

Bob Reeves

AQA
A-level

Computer
Science

Approval message from AQA

This textbook has been approved by AQA for use with our qualification. This means that we
have checked that it broadly covers the specification and we are satisfied with the overall
quality. Full details of our approval process can be found on our website.

We approve textbooks because we know how important it is for teachers and students to
have the right resources to support their teaching and learning. However, the publisher is
ultimately responsible for the editorial control and quality of this book.
Please note that when teaching the AQA A-level Computer Science course, you must
refer to AQA’s specification as your definitive source of information. While this book has
been written to match the specification, it cannot provide complete coverage of every
aspect of the course.
A wide range of other useful resources can be found on the relevant subject pages of our
website: www.aqa.org.uk

Includes AS and A-level

The Publishers would like to thank the following for permission to reproduce copyright material:

P.11 © chombosan - Fotolia.com; P.24 © VvoeVale - iStock via Thinkstock.com; P.69 Courtesy of Wikipedia,
The Opte Project (http://creativecommons.org/licenses/by/2.5/); P.111 © Hodder & Stoughton; P.136 middle
© Sergey Kamshylin - Fotolia.com, bottom © mark huls - Fotolia.com; P.137 © Jenny Thompson - Fotolia.com;
P.142 screenshot from TRANSYT from TRL Software (trlsoftware.co.uk); P.214 © ra3rn - Fotolia.com;
P.217 © davemhuntphoto - Fotolia.com; P.218 © Bob Reeves; P.231 top © TheVectorminator - Fotolia.com,
bottom © R+R - Fotolia.com; P.267 top © Maksym Yemelyanov - Fotolia.com, bottom © finallast -Fotolia.com;
P.271 © KarSol - Fotolia.com; P.289 © Igor Mojzes - Fotolia.com; P.295 Courtesy of Wikimedia Commons, author
Ordercrazy, Creative Commons CC 1.0 (http://creativecommons.org/publicdomain/zero/1.0/deed.en);
P.313 © Maxim Pavlov - Fotolia.com

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked the
Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder
Education cannot be held responsible for the content of any website mentioned. It is sometimes possible to find a
relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from
wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the
environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB.
Telephone: (44) 01235 827720. Fax: (44) 01235 400454. Lines are open 9.00–17.00, Monday to Saturday,
with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk

© Bob Reeves 2015

First published in 2015 by
Hodder Education
An Hachette UK Company,
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ
www.hoddereducation.co.uk

Impression number 5 4 3 2 1

Year 2019 2018 2017 2016 2015

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, or held within any information storage and retrieval system, without permission in writing from the
publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for
reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Saffron House, 6–10
Kirby Street, London EC1N 8TS.

Cover photo © LaCozza – Fotolia

A catalogue record for this title is available from the British Library

ISBN 978 1 447 183951 1

iii

Contents
 Introduction v

Section One Fundamentals of programming
 1 Programming basics 2
 2 Programming concepts 8

3 Basic operations in programming languages 14
4 Subroutines, local and global variables 22

 5 Structured programming 28
6 Object-oriented programming concepts 35

 Practice questions 46

Section Two Fundamentals of data structures
7 Data Structures and abstract data types 50
8 Queues and stacks 57
9 Graphs and trees 67

10 Hash tables and dictionaries 77
11 Vectors 84
 Practice questions 90

Section Three Fundamentals of algorithms
12 Graph and tree traversal 92
13 Dijkstra’s shortest path algorithm 101
14 Search algorithms - binary, binary tree and

linear search 110
15 Reverse Polish Notation 117
16 Sorting algorithms – bubble and merge 124
 Practice questions 132

Section Four Fundamentals of computational thinking
17 Abstraction and automation 134
18 Finite state machines 145
19 The Turing machine 150
20 Regular and context-free languages 156
21 Maths for regular expressions 164
22 Big O notation and classification of algorithms 169
 Practice questions 179

Section Five Fundamentals of data representation
23 Number systems 182
24 Number bases 187
25 The binary number system 194
26 Coding systems 207
27 Encryption 220
 Practice questions 228

CO
N

TE
N

TS

iv

Section Six Fundamentals of computer systems
28 Hardware and software 230
29 Classification of programming languages

and translation 238
30 Boolean algebra 245
31 Logic gates 256
 Practice questions 264

Section Seven Fundamentals of computer organisation and
architecture
32 Internal hardware of a computer 266
33 The stored program concept and processor

components 274
34 The processor instruction set and addressing modes 281
35 External hardware devices 287
 Practice questions 298

Section Eight Consequences of uses of computing
36 Moral, ethical, legal and cultural issues 300

Section Nine Fundamentals of communication and networking
37 Communication basics 310
38 Networks 317
39 The Internet 326
40 Internet security 339
41 Transmission Control Protocol/Internet

Protocol (TCP/IP) 347
42 The client-server model 353
 Practice questions 360

Section Ten Fundamentals of databases
43 Relational databases 364
44 Structured query language (SQL) 375
45 Big data 382
 Practice questions 390

Section Eleven Fundamentals of functional programming
46 Basics of functional programming 394
47 Writing functional programs 400
 Practice questions 405

 Section Twelve Software development
48 Aspects of software development 408
49 Non-exam assessment (NEA) 417

 Glossary 423

 Index 433

v

Introduction

● What is computer science?
The world of computer science continues to develop at an amazing rate.
If you had spoken to an A-level student embarking on a computer science
course just ten years ago they might not have believed that in the year
2015 we would all be permanently connected to the Internet on smart
phones, watching movies in high definition on 55-inch curved-screen TVs,
streaming our favourite music to our phones from a database of millions
of tracks stored in ‘the cloud’ or carrying round a tablet that has more
processing power than the flight computer on the now decommissioned
space shuttle.

No-one really knows where the next ten years will take us. The challenge
for you as a computer scientist is to be able to respond to this ever-changing
world and to develop the knowledge and skills that will help you to
understand technology that hasn’t yet been invented!

Studying A-level computer science gives you a solid foundation in the
underlying principles of computing, for example: understanding how
algorithms and computer code are written; how data are stored; how data
are transmitted around networks; and how hardware and software work.
It also provides you with a deeper level of understanding that goes beyond
the actual technology. For example, you will learn about how to use
computation to solve problems and about the close links between computer
science, mathematics and physics.

You might be surprised to learn that many of the key principles of
computing were developed before the modern computer, with some
concepts going back to the ancient Greeks. At the same time, you will
be learning about the latest methods for solving computable problems in
today’s world and developing your own solutions in the form of programs
or apps.

Studying computer science at A level is challenging, but it is also highly
rewarding. There are very few jobs that do not involve the use of computers
and having a good understanding of the science behind them will
effectively prepare you for further study or employment.

IN
TR

O
D

U
CT

IO
N

vi

● Course coverage and how to use this book
This book has been written to provide complete coverage of the AQA
Computer Science specifications for AS and A level that are taught from
September 2015. The content of the book is matched and sequenced
according to the specification, and organised into sections in accordance
with the main specification headings used by AQA.

Students studying A level need to be familiar with all of the content of the
AS specification and in addition need to cover those sections highlighted
throughout the text and are flagged up as A level only. There is support
for every section of the specification including the written papers and
coursework element.

The main objective of the book is to provide a solid foundation in the
theoretical aspects of the course. Further support and practical examples of
coded solutions are provided on line via Dynamic Learning.

