of
the detrending and deseasonalisation methods described in chapters 2 and 6
may be a more reasonable way to define anomalies.

Figures 9.1, 9.2 and 9.3 show forecasts from our example data. In each
figure the left panel shows full values and the right panel shows anomalies,
the climatological mean is shown as a solid straight line and the climatolog-
ical range (plus and minus two standard deviations) is shown using straight
dotted lines. Figure 9.1 shows a ten-day forecast for a fixed forecast day. The
solid line shows the forecast and the dotted line the actual. We can see that
the forecast starts off well, does poorly in the mid-range and, perhaps by
chance, does well at the end. Figure 9.2 shows fifteen days of forecast for a
fixed lead time of two days – i.e. the forecasts shown were made on different
days, but were all two-day forecasts. We can see reasonably good agreement
between the forecast and the actuals, as would be expected for such a short-
lead forecast. Figure 9.3 shows ten days of forecast for a fixed target time –
i.e. all the forecasts shown are attempting to predict the temperature on one
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Figure 9.1. An example forecast (solid line), with climatological mean and
range, and observed temperatures (dotted line), for a fixed forecast day.
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Figure 9.2. An example forecast (solid line), with climatological mean and
range, and observed temperatures (dotted line), for a fixed lead time of
two days.

particular day, and as we move across the graph from right to left we get
closer and closer to the day itself.

9.2.1 The interpretation of single forecasts

What does a single temperature forecast mean? Is it the most likely temper-
ature? Is it the mean of the possible distribution of temperatures? Or is it
something else? Very often meteorological forecasts are provided without a
clear mathematical definition of what they represent. This may be adequate
for many purposes, but is certainly not adequate for weather derivative pric-
ing. For our purposes it is most useful if single forecasts represent the mean
or expectation of the distribution of possible future outcomes. Fortunately,
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Figure 9.3. An example forecast (solid line), with climatological mean and
range, and observed temperatures (dotted line), for a fixed target day.

it is possible to check whether a forecast represents the mean, and, if it does
not, to correct it so that it does; this will be described in section 9.4.

9.2.2 Ensemble means

If we take an ensemble forecast and calculate the mean of the ensemble at
each lead time this usually turns out to be a better single forecast than
the individual ensemble members. This is because the forecast errors in the
different members of the ensemble are, typically, reasonably independent,
and so the error of the mean is smaller than the error of an individual
member of the ensemble.

Very often the single forecasts provided by forecasting agencies are actu-
ally derived from a combination of ensemble means and single forecasts from
higher-resolution models. At shorter leads the higher-resolution models tend
to be more useful, while at longer leads the ensemble mean may be more
useful.

Figure 9.4 shows an ECMWF ensemble forecast made on 1 January 2002
with target days from 1 January to 10 January, along with the actual out-
come. It is tempting to try and interpret the spread of the ensemble members
as indicating the range of possible outcomes, but this is not advisable until
corrections have been applied. This is discussed further in section 9.5.

9.3 Forecast skill

As we have seen above, forecasts can be obtained from a number of different
sources. Users of forecasts thus need to be able to compare forecasts to work
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Figure 9.4. An example of an ensemble forecast. The spread of the members
of the ensemble should not be taken to indicate the range of possible future
values until further processing has been applied.

out which is best. They also need to be able to determine how many days of
each forecast they should be using, based on how many days of the forecast
are better than use of the climatological mean or random guessing.

We will now imagine that we have a long record of past forecasts with
which to estimate the ‘skill’ of a forecast. We will assume that past skill
implies future skill, and so by comparing past forecasts we can decide which
forecast is likely to perform well in the future. This assumption is reasonable
most of the time, but forecasting systems are continually updated, and one
sometimes finds that a forecast that does well for one period does not do
well for the next. Because of this the decision of which forecast to use needs
to be continually revisited.

9.3.1 Skill measures based on full temperature values

The simplest methods for measuring the skill of forecasts are those that
involve comparisons between the full (not anomaly) temperatures from the
forecast and from the observations. The first such measure that we will con-
sider is the bias, and the others are the root mean square error and the
mean absolute error. Because of the seasonal cycle of temperature it does
not make sense to calculate the correlation between the forecast and the
observed temperatures. This correlation will be dominated by the seasonal
cycle and will usually be very high, since even very poor forecasts can suc-
ceed in predicting warm temperatures in summer and cold in winter. This
problem can be overcome by looking at the correlation between anomalies
rather than full values, which we discuss in section 9.3.5.
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9.3.2 Bias in the mean

The simplest measure of the skill of a temperature forecast is bias in the
mean.

Writing the forecast for temperature on target day i as fi, and the real
temperature for that day as Ti, then the forecast error is given by

ei = fi − Ti (9.1)

Bias in the mean is defined as the expectation of this error, i.e.

E(ei) = E(fi − Ti) = E(fi) − E(Ti) (9.2)

A practical system for estimating the bias in the mean of a forecast is to
take the previous N days of forecast, along with the corresponding N days
of observations, and calculate the mean error during this period, defined as

e =
1
N

N∑
i=1

ei =
1
N

N∑
i=1

(fi − Ti) = fi − Ti (9.3)

Bias often varies seasonally and so N should not be taken larger than,
say, ninety days to avoid the possible cancellation of opposing biases from
different seasons.

Bias has the same units as the forecast, and can take positive and negative
values.

We show the bias for our example forecast in figure 9.5. We see that there
is a large negative bias at all lead times. This is not surprising, since our
forecast was generated directly from an AGCM and had not been previously
corrected for bias. Most commercially available forecasts would (hopefully)
have already been corrected for bias, and so would be close to bias-free.
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Figure 9.5. The bias versus lead time for our example forecast.
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Just because a forecast is bias-free does not mean it is a good forecast: the
climatological mean itself is bias-free, as is the climatological mean plus very
large random numbers with mean zero. Thus we also need to know about
the ability of the forecast to represent fluctuations around the climatological
mean value. The RMSE and MAE tell us something about this.

9.3.3 Mean square error and mean absolute error

The mean squared error (MSE) of a forecast is defined as

MSE = E((fi − Ti)
2) (9.4)

and can be estimated from N days of past forecast as

MSE =
1
N

N∑
i=1

(fi − Ti)2 (9.5)

The RMSE is the square root of the MSE.
The RMSE is an attempt to measure the size of typical forecast errors,

and, as such, has the same units as the forecast itself. The RMSE of using
the climatological mean temperature is σT , which is the benchmark for other
forecasts. A single forecast has no skill if it does not have a lower RMSE
than this.

A (seldom used) alternative to the RMSE is the MAE, defined by

MAE = E(|fi − Ti|) (9.6)

and estimated by

MAE =
1
N

N∑
i=1

|fi − Ti| (9.7)

The MAE is less affected by large errors than the RMSE. Whether this is
good or bad is partly a matter of taste and may vary from one application
to another.

The RMSE is strongly affected by the level of temperature variability at
a particular location. Forecasts at different locations cannot be compared in
terms of their RMSE because they may have different background levels of
weather variability.

Figure 9.6 shows the RMSE for our example forecast (the sloping line)
along with the RMSE for the climatological mean (the horizontal line). We
see that the forecast RMSE is much lower than that for the climatological
mean at short lead times, but gradually approaches the climatological RMSE
and is scarcely any better than climatology at longer lead times.
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Figure 9.6. The RMSE for our example forecast and for the climatological mean.

9.3.4 Skill measures based on anomaly temperatures

Very often one does not need to go beyond the forecast skill measures de-
scribed above in order to decide which the best forecast is, and the simplest
approach is to use the RMSE alone. However, if one wishes to gain further
insight into the performance of a forecast then one can do so by considering
anomalies rather than full temperatures. This then allows us to calculate
the correlation between forecast and observed temperatures.

9.3.5 Anomaly correlation

Anomaly correlation (AC) is based on the linear correlation between ob-
served and forecast temperature anomalies.

The correlation between a forecast f and temperature T is defined by

ρ =
E(f ′T ′)√

(E(f ′f ′))(E(T ′T ′))
(9.8)

where

f ′ = f − E(f), T ′ = T − E(T ) (9.9)

Given N days of past forecasts this can be estimated in terms of forecast
and temperature anomalies fa and T a as

ρ =
∑N

i=1 f
′
iT

′
i√

(
∑N

i=1 f
′2
i )(
∑N

i=1 T
′2
i )

(9.10)
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Figure 9.7. The anomaly correlation versus lead time for our example forecast.

where

f ′
i = fa

i − fa
i , T

′
i = T a

i − T a
i (9.11)

One can also use f ′
i = fa

i − T a
i , which is more convenient since more data

is available to define T a
i than fa

i .
Anomaly correlation is unitless and varies between −1 and +1.
An example is given in figure 9.7, showing the AC as a function of lead

time for our example forecast. We see that our example forecast has very high
initial values for the AC, which decrease gradually throughout the forecast
but are still significantly better than no forecast (which would have an AC
of 0) at the end of the forecast.

Anomaly correlation captures whether the forecast is a good indication of
the direction and relative size of the fluctuations around normal. However,
it does not contain any information about the overall size of anomalies; note
that if we double the amplitude of the forecast anomaly the AC stays the
same. Anomaly correlation is also not affected by a bias: a forecast could
have very good AC but be a very bad forecast because of large bias. Only
if we can assume that bias has been corrected, and that the variance of the
forecast has been set correctly (see the next section for an explanation of
how that can be done), will a forecast with high AC be a good forecast. For
these reasons, anomaly correlation is not terribly useful for our purpose of
comparing forecasts. It is used mainly because it provides a way to present
forecast skill on a universal scale.

9.4 Improving forecasts of the expected temperature

It may be the case that simple statistical processing can improve the fore-
casts that one is receiving. This depends on the extent to which the forecast
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provider has already applied such corrections. The simplest such calibration
scheme is to correct any biases. This can be applied to full temperatures
without the need to define anomalies. More complex schemes based on re-
gression can improve both the bias and the RMSE but usually depend on
using anomalies. We consider both bias correction and regression-based cor-
rection schemes below.

9.4.1 Bias correction

Once we have estimated the bias, it would seem sensible to correct future
forecasts using the estimated value. However, this can actually be somewhat
dangerous because of the risk of overcorrection: correcting a forecast that
has already been corrected. Overcorrection can do more harm than good
by increasing the standard deviation of forecast errors. We distinguish four
typical cases.

� Case 1. If you are reasonably sure that (a) the forecast has not already been
corrected for bias, and (b) the system used to create the forecast does not auto-
matically compensate for bias (for example, if the forecast is interpolated from
AGCM values), then you can assume that the forecast will have a bias. The bias
should be estimated using, say, ninety days of previous data, and then corrected
in future forecasts. Since estimating bias is so simple this can be repeated for
every forecast, so that the estimated bias is always based on the forecasts and
observations over the immediately preceding period.

� Case 2. If you know that the forecast has been corrected for bias, but for the
wrong measurement, then you can assume that the forecast has a bias, and this
should be corrected as in case 1. This situation is a common occurrence: many
forecasts are corrected for bias using data that is measured over a different time
period from that which is used for settling weather derivatives. In particular, many
forecasts are corrected for bias using observed synoptic data, while most weather
derivatives are settled on climate data. This can create bias if the measurement
periods of the two types of data are out of step by a few hours, as they are for a
number of countries.

� Case 3. If you are unsure as to whether the forecast has been corrected for bias
or not, and are not able to get that information from your forecast provider, then
you can test the forecast for significant bias. If a significant bias is detected, then
the forecast should be corrected. The significance level should, perhaps, be set at
around 50 per cent, to reflect the prior uncertainty about whether the forecast
has been corrected or not.

� Case 4. If you are reasonably sure that the forecast has been corrected for bias,
you can either not test for bias (which is rather dangerous, given the many things
that can go wrong in forecast production) or you can test for bias, but this time
using a rather higher significance level, perhaps at 95 per cent. If a significant bias
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is detected, one should not necessarily take this as proof of the existence of bias,
since one in twenty of such tests of even bias-free forecasts would be expected
to give positive results. Rather, one should contact the forecast agency to check
whether the bias really has been removed.

9.4.2 Correcting forecasts using regression

If one is prepared to take the step of converting all values to anomalies then
one can use more sophisticated correction schemes than the bias correction
described above. These schemes are based on regression, and improve not
only the bias but also the RMSE. The simplest such scheme would involve
building a linear regression model between recent observed anomalies and
recent forecast anomalies, where ‘recent’ is usually taken to be around ninety
days.

We write this model as

T a
i ∼ Φ(α + βfa

i , σ) (9.12)

In other words, we model temperature anomalies on day i as being from
a normal distribution with mean given by α + βfa

i , where fa
i is the original

forecast and the standard deviation is given by σ. If α is significantly different
from zero, or β is significantly different from one, then this implies that
correcting future forecasts using this regression will improve them. The case-
by-case considerations for whether to correct the forecast or not are the same
as for correcting the bias alone, as discussed above.

A more complex scheme (Jewson, 2004d) allows us to use more of the
past forecast data by allowing the regression parameters to vary seasonally:

T a
i ∼ Φ(αi + βif

a
i , σi) (9.13)

where

αi = α0 + αssinθi + αccosθi (9.14)

βi = β0 + βssinθi + βccosθi
γi = γ0 + γssinθi + γccosθi

and θi indicates the time of year.

9.4.3 Combinations of single forecasts

Single site-specific forecasts are available from a number of different forecast
vendors. These forecasts are often somewhat different, due to the differ-
ent underlying models and methodologies used to create the forecasts. One
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(cost-effective) approach is to assess the skill of all the available forecasts
over a period of three months and then purchase only the best. An alterna-
tive, and potentially more accurate, method is to attempt to combine the
various forecasts into a single, better forecast. There are various ways this
can be done.

Subjective combinations

A skilful forecaster can learn to recognise those weather situations in which
one forecast outperforms others. He can then make a subjective combination
of the available forecasts, using this knowledge to produce his own best
forecast.

Linear combinations

A more objective (but not necessarily better) way to combine forecasts is
to make a multivariate linear regression model with the various forecast
anomalies as input and a single ‘best’ forecast as output. Such a model
cannot, however, capture situations where one model outperforms the others
in certain weather conditions.

Non-linear combinations

In theory, a better objective approach would be a non-linear model that
could capture the fact that forecast performance is weather-dependent. One
might use a neural network, or other non-linear system, that could ‘learn’
which model does best under certain atmospheric states. However, fitting
such models needs more past forecast data than is usually available.

9.4.4 A summary of the strategy for evaluating

single forecasts

The simplest strategy for evaluating the performance of a single forecast
is to calculate the RMSE alone. If the RMSE is less than the standard
deviation of historical temperatures σT then the forecast has skill and can
be used. The danger of monitoring only the RMSE is that one might miss
a good forecast that has a poor RMSE simply because of bias in the mean,
which can be easily corrected. For this reason it is useful to monitor both
the RMSE and the bias. Finally, the anomaly correlation is a useful general
measure of forecast skill on a universal scale. We emphasise again, however,
that AC should not be used alone, since a high AC does not necessarily
mean that a forecast has a low RMSE, only that it has the potential to have
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a low RMSE if the mean and variance are set correctly (which can be done
using equations (9.12) and (9.13)).

9.5 Probabilistic forecasts

The previous section described single forecasts, representing the mean or
expectation of the distribution of possible future outcomes. A shortcoming
of such forecasts for some applications is that they include no indication of
the uncertainty or the width of the distribution of future outcomes. There
is a big difference between 15◦C +/− 1◦C and 15◦C +/− 15◦C.

A forecast consisting of a mean and a standard deviation about the mean
is an example of a probabilistic forecast – one that provides a distribution
rather than a single value. Given the probabilistic methods used in the val-
uation of weather derivatives it is clear that such methods are likely to be
useful for us. Probabilistic forecasts have recently become available commer-
cially, but the methods for producing them are still developing rapidly and
our own experience suggests that some of these commercial products are
not correctly calibrated and can be used only after further corrections have
been applied. The alternative to buying a probabilistic forecast is to make
one oneself, and, fortunately, this is easy to do.

9.5.1 Making probabilistic forecasts

The most straightforward method for making probabilistic forecasts for tem-
perature is to use the regression models described in section 9.4.2. Previously
we had interpreted the output from equation (9.12) as an optimal forecast
for the expected temperature (α + βfa

i ). However, if we take α + βfa
i as the

mean and σ as the standard deviation, then we have a probabilistic fore-
cast. Such forecasts assume that the conditional distribution of temperature
is normal, which is unlikely to be exactly true. However, we have looked into
this and have found no evidence that it is a shortcoming (Jewson, 2003i), al-
though the results presented in Denholm-Price (2003) suggest that it may be.

An example of a probabilistic forecast created using regression is given in
figure 9.8. The forecast is the same one as shown in the left panel of figure 9.1,
but now the dashed lines show plus and minus two standard deviations.

9.5.2 Measuring the skill of probabilistic forecasts

How should we compare the skill of two different probabilistic forecasts? One
of the most natural measures to use is the probability of the observations
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Figure 9.8. A probabilistic version of the forecast in figure 9.1.

given the forecast. The forecast that gives the higher probability can be
taken as the better one. Interpreted as a function of the unknown parame-
ters, this is what in classical statistics is called the ‘likelihood function’ for
the observations given the forecast (from Fisher, 1912, and Fisher, 1922),
and we have adopted this terminology and refer to this quantity as the like-
lihood.3 Likelihood evaluates the performance of a probabilistic forecast over
the whole range of predicted and observed values, which is typically what we
are interested in. However, it is also possible to define versions of the likeli-
hood that work for special situations, such as predicting the distribution of
temperatures only over certain thresholds.

It is usually more convenient to use log-likelihood rather than likelihood,
since log-likelihood gives a more manageable range of values but still pre-
serves the ranking of forecasts. There are also versions of the likelihood that
normalise by the amount of data used and others that correct for over-fitting,
such as the Akaike Information Criterion, the Bayes Information Criterion
and the Schwartz Criterion (Akaike, 1974).

If one is considering buying a commercial probabilistic forecast product,
one should compare the likelihood from the commercial forecast with that
from the simple regression models described above. Our own experience,
based on work we have done for forecasts for London Heathrow, has been
that the regression models are very hard to beat.

Other skill measures
A host of very specific methods are used in the meteorological research com-
munity for comparing probabilistic forecasts. Most of them are concerned

3 Note, however, that Murphy and Winkler (1987) call this object the calibration.
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with the evaluation of the skill or usefulness of probabilistic forecasts that
predict whether a certain event will occur or not (often called binary fore-
casts), and the rest are concerned with forecasts of the probability of various
categories. Since we are interested in the whole continuous distribution of
temperatures, rather than particular categories, such binary and categorical
forecasts are not particularly useful for the weather derivatives community
(except perhaps in the context of event indices), and so we only mention
these methods briefly here. They include:

� the Brier score (Brier, 1950) – a method for comparing two binary forecasts;
we believe this method can give counter-intuitive decisions as to which of two
forecasts is the better one, and should not be used unless there is a very specific
reason to do so (see Jewson, 2003n);

� ROC curves (Swets, 1988) – a method for calculating the amount of information
in a continuous forecast that involves first converting it into binary forecasts; the
ROC cannot be used for forecast comparison because it is blind to biases;

� Reliability diagrams (Hamill, 1997) – a method for understanding biases in binary
forecasts;

� Cost-loss scores (Richardson, 2000) – a method for evaluating the value of binary
forecasts in a simple decision model;

� Rank probability scores – a method for measuring the skill of multi-category prob-
abilistic forecasts;

� Spread/skill relationships (Talagrand et al., 1997) – a method for identifying the
presence of information in the spread of an ensemble forecast; spread/skill rela-
tionships cannot be used for forecast comparison because they do not consider
actual forecast skill (in the same way that correlation can’t be used for the com-
parison of single forecasts);

� Rank histograms – a method for identifying biases in categorical forecasts.

Details of these measures are given in Jolliffe and Stephenson (2003)
and at http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif web page.
html.

9.6 The use of ensemble forecasts for
making probabilistic forecasts

The regression-based probabilistic forecasts described above predict a dis-
tribution that has dispersion that varies in time with the seasonal cycle.
But on any one particular day of the year the dispersion is fixed. It has
often been suggested that, in fact, forecast skill varies with the state of the
atmosphere – i.e. that some atmospheric situations are more predictable
than others. If this could be predicted one could then make a probabilistic
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forecast in which the dispersion varied with the state of the atmosphere,
and these variations might improve the forecast by increasing the likelihood
achieved.

Ensemble forecasts were initially designed to improve the forecast of the
expected temperature, and they definitely achieve that goal. However, it
has also been shown that the spread of ensemble forecasts contains infor-
mation about how the range of possible outcomes varies with weather state.
This raises the possibility that one could use this spread to make an im-
proved probabilistic forecast that beats the regression models. At this point
it seems that such a forecast has never been achieved, although this is an
active area of research (for us at least). It is, however, difficult to extract
the information from the ensemble spread, and the amount of information
is apparently rather small (see Jewson et al., 2003a, and Jewson, 2003e).
Certainly, without extensive adjustment the raw ensemble spread (as shown
in figure 9.4) should definitely not be used. We have managed to do slightly
better than the regression models by using the ensemble spread as an extra
predictor in in-sample tests, but did not beat regression in a significant way
in out-of-sample tests (see Jewson, 2003m).

9.6.1 Predicting correlations

A complete ten-day probabilistic forecast consists not only of distributions
of temperature for each day but also of dependences between days. For
normally distributed temperatures this means the forecast consists of ten
means, ten variances and a ten by ten correlation matrix. We shall see in
chapter 10 that, ideally, all this information is available when calculating
option prices.

We have looked at predictions of the mean and variance, but where can
we get forecasts of these correlations? The starting point is to save past fore-
casts of the expected temperature and use them to derive the correlations
between the forecast errors for different days. There is also the possibility
that ensemble forecasts can contribute: one can calculate correlations be-
tween the forecasts on different days using the ensemble members. Some of
our own recent research suggests that ensembles can indeed add something
to the predictions of correlations (Jewson, 2003h). In the one example we
looked at (forecasts for temperature at London Heathrow) we found that
the correlation forecasts based on past forecast error statistics could be im-
proved slightly by weighting them with correlation forecasts based on the
ensemble, with relative weightings of 80 per cent on the past forecast error
statistics and 20 per cent on the ensemble. However, in most cases predicting
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these correlations with high accuracy is probably not required, and one can
simply use the past forecast error statistics.

In a similar way, a complete probabilistic forecast for several locations
at once should consist not only of a distribution at each location but also
of dependences between locations. Again, all of this information should,
ideally, be used when estimating the value of weather portfolios, and again
the starting point should be past forecast error statistics.

9.6.2 A summary of the strategy for evaluating

probabilistic forecasts

If one is interested in using probabilistic forecasts then we believe that, at
this point, the best alternative is to produce one’s own using the regression
models described above. Having developed a regression-based forecast one
can use that as a basis for comparison for the forecasts available commer-
cially. Comparison can be performed using the likelihood.

9.6.3 Predicting changes in weather forecasts

A forecast for changes in the expectation cannot be predicted in advance; if
it could then this information should have been included in the forecast (this
is a mathematical tautology). The assumption that available forecasts are
expectations is known as the ‘efficient forecast hypothesis’ (EFH) because
of the similarity to the efficient market hypothesis (EMH) of economics.

Although, if we assume the EFH is true, forecast changes cannot be pre-
dicted in advance, it has been shown that the width of the distribution from
which forecast changes are drawn can be predicted (Jewson and Ziehmann,
2003). Such predictions are based on the ensemble spread; a larger than
usual ensemble spread implies that the size of changes in the ensemble mean
will be larger than usual, and a small ensemble spread that they will be
smaller than usual. As an example, figure 9.9 shows the relationship be-
tween ensemble spread and the standard deviation of the distribution of
forecast changes for the NCEP ensemble forecast for London Heathrow at
lead 4. The relevance of these change predictions is that they can potentially
help us to predict the likely sizes of changes in values of weather derivatives
over short time periods.

Furthermore, it is also possible to predict the ensemble spread in advance.
Such predictions are based on the autocorrelation of the spread in time. As
with forecasts of changes in the mean, such forecasts can, in principle, also
help us predict the sizes of changes in the value of weather derivatives.
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Figure 9.9. The empirical relationship between spread and volatility for
the NCEP forecast. The upper panel shows actual forecast changes as a
function of ensemble spread, and the lower panel shows the standard de-
viation of these changes calculated using a running window with a width
of seventy days. We see that there is a clear relationship between ensemble
spread and the standard deviation of subsequent changes in the ensemble
mean, and this can be used to predict this standard deviation in advance.

9.7 Seasonal forecasts

Whereas weather forecasts attempt to predict the atmosphere over zero to
ten days, seasonal forecasts attempt to predict it over zero to ten months. In
the same way that the weather forecasts described above do not attempt to
predict the variability of temperature during the day, but only the average
temperature over the day, seasonal forecasts do not attempt to predict the
temperature on individual days during the month or season, but the average
of temperature over months and seasons.

These are the most important differences between weather and seasonal
forecasts, but there are also others. One is that weather forecasts show
roughly the same level of skill everywhere in the world. Seasonal forecasts,
on the other hand, work very well in some regions and very poorly in others.
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Another difference is that weather forecasts show roughly the same levels of
skill at all times, while for seasonal forecasts the skill varies hugely both from
season to season and from year to year. A final difference between weather
and seasonal forecasts, linked to the different time scales over which the pre-
dictions apply, is that whereas weather forecasts can be thoroughly checked
and evaluated this is impossible with seasonal forecasts, simply because there
are too few past examples available for analysis. This means that the kinds
of statistical methods that work very well for the calibration of weather fore-
casts (such as the regression models described in section 9.4.2) cannot be
used so easily because the parameters cannot be estimated as reliably. A pure
statistical approach to seasonal forecasting might thus reject the forecasts
as being useless. However, there is a lot of circumstantial scientific evidence
that seasonal forecasts do contain useful information, such as studies from
computer models. The challenge of how to interpret seasonal forecasts is
thus more of a scientific and intuitive problem than a purely statistical one.

We start our discussion of seasonal forecasts with a description of the
physical processes that underly the ENSO phenomenon (ENSO is defined
below) and a discussion of ENSO indices and the impacts of ENSO. We
then move on to a discussion of seasonal forecasts. We will focus on seasonal
predictions of changes in the mean temperature, although it is also possible
in principle for seasonal forecasts to contain information about changes in the
variability, and this would also be useful for weather derivative valuation.
However, as we shall see, even predicting changes in the mean is rather
difficult.

9.7.1 The physical background

The main source of seasonal predictability is a phenomenon known as El
Niño Southern Oscillation. The ‘El Niño’ part of ENSO is a fluctuation in
the surface temperatures of the eastern half of the equatorial Pacific Ocean,
while the ‘Southern Oscillation’ part is a shift in the wind and pressure
patterns over the whole of the Pacific. In fact, the two phenomena are inti-
mately linked through a cycle of cause and effect, and hence they are usually
discussed as part of the same phenomenon: hence the name ENSO.

The fluctuations that make up ENSO can be described and understood
as follows.

The mechanics of ENSO

The eastern equatorial Pacific Ocean surface temperature varies significantly
from year to year on very large spatial scales. Fluctuations away from the
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Figure 9.10. The November to March average temperature for the Niño3.4
region of the equatorial Pacific.

mean temperature often last many months and may cover areas of the ocean
as large as North America. The average temperature in two well-defined
geographical regions of the Pacific known as Niño3 (defined as the region
between 5◦S and 5◦N and 150◦W and 190◦W) and Niño3.4 (defined as the
region between 5◦S and 5◦N and 170◦W and 120◦W) are often used as
indicators of these fluctuations. The fluctuations in these two regions are
highly correlated (see the scatter plots of one against the other in Jewson,
2004e). Figure 9.10 shows historical fluctuations of winter temperatures in
Niño3.4.

During ‘normal’ conditions the equatorial winds blow from east to west,
towards a region of warm ocean, atmospheric convection and heavy rain-
fall situated near Indonesia. The easterly winds tend to reinforce the warm
waters in the west, and the warm waters in the west tend to drive the con-
vection, the rain and the winds, creating a fairly stable and self-reinforcing
pattern. However, this pattern is not completely stable, and occasionally it
breaks down. The eastern equatorial ocean then warms up, and can become
as warm as the western ocean. The rainfall patterns move further to the east
and the winds weaken or reverse. In this new configuration the weaker winds
encourage warmer waters in the east, which in turn supports the changed
convection, rain and wind patterns. It is this changed state that is known
as El Niño, and the opposite state is known as La Niña.

One way to understand El Niño is that the atmosphere and ocean spend
most of their time in the ‘normal’ state described above but occasionally
flip to the El Niño state for a few months before reverting to normal.
The changes into and out of the El Niño state are affected by large, slow-
moving waves in the ocean, and it is the long time scale of these waves that
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Table 9.1. El Niño (left column) and La
Niña (right column) winters since 1950.

El Niño La Niña

1957–58 1954–55
1965–66 1955–56
1968–69 1964–65
1972–73 1970–71
1982–83 1973–74
1986–87 1975–76
1991–92 1988–89
1997–98 1998–99

lead to a partial ability to predict these changes, at least a few months in
advance.

In figure 9.10 we can see that particularly large El Niño events occurred
in the winters of 1982/1983 and 1997/1998.

Almost all El Niño events start in the boreal (northern hemisphere) au-
tumn, peak during the boreal winter, and decay during the boreal spring. A
list of recent El Niño and La Niña winters is given in table 9.1.

9.7.2 The effects of El Niño

The changes in the atmosphere associated with El Niño cause changes in
the weather around large parts of the globe. In particular, El Niño has very
strong effects in other parts of the tropics: this is because atmospheric signals
travel most easily along the equator. Certain parts of South America and
Australia experience very strong El Niño effects, while parts of Africa and
the Indian Ocean also feel some effect.

The impact of El Niño on the extratropics (which is the area currently of
most interest to the weather market) is weaker. Among these weaker signals,
the strongest are those in North America. Many studies have been carried
out to quantify such effects, although precise quantification is very diffi-
cult for a number of reasons, such as (a) every El Niño is slightly different,
(b) there have only been a small number of El Niño events during the last
forty years and (c) the effects are not necessarily simple in structure. How-
ever, the two basic features of the response to El Niño over the United States
during the winter seems to be fairly uncontroversial:

� a warming over most of the northern United States;
� increased rainfall in the southern United States and coastal California.
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There are a number of scientific groups that post maps of these effects
on the Internet, such as http://www.cpc.ncep.noaa.gov/products/analysis
monitoring/lanina.

9.8 Predicting El Niño and its effects

The science of seasonal forecasting can be broken down into two stages. The
first stage is predicting El Niño itself, and the second is predicting the effects
of El Niño. We will see that the first stage is much easier than the second.

9.8.1 Predicting El Niño

Predictions of El Niño, or of the Niño3 and Niño3.4 indices, are made using
many different kinds of models. The simplest models are purely statistical,
such as those of Penland and Magorian (1993). At the other end of the spec-
trum there are complex, coupled ocean-atmosphere simulation models, such
as those of Stockdale et al. (1998), Mason et al. (1999) or Barnston et al.
(2003). In between there are a multitude of hybrid models that combine
dynamical and statistical aspects. A good source of forecasts, and informa-
tion about how the forecasts are produced, is the Experimental Long-Lead
Forecast Bulletin, available at http://www.iges.org/ellfb. Some of the pre-
diction models are better than others, but there is little to choose between
the statistical and the dynamical models, and the best models in each class
do very well. The main characteristics of the predictions these models make
are that predictions that start in summer and autumn perform very well,
with very high levels of skill at three months and significant skill out to six
months or more, while predictions that start in winter and spring perform
much less well. It is fortuitous that it is this way round, since it is the au-
tumn predictions that are the most useful because it is in autumn that El
Niño typically starts to grow.

