Question	Marking guidance	Mark	AO	Comments
07.1	Υ	1	AO3 1a	
07.2	x	1	AO3 1a	
07.3	Jump in trend of ionisation energies after removal of fifth electron Fits with an element with 5 outer electrons (4s ² 3d ³) like V	1	AO2b	
07.4	Explanation: Two different colours of solution are observed	1	AO2g	
	Because each colour is due to vanadium in a different oxidation state	1	AO2g	

07.5				Extended response
	Stage 1: mole calculations in either order			Maximum of 5 marks for answers which do not show
	Moles of vanadium = $50.0 \times 0.800/1000 = 4.00 \times 10^{-2}$	1	AO2d	a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.
	Moles of $SO_2 = pV/RT = (98\ 000 \times 506 \times 10^{-6})/(8.31 \times 293)$			relevant, substantiated and logically structured.
	$= 2.04 \times 10^{-2}$	1	AO2d	
	Stage 2: moles of electrons added to NH ₄ VO ₃			
	When SO ₂ (sulfur(IV) oxide) acts as a reducing agent, it is oxidised to sulfate(VI) ions so this is a two electron change	1	AO2d	
	Moles of electrons released when SO_2 is oxidised = 2.04 × 10^{-2} × 2			
	$= 4.08 \times 10^{-2}$	1	AO2d	
	Stage 3: conclusion			
	But in NH ₄ VO ₃ vanadium is in oxidation state 5	1	AO2b	
	4.00×10^{-2} mol vanadium has gained 4.08×10^{-2} mol of electrons therefore 1 mol vanadium has gained $4.08 \times 10^{-2}/4.00 \times 10-2 = 1$ mol of electrons to the nearest integer, so new oxidation state is 5–1=4.	1	AO2d	