Chapters contain:

8

● Sequencing
Sequencing instructions correctly is critical when programming. In simple
terms this means making sure that each line of code is executed in the right
order. For example, a DVD recorder may have a simple program to record a
TV channel at a certain time. The sequence of events would be:

Set time to record = 15:00

Set channel to record = Channel 4

Check time

If time = 15:00 Then Record

If any of these instructions were wrong, missed out or executed in the
wrong order, then the program would not work correctly.

2 Programming
concepts

LEARNING OBJECTIVES
In this chapter you will learn how to:
• put lines of code in the correct sequence
• write an assignment statement
• write a selection statement
• write an iterative (repeat) statement
• use loops.

INTRODUCTION
In simple terms, programming is just a case of writing a series
of instructions in order to complete a task. Depending on which
programming language you use, this is done in different ways.
However, there are certain constructs that are common to all high-
level languages. These building blocks of programming are sequence,
selection and repetition (also known as iteration). There is also a further
fundamental principle called assignment.

SPECIFICATION COVERAGE
3.1.1.2 Programming concepts

INTRODUCTION
This is a concise introduction to
set the scene.

LEARNING OBJECTIVES
Matched to the specifi cation,
these summarise what you will
learn by the end of the chapter.

The main text
This contains detailed
defi nitions, explanations and
examples.

Specifi cation coverage
Taken directly from the
specifi cation, it shows which
elements of AS and A level are
covered within each chapter.

R
EPETITIO

N
 (ITER

ATIO
N

)

11

condition is met – either you run out of words to count or the device comes
to a wall. An iterative process has two parts – a pair of commands that show
the start and finish of the process to be repeated and some sort of condition.

There are two basic forms of iteration – definite and indefinite. Definite
iteration means that the instructions are repeated in a loop a certain number
of times. Indefinite iteration means that the instructions are repeated in a
loop until some other event stops it. Iteration statements are often referred to
as loops, as they go round and round. Let’s look at an example of each.

Definite iteration
If you want a process to be carried out a set number of times you will need
to use definite iteration. For example, the following code could be used to
operate a robotic device. It will move a device forward 40 units:

For Counter = 1 To 40

 Move forward 1 unit

Next

After it has moved forward 40 units it will stop. It will try and move
irrespective of whether it meets an obstacle or not. This is known as a
For...Next loop as it will carry out the instruction for a set number
of times.

Indefinite iteration
In this case the loop is repeated until a specified condition is met – so
it uses a selection process to decide whether or not to carry on (or even
whether to start) a process.

This routine moves a device forward until the sensor detects an obstacle:

Repeat

 Move forward 1 unit

Until Sensors locate an obstacle

Figure 2.1 Parking sensor

KEYWORDS
Definite iteration: a process that
repeats a set number of times.
Indefinite iteration: a process
that repeats until a certain
condition is met.
Loop: a repeated process.

Diagrams and images
The book uses diagrams and
images wherever possible to aid
understanding of the key points.

KEYWORDS
All of the keywords are identifi ed with
concise defi nitions. These form a
glossary, which is useful for revision
and to check understanding.

Introduction

vii

Acknowledgements
Dave Fogg for producing the VB code examples used.

Matthew Walker for producing the Python code example used.

Paul Varey for his initial proofread.

Dedicated to Tommy and Eli.

Code examples
Where relevant there are examples of
pseudo-code or actual code to demonstrate
particular concepts. Code examples in
this book are mainly written using the
Visual Basic framework. Visual Basic 2010
Express has been used as this is available
as a free download. The code can also be
migrated into other versions of VB. Note
that code that is longer than one line in the
book is shown with an underscore (_). It
should be input as one line in VB.

 2
 P

ro
gr

am
m

in
g

co
nc

ep
ts

12

There is no way of knowing how many times this loop will be repeated so
potentially it could go on forever – a so-called infinite loop. This example is
also known as a Repeat...Until loop as it repeats the instruction until a
condition is met.

To check for a condition before the code is run, you can use what is
commonly called a While or Do while loop. For example, a program
that converts marks to grades might use the following line of code:

While Mark <=100

 Convert Mark to Grade

End While

In this case, it checks the condition before the code is run. If the mark is
over 100, then the code inside the While loop will not even start.

Nested loops
In the same way that you can nest selection statements together, it is also
possible to have a loop within a loop. For example, an algorithm to create
a web counter on a web page may have 8 digits allowing for numbers up to
10 million. Starting with the units, the program counts from 0 to 9. When
it reaches 9, it starts again from 0, but it also has to increment the value in
the tens column by 1. The units will move round 10 times before the tens,
then moves once. The tens column moves around 10 times and then the
hundreds increments by 1 and so on.

The same algorithm can therefore be used for each digit and can be nested
together so that the code is carried out in the correct sequence. The code
below shows a nested loop just for the units and tens:

Tens = 0

Units = 0

While Tens < 10

 While Units < 10

Output Tens and Units to web counter

Units = Units + 1

 End While

 Tens = Tens + 1

 Units = 0

End While

Notice that the way the code is indented indicates the sequence of events. This
shows that for every iteration of the outer loop, the inner loop will be completed.

Structures such as those mentioned in this chapter are one of the
characteristics of a high-level language. They are easy to understand when they
are viewed in isolation, but the problems start when you try to put a series of
constructs together to do something more useful than deciding if someone
is old enough to drive a car or to move a device forwards. In order to create
larger, more useful programs, you need to plan ahead and organise your code.

Practice questions can be found at the end of the section on pages
4 6 and 4 7 .

KEYWORD
Sequence: the principle of putting
the correct instructions in the
right order within a program.

Figure 2.2 A web counter

82530000

Tens Units

R
EPETITIO

N
 (ITER

ATIO
N

)

13

STUDY / RESEARCH TASKS
1 Identify a real-life situation where it might be useful to use the

following constructs within a program:
a) iteration
b) selection.

2 Write a program that reads in a file of test marks and then converts
them to grades.

3 Write a program that works out the postage charges for parcels of
different weights.

4 Write a program that simulates the odometer on a car.

KEY POINTS
• Programming statements

are built up using four main
constructs: sequence,
selection, repetition (also
known as iteration) and
assignment.

• Sequence is putting the
instructions in the correct
order to perform a task.

• Selection statements
choose what action to take
based on specified criteria.
For example, If...Then
statements.

• Iteration is where a particular
step or steps are repeated
in order to achieve a certain
task. For example, For...
Next statements.

• Assignment is the process
of giving values to variables
and constants. For example,
Age = 25.

TASKS
1 Write examples of the three main types of programming statement:

assignment, selection, iteration.
2 Give two examples where an iterative process might be used.
3 Explain the difference between definite and indefinite iteration.
4 Explain the concept of a nested statement.
5 Why is the sequence of programming statements so important? Use

an example to explain.
6 What is syntax and why is it important? Use an example to explain.

Section One: Practice questions
 1 The following code is part of a stock control system.

Dim Name As String

Dim Price As Real

Const VAT = 0.2

Type RecordDetails

 RecordType As String * 14

RecordCurrent As Integer

RecordRestock As Integer

End Type

 CASE STUDY 1: BANKING – THE BENEFITS OF TECHNOLOGY
Around 30 years ago, if you wanted to carry out any banking transaction
you had to do it between the hours of 9 a.m. and 3 p.m. on a weekday as
this was when banks used to open. The invention of cash machines in
the 1980s was a technological revolution giving customers access to
their money 24 hours a day. The invention of online banking in the 1990s
meant that almost all transactions could be done at any time on any day
of the week, including paying bills, setting up direct debits and moving
money from one account to another. Some estimates suggest that as
many as half of all web users now do their banking online.