9.8.2 Predicting the impact of El Niño

Given a forecast for El Niño, what can we say about the likely impacts
on weather in the United States? This is the hard part of the puzzle. One
approach is to attempt to use statistical models that relate Niño3 or Niño3.4
temperatures to the US temperature indices of interest. We have attempted
this ourselves, the results being published in Jewson (2004e). We found
that it is slightly easier to see a relationship with US temperature using
Niño3.4 than Niño3, but that it doesn’t make any material difference if



Predicting El Niño and its effects 217

25 26 27 28 29

41
43

45
47

Nin~o3.4 temp. Nin~o3.4 temp.

Nin~o3.4 temp. Nin~o3.4 temp.

P
or

tla
nd

 te
m

p.

+

+

+

+

+

++

+
++

+

+

+
+ ++
+

+

+

+

+

+

+

+
+

+

+ +

+
+

+

+

+

+

+

+
++

+

+

++

+

25 26 27 28 29

28
32

36

C
hi

ca
go

 te
m

p.

+
+

+

+

+

+
+

+
++

+

+

+ +

++ +

+

+
++

+
+

+

+

+

+ +

+

++ +
+ +

+
+

+

+

+

+
+

+

+

25 26 27 28 29

37
39

41
43

N
ew

 Y
or

k 
te

m
p.

+

+
++

+

++
++

+ +
+

+
+

+
+ +

+

+
+

+

+

+

+

+

+

+
+ ++

+
+

+

+

+

+

+

+

+

+
++

+

25 26 27 28 29

53
55

57
59

T
uc

so
n 

te
m

p.

+

+

+

+

+

+

+
+

++

+++ +

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

++
+

+ +
+

+ +

+

+

+

+
+

+

Figure 9.11. The relationship between the winter temperature in the
Niño3.4 region and the winter temperature in four US cities (November
to March averages).

we use December to February (which is what meteorologists tend to prefer)
or November to March (which is more suitable for the weather derivative
industry). Figure 9.11 shows a scatter plot of Niño3.4 temperatures against
November to March temperatures at four US locations. The conclusions
we draw from these results are that it is not possible to discern a clear
relationship between Niño3.4 and US winter temperatures at these locations,
and that it is not possible to fit a simple statistical model to this data.
In particular, it would not seem reasonable to assume a linear response
of the winter temperature to Niño3.4 temperatures (which would be very
convenient if it were justifiable).

Figure 9.12 looks in more detail at the relationship between Niño3.4 tem-
peratures and temperature in Chicago. We have drawn two vertical lines on
this graph to suggest a possible model for the relationship. It seems that
both El Niño and La Niña lead to warmer temperatures, that there is no
relationship at all for moderate Niño3.4 temperatures, and that the vari-
ability during La Niña is greater than that during El Niño but less than the
climatological variability.

The exact changes in the distribution of winter temperatures, which is
what we would really like to understand, cannot be established very reliably,
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Figure 9.12. The relationship between the winter temperature in the
Niño3.4 region and the winter temperature in Chicago (November to March
averages). The vertical lines are added to suggest a possible statistical
model.

however, on the basis of this data. As a result, we do not feel able to offer
any robust recipes for producing probabilistic forecasts in the same way
that one can for weather forecasts. One has to make a mainly subjective
assessment.

The other approach to modelling the impact of El Niño is to take pre-
dictions from the simulations of the atmosphere in the coupled ocean-
atmosphere simulation models. In addition to forecasting El Niño these mod-
els also include simulations of the atmospheric circulation and temperatures
over the United States. This approach is very promising in the long run,
but is at an early stage of development. We ourselves have not been able to
produce satisfactory predictions in this way. There is much work to be done
in terms of understanding how best to extract the information from the sim-
ulations. For instance, the best predictors for the real winter temperature in
Chicago may not be the winter temperature in Chicago in the model, but
could be the winter temperature at a slightly different location.

9.9 Other sources of seasonal predictability

Our discussion of seasonal predictability has focused on the effects of ENSO.
ENSO is the strongest of the seasonal signals, and the most predictable, but
it is not the only one. Significant amounts of research have gone into trying to
understand and predict the North Atlantic Oscillation (NAO), for instance.
The NAO is a pattern of atmospheric variability that affects many aspects of
the weather in the North Atlantic region. Unlike ENSO, however, the NAO
is almost completely unpredictable. Nevertheless, it may be that a small
percentage of the variability of the NAO is predictable. We consider such
research as preliminary at this stage, but the interested reader may wish to
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investigate further. There are many articles on this subject, such as those
by Qian and Saunders (2003) and Lloyd-Hughes and Saunders (2002).

We note that the methods for portfolio simulation described in chapter 7
naturally incorporate the correlation structure of the NAO, and any other
relevant modes of variability, in the correlation matrices used.

9.10 Further reading

There is a vast meteorological literature on weather forecasting, the models
used for weather forecasting, and methods for the assessment of weather
forecasts. Unfortunately, much of it is printed in academic journals that
cannot easily be obtained by non-academics. Accessible review articles, with
emphasis on the weather market, and many further references, are those
by Roulston and Smith (2002), Dutton (2002) and Banks (2002). Other
relevant articles are those by Dutton and Dischel (2001), Dischel (1998c),
Dischel (1998b) and Dischel (2000).

A good non-mathematical book on meteorology is that by Thompson
(1998) and short overviews of many interesting aspects of meteorology are
given in Banks (2002), Smith (2002), Gibbas (2002) and Dutton (2002). A
discussion of general forecasting issues is given in Roulston and Smith (2002)
and some seasonal forecasting issues are discussed in Shorter et al. (2002).

A recent collection of articles on the assessment of forecast skill is con-
tained in Jolliffe and Stephenson (2003) and general discussion on the eval-
uation of forecasts is given in Livezey (1999). The use of the likelihood
and other information criteria to measure the skill of probabilistic forecasts
comes from Jewson (2003r) and subsequent articles.

We advocate using regression to make probabilistic forecasts, but other
methods have also been suggested, such as the ‘dressing’ method of Roulston
and Smith (2003) and the methods described in Mylne et al. (2002).

Papers on the methods used to generate ensemble forecasts are those
by Toth and Kalnay (1993) and Molteni et al. (1996).

A recent discussion of the causes of variability in the US climate is given
in Rajagopalan and Kushnir (2000). Many articles have been written about
the Pacific Decadal Oscillation (PDO) and the NAO, such as those by
Mantua (2000) and Ambaum et al. (2001) respectively.
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The use of meteorological forecasts in pricing

Chapters 2 to 8 have described methods for the actuarial pricing of weather
derivatives when no meteorological forecasts are available. In practice, these
methods are used when pricing well before the start of a contract. We will
occasionally refer to values calculated in this way as par values. Relevant
meteorological forecasts then start to become available around six months
before the start of contracts in the United States and around three weeks
before the start of contracts in Europe.

The availability of skilful forecasts changes the methods that one must
use for the pricing of weather contracts. A skilful forecast means that the
range of meteorological outcomes that are considered possible is reduced,
and their probabilities changed. When the forecasts are weak this reduction
is small, and when the forecasts are highly skilful this reduction is large.

The simplest case of forecast-based pricing is when a forecast is available
that covers the whole remaining period of a contract. The contract can then
be priced using the forecast alone. In many cases, however, the available
forecasts will not cover the whole remaining period of the contract, and a
mix of historical data and forecast must be made. As we will see below,
making this mix in an accurate way is not always a trivial exercise.

Unfortunately for those involved in the development of algorithms to price
weather derivatives, meteorologists tend to provide weather and seasonal
forecasts separately, and in very different formats. Often they come from
entirely different sources. As an example, weather forecasts usually come as
daily values, while seasonal forecasts are more often presented as monthly
values. Trying to combine these forecasts into a single consistent forecast
over all timescales is one of the challenges that must be addressed.

We will approach the topic of how to use forecasts in pricing models by
considering weather forecasts first. We will then very briefly consider the use
of seasonal forecasts, which is of primary relevance only to contracts based

220
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in the United States and, to some extent, Japan. One of the methods we
present for the merging of forecasts and historical data is a general method
that can, in principle, be used to combine all weather forecasts, seasonal
forecasts and historical data.

One final issue is the question of how much of a forecast to use. If a fifteen-
day weather forecast is available, should we use all of it or should we use only
the first five, or maybe ten, days? If we calculate the forecast skill diagnostics
described in chapter 9, then we know for how long the forecast is better than
using distributions derived from historical data. This is how much of the
forecast we should use. The methods described below have all been designed
to incorporate forecasts in this way and, thus, to get the greatest possible
information from the forecasts. Using any less of the forecast than this will
simply give less accurate results. For weather forecasts this typically means
using around fifteen days. For seasonal forecasts the number of months to
use is more variable, and will depend strongly on location.

10.1 The use of weather forecasts

We will start by considering the simplest case of using weather forecasts
in weather derivative pricing, which is the calculation of the fair price of a
linear swap contract on a separable and linear index (e.g. a CAT index). We
will see that, in this case, only forecasts of the expected temperature need
to be used and probabilistic forecasts are not necessary.

The next special case we consider is the calculation of the fair price of a
linear swap contract on a separable non-linear index (e.g. HDDs). Probabilis-
tic weather forecasts must now be used, but there is no particular difficulty
in merging historical data and the probabilistic forecast.

Finally we consider the general case, which includes the calculation of
the fair price for all other contracts (non-linear swaps and options) and the
calculation of the distribution of outcomes for all contracts. This is the most
difficult case, and we will present three techniques for solving this problem.

The first technique is based on the index modelling methods. These are
the most commonly used methods for pricing weather derivatives, and so it
makes sense to attempt to extend them to include forecasts. We will present
a straightforward way in which forecasts can be used in conjunction with
such models. The second technique we present is based on the daily mod-
elling of temperature. In some cases, merging forecasts with daily models
may be more accurate than merging them with index models. However, the
methods that result are reasonably complex. Finally we present an entirely
different approach, which makes a number of rather strong assumptions but,



222 Using meteorological forecasts in pricing

as a result, is able to incorporate forecasts into pricing in a very simple and
intuitive way. This final approach is of particular interest as it leads on
directly to much of the discussion on arbitrage pricing in chapter 11 and
risk management in chapter 12, and uses methods that are very similar to
methods used in the wider financial community for modelling share prices.
This method allows the use of single rather than probabilistic forecasts for
all types of contracts and for the calculations of both the prices and distri-
butions of outcomes.

10.2 Linear swaps on separable linear indices

We now consider the estimation of the fair strike of a linear swap on a
separable linear index based on daily temperatures. This includes linear
swaps on CAT indices, and also linear swaps on HDDs and CDDs in those
cases where there is no chance of the temperature crossing the baseline. By
definition, the fair strike of a linear swap is given by the expectation of the
index distribution

fair strike = E(x) (10.1)

Since we are considering a separable index, we can write the aggregate
contract index x in terms of daily indices z:

x =
Nd∑
i=1

zi (10.2)

and hence the expected index is the sum of the mean daily indices:

E(x) =
Nd∑
i=1

E(zi) (10.3)

For a CAT index

zi = Ti (10.4)

If we are part way through the contract then evaluating E(x) involves us-
ing measured temperature, forecasts, and expectations from historical data.
If we are using a forecast with Nf values in it, then on day N0 of the contract

E(x) =
Nd∑
i=1

Ti (10.5)

=
N0−1∑
i=1

T hist
i +

N0+Nf−1∑
i=N0

mfc
i +

Nd∑
i=N0+Nf

mclim
i
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where T hist
i are the known historical temperatures, mfc

i are single forecasts
giving the expected temperature over the forecast period, and mclim

i are
climatological mean temperatures from historical data.

We see that in this case there is no need for probabilistic forecasts since
only the expected temperature is needed. The third term in the above sum
can be estimated using either burn or daily modelling methods. For daily
modelling methods, mclim

i is just the seasonal cycle of temperature; statistics
of the anomalies are not important in this case.

As the contract progresses the number of days in the first sum increases
while the number of days in the third sum decreases. From some point on
the third sum disappears altogether and the expected index is estimated
from forecasts alone. As the contract progresses still further the number of
days of forecast used reduces until the outcome of the entire contract is
known.

10.3 Linear swaps on separable indices

We now consider a slightly more complex case in which the index is not
necessarily linear. This now includes HDD and CDD indices for which there
is some chance that the temperature will cross the baseline. We can no longer
express the mean of the daily index in terms of the mean temperature, but
rather it becomes a function of the whole distribution of daily temperature,
f(T ):

E(zi) =
∫ ∞

−∞
fi(T )zi(T )dT (10.6)

For normally distributed temperatures this integral can usually be eval-
uated in terms of the mean and the standard deviation of temperature. For
HDDs

E(zi) =
∫ ∞

−∞
φi(T )zi(T )dT

=
∫ T0

−∞
φi(T )TdT

= (T0 −mi)Φi(T0) + siφi(T0) (10.7)

where Φi is the cumulative normal distribution of temperatures on day i,
1
si
φi is the density of temperatures on day i, and mi and si are the mean

and standard deviation of temperatures on day i.
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Fair value for the swap contract for an arbitrary distribution of temper-
ature is now given by

E(x) =
N0−1∑
i=1

zi(T hist
i ) +

N0+Nf−1∑
i=N0

∫
fi(T )zi(T )dT

+
Nd∑

i=N0+Nf

∫
fi(T )zi(T )dT (10.8)

The first term is the accumulated index due to historical temperatures.
The second term is the expected contribution due to forecasts, and the third
term is the expected contribution due to temperature beyond the end of the
forecast. The distribution of temperature in the second term can be taken
from a probabilistic forecast, and in the third term from historical data. The
days in the third term could be treated together as one block, and the mean
of the aggregate index estimated from historical values of the aggregate index
(i.e. index modelling, but for part of the contract only). Alternatively, the
distribution of temperature on each day could be estimated (i.e. using the
seasonal cycle and marginal distribution fitting steps of the daily modelling
approaches of chapter 6).

For normally distributed temperatures and for HDDs this equation be-
comes

E(x) =
N0−1∑
i=1

max(T0 − T hist
i , 0) +

N0+Nf−1∑
i=N0

(T0 −mfc
i )Φi(T ′

0) + sfci φi(T ′
0)

+
Nd∑

i=N0+Nf

(T0 −mclim
i )Φi(T ′′

0 ) + sclimi φi(T ′′
0 ) (10.9)

where T ′
0 = T0−mfc

i

sfc
i

and T ′′
0 = T0−mclim

i

sclimi
.

The probabilistic forecast comes in via the mean and the standard devia-
tions of temperature on each day during the forecast (mfc

i and sfci ), and the
historical data used in the third term comes in via the mean and standard
deviation of historical temperatures (mclim

i and sclimi ).

10.4 The general case: any contract, any index

Thus far, the incorporation of forecasts into pricing has been fairly simple.
However, the two cases we have considered are special cases because they
involve only the calculation of the expectation of the index distribution
and only for separable indices. As soon as we need to estimate the stan-
dard deviation or shape of the index distribution, or the expectation for a
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non-separable index, things become more difficult. This is the case when we
need to calculate the distribution of outcomes of a linear swap contract, or
when we need to calculate anything about a non-linear contract, including
the expected pay-off of all option types. To illustrate the issues, we will ini-
tially focus on calculating the expected pay-off of an option on a separable
linear index (e.g. a CAT index) with normally distributed temperatures.
The expected pay-off depends on both the expectation and the standard
deviation of the index. Estimating the expected index is easy, as we have
seen in the previous two examples. It is estimating the standard deviation
of the index that creates the difficulty.

10.4.1 Estimating the index standard deviation

The standard deviation of the index is the square root of the variance of
the index. For a separable index the variance is the sum of the terms in
the covariance matrix of daily index values during the contract period. For
a CAT index (the example we will use for illustration) it is the sum of
the terms in the covariance matrix of the daily temperatures. For a contract
covered partly by forecast and partly by historical data we can split the terms
in the covariance matrix into those that involve the forecast only, those that
involve historical data only, and those that involve a mix of historical data
and forecast.

σ2
x =

Nd∑
i=1

Nd∑
j=1

E(T ′
iT

′
j)

=
N0+Nf−1∑

i=N0

N0+Nf−1∑
j=N0

E(T ′
iT

′
j) +

Nd∑
i=N0+Nf

Nd∑
j=N0+Nf

E(T ′
iT

′
j)

+ 2
N0+Nf−1∑

i=N0

Nd∑
j=N0+Nf

E(T ′
iT

′
j)

=
N0+Nf−1∑

i=N0

N0+Nf−1∑
j=N0

cij +
Nd∑

i=N0+Nf

Nd∑
j=N0+Nf

cij + 2
N0+Nf−1∑

i=N0

Nd∑
j=N0+Nf−1

cij

=
N0+Nf−1∑

i=N0

N0+Nf−1∑
j=N0

sfci sfcj ρij +
Nd∑

i=N0+Nf−1

Nd∑
j=N0+Nf−1

sclimi sclimj ρij

+ 2
N0+Nf−1∑

i=N0

Nd∑
j=N0+Nf−1

sfci sclimj ρij

= σ2
fc + σ2

pfc + σ2
cov (10.10)
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The first of these three terms (σ2
fc) depends on forecast variances and

correlations between temperatures during the forecast period. As we saw in
section 9.5, forecast variances are produced as part of a probabilistic forecast,
and in section 9.6.1 we also discussed how correlations can be predicted.

The second of these terms (σ2
pfc) represents climatological temperature

variances and correlations. This term can be estimated most easily from
historical values of the index for this period (i.e. index analysis). It can
also be estimated from daily historical temperature data or from a daily
temperature model fitted to historical data, such as the ARFIMA model.
As usual, the daily modelling approach would be recommended when the
number of days in this term is small.

The third of these terms (σ2
cov) represents forecast variances, climatologi-

cal temperature variances, and correlations between temperature during the
forecast and the post-forecast period. This third term complicates matters
significantly: if it were not for this term we could model the index variance
as the sum of the index variance due to the forecast period (which can be
calculated from a probabilistic forecast) and the index variance during the
post-forecast period (which can be calculated from historical data). How-
ever, the dependences between these two periods, combined with the inher-
ent positive autocorrelations of temperature, mean that this would always
underestimate the total index variance.

An expression similar to equation (10.10), but slightly more complex, can
also be derived for degree day indices. The essence is the same: the total
variance of the index depends not only on the variances of the index during
the forecast and post-forecast periods but also on the covariances between
these periods.

10.4.2 Estimating the size of the covariance term

How large is this awkward forecast/post-forecast covariance term? If it is
small then perhaps it could be neglected without harm and the modelling
could be significantly simplified. Results of an estimation of the size of this
term using simulations are shown in figure 10.1, upper panel. We see that,
the longer the post-forecast period, the lower the correlation between the
two periods – as would be expected. Most of this correlation comes from the
long-memory property of temperature variability, which has been described
in chapter 6. Figure 10.1 also shows the values for the correlation for d =
0.0, 0.1 and 0.2.

Figure 10.1, lower panel, shows the size of this correlation effect in terms of
the percentage underestimation of the total index variance that would result
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Figure 10.1. The upper panel shows the correlation between cumulative
temperature over a period of eleven days and a subsequent period of N
days, where N is given on the horizontal axis. The correlations are based
on (a) simulations from the ARFIMA temperature simulation model fitted
to Chicago temperatures and (b) correlations from simulations based on
the same model but with d readjusted to have the values 0.0, 0.1 and 0.2.
The lower panel shows the error in the estimate of the standard deviation
of cumulative temperature over a period of N + 11 days that is made if the
first eleven days, and the subsequent N days, are assumed to be indepen-
dent. The error is expressed as a percentage of the total actual standard
of the whole period. All the calculations were based on temperatures sim-
ulated from the ARFIMA temperature simulation model fitted to Chicago
temperatures, but with the value of the long-memory parameter d reset to
d = 0.0, 0.1, 0.2.

from assuming that the forecast and post-forecast periods are independent.
For each value of d we can see that the maximum error in the standard
deviation would occur for a post-forecast period of length around ten days.
The maximum at ten days can be understood from the expression for the
total variance of the index. The error in the estimation of the total variance
is given by

error = σ2 − σ2
fc − σ2

pfc = σ2
cov = 2ρσfcσpfc (10.11)

where ρ is the correlation between the forecast and post-forecast periods,
as shown in figure 10.1, upper panel. We see that the error depends both
on the correlation between the forecast and post-forecast period and also
on the size of the standard deviation of the post-forecast period. For post-
forecast periods of much less than ten days the standard deviation of the
post-forecast period is small and so the error is small. For periods of much
greater than ten days the correlation is small, and so the error is small. For
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ten days both the standard deviation and correlation have reasonable values,
and the product of the two attains a maximum.

To summarise this section, we know that estimating the fair price of a
non-linear weather contract involves estimating the distribution of the in-
dex. Estimating the expectation of this distribution is easy, but estimating
the standard deviation is much harder since it depends on autocorrelations
of temperature. The simplest model for estimating the standard deviation
would be to assume independence between the forecast and post-forecast
periods. However, we have shown that making such an assumption does not
give an accurate estimate of the standard deviation of the index in all cases,
and is least accurate when the contract extends around ten days beyond
the end of the forecast. We conclude that the assumption of independence
between the forecast and post-forecast periods may lead to underestimation
of the index standard deviation and should be avoided if a high level of
accuracy is required.

Non-normal temperatures

The above discussion has focused on normally distributed temperatures to
illustrate the issues that arise in trying to estimate the index standard de-
viation for the whole of the contract period. The same issues also apply
to non-normal temperature distributions: the distribution for the whole pe-
riod depends not only on the distributions of the forecast and post-forecast
period but also on the dependences between temperatures in those two pe-
riods. Equation (10.10) applies to non-normal temperatures too. The only
difference is that we may need more than the standard deviation to describe
the whole distribution shape.

We now present a number of methods that allow us to combine prob-
abilistic forecasts and climatological models in such a way as to calculate
estimates of the distribution of the index. Estimates of the index distribution
then allow us to calculate prices for weather derivatives.

10.4.3 Short contracts

The simplest case occurs when the remaining part of the contract is short
enough to be covered entirely by a probabilistic forecast. The contract can
then be priced as follows.

� a probabilistic forecast is created for the period in question, using the methods
discussed in chapter 9; in particular, this forecast should include forecasts of the
correlations between days;
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� the probabilistic forecast represents a single multivariate distribution of temper-
atures over the period of the contract; a large number of samples are taken from
this distribution;

� each of these samples is then converted to an index value.

It has been suggested that ensemble forecasts could be used directly, without
going through the stages of creating a probabilistic forecast (see Smith et al.,
2001, and Palmer, 2002). This has been called ‘end to end’ use of ensembles.
However, we would note that
� the members of the ensemble would have to be calibrated in terms of both mean
and spread;

� it does not seem to be possible to calibrate the correlation, and the correlation
inferred directly from the ensembles does not seem to be as accurate as that
inferred from past forecast error statistics (as discussed in chapter 9); as a result,
the correlations used in this method are likely to be less accurate than those from
the probabilistic forecast route;

� the ensemble sizes are small relative to the typical sizes of Monte Carlo simulations
used in weather pricing, and do not do a good job of sampling the tails.

10.4.4 Long contracts: methods based on index modelling

We now proceed to discuss the general question of how to price contracts for
which the remaining period is longer than available probabilistic forecasts.
We will start by describing methods that are based on index modelling.

The part of the contract covered by a probabilistic forecast can be anal-
ysed as in section 10.4.3 – i.e. we sample the probabilistic forecast and
convert into index values. This gives an index distribution for that part of
the contract and an estimate of σ2

fc from equation (10.10). The part of the
contract not covered by a forecast can be analysed using index modelling
based on historical data. This gives an index distribution for that part of the
contract, and an estimate of σ2

pfc from equation (10.10). These two index
distributions can then be combined to give an estimate for the index distribu-
tion for the whole contract period. For normal distributions the distributions
can be combined by adding the means and the variances. For non-normal
distributions the best method for combining distributions is simply to sim-
ulate from both distributions (e.g. a thousand values from each) and sum
the simulated values in pairs (creating, e.g., a million simulated values for
the combined distribution).

The shortcoming of this method is that it has neglected the third term in
equation (10.10): σ2

cov. Since weather is almost always positively correlated
in time, this will lead to an underestimate of the total spread of the index,
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as we have explained in section 10.4.1. There are two ways that this problem
can be addressed.

Ignore the cross-correlation term

Notwithstanding the discussion in section 10.4.2, ignoring the covariance
may not be a terribly bad thing to do in certain circumstances, especially
when (a) the location in question shows only weak long memory and (b)
the remaining contract period is either very long or very short relative to
the length of the forecast. The covariance term σ2

cov is, in most cases, the
smallest of the three terms in equation (10.10).

Estimate the covariance term using historical indices

Alternatively, we can estimate the covariance term. Historical indices can
give us an estimate of the correlation between the forecast and post-forecast
periods that, along with the standard deviations of the distributions for
the two periods, can be used to estimate the cross-correlation term using
equation (10.11). The variance of the total index distribution can then be
increased by this amount. Note that this can be applied even in cases in
which the index distribution, or the distributions for the two parts, are not
normal.

10.4.5 Long contracts: methods based on daily modelling

We now describe how weather forecasts can be combined with methods based
on daily modelling. Combining forecasts with daily models is perhaps the
most elegant way to incorporate forecasts into weather pricing because of
the natural way that daily models cope with the issue of time dependence
and the evaluation of the σ2

cov term in equation (10.10). However, as we will
see the methods – although elegant – are reasonably complex. Implementing
these methods is probably only justifiable economically if an organisation is
trading options very frequently on the basis of forecasts.

Pruning

The so-called ‘pruning method’ (due to Jewson, 2000, and Jewson and Ca-
ballero, 2003b) works as follows. First, we use a daily temperature model
of the sort discussed in chapter 6 to generate a large number of tempera-
ture tracks, which cover the whole remaining period of the contract. These
tracks should be initialised from the most recent historical data. We also
calculate the probability density associated with each track from the daily
temperature model. Second, we calculate another probability density for
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each track using a probabilistic forecast. These probabilities contain the
forecast information. Third, we convert each track into an index value. The
index values are weighted using a weight that is proportional to the second
(forecast) density divided by the first (historical) density. The weighted in-
dex values then define the index distribution. In statistics the weighting of
simulations in this way is called ‘importance sampling’ (Ripley, 1987).

This method is not limited to normally distributed temperatures; if the
daily model is being used on temperature that has previously been trans-
formed using a distribution transform, then the same transform should also
be applied to the forecast before calculating the weights and all simulated
temperatures should be transformed back to the correct distribution before
calculating index values.

The advantage of the pruning method is that the covariance term between
forecast and post-forecast periods is incorporated automatically because we
are using temperature tracks that run throughout the remaining period of
the contract. This method can, in principle, be adjusted to include both
weather forecasts and seasonal forecasts simultaneously, and can thus be
considered both the most accurate and the most flexible of all the methods
we will present for pricing with forecasts.

The mathematical basis for the pruning method is the following.
Let p(T) be the pay-off due to temperature track T, f(T) be the clima-

tological probability of T, and g(T) be the forecast probability of T. Then
the climatological expected pay-off µclim

p is given by

µclim
p =

∫
p(T)f(T)dT (10.12)

where the integral is over all possible tracks for T. The forecast expected
pay-off µfc

p is given by

µfc
p =
∫

p(T)g(T)dT (10.13)

To evaluate µclim
p we choose a set of tracks that are equally spaced along

the climatological CDF, F (T). In other words, all the values of dF (T) =
f(T)dT are equal, so dF (T) = dF = 1

N where N is the number of tracks.
The integral becomes

µclim
p =

∫
p(T)dF (10.14)

≈ 1
N

∑
p(T) (10.15)

where the sum is over all the tracks in a discrete set of possible tracks.
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If we evaluate µfc
p using the same set of tracks,

µfc
p =
∫

p(T)g(T)dT (10.16)

=
∫

p(T)g(T)
dF

f(T)
(10.17)

=
∫

p(T)
g(T)
f(T)

dF (10.18)

=
∫

p(T)w(T)dF (10.19)

≈ 1
N

∑
p(T)w(T) (10.20)

where the weights w(T) are given by

w(T) =
g(T)
f(T)

(10.21)

In other words, we sum the pay-offs for all possible tracks, but with weights.
The weighting to be used is the forecast probability density of a certain track
divided by the climatological probability density of that track.

Grafting

An alternative to the pruning method is ‘grafting’ (Jewson and Caballero,
2003b). In the grafting method a probabilistic forecast is sampled a large
number of times to create realistic temperature tracks during the forecast
period. These temperature tracks are then used as initial conditions for a
daily model, which is integrated to the end of the forecast period. As with
pruning, the troublesome cross-correlation term is incorporated automati-
cally by the algorithm.

Grafting has the advantage over pruning that it is slightly simpler, since
it does not involve calculating probability densities. It has the disadvantage,
however, that it is not easy to include seasonal forecasts as well.

10.4.6 Methods based on Brownian motion

The final method that we will describe for incorporation of forecasts into
pricing is markedly different from the previous methods and is much simpler.
It relies on the following strong assumptions:

� that the index is separable and linear;
� that temperature, and forecasts of temperature, are normally distributed;
� that the statistics of forecast uncertainty are not flow dependent;
� that the forecasts are efficient (according to the definition of section 9.6.3).
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Although these assumptions are quite restrictive, and eliminate many kinds
of contracts, they are a good approximation for almost all contracts traded
in the secondary market.

Since we assume that the temperature is normally distributed and the
index is separable and linear, the index distribution must be normal, and
we need only consider the expectation and the standard deviation of the in-
dex rather than the whole shape of the distribution. The expectation of the
index can be calculated using a single forecast, as described in section 10.2.
Calculation of the standard deviation is more complex. Up until now we
have thought of the standard deviation of the index as arising due to the
combination of the uncertainty around the temperatures on the remaining
days of the contract. Understood in this way, the standard deviation de-
pends on all the terms of the covariance matrix of daily temperatures (see
equation (10.10)), and, as we have seen, the analysis becomes rather com-
plex. However, there is another way to understand the standard deviation
that is much more tractable, and is based on consideration of the stochastic
process for the expected index.

10.4.7 The stochastic process for the expected index

Since an estimate of the expected index is just a sum of forecasts (as we saw
in section 10.2), a change in the expected index is simply a sum of changes
in the forecasts.

Writing the expected index on day j as µx(j) and a change in the expected
index from day j to day j + 1 as

∆µx(j) = µx(j + 1) − µx(j) (10.22)

then substituting in equation (10.5), we get

∆µx(j) = (T obs
j − T fc

j,j ) +
j+Nf∑
i=j+1

(T fc
i,j+1 − T fc

i,j ) + (T fc
j+Nf+1,j − Ej(Tj+Nf+1))

(10.23)

The first pair of terms is the difference between the actual value for Tj ,
which becomes known on day j + 1, and the forecast for Tj made on day
j. The second term is the sum of the differences between the forecasts for
days j + 1, . . . , j + Nf made on days j + 1 and day j. The third term is
the difference between the forecast for day j + Nf + 1 made on day j + 1
and the mean value for Tj+Nf+1 estimated from historical data. In short,
the change in the expected index is driven by new historical data, changing
forecasts and a forecast that extends one day further into the future.
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Since temperature and forecasts are normally distributed, these changes
will also be normally distributed. Combining this with the assumption of
efficiency we see that changes in the expected index are independent and
normally distributed. We can thus represent them as a Brownian motion,
which we write as

∆µx(j) = σ(j)∆W (j) (10.24)

or as

dµ = σdW (10.25)

The volatility of this Brownian motion depends on the sizes and correla-
tions between the changes of the forecasts on each day, and the extent to
which the forecasts overlap the contract period. We will assume that σ is
deterministic and ignore the fact that forecast uncertainty actually varies
stochastically to a very small extent from day to day.

Figure 10.2 shows the sizes of the terms in equation (10.23) as estimated
from one particular forecast (taken from Jewson, 2002b). Perhaps surpris-
ingly, we see that for this forecast these terms are roughly equal in size.
Figure 10.3 shows the correlations between one of these terms (the sixth)
and the others. We see that the terms at the different leads are positively
correlated with the sixth term within two or three days of lead time.

