Regions of Operation/Biasing

NCEES® FE Reference Handbook Page # 386

Active Region (Amplification)

Condition # 1: B-E junction is FB

$$V_{be} = 0.7V$$
, $i_c = \beta i_b = I_s e^{\frac{V_{BE}}{V_T}}$

Condition # 2: B-C junction is RB

$$V_{bc} < 0 \text{ OR } V_{ce} > 0.7V$$

 $V_{ce} = V_{cb} + V_{be} > 0.7V$
 $\rightarrow V_{cb} + 0.7 > 0.7V$
 $\rightarrow V_{cb} > 0V$

Therefore, if V_{ce} is FB, V_{hc} will be RB

Summary

 $\rightarrow V_{bc} < 0V$

$$V_{be} = 0.7V, i_c = \beta i_b$$

 $V_{bc} < 0 \text{ OR } V_{ce} > 0.7V$

Saturation Region – (Switch ON)

Condition # 1: B-E junction is FB

$$V_{be} = 0.7V$$
, $i_c = I_s e^{\frac{V_{BE}}{V_T}} \left(1 - \frac{e^{-\frac{V_{CE}}{V_T}}}{\alpha_{sat}} \right)$ $V_{be} < 0$ $i_b = i_c = i_e = 0$

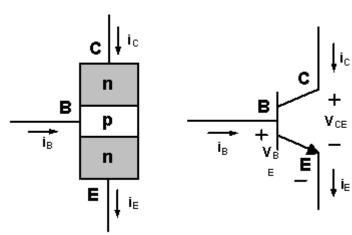
Condition # 2: B-C junction is FB

$$V_{bc} > 0 \text{ OR } V_{ce} < 0.7V$$

 $V_{ce} = V_{cb} + V_{be} < 0.7V$
 $\rightarrow V_{cb} + 0.7 < 0.7V$
 $\rightarrow V_{cb} < 0V$
 $\rightarrow V_{bc} > 0V$

Summary

$$\begin{aligned} V_{be} &= 0.7V \\ V_{ce} &< 0.7V \\ V_{ce} &\cong V_{ce-sat} = 0.2V \\ i_c &< \beta i_b \end{aligned}$$


Cut-off Region – (Switch OFF)

Condition # 1: B-E junction is RB

$$V_{be} < 0$$

$$i_b = i_c = i_e = 0$$

Condition # 2: B-C junction is RB

$$V_{bc} < 0$$

Please review this specific portion of the on-demand lecture. NCEES® FE Handbook doesn't provide this breakdown.

DC Circuit Analysis

NCEES® FE Reference Handbook Page # 386

- 1. Assume an operating mode i.e. active, saturation or cut-off. Remember amplification happens in active region.

 Typically it is recommended to begin by active region unless you can observe otherwise.
- 2. Enforce the **equality conditions** relevant to region of operation.
- 3. Analyse the circuit with enforced conditions to calculate unknown currents/voltages.
- 4. Check the inequality conditions and compare results with assumptions. If they are consistent, you are done.
- 5. Otherwise, repeat the process by assuming different region of operation.

Active Region	Saturation Region	Cutoff Region
Equality Conditions $V_{be}=0.7V$, $i_c=\beta i_b$	Equality Conditions $V_{be} = 0.7V$, $V_{ce} \cong V_{ce-sat} = 0.2V$	Equality Conditions $i_b = i_c = i_e = 0$
Inequality Conditions $V_{bc} < 0 \; { m OR} \; V_{ce} > 0.7 V$	Inequality Conditions $V_{ce} < 0.7V$ $i_c < \beta i_h$	Inequality Conditions $V_{be} < 0$, $V_{bc} < 0$