Practice questions
These are revision
questions designed to
check understanding of
the topics covered across
the whole section.

CASE STUDY
These provide real-life
examples of the applications
of computing.

KEY POINTS
All of the main points
for each chapter are
summarised. These are
particularly useful as a
revision aid.

TASKS
These are activities designed to
test your understanding of the
contents of the chapter. These
may be written exercises or
computer tasks.

STUDY/RESEARCH TASKS
These questions go beyond
the specifi cation and provide a
further challenge designed to
encourage you to ‘read around
the subject’ or develop your
skills and knowledge further.

Section One:
Fundamentals of
programming

2

 1 Programming basics

INTRODUCTION
In its simplest form a computer program can be seen as a list
of instructions that a computer has to work through in a logical
sequence in order to carry out a specifi c task. The instructions that
make up a program are all stored in memory on the computer along
with the data that is needed to make the program work.

Programs (also known as applications or apps) are created by writing
lines of code to carry out algorithms. An algorithm is the steps required
to perform a particular task and the programming code contains the
actual instructions written in a programming language. This language is
in itself an application that has been written by someone else to enable
you to write your own programs.

In the same way that there are lots of different languages you can learn
to speak, there are also lots of programming languages, and in the same
way that some languages have many different dialects, there are also
different versions of some of the more popular programming languages.

Another similarity with natural languages is that each programming
language has its own vocabulary and rules that defi ne how the words
must be put together. These rules are known as the syntax of the
language. The difference between learning a foreign (natural) language
and a computer language is that there are far fewer words to learn in a
computer language but the rules are much more rigid.

LEARNING OBJECTIVES
In this chapter you will learn:
• the basic principles of writing instructions in the form of

programming code
• what constants and variables are and how to use them
• what the main data types are
• how to store data using meaningful names.

SPECIFICATION COVERAGE
3.1.1.1 Data types

3.1.1.2 Programming concepts

3.1.1.6 Constants and variables in a programming language

3.5.1.2 Integers

KEYWORDS
Memory: the location where
instructions and data are stored
on the computer.
Algorithm: a sequence of
steps that can be followed to
complete a task and that always
terminates.
Syntax: the rules of how words
are used within a given language.

3

CO
N

STAN
TS AN

D
 VAR

IAB
LES

● Naming and storing data
In addition to instructions, the computer program also needs data to work
with. For example, to add two numbers together requires an add instruction
and then the two numbers that need to be added. You need to give these two
data items names so that the computer will know which data to use.

The data are stored in memory along with the instructions. You could view
memory rather like a series of pigeon-holes, each having a unique address,
known as a memory address.

It is a really good idea to use names that indicate the purpose of the
data – in the case of the example above the two numbers might be called
Number1 and Number2. Using meaningful names will help you when they
are trying to trace bugs and it also allows other programmers to follow the
code more easily. It is good practice to adopt a common naming convention.
In this case the first character in upper case and the rest in lower case.

This process of giving data values is called ‘assigning’, and it looks
something like these two:

Number1 23

Name "Derek"

The means ‘becomes’ or ‘equals’. Number1 is an example of a variable.
In the example above it has been given a value of 23, though this value
will change while the program is being run. Name is another example of a
variable and has been given the value "Derek".

Different programming languages have slightly different ways of assigning
values. For example, you may need to use the equals sign to make the
assignment in the code you are writing. So a simple algorithm to add two
numbers together might look like this:

Number1 = 2

Number2 = 3

Answer = Number1 + Number2

Figure 1.1 shows a simplified visualisation of how this program is handled.
There will be millions of memory addresses, of which just three are shown
in this diagram.

Memory address 1000 1001 1002

Number1Variable

2Data 3 5

Number2 Answer

Figure 1.1

● Constants and variables
Data are stored either as constants or as variables. Constants (as you’d
expect from the name) have values that are fixed for the duration of a
program. For example, if you were writing a program that converted miles
into kilometres you could set the conversion rate as a constant because it will
never change. In this case we could call the constant ConvertMilestoKm
and assign it a value of 1.6 as there are approximately 1.6 km to the mile.
Then whenever we want to convert a distance in miles to its metric equivalent
we would multiply it by the constant ConvertMilestoKm.

KEYWORD
Assignment: the process of
giving a value to a variable or
constant.

KEYWORD
Memory address: a specific
location in memory where
instructions or data are stored.

KEYWORDS
Constant: an item of data whose
value does not change.
Variable: an item of data whose
value could change while the
program is being run.

1
Pr

og
ra

m
m

in
g

ba
si

cs

4

Notice that the name given to the constant is self-explanatory. We could
have just called it Constant1. However, by giving it a meaningful name
it makes the code easier to work with as the program gets bigger. It also
makes it easier for anyone else that looks at the code, to work out what the
program is doing. This is important for three main reasons:
● It makes it easier to find and correct errors/bugs in code. This is called

debugging.
● There are many occasions where there are several programmers working

on the same program at the same time, so having a sensible naming
convention makes it easier for everyone to understand.

● It will be easier to update the code later on when further versions of the
program are created.

The value of variables can change as a program is being run. For example,
the same conversion program will require the user to type in the number
of miles they want to convert. This number will probably be different each
time the user enters data. Therefore, you need to have a variable that you
could call NumberOfMiles.

There are lots of other examples – the number of answers a pupil has got right
in a test would (hopefully) increase as they work their way through a test so the
data would have to be stored as a variable. The password a user uses to access a
network can be changed at any time, so it would also be classed as a variable.

Variable and constant declaration
Declaring a constant or variable means that when you are writing code you
describe (or declare) the variables and constants that you are going to use
before you actually use them in your program.

Some programming languages force you to declare the variables and
constants you intend to use in your program before you start writing any
code. The benefits of doing this are that it forces you to plan first and the
computer will quickly identify variables it does not recognise.

There are two parts to a declaration. You need to supply a suitable name
for the constant/variable and you need to specify the data type that will be
used. The declarations might look something like this:

Dimension Age As Integer

Dimension Name As String

Dimension WearsGlasses As Boolean

Dimension or Dim is one of the command words used in Visual Basic to
indicate that a variable is being declared. Once you have declared a variable
it starts with a default value. In the above examples Age will start as zero,
Name as nothing (also known as the empty string) and WearsGlasses
will start with the value False. Other languages may use different default
values so it is good practice to assign an initial value to the variable just to
make sure it is correct.

● Data types
It is important to consider how you want your program to handle data. For
example, to create the miles to kilometres conversion program, you have to
tell the program that miles and kilometres both need to be stored as numbers.

KEYWORD
Debug: the process of finding
and correcting errors in
programs.

KEYWORD
Declaration: the process of
defining variables and constants in
terms of their name and data type.

D
ATA TYPES

5

There are lots of data types you might need to use and you need to think
carefully about the best type to use. For example, if storing numbers, how
accurate do you need the number to be? Will a whole number be accurate
enough or will you need decimals? In addition to numbers, you will
probably want to store other data such as a person’s name, their date of
birth or their gender.