The stochastic process for the expected index (equations (10.24)
and (10.25)) is the process that defines how the expected index changes
on a daily basis up to the end of the contract. At the end of the contract the
expected index becomes the same as the final settlement index for the con-
tract. This means that the distribution of the final values of the stochastic
process for the expected index is just the distribution of the settlement index.
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Figure 10.2. The standard deviation of forecast changes versus lead time.
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Figure 10.3. The correlation of forecast changes between different lead times.

Summing equation (10.24) from day j to one day after the end of the
contract gives

µx(Nd + 1) − µx(j) =
Nd∑
i=j

σ(i)∆W (10.26)

But µx(Nd + 1) = x, since on the day after the end of the contract we have
all the information we need to calculate the settlement index, and so

x− µx(j) =
Nd∑
i=j

σ(i)∆W (10.27)

The standard deviation of the settlement index σx(j) is defined by

(σx(j))
2 = E[(x− µx(j))

2]

= E[

⎛
⎝ Nd∑

i=j

σ(i)∆W

⎞
⎠

2

]

=
Nd∑
i=j

σ2(i) (10.28)

We call this the volatility-variance constraint since it relates the daily volatil-
ity of the expected index to the variance of the settlement index. We have
used this already in section 5.1 and it will prove very useful below.

Given σ2(i) for all i we can now calculate σx(j) for any day during the
contract. In particular, we see that, under our assumption that σ(j) is de-
terministic, σx is also deterministic and can be determined for the whole
contract period in advance of the start of the contract.

This leads to three phases in the evolution of the expected index.
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Volatility of the expected index just before the start of the contract

As we approach the start of a weather contract, first one day of the weather
forecast will overlap the contract, then two, and so on, increasing until the
whole forecast overlaps the contract period. As more and more of the forecast
overlaps the contract day on day, the likely changes in the size of the expected
index get larger and the volatility of the expected index will be increasing.

Volatility of the expected index during the central part of the contract

From some point on the forecast will lie entirely within the contract, and all
the forecast will be used in our estimate of the expected index. From day
to day the amount of forecast being used does not change, just the days on
which it is being used. Thus for short contracts the volatility of the expected
index will stay roughly constant. For long contracts seasonal changes in the
sizes of forecast change terms may lead to gradual changes in the volatility
during this period.

Volatility of the expected index at the end of the contract

As we approach the end of the contract the last days of the forecast will
start to extend beyond the end of the contract, and only the start of the
forecast will be relevant. Less and less of the forecast will be used day on
day, the changes in the expected index will get smaller and the volatility of
the expected index will gradually reduce.

10.4.8 The trapezium model

The actual shape of the increasing and decreasing parts of the volatility
curve is complex and depends on the relative sizes of the various changes in
the forecast and the correlations between them. A simple parameterisation
of this shape is to use a trapezium for the shape of the squared volatility,
following Jewson (2002b). A comparison of this trapezium model with the
standard deviations of actual forecast changes for a particular example taken
from that paper is shown in figure 10.4.

The three parts of the trapezium correspond to the three phases of the
evolution of the index volatility described above. If the forecast changes at
different leads were independent and equal in size the trapezium would be
exactly correct. If they were perfectly correlated and equal in size then the
volatility itself, rather than the volatility squared, would show a trapez-
ium shape. In reality, as we have seen in figures 10.2 and 10.3, the fore-
cast change terms are roughly equal in size, and somewhat correlated. The
correlation probably explains why the trapezium model overestimates the
volatility slightly during the first and third phases in figure 10.4.
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Figure 10.4. The swap volatility from the trapezium model (dashed line),
and calculated from forecasts (solid line).

The area under the trapezium is given by the historical variance of the
index, which can be calculated before the start of the contract. This fixes the
entire trapezium. We thus know the squared volatility of the expected index
at any point in time during the contract, before the contract has even begun,
because we can read a value off the trapezium. And, since the variance of the
index at any point during the contract is just the area remaining under the
trapezium, the standard deviation of the index at any point in time is also
fixed before the contract has begun. In other words, we have a deterministic
model for the rate of decrease of the standard deviation throughout the
contract period. The rate of decrease is initially slow but accelerating, then
levels off, then reduces near the end of the contract.

So far we have ignored seasonality, but seasonal effects can also be in-
corporated fairly simply using the method described in Jewson (2003p); as
an example, figure 10.5 shows the seasonal trapezium model applied to a
November contract, while figure 10.6 shows it applied to a November to
March contract. In the November contract case the volatility is increasing
during the contract due to the increasing variability in the underlying tem-
peratures. In the November to March contract the volatility first increases
and then decreases again towards spring.

The trapezium models allow for the very simple pricing of contracts during
the contract period, in the following steps:

� the expected index is calculated using a single forecast, as in section 10.2;
� the par value for the historical index variance is calculated using historical data,
as in chapter 4;

� this par value fixes the height and shape of the trapezium;
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Figure 10.5. The volatility from a seasonal trapezium model (solid line),
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with a non-seasonal trapezium model (dotted line), for a November to
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� from the trapezium we can obtain the current value for the index variance as the
area remaining under the trapezium;

� contracts can now be priced using the expected index and the current standard
deviation of the index.

The main advantage of this method for pricing during the contract period
relative to the previous methods described is that we do not have to use a
probabilistic forecast but only a single forecast. The probabilistic informa-
tion is automatically incorporated in our model for the volatility. We also
do not have to calculate the covariance term between the forecast and the
post-forecast period; again, this is automatically included in the model. This
makes the method extremely simple. The disadvantage is the rather strong
assumptions that we have to make, which are not accurate for all contracts.

In the next chapter we will discuss the relevance of these ideas for ar-
bitrage pricing, and in chapter 12 we will discuss how these ideas can be
extended to provide a very simple algorithm for calculating value at risk.

Limitations of the trapezium model

The trapezium models are most appropriate for locations where seasonal
forecasts are not important. For locations where seasonal forecasts are im-
portant the release of such forecasts creates an additional source of volatility,
characterised by large jumps in the price around once a month (when the
forecasts appear). This could easily be modelled in the framework given
above by including a deterministic ‘spike’ in the volatility at the time of the
release of the forecast.

10.4.9 Which method to use?

We have presented three rather different methods for the incorporation of
forecasts into pricing models. Which method should be used? In the end, this
is a matter for individual institutions or traders to decide for themselves.
However, certain guidelines can be given.

1. If a material fraction of the indices being traded cannot be modelled well us-
ing a normal distribution, then one cannot use the method based on Brownian
motion.1 But, otherwise, it is the easiest method to use.

2. For general use, the index modelling approach is reasonably good.
3. In the case where frequent trading of options is taking place during the contract

period, and very precise valuation is needed, then the daily modelling methods
potentially give the most accurate results, if used with care.

1 In principle one could extend such methods to event indices, but characterising the stochastic
process for the expected index is more difficult, since it is no longer just a deterministic function
of Brownian motion. We are working on it.
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10.5 Seasonal forecasts

We now briefly discuss how one might use seasonal forecasts in pricing. This
is much more difficult than using weather forecasts because it is so hard to
create a probabilistic forecast of site-specific temperatures from a seasonal
forecast. As a result, it is hard to specify any kind of general quantitative
methods.

In practice, one might choose to use the following approach. We consider
pre-winter season valuation in September or October.

1. Check a number of available seasonal forecasts, and estimate the chance that
there will be an El Niño or La Niña event during the upcoming winter.

2. If there is apparently no chance of an El Niño or La Niña then one might want
to eliminate El Niño and La Niña years from any historical analysis.

3. If there is a strong chance of El Niño or La Niña then one might want to shift
the expected index distribution according to scatter plots, such as those shown
in section 9.8.2.

4. This is sufficient for swap contracts, for which we need only an estimate of the
mean index. For options contracts one also needs an estimate of the standard
deviation of the index. This is very hard to achieve in a rigorous scientific way;
the starting point might be to reduce the climatological standard deviation by a
certain amount.

A slightly more sophisticated approach might use probabilistic forecasts of
Niño 3.4 temperatures. How to produce such forecasts has been investigated
in Jewson et al. (2003b).

Clearly, this approach is somewhat basic. These are all areas of current
research.

10.6 Further reading

Much of this chapter comes from our own work. The discussion from sec-
tion 10.1 to 10.4.5 comes mostly from Jewson and Caballero (2003b), while
the discussion from 10.4.6 to 10.4.8 comes mostly from Jewson (2002b).
Other articles we have written on this subject include those in Jewson (2000),
Jewson and Ziehmann (2003) and Jewson et al. (2002b).

The only other article we have been able to find that addresses similar
issues is that by Shorter et al., 2002.

10.7 Acknowledgements
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Arbitrage pricing models

Thus far this book has described the use of actuarial principles for pricing
weather derivatives. This chapter will now discuss the application of arbi-
trage pricing ideas. The main difference between actuarial and arbitrage
pricing theories is that actuarial pricing is based on diversification while ar-
bitrage pricing is based on hedging. The anticipation of following a hedging
strategy can affect the prices we charge for weather contracts.

A useful context in which to explain arbitrage pricing is that of equity
options. The issuer of an equity option can trade the underlying equity in
order to hedge his/her risk. If the underlying equity market is liquidly traded,
then many such hedging transactions can be performed between the issuance
and expiry of the option, and the risk will be hedged almost perfectly. Many
hedging trades are necessary because the risk from the equity option depends
on the share price and hence varies as the share price fluctuates in time.
The cost of the hedging combined with the distribution of payoffs on the
option determines the price initially charged for the option, and this price,
which we call the ‘arbitrage price’, is generally different from the price that
would be charged if no such dynamic hedging were to be undertaken and
the option were priced actuarially. In particular, the arbitrage price is not
the expectation (although we will see below that it is possible to recover the
fact that the price is the expectation, but only by redefining ‘expectation’).

A market maker has to charge the arbitrage price for an option because if
he/she does not then other players in the market can make a risk-free profit
by trading the options the market maker is offering and then replicating
them using equity. In this way the market can be said to enforce arbitrage
pricing under certain conditions.

Temperature itself cannot be traded, and so one cannot form a paral-
lel between temperature and equities. However, weather derivatives can, in
principle at least, be hedged with other weather derivatives on the same
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or similar indices, and this is the main concept behind arbitrage pricing for
weather derivatives. Since dynamic hedging requires frequent trading, and at
the time of writing the only weather contracts that can be frequently traded
without incurring extremely large transaction costs are weather swaps, we
will restrict ourselves to the situation where weather swaps are used to dy-
namically hedge weather options. However, in principle, given appropriate
market liquidity, one could also conceive of using options to hedge swaps, or
options to hedge other options.

We will first give a brief review of standard arbitrage pricing theory, and
comment on some of the attempts to extend it to include transaction costs,
market slippage and hedging at discrete intervals. We will then develop a
price process for weather swap contracts, and, by modifying the standard
theory, develop expressions for the price of dynamically hedged weather
options. We will then discuss how the extensions of standard theory can
also be applied to weather.

At the end of the chapter we will discuss a few extensions and related top-
ics, such as the pricing of dual-trigger contracts and the pricing of contracts
on highly correlated locations.

11.1 Standard arbitrage theory

We imagine that we trade an equity option, and are hedging the risk in that
option by using the underlying equity.

The first assumption is that the equity price S follows a stochastic differ-
ential equation given by

dS = µSdt + σSdW (11.1)

where µ is the drift, t is time, σ is the volatility and W is Brownian motion.
The first term on the right-hand side denotes a drift (usually upward), while
the second term denotes random fluctuations driven by the arrival of new
information in the market and fluctuations in supply and demand. The effect
of new information is random, because if it were not random it would be
predictable and already included in the price. If share prices usually drift
upwards then why does not everybody invest in shares? The answer is that
the random fluctuations are large, and over any finite time period there is
significant risk that the share price may fall.

We can also consider how the discounted value of the share price changes
in time. The discounted value of the share at time t0 is

Sd = er(t0−t)S (11.2)
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and the stochastic process for the discounted value is then

dSd = (µ− r)Sddt + σSddW (11.3)

We can ‘solve’ equation (11.1) to give the share price in terms of the Brow-
nian motion. The solution is

S = S0e
(µ−σ2

2
)t+σW (11.4)

Note that when differentiating equation (11.4) to give equation (11.1) we
have to use Ito’s formula for evaluating the derivatives of functions f =
f(W, t) of stochastic processes, which gives

df =
∂f

∂t
dt +

∂f

∂W
dW +

1
2
∂2f

∂W 2
dt (11.5)

The extra term on the right-hand side arises because although W is contin-
uous it is not differentiable, and makes jumps of size dt

1
2 in time dt.

Standard arbitrage pricing theory can be presented mathematically in a
number of different ways. We will start with a partial differential equation
(PDE) approach similar to the original derivation of Black and Scholes
(1973). We will then present a more succinct approach based on measure
theory.

11.1.1 Delta hedging and the PDE approach

Imagine that at time t we own, in addition to the option position, a short
position ∆ in shares, and an amount of cash cB invested in a risk-free bond
B with interest rate r. The total value of our holding, Π, is then given by

Π = V − ∆S + cB (11.6)

where V (S, t) is the unknown value of the option, S is the value of one share,
∆ is the number of shares being held and B is the value of the bond.

Moving forward an infinitesimal time step, the value of our holding
changes by

dΠ = dV − ∆dS − Sd∆ + cdB + Bdc (11.7)

Thus the value of our portfolio changes because the value of the option
changes, the share price changes, the number of shares we are holding
changes, the value of the bond changes, and the number of bonds we are
holding changes.

If we assume that the number of shares changes only because we bought
or sold them with or for cash, and the amount of cash changes only because
we used it to buy or sell shares, then we see that the changes in value due
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to changes in the number of shares are cancelled by the change in value due
to a change in the number of bonds held. This is known as self-financing of
the portfolio, and is written as

Bdc = Sd∆ (11.8)

Thus the change in our portfolio reduces to

dΠ = dV − ∆dS + cdB (11.9)

The bond increases at interest rate r, so

dB = rBdt (11.10)

and hence

dΠ = dV − ∆dS + crBdt (11.11)

We can expand dV in terms of dS and dt (taking care to use Ito’s lemma),
so that

dV =
∂V

∂t
dt +

∂V

∂S
dS +

1
2
σ2S2∂

2V

∂S2
dt (11.12)

If we now expand S using the model for the share price given in equa-
tion (11.1), we get

dV =
(
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ µS

∂V

∂S

)
dt +
(
σS

∂V

∂S

)
dW (11.13)

The change in the portfolio value then becomes

dΠ =
(
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+µS

∂V

∂S
−µS∆ + crB

)
dt +
(
σS

∂V

∂S
− σS∆

)
dW

(11.14)

This change has a deterministic component (the dt term) and a random
component (the dW term). If we now choose ∆ as

∆ =
∂V

∂S
(11.15)

then the random term in dW and the drift term in dt both cancel out and
the total portfolio change becomes

dΠ =
(
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ crB

)
dt (11.16)

The cancellation of the random and drift terms is the essence of continuously
hedging with shares.
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Since changes in the value of the portfolio are now deterministic, the
change must be the same as what would be earned by putting the same
money into safe bonds with interest rate r. If this were not the case someone
would be able to make a risk-free profit by either buying the option and
hedging or selling the option and hedging. This equality between the return
on our portfolio and the return on safe bonds can be written as

dΠ = Πrdt (11.17)

Equations (11.17), (11.16) and (11.6) give(
∂V

∂t
+

1
2
∂2V

∂S2
+ crB

)
dt = (V − ∆S + cB)rdt (11.18)

Rearranging terms, we get the famous Black–Scholes (BS) partial differential
equation for the option price, as a function of the share price and time:

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (11.19)

Given appropriate boundary conditions, which specify the final pay-off struc-
ture, this equation has an analytical solution. For an unlimited call option
contract with strike at K this solution is

V (S, t) = SΦ(d1) −Ke−r(T−t)Φ(d2) (11.20)

where

d1 =
log(S/K) + (r + 1

2σ
2)(T − t)

σ
√

(T − t)
(11.21)

d2 =
log(S/K) + (r − 1

2σ
2)(T − t)

σ
√

(T − t)

11.1.2 Replication and the measure theory approach

There are several ways of deriving equation (11.20), in addition to the PDE-
based method described above. One popular approach comes from probabil-
ity theory. It is based on the following steps (taken from Baxter and Rennie,
1996). These steps will be readily understood only if the reader has a basic
understanding of the branch of mathematics known as measure theory. Our
treatment of this approach will be brief, since it is covered very well else-
where. We will include just enough detail to see how the theorem can be
extended to the weather case later in the chapter.

Using a theorem known as Girsanov’s theorem we can find a change of
measure (a change of the probabilities of events) such that the drift in the
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discounted share price process given in equation (11.3) becomes zero. The
discounted share price process in this new measure is then given by

dSd = σSddW (11.22)

A stochastic process with no drift such as this is known as a martingale.
Using the new measure we can define another stochastic process Et

(where the subscript t denotes a function of time) based on the discounted
final pay-off of the option by using expectation to work backwards in
time. The expectation is calculated using all the information available at
time t:

Et = EQ(B−1
T X) (11.23)

where EQ denotes expectation under the new measure Q and B denotes
discounting of the final pay-offs X. As we move forward in time the share
price evolves, and hence our prediction of X, and Et, will change.

We can show that this new process is also a martingale (since all expecta-
tions are martingales). By definition, the initial value of this pay-off process
is just the expectation of the discounted final pay-off of the option under the
new measure, and the final value of this pay-off process is just the discounted
pay-off of the option.

Now we have two martingales (the discounted share price process and the
pay-off process) based on the same underlying source of randomness (the
randomness in the share price). According to another theorem, known as
the martingale representation theorem, any two such martingales can be
written in terms of each other. This means that we can write the option
price process in terms of the discounted share price process. In financial
terms this means that the option pay-off can be replicated using the shares
and bonds. The initial amount of cash needed to start this replication is the
initial value of the option price process, which, as we have seen, is just the
expectation of the option pay-offs under the new measure. This means that
the value of the option is just the discounted expected pay-off of the option,
under the new measure.

V (S, t) = BtEQ(B−1
T X) (11.24)

Again, the expectation is calculated using all information available at time
t. All the complexity has been moved into the question of finding the new
measure. In fact, finding this new measure is easy (in this case, although not
always). We have seen that the new measure is the measure in which the
discounted share process is a martingale. This means that the drift in the
undiscounted share in this measure must be r. The option price can thus
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be calculated as the discounted expectation of pay-offs of the option using
a share price that has an adjusted drift r instead of µ.

We can simulate final share values in the adjusted measure using

dS = rSdt + σSdW (11.25)

and calculate the discounted expected pay-off of the option across these final
share values.

11.2 Comments on the standard theory

Uniqueness

The striking thing about arbitrage pricing compared to actuarial pricing is
that arbitrage prices are unique, and do not depend on the trader. This is
because all risk is hedged away and so risk preferences do not play a role;
there is no role for risk loading, as there is in actuarial pricing theory.

Risk neutrality

We saw in section 11.1.2 that the option can be priced simply by setting
the drift in the share price process to r and then calculating the discounted
expected pay-off.

Making this temporary artificial change in the drift of the share in order
to price options is known as ‘risk-neutral pricing’, because it means we can
price an option in the following way:

� assume that we live in a world in which everyone is risk-neutral (there is no risk
aversion, or no marginally increasing utility);

� since share traders are risk-neutral, share prices grow at the risk-free rate, and
we can use equation (11.25) for the share price;

� since option traders are risk-neutral, they do not hedge their positions;
� option prices can then be calculated as the discounted expected pay-off of the
option with no risk loading.

This method of pricing can also be derived from the observation that equa-
tion (11.20) does not contain the drift of the share price.

In this artificial risk-neutral world we can price the option stand-alone,
without having to consider the cost of the hedge, and we get the same result
as if we considered the cost of the hedge in the real world.

We note that risk-neutral pricing does not involve becoming risk-neutral.
A real risk-neutral trader would not hedge his positions at all, and would
probably invest all his money in unhedged option positions. Risk neutrality
is just a useful mathematical short cut to getting to an expression for the
option price.
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The phrase ‘risk-neutral pricing’ is also often extended to refer to arbitrage
pricing in general, although we note that the arguments used in section 11.1.1
to derive the arbitrage price do not follow a line of argument that uses the
assumption of risk neutrality, and from a historical perspective the concepts
of risk-neutral pricing came later.

Intuitive arguments and the relation to actuarial pricing

Neither of the derivations of the arbitrage price for options given above is
particularly intuitive: one says that the price of the option is the solution of
a partial differential equation, and the other says that it is the expectation
under a set of probabilities that are different from real probabilities.

A less rigorous but more intuitive expression for the price can be derived
as follows. The total discounted profit made from selling an option and
continuously hedging with shares is given by the sum of the premium, the
discounted profit made on the option and the discounted profit made on the
shares, or

p = pr − po + ps (11.26)

where p is the total discounted profit, pr is the premium, po is the discounted
pay-off of the option and ps is the discounted net result of the share trading.

Because of arbitrage the total profit must be exactly zero, and so

pr = po − ps (11.27)

We see that the premium of the option is balanced by the discounted pay-
off of the option and the discounted loss on the shares. The terms on the
right-hand side are random variables, while the premium is a constant.

Taking expectations of this expression under any measure we get

pr = E(po) − E(ps) (11.28)

Thus we see that the price of the option is the discounted expected pay-off
on the option plus the discounted expected cost of trading the shares. This
result is reasonably intuitive (we think).

We can also now see that the arbitrage price is simply a special case of the
actuarial pricing rules based on the expectation and the risk loading. Since
the risk has been hedged away, the risk loading term is zero and the price
is just the expectation of the profit on the combined portfolio of option and
swap trades.

Finally, we note that if we choose the measure used in equation (11.28) to
be one under which the discounted expected loss on the shares is zero then
we recover the result of section 11.1.2, that the option price is the expected
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pay-off under a measure in which the share price is a martingale. The effect
of the change of measure is to set E(ps) = 0.

The relation to the expected pay-off of the option

How does the arbitrage price on an equity option relate to the expected pay-
off of that option? We have seen in section 11.1.2 that the option price is the
discounted expected pay-off when the share drift is set to r. Consider a call
option and assume that the share drift is greater than r, as is usual. If we
reduce the share drift to r then we are making high values of the final share
price less likely and so the option is less likely to pay out. We conclude that
the arbitrage price must be less than the expected pay-off. If call options are
trading at below the expected pay-off, why then don’t people buy them and
hold them, without hedging, to expiry, since this would presumably make a
profit on average? Now consider a put option. Reducing the share drift to
r makes low values of the final share price more likely and so the option is
more likely to pay out. We conclude that the arbitrage price must be greater
than the expected pay-off. Why then don’t people sell put options and hold
them to expiry? On average, buying call options and selling put options
in this way would make money, and such a trading strategy can indeed be
used: it is just a way of betting on the share price. Relative to just buying or
selling the shares themselves, it is more leveraged: a small amount of money
can give a bigger profit or loss.

Conserved quantities

Much of physics and meteorology is concerned with identifying conserved
quantities. Purely for interest’s sake we note that, in the BS system, the
discounted value of the portfolio (option, shares and bonds together) is con-
served. This follows directly from the assumption that the portfolio must
appreciate at the risk-free rate.

d(e−rtΠ) = 0 (11.29)

Delta hedging versus replication

The PDE derivation of the BS price emphasised hedging the risk at each in-
finitesimal time step. Because each small step of risk is hedged, the total risk
is zero. The derivation of the same result using measure theory emphasised
using shares and bonds to replicate the final pay-off of the option. Because
the final pay-off is replicated exactly, there is no total risk. Thus continuous
hedging and replication are microscopic and macroscopic views of the same
idea of removing all the risk.
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Assumptions

It is useful to highlight some of the assumptions underlying the derivations
of the arbitrage price above. Later we will discuss how to relax some of these
assumptions in order to make the model more realistic.

1. The hedging is continuous in time.
2. Trading shares and bonds has no transaction costs.
3. Hedging does not affect the share price.
4. Shares can be traded in any amount.

Although in practice many of the assumptions underlying the above deriva-
tions are clearly wrong, the BS price plays a vital role in many derivatives
markets as a reference price.

The role of volatility

One of the crucial aspects of the BS model is the role of volatility. There is a
one-to-one relationship between the volatility and the price for call options:
higher volatilities give higher prices because options are more likely to pay
out. As a result, volatilities can be quoted instead of prices.

Options traders in the weather market, especially those with a background
trading other options in more liquid markets, often also think more in terms
of volatility than price, even though this may not be justifiable on a rigorous
basis because of the lack of liquidity in weather. We investigate this further
in section 11.4.9.

Volatility and standard deviation

Much of the discussion in previous chapters about pricing weather options
involved estimation of the standard deviation of the settlement index. This
quantity has not appeared in the BS derivations given above. In fact, how-
ever, equation (11.21) can be written using something similar to the standard
deviation of the settlement index.

From equation (11.4), the standard deviation of the log of the share price
is σx = σ

√
T − t. Equation (11.21) can be rewritten in terms of this standard

deviation, rather than in terms of the daily volatility of the share price σ, as

d1 =
log(S/K) + r(T − t) + 1

2σ
2
x

σx
(11.30)

d2 =
log(S/K) + r(T − t) − 1

2σ
2
x

σx

We see that using the standard deviation of the settlement index σx and us-
ing the volatility of the log of the daily share process σ are interchangeable.
Since for equities σ is what is usually estimated from data, it makes more
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sense to use σ. In weather, however, it is the standard deviation σx that
can be estimated more easily.

Relations between the greeks

The greeks are defined as partial derivatives of the price of an option. Equa-
tion (11.19) is a relation between partial derivatives of an option, and is
hence a relation between the greeks. In particular, equation (11.19) can be
rewritten:

Θ +
1
2
σ2S2Γ + rS∆ − rV = 0 (11.31)

The market price of risk

In liquidly traded markets, relationships between the prices of contracts can
often be understood using the so-called ‘market price of risk’, which links
the sizes of risks (volatility) and returns (drifts). If there are two contracts
that are both liquidly traded and that have stochastic fluctuations driven by
the same source of randomness then they can be used to hedge each other
and eliminate the randomness. One can then show (Hull, 2002) that the two
contracts have the same value for the market price of risk:

mpr =
µ− r

σ
(11.32)

where µ and σ are the drift and the volatility of the contract price.
In the above derivation of the arbitrage price we have, in fact, considered

that we know the drift and the volatility of one of the contracts (the un-
derlying shares). We thus know the market price of risk for the shares, and
hence we know the market price of risk for the option.

11.2.1 The Black (76) model

Rather than hedge an option with shares, one could imagine hedging an op-
tion with forward contracts on the shares. A simple static hedging argument
gives the forward price in terms of the share price as

F = er(T−t)S (11.33)

Following Black (1976) we can then rewrite equation (11.19) in terms of F
rather than S using the following relations:

∂V

∂t

∣∣∣∣
S

=
∂V

∂t

∣∣∣∣
F

− ∂V

∂F

∣∣∣∣
t

∂F

∂t

∣∣∣∣
S

(11.34)

∂V
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∣∣∣∣
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t

(11.35)
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and

∂2V

∂S2
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t

=
∂2V

∂F 2
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(
∂F

∂S

)2
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t

(11.36)

The BS equation then becomes

∂V

∂t
+

1
2
σ2F 2∂

2V

∂F 2
− rV = 0 (11.37)

We note that the rS ∂V
∂S term has disappeared. One way to understand this

is that this term relates to the interest lost because of having to invest in
shares. When one is hedging with forwards this term disappears because no
money changes hands until the end of the contract, and one does not have
to worry about lost interest on forward contracts.

If we now write the option price in terms of the accrued value at time T

(which involves discounting forward in time),

VT = er(T−t)V (11.38)

then equation (11.37) simplifies even more to

∂VT

∂t
+

1
2
σ2F 2∂

2VT

∂F 2
= 0 (11.39)

In terms of the greeks (now redefined using VT , not V ) this equation can be
written as

Θ +
1
2
σ2S2Γ = 0 (11.40)

This relation can be understood rather simply. The stochastic nature of the
underlying forwards price creates gamma, which would tend to change the
option price. However, the option price must stay fixed to ensure a lack of
arbitrage opportunities.

11.3 Extensions to the standard theory

There is a vast academic literature dedicated to extending the basic BS
model described above to more realistic markets. Some of these extensions
are discussed below.

Discrete time hedging

One of the assumptions in the BS model is that options are hedged contin-
uously. In practice, this is not realistic. If hedges are made very frequently
relative to the rate of change of the underlying then this may be a good
approximation. If they are made less frequently then it may not be.
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Once discrete time hedging is being used the risk in the option cannot
be hedged perfectly and there will be a residual risk; the final outcome
of the hedged position is then partly stochastic. There is then no exact
arbitrage price, and the price will depend on the risk preferences of the
traders involved. This is reflected in the mathematical models by the need
to make fairly arbitrary assumptions about risk preferences. In discrete time
hedging models, the size of the optimum hedge may also change, and is no
longer given exactly by the delta.

Studies that have looked at these issues include those by Boyle and
Emanuel (1980), Wilmott (1994) and Mercurio and Vorst (1996).

Adding transaction costs

In the BS model it is assumed that transaction costs are zero. In reality,
most share trades go through brokers or exchanges, who charge a small fee,
often proportional to the size of the trade.

Adding transaction costs means that very frequent delta hedging is no
longer possible. A trade-off arises between reducing risk by hedging as fre-
quently as possible, on the one hand, and reducing transaction costs by
hedging as infrequently as possible, on the other.

As with discrete hedging there is a residual risk, and risk preferences
come into play. Given a model for risk preferences and a model for trans-
action costs, one may be able to find a trading strategy that is opti-
mum. This strategy then gives the price of the option and the sizes of the
hedges.

There have been many articles on this subject, including those by Leland
(1985) and Hoggard et al. (1994).

Adding market feedback

In the BS model the price process for the underlying is specified and fixed.
However, in thinly traded markets the trades that are made to hedge op-
tions can affect the underlying itself. The fundamental assumptions about
the (fixed) dynamics of the underlying are no longer valid. This has been
explored in the work of Schönbucher (1993) and Frey and Stremme (1995),
among others.

Shares can trade in any amount

In the BS model it is assumed that shares can be traded in any amount,
including fractional amounts. This is not exactly correct in practice, but
for equity options it is not a bad assumption, since the size of the options
relative to the size of individual shares is such that the error is minimal.



254 Arbitrage pricing models

Complete models

Ideally, one would price options taking into account all the above effects.
This can be achieved only by using numerical methods; one would want
a numerical method that can take all of these factors into account, and
(quickly) give the optimal hedging strategy and the price, or price range, to
be charged for the option. One attempt in this direction are the methods
described in Potters et al. (2001) and Bouchaud et al. (1996), and other
papers by the same authors.

11.4 Weather swap price processes

Having given a brief overview of standard option pricing theory, we now move
on to see how such theories can be developed in the case of hedging a weather
option with a weather swap. The key stage is to develop a price process for
the swap. Once we have that, it will be easy to apply slightly modified
versions of the standard theory to derive an option price. We will present
three price processes for the swap, from simple (and a little unrealistic) to
complex (and more realistic).

We will assume that all swaps are linear, without caps, and are based
on CAT or linear degree days. This greatly simplifies the analysis, and is a
reasonably good model for most commonly traded contracts.

We will also use a mathematical trick of dealing with swap prices rather
than strikes, in order to make the similarity with the standard BS theory
(where shares have prices) more clear. In other words, rather than entering
into a costless swap with tick 1 and strike K that pays x−K if the index
settles at x, we will imagine paying a premium to buy a swap that will pay
us x at settlement. The premiums that would be paid for such premium-
based swaps are given by arbitrage arguments in terms of the strikes of the
costless swaps as

premium = S = Ker(t−T ) (11.41)

These imaginary premium-based swaps are to equities as costless swaps are
to equity forwards. In other words, we can think of these fictional premium-
based swaps as analogous to equities, and real costless swaps as analogous
to forwards on these equities.

11.4.1 The balanced market model

In order to develop our first price process for the swap we will make the
assumption that the swap market is balanced in terms of supply and demand.
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This leads to our imaginary premium-based swaps trading at the discounted
expected pay-off, and the costless swap trading at the expected index. If
our estimate of the discounted expected pay-off does not change then the
swap price will grow only at the risk-free rate. This argument would not
make sense for equities, since the fundamental reason for buying equities is
as an investment: no one would invest unless there was a good chance of
the equity price growing at a faster rate than the risk-free rate. However,
the fundamental reason for trading swaps is as a hedging instrument, and
one does not expect capital growth from a hedge. In a balanced market
hedgers exchange swaps between themselves through an exchange or through
a market maker. The market maker would require a small premium to justify
trading, but we will ignore that for now.

How is the expected pay-off of the swap calculated? Initially we assume
that all market participants use the same historical data and forecasts to
estimate the expected index of the swap.

As we saw in section 10.4.7, the expected index µ then changes as a
deterministic function of Brownian motion given by

dµ = σdW (11.42)

where σ is the index volatility.
By equation (11.41), the price (of the premium-based swap) is given by

S = er(t−T )µ (11.43)

and so

dS = rSdt + er(t−T )σdW (11.44)

= rSdt + σsdW

where σs = er(t−T )σ has been defined so as to remove the discounting term.
Discounting the price at time t back to time t0,

Sd = er(t0−t)S (11.45)

and so

dSd = er(t0−T )σdW

= σddW (11.46)

where σd = er(t0−T )σ has also been defined to swallow the discounting term.
We see that the discounted swap price is a Brownian motion and hence a
martingale.

Equations (11.44) and (11.46) are the stochastic processes for the swap
price and the discounted swap price that follow from our assumptions,
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including the efficient forecast assumption that says our forecasts are ex-
pectations. Unlike the share price process in equation (11.1), the random
part of the change in the swap price is not related to the swap price. This
is because the random part is entirely driven by changes in forecasts and
temperatures. Note also that, although we have seen in chapter 6 that tem-
perature shows significant autocorrelations and long memory, these have
entirely cancelled out in the swap price process. This is because the auto-
correlation of temperature is known about by the forecast and hence has
been included in our estimate of the index. This effect is illustrated by an
example below.

Finally, we note that the swap price can go negative. This would be unac-
ceptable for shares: if a share price goes negative, then one can buy the share
(for a negative amount – i.e. by receiving money), throw it away and make
a risk-free profit. However, buying a swap at a negative price still involves
committing to the possibility of having to pay out at the end of the swap
term, and so no such risk-free profit is available.

One of the assumptions made in the derivation of the swap price was
that all market players use the same forecasts and data to estimate the ex-
pected index. This is, of course, not true, since one of the main ways that
secondary market participants seek to gain advantage is by using more accu-
rately cleaned historical data or more accurate forecasts. However, we argue
that the swap price given by equation (11.44) still holds. We assume that
market participants will rationalise the price in terms of the data they have
available. Price changes will still be driven by the changes in the forecasts
and data as described above.

11.4.2 A toy model for swap prices

In order to elucidate the disappearance of the temperature autocorrelations
in the swap price, we consider the following toy model for temperatures and
prices.

We imagine that real temperature develops according to a stationary
AR(1) process

Tn+1 = αTn + εn (11.47)

where 0 < α < 1. This is autocorrelated to represent the autocorrelations of
real temperatures.

We imagine that we are trading a contract that will settle on temperature
on day n + m. On day n + 1 we know temperatures only for up to and
including day n. Our best forecast for the settlement index (the temperature
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on day n + m) is thus

f1 = αmTn (11.48)

Ignoring discounting, and assuming a balanced market, this gives the price
on day n + 1. On day n + 2 we have a better forecast, which is

f2 = αm−1Tn+1 (11.49)

This gives the price on day n + 2. The change in price is given by

f2 − f1 = αm−1Tn+1 − αmTn (11.50)

= αn(Tn + εn) − αmTn

= αmεn

We see that the change in prices is random even though our model tem-
peratures are autocorrelated. The autocorrelations cancel because they are
included in the forecast.

11.4.3 Option pricing in the balanced market model

Given the swap price process in equation (11.44) we can now price options
on the same index based on the assumptions that the swap is tradable
without transaction costs and is used to continuously hedge the option.
Replacing equation (11.1) with our new price process (11.44) we can rederive
equation (11.19). This gives

∂V

∂t
+

1
2
σ2
s

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (11.51)

which is the equation analogous to the BS equation for weather swaps trad-
ing with premium S. Note that the only difference from the actual BS equa-
tion is the coefficient in front of the second derivative term.

In section 11.2 we showed that the BS equation can be rewritten as a
relation between the greeks. The same is true of equation (11.31), which can
be rewritten as

Θ +
1
2
σ2
sΓ + rS∆ − rV = 0 (11.52)

We must now transform this equation so that V is a function of the swap
strike K and t rather than S and t, since K is what we actually observe in
the swap market. This is analogous to the set of transformations that gave
the Black (76) model in section 11.2.1.

Equation (11.37) becomes

∂V

∂t
+

1
2
σ2 ∂

2V

∂K2
− rV = 0 (11.53)
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We have lost the rS ∂V
∂S term and the σs has become a σ again.

This equation is the same as equation (11.37) but with the coefficient in
front of the second derivative changing from σ2S2 to σ2.

This is the PDE satisfied by the price of the weather option. If we write
this price in terms of the accrued value of the option at time T

VT = er(T−t)V (11.54)

then the equation simplifies to

∂VT

∂t
+

1
2
σ2∂

2VT

∂K2
= 0 (11.55)

Like the BS equation, this equation can also be solved analytically. We derive
the solution by noting that the Green’s function solution of this equation is

VT =
1√
2π

1
σ

(T − t)−
1
2 exp
(
− (x− µ)2

2σ2(T − t)

)
(11.56)

We can verify that this is a solution by calculating the derivatives:

∂V

∂t
= V

[
− (x− µ)2

2σ2(T − t)2
+

1
2(T − t)

]
(11.57)

∂V

∂x
= V

[
− (x− µ)
σ2(T − t)

]
(11.58)

∂2V

∂x2
= V

[
(x− µ)2

σ4(T − t)2
− 1

σ2(T − t)

]
(11.59)

and substituting into equation (11.55).
Letting t → T in (11.56) we get the boundary condition

V (x, t = T ) = δ(x− µ) (11.60)

(note that equation (11.56) is one of many functions that converge onto the
Dirac delta function: see Arfken, 1985, p. 481).

Since equation (11.55) is a linear PDE, to satisfy a more general boundary
condition VT(x, T ) = p(x) we just have to superimpose solutions, and so the
more general solution is

VT =
1√
2π

1
σ

(T − t)−
1
2

∫ ∞

−∞
p(s)exp

(
− (s− µ)2

2σ2(T − t)

)
ds (11.61)

Letting σ2
x = σ2(T − t) gives

VT =
1√
2π

1
σx

∫ ∞

−∞
p(s)exp

(
−(s− µ)2

2σ2
x

)
ds (11.62)
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which is just the expected value of p(s) under the normal distribution with
expected value µ and standard deviation σx. The price of the option V is
then just the discounted expected value.

As an alternative to the above PDE-based derivation we can also ap-
ply the replication and measure theory argument of section 11.1.2 to the
weather case. Our discounted swap price given in equation (11.46) is already
a martingale. In the standard theory we have to change measure to make the
discounted share price a martingale; with our swap price we do not have to.
The option price is therefore simply the discounted expected pay-off under
the natural measure.

Curiously, the arbitrage price we have derived using the PDE and measure
theory approaches is exactly the same as the actuarial fair price, without a
risk loading. This was not true for the equity option case. Comparing with
equation (11.28), we may ask what happened to the expected loss on the
swap trading. When hedging equity options this expected loss (in the natural
measure) is not zero because share prices drift and, as a result, option prices
are not the same as the actuarial fair price. With weather swaps, however,
there is no drift in the discounted swap price and the expected loss on the
swaps is zero. Equation (11.28) then tells us that the actuarial fair price and
the arbitrage price agree.

The equivalence between the actuarial fair price and the arbitrage price
means that we can reuse the same closed-form expressions for both. Expres-
sions for the arbitrage price and the greeks are thus given in appendices E
and F.

The market price of risk

It is interesting to apply the market price of risk ideas described in sec-
tion 11.2 to the weather case. Because the drift in equation (11.44) is just
r, the market price of risk for the swap contract is zero. Hence the market
price of risk on the option must also be zero, and the drift on the option
price must also be r. Thus the drift on the discounted option price must be
zero. Since the final option price is the expected pay-off, the initial option
price must also be the expected pay-off.

11.4.4 Pricing weather options

This model justifies the following algorithm for calculating the arbitrage
price for options.

1. Take the market swap strike as the expected index.
2. Calculate the option expected pay-off using this expected index.
3. Discount this option expected pay-off to give the arbitrage price.
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In order to evaluate the expected pay-off of the weather option, we must
know the standard deviation of the settlement index. In a liquid market
there are a number of ways this could be determined:

� from historical data, as described in chapters 4 and 6;
� from an implied standard deviation calculated from other options in the market;
� from the trapezium model given in section 10.4.8, but used in reverse; the observed
daily volatility of the swap is used to fit the model and then the model is used to
calculate the standard deviation.

11.4.5 The linear imbalance model

Given all our assumptions, the arbitrage prices derived above are the prices
that market dynamics would enforce for weather options. However, our
assumptions are not close to being correct for the real weather market:
in particular, the swap is both illiquid (trading swaps incurs transaction
costs, and moves the swap price) and lumpy (not any size of swap con-
tract can be traded, only discrete sizes). Both of these will prevent exact
hedging, which is likely to create a bid-ask spread around the arbitrage
price. Furthermore, the swap price process may not be entirely realistic.
We now investigate the possibility that the market is imbalanced in one
direction.

The simplest way to add an imbalance in the swap market is to imagine
a constant level of imbalance in supply and demand, and assume that this
leads to a linear drift in the swap price. This gives a swap price for which
equation (11.43) is replaced by

S = er(t−T )(µ− λ(T − t)) (11.63)

with a stochastic differential equation (SDE) for the price process

dS = rSdt + σsdW + λsdt (11.64)

where λs = er(t−T )λ.
The discounted swap price is then

Sd = er(t0−t)S (11.65)

with a price process

dSd = λer(t0−T )dt + er(to−T )σdW (11.66)

= λddt + σddW

where λd = λer(t0−T ).
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We can calculate the value of λ by comparing the current swap price with
the expected index µ:

λ =
µ− er(T−t)S

T − t
(11.67)

11.4.6 Option pricing in the linear imbalance model

Under this more general model we do have to consider changes of measure
to price options, since the discounted swap price is no longer a martingale
but has a drift of λd. This justifies the following algorithm for calculating
the arbitrage price:
� integrate dSd = σddW to get the risk-neutral distribution of outcomes for the
swap price; this is not the actual distribution of outcomes for the swap price,
since we have set the drift to zero;

� calculate the discounted expected pay-off of the option under this risk-neutral
distribution; this is the arbitrage price but not the real expected pay-off of the
option.

In practice this method becomes:
� take the current swap strike (which we are not assuming is the expected index);
� calculate the discounted expected pay-off of the option using this swap strike; this
is the arbitrage price, but now is not the expected pay-off of the option.

To illustrate this, imagine a case where the market imbalance has driven the
swap price below the discounted expected pay-off. The swap price must drift
up (on average) to reach the final pay-off distribution. Thus buying swaps
will now make money on average. If we are hedging a short call option we
have to buy swaps. Since these swaps make money on average, the arbitrage
price of the option is lower than the expected pay-off of the option. This is
effectively the same argument as was given in section 5.13.1, except that now
we are hedging continuously rather than just once, and the mathematics is
exact and doesn’t involve an approximation.

11.4.7 The stochastic imbalance model

In the linear imbalance model for swap prices we allowed for a constant level
of imbalance in supply and demand, leading to a price with a linear drift
relative to the discounted expected pay-off of the swap. A more realistic
model for the swap price process would allow for stochastic fluctuations of
this imbalance. A simple version of this would be

S = er(t−T )µ− φ(t)W2 (11.68)
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where W2 is a new Brownian motion and φ is a deterministic function that
tends to zero as t → T , an example of which would be φ(t) = λ(T − t) for
some constant λ.

Another plausible model for φ is that it should be proportional to the
uncertainty in the estimate of the expected index, which decreases as

√
t.

This would give φ(t) = λ(T − t)
1
2 .

The justification for this model for the supply/demand fluctuations is
that the swap price can never move too far from the discounted expected
pay-off. If it did, then this would offer an investment opportunity with low
risk and high return. This creates bands around the discounted expected
pay-off within which the price must lie. These bands get narrower as ex-
piry approaches. In particular, at time T market supply and demand effects
disappear and the distribution of swap prices is affected only by the weather.

This argument is an insurance version of the ideas about arbitrage. Rather
than fixing an exact price, this arbitrage argument fixes a range of prices.
The reason we can apply such an argument (which could not be applied so
readily to equities, for instance) is that weather swaps are fundamentally
tied to a distribution of pay-offs that is unaffected by market sentiment.

Equation (11.68) now contains two sources of randomness: the random-
ness in the expected pay-off due to weather and weather forecasts (W ) and
the randomness in the price due to random fluctuations in supply and de-
mand (W2).

Because of these two sources of randomness it is no longer possible to
hedge the risk completely using just one hedging instrument (the swap con-
tract), and the prices are no longer unique.

11.4.8 Stochastic volatility issues

Up until now we have assumed that the volatility in equation (11.42) is
deterministic and can be determined from past forecasts by assessing the
statistics of forecast errors. This is not entirely true. As discussed in chap-
ter 9, the predictability of the atmosphere does depend, to a small extent,
on the state of the atmosphere itself. On some days it may be possible
to make better forecasts than others. Thus the volatility is partly depen-
dent on the state of the atmosphere. This dependence is partly predictable,
using forecasts of prediction error from ensemble forecasts based on nu-
merical models that were discussed in chapter 9. However, these forecasts
are not entirely accurate, and there remains an error in the prediction of
forecast error. This term could be represented as a stochastic volatility
term.
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The presence of stochastic volatility disrupts the neat derivations of ar-
bitrage price given above in the balanced and linear imbalance cases and
creates a source of risk that cannot be hedged away with only one asset.
Again, prices are no longer unique. In some financial markets this is a large
effect: in foreign exchange, for instance, volatility varies a huge amount.
However, it would seem to be such a small effect in weather that it is prob-
ably reasonable to ignore it.

11.4.9 Volatility and risk loading

Options traders in the weather market who have a background in more liquid
options markets may choose to derive implied standard deviations of indices
from observed options prices. However, these prices may have been initially
created by a trader adding a risk loading onto the fair price. This raises
the question as to whether there is any simple relation between implied
volatility and risk loading. This question has been investigated in detail in
Jewson (2003o) for a simple standard-deviation-based risk loading model.
The conclusions from that study are as follows:

1. If one is considering uncapped options of a single type and position then varying
the standard deviation of the underlying is roughly equivalent to adding a risk
loading to the option price. Thus if one derives an implied volatility from an
uncapped long call option and uses it to price another uncapped long call option
one will be applying roughly the same risk loading to the second contract as was
applied to the first. The exact relationship between the standard deviation and
risk loading for this case is shown in figure 11.1, with different lines for different
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Figure 11.1. The relationship between the standard deviation of the settle-
ment index and the risk loading.
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option strikes. This relationship could be considered as a justification for using
implied volatilities even in an illiquid market such as the weather market.

2. This rough equivalence breaks down, however, when capped options are consid-
ered, and also does not work if one uses the implied volatility from one type of
contract to price another type of contract.

Extensions to the standard theory for the weather case

The discussion up until now has focused on the rather unrealistic world in
which the weather swap is traded continuously, with infinite liquidity, no
transactions costs and in any amount. We have also assumed that swaps are
linear, while in practice they may be capped.

The question that really needs to be answered is: given the nature of the
real weather market, with only finite sizes for swaps contracts and significant
transaction costs and feedback effects, is it worth hedging at all with swaps?
If so, how many hedges should be made, of what size, and when? And, finally,
what price should we charge for options in the knowledge that we are going
to do some hedging?

Many of the studies mentioned in section 11.3 could be converted to the
weather case for the balanced market model and the linear imbalance model,
and this would go some way towards answering these questions.

One particular example of addressing the question of incomplete mar-
ket effects in the context of the balanced market model is given by Jew-
son, 2003t. The study in this paper considered the possibility of hedging a
weather option with a linear weather swap on the same location in the pres-
ence of transaction costs, and asked how many hedges needed to be done
to maximise the value of the trading strategy in a mean-standard deviation
risk/return framework. Transaction costs were modelled as being propor-
tional to the size of the trades. Some of the results are shown in figure 11.2.
As the number of hedging transactions is increased the cost of the hedging
increases and the expected profit decreases, as shown in the first panel of
the figure. The reduction in profit is not linear in the number of hedges
made because the hedges get smaller and smaller the more that are made.
At the same time, the standard deviation of the profits from the hedged
portfolio decreases; this is the point of the hedging (panel 2). Combining
the expected return and the standard deviation of profit into a measure of
risk-adjusted return, there is an optimum (risk-adjusted-return-maximising)
hedging strategy for a finite number of hedges, as shown in panel 3. Panels
4 and 6 show how the optimum number of hedges varies with the size of the
transaction costs and the level of risk aversion. The higher the transaction
costs the fewer the hedges that should be made, and the greater the level
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Figure 11.2. All panels relate to the modelling of the effects of transaction
costs as discussed in the text. The first panel shows the variation of the
expected profit versus the number of hedging transactions with no transac-
tion costs (solid line) and transaction costs (dashed line). The second panel
shows the variation of the standard deviation of the profit, again versus the
number of hedging transactions with no transaction costs (solid line) and
transaction costs (dashed line). The third panel shows the variation of the
risk-adjusted return of the profit versus the number of hedging transac-
tions with no transaction costs (solid line) and transaction costs (dashed
line). The fourth panel shows the optimum number of hedging transactions
against the cost of hedging. The fifth shows the minimum premium to be
charged when selling an option such that the RAR does not decrease, and
the sixth panel shows the optimum number of hedging transactions against
the risk aversion parameter.

of risk aversion the more should be made – as one would expect. Panel 5
shows the premium that should be charged so that the risk-adjusted re-
turn does not decrease, as a function of transaction costs. When transaction
costs are small, the hedging reduces the premium that can be charged by
over 40 per cent relative to the case with no hedging. This is an example of
the possible beneficial effects of secondary market trading, as were discussed
in chapter 1.
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11.4.10 Hedging options on different locations

The above analysis can be extended to the more general case where, rather
than hedging an option with a swap from the same location, we consider
hedging an option with a swap from a different location. This arises in
practice when there is a location for which the swap is traded particularly
liquidly, and an option is being written on a nearby location for which the
swap is not traded liquidly.

11.5 Pricing dual-trigger contracts

We will now briefly discuss some of the issues that arise in pricing dual-
trigger contracts. This would include contracts based on two weather indices,
or on a weather index and a price index such as a gas price.

11.5.1 Two liquid underlyings

The first case we will consider is the case where both underlyings are liq-
uidly traded. The PDE derivations can be extended to cover two underlying
contracts, and the measure theory arguments can also be extended by using
a two-dimensional version of the martingale representation theorem. The
price of options can then be calculated either as the solution of the differen-
tial equation, or as the discounted expectation in a measure in which both
underlying processes are martingales.

11.5.2 One liquid, one illiquid underlying

In the case of one liquid and one illiquid underlying the approach to hedging
is to hedge using the liquid contract as well as possible. This will, however,
leave significant residual risk because of the dependence of the pay-out on
the illiquid underlying. This risk cannot be hedged away; the price to be
charged for the option should include a risk loading to cover this.

11.5.3 Two illiquid underlyings

Finally, in the case of two illiquid underlyings no hedging is possible and pure
actuarial pricing should be used; the price should be the expected pay-off
plus risk loading for the entire risk, none of which is hedged.

11.6 Further reading

For those who like differential equations, any of Wilmott’s books, such
as Wilmott et al. (1995) or Wilmott (1999), give a good introduction to the
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mathematics of arbitrage theory. For those who prefer a martingale-based
approach, the book by Baxter and Rennie (1996) is better. Other textbooks
on the subject include those by Hull (2002) and Björk (1998). A standard
book on the mathematics of stochastic processes is the one by Gardiner
(1985).

The details of the adaptation of the standard theory to the weather case
are taken from a number of our own articles, including Jewson and Zervos
(2003b), Jewson (2003t) and Jewson (2002a).

The only article we have been able to find on the question of how to price
dual-trigger weather/commodity contracts is that by Carmona and Villani
(2003).
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Risk management

This chapter discusses various aspects of risk management for companies
that deal with weather derivatives. The simplest aspect of risk management
is estimating the value of currently held positions. This is known as either
marking to model or marking to market, depending on how ‘value’ is defined.
Mark to model involves calculating expected pay-offs while mark to market
looks at the current market value of the contracts held. Having evaluated
current positions it is often desirable to understand the risk that these po-
sitions could pay out less than the expected pay-offs, or that the expected
pay-off could deteriorate with time. We will call these two risks ‘expiry risk’
and ‘actuarial value at risk’ respectively. It can also be useful to understand
how much we could lose if we are forced to liquidate our positions as soon as
possible. We will call this the ‘liquidation value at risk’, which will often be
different from the actuarial value at risk. Finally, one may wish to evaluate
risk by counterparty (counterparty credit risk) or the risk of a temporary
cashflow shortage (liquidity risk).

Before we describe how these values can be estimated for weather portfo-
lios we will look briefly at how similar quantities are estimated for portfolios
of more traditional financial products such as equities. Many of the ideas
used in the analysis of equities have been adapted for use in the weather
market. We will also see, however, that because of certain peculiarities of
the weather market various other considerations also have to be taken into
account.

12.1 Risk management in liquid markets

In a liquid equity market the value of current equity holdings can be esti-
mated simply by using current market quotes. Bids and offers are often so
close that there is little point in distinguishing between them, but if there

268
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is a spread then one can use bids to value long positions and offers to value
short positions. Market value at risk is then defined as one of the lower
quantiles of the distribution of possible changes of the current value over a
specified time period, where the time period is often fixed by the length of
time it would take to liquidate the portfolio. This VaR can be calculated us-
ing a model for the fluctuations in the equity price, where the model is fitted
using past data for such price fluctuations. This data is generally available
in abundance, and except for very large positions one can reasonably assume
that equity price is not affected by the liquidation trades that one would be
making.

Calculating VaR for a portfolio of equities is thus reasonably straight-
forward. The main issue that arises is that the system being modelled is
non-stationary and the future doesn’t always behave like the past.

The methods used to calculate equity VaR cannot be converted immedi-
ately to weather for a number of reasons.

1. Many weather contracts are not traded at all and so there are no market quotes.
2. Even the most liquidly traded weather contracts are traded only rather thinly

and market prices can be moved by trading very easily. Thus market quotes are
not necessarily very useful even when they do exist, and building models of likely
price movements based purely on past data is not necessarily very helpful.

3. The value in weather contracts is often related to the level at which they are
likely to expire, rather than the level of a market.

4. Liquidation of positions may be practically impossible, or may require the pay-
ment of a very high risk premium, and may take a long time (days or weeks).

The problem with non-stationarity that arises for equities is less important
in weather because weather data can more reasonably be assumed to be
stationary, except for the problems to do with station changes and trends
that we have described in chapter 2.

We now look at the weather case in more detail.

12.2 Marking positions

The value of a portfolio of weather derivatives gradually changes as new
weather data, new weather and seasonal forecasts and new market data
become available. An organisation that is holding a large portfolio of weather
derivatives of different types is likely to want to calculate the value of that
portfolio on a regular basis. This could be as often as several times as day,
or as infrequently as once a season. There are various methods by which
such calculations can be made, and the differences between them mostly
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hinge on different definitions of ‘value’. We will distinguish between two such
definitions, which we call ‘expected expiry value’ and ‘expected liquidation
value’.

We believe that it is extremely important to distinguish between these
two and, if necessary, to produce both values on a daily basis. The differ-
ences between the two may or may not be large, depending on the types of
contracts being held and the state of the market. It is often the case that
the first value is of most interest to traders, who are primarily interested in
how much money they will make or lose at the end of the season, while the
second is of most interest to risk managers, who are primarily interested in
worst-case scenarios and how much the company could lose.

12.2.1 Expected expiry value

Our first concept of value is the answer to the question ‘given all the in-
formation we currently possess, what is the expectation of the value of our
portfolio of contracts at expiry?’

This question can be answered using the valuation methods described
in the earlier chapters of this book. For each contract we choose a val-
uation method that we believe is appropriate, including using the latest
weather and seasonal forecasts. We calculate the distribution of possible
outcomes, and the mean of this distribution is the expected expiry value.
For instance, for a single contract, long before the start date, we could use
any of burn analysis, index modelling or daily modelling, the relative merits
of which we have discussed in some detail in chapters 3 to 6. For a port-
folio of contracts we could use burn, index modelling or daily modelling,
or a combination of these methods using the general aggregation method,
all as described in chapter 7.1 As we approach the start of the first con-
tract in the portfolio then we would need to start using weather forecasts,
and, for certain parts of the world, seasonal forecasts, as described in chap-
ters 9 and 10. As a forecast of future out-turns the expected pay-off can
be said to be the best forecast because it minimises the root mean square
error.

One wrinkle in the definition of value as expected expiry value is that
some of the contracts in a portfolio may have been traded on the assumption

1 Although to calculate only the expected expiry value the portfolio methods of chapter 7 are not
strictly necessary, since the expected expiry value of a portfolio is just the sum of the expected
expiry values for the different contracts in the portfolio. However, we usually want to calculate
risk measures for the portfolio as well (see section 12.3), for which modelling the correlation is
essential.
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that they will be hedged on the way through the contract, as described in
chapter 11, and expected expiry value ignores this. As an extension one
can thus consider expected expiry value with the likely cost of anticipated
hedging and the likely outcomes of the hedges included.

As with all estimates, it would be useful to accompany the expected expiry
value with an estimate of the likely error. There are two ways that this
can be done. The first is to estimate the likely size of differences between
our estimate of expected expiry value and the actual expected expiry value
that we would calculate if we had an infinite amount of historical data
and perfect models. The sampling error component of this can be estimated
using the methods given in chapter 3, and the model error component can be
estimated by trying a number of different plausible modelling assumptions.
This latter would typically involve varying the numbers of years of historical
data used, the trends, the distributions, the sources of forecasts, the methods
for incorporating forecasts and the method for aggregating the portfolio.

The second method for estimating the error on the expected expiry value
is to estimate the likely range of actual outcomes for the portfolio. This is
the subject of expiry risk, discussed in section 12.3. One might also want to
know how rapidly the expected expiry value is likely to change: this is the
subject of actuarial value at risk, discussed in section 12.4.

The use of market data

Calculating expected expiry value is fundamentally an actuarial question,
and the expiry value of weather contracts is affected only by the weather
and not by market dynamics. However, there are occasionally situations
in which market data can also be used in the calculation. For instance, if
we believe that the current market price for a swap contract is a better
estimate of the expected index than our models, we can use that market
price in the valuation of swaps and options in place of our model estimate.
If we believe that both market and model values contain useful information,
then we can combine them in a weighted average, with the weights adjusted
to reflect our confidence in each. Also, if we believe that market premiums
for options are a better indicator of the expected pay-off of an option than
our model then we can use these instead of, or in combination with, our
model values. Finally, if we believe that market premiums for options are
close to the expected pay-off then we can use them to derive implied values
for the index standard deviation, which we might then use instead of our
modelled standard deviation, and use to price other options on the same
index.
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We do, however, urge caution in the use of market values in this way.
There have been clear examples in the history of the weather market where
the market swap price has moved significantly away from the expected set-
tlement index because of imbalances in supply and demand (we described
such a case in chapter 5). In these cases, using market values to estimate
the expected index would have been very misleading. Similarly, the market
prices for options can often be very far from reasonable estimates of the
expected pay-off, presumably because of risk loading.

12.2.2 Expected liquidation value

Our second definition of value is the answer to the question ‘given all the
information we currently possess, what is the expectation of the range
of values at which we would be able to liquidate our current holdings?’
The expected expiry value described in the previous section can be taken
as a first estimate of the expected liquidation value. However, there are
also a number of other issues that must be taken into account, and these
are discussed below, first for traded contracts and then for non-traded
contracts.

The liquidation value of traded contracts

If some of the contracts in our portfolio are being traded then it may be
possible to liquidate these contracts in the trading market. A small con-
tract can probably by liquidated at the market prices; a long position
should be valued at the bid and a short position at the offer, just as with
equities.

For larger positions it is likely that trading would move the market itself.
In this case one should add a loading to the current market price to represent
such slippage. Exactly how much trading of a position is likely to move the
market, and hence how much loading to add, is, however, very difficult to
estimate; the estimate can be made only on the basis of experience of the
market.

The liquidation value of non-traded contracts

For non-traded contracts no one in the market is likely to want to buy
contracts at fair value. In doing so they would be taking on risk, but with
no return. In very unusual circumstances it may be that we can sell some
of our contracts to other hedgers or speculators as hedges for their current
positions, but this would certainly not be the normal situation. More usually
one would have to pay a premium on top of fair value to persuade other
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counterparties to take on the risk of our positions. It is very hard to estimate
what this premium is likely to be. Furthermore, if a large portfolio is broken
up into small pieces and sold to a number of counterparties, at once the
total premium is likely to be larger because much of the diversification of the
portfolio will be lost. For the largest market players total liquidation may be
effectively impossible, and there may be no choice but to hold at least some
contracts to expiry. Another issue that affects the possibility of liquidation
is the extent to which contracts are based on standard locations and reliable
data sets. For instance, a precipitation contract based on synoptic data from
a small town in South Korea would be harder to liquidate than a temperature
contract based on London or New York.

It always takes time to liquidate contracts, and during this time both the
expected pay-off and the market value of contracts can change. This means
that possible future liquidation values are best understood as a distribution
rather than as a single number. This is investigated in section 12.5, where
we discuss liquidation VaR.

12.3 Expiry risk

In section 12.2.1 we discussed calculating our best estimate of the expiry
value of a portfolio of contracts. This number is of limited use on its own
without some indication of the possible error in the estimate, and one way to
quantify this is to give some indication of the likely range of possible values
at expiry. We term this the ‘expiry risk’ or ‘expiry distribution’. Methods
for calculating the expiry distribution, using the latest data and forecasts,
have been described throughout this book.

Rather than presenting the whole of the expiry distribution, it may be
preferable to present a few summary numbers. These could include:

� the expected pay-off;
� the median pay-off, which will be close to the expected pay-off unless the pay-off
distribution is skewed;

� the probability of making a loss;
� the x per cent quantile of the distribution (sometimes called the x per cent expiry
VaR); this is most likely to be a loss quantile near the tail – the 5 per cent or
1 per cent quantile, for instance;

� the probability of exceeding a pre-specified loss (e.g. the probability of losing
$10 million or more);

� the x per cent tail VaR, defined as the expected loss conditional on exceeding the
x per cent quantile (i.e. given that the losses are in the worst x per cent, what is
the expected loss?); this quantity is also called the ‘mean excess VaR’;



274 Risk management

� the $x expected shortfall, defined as the expected loss conditional on a loss ex-
ceeding $x (i.e. given that the losses are worse than $x, what is the expected
loss?).

All of these quantities can be accompanied by error bars. These can be
calculated in a number of ways, such as:
� using the linear error propagation theory of section 3.1.7;
� using simulations;
� using an ad hoc selection of different models.

The first two of these methods estimate the uncertainty associated with
having only a finite number of years of historical data to work with, but
do not estimate the uncertainty associated with the choice of one model
rather than another. The third of these methods estimates the uncer-
tainty associated with the choice of model, but does not estimate the un-
certainty associated with having only a finite number of years of histor-
ical data to work with. Ideally, we would combine both these sources of
uncertainty.