All programming languages offer a range of data types but the actual name
of the data type may vary from language to language. Here are some of the
most common data types:
● Integer: This is the mathematical name for any positive or negative

whole number. This might be used to store the number of cars sold
in a particular month or the number of pupils in a class. The range of
numbers that can be stored depends on how much memory is allocated.
For example, an integer in Visual Basic can store numbers between
–2 147 483 648 through to +2 147 483 647.
Declaring a number as an integer means that the program will then
handle the data accordingly. For example, 2 + 3 will equal 5. In some
languages, if you did not set it to integer 2 + 3 would equal 23 (two three).

● Real/Float: This is a number that has a fractional or decimal part, for
example 3.5 or 3 1_2 . In our miles to kilometres conversion program, you
would need to store both miles and kilometres using this data type as the
user might want to convert a number that is not a whole number. Other
examples might include a person’s height in metres or their weight in
kilograms.

● Text/String: This data type is used to store characters, which could be
text or numbers. For example, you could use this to store a person’s
name or address. Some programming languages refer to this data type as
alphanumeric because you can actually store any character you want in a
string whilst text implies it can only store letters. Text or string variables
are normally shown in quotation marks. For example you might assign
the name Frank to a variable like this: Name "Frank". House
numbers and phone numbers are often stored as text / string as although
they are numbers, you would never need to carry out any calculations on
them and in the case of telephone numbers the leading zero is important
and would be omitted if stored as a number.

● Boolean: The simplest data type is a simple yes/no or true/false. This
is called a Boolean data type. It is named after George Boole who
discovered the principles behind logic statements. Boolean data types
can be used to store any kind of data where there are two possible values.

● Character: This data type allows you to store an individual character,
which might be a letter, number or symbol. All computers have a defined
character set, which is the range of characters that it understands. This
would commonly be all the upper and lower case letters, plus other
keyboard characters and any special characters.

● Date/Time: This will store data in a format that is easily identifiable as
a date or time, e.g. 30.04.2014 or 12:30. The program will then handle
the data accordingly. For example, if you added 5 to the date, it would
tell you the date in five days’ time. 30.05.2014 + 5 would become
04.06.2015. If you did not declare it as a date you may get the wrong
answer, for example 30.05.2019.

● Pointer/Reference: This data type is used to store a value that will point to or
reference a location in the memory of the computer. If you think of memory

KEYWORD
Data type: determines what sort
of data are being stored and how
it will be handled by the program.

KEYWORD
Integer: any whole positive or
negative number including zero.

1
Pr

og
ra

m
m

in
g

ba
si

cs

6

as a series of pigeon-holes or addresses where instructions and data are
stored, the pointer/reference is used in a program to go to a specific address.
For example, you could set up a pointer called Pointer1 and put
address 1001 in it. The program would then go to memory address 1001
and take the data from it. In the example below it would be the data
assigned to Number2. Other lines of code will then be needed to tell the
program what to do with the data it finds there.
Figure 1.2 shows how a pointer is used to reference an item of data.

Memory address 1000 1001 1003

Number1

Pointer1 = 1001

Number2

1002

Add Answer

Figure 1.2

● Array: An array is a collection of data items of the same type. For
example, if you wanted to store a collection of names in a school register,
you could call this Register and each item of data would be stored
as text. Each individual name in the array is called an element. Every
element is numbered so that Register(2) would be the second person
in the array, Register(4) the fourth person and so on. Note that 0 is
often used as the first element of an array, rather than 1. If this was the
case then Register(2) would actually be the third person in the array,
Register(4) the fifth and so on.

Figure 1.3 shows a simple array with six elements. Register(2) =
Hussain, Register(4) = Schmidt (assuming array indexing
starts at 1).

● Records: This is used to store a collection of related data items, where
the items all have different data types. For example, you might set
up a record called Book, which is used to store the title, author
name and ISBN of a book. Title and Author are text whereas the
PublicationDate is set as a Date data type.

You could write it like this:

Book = Record
Title, Author As Text * 50
ISBN As Text * 13
PublicationDate As Date

When the program is run, every time data are entered for the book, the
user will type in up to 50 characters of text for the title and author and
then the ISBN. A variable could now be set up using this record data
type and this variable would contain all of this data.

● Built-in and user-defined data types
Built-in data types are those that are provided with the programming
language that you are using. The list of built-in types varies from language
to language, but all will include versions of the types listed above.

Most programming languages allow users to make up their own data types,
usually by combining existing data types together. These are simply called
user-defined data types. For example, if you were making a program to
store user names and IDs, you may create a user-defined data type called
Logon made up of a set number of characters and numbers.

Figure 1.3

Brown

Hussain

Koening

Schmidt

Torvill

West

KEYWORD
Pointer: a data item that
identifies a particular element in
a data structure – normally the
front or rear.

KEYWORDS
Array: a set of related data
items stored under a single
identifier. Can work on one or
more dimensions.
Element: an single value within a
set or list – also called a member.
Record: one line of a text file.

B
U

ILT-IN
 AN

D
 U

SER
-D

EFIN
ED

 D
ATA TYPES

7

Type Logon
 UserName As String * 10
 UserID As Integer * 5
End Type

This code will set a new data type called Logon, which will be made up
of a 10-character user name followed by a 5-digit user ID. In total, the data
type will have 15 characters/digits to store the data.

The reasons for creating user-defined types are mainly to do with efficiency.
As you start to write your own programs you will find that they can get
very long and complex and that debugging can be very time-consuming.
Most programmers try to make their code as organised and efficient as
possible as this will save them time as the program develops. For example,
it is easier to reuse a block of code rather than have to write it all over again.

Most programmers aim to create code that is ‘elegant’. This means that it
does exactly what it is supposed to do as efficiently as possible. Often this
means writing as few lines of code as possible with no repeated coding.

Using a user-defined data type is just one example of where it is possible to
be more efficient. With our example of storing Logon information using a
user-defined variable, because all the data are stored in one variable rather
than two, when the program needs this information, we only need to access
one variable rather than two.

Practice questions can be found at the end of the section on pages 46
and 47.

STUDY / RESEARCH TASKS
1 A list of data is also known as a one-dimensional array. Find out what

two- and three-dimensional arrays are and give examples of where
you might use each.

2 Identify the built-in data types for the main programming language
that is used in your school or college.

3 Research data types that are specifically used to store sound and
video data. How do they differ from other data types?

TASKS
1 Give two reasons why it is a good idea to use meaningful variable names.
2 Use examples to explain the difference between a constant and a

variable.
3 Why is it important to declare all variables and constants at the

beginning of a program?
4 Explain the difference between a value and a variable.
5 Suggest suitable data types and variable names for:

a) the current rate of VAT
b) today’s date
c) the total takings from a shop
d) a person’s date of birth
e) which wrist a person wears a watch on.

KEY POINTS
• Programming languages are

used to write applications
(apps).

• An algorithm is a sequence
of instructions that can be
followed to complete a task.
Algorithms always terminate.

• Programming code is
made up of algorithms that
are implemented within a
programming language.

• Instructions are stored in
memory along with the data
required by the program.

• Data are stored and named
according to certain
conventions.

• Variables and constants are
used to store data and must be
declared in some languages.

• There are several data
types built in to every
programming language and
the programmer can also
define their own.