As an example of expiry VaR, figure 12.1 (reproduced from Jewson, 2003k)
shows eight realisations of the development of the expected pay-off for a
monthly call option contract, with the 10 per cent and 90 per cent quantiles
from the conditional distribution of pay-offs shown at each point in time
(these results are from the same simulations described in section 5.4). We
see that in some cases (2, 3, 6 and 8) the option is out of the money before
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Figure 12.1. Eight simulations of possible outcomes for the expected pay-
off and the 10 per cent and 90 per cent quantiles of the pay-off distribution
for a single call option contract (see section 5.4).
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the end of the contract and the distribution width collapses to zero. In the
other cases there is still some uncertainty about the distribution of possible
pay-offs right to the end of the contract.

12.4 Actuarial value at risk

As well as calculating expected expiry value and the expiry distribution
it can also be useful to understand how the expected expiry value might
change over short time periods. In particular, it can be useful to understand
whether the expected expiry value might drop rapidly and by how much. We
call these changes in the expected expiry value (and in particular the lower
quantiles of the distribution of these changes) the ‘actuarial VaR’. Another
name would be the ‘actuarial horizon VaR’, which emphasises the necessity
for a specific time horizon, in contrast to the expiry VaR, which has a time
horizon given by the end of the last contract.

We will discuss four different models for calculating actuarial VaR, rang-
ing from extremely complex to extremely simple.

The temperature-based approach
In this model for actuarial VaR we consider the value of a portfolio today to
depend on the most recent historical data, the most recent weather forecasts,
and estimates of the distribution of outcomes for the remainder of contracts
beyond the end of the post-forecast period. Changes in the value between
today and tomorrow, or today and next week, then depend on new recent
historical data, new forecasts, and changes in our estimates of the post-
forecast distribution. To calculate the distribution of changes in value, we
could thus attempt to model these three change terms. This, it turns out,
is extremely difficult to do directly. Such a model would have to take into
account:

� the autocorrelations in changes in forecasts for each location;
� the cross-correlations in changes in forecasts between locations;
� the autocorrelations and cross-correlations between changes in forecasts and re-
cent historical data.

Even modelling such effects for a single station is already much more dif-
ficult than the type of statistical modelling that we considered for daily
temperatures in chapter 6, because it involves modelling both tempera-
ture and forecasts, not just temperature. Modelling changes in forecasts,
in particular, is difficult because records of past forecasts are typically short
and non-stationary, due to changes in the forecast models. Because of these
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complexities it is necessary to consider various ways that we can make ap-
proximations and simplify this problem.

The index-based approach
Rather than considering daily temperatures we can consider that the
value of our portfolio today depends on updated estimates of the ex-
pectation and standard deviation of the indices for our weather con-
tracts. We have described and tested this approach to calculating actu-
arial VaR in a series of articles (Jewson, 2003k, and Jewson, 2003l). It
is much simpler than trying to model daily temperatures and forecasts,
because:

� our current estimate of the expected index already includes both historical tem-
peratures and forecasts;

� the dynamics of the expected index are much simpler than the dynamics of tem-
perature; changes in temperature are highly autocorrelated, while changes in
the expected index can be considered to be totally uncorrelated, as discussed in
chapter 10.

An approach to calculating actuarial VaR based on the dynamics of the
expected index thus consists of:

� choosing models for the dynamics of the mean and standard deviation of the
index, such as the trapezium models described in chapter 10;

� integrating a multivariate Brownian motion for the expectations of all the in-
dices underlying the portfolio; the variances of the individual processes, and the
covariances between them, are fixed by the model;

� integrating a deterministic model for the standard deviation of each index;
� converting the resulting distributions of the future values of the expected index,
and the deterministic future values of the standard deviations, into a distribution
of expected pay-offs.

The limitations to and assumptions behind this approach are:

� since we are dealing with indices in terms of expectation and standard deviation
this approach works well only for index distributions that can be characterised
by their expectation and standard deviation;

� this model assumes that index volatility is deterministic, which, as we have pre-
viously discussed, is not entirely correct;

� the guts of this model lies in the models used for the volatility of the expected
index; if these models are realistic, then the model will give good results – other-
wise not.

We now give two examples of this approach. The first is taken from Jewson,
2003k, and shows eight realisations of the relative 5 per cent actuarial VaR
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Figure 12.2. Eight simulations of possible outcomes for the 5 per cent rel-
ative actuarial VaR for a single call option.

versus time for a single call option. The simulations are the same as those
described in section 5.4. In those cases where the call option ends up out of
the money before the end of the contract the actuarial VaR is very small.
In case 4, where the option ends up extremely in the money, the actuarial
VaR is very large right to the end. For the last ten days of this realisation
the option is far enough in the money that it is is behaving more or less like
a swap contract.

The second example (taken from Jewson, 2003l) considers a portfolio of
two contracts: a long call option on London Heathrow and a short call option
on Paris. Figure 12.3 shows the expected pay-off and actuarial VaR results
from eight simulations of this portfolio. We see that both the expected pay-
off and the VaR fluctuate considerably during the contract in several of the
examples.

In example 1 both indices settle out of the money. From around the twen-
tieth day they are so far out of the money that the deltas are both zero.
From this point on there is no range of possible future pay-offs, and the
relative VaR is zero.

In example 3 both contracts end in the money. For the last ten days or
so they are so far in the money that the deltas are near to one and they
have effectively become linear contracts. As a result, changes in the pay-
offs are highly anticorrelated and the relative VaR is very small, because if
one contract goes up the other contract will probably go down. A similar
situation is seen at the end of example 8.
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Figure 12.3. Eight simulations of possible outcomes for the expected pay-off
and the actuarial VaR of a portfolio of two contracts.

The greeks-based approach

We can simplify the index-based approach still further by considering only
small changes in the expectation and standard deviation of the index. We
can then linearise the changes in the portfolio pay-offs in terms of changes
in the expectation and the standard deviation. This has been discussed for
single contracts in section 5.1, where we saw that if we write

µp = µp(µx, σx) (12.1)

then the total derivative is given by

dµp =
∂µp

∂µx
dµx (12.2)

= ∆dµx

We can now reinterpret this equation so that µp is the pay-off of the whole
portfolio. ∆ is then a vector of derivatives of µp with respect to each index. If
the distributions of the random changes dµx are normal then the distribution
of random changes dµp is also normal, and we can derive the VaR as a
quantile of this normal distribution.

The main limitation of this method is that it is valid only for small changes
in the expected index, which limits it to calculating actuarial VaR over
short time horizons. Over longer time horizons equation (12.2) is not a good
approximation of the change in the portfolio pay-off.
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The whole-portfolio-based approach

Finally, we present an extremely simple approach for estimating portfolio
actuarial VaR that relies on a number of rather strong assumptions. If we
have a large portfolio of contracts of many different types, spread out in
time roughly equally, and with the portfolio pay-off distribution close to
normal, then we would expect the value of the portfolio to change from
day to day roughly as a Brownian motion with constant volatility. But we
know the distribution of final values of the portfolio from our calculations of
the expiry distribution. Thus we can calculate the daily portfolio volatility
required to achieve that distribution of final values simply by scaling the
final portfolio variance appropriately.

12.5 Liquidation value at risk

We saw in section 12.2.2 that liquidation value cannot really be considered
without taking into account the time over which liquidation can be achieved
and how much modelled and market values might change over that time
period. We will call the distribution of possible liquidation values, and in
particular the lower quantiles of this distribution, the ‘liquidation VaR’.

Modelling the liquidation VaR involves extending the calculations of ex-
pected liquidation value to allow for fluctuations in the values of all quanti-
ties during the time it takes to liquidate positions. These fluctuations lead
to a distribution of the estimates of the liquidation value. Estimating the
change in the actuarial parts of the valuation can be carried out using the
methods described above for actuarial VaR. The biggest difficulty comes
when we try and estimate the liquidation VaR for liquidly traded contracts,
because the market may move more than the change in the pure actuarial
value.

In a very simple model the pure market term can be modelled as a mul-
tivariate Brownian motion multiplied by a scaling factor, as we have al-
ready described for one contract in the stochastic imbalance model in sec-
tion 11.4.7. The scaling factor ensures that the market-driven variability
disappears as we approach settlement. The difficulty of modelling the pure
market process then boils down to how we specify the volatility and covari-
ance matrix of the Brownian motion.

What is the volatility of the market prices likely to be many months before
the start of a contract? There seem to be two (competing) arguments. The
first argument is that many months before the start of a contract there
is typically very little trading of that contract, and so there is very little
trading-induced volatility; the volatility of market prices is thus very low. It
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then increases as we approach the contract, and decreases again towards the
end of the contract. The second argument is that many months before the
start of the contract there is a great amount of uncertainty about how to
calculate prices for that contract. As a result, different market participants
will calculate very different prices, and market prices are likely to move in
a very volatile fashion as different traders influence the market. Volatility
thus starts at a very high level and decreases as we approach the contract.

Without extensive market data it is very difficult to distinguish between
these two scenarios. For this reason, the only model that we feel confident
in suggesting for pre-contract market volatility is one in which the volatility
level is constant. This market-driven volatility can then be combined with
our actuarial estimates of volatility, and the whole model used to derive a
very approximate estimate of the liquidation VaR.

12.6 Credit risk

So far we have discussed modelling the effects of weather risk and market risk
on weather portfolios. We will now briefly consider the question of modelling
credit risk. Credit risk is that risk that one of your counterparties will go
bankrupt while they still owe you some money, and that you will not be
able to claim very much of what they owe. Credit risk is often divided
into the probability of counterparty default and the distribution of possible
sizes of loss given default. The probability of default can be estimated in a
number of ways, but often the simplest is to convert a credit rating into the
probability of default using standard tables. The distribution of possible sizes
of loss given default is much more complicated. First, one must estimate the
total exposure to each counterparty. This is relatively straightforward: the
simulations of the contract pay-offs from the portfolio simulation methods
described in chapter 7 simply need to be aggregated on a counterparty-by-
counterparty basis. Second, one should estimate the likely percentage of the
exposure that would be recovered. This is much more difficult and depends
on the particular situation of each counterparty. A conservative approach is
to assume 100 per cent loss.

There are also some extensions to the above credit risk analysis that one
can consider, such as an analysis of likely future credit risks versus time.

12.7 Liquidity risk

Liquidity risk is the risk that at some point in the future you may suffer
a temporary cashflow shortage. This can happen because of an unlikely
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conjunction of payments that have to be made even if your current mark
to model or mark to market position is good. As with credit risk, one can
model liquidity risk by appropriate aggregation of the simulations from the
portfolio simulation methods we have discussed in chapter 7, in conjunction
with the timings of the payments related to each contract.

12.8 Summary

We have attempted to describe a mathematical framework within which one
can understand risk management for weather derivatives, and we have been
very careful with our terminology to try and avoid much of the confusion
that surrounds this subject. In addition to the issues discussed above, there
are also a number of practical and regulatory issues that affect what is ac-
tually calculated by each institution. Trading strategy also influences the
importance of the various numbers: for a passive (buy and hold) trading
strategy only expiry values are important, whereas for an active trading
strategy only market values are relevant. We also note that for a truly con-
servative view of all risk management numbers one should try a number of
models, and select the worst results. This can, however, be a rather sobering
experience.

12.9 Further reading

There are many books on general financial risk management, such as Dowd
(1998).

Articles that focus on risk management for the weather market in-
clude Vandermarck (2003), Banks and Henderson (2002) and McIntyre
(2000). The VaR models discussed in this chapter come from a number of our
own articles. Jewson (2002b), Jewson (2003p), Jewson (2003k) and Jewson
(2003l).
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Modelling non-temperature data

In chapters 2 to 12 we have considered how to model and price weather
derivatives that depend on temperature as the underlying variable. Such
contracts are by far the most common, accounting for about 85 per cent of
all contracts traded in 2002 according to the WRMA.1 However, a number
of other weather variables are used too. These include precipitation, snow
depth, snow fall, river flow and wind. Of these, the most commonly seen
are precipitation and wind, and we focus on these two variables in this
chapter. Contracts based on these variables can be priced using the same
basic methods as used for temperature-based contracts (burn analysis, index
modelling and daily modelling), and as with temperature one may wish to
detrend the data before applying any of these methods. Burn analysis works
in exactly the same way as for temperature; index modelling may involve
using new index distributions to cope with the different distribution shapes
that arise; daily modelling may involve new kinds of time series models.

The purpose of this chapter is not to discuss precipitation and wind mod-
elling in the same kind of detail as we have for temperature. Rather, we
provide a brief overview of some of the modelling techniques available. In
each case we first discuss the most common index types and show some
examples of their index distributions. We then look at models for higher-
frequency variables.

13.1 Precipitation

Figure 13.1 shows the daily precipitation at Chicago O’Hare from 1958 to
2002. The first thing to notice about the plot is that although the average is
only 0.1 inches per day (0.3 inches if only rainy days are considered) there

1 In Japan, though, temperature contracts account for only around 50 per cent of all deals.
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Table 13.1. The daily precipitation statistics for Chicago
O’Hare, 1958 to 2002, in inches.

Mean SD % zeros Q50 Q75 Q90 Q95 Q99 Max

0.1 0.3 66 0.0 0.04 0.29 0.58 1.37 6.49
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Figure 13.1. Daily precipitation at Chicago O’Hare, 1958 to 2002.

are a significant number of days with precipitation vastly exceeding the daily
average. This is also seen in table 13.1, which shows some statistics for the
historical distribution of daily precipitation.

The distribution of daily precipitation amounts is very different from
that of daily temperatures in that 66 per cent of the observations have the
same value (zero). Furthermore, the vast majority of the daily precipitation
amounts are less than 1 inch, but the remaining days can have much higher
values. The main characteristics of the distribution of daily precipitation
are thus skewness and a point mass at zero. We illustrate this in figure 13.2,
where we have overlaid the empirical CDF for daily precipitation with the
CDFs of normal and gamma distributions, both with mean 0.1 and standard
deviation 0.3. Note how the normal CDF has a significant part below zero
and increases slowly compared with the observed CDF, while the gamma
CDF follows the data remarkably well. The close fit of the gamma distri-
bution is despite the fact that it is a continuous distribution that does not
have a point mass at zero.

13.1.1 Precipitation index modelling

Figure 13.3 shows November to March and May to September average in-
dices for the Chicago O’Hare data with a loess trend overlaid. There seems
to be a tendency for the smallest November to March indices to increase
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Figure 13.2. The empirical CDF for daily precipitation at Chicago O’Hare,
1958 to 2002. The CDFs of normal (dashed) and gamma (dotted) distribu-
tions with the same mean and standard deviation have been overlaid.
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Figure 13.3. Precipitation at Chicago O’Hare, 1958 to 2002, with a loess
trend superimposed. Left panel: cumulative precipitation for November to
March. Right panel: cumulative precipitation for May to September.

over time but there is no obvious increasing or decreasing trend over the
whole time period. For the May to September indices there is also no clear
trend. This is in contrast with the temperature data, which shows strong
positive trends at almost all locations over the same time period.

We now consider the index distributions of the loess detrended indices.
We have seen that daily precipitation values are well modelled by a gamma
distribution, but this does not help us guess what might work for the seasonal
indices since sums (or averages) of gamma distributed variables do not in
general follow any common parametric distribution. We might, however,
hope that the central-limit theorem applies sufficiently well for a normal
distribution to be a good approximation. Figure 13.4 shows the index CDFs
for the winter and summer periods with normal and gamma distributions
overlaid. Both distributions seem to fit the data reasonably well but the
fit of the gamma distribution is slightly better than that of the normal in
this case. Figure 13.5 shows the corresponding QQ plots for the gamma
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Figure 13.4. The index CDFs for cumulative precipitation at Chicago
O’Hare, 1958 to 2002. Left panel: November to March. Right panel: May
to September. Moment matched CDFs for normal (dashed) and gamma
(dotted) distributions have been overlaid.
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Figure 13.5. The index QQ plots for gamma distributions for cumulative
precipitation at Chicago O’Hare, 1958 to 2002. Left panel: November to
March. Right panel: May to September.

distribution, which confirms the good fit. If we look at average indices over
shorter periods the CLT works even less well. Figure 13.6 shows that the
normal distribution gives a significantly worse fit than the gamma for a
January contract.

13.1.2 Daily precipitation modelling

Figure 13.2 indicated that the distribution of daily precipitation may be
approximated by a gamma distribution (see, e.g., Wilks and Wilby, 1999,
for more evidence of this). However, extreme rainfall cannot be modelled
accurately with gamma distributions, since the tail of the gamma is too
thin (see, e.g., Coles and Pericchi, 2003, Koutsoyiannis, 2003, Wilks, 1993,
and Katz, 2001). One example of this is the 6.49 inches that fell at Chicago
O’Hare on 14 August 1987, which shows up clearly in both figure 13.1 and in
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Figure 13.6. The index QQ plots for a gamma (left) and a normal (right)
distribution for total January precipitation at Chicago O’Hare, 1958 to
2002.
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Figure 13.7. A QQ plot for daily precipitation at Chicago O’Hare, 1958 to
2002. The theoretical distribution is a gamma distribution.

the QQ plot for daily precipitation in figure 13.7. Using the estimated gamma
distribution the return period for such extreme rainfall is more than 100,000
years. Indices that depend on extreme precipitation distributions other than
the gamma may thus need to be considered. Extreme value modelling (see
Coles, 2001, Embrechts et al., 1997, Leadbetter et al., 1983) may be a good
alternative in such cases.

Traditionally, daily precipitation modelling has followed one of two ap-
proaches: single gauge modelling, where the temporal development of rainfall
is modelled for a particular location and spatial modelling, where the rainfall
footprint at a fixed time is modelled. The two approaches can be extended
so that the final results are similar: the spatial approach can be adapted
to emulate the results of fronts of rain cells crossing an area, in which case
it is possible to simulate rainfall development in time. Likewise, the single
gauge approach can be extended to multiple gauges, in which case the re-
sult is not unlike that of the spatial approach. We will now review some
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of the models that have been suggested in the literature for these two
approaches.

Time series modelling

Traditional time series models usually assume the distribution of the ob-
served variables to be well approximated by a normal distribution, which
we have seen is not the case for precipitation. There are several ways in
which such models can be adapted to take care of this problem. One possi-
bility is to transform the observed precipitation in such a way that the usual
time series models will work (Allcroft and Glasbey, 2003). The disadvantage
of this is that the model fitting is no longer by maximum likelihood. Another
option that has been suggested is to model the occurrence of dry and wet
periods as a Markov process, and use generalised linear models to model
the rainfall intensity of wet periods (Chandler and Wheater, 2002). A sim-
ilar model has been described by Moreno, 2001a, in the weather derivative
context.

Rain cell modelling

One model for rainfall clouds is to represent them as the aggregate effect
of many small rain cells, which are themselves taken to represent the small-
est structures that can be seen on weather radar images. Rain cells are
created, merge, separate and disappear all the time during a rainstorm,
and it has been suggested that they could be modelled in a space-time
point process framework (LeCam, 1961, Rodriguez-Iturbe et al., 1987, and
Rodriguez-Iturbe et al., 1988). In such models the spatial-temporal point
process consists of the centres of the rain cells, and each cell is a random
shape reflecting the rain intensity from the cell. The footprint of a rainstorm
over a period of time is the sum of the intensities of all the rain cells in that
period.

13.2 Wind

From a weather market perspective wind is somewhat different from temper-
ature and precipitation since there is less interest in cumulative and average
daily values. This is because very few businesses are affected by the average
daily wind speed. For example, external construction work and offshore work
are typically halted when the peak gusts are large, but not because of the
level of the average wind speed. Similarly, wind power generation, which is
the main application of wind derivatives, is not very highly correlated with
the average wind speed. This is because wind power generated during a day
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Table 13.2. The daily average wind speed statistics
for Philadelphia International, 1961 to 2003.

Mean SD % zeros Q50 Q75 Q90 Q95 Q99 Max

9.5 3.4 0 8.9 11.3 14.1 19.8 0.0 30.0
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Figure 13.8. The daily average wind speed at Philadelphia International,
1961 to 2003.

is roughly proportional to the daily average of the cube of the wind speed.2

As a result, hourly rather than daily wind measurements are often used.
Wind speed modelling is complicated by the fact that wind has a direction
and is much more affected by the surrounding terrain, such as buildings and
trees, than are precipitation and temperature. This results in wind speed
distributions that are much more spatially inhomogeneous than is the case
for the other variables. In the following we will show examples of how wind
speed modelling can be approached, but because of the spatial inhomogene-
ity it is very important that distribution assumptions are validated carefully
for each location; the ‘one size fits all’ approach to modelling is even less
true for wind than it is for temperature and precipitation.

Although we argue above that daily average wind speeds are not much
used in practice for weather derivatives, we will use them as a starting
point for our analysis for illustrative purposes. Figure 13.8 shows the daily
average wind speed at Philadelphia International Airport from 1961 to 2003.
Compared to the precipitation data in figure 13.1 it is noticeable how regular
daily average wind speed is in this case, and how few extreme observations
are present. This is also seen in table 13.2, which shows some statistics for
the historical distribution of daily average wind speed at the same location.
We note that this lack of extremes is certainly not a generic feature of wind;

2 The kinetic energy of a moving particle of mass m and velocity v is 1
2
mv2, and the mass of

the air passing an area A during a time interval t is Aρtv, where ρ is the density of the air.
Combining these two facts we see that the energy of air passing an area A during a time interval
t is 1

2
Aρtv3. Power is energy per time unit, so wind energy power is given by 1

2
Aρv3.
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Figure 13.9. The November to March and May to September indices of
cumulative cubed hourly wind speeds at Philadelphia International, 1961
to 2003. A loess trend estimate has been imposed.

locations affected by tropical cyclones, for instance, can experience very
extreme wind speeds.

13.2.1 Wind index modelling

We will now consider cumulative indices of hourly wind speeds cubed, since
these are approximately proportional to potential wind power production.
Figure 13.9 shows such indices for the period 1961 to 2003 for Philadelphia
International for the summer and winter periods.

The indices are higher in the winter than in the summer by a factor
of two. Curiously, the estimated trends both show a clear dip in the early
1980s. It is possible that this dip is the result of a change in the measurement
instruments or their surroundings. Such changes are important to detect if a
weather derivative is to be traded on these indices, and in principle methods
similar to those described in chapter 2 could be used. However, due to the
more erratic nature of wind (changing direction and speed) it can be much
more difficult to detect such changes than it is for temperature.

Since the indices are sums of many daily variables the normal distribution
might seem to be an appropriate choice of distribution for this kind of data.
It turns out, however, that normal distributions do not fit the data for this
station very well. On the other hand, as we show in figure 13.10, gamma
distributions do provide quite a good fit to both the summer and the winter
index distributions.

13.2.2 High-frequency wind modelling

We now consider modelling wind at higher frequency than seasonal. We
could try and build models for daily average wind, but, as argued above,
average daily wind speed is not often used for weather derivatives. Instead,
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Figure 13.10. QQ plots for daily indices of cumulative cubed hourly wind
speeds at Philadelphia International, 1961 to 2003. Left panel: November
to March. Right panel: May to September.

0 100 200 300

0
10

20
30

40

Day of the year

W
in

d 
sp

ee
d 

(m
ph

)

0 100 200 300

0
10

20
30

40

Day of the year

W
in

d 
sp

ee
d 

(m
ph

)

Figure 13.11. Hourly wind speeds for two years of data at Philadelphia
International. Left panel: 1961. Right panel: 2003.

we could consider modelling hourly wind speed or peak gusts. One could
also use finer-resolution data than hourly, but then storage capacity and
data availability could become problematic. Since hourly data is generally
the finest resolution that is easily available, we will consider hourly data
here.

Figure 13.11 shows hourly wind speeds for two years of data for Philadel-
phia International – 1961 and 2003. The figures highlight a common problem
for wind data, namely that data is often discrete and on a fairly coarse scale.
All measurements of all variables are discrete in the sense that there is a
limit to the accuracy with which we can measure. However, it is more com-
mon for wind than for temperature and precipitation that the measurement
scale is very coarse. In this case the wind speed measurements are made in
jumps of size 1 mph, and there are almost no measurements between 0 and
3.4 mph.

In the wind modelling literature there is a long tradition for modelling
hourly wind speeds using Weibull distributions. There does not seem to be
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Figure 13.12. QQ plots for hourly wind speeds for two years of data at
Philadelphia International. Left panel: 1961. Right panel: 2003.

any theoretical rationale for this, but often this distribution may provide
reasonable approximations to the observed data. However, the distribution
of wind speeds varies significantly by location and time of year, and may
even vary from year to year. For this reason it is most prudent to verify
carefully any distributional assumptions. Figure 13.12 shows Weibull QQ
plots for data from Philadelphia International Airport for the years 1961
and 2003. The Weibull distribution fits the 2003 data reasonably well but
the fit for the 1961 data is less good. There are many possible reasons for
this, such as equipment changes, measurement height changes, other station
changes and long-term trends.

13.3 Further reading

The business side of hedging precipitation is discussed in Ruck (2002), and
some agricultural examples are given in Turvey (2001).
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Trend models

A.1 A general theory for trend modelling and the
uncertainty of trend estimates

For a large class of trend types (those that are linear in their covariates,
which is a much more general class than the linear trend considered in
chapter 2) there is a useful general theory, which gives trend parameters,
the uncertainty in the estimated parameters and the uncertainty in the de-
trended index values. The linear theory given in section 2.3 is a special case
of this general theory.

The theory applies to all trends for which the estimated trend lines are
linear functions of the observed indices. This applies to all the parametric
trends described in chapter 2 because the parameter estimates are (approx-
imately) normally distributed, and it applies to loess and moving average
trends by construction.

Before exploring this further we first review some results from the statis-
tical theory of linear models, which shows that our parameter estimates are
normally distributed.

We will consider linear models of the form

X = Aθ + e (A.1)

where X = (X1, . . . , XN )T is the vector of index values and e is a vector
of independent and normally distributed random variables with expecta-
tion 0 and variance σ2. The mean vector (trend) of the indices is given
by the known N × p-matrix A, called the design matrix, and the vector
θ of p unknown parameters. The values in the row i of the design ma-
trix A are related to observation Xi and are often called the covariates
for Xi.

292
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For instance, the linear trend is of the form (A.1), with θ = (a, b)T con-
sisting of the intercept and slope, and the design matrix of the form

A =

⎛
⎜⎜⎜⎝

1 t1
1 t2
...

...
1 tN

⎞
⎟⎟⎟⎠ (A.2)

The quadratic trend has the same design matrix with an additional col-
umn consisting of (t21, . . . , t

2
N )T , whereas the exponential trend can be ap-

proximated by a trend of the form (A.2) if we model the logarithm of X

instead of X. We would then have to transform the estimated trend back
by the exponential function.

One of the fundamental results of the theory of linear models (Casella
and Berger, 2002) is that the least square estimator of θ is given by

θ̂ = (ATA)−1ATX ∼ Φ
(
θ, σ2(ATA)−1

)
(A.3)

The expected index is the trend at time T corresponding to the covariate
vector aT = (aT1, . . . , aTp) and can be estimated by equation (A.3). The
detrended expected index is then given by

X̂T = aT θ̂ ∼ Φ
(
aT θ, σ

2aTT (ATA)−1aT
)

(A.4)

which is a linear function of the estimated parameters, and is hence normally
distributed.

For the exponential trend, equation (A.4) gives the estimate and the dis-
tribution for the logarithm of the trend. A so-called ‘delta theorem’ gives us
the following approximate expression for the distribution of the exponential
trend:

µ̂T = exp(X̂t) ≈ Φ
(
exp(aT θ), σ2 exp(2aT θ)aTT (ATA)−1aT

)
Loess and moving average trends are non-parametric and the above theory
for linear models does not apply exactly. However, if we assume that the
index is approximately normally distributed then the estimated expected
index also becomes approximately normally distributed. This is because the
estimates of these trends are linear functions of the observed indices.

A.1.1 Monte Carlo methods

Alternatively, the uncertainty around the expected index can be estimated
for any trend using simulations as follows:
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� fit the trend using N years of index data;
� using the fitted trend and a distribution fitted to the residuals, simulate – e.g. –
10,000 periods of N years of artificial data;

� fit trends to each of these periods;
� the 10,000 fitted trends will all be slightly different, over a range; this gives an
indication of the range of uncertainty in our original trend estimate, and the range
of expected index values derived from the detrending gives an indication of the
range of uncertainty in our detrended estimate of the expected index.
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Parameter estimation

B.1 Statistical models

A statistical model for a set of observations x = (x1, . . . , xN ) is a specifi-
cation of a probability distribution for x, typically given by a probability
density fθ that depends on a set of parameters θ. If the observations are
assumed to be independent then fθ is given as a product of the densities, f i

θ,
for each observation: fθ(x) =

∏N
i=1 f

i
θ(xi). If the f i

θ are assumed to be identi-
cal, the observations are said to be identically distributed and the expression
for the density fθ simplifies to

fθ(x) =
N∏
i=1

fθ(xi)

Non-parametric models are models that do not have any unknown param-
eters θ. In the following we will describe some methods for the estimation
of unknown parameters in parametric models. The methods apply to all
parametric models, but for simplicity we concentrate on the estimation of
a vector of parameters θ ∈ R

p in models for independent and identically
distributed observations.

B.2 Parameter estimation

After having specified a model, the first objective of a statistical analysis is
to estimate the parameter vector θ. Numerous methods, both graphical and
numerical, have been proposed for this purpose. Often, the basic principles
for the numerical methods are based on one of two approaches: the method
of moments (MoM) or maximum likelihood (ML).

295
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B.2.1 The method of moments

MoM is probably the most simple principle for parameter estimation. The
idea is to calculate theoretical expressions for some moments of the data
(such as mean and variance), set these equal to their empirical equivalents
and solve the equations. As an example, let us look at the model where all
observations are assumed independent and gamma distributed. The param-
eters of the gamma distribution are the shape parameter λ and the scale
parameter β, and so θ = (λ, β). The mean and the variance of the distribu-
tion are

EX = βλ and VX = β2λ

The MoM equations are

µ̂ = βλ and σ̂2 = β2λ

These can be solved to give

λ = µ̂2

σ̂2 and β = σ̂2

µ̂

The main advantages of MoM are that it is simple and that the moments of
the estimated distribution equal those of the observations (for the moments
used to estimated the parameters). However, the procedure is ad hoc and
the estimated parameters are, in general, not optimal in any useful sense.
Furthermore, there are no general expressions for the estimation uncertainty
of MoM estimators, so these have to be derived on a case-by-case basis. In
many cases, such as our example above, this may not be an easy task, be-
cause the parameter estimates are complicated functions of the observations.

B.2.2 Maximum likelihood

ML estimation is, by far, the most popular method for the estimation of
parameters in statistical models. The main reasons for this are that for
large classes of models it can be shown that asymptotically the estimates are

� unbiased;
� optimal, in the sense that they give the minimum possible variance;
� multivariate normally distributed.

The likelihood function L is the density (probability mass function for dis-
crete distributions) of the observations considered as a function of the pa-
rameter vector θ with the observations fixed:

LN (θ;x1, . . . , xN ) := fθ(x1, . . . , xN )
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The ML estimates are defined as the value of θ that maximises the likelihood
function:

θ̂ = Arg MaxθLN (θ;x1, . . . , xN )

The intuitive argument for estimating parameters this way is that θ̂ is the
value of the parameter vector that maximises the probability of the observa-
tions within the family fθ of distributions. However, the main benefit of the
ML estimator (MLE), apart from its asymptotic optimality, is the fact that
analytical expressions exist for parameter estimation uncertainty. These ex-
pressions are still based on asymptotic arguments but they apply generally
to an extremely wide range of models.