8

● Sequencing
Sequencing instructions correctly is critical when programming. In simple
terms this means making sure that each line of code is executed in the right
order. For example, a DVD recorder may have a simple program to record a
TV channel at a certain time. The sequence of events would be:

Set time to record = 15:00

Set channel to record = Channel 4

Check time

If time = 15:00 Then Record

If any of these instructions were wrong, missed out or executed in the
wrong order, then the program would not work correctly.

2 Programming
concepts

LEARNING OBJECTIVES
In this chapter you will learn how to:
• put lines of code in the correct sequence
• write an assignment statement
• write a selection statement
• write an iterative (repeat) statement
• use loops.

INTRODUCTION
In simple terms, programming is just a case of writing a series
of instructions in order to complete a task. Depending on which
programming language you use, this is done in different ways.
However, there are certain constructs that are common to all high-
level languages. These building blocks of programming are sequence,
selection and repetition (also known as iteration). There is also a further
fundamental principle called assignment.

SPECIFICATION COVERAGE
3.1.1.2 Programming concepts

9

SELECTIO
N

The actual process of writing statements varies from one programming
language to another. This is because all languages use different syntax.
Common usage of the word syntax refers to the way that sentences are
structured to create well-formed sentences. For example, the sentence
‘Birds south fly in the winter’ is syntactically incorrect because the verb
needs to come after the noun. Programming languages work in the same
way and have certain rules that programmers need to stick to otherwise
the code will not work.

● Assignment
We met the concept of an assignment statement in Chapter 1. Assignment
gives a value to a variable or constant. For example you might be using a
variable called Age so the code:

Age 34

will set the variable Age to have the value 34.

The value stored in the variable could change as the program is run. For
example, a computer game might use a variable called Score. At the
beginning of the game the value is set to 0. Each time the player scores
a point, the assignment process takes place again to reset the value of
Score to 1 and so on.

Assigning values will take place over and over again while a program is
being run. Initially, the programmer will assign a value to the variable.
Then as the program runs, the algorithms in the program code will
calculate and then return (re-assign) the latest value. Assignments are the
fundamental building blocks of any computer program because they define
the data the program is going to be using.

● Selection
The selection process allows a computer to compare values and then
decide what course of action to take. For example you might want your
program to decide if someone is old enough to drive a car. The selection
process for this might look something like this:

If Age < 17 Then

Output = "Not old enough to drive"

Else

Output = "Old enough to drive"

End If

In this case, the computer is making a decision based on the value of the
variable Age. If the value of Age is less than 17 it will output the text
string "Not old enough to drive". For any other age it will output
the text string "Old enough to drive". The If statement is a very
common construct. In this case it is used to tell the program what to do
if the statement is true using the If...Then construct. If the statement
is false, it uses the Else part of the code. This is a very simple selection
statement with only two outcomes.

KEYWORD
Selection: the principle of
choosing what action to take
based on certain criteria.

KEYWORD
Syntax: the rules of how
words are used within a given
language.

 2
 P

ro
gr

am
m

in
g

co
nc

ep
ts

10

Nested selection
You can carry out more complex selections by using a nested statement.
For example, a program could be written to work out how much to charge
to send parcels of different weights. This could be achieved using the
following sequence of selection statements:

If Weight >= 2000 Then

Price = £10

Else If Weight >= 1500 Then

Price = £7.50

Else If Weight >= 1000 Then

Price = £5

Else

Price = £2.50

End If

When the weight is input, it works through the lines of code in the If
statement and returns the correct value. For example, if the parcel weighs
1700 g it will cost £7.50 as it is between 1500 g and 1999 g. If it weighed
2000 g or more, the If statement would return £10.

In some languages complex selections can be implemented using constructs
such as this Case statement. The following example shows a section of
code that allows the user to type in a country code to identify where a
parcel is being sent to:

Select Case ParcelDestination

Case 1

WriteLine ("Mainland UK")

Case 2

WriteLine ("Europe")

Case 3

WriteLine ("USA")

Case Else

WriteLine ("Rest of the World")

End Select

This routine takes the value of the variable ParcelDestination and
compares it against the different criteria. So if ParcelDestination is
1 then Mainland UK will be printed to the screen.

● Repetition (Iteration)
It is useful to be able to repeat a process in a program. This is usually called
iteration. For example you might want to count the number of words in
a block of text or you may want to keep a device moving forward until it
reaches a wall. Both these routines involve repeating something until a

KEYWORD
Nesting: placing one set of
instructions within another set
of instructions.

KEYWORD
Iteration: the principle of
repeating processes.

R
EPETITIO

N
 (ITER

ATIO
N

)

11

condition is met – either you run out of words to count or the device comes
to a wall. An iterative process has two parts – a pair of commands that show
the start and finish of the process to be repeated and some sort of condition.

There are two basic forms of iteration – definite and indefinite. Definite
iteration means that the instructions are repeated in a loop a certain number
of times. Indefinite iteration means that the instructions are repeated in a
loop until some other event stops it. Iteration statements are often referred to
as loops, as they go round and round. Let’s look at an example of each.

Definite iteration
If you want a process to be carried out a set number of times you will need
to use definite iteration. For example, the following code could be used to
operate a robotic device. It will move a device forward 40 units:

For Counter = 1 To 40

 Move forward 1 unit

Next

After it has moved forward 40 units it will stop. It will try and move
irrespective of whether it meets an obstacle or not. This is known as a
For...Next loop as it will carry out the instruction for a set number
of times.

Indefinite iteration
In this case the loop is repeated until a specified condition is met – so
it uses a selection process to decide whether or not to carry on (or even
whether to start) a process.

This routine moves a device forward until the sensor detects an obstacle:

Repeat

 Move forward 1 unit

Until Sensors locate an obstacle

Figure 2.1 Parking sensor

KEYWORDS
Definite iteration: a process that
repeats a set number of times.
Indefinite iteration: a process
that repeats until a certain
condition is met.
Loop: a repeated process.

 2
 P

ro
gr

am
m

in
g

co
nc

ep
ts

12

There is no way of knowing how many times this loop will be repeated so
potentially it could go on forever – a so-called infinite loop. This example is
also known as a Repeat...Until loop as it repeats the instruction until a
condition is met.

To check for a condition before the code is run, you can use what is
commonly called a While or Do while loop. For example, a program
that converts marks to grades might use the following line of code:

While Mark <=100

 Convert Mark to Grade

End While

In this case, it checks the condition before the code is run. If the mark is
over 100, then the code inside the While loop will not even start.

Nested loops
In the same way that you can nest selection statements together, it is also
possible to have a loop within a loop. For example, an algorithm to create
a web counter on a web page may have 8 digits allowing for numbers up to
10 million. Starting with the units, the program counts from 0 to 9. When
it reaches 9, it starts again from 0, but it also has to increment the value in
the tens column by 1. The units will move round 10 times before the tens,
then moves once. The tens column moves around 10 times and then the
hundreds increments by 1 and so on.

The same algorithm can therefore be used for each digit and can be nested
together so that the code is carried out in the correct sequence. The code
below shows a nested loop just for the units and tens:

Tens = 0

Units = 0

While Tens < 10

 While Units < 10

Output Tens and Units to web counter

Units = Units + 1

 End While

 Tens = Tens + 1

 Units = 0

End While

Notice that the way the code is indented indicates the sequence of events. This
shows that for every iteration of the outer loop, the inner loop will be completed.

Structures such as those mentioned in this chapter are one of the
characteristics of a high-level language. They are easy to understand when they
are viewed in isolation, but the problems start when you try to put a series of
constructs together to do something more useful than deciding if someone
is old enough to drive a car or to move a device forwards. In order to create
larger, more useful programs, you need to plan ahead and organise your code.

Practice questions can be found at the end of the section on pages
46 and 47.

KEYWORD
Sequence: the principle of putting
the correct instructions in the
right order within a program.

Figure 2.2 A web counter

82530000

Tens Units

R
EPETITIO

N
 (ITER

ATIO
N

)

13

STUDY / RESEARCH TASKS
1 Identify a real-life situation where it might be useful to use the

following constructs within a program:
a) iteration
b) selection.

2 Write a program that reads in a file of test marks and then converts
them to grades.

3 Write a program that works out the postage charges for parcels of
different weights.

4 Write a program that simulates the odometer on a car.

KEY POINTS
• Programming statements

are built up using four main
constructs: sequence,
selection, repetition (also
known as iteration) and
assignment.

• Sequence is putting the
instructions in the correct
order to perform a task.

• Selection statements
choose what action to take
based on specified criteria.
For example, If...Then
statements.

• Iteration is where a particular
step or steps are repeated
in order to achieve a certain
task. For example, For...
Next statements.

• Assignment is the process
of giving values to variables
and constants. For example,
Age = 25.

TASKS
1 Write examples of the three main types of programming statement:

assignment, selection, iteration.
2 Give two examples where an iterative process might be used.
3 Explain the difference between definite and indefinite iteration.
4 Explain the concept of a nested statement.
5 Why is the sequence of programming statements so important? Use

an example to explain.
6 What is syntax and why is it important? Use an example to explain.

14

3 Basic operations
in programming
languages

INTRODUCTION
There are a number of basic operations that you can perform on text and
numeric data when programming. These fall into four main categories:
arithmetic operations, relational operations, Boolean operations and string
handling. In this chapter all of these basic operations are explained with
simple examples to illustrate each. The examples are based on Visual Basic
and there is also a look-up table at the end the chapter to show these how
these basic operations could be implemented in Python and C#.

LEARNING OBJECTIVES
In this chapter you will learn:
• the correct syntax for writing basic programming code
• how to construct arithmetic operations, Boolean operations and

relational operations
• how to handle basic string operations
• how Visual Basic, Python and C# implement these operations.

When programming, the syntax for each operation will vary depending
on which language you are using. In practice, when creating full programs
you will be using many of these operations in combination to perform
particular tasks. In Sections Two and Three, you will see many of these
basic operations being used in context.

When programming, values are likely to come from a variable or constant,
or be generated as part of the program. For example, an assignment
statement that adds two numbers together may use three variables called
Answer, FirstNumber and SecondNumber:

Answer = FirstNumber + SecondNumber

5 = 3 + 2

SPECIFICATION COVERAGE
3.1.1.3 Arithmetic operations in a programming language

3.1.1.4 Relational operations in a programming language

3.1.1.5 Boolean operations in a programming language

3.1.1.7 String-handling operations in a programming language

3.1.1.8 Random number generation in a programming language

KEYWORD
Variable: a data item whose
value will change during the
execution of the program.

AR
ITH

M
ETIC O

PER
ATIO

N
S

15

Note that in some languages these operations can be carried out on
numeric values or text strings. For example:

txtAnswer = txtFirstVariable + txtSecondVariable

DavidSmith = David + Smith

This has implications for the programmer as you might expect a simple
addition of 2 + 2 to equal 4. However, 2 + 2 could also result in the answer
22 if the programmer has not defined the values as integers. This is one
reason why it is good practice to declare variables at the beginning of every
program, so that the program knows how to handle the data.

● Arithmetic operations
Most of these are the standard mathematical operations that you use every
day such as add, subtract, multiply and divide.
● Addition: The sum of two or more values. Example: 5 = 3 + 2 or
Answer = FirstNumber + SecondNumber.

● Subtraction: One value minus another. Example: 2 = 5 – 3 or
Answer = FirstNumber - SecondNumber.

● Multiplication: The product of two values. Example: 6 = 3 * 2 or
Answer = FirstNumber * SecondNumber.

● Division of real numbers: A real number is one with a fractional part so
may result in an answer with a fractional part. Example: 3.1 = 6.2/2 or
Answer = FirstNumber / SecondNumber (where all variables
have been declared as Real or Float).

● Division of integers: An integer is a whole number and therefore may
generate a number with a remainder. Example: 3r1 = 7/2 or Answer
= FirstNumber / SecondNumber (where all variables have been
declared as Integer). The DIV operation can also be used in the format
Answer = FirstNumber DIV SecondNumber in which case the
quotient and remainder are calculated simultaneously.

● Modulo operation: The modulo or MOD operator is used to divide one
number by another to find the remainder. Example: 1 = 7 MOD 2 or
Answer = FirstNumber MOD SecondNumber as 7/2 = 3r1.

● Exponentiation: Repeated multiplication of a base number in the form
Bn where B is the base number and n is the number of times to repeat
the multiplication. For example 24 is 2 × 2 × 2 × 2. Example: 16 = 2 ^ 4
or Answer = FirstNumber ^ SecondNumber.

● Rounding: Replacing the real value with a simpler representation that
is close to the original value. For example, 2.315432 becomes 2.3.
There are various methods for rounding within each programming
language such as rounding up and down, or rounding to a specific
number of decimal places. Example: 2 = Round(2.3) or Answer =
Round(FirstNumber).

● Truncating: Shortening a value by cutting it off after a certain number
of digits. It is the equivalent of rounding down. There are various
methods for truncating within each programming language. Example:
2 = Truncate (2.345) or Answer = Truncate(FirstNumber)
where FirstNumber is a decimal value.

● Random number generation: Creating a number to be used in a program
that is random. There are several methods of doing this. Often the
number is set to be generated between two fixed values. There are

KEYWORD
Arithmetic operation: common
expressions such as +, –, /, ×.

KEYWORDS
Rounding: reducing the number
of digits used to represent a
number while maintaining a
value that is approximately
equivalent.
Truncating: the process of
cutting off a number after a
certain number of characters or
decimal places.

16

3
Ba

si
c

op
er

at
io

ns
 in

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s

various methods within each programming language. For example:
0.123 = Rnd () or Answer = Rnd().
Random numbers are a very useful tool for programmers. Typical
applications include:
– Creating a range of test data to be used on a new program
– Producing data to use in computer simulations
– Creating random events and movements in computer games
– Selecting a random sample from a dataset.
However, as most random number generation techniques used
in programming languages start from a seed value and then use an
algorithm to create the random number, it means that the number
cannot be truly random as the algorithm used will produce an element
of structure to the results. Consequently, random numbers generated
by programming languages are often referred to as pseudo-random
numbers. This is perfectly adequate for the purposes listed above but in
other circumstances, such as encryption, this level of randomness would
not be sufficient.

● Relational operations
Relational operations work by making comparisons between two data
items. They consist of operands and operators where the operands are the
values and the operator is the comparison being made. For example, in
the operation A > B, A and B are the operands and > is the operator. Most
programming languages recognise the standard method for representing
these operators as shown in Table 3.1.

KEYWORDS
Random number generation:
a function that produces a
completely random number.
Pseudo-random number
generator: common in
programming languages, a
function that produces a random
number that is not 100% random.