Under mild regularity conditions on the density fθ it can be shown that
the asymptotic distribution of θ̂ as the number of observations increases is
approximately multivariate normal with mean θ (i.e. unbiased) and covari-
ance matrix

Σ(θ) = −E
∂2 logLN (θ)

∂θ2

The quantity I(θ) := Σ(θ)−1 is called the information matrix, and in practice
it is estimated by

Î(θ) = − 1
N

∂2 logL(θ̂)
∂θ2

for identically and independent observations with likelihood function L.
Although the concept of ML estimators may seem fairly abstract, MLEs

often coincide with moment estimators and simple common-sense estima-
tors. For example, the MLE of the mean of normal, Poisson and exponen-
tial distributions is the average of the observations. An example where the
MLE does not coincide with the standard estimator is the variance of the
normal distribution. The MLE is

∑N
i=1(xi − µ̂)2/N , but since this is not un-

biased (except asymptotically) it is common to use the standard estimator∑N
i=1(xi − µ̂)2/(N − 1).
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Goodness of fit tests

C.1 Goodness of fit tests

In addition to graphical methods one can also perform numerical tests of
goodness of fit (GoF). The advantages of such tests are that they are objec-
tive (except for chi-square tests – see below) and provide a single number;
they can thus be used in automated methods for ranking a number of dis-
tributions.

In the following discussion of the most common GoF tests we use the
statistical concept of ‘power’ to describe the efficiency of the test. A GoF
test evaluates how likely it is that the observed sample could have been
generated from the distribution in question. The power of the test is the
proportion of correctly rejected tests. If a test has low power it means that
it is bad at rejecting distributions even if the fit is poor. Conversely, a test
with high power is good at identifying distributions that do not match the
sample. In practice this means that if a distribution fails a test with low
power (such as, for example, chi-square or Kolmogorov–Smirnov (KS)) then
this is a good indication that the distribution is not appropriate.

C.1.1 The chi-square test

The chi-square test can be used as a GoF test with any distribution, either
continuous or discrete. However, if the distribution is continuous it must
first be discretised by dividing the sample space into intervals and binning
the observations into these intervals. For a discrete distribution the bins are
simply the different outcomes in the sample. If we let ni denote the number
of observations in bin i, the chi-square test statistic is calculated as

χ2 =
k∑

i=1

(ni − ei)2

ei

298
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Here ei denotes the expected number of observations in bin i. The distri-
bution of χ2 is approximately that of a chi-square distribution with k −
p degrees of freedom, where p is the number of parameters in the distri-
bution. The approximation is generally good when the expected number of
observations ei in each bin is greater than five. The approximation is gener-
ally not good if some of the ei are less than two. For this reason, it may be
necessary to combine bins to achieve a higher expected bin count.

The main drawback of the chi-square test is that it is not very specific
and, as such, does not have a lot of power.

C.1.2 The Kolmogorov–Smirnov test

The KS test compares the vertical distance between the theoretical CDF
and that of the observations. It is applicable to continuous distributions
only and is calculated as

D = max
x

|F (x) − F̂ (x)| = max
xi

|F (x(i)) − i/N |
Here F denotes the theoretical CDF and x(i) denotes the i’th lowest ob-
servation. There is an exact asymptotic expression for the distribution of
D in the case where all the xi have distinct values and this distribu-
tion does not depend on the CDF F. However, the exact expression holds
only if the distribution F is fully specified – i.e. no parameters are esti-
mated. If parameters are estimated the so-called Lilliefors test can be used
instead.

Because the KS test measures the maximum vertical distance between
the two CDFs it is most likely to detect differences in the middle of the
distributions. In the tails the two CDFs are forced to be close to 0 and 1
respectively, so the maximum difference is unlikely to appear in the tails.
For this reason, the KS test has relatively little power.

C.1.3 The Anderson–Darling and Cramér–von Mises tests

The main problem with the KS test is that it is most suited for finding
differences in the middle of the distributions. Several authors have pro-
posed coping with this problem by using the integral of the difference be-
tween the theoretical and the empirical CDFs weighted by some weight
function w:

Q =
∫

w(x)
(
F (x) − F̂ (x)

)2
dx

Two special cases are the Cramér–von Mises test ( 1
w(x) = n) (CM) and the
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Anderson–Darling test ( 1
w(x) = F (x)(1 − F (x))) (AD). The AD and CM

tests are more powerful than the KS test and can detect differences between
the distributions over their entire widths. One drawback of these tests, how-
ever, is that the distributions of the test statistic depend on the distribution
F , so no general expressions can be given.

C.1.4 The Shapiro–Wilk test

The Shapiro–Wilk (SW) test is a test for normality. Because it explicitly
targets deviations from normal distributions it is much more powerful than
the general-purpose GoF tests described above. The SW test is calculated
as

W =

(∑N
i=1 wix(i)

)2
∑N

i=1(xi − x̄)2

The wi are constants that can be looked up in tables, such as those in
Pearson and Hartley, 1962. The distributions of the test statistic can also
be found in standard statistical tables.

C.1.5 Monte Carlo tests

A common feature of all the GoF tests described above is that the distribu-
tions of the test statistic are known only approximately and for relatively
large samples. One way to overcome this problem is by using so-called Monte
Carlo (MC) tests. An MC test is carried out by first calculating the test
statistic of interest (for example, χ2, D or Q) and then simulating samples,
of the same length as the observed sample, from the theoretical distribution.
For each simulated sample the test statistic can be calculated and the whole
set of samples can be used to estimate the distribution of the test statistic.
The difference between this approximate distribution and those described
for each test above is that the approximations described above are good
when the sample size is large, whereas the MC approximation is good when
the number of simulations is large. In an MC test we can thus get arbitrar-
ily accurate approximations of the test distribution just by increasing the
number of simulations.

MC tests can be useful for a tailor-made GoF test that tests exactly the
characteristics of a distribution that are of interest for a particular appli-
cation. For example, for a weather call option one of the main properties
of interest is the LEV function between the strike and the limit. Hence, a
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possible GoF candidate is∫ S+L

S
(L(x) − L̂(x))a dx

where L and L̂ are the theoretical and empirical LEV functions, and a is
a constant that can be used to adjust the importance of large deviations
relative to small deviations.
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Expected pay-offs for normally
distributed indices

In this appendix we derive exact expressions for the pay-off distributions
and the expected pay-offs of weather derivatives on a normally distributed
index. Specific examples of these expressions have been given by a number
of authors, such as McIntyre (1999), Jewson (2003t) and Brix et al. (2002).
The derivations given below come from Jewson (2003a).

In section D.1 we define an eighth contract type in addition to the seven
defined in chapter 1. This new contract type has a general piecewise linear
pay-off function. In section D.2 we give the closed-form expressions for the
pay-off distributions of each of these types of contracts in terms of the index
distribution. In section D.3 we derive various relations that greatly simplify
the subsequent algebra, and in section D.4 we derive the expected pay-offs
for each of the eight contract types. Finally we give some numerical examples
of each expression.

D.1 Pay-off definitions

In addition to the pay-off functions defined in chapter 1 we will also consider
the general form, given below.

D.1.1 The general form

p(x) = αi + βix if ai ≤ x < ai+1 (D.1)

where

−∞ = a1 < a2 . . . < an−1 < an = ∞ (D.2)

All the previous forms can be considered as special cases of this one general
form.

302
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D.2 Pay-off distributions

We will write the cumulative distribution function of the index by F (x) and
the probability density function by f(x), where

F (x) =
∫ x

−∞
f(s)ds (D.3)

or

f(x) =
(
dF

ds

)
x

(D.4)

D.2.1 Swaps

The distribution of the pay-off of a swap contract, G(p), is given in terms of
the distribution function of the index as

G(p) =

⎧⎪⎨
⎪⎩

0 p < −L$

F (K + p
D ) −L$ ≤ p < L$

1 p ≥ L$

(D.5)

The density function of the pay-off distribution g(p) can be written in
terms of the density of the index as

g(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 p < −L$

δ(p + L$)F (L1) p = −L$

1
Df(K + p

D ) −L$ < p < L$

δ(p− L$)[1 − F (L2)] p = L$

0 p > L$

(D.6)

where δ(p) is the delta function of mathematical physics, which is infinite
at p, zero elsewhere, and has an integral of one.

D.2.2 Call options

For a call option the CDF of the pay-off is given by

G(p) =

⎧⎪⎨
⎪⎩

0 p < 0

F (K + p
D ) 0 ≤ p < L$

1 p ≥ L$

(D.7)
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and the density by

g(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 p < 0
δ(p)F (K) p = 0
1
Df(K + p

D ) 0 < p < L$

δ(p− L$)[1 − F (L)] p = L$

0 p > L$

(D.8)

D.2.3 Put options

For a put option the CDF of the pay-off is given by

G(p) =

⎧⎪⎨
⎪⎩

0 p < 0
F (K − p

D ) 0 ≤ p < L$

1 p ≥ L$

(D.9)

and the density by

g(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 p < 0
δ(p)[1 − F (K)] p = 0
1
Df(K − p

D ) 0 < p < L$

δ(p− L$)F (L) p = L$

0 p > L$

(D.10)

D.2.4 Collars

For a collar the CDF of the pay-off is given by

G(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 p < L$

F (K1 + p
D ) −L$ ≤ p < 0

F (K2 + p
D ) 0 ≤ p < L$

1 p ≥ L$

(D.11)

and the density by

g(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 p < −L$

δ(p + L$)F (L1) p = −L$
1
Df(K1 + p

D ) −L$ < p < 0
δ(p)[F (K2) − F (K1)] p = 0
1
Df(K2 + p

D ) 0 < p < L$

δ(p− L$)[1 − F (L2)] p = L$

0 p > L$

(D.12)
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D.2.5 Straddles

For a straddle the CDF of the pay-off is given by

G(p) =

⎧⎪⎨
⎪⎩

0 p < 0

F (K + p
D ) + F (K − p

D ) 0 ≤ p < L$

1 p ≥ L$

(D.13)

and the density by

g(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 p ≤ 0
1
D [f(K + p

D ) + f(K − p
D )] 0 < p < L$

δ(p− L$)[F (−L1) + 1 − F (L2)] p = L$

0 p > L$

(D.14)

D.2.6 Strangles

For a strangle the CDF of the pay-off is given by

G(p) =

⎧⎪⎨
⎪⎩

0 p < 0

F (K2 + p
D ) + F (K1 − p

D ) 0 ≤ p < L$

1 p ≥ L$

(D.15)

and the density by

g(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 p < 0

δ(p)[F (K2) − F (K1)] p = 0
1
D [f(K2 + p

D ) + f(K1 − p
D )] 0 < p < L$

δ(p− L$)[F (−L1) + 1 − F (L2)] p = L$

0 p > L$

(D.16)

D.2.7 Binary options

For a binary option the CDF of the pay-off is given by

G(p) =

⎧⎪⎨
⎪⎩

0 p < 0

F (S) 0 ≤ p < L$

1 p ≥ L$

(D.17)
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and the density by

g(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 p < 0

δ(p)F (K) p = 0

0 0 < p < L$

δ(p− L$)[1 − F (K)] p = L$

0 p > L$

(D.18)

D.3 Useful relations for deriving expressions
for the expected pay-off

In order to derive closed-form solutions for the expected pay-off for the
normal distribution we start by noting a few properties of the normal density
and distribution functions. These will make the subsequent derivations much
more straightforward.

The density φ(x) for a normal distribution with expectation 0 and vari-
ance 1 is given by

φ(x) = φx =
1√
2π

e−
x2

2 (D.19)

From this it is simple to show that
d

dx
φx = −xφx (D.20)

Integrating this from a to b gives∫ b

a
xφxdx = φa − φb (D.21)

This formula will prove useful later when evaluating expressions that have
the same form as the left-hand side.

We now define

Φ(x) = Φx =
∫ x

−∞
φydy (D.22)

This is the CDF for a normal distribution with expectation 0 and vari-
ance 1.

The probability density of a normal distribution with expectation µ and
standard deviation σx is given by

1
σx

n

(
x− µ

σx

)
=

φx′

σx
(D.23)

where we write x′=x−µ
σx

.
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The cumulative density function is given by the integral of this, which is

1
σx

∫ x

−∞
n

(
y − µ

σx

)
dy =
∫ x′

−∞
φ(s)ds (D.24)

= Φ(x′)
= Φx′

If we integrate φx′ from a to b we see that∫ b

a
φx′dx =

∫ b

−∞
φx′dx−

∫ a

−∞
φx′dx (D.25)

= σx(Φb′ − Φa′)

This will also prove useful later.
By making the substitution x = σxs + µ we find that∫ b

a
xφx′dx = σx

∫ b′

a′
(σxs + µ)φ(s)ds (D.26)

= σ2
x

∫ b′

a′
sφsds + σxµ

∫ b′

a′
φsds

= σ2
x(φa′ − φb′) + σxµ(Φb′ − Φa′)

where the last step used expression (D.21).
Finally, we note that∫ b

a
(x− c)φx′dx =

∫ b

a
xφx′dx− c

∫ b

a
φx′dx (D.27)

= σ2
x(φa′ − φb′) + σxµ(Φb′ − Φa′) − cσx(Φb′ − Φa′)

= σ2
x(φa′ − φb′) + σx(µ− c)(Φb′ − Φa′)

Given the various expressions above it is now easy to write the expected
pay-offs of all standard contract types in terms of Φx and φx. Φx and φx can
be calculated using standard functions that are available in most computer
languages or spreadsheets.

D.4 Closed-form expressions for the expected pay-off

We now derive expressions for the expected pay-off for our seven contract
types. The expected pay-off is useful because:

� it is the usual definition for the actuarial fair price;
� it is the long-run average pay-off;
� under certain assumptions, it is the arbitrage-free price (see chapter 11).
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D.4.1 Swaps

For a swap the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.28)

Substituting in the pay-off function from equation (1.11) gives

µp =
1
σx

∫ L1

−∞
−L$φx′dx +

1
σx

∫ L2

L1
D(x−K)φx′dx +

1
σx

∫ ∞

L2
L$φx′dx

(D.29)

Applying the various rules derived above we see that

µp = −L$

σx
[σxΦL1′ ] (D.30)

+
D

σx
[σ2

x(φL1′ − φL2′) + σx(µ−K)(ΦL2′ − ΦL1′)]

+
L$

σx
[σx(1 − ΦL2′)]

Finally, rearranging to group together all terms in n and N gives

µp = Dσx(φL1′ − φL2′) + DΦL1′(L1 − µ) + DΦL2′(µ− L2) + L$ (D.31)

Applying the same derivation but for the uncapped case gives

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.32)

=
1
σx

∫ ∞

−∞
D(x−K)φx′dx

=
D

σx
[σx(µ−K)]

= D(µ−K)

D.4.2 Call options

For a call option the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.33)
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=
1
σx

∫ L

K
D(x−K)φx′dx +

1
σx

∫ ∞

L
L$φx′dx

=
D

σx
[σ2

x(φK′ − φL′) + σx(µ−K)(ΦL′ − ΦK′)]

+
L$

σx
[σx(1 − ΦL′)]

= Dσx(φK′ − φL′) + DΦL′(µ− L) + DΦK′(K − µ) + L$

For the uncapped case it is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.34)

=
1
σx

∫ ∞

K
D(x−K)φx′dx

=
D

σx
[σ2

xφK′ + σx(µ−K)(1 − ΦK′)]

= DσxφK′ + D(µ−K)(1 − ΦK′)

D.4.3 Put options

For a put option the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.35)

=
1
σx

∫ L

−∞
L$φx′dx +

1
σx

∫ K

L
D(K − x)φx′dx

=
L$

σx
[σxΦL′ ]

− D

σx
[σ2

x(φL′ − φK′) + σx(µ−K)(ΦK′ − ΦL′)]

= Dσx(φK′ − φL′) + DΦL′(µ− L) + DΦK′(K − µ)

For the uncapped case it is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.36)

=
1
σx

∫ K

−∞
D(K − x)φx′dx

= −D

σx
[σ2

x(−φK′) + σx(µ−K)ΦK′ ]

= DσxφK′ + DΦK′(K − µ)
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D.4.4 Collars

For a collar the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.37)

=
1
σx

∫ L1

−∞
−L$φx′dx +

1
σx

∫ K1

L1
D(x−K1)φx′dx

+
1
σx

∫ L2

K2
D(x−K2)φx′dx +

1
σx

∫ ∞

L2
L$φx′dx

= Dσx(φL1′ − φK1′ + φL1′ − φK2′)

− L$

σx
[σxΦL′ ]

+
D

σx
[σ2

x(φL1′ − φK1′) + σx(µ−K1)(ΦK1′ − ΦL1′)]

+
D

σx
[σ2

x(φK2′ − φL2′) + σx(µ−K2)(ΦL2′ − ΦK2′)]

+
L$

σx
[σx(1 − ΦL2′)]

= Dσx(φL1′ + φK2′ − φK1′ − φL2′)

+ ΦL1′(L1 − µ) + ΦL2′(µ− L2) + ΦK1′(µ−K1) + ΦK2′(K2 − µ) + L$

In the uncapped case it is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.38)

=
1
σx

∫ K1

−∞
D(x−K1)φx′dx +

1
σx

∫ ∞

K2
D(x−K2)φx′dx

=
D

σx
[σ2

x(−φK1′) + σx(µ−K1)ΦK1′ ]

+
D

σx
[σ2

xφK2′ + σx(µ−K2)(1 − ΦK2′)]

= Dσx(φK2′ − φK1′) + DΦK1′(µ−K1) + D(1 − ΦK2′)(µ−K2)

D.4.5 Straddles

For a straddle the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.39)
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=
1
σx

∫ L1

−∞
L$φx′dx +

1
σx

∫ K

L1
D(K − x)φx′dx

+
1
σx

∫ L2

K
D(x−K)φx′dx +

1
σx

∫ ∞

L2
L$φx′dx

=
L$

σx
ΦL1′

− D

σx
[σ2

x(φL1′ − φK′) + σx(µ−K)(ΦK′ − ΦL1′)]

+
D

σx
[σ2

x(φK′ − φL2′) + σx(µ−K)(ΦL2′ − ΦK′)]

+
L$

σx
[σx(1 − ΦL2)]

= Dσx(2φK′ − φL1′ − φL2′) + DΦL1′(µ− L1)

+ 2DΦK′(K − µ) + DΦL2′(µ− L2) + L$

For the uncapped case it is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.40)

=
1
σx

∫ K

−∞
D(K − x)φx′dx +

1
σx

∫ ∞

K
D(x−K)φx′dx

= − D

σx
[σ2

x(−φK′) + σx(µ−K)ΦK′ ]

+
D

σx
[σ2

xφK′ + σx(µ−K)(1 − ΦK′)]

= 2DσxφK′ + 2DΦK′(K − µ) + D(µ−K)

D.4.6 Strangles

For a strangle the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.41)

=
1
σx

∫ L1

−∞
L$φx′dx +

1
σx

∫ K1

L1
D(K − x)φx′dx

+
1
σx

∫ L2

K2
D(x−K)φx′dx +

1
σx

∫ ∞

L2
L$φx′dx

=
L$

σx
[σxΦL1′ ]
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− D

σx
[σ2

x(φL1′ − φK1′) + σx(µ−K1)(ΦK1′ − ΦL1′)]

+
D

σx
[σ2

x(φL1′ − φK1′) + σx(µ−K1)(ΦK1′ − ΦL1′)]

+
L$

σx
[σx(1 − ΦL2′)]

= Dσx(φK1′ + φK2′ − φL1′ − φL2′)

+DΦL1′(µ− L1) + DΦK1′(K1 − µ) + DΦK2′(K2 − µ)

+DΦL2′(µ− L2) + L$

For the uncapped case it is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.42)

=
1
σx

∫ K1

−∞
D(K − x)φx′dx +

1
σx

∫ ∞

K2
D(x−K)φx′dx

=
D

σx
[σ2

x(−φK1′) + σx(µ−K)ΦK1′ ]

+
D

σx
[σ2

xφK2′ + σx(µ−K)(1 − ΦK2′)]

= Dσx(φK1′ + φK2′) + DΦK1′(K1 − µ) + D(µ−K2)(1 − ΦK2′)

D.4.7 Binary options

For a binary option the expected pay-off is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.43)

=
1
σx

∫ ∞

K
L$φx′dx

= L$(1 − ΦK′)

D.4.8 The general form

The expected pay-off for the general form is

µp =
1
σx

∫ ∞

−∞
p(x)φx′dx (D.44)

=
1
σx

n∑
i=1

∫ ai+1

ai

p(x)φx′dx
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=
1
σx

n∑
i=1

∫ ai+1

ai

(αi + βix)φx′dx

=
1
σx

n∑
i=1

[αi

∫ ai+1

ai

φx′dx + βi

∫ ai+1

ai

xφx′dx]

=
1
σx

n∑
i=1

[αiσx(Φa(i+1)′ − Φai′) + βiσ
2
x(φai′ − φa(i+1)′)

+βiσxµ(Φa(i+1)′ − Φai′)]

D.5 Numerical examples

To facilitate the debugging of computer code using these expressions, we
now give numerical examples.

In all these examples we assume µ = 1670 and σx = 120.

Swap example
Strike 1680 Expected pay-off (with caps) −45,201.8
Tick 5000 Expected pay-off (no caps) −50,000.0
Limit 1,000,000

Call example
Strike 1680 Expected pay-off (with caps) 205,491.7
Tick 5000 Expected pay-off (no caps) 215,196.0
Limit 1,000,000

Put example
Strike 1650 Expected pay-off (with caps) 184,809.7
Tick 5000 Expected pay-off (no caps) 192,682.2
Limit 1,000,000

Collar example
Strike 1 1650 Expected pay-off (with caps) −19,353.7
Strike 2 1700 Expected pay-off (no caps) −20,875.4
Tick 5000
Limit 1,000,000

Straddle example
Strike 1660 Expected pay-off (with caps) 456,185.3
Tick 5000 Expected pay-off (no caps) 480,392.0
Limit 1,000,000
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Strangle example
Strike1 1660 Expected pay-off (with caps) 421,813.1
Strike2 1675 Expected pay-off (no caps) 442,269.2
Tick 5000
Limit 1,000,000

Binary example
Strike 1680 Expected pay-off (with caps) 466,793.3
Limit 1,000,000
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Pay-off variances for normally distributed indices

We now give exact expressions for the variance of the pay-offs of weather
derivatives on a normally distributed index, taken from Jewson (2003c).
The expression for the variance of the pay-off of an uncapped call option
was previously given by Henderson (2002).

In section E.1 we derive various useful expressions that will help us with
our subsequent derivations. In section E.2 we derive the closed-form expres-
sions for the variance and in section E.3 we give some numerical examples.

E.1 Useful relations for deriving expressions
for the pay-off variance

E.1.1 Derivation strategy

First we explain the strategy and formulae we will use for deriving expres-
sions for the pay-off variance of weather contracts.

The variance of the pay-off function p(x) is given by

σ2
p =
∫ ∞

−∞
(p(x) − µp)2f(x)dx (E.1)

where f(x) is the probability density of the settlement index x and µp is the
expected pay-off.

This can be rearranged to give

σ2
p =
∫ ∞

−∞
p(x)2f(x)dx− µ2

p (E.2)

= m2 −m2
1

Our strategy is to evaluate the first term on the right-hand side, m2.
Closed-form expressions for m1 are given in appendix D.

315
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E.1.2 Useful expressions

First ∫ b

a
x2φxdx =

∫ b

a
x.(xφx)dx (E.3)

= [−xφx]ba −
∫ b

a
−φxdx

= [xφx]ab + Φb − Φa

= aφa − bφb + Φb − Φa

and second∫ b

a
(x− c)2φx′dx = σx

∫ b′

a′
(µ + σxs− c)2φsds (E.4)

= σx

∫ b′

a′
(ν + σxs)2φsds

= σx

∫ b′

a′
(ν2 + 2νσxs + σ2

xs
2)φsds

= σxν
2

∫ b′

a′
φsds + 2σ2

xν

∫ b′

a′
sφsds + σ3

x

∫ b′

a′
s2φsds

= σxν
2[Φb′ − Φa′ ] + 2σ2

xν[φa′ − φb′ ]

+σ3
x[a

′φa′ − b′φb′ + Φb′ − Φa′ ]

where we have defined ν (‘nu’) as ν = µ− c.
Given the various expressions above, it is now easy to write the pay-off

variances of all standard contract types in terms of Φx and φx. Φx and φx can
be calculated using standard functions that are available in most computer
languages or spreadsheets.

E.2 Closed-form expressions for the pay-off variance
E.2.1 Swaps

For a capped swap m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.5)

Applying the definition of the pay-off of a capped swap contract given
in chapter 1, this gives

m2 =
1
σx

∫ L1

−∞
L2

$φx′dx +
1
σx

∫ L2

L1
D2(x−K)2φx′dx +

1
σx

∫ ∞

L2
L2

$φx′dx

(E.6)



Appendix E: Pay-off variances 317

Evaluating these integrals gives

m2 = L2
$ΦL1′ (E.7)

+
D2

σx
{σxν2[ΦL2′ − ΦL1′ ] + 2νσ2

x[φL1′ − φL2′ ]

+σ3
x[L

′
1φL1′ − L′

2φL2′ + ΦL2′ − ΦL1′ ]}
+L2

$[1 − ΦL2′ ]

Finally, grouping together terms in n and N gives

m2 = φL1′ [D2(2σxν + σ2
xL

′
1)] − φL2′ [D2(2σxν + σ2

xL
′
2)] (E.8)

+ ΦL1′ [L2
$ −D2(ν2 + σ2

x)] + ΦL2′ [D2(ν2 + σ2
x) − L2

$]

+L2
$

For the uncapped case it is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.9)

=
1
σx

∫ ∞

−∞
D2(x−K)2φx′dx

=
D2

σx
{σxν2 + σ3

x}
= D2[ν2 + σ2

x]

E.2.2 Call options

For a capped call option m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.10)

=
1
σx

∫ L

K
D2(x−K)2φx′dx +

1
σx

∫ ∞

L
L2

$φx′dx

=
D2

σx

∫ L

K
(x−K)2φx′dx +

L2
$

σx

∫ ∞

L
φx′dx

=
D2

σx
{σxν2[ΦL′ − ΦK′ ] + 2νσ2

x[φK′ − φL′ ]

+σ3
x[K

′φK′ − L′φL′ + ΦL′ − ΦK′ ]}
+L2

$[1 − ΦL′ ]

= φK′ [D2(2σxν + σ2
xK

′)] − φL′ [D2(2σxν + σ2
xL

′)]
−ΦK′ [D2(ν2 + σ2

x)] + ΦL′ [D2(ν2 + σ2
x) − L2

$]

+L2
$
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For the uncapped case it is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.11)

=
1
σx

∫ ∞

K
D2(x−K)2φx′dx

=
D2

σx

∫ ∞

K
(x−K)2φx′dx

=
D2

σx
{σxν2[1 − ΦK′ ] + 2νσ2

x[φK′ ] + σ3
x[K

′φK′ + 1 − ΦK′ ]}

= φK′ [D2(2σxν + σ2
xK

′)] − ΦK′ [D2(ν2 + σ2
x)] + D2(ν2 + σ2

x)

E.2.3 Put options

For a capped put option m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.12)

=
1
σx

∫ L

−∞
L2

$φx′dx +
1
σx

∫ K

L
D2(K − x)2φx′dx

= L2
$[ΦL′ ]

+
D2

σx
{σxν2[ΦK′ − ΦL′ ] + 2νσ2

x[φL′ − φK′ ]

+σ3
x[L

′φL′ −K ′φK′ + ΦK′ − ΦL′ ]}
= φL′ [D2(2νσx + σ2

xL
′)] − φK′ [D2(2νσx + σ2

xK
′)]

+ ΦK′ [D2(ν2 + σ2
x)] + ΦL′ [L2

$ −D2(σ2
x + ν2)]

For the uncapped case it is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.13)

=
1
σx

∫ K

−∞
D2(K − x)2φx′dx

=
D2

σx
{σxν2[ΦK′ ] − 2νσ2

x[φK′ ] + σ3
x[ΦK′ −K ′φK′ ]}

= ΦK′ [D2(ν2 + σ2
x)] − φK′ [D2(2νσx + σ2

xK
′)]
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E.2.4 Collars

For a capped collar m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.14)

=
1
σx

∫ L1

−∞
L2

$φx′dx +
1
σx

∫ K1

L1
D2(x−K1)2φx′dx

+
1
σx

∫ L2

K2
D2(x−K2)2φx′dx +

1
σx

∫ ∞

L2
L2

$φx′dx

= L2
$ΦL1′

+
D2

σx
{σxν2

1 [ΦK1′ − ΦL1′ ] + 2ν1σ
2
x[φL1′ − φK1′ ]

+σ3
x[L

′
1φL1′ −K ′

1φK1′ − ΦK1′ − ΦL1′ ]}

+
D2

σx
{σxν2

2 [ΦL2′ − ΦK2′ ] + 2ν2σ
2
x[φK2′ − φL2′ ]

+σ3
x[K

′
2φK2′ − L′

2φL2′ − ΦL2′ − ΦK2′ ]}
+L2

$[1 − ΦL2′ ]

= φL1′ [D2(2σxν1 + σ2
xL

′
1)] − φK1′ [D2(2σxν1 + σ2

xK
′
1)]

+φK2′ [D2(2σxν2 + σ2
xK

′
2)] − φL2′ [D2(2σxν2 + σ2

xL
′
2)]

+ ΦL1′ [L2
$ −D2(ν2

1 + σ2
x)] + ΦK1′ [D2(ν2

1 + σ2
x)]

−ΦK2′ [D2(ν2
2 + σ2

x)] + ΦL2′ [D2(ν2
2 + σ2

x) − L2
$]

+L2
$

where ν1 = µ−K1 and ν2 = µ−K2.
For the uncapped case it is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.15)

=
1
σx

∫ K1

−∞
D2(x−K1)2φx′dx +

1
σx

∫ ∞

K2
D2(x−K2)2φx′dx

=
D2

σx
{σxν2

1 [ΦK1′ ] + 2ν1σ
2
x[−φK1′ ] + σ3

x[−K ′
1φK1′ − ΦK1′ ]}

+
D2

σx
{σxν2

2 [−ΦK2′ ] + 2ν2σ
2
x[φK2′ ] + σ3

x[K
′
2φK2′ − ΦK2′ ]}

= φK2′ [D2(2σxν2 + σ2
xK

′
2)] − φK1′ [D2(2σxν1 + σ2

xK
′
1)]

+ ΦK1′ [D2(ν2
1 + σ2

x)] − ΦK2′ [D2(ν2
2 + σ2

x)] + D2(ν2
2 + σ2

x)
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E.2.5 Straddles

For a capped straddle m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.16)

=
1
σx

∫ L1

−∞
L2

$φx′dx +
1
σx

∫ K

L1
D2(K − x)2φx′dx

+
1
σx

∫ L2

K
D2(x−K)2φx′dx +

1
σx

∫ ∞

L2
L2

$φx′dx

= L2
$ΦL1′

+
D2

σx
{σxν2[ΦK′ − ΦL1′ ] + 2νσ2

x[φL1′ − φK′ ]

+σ3
x[L

′
1φL1′ −K ′φK′ + ΦK′ − ΦL1′ ]}

+
D2

σx
{σxν2[ΦL2′ − ΦK′ ] + 2νσ2

x[φK′ − φL2′ ]

+σ3
x[K

′φK′ − L′
2φL2′ + ΦL2′ − ΦK′ ]}

+L$(1 − ΦL2′)

= φL1′ [D2(2σxν + σ2
xL

′
1)] − φL2′ [D2(2σxν + σ2

xL
′
2)]

+ ΦL1′ [L2
$ −D2(ν2 + σ2

x)] + ΦL2′ [D2(ν2 + σ2
x) − L2

$]

+L2
$

For the uncapped case it is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.17)

=
1
σx

∫ K

−∞
D2(K − x)2φx′dx +

1
σx

∫ ∞

K
D2(x−K)2φx′dx

=
D2

σx
{σxν2[ΦK′ ] + 2νσ2

x[−φK′ ] + σ3
x[−K ′φK′ + ΦK′ ]}

+
D2

σx
{σxν2[1 − ΦK′ ] + 2νσ2

x[φK′ ] + σ3
x[K

′φK′ + 1 − ΦK′ ]}

= D2(ν2 + σ2
x)

Curiously, we see that both results are independent of K.
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E.2.6 Strangles

For a capped strangle m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.18)

=
1
σx

∫ L1

−∞
L2

$φx′dx +
1
σx

∫ K1

L1
D2(K1 − x)2φx′dx

+
1
σx

∫ L2

K2
D2(x−K2)2φx′dx +

1
σx

∫ ∞

L2
L2

$φx′dx

= L2
$ΦL1′

+
D2

σx
{σxν2

1 [ΦK1′ − ΦL1′ ] + 2ν1σ
2
x[φL1′ − φK1′ ]

+σ3
x[L

′
1φL1′ −K ′

1φK1′ + ΦK1′ − ΦL1′ ]}

+
D2

σx
{σxν2

2 [ΦL2′ − ΦK2′ ] + 2ν2σ
2
x[φK2′ − φL2′ ]

+σ3
x[K

′
2φK2′ − L′

2φL2′ + ΦL2′ − ΦK2′ ]}
+L2

$(1 − ΦL2′)

= φL1′ [D2(2ν1σx + σ2
xL

′
1)] − φK1′ [D2(2ν1σx + σ2

xK
′
1)]

+φK2′ [D2(2ν2σx + σ2
xK

′
2)] − φL2′ [D2(2ν2σx + σ2

xL
′
2)]

+ ΦL1′ [L2
$ −D2(ν2

1 + σ2
x)] + ΦK1′ [D2(ν2

1 + σ2
x)]

−ΦK2′ [D2(ν2
2 + σ2

x)] + ΦL2′ [D2(ν2
2 + σ2

x) − L2
$]

+L2
$

For the uncapped case it is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.19)

=
1
σx

∫ K1

−∞
D2(K1 − x)2φx′dx +

1
σx

∫ ∞

K2
D2(x−K2)2φx′dx

=
D2

σx
{σxν2

1 [ΦK1′ ] + 2ν1σ
2
x[−φK1′ ] + σ3

x[−K ′
1φK1′ − ΦK1′ ]}

+
D2

σx
{σxν2

1 [ΦK2′ ] + 2ν1σ
2
x[−φK2′ ] + σ3

x[−K ′
2φK2′ − ΦK2′ ]}

= φK2′ [D2(2ν2σx + σ2
xK

′
2)] − φK1′ [D2(2ν1σx + σ2

xK
′
1)]

+ ΦK1′ [D2(ν2
1 + σ2

x)] − ΦK2′ [D2(ν2
2 + σ2

x)] + D2(ν2
2 + σ2

x)
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E.2.7 Binary options

For a binary option m2 is

m2 =
1
σx

∫ ∞

−∞
p(x)2φx′dx (E.20)

=
1
σx

∫ ∞

K
L2

$φx′dx

= L2
$(1 − ΦK′ )

E.3 Numerical examples

To facilitate the debugging of computer code using these expressions we now
give numerical examples.