KEYWORD
Relational operations:
expressions that compare
two values such as equal to or
greater than.

Relational operations are often performed in order to create selection
statements. For example: If A > 1 Then... means if A is 2 or more then
the next action is carried out. In common with all operations, the comparisons
could also be made between textual data as well as numerical data.

● Boolean operations
Boolean operations are those which result in either a TRUE or a FALSE
answer. Boolean algebra is used in logic circuits and is an underlying
principle to how modern computers work. It is also fundamental to the
process of searching data whether that is in a database, or on the web. Once
the Boolean operation has been evaluated, a further action is then taken. For
example, on a database search, a subset of data would be created containing
records that met the search criteria. The examples below are based on a
scenario where an online dataset is being searched to find a new car.

KEYWORD
Boolean operations:
expressions that result in a
TRUE or FALSE value.

Relational operator Sign

Equal to = or ==

Not equal to < > or !=

Less than <

Greater than >

Less than or equal to �

Greater than or equal to �

Table 3.1 Table of relational operators

STR
IN

G
-H

AN
D

LIN
G

 FU
N

CTIO
N

S

17

The four basic operations are:
● AND: This is known as a conjunction as it adds together the data. For

example, using the search phrase “Four Door AND Less than 3 years old”
would return a value of TRUE only if both conditions were met, so the
car would need to have four doors AND be less than 3 years old.

● OR: This is known as a disjunction, which means that a TRUE result is
produced if any of the conditions are met. For example, in the search
phrase “Four Door OR Three Door”, only one of the conditions needs to be
met to get a TRUE result, so all three- and four-door cars would be listed.

● NOT: This is known as a negation as it reverses the input. For example,
“NOT Ford” would result in data that did NOT contain the word Ford.

● XOR: This is known as an exclusive OR and means that a TRUE result
is produced when one or the other condition is met but not both. For
example, “Sunroof XOR Air conditioning” would result in data where
the car either had a sunroof or air conditioning, but not both. XOR
operations are used extensively when creating logic gates and there is
more on this in Chapter 30.

You may have noticed that it is possible to embed relational operators
within Boolean operations. For example, “Four Door AND Less than 3
years old” uses the less than operator. It is also possible to join lots of
Boolean operations together to produce the desired outcome. For example, a
very specific search might be: “Four Door AND Less than 3 years old AND
Ford OR Vauxhall NOT Fiat”.

● String-handling functions
At the beginning of the chapter we saw that it is possible to carry out
operations on numbers and text data. This section looks specifically at the
way in which text can be handled. To be more precise, this section looks
at how strings can be handled. A string is a sequence of characters and can
actually be made up of text, numbers and symbols. There are many situations
where you will need to work with strings to produce the desired outcome, for
example, searching for strings of characters or combining strings together.

KEYWORD
String-handling functions:
actions that can be carried out
on sequences of characters.

Figure 3.1 Venn diagrams to represent the four basic Boolean operations.

BA

AND

BA

OR

BA

XOR

BA

NOT

KEYWORDS
AND: Boolean operation that
outputs true if both inputs are
true.
OR: Boolean operation that
outputs true if either of its inputs
are true.
NOT: Boolean operation that
inverts the result so true
becomes false and false
becomes true.
XOR: Boolean operation that is
true if either input is true but not
if both inputs are true.

18

3
Ba

si
c

op
er

at
io

ns
 in

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s

● Length: The length of the string is how many characters are used to store
a particular item of data. The string length is often variable although
there is usually an upper limit placed on its size. There are various
operations that you can carry out using the string length. For example,
you may want to set the maximum length or calculate the length of a
particular string of data. For example: Dim LastName As String is
used to define a string data type and Len (Variable1) calculates the
length of data value stored in Variable1.

● Position: Within a text string it is possible to identify the position of
every character. This is useful when you want to extract particular
characters from the string or identify substrings within the data. There
are various operations that you can carry out. For example, to find the
start position of a particular string of characters within another string:
Txt = "JohnSmith22HighStreetLeicester"
AddressPosition = InStr(txt,"22HighStreet")
This would return a value of 10 in this example as that is the position
where the address data starts within the string being searched. This
assumes that the start position is 1. Some languages take the start
position as 0, in which case this would return a value of 9.

● Substring: A substring is a string contained within another string as shown
in the example above. Various techniques can be used to extract data from
anywhere in a string to create a substring providing the start and end
position are known or the start position and length are known. For example:
txt= "JohnSmith22HighStreetLeicester"
txtAddress = str.Substring (10,21)
This would create the substring “22HighStreetLeicester” and store it in a
variable called txtAddress. It does this by starting at position 10 of
the string and then extracting the next 21 characters.

● Concatenation: This is the process of adding strings together to create
another string. For example:
txtFirstName = "John"
txtLastName = "Smith"
txtFullName = txtFirstName + txtLastName
 This would create the value “JohnSmith” stored in a variable called
txtFullName.

● Character codes: Every character that you can use on a computer including
all the keyboard characters has a corresponding character code, which is
used to identify it. This might be an ASCII code or Unicode (see Chapter 26).
This can be used in various ways, for example, if you need to convert a text
value to a numeric value in order to carry out a calculation on it. You might
do this when encrypting data. For example:
 asc(Variable1) returns the ASCII code value of the value stored in
Variable1 where Variable1 is a text character.
 chr(Variable1) returns the text character where Variable1 is an
ASCII code.
 chrW(Variable1) returns the Unicode code value of Variable1
where Variable1 is a text character.

In addition to converting strings to character codes, there are a number
of other conversions that a programmer might need to do in order to
manipulate the data further. Most programming languages include specific
functions to carry out these conversions.

KEYWORD
Character code: a binary
representation of a particular
letter, number or special
character.

EXAM
PLES O

F CO
M

M
O

N
 O

PER
ATIO

N
S IN

 PYTH
O

N
 AN

D
 C#

19

● String to Integer / Integer to String: An integer is a whole number. Some
programming languages convert between the two automatically if the
two variables are declared correctly. For example:
Dim i as Integer
Dim s as String
i = 1
s = i
 This would result in s (a string) becoming 1 (an integer). The same code
could be used to reverse the process.

● String to Float / Float to String: A float is also called a real number and
is any number including those with a fractional part. In Visual Basic, a
function exists to carry out this conversion:
 Convert.ToDouble(x) will convert the text string x into a Double
data type, used by Visual Basic to store real numbers.
 Convert.ToString(n) will convert the real number n into a string.

● String to Date-time / Date-Time to String: Date-time is usually stored
with built-in formatting such as dd.mm.yyyy and hh:mm:ss. To
manipulate individual parts of the data, it can be converted into a string.
Most programming languages have built-in functions. For example, in
Visual Basic:
 DateTime.ToString(date) converts the date and time into a string
 String.ToDateTime(String) converts a string into date-time format.

● Examples of common operations
in Python and C#
Table 3.2 gives some examples of how these common operations can be
executed in both Python and C#. Note that there will be other ways of
implementing these operations based on the specific requirements of the
program being written.

You will notice that there are some commonalities between programming
languages and some operations that are handled completely differently.