In all these examples, we assume µ = 1670 and σx = 120.

Swap example
Strike 1680 Expected pay-off (with caps) −45,201.8
Tick 5000 Expected pay-off (no caps) −50,000.0
Limit 1,000,000 Pay-off variance (with caps) 548,804.7

Pay-off variance (no caps) 600,000.0

Call example
Strike 1680 Expected pay-off (with caps) 205,491.7
Tick 5000 Expected pay-off (no caps) 215,196.0
Limit 1,000,000 Pay-off variance (with caps) 302,355.0

Pay-off variance (no caps) 333,131.2

Put example
Strike 1650 Expected pay-off (with caps) 184,809.7
Tick 5000 Expected pay-off (no caps) 192,682.2
Limit 1,000,000 Pay-off variance (with caps) 289,223.0

Pay-off variance (no caps) 315,878.4

Collar example
Strike 1 1650 Expected pay-off (with caps) −19,353.7
Strike 2 1700 Expected pay-off (no caps) −20,875.4
Tick 5000 Pay-off variance (with caps) 469,868.3
Limit 1,000,000 Pay-off variance (no caps) 505,138.1
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Straddle example
Strike 1660 Expected pay-off (with caps) 456,185.3
Tick 5000 Expected pay-off (no caps) 480,392.0
Limit 1,000,000 Pay-off variance (with caps) 308,423.1

Pay-off variance (no caps) 362,937.3

Strangle example
Strike 1 1660 Expected pay-off (with caps) 421,813.1
Strike 2 1675 Expected pay-off (no caps) 442,269.2
Tick 5000 Pay-off variance (with caps) 312,751.5
Limit 1,000,000 Pay-off variance (no caps) 360,589.2

Binary example
Strike 1680 Expected pay-off (with caps) 466,793.3
Limit 1,000,000 Pay-off variance (with caps) 498,896.1



Appendix F

Greeks for normally distributed indices

We now give exact expressions for the greeks for weather derivatives on a nor-
mally distributed index. These expressions are taken from Jewson (2003b).

F.1 Useful relations for deriving expressions for the greeks

We now derive some expressions that we will use later on.
In order to calculate deltas we note that

∆ =
∂µp

∂µ
(F.1)

=
∂

∂µ

1
σx

(∫ ∞

−∞
p(x)φx′dx

)

=
1
σx

∂

∂µ

(∫ ∞

−∞
p(x)φx′dx

)

=
1
σx

∫ ∞

−∞
p(x)

∂φx′

∂µ
dx

For a large class of distributions, including the normal distribution, the
PDF satisfies

∂φx′

∂µ
= −∂φx′

∂x
(F.2)

and so

∆ = − 1
σx

∫ ∞

−∞
p(x)

∂φx′

∂x
dx (F.3)

= − 1
σx

∫ ∞

−∞
∂

∂x
(p(x)φx′)dx +

1
σx

∫ ∞

−∞
dp(x)
dx

φx′dx

=
1
σx

∫ ∞

−∞
dp

dx
φx′dx

324
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i.e. for the normal distribution delta is the average slope of the pay-off,
weighted by the probabilities of different pay-offs.

We will derive expressions for gamma by differentiating the expressions
for delta. In order to do this, we note that

Φx′ =
∫ x′

−∞
φxdx (F.4)

=
1
σx

∫ x

−∞
φxdx

and hence that

∂Φ′
x

∂µ
=

1
σx

∫ x

−∞
∂φx′

∂µ
dx (F.5)

= − 1
σx

∫ x

−∞
∂φx′

∂x
dx

= −φ′
x

σx

For zeta, we note that

ζ =
∂µp

∂σx
(F.6)

=
∂

∂σx

(
1
σx

∫ ∞

−∞
p(x)φx′dx

)

=
∂

∂σx

(∫ ∞

−∞
p(µ + σxs)φsds

)

=
∫ ∞

−∞
∂

∂σx
p(µ + σxs)φsds

=
∫ ∞

−∞
sp′(µ + σxs)φsds

= −
∫ ∞

−∞
p′(µ + σxs)

∂φs

∂s
ds

= −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx

F.2 Closed-form expressions for the greeks

We now derive closed-form expressions for delta, gamma and zeta for each
contract type. Expressions for theta and vega can be derived from the
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expressions for zeta, and expressions for temperature delta can be derived
from the expressions for delta and zeta.

F.2.1 Swaps

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.7)

Using the definition of the swap pay-off function given in chapter 1, this
gives

∆ =
1
σx

∫ L2

L1
Dφx′dx (F.8)

= D(ΦL2′ − ΦL1′) (F.9)

In the uncapped case

∆ = D (F.10)

For the gamma

Γ =
D

σx
(φL1′ − φL2′) (F.11)

In the uncapped case

Γ = 0 (F.12)

For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.13)

= −
∫ L2

L1

D
∂φx′

∂x
dx

= D(φL1′ − φL2′)

In the uncapped case

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.14)

= 0
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F.2.2 Call options

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.15)

=
1
σx

∫ L

K
Dφx′dx

= D(ΦL′ − ΦK′)

In the uncapped case

∆ = D(1 − ΦK′) (F.16)

For the gamma

Γ =
D

σx
(φK′ − φL′) (F.17)

In the uncapped case

Γ =
D

σx
φK′ (F.18)

For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.19)

= −
∫ L

K
D
∂φx′

∂x
dx

= D(φK′ − φL′)

In the uncapped case

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.20)

= −
∫ ∞

K
D
∂φx′

∂x
dx

= DφK′

F.2.3 Put options

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.21)

=
1
σx

∫ K

L
−Dφx′dx

= D(ΦL′ − ΦK′)
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In the uncapped case

∆ = −DΦK′ (F.22)

For the gamma

Γ =
D

σx
(φK′ − φL′) (F.23)

In the uncapped case

Γ =
D

σx
φK′ (F.24)

For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.25)

= −
∫ K

L
−D

∂φx′

∂x
dx

= D(φK′ − φL′)

In the uncapped case

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.26)

= −
∫ K

−∞
−D

∂φx′

∂x
dx

= DφK′

F.2.4 Collars

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.27)

=
1
σx

∫ K1

L1
Dφx′dx +

1
σx

∫ L2

K2
Dφx′dx

= D(ΦK1′ − ΦL1′ + ΦL2′ − ΦK2′)

In the uncapped case

∆ = D(ΦK1′ − ΦK2′ + 1) (F.28)

For the gamma

Γ =
1
σx

D(φL1′ − φK1′ + φK2′ − φL2′) (F.29)
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In the uncapped case

Γ =
1
σx

D(φK2′ − φK1′) (F.30)

For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.31)

= −
∫ K1

L1

D
∂φx′

∂x
dx

−
∫ L2

K2

D
∂φx′

∂x
dx

= D(φL1′ − φK1′ + φK2′ − φL2′)

In the uncapped case

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.32)

= −
∫ K1

−∞
D
∂φx′

∂x
dx−
∫ ∞

K2

D
∂φx′

∂x
dx

= D(φK2′ − φK1′)

F.2.5 Straddles

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.33)

=
1
σx

∫ K

L1
−Dφx′dx +

1
σx

∫ L2

K
Dφx′dx

= D(ΦL1′ + ΦL2′ − 2ΦK′)

In the uncapped case

∆ = D(1 − 2ΦK′) (F.34)

For the gamma

Γ =
1
σx

D(2φK′ − φL1′ − φL2′) (F.35)
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In the uncapped case

Γ =
2
σx

DφK′ (F.36)

For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.37)

= −
∫ K

L1

∂p

∂x

∂φx′

∂x
dx−
∫ L2

K

∂p

∂x

∂φx′

∂x
dx

= D(2φK′ − φL1′ − φL2′)

In the uncapped case

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.38)

= −
∫ K

−∞
∂p

∂x

∂φx′

∂x
dx−
∫ ∞

K

∂p

∂x

∂φx′

∂x
dx

= 2DφK′

F.2.6 Strangles

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.39)

=
1
σx

∫ K1

L1
−Dφx′dx +

1
σx

∫ L2

K2
Dφx′dx

= D(ΦL1′ − ΦK1′ + ΦL2′ − ΦK2′)

In the uncapped case

∆ = D(1 − ΦK1′ − ΦK2′) (F.40)

For the gamma

Γ =
D

σx
(φK1′ − φL1′ + φK2′ − φL2′) (F.41)

In the uncapped case

Γ =
D

σx
(φK1′ + φK2′) (F.42)
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For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.43)

= −
∫ K1

L1

∂p

∂x

∂φx′

∂x
dx−
∫ L2

K2

∂p

∂x

∂φx′

∂x
dx

= D(φK1′ − φL1′ − φL2′ + φK2′)

In the uncapped case

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.44)

= −
∫ K1

−∞
∂p

∂x

∂φx′

∂x
dx−
∫ ∞

K2

∂p

∂x

∂φx′

∂x
dx

= D(φK1′ + φK2′)

F.2.7 Binary options

For the delta

∆ = − 1
σx

∫ ∞

−∞
p
∂φx′

∂x
dx (F.45)

= −L$

σx

∫ L

K

∂φx′

∂x
dx

=
L$

σx
φK′

For the gamma

Γ =
L$φK′(K − µ)

σ3
x

(F.46)

For the zeta

ζ =
L$φK′(K − µ)

σ2
x

(F.47)

F.2.8 The general form

For the delta

∆ =
1
σx

∫ ∞

−∞
dp

dx
φx′dx (F.48)

=
1
σx

n∑
i=1

∫ ai+1

ai

dp

dx
φx′dx
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=
1
σx

n∑
i=1

∫ ai+1

ai

βiφx′dx

=
1
σx

n∑
i=1

βi

∫ ai+1

ai

φx′dx

=
1
σx

n∑
i=1

βi(Φa(i+1)′ − Φai′)

For the gamma

Γ =
1
σx

n∑
i=1

βi(φai′ − φa(i+1)′) (F.49)

For the zeta

ζ = −
∫ ∞

−∞
∂p

∂x

∂φx′

∂x
dx (F.50)

= −
n∑

i=1

∫ ai+1

ai

∂p

∂x

∂φx′

∂x
dx

= −
n∑

i=1

∫ ai+1

ai

βi
∂φx′

∂x
dx

= −
n∑

i=1

βi(φa(i+1)′ − φai′)

=
n∑

i=1

βi(φai′ − φa(i+1)′)

F.3 Numerical examples

To facilitate debugging we now give numerical examples of each of the above
expressions. In all these examples we assume µ = 1670 and σx = 120.

Swap example
Strike 1680 Expected pay-off (with caps) −45,201.8
Tick 5000 Expected pay-off (no caps) −50,000.0
Limit 1,000,000 Delta (with caps) 4516.3

Delta (no caps) 5000.0
Gamma (with caps) 1.151
Gamma (no caps) 0.0
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Call example
Strike 1680 Expected pay-off (with caps) 205,491.7
Tick 5000 Expected pay-off (no caps) 215,196.0
Limit 1,000,000 Delta (with caps) 2133.7

Delta (no caps) 2334.0
Gamma (with caps) 12.970
Gamma (no caps) 16.565

Put example
Strike 1650 Expected pay-off (with caps) 184,809.7
Tick 5000 Expected pay-off (no caps) 192,682.2
Limit 1,000,000 Delta (with caps) −2002.2

Delta (no caps) −2169.1
Gamma (with caps) 13.297
Gamma (no caps) 16.393

Collar example
Strike 1 1650 Expected pay-off (with caps) −19,353.7
Strike 2 1700 Expected pay-off (no caps) −20,875.4
Tick 5000 Delta (with caps) 3870.5
Limit 1,000,000 Delta (no caps) 4175.5

Gamma (with caps) 0.166
Gamma (no caps) −0.282

Straddle example
Strike 1660 Expected pay-off (with caps) 456,185.3
Tick 5000 Expected pay-off (no caps) 480,392.0
Limit 1,000,000 Delta (with caps) 249.0

Delta (no caps) 332.1
Gamma (with caps) 24.789
Gamma (no caps) 33.130

Strangle example
Strike 1 1660 Expected pay-off (with caps) 421,813.1
Strike 2 1675 Expected pay-off (no caps) 442,269.2
Tick 5000 Delta (with caps) 64.3
Limit 1,000,000 Delta (no caps) 82.9

Gamma (with caps) 25.715
Gamma (no caps) 33.173

Binary example
Strike 1680 Expected pay-off (with caps) 466,793.3
Limit 1,000,000 Delta (with caps) 3313
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Exact solutions for the kernel density

We now give exact expressions for the expected pay-off, pay-off variance and
greeks for weather derivatives on indices that are modelled using the kernel
density with a Gaussian kernel. These are taken from Jewson (2003d).

G.1 Closed-form solutions for the expected pay-off
on a kernel density

The expected pay-off V is given by

V =
∫ ∞

−∞
p(x)f(x)dx (G.1)

where p(x) is the pay-off function.
Substituting in a kernel density for f we have

V =
∫ ∞

−∞
p(x)

1
Nλ

N∑
i=1

K

(
x− xi

λ

)
dx (G.2)

=
1
Nλ

N∑
i=1

∫ ∞

−∞
p(x)K

(
x− xi

λ

)
dx

=
1
N

N∑
i=1

Vi

where Vi is defined as

Vi =
1
λ

∫ ∞

−∞
p(x)K

(
x− xi

λ

)
dx (G.3)

We can now calculate each of the Vi using the closed-form expressions in
appendix D. For instance, for a call option on a normal distribution with

334
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mean µ and standard deviation σx the expected pay-off is given by

µp = Dσx(φK′ − φL′) + DΦL′(µ− L) + DΦK′(K − µ) + L$ (G.4)

where

K ′ =
K − µ

σx
(G.5)

L′ =
L− µ

σx

This gives

Vi = Dλ(φK′
i
− φL′

i
) + DΦL′

i
(xi − L) + DΦK′

i
(K − xi) + L$ (G.6)

where

K ′
i =

K − xi
λ

(G.7)

L′
i =

L− xi
λ

and hence

V =
1
N

N∑
i=1

[Dλ(φK′
i
− φL′

i
) + DΦL′

i
(xi − L) + DΦK′

i
(K − xi)] + L$ (G.8)

Similar expressions can be derived for the other option types using the
appropriate closed-form solutions instead of equation (G.6).

G.2 Closed-form solutions for the delta on a kernel density

We now consider how to calculate the delta of an option on a kernel density.
From equation (G.2) we have

V =
1
N

N∑
i=1

Vi (G.9)

Applying the definition of delta gives

∆ =
∂V

∂µ
(G.10)

=
∂

∂µ

(
1
N

N∑
i=1

Vi

)

=
1
N

N∑
i=1

∂Vi

∂µ
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But

µ =
1
N

N∑
i=1

xi (G.11)

and so

∂

∂µ
=

N∑
j=1

∂xj
∂µ

∂

∂xj
(G.12)

=
N∑
j=1

N
∂

∂xj

This gives

∆ =
1
N

N∑
i=1

∂Vi

∂µ
(G.13)

=
1
N

N∑
i=1

N
N∑
j=1

∂Vi

∂xj

=
N∑
i=1

∂Vi

∂xi

=
N∑
i=1

∆i

i.e. the delta of the whole contract is the sum of the deltas due to each
individual kernel.

We can now calculate each of the ∆i using the closed-form expressions
in appendix F. For instance, for a call option on a normal distribution with
mean µ and standard deviation σx the delta is given by

∆ = D(ΦL′ − ΦK′) (G.14)

and so

∆i = D(ΦL′
i
− ΦK′

i
) (G.15)

and

∆ =
N∑
i=1

D(ΦL′
i
− ΦK′

i
) (G.16)
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Similar expressions can be derived for the other option types using the
appropriate closed-form solutions instead of equation (G.14).

G.3 Closed-form solutions for the gamma
on a kernel density

Very similar arguments apply to gamma as to delta, giving

Γ =
N∑
i=1

Γi (G.17)

where

Γi =
∂2Vi

∂x2
i

(G.18)

We can now calculate each of the Γi using the closed-form expressions in
appendix F. For instance, for a call option on a normal distribution with
mean µ and standard deviation σx the gamma is given by

Γ =
D

σx
(φK′ − φL′) (G.19)

and so

Γi =
D

σx
(φK′

i
− φL′

i
) (G.20)

and

Γ =
N∑
i=1

D

σx
(φK′

i
− φL′

i
) (G.21)

Similar expressions can be derived for the other option types using the ap-
propriate closed-form solutions instead of equation (G.19).

G.4 Closed-form solutions for the pay-off
variance on a kernel density

We now consider how to calculate the pay-off variance of an option on a
kernel density.

The pay-off variance is given by

σ2
p =
∫ ∞

−∞
(p(x) − µp)2f(x)dx (G.22)
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=
∫ ∞

−∞
(p(x) − µp)2

1
Nλ

N∑
i=1

K

(
x− xi

λ

)
dx

=
1
N

N∑
i=1

∫ ∞

−∞
(p(x) − µp)2

1
λ
K

(
x− xi

λ

)
dx

=
1
N

N∑
i=1

(σi
p)

2

We can now calculate each of the σi
p using the closed-form expressions

given in appendix E.

G.5 An example

We now give a numerical example. We consider the ten historical index
values given in the second column of table G.1. These are the observed
numbers of HDDs for London Heathrow November to March from 1993 to
2002.

These values have a sample mean of 1709.06 and a sample standard de-
viation of 114.61.

We use a bandwidth calculated using equation (4.6), which gives 76.58.
Numerical results for the expected pay-off, delta, gamma and pay-off vari-

ance are shown below.

Table G.1. The observed
numbers of London

Heathrow November to
March HDDs, 1993 to 2002.

Historical
index values

1993 1637.25
1994 1657.4
1995 1770.45
1996 1667.35
1997 1681.8
1998 1549.85
1999 1817.65
2000 1951.05
2001 1579.5
2002 1778.3
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Expected pay-off
Normal distribution 226,564.0
Kernel 243,914.0
Adjusted kernel 214,694.2
Delta
Normal distribution 2243.8
Kernel 1872.5
Adjusted kernel 2036.4
Gamma
Normal distribution 12.37
Kernel 9.26
Adjusted kernel 12.46
Pay-off variance
Normal distribution 315,077.8
Kernel 349,096.1
Adjusted kernel 318,188.9
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The beta for a normally distributed index

We now derive closed-form expressions for the regression coefficients be-
tween uncapped weather swaps and options and a single weather swap or
weather index, taken from Jewson (2004b). The regression coefficient be-
tween a portfolio of weather swaps and options and a single weather swap
is then a simple extension. This allows fast and precise calculation of the
variance-minimising swap hedge for a portfolio of weather derivatives.

H.1 Useful relations
H.1.1 Derivation strategy

The regression coefficient β between a portfolio with pay-offs p and a single
contract with pay-offs q is given by

β =
E(pq) − E(p)E(q)
E(qq) − E(q)E(q)

(H.1)

Expressions for the expected pay-offs E(p) and E(q) are given in appendix D,
and for the variance of pay-offs E(qq) − E(q)E(q) in appendix E. We will
now consider E(pq) to complete the calculation of β.

The total pay-off of a portfolio p is the sum of the pay-offs of the contracts
in the portfolio:

p =
N∑
i=1

pi (H.2)

and so

E(pq) = E
((∑

pi

)
q
)

(H.3)

=
∑

E(piq)

340
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and so we see that calculating E(pq) reduces to the problem of calculating
E(piq) for each contract in the portfolio. We will derive expressions for
E(piq) for uncapped swaps, calls and puts.

We start, however, by deriving various expressions related to the normal
distribution that will prove useful in our subsequent calculations.

H.1.2 Useful expressions

We will need the following relations:

I1(a, b) =
∫ ∞

0
xe−

1
2
(x2+2ax+b)dx (H.4)

=
∫ ∞

0
xe−

1
2
[(x+a)2−a2+b]dx

= e−
1
2
(b−a2)

∫ ∞

0
xe−

1
2
(x+a)2dx

= e−
1
2
(b−a2)

∫ ∞

a
(y − a)e−

1
2
y2
dy

= e−
1
2
(b−a2)

(∫ ∞

a
ye−

1
2
y2
dy − a

∫ ∞

a
e−

1
2
y2
dy

)

=
√

2πe−
1
2
(b−a2)

(∫ ∞

a
yφydy − a

∫ ∞

a
φydy

)

=
√

2πe−
1
2
(b−a2)([−φy]∞a − a[Φy]∞a )

=
√

2πe−
1
2
(b−a2)(φa − a(1 − Φa))

=
√

2πe−
1
2
(b−a2)[φa − a(1 − Φa)]

∫ ∞

0
xe−

1
2
(α2x2+2βx+γ)dx =

∫ ∞

0

y

α
e−

1
2
(y2+2 β

α
y+γ)dy

α
(H.5)

=
1
α2

∫ ∞

0
ye−

1
2
(y2+2 β

α
y+γ)dy

=
1
α2

I1

(
β

α
, γ

)

I2(a, b) =
∫ ∞

−∞
xe−

1
2
(x2+2ax+b)dx (H.6)
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=
∫ ∞

−∞
xe−

1
2
[(x+a)2−a2+b]dx

= e−
1
2
(b−a2)

∫ ∞

−∞
xe−

1
2
(x+a)2dx

= e−
1
2
(b−a2)

∫ ∞

−∞
(y − a)e−

1
2
y2
dy

= e−
1
2
(b−a2)

(∫ ∞

−∞
ye−

1
2
y2
dy − a

∫ ∞

−∞
e−

1
2
y2
dy

)

=
√

2πe−
1
2
(b−a2)

(∫ ∞

−∞
yφydy − a

∫ ∞

−∞
φy

)
dy

=
√

2πe−
1
2
(b−a2)(−a)

= −
√

2πae−
1
2
(b−a2)

∫ ∞

−∞
xe−

1
2
(α2x2+2βx+γ)dx =

∫ ∞

0

y

α
e−

1
2
(y2+2 β

α
y+γ)dy

α
(H.7)

=
1
α2

∫ ∞

0
ye−

1
2
(y2+2 β

α
y+γ)dy

=
1
α2

I2

(
β

α
, γ

)

J1(a, b) =
∫ ∞

0
x2e−

1
2
(x2+2ax+b)dx (H.8)

=
∫ ∞

0
x2e−

1
2
[(x+a)2−a2+b]dx

= e−
1
2
(b−a2)

∫ ∞

a
x2e−

1
2
(x+a)2dx

= e−
1
2
(b−a2)

∫ ∞

a
(y − a)2e−

1
2
y2
dy

= e−
1
2
(b−a2)

∫ ∞

a
(y2 − 2ay + a2)e−

1
2
y2
dy

= e−
1
2
(b−a2)

(∫ ∞

a
y2e−

1
2
y2
dy +
∫ ∞

a
−2aye−

1
2
y2
dy +
∫ ∞

a
a2e−

1
2
y2
dy

)

= e−
1
2
(b−a2)

(∫ ∞

a
y2e−

1
2
y2
dy − 2a

∫ ∞

a
ye−

1
2
y2
dy + a2

∫ ∞

a
e−

1
2
y2
dy

)

=
√

2πe−
1
2
(b−a2)

(∫ ∞

a
y2φydy − 2a

∫ ∞

a
yφydy + a2

∫ ∞

a
φydy

)
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=
√

2πe−
1
2
(b−a2)
(
[aφa + 1 − Φa] − 2a[φa] + a2(1 − Φa)

)
=

√
2πe−

1
2
(b−a2)(1 + a2 − aφa − Φa(1 + a2))∫ ∞

0
x2e−

1
2
(α2x2+2βx+γ)dx =

∫ ∞

0

y2

α2
e−

1
2
(y2+2 β

α
y+γ)dy

α
(H.9)

=
1
α3

∫ ∞

0
ye−

1
2
(y2+2 β

α
y+γ)dy

=
1
α3

J1

(
β

α
, γ

)

J2(a, b) =
∫ ∞

−∞
x2e−

1
2
(x2+2ax+b)dx (H.10)

=
∫ ∞

−∞
x2e−

1
2
[(x+a)2−a2+b]dx

= e−
1
2
(b−a2)

∫ ∞

−∞
x2e−

1
2
(x+a)2dx

= e−
1
2
(b−a2)

∫ ∞

−∞
(y − a)2e−

1
2
y2
dy

= e−
1
2
(b−a2)

∫ ∞

−∞
(y2 − 2ay + a2)e−

1
2
y2
dy

= e−
1
2
(b−a2)

(∫ ∞

−∞
y2e−

1
2
y2
dy +
∫ ∞

−∞
−2aye−

1
2
y2
dy +
∫ ∞

−∞
a2e−

1
2
y2
dy

)

= e−
1
2
(b−a2)

(∫ ∞

−∞
y2e−

1
2
y2
dy − 2a

∫ ∞

−∞
ye−

1
2
y2
dy + a2

∫ ∞

−∞
e−

1
2
y2
dy

)

=
√

2πe−
1
2
(b−a2)

(∫ ∞

−∞
y2φydy − 2a

∫ ∞

−∞
yφydy + a2

∫ ∞

−∞
φydy

)

=
√

2πe−
1
2
(b−a2)
(
[1] + [0] + [a2]

)
=

√
2πe−

1
2
(b−a2)(1 + a2)

∫ ∞

−∞
x2e−

1
2
(α2x2+2βx+γ)dx =

∫ ∞

0

y2

α2
e−

1
2
(y2+2 β

α
y+γ)dy

α
(H.11)

=
1
α3

∫ ∞

0
ye−

1
2
(y2+2 β

α
y+γ)dy

=
1
α3

J2

(
β

α
, γ

)
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H.2 Definitions
H.2.1 Swaps

The pay-off of the swaps we consider is given by

p(x) = Ds(x−Ks) (H.12)

H.2.2 Calls

The pay-off of the call options we consider is given by

p(x) =
{

0 if x ≤ K

D(x−K) if x ≥ K
(H.13)

H.2.3 Puts

The pay-off of the put options we consider is given by

p(x) =
{
D(K − x) if x ≤ K

0 if x ≥ K
(H.14)

H.2.4 Indices

We assume that both indices we consider are normally distributed.

x ∼ Φ(µ1, σ1) (H.15)

y ∼ Φ(µ2, σ2) (H.16)

with a linear correlation given by

correlation(x, y) = c (H.17)

We also define

determinant(x, y) = d = σ2
1σ

2
2(1 − c2) (H.18)

H.3 Closed-form expressions for the beta

We are now in a position to derive the closed-form expressions for the beta
for a swap contract.
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H.3.1 Swap-swap covariance

The indices for the two swaps are x and y, and the pay-offs are p and q. We
then have

E(pq) =
∫ ∞

−∞
dy

∫ ∞

−∞
dxDx(y −Ky)Dy(x−Kx)ρ(x, y) (H.19)

= DyDx

∫ ∞

−∞
dy

∫ ∞

−∞
dx(y −Ky)(x−Kx)ρ(x, y)

where

ρ(x, y) =
1
2π

1√
d
e−

1
2d

[σ2
2(x−µx)2−2cσ1σ2(x−µx)(y−µy)+σ2

1(y−µy)2] (H.20)

We now make a number of substitutions. These are designed to suit both
the calculations in this section and those in the subsequent sections for calls
and puts; if all we were interested in was the swap-swap covariance, then
that can be calculated much more simply in other ways.

We define

u =
σ2(x−Kx)

d
1
2

, v =
σ1(y −Ky)

d
1
2

(H.21)

and so

x =
ud

1
2 + Kxσ2

σ2
, y =

vd
1
2 + Kyσ1

σ1
(H.22)

We also define

t1 =
σ2(Kx − µx)

d
1
2

, t2 =
σ1(Ky − µy)

d
1
2

(H.23)

which gives

σ2
2x

2

d
= (u + t1)2,

σ2
1y

2

d
= (v + t2)2 (H.24)

and so

E(pq) =
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

−∞
dv

∫ ∞

−∞
uve−

1
2
[(u+t1)2−2c(u+t1)(v+t2)+(v+t2)2]du

(H.25)

=
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

−∞
dv

∫ ∞

−∞
uve−

1
2
(u2+2au+b)du

=
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

−∞
v

(∫ ∞

−∞
ue−

1
2
(u2+2au+b)du

)
dv

=
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

−∞
vI2(a, b)dv
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where

a(v) = t1 − ct2 − cv (H.26)

and

b(v) = t21 − 2ct1(v + t2) + (v + t2)2 (H.27)

= (t21 − 2ct1t2 + t22) + v(−2ct1 + 2t2) + v2

and so

b− a2 = (t21 − 2ct1t2 + t22) + v(−2ct1 + 2t2) + v2 − (t1 − ct2 − cv)2 (H.28)

= (t21 − 2ct1t2 + t22) + v(−2ct1 + 2t2) + v2

− (t1 − ct2)2 + 2(t1 − ct2)cv − c2v2

= v2[1 − c2] + 2v[c(t1 − ct2) + (t2 − ct1)]

+ [(t21 − 2ct1t2 + t22) − (t1 − ct2)2]

Using equation (H.6)

I2(a, b) = −
√

(2π)ae−
1
2
(b−a2) (H.29)

= −
√

2π[(t1 − ct2) − cv]e−
1
2
[α2v2+2βv+γ]

where

α =
√

1 − c2 (H.30)

β = t2(1 − c2)

γ = (t21 − 2ct1t2 + t22) − (t1 − ct2)2

and so∫ ∞

−∞
vI2dv = −

∫ ∞

−∞

√
2π[(t1 − ct2)v − cv2]e−

1
2
[α2v2+2βv+γ]dv (H.31)

= −
√

2π(t1 − ct2)
1
α2

I2

(
β

α
, γ

)
+

√
2π

c

α3
J2

(
β

α
, γ

)

=
√

2π
c

α3
I2

(
β

α
, γ

)
−

√
2π(t1 − ct2)

1
α2

J2

(
β

α
, γ

)

This gives

E(pq) =
1√
2π

DxDyd
3
2

σ2
1σ

2
2

[
c

α3
J2

(
β

α
, γ

)
− (t1 − ct2)

1
α2

I2

(
β

α
, γ

)]
(H.32)

We can now evaluate E(piq) when contract i is a swap with the following
steps.
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1. Calculate d using equation (H.18).
2. Calculate t1 and t2 using equation (H.23).
3. Calculate α, β and γ using equation (H.30).
4. Calculate E(pq) using equation (H.32) and the definitions of I2 and J2 given by

equations (H.4) and (H.8).

H.3.2 Swap-call covariance

We now consider the case where contract i is an uncapped call. The indices
for the swap and the call are given by x and y, and the pay-offs by p and q,
respectively.

E(pq) =
∫ ∞

Ky

dy

∫ ∞

−∞
dxDx(y −Ky)Dy(x−Kx)ρ(x, y) (H.33)

= DyDx

∫ ∞

Ky

dy

∫ ∞

−∞
dx(y −Ky)(x−Kx)ρ(x, y)

where

ρ(x, y) =
1
2π

1√
d
e−

1
2d

[σ2
2(x−µx)2−2cσ1σ2(x−µx)(y−µy)+σ2

1(y−µy)2] (H.34)

Using the same substitutions as before

E(pq) =
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

0
dv

∫ ∞

−∞
uve−

1
2
[(u+t1)2−2c(u+t1)(v+t2)+(v+t2)2]du

(H.35)

=
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

0
dv

∫ ∞

−∞
uve−

1
2
(u2+2au+b)du

=
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

0
v

(∫ ∞

−∞
ue−

1
2
(u2+2au+b)du

)
dv

=
DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

0
vI2(a, b)dv

This is exactly the same as the equivalent expression for a swap contract
except for the lower limit on the integral. Using equation (H.6)∫ ∞

0
vI2dv = −

∫ ∞

0

√
2π[(t1 − ct2)v − cv2]e−

1
2
[α2v2+2βv+γ]dv (H.36)

= −
√

2π(t1 − ct2)
1
α2

I1

(
β

α
, γ

)
+

√
2π

c

α3
J1

(
β

α
, γ

)

=
√

2π
c

α3
J1

(
β

α
, γ

)
−

√
2π(t1 − ct2)

1
α2

I1

(
β

α
, γ

)
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This gives

E(pq) =
1√
2π

DxDyd
3
2

σ2
1σ

2
2

[
c

α3
J1

(
β

α
, γ

)
− (t1 − ct2)

1
α2

I1

(
β

α
, γ

)]
(H.37)

H.3.3 Swap-put covariance

Finally, we consider the case where contract i is a put option.
The indices for the swap and the put are given by x and y, and the pay-offs

by p and q, respectively.

E(pq) =
∫ Ky

−∞
dy

∫ ∞

−∞
dxDy(Ky − y)Dx(x−Kx)ρ(x, y) (H.38)

= DyDx

∫ Ky

−∞
dy

∫ ∞

−∞
dx(Ky − y)(x−Kx)ρ(x, y)

where

ρ(x, y) =
1
2π

1√
d
e−

1
2d

[σ2
2(x−µx)2−2cσ1σ2(x−µx)(y−µy)+σ2

1(y−µy)2] (H.39)

Using the same substitutions as before

E(pq) = −DxDy

2π
d

3
2

σ2
1σ

2
2

∫ 0

−∞
dv

∫ ∞

−∞
uve−

1
2
[(u+t1)2−2c(u+t1)(v+t2)+(v+t2)2]du

(H.40)

= −DxDy

2π
d

3
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2
2
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0
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0
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∫ ∞
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v

(∫ ∞
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2
(u2+2au+b)du

)
dv

= −DxDy

2π
d

3
2

σ2
1σ

2
2

∫ ∞

0
vI2(a, b)dv

where now

a(v) = t1 − ct2 + cv (H.41)

and

b(v) = t21 − 2ct1(t2 − v) + (t2 − v)2 (H.42)

= (t21 − 2ct1t2 + t22) + v(2ct1 − 2t2) + v2
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This gives

b− a2 = (t21 − 2ct1t2 + t22) + v(2ct1 − 2t2) + v2 − (t1 − ct2 + cv)2 (H.43)

= (t21 − 2ct1t2 + t22) + v(2ct1 − 2t2) + v2

− (t1 − ct2)2 − 2(t1 − ct2)cv − c2v2

= v2[1 − c2] − 2v[c(t1 − ct2) + (t2 − ct1)]

+ [(t21 − 2ct1t2 + t22) − (t1 − ct2)2]

Using equation (H.6)

I2(a, b) = −
√

(2π)ae−
1
2
(b−a2) (H.44)

= −
√

2π[(t1 − ct2) − cv]e−
1
2
[α2v2+2βv+γ]

where

α =
√

1 − c2 (H.45)

β = t2(c2 − 1)

γ = (t21 − 2ct1t2 + t22) − (t1 − ct2)2

(note that the only difference from the swap and call cases is the sign of β)
and so∫ ∞

0
vI2dv = −

∫ ∞

0

√
2π[(t1 − ct2)v + cv2]e−

1
2
[α2v2+2βv+γ]dv (H.46)
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√
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This gives

E(pq) =
1√
2π

DxDyd
3
2

σ2
1σ

2
2

[
c

α3
J2

(
β

α
, γ

)
+ (t1 − ct2)

1
α2

I2

(
β

α
, γ

)]
(H.47)

H.4 Discussion

We have considered how to calculate the beta for uncapped swap, call and
put contracts. Other contracts, such as uncapped straddles, strangles and
collars, can be made up as linear combinations of these three basic contracts,
and the betas are just the sums of the betas for the contracts in the linear
combination. This covers all contracts that can be traded on the CME at this
point in time. However, this does not encompass many of the contracts that
are traded in the OTC weather market, most of which have caps. We are
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not sure if it is possible to derive equivalent expressions for such contracts;
the second integral becomes very hard.

Also, we are not sure if it is possible to derive closed-form solutions for the
covariance between two option contracts, again because the second integral
becomes very hard. If it were possible to derive closed-form solutions for
the covariance between pairs of uncapped options then we could calculate
the variance of the pay-offs of a portfolio of CME contracts entirely using
closed-form solutions.

H.5 Numerical examples

To facilitate the debugging of computer code we now give some numerical
examples of the results from these expressions.

Note that examples 4 and 5 are linked; E(pq) from example 5 should be
exactly half of E(pq) from example 4 – and it is.

Example 1: swap-swap, correlation = 0
Mean 1 373 Mean 2 389
SD 1 48 SD 2 45
Strike 1 370 Strike 2 380
Tick 1 1 Tick 2 1
Index correlation 0
Results
E(pq) 27

Example 2: swap-swap, correlation = 1
Mean 1 373 Mean 2 373
SD 1 48 SD 2 48
Strike 1 373 Strike 2 373
Tick 1 1 Tick 2 1
Index correlation 1
Results
E(pq) 2304

Example 3: swap-swap, correlation = 0.5
Mean 1 373 Mean 2 389
SD 1 48 SD 2 45
Strike 1 370 Strike 2 380
Tick 1 1 Tick 2 1
Index correlation 0.5
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Results
E(pq) 1107
E(p) 3 E(q) 9
SD(p) 48 SD(q) 45
Cov(pq) 1080 Corr(pq) 0.5

Example 4: swap-swap, correlation = 0.5
Mean 1 373 Mean 2 373
SD 1 48 SD 2 48
Strike 1 373 Strike 2 373
Tick 1 1 Tick 2 1
Index correlation 0.5
Results
E(pq) 1152

Example 5: swap-call, correlation = 0.5
Mean 1 373 Mean 2 373
SD 1 48 SD 2 48
Strike 1 373 Strike 2 373
Tick 1 1 Tick 2 1
Index correlation 0.5
Results
E(pq) 576
E(p) 0 E(q) 19.15
SD(p) 48 SD(q) 28.02
Cov(pq) 576 Corr(pq) 0.482

Example 6: swap-put, correlation = 0.5
Mean 1 373 Mean 2 373
SD 1 48 SD 2 48
Strike 1 373 Strike 2 373
Tick 1 1 Tick 2 1
Index correlation 0.5
Results
E(pq) −576
E(p) 0 E(q) 19.15
SD(p) 48 SD(q) 28.02
Cov(pq) −576 Corr(pq) −0.482
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Example 7: swap-call = swap-swap/swap-put, correlation = 0.5
Mean 1 373 Mean 2 389
SD 1 48 SD 2 45
Strike 1 370 Strike 2 380
Tick 1 1 Tick 2 1
Index correlation 0.5
Results
E(swap-swap) 1107
E(swap-call) 694.03
E(swap-put) −412.97
E(swap-put)+E(swap-swap) 694.03
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Simulation methods

I.1 Introduction

We now discuss some of the basic algorithms for univariate random num-
ber generation and the simulation from time series models. For more de-
tails, see textbooks such as Ripley (1987), Casella and Robert (1999) or
Gentle (2003). These books also contain suggestions of specialised algo-
rithms that may be faster than those suggested here, and they discuss meth-
ods for reducing the variability in the results (so-called variance reduction
techniques).

I.1.1 Simulating independent random variables

The simplest distribution to simulate from, and the basic building block
for simulating from more complex distributions, is the uniform. Most pro-
gramming languages, numerical libraries and applications such as Excel, R,
S-Plus and SAS have capabilities to simulate from a uniform distribution.
We will assume that such functionality is available and will not discuss the
details of how these simulations work.

The general approach to simulation from a given CDF

The most general approach to generate a random variable X with CDF F
is by transforming a uniform random variable using the following scheme:

� simulate a random variable U with a uniform distribution;
� find the inverse F−1 of F , defined by F−1(u) = min{x|F (x) ≤ u};
� set X := F−1(U).

To see why this scheme works, consider figure I.1.
Any simulated value X on the horizontal axis is related to a value U =

F (X) on the vertical axis, so the probability of simulating a number less than

353
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Figure I.1. The inverse of the CDF F can be used to simulate a random
variable with distribution F .

or equal to X is exactly equal to U because U follows a uniform distribution.
Although the CDF in the example is continuous, the method works equally
well for the simulation of discrete random variables when the inverse of F
is defined as described above.

Several well-known distributions can easily be simulated using this pro-
cedure:
� the exponential distribution has CDF F (x) = 1 − exp(−x), so F−1(p) =
− log(1 − p);

� the inverse of the normal distribution CDF is often available as a mathematical
function in applications (for example, it is called qnorm in R and norminv in
Excel).

It may not always be possible to find an analytical expression for the
inverse of F . In such cases a practical solution is to create a look-up table
for the function F and use it for the evaluation of F−1. This procedure may
decrease the accuracy for continuous distributions and may be slow to set up,
but execution can be relatively fast – in some cases even faster than direct
calculation of F−1. However, there are situations where simpler and faster
methods for the simulation of random variables without any calculation or
tabulation of the CDF exist. Below we list a few of these methods based on
the recommendations in Ripley (1987).

The Polar algorithm for normal distributions

Most useful for weather derivatives is probably a fast method for the simu-
lation of standard normal random variables – i.e. variables with density.

f(x) =
1√
2π

e−
1
2
x2
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The so-called Polar method (Ripley, 1987) is such an algorithm, which
generates pairs of independent standard normal variates. The steps involved
are as follows.

1. Generate variables U1, U2, which are uniformly distributed on the interval [−1, 1].
Repeat this until Y = U2

1 + U2
2 < 1.

2. Let V :=
√
−2Y −1 log Y .

3. The variables X1 := V U1 and X2 := V U2 are random numbers from the standard
normal distribution.

The method is a rejection-based version of the classical Box–Müller al-
gorithm (Box and Müller, 1958) and is both simple and relatively fast. In
order to obtain a sample Z from a normal distribution with mean µ and
variance σ2 from a standard normal variable X we let Z := σX + µ.

Algorithms for the gamma distribution

The gamma distribution is another useful distribution for weather deriva-
tives, because of the relation between the gamma and the negative binomial
(discussed below) and because it can be used as an index distribution in its
own right.

The density of the standard gamma distribution with shape parameter λ
is

f(x) =
1

Γ(λ)
λx−1e−x

Because the density of a gamma distribution is unbounded at zero when
the shape parameter λ is less than or equal to one, it is most efficient to
treat the cases λ < 1 and λ > 1 separately. The case λ = 1 is the exponential
distribution, for which the CDF can easily be inverted (as described above),
and the general method from section I.1.1 can be used.

For λ < 1 Ripley (1987) recommends the algorithm by Ahrens and Dieter
(1974), which proceeds as follows.

1. Generate variables U1, U2, which are uniformly distributed on the interval [0, 1].
2. If U1 ≤ e/(e + λ) then go to 3; else go to 4.
3. Let X = ((λ + e)U1/e)1/λ. If U2 > e−X then go to 1; else return X.
4. Let X = − log((λ + e)(1 − U1)/λe). If U1 > Xλ−1 then go to 1; otherwise return

X.

The case λ > 1 can be treated defining the constants c1 := λ− 1, c2 :=
(λ− 1/6λ)/c1, c3 := 2/c1, c4 := c3 + 2 and c5 := 1/

√
(λ) and using the

method from Cheng and Feast, 1979.
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1. Generate variables U1, U2, which are uniformly distributed on the interval [0, 1],
and set U1 := U2 + c5(1 − 1.86U1). Repeat this until 0 < U1 < 1.

2. Let W := c2U2/U1.
3. If c3U1 + W + W−1 ≤ c4 then go to 5.
4. If c3 logU1 − logW + W ≥ 1 then go to 1.
5. Return X := c1W .

We can obtain a gamma distribution with a specified scale parameter β

by multiplying a standard gamma variable by β.

Simulation from a Poisson distribution

The probability function for the Poisson distribution with mean λ is given
by

p(x) = e−λλ
x

x!

For small values of the mean (λ < 30) the following simulation scheme
can be used.

1. Let p := 1, n := 0 and c := e−λ.
2. Generate a variable U from a uniform distribution on [0, 1] and set p := pU ,

n := n + 1. Repeat this until p < c.
3. The variable X := n− 1 follows a Poisson distribution with mean λ.

For larger values of λ it is better to use the following scheme due to Atkin-
son (1979).

1. Generate U1 from a uniform distribution on [0, 1] and let X := (α− log((1 −
U1)/U1))/β. Repeat this until X > −0.5.

2. Let N be the integer part of X + 0.5 and generate U2 from a uniform distribution
on [0, 1].

3. If α− βX + log
(

U2
(1+exp(α−βX))2

)
> k + N log λ− logN ! then go to 1; else

return N.

Here c = 0.767 − 3.36/λ, β = π/
√

3λ and α = βλ.

Simulation from a negative binomial distribution

We can simulate from a negative binomial by combining the algorithms for
the gamma and Poisson distributions given above. This method uses the
observation that a negative binomial distribution can be constructed as a
Poisson distribution where the mean parameter λ has been drawn from a
gamma distribution.
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The simulation of time series

How should we simulate from a time series model? The methodology we de-
scribe in this section is applicable to general stationary Gaussian processes.
However, as an example, we start by considering a mean zero, stationary
AR(p) process Xt with Gaussian innovations εt:

Xt = φ1Xt−1 + . . . + φpXt−p + εt (I.1)

The simplest way to simulate such a process is to set the first p simulated
values equal to zero and then simulate subsequent observations using equa-
tion (I.1). Because of the exponential decay of the covariance function the
dependence on the initial p values will be lost very quickly, and a sample
from the desired stationary distribution can be obtained by discarding the
first k observations, where k depends on the covariance function.

A more sophisticated simulation procedure would sample the initial p

values from the stationary distribution of the time series, in which case no
simulations have to be discarded. See, for example, Brockwell and Davis
(1999) for exact expressions for the stationary distribution for ARMA pro-
cesses.

Another, and much more general, way of simulating observations from
a Gaussian time series is by using the covariance function, for which one
can often obtain explicit expressions. The covariance function can be used
to construct the covariance matrix and then standard multivariate normal
simulation methods can be used. However, the lengths of the time series
that one would like to simulate may be very large. This results in a very
large covariance matrix, which in turn can result in long computation times
and computer memory exhaustion. In most cases this problem is solved by
the fact that the time series is assumed stationary, so that the covariance
matrix has a band structure that can be exploited to speed up the simula-
tion routine. For more details of such simulation routines see, for example,
Brockwell and Davis (1999) or Beran (1994).
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Efficient methods for pricing against a portfolio

J.1 Efficient methods for modelling one extra contract

We now describe two numerical methods for the efficient modelling of one
extra contract on a portfolio. For both these methods we make the following
assumptions:

� n is the original number of indices in the portfolio;
� m is the number of years of historical data;
� k is the number of simulations;
� Xh is the original historical data in an n by m matrix;
� Zh is the same data transformed to standard normal distributions;
� we have simulated these n indices for k years using the rank correlation method;
� Zs is the n by k matrix of the normally distributed simulations;
� Xs are the final simulations with correct marginals;
� xh is the 1 by m vector of the new historical data;
� zh is the same when transformed to a standard normal distribution;
� ph is the 1 by m vector of historical pay-offs for the portfolio;
� qh is the same when transformed to a standard normal distribution using the
empirical CDF;

� ps is the 1 by k vector of simulated pay-offs for the portfolio;
� qs is the same when transformed to a standard normal distribution using the
empirical CDF.

J.1.1 Index regression

We model the new transformed index data as a linear combination of
the old transformed index data zh = αZh + eh, where eh is a noise vec-
tor with variance v and α is a 1 by n vector of coefficients. This gives
α = (zhZT

h )(ZhZ
T
h )−1 and v = zhz

T
h − αZhZ

T
h α

T .
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The method then works in two stages.

1. Given the portfolio rank correlations, convert to linear correlations and calculate
the n by n matrix A = (ZhZ

T
h )−1.

2. Store this matrix A, the simulations Zs and the historical data Xh.

When it is necessary to price a single contract against the portfolio, we
then follow the steps below.

1. Calculate the rank correlation vector cr between the new historical data xh and
the old historical data Xh.

2. Convert this to linear covariances c = zhZ
T
h .

3. Calculate α as α = cA.
4. Calculate v.
5. Create a new vector of normally distributed simulations zs using linear combi-

nations of the old simulations zs = αZs + es, where es is sampled from a normal
distribution with variance v.

6. Transform zs to the correct marginal distribution to give xs.

J.1.2 Pay-off regression

In this method we model the new index data as a linear combination of
the old portfolio pay-offs zh = αph + eh, where eh is a noise vector with
variance v. This gives α = (zhpT

h )
phpT

h

and v = zhz
T
h − α2php

T
h .

When we want to price a new contract, we follow the steps below.

1. Calculate the rank correlation between the historical pay-offs for the portfolio
ph and the historical index values for the new contract xh.

2. Convert this rank correlation to a linear covariance c = zhq
T
h , and calculate α.

3. Simulate new index values zs: zs = αqs + es.
4. Convert these index values to the correct distribution.
5. Convert these index values to pay-offs.
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ACF, 129
actuarial VaR, 275
Anderson–Darling, 81, 299
anomaly

correlation, 202
definition, 128
forecast, 196

arbitrage pricing, 30, 241
Black–Scholes equation, 245
weather-adapted Black equation, 257
weather-adapted Black–Scholes equation,

257
ARFIMA, 140, 226
ARMA, 135
AROMA, 141
average of average temperature, 15
average temperature

definition, 10, 15

backtesting, 54
balanced market model, 254, 257
banks, 1, 148
basis risk, 5
basket, 25
beta

generalisation of delta to portfolios,
187

in the CAPM, 32
bias

in detrending, 55
in forecasts

correction, 204
estimation, 200

binary
expected pay-off example, 314
expected pay-off for the normal, 312
greeks example, 332
greeks for normal, 331
option pay-off definition, 25
pay-off distribution, 88, 305
pay-off variance example, 322
pay-off variance for normal, 322

binomial

coefficient in ARFIMA, 140
distribution, 83, 84

Black equation, 252
Black–Scholes

adapted to weather, 257
assumptions, 250
equation, 245
extensions, 252
greeks, 251
measure theory derivation, 245
PDE derivation, 243

Brownian motion
derivation for expected index, 234
for equity prices, 242
for expected index, 100, 255
linear imbalance model, 262
use for market prices, 279
use in VaR calculations, 276

burn analysis
assumptions, 63
comparison with index modelling, 109
correlation with index modelling, 110
examples, 63
extended, 157
for options, 61
for portfolios, 156
for swaps, 59
uncertainty, 68

call
expected pay-off example, 314
expected pay-off for the normal, 308
greeks example, 332
greeks for normal, 327
option pay-off definition, 21
pay-off distribution, 88, 303
pay-off variance example, 322
pay-off variance for normal, 317

cap, 27
CAPM, 32
CAT

index type, see cumulative average
temperature

369
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CCF, 164
CDD, 13
CDF

comparing, 78
of pay-offs for standard contract types,

303
use in simulation, 353

chi-square, 81, 298
Choleski, 159
climate change, 43
climate models, 43
CMC, 194
CME, 7
collar

expected pay-off example, 314
expected pay-off for the normal, 310
greeks example, 332
greeks for normal, 328
pay-off definition, 23
pay-off distribution, 88, 304
pay-off variance example, 322
pay-off variance for normal, 319

confidence intervals
on distributions, 79

copulas, 161
correlation

and the CAPM, 32
between weather and the stock market, 34

correlations
autocorrelations of temperature, 129
between daily models and index models, 167
between ENSO and weather, 215
between European cities, 153
between forecast and post-forecast, 226
between indices, 153
between temperatures and indices, 153
between the United States and Europe, 153
between US cities, 153
converting linear to rank, 160
cross-correlations for temperature, 163
forecasting, 210
from year to year, 63
in the pay-offs of a portfolio, 151
indices and pay-offs, 156
modelling linear, 158
modelling rank, 160
rank, 160
Spearman, 160

costless swaps, see swaps
Cramér–von Mises, 299
credit risk, 280
critical days, see event indices
cumulative average temperature, 17

daily modelling, 74, 121
data

checking, 39
cleaning, 37
discontinuities, 40
enhancement, 40
gap filling, 38

jumps, 40
reconstruction, 40
trends in, 42

degree days
cooling, 13
heating, 11

delta
definition, 95, 97
for the normal, 324
interpretation, 104–106
with respect to temperature, 101

delta hedging, 116, 243
derivatives

equity, 29, 242
financial, 29, 242
partial, 97
total, 101

design matrix, 292
dimension reduction, 164
discontinuity

in temperature data, 40
discounting, 28
distributions

adjusted kernel density, 87
binomial, 84
confidence intervals on, 79
fitting, 77
fitting using maximum likelihood, 296
fitting using method of moments, 296
for event contracts, 83
importance of choice, 108
kernel density, 86
multivariate, 153
negative binomial, 84
non-parametric, 85
normal for seasonal contracts, 81
numerical goodness of fit tests, 81
of daily temperatures, 129
of portfolio pay-offs, 157
parametric alternatives to normal, 83
parametric index, 77
Poisson, 83
simulation from, 90
testing goodness of fit, 78
variance estimation, 77

downscaling, 195
dual-trigger contracts, 9, 266

ECMWF, 194
efficient forecasts, 211, 234
El Niño, see ENSO
end-to-end use of ensemble forecasts, 229
energy companies, 1
ensemble forecasts

definition, 193
ensemble means, 198
example, 199
models, 194
use for making probabilistic forecasts, 209
use for predicting changes, 211
use for predicting correlations, 210
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ENSO, 213
effects, 215
forecasts and pricing, 240
impact on US temperatures, 216
mechanics, 213
predictions, 216

event indices, 17
exchange trading, 7
expiry VaR, 118, 274
exponential

distribution, 83, 297
trend model, 48, 293

fair premium (definition), 61
fair price (definition), 61
fair strike (definition), 59
fish farm, 4
forecasts, 192

anomaly correlation, 202
bias, 200
efficiency, 211
efficient forecast hypothesis, 211
ensemble forecasts, 209
ensemble means, 198
for the expected temperature, 196
links with hedging, 8
of changes, 211
of correlations, 210
probabilistic forecasts, 207
RMSE, 201
seasonal, 212, 240
skill, 198, 207
uncertainty, 207
use of, 220
weather, 192, 221
year ahead, 54

gamma
definition, 95, 98
distribution, 83, 296
for the normal, 325
interpretation, 105, 106

gas price, 9, 32, 266
GoF, see goodness of fit
goodness of fit, 78

tests, 298
grafting, 232
greeks, 94

solutions for normal, 324

HDD, 11
hedge funds, 1, 148
hedgers, 6
hedging, 116

delta hedging, 116, 241, 243
dual-trigger contracts, 266
static hedging, 117
using swaps on a different location,

266
hindcasting, see backtesting
hydropower, 3

implied volatility
relation to risk loading, 263

index modelling, 73
combining with daily modelling, 167
comparison with burn, 109
correlation with burn, 110
for portfolios, 158
incorporation of forecasts, 229

index vega, see zeta
insurance

and derivatives, 4
indemnity-based, 5
index-based, 4

insurance companies, 1, 148
interest rates, see discounting
Ito’s lemma, 102, 243

jumps (in temperature data), 40

kernel density, 76, 85
adjusted, 87
basic, 86
closed-form solutions, 334

Kolmogorov–Smirnov, 81, 299

La Niña, see ENSO
leap years, 120, 127
limit, 20–25
limited expected value function, 89
linear

contract, 19
in covariates, 292
index, 18
sensitivity analysis, 94
trend, 45, 50, 55, 56

liquidation value, 269, 272, 279
liquidation VaR, 279
liquidity, 5
liquidity risk, 280
loess, 48, 51, 55, 292
log-normal (distribution), 83
long (position), 19

mark to market, 5, 280
mark to model, 5, 121, 280
market making, 61, 62, 184
market price of risk, 251, 259
maximum likelihood, 48, 77, 134, 295
mean square error, see root mean square

error
mean-variance, 174, 181, 182
mean-variance portfolio management,

173
measure theory, 245, 249, 259
method of moments, 77, 295
moneyness, 26
Monte Carlo, 59, 90, 229, 246, 293, 300
moving average, 51, 292
MSE, see root mean square error
multi-year contracts, 112
multivariate modelling, 153
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NCEP, 194
negative binomial, 83, 84, 356
non-parametric

daily models, 143
distribution transforms, 134
distributions, 85
trends, 51

normal distribution, 297
and seasonal contracts, 81
closed-form expected pay-offs, 302
closed-form greeks, 324
closed-form pay-off variances, 315
multivariate simulations, 158
simulation, 354
useful relations, 306, 315, 324

numerical integration, 90

options
arbitrage pricing, 241
binary, 25, 305, 312, 322, 331
burn analysis, 61
call, 21, 303, 308, 317, 327
put, 22, 304, 309, 318, 327
straddle, 24, 305, 310, 320, 329
strangle, 24, 305, 311, 321, 330

OTC, see over the counter
over the counter, 7

parametric
daily models, 135
distributions, 77
trends, 50

parity, 27
partial differential equation, 103, 245, 252,

257
pay-off functions, 19

binary, 25
call, 21
collar, 23
other, 25
put, 22
straddle, 24
strangle, 24
swap, 19

pay-off integrand, 113
PCA, see principal components analysis
PDE, see partial differential equation
piecewise linear

pay-off functions, 25
trends, 50

Poisson distribution, 83, 297, 356
portfolios

aggregation, 167
daily modelling, 163
greeks, 188
modelling, 148

potential accuracy, 110, 122
PP plots, 78
pricing

actuarial, 30
against a portfolio, 182

arbitrage, 30, 241
paradigms, 28, 31

primary market, 6
principal components analysis, 188
probabilistic forecasts, 207, 223, 224, 226, 228,

229, 239
pruning, 230
put

expected pay-off example, 314
expected pay-off for the normal, 309
greeks example, 332
greeks for normal, 327
option pay-off definition, 22
pay-off distribution, 88, 304
pay-off variance example, 322
pay-off variance for normal, 318

QQ plots, 78, 129
quadratic trend, 50

random walk, see Brownian motion
regression

and forecast correction, 205
and gap filling, 39
and jump detection, 41
and portfolio beta, 187
and probabilistic forecasting, 207
and value checking, 39

reinsurance companies, 1, 148
replication, 245, 249, 259
rho

and portfolios, 188
definition, 95

risk
budgeting, 186
credit, 280
liquidity, 280
loading, 60, 62
management, 268
measures, 151, 171
neutrality, 247

risk-adjusted return, 172, 181, 182, 186
RMSE, see root mean square error
root mean square error, 50, 55, 201

SAROMA, 142
seasonal cycle modelling, 126
seasonal forecasts, 212, 240
secondary market, 6
separable, 18
Shapiro–Wilk, 81, 300
Sharpe ratio, 173
short (position), 19
short-term VaR, 275
singular value decomposition, 159, 165, 188
skew-normal (distribution), 83
ski resort, 3
sliding window resampling, 144
solar forcing, 44
speculators, 6
spreads, 25
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static hedging, 117
stochastic dominance, 177, 181, 183
stochastic process

for equity prices, 242
for expected index, 100, 234, 255
for weather swap price, 255

straddle
expected pay-off example, 314
expected pay-off for the normal, 310
greeks example, 332
greeks for normal, 329
pay-off definition, 24
pay-off distribution, 88, 305
pay-off variance example, 322
pay-off variance for normal, 320

strangle
expected pay-off example, 314
expected pay-off for the normal, 311
greeks example, 332
greeks for normal, 330
pay-off definition, 24
pay-off distribution, 88, 305
pay-off variance example, 322
pay-off variance for normal, 321

strike, 20–25
SVD, see singular value decomposition
swap

expected pay-off example, 314
expected pay-off for the normal, 308
greeks example, 332
greeks for normal, 326
pay-off definition, 19
pay-off distribution, 88, 303
pay-off variance example, 322
pay-off variance for normal, 316

temperature
cleaning, 37
daily modelling, 125
detrending, 48, 56
discontinuities, 40
forecasts, 192
gap filling, 38
seasonal cycle, 126
statistical properties, 129
trends, 42
value checking, 39

terminology, 27
theta

and portfolios, 188
definition, 95, 99
interpretation, 107

tick, 20–25
time series modelling, 121, 163
total derivatives, 101
toy model (for the swap price process),

256
trading, 7, 66
transaction costs, 253, 264
trapezium model, 236
trends, 37

backtesting, 54
causes, 42
detrending, 47, 48
general theory, 292
sensitivity of models, 52
spatial structure, 45

uncertainty
burn analysis, 68
expected index, 68
forecasts, 207
index distribution, 69
index standard deviation, 69
option premium, 69
trends, 52

urbanisation, 43
utility theory, 175, 179, 181, 183

value at risk, 118, 158, 171, 268, 269, 273,
275, 279

VaR, see value at risk
VAR (vector autoregressive), 163
VARFIMA, 164
VARMA, 163
vega

definition, 95, 100
interpretation, 107

volatility, 100, 233, 236, 242, 250
and risk loading, 263
modelling for greeks, 100
trapezium model, 236

weather derivative (definition), 4
weather forecasts, 192, 221
Weather Risk Management Association, 1
wind farm, 10
WRMA, see Weather Risk Management

Association

zeta
definition, 98
for the normal, 325
interpretation, 106
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