20

3
Ba

si
c

op
er

at
io

ns
 in

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s

Table 3.2 Common operations in Python and C#

Operation or
function

Python example C# example

Add c = a + b c = a + b

Subtract c = a – b c = a – b

Multiply c = a * b c = a * b

Divide real number c = a / b c = a / b

Divide integer c = a//b Int c = a / b

Modulo c = a % b c = a % b

Exponentiation c = a ** b or exp(n) math.Pow (a,b)

Round round (x[,n]) math.Round()

Truncate round (x[, n])
Truncates according to the size input

math.Truncate (a, n)
Truncates the value of a to n places

Random number
generation

random() random()

Substring var1 = "JohnSmith"
print var1[0 : 4]
Prints “John”

string input = "JohnSmith"
string sub =
input.Substring (0, 4)
Returns the value “John”

Concatenation c = a + b c = a + b

Convert character to
character code

Chr() gives the character code value of the
character
Ord() gives the integer value of the
character

Encoding,ASCII,GetBytes () converts a
character to an ASCII code
convert.ToChar() converts an ASCII code to a
character

Convert string to integer int() converts a string to an integer
str() converts an integer to a string

.ToInt32 converts a string to a 32-bit integer

.ToString converts an integer to a string where
the variable before the dot is an integer

Convert string to date-time time.strftime(format[,t]) converts a
string into a time with a specified format

ConvertToDateTime(dateString) converts
date-time to string
DateTime.Parse() converts the string
contained in the brackets into a date-time format

Convert string to float float() converts string to float
str() converts float to string

.ToFloat converts a string to a float where the
value before the dot is a string
.ToString converts a float to a string where the
variable before the dot is an integer

Practice questions can be found at the end of the section on
pages 46 and 47.

EXAM
PLES O

F CO
M

M
O

N
 O

PER
ATIO

N
S IN

 PYTH
O

N
 AN

D
 C#

21

TASKS
1 Write an example of a calculation using each of the arithmetic operators.
2 What is the difference between a division of a real/float and the

division of an integer?
3 Most calculations will get their values from variables. Why are variables

used in programming rather than just typing the raw values?
4 Use examples to explain the difference between truncation and rounding.
5 Why might random numbers be used?
6 What is the difference between an OR statement and an XOR

statement? Give an example.
7 How can you create a substring from a string?
8 What formats can strings be converted into?
9 Why are random numbers generated in programming languages not

entirely random?

STUDY / RESEARCH TASKS
1 Write code for a calculator app that allows the user to enter one or

two numbers and then carry out all of the main arithmetic operations.
2 Write code for an app that allows the user to input two numbers and

then carry out each of the relational operators returning an output of
TRUE or FALSE.

3 Write code for an app that extracts the vowels from the alphabet.
4 Write code for an app that takes the numbers 1–10 and extracts them

into odd and even numbers.
5 Research how Google uses Boolean operators to create accurate

search results.
6 Is it possible to produce a completely random number?

KEY POINTS
• The syntax of a language

describes the rules that you
must follow.

• Arithmetic operations include
common processes such as
add, subtract, multiply and
divide.

• Other arithmetic operations
include rounding, truncating
and exponentiation.

• Most languages include a
random number generator.

• Relational operations
compare two or more values
to produce a result.

• Boolean operations return a
true or false value and include
AND, OR, NOT and XOR.

• Different types of operations
can be combined to create
more complex expressions.

• String handling is the process
of identifying and extracting
sequences of characters from
a string of characters.

22

4 Subroutines, local
and global variables

LEARNING OBJECTIVES
In this chapter you will learn:

• what a subroutine is and how they are used to create programs

• how to create subroutines

• what a function is and how to create them

• what parameters and arguments are and how they are used within
a function

• what local and global variables are.

A-level students will learn:

• what an exception is and how a program should deal with it.

INTRODUCTION
In programming a subroutine is a named block of programming code
that performs a specifi c task. All programs therefore are made up of a
series of subroutines. They provide structure to programs in the same
way that chapters provide structure to a book. Subroutines are also
called procedures, subprograms or routines.

Subroutines use variables that can either be local or global. Local
variables are those that can only be used within that subroutine
whereas global variables are accessible throughout the program.

SPECIFICATION COVERAGE
3.1.1.9 Exception handling

3.1.1.10 Subroutines (procedures/functions)

3.1.1.11 Parameters of subroutines

3.1.1.12 Returning a value/values from a subroutine

3.1.1.13 Local variables in subroutines

3.1.1.14 Global variables in a programming language

KEYWORDS
Subroutine: a named block of
code designed to carry out a
specific task.
Procedure: another term for a
subroutine.
Subprogram: another term for a
subroutine.
Routine: another term for a
subroutine.
Local variable: a variable that
is available only in specified
subroutines and functions.
Global variable: a variable that
is available anywhere in the
program.

SU
B

R
O

U
TIN

ES

23

● Subroutines
A subroutine is self-contained and it carries out one or more related
processes. These processes are sometimes called algorithms, which in turn
are made up of lines of code. Subroutines must be given unique identifiers
or names, which means that once they have been written they can be called
using their name at any time while the program is being run.

For example you may want to write a program to maintain the contents of
a file. You would need to write code to handle tasks such as adding a new
record, amending existing details and deleting an old record. In this case
you might have a subroutine to handle events that are generated from
a main menu and then each of the three tasks has its own subroutine.
For example if the variable Selected is set to Add then the procedure
AddRecord would be called.

Subroutine MainMenu

Input Selected

If Selected = "Add" Then Subroutine AddRecord

If Selected = "Amend" Then Subroutine AmendRecord

If Selected = "Delete" Then Subroutine DeleteRecord

End Subroutine

:

Subroutine AddRecord

‘Code to add a new record to a file

End Subroutine

:

Subroutine AmendRecord

‘Code to locate and amend an existing record

End Subroutine

:

Subroutine DeleteRecord

‘Code to delete an existing record

End Subroutine

Breaking up a program into manageable blocks like this has many benefits:
● They can be called at any time using the subroutine’s unique name.
● They allow you to gain an overview about how the program is put

together.
● You can use a top-down approach to develop the whole project.
● The program is easier to test and debug because each subroutine is self-

contained.
● Very large projects can be developed by more than one programmer.

Visual Basic forces you to work with subroutines. In Visual Basic as soon
as you try to write code that is connected to a control, Visual Basic creates
a subroutine for you. Object-oriented programming takes this concept

KEYWORD
Event: something that happens
when a program is being run.

 4

Su
br

ou
ti

ne
s,

 lo
ca

l a
nd

 g
lo

ba
l v

ar
ia

bl
es

24

one stage further by putting all the code and the relevant data in the same
module and the modules are put together to form the overall program. In
this context a module is one part of a program that may contain several
subroutines. See Chapter 6 for more details.

● Functions
Functions are similar to subroutines but return a value. For example, most
modern pocket calculators have a large range of functions. The most basic
are probably the square and square root keys. The idea is that you enter
a number, press the function key you want and the calculator gives you a
result based on that number.

A function in a computer program performs much the same task as the
buttons on a calculator. The user supplies the function with data and the
function returns a value. For example you could create a function that
calculates the volume of a cylinder – you supply the height and radius and
the function returns the volume.

This process is not limited to numeric data; for example, you could create
a function to count the number of times the letter ‘h’ occurs in a given
block of text, or to check to see if a file has read/write or read-only access
restrictions in place.

There are two benefits of using functions in a program:
● Some processes are very complex and involve many lines of code, but in the

end they produce a single result. Including all those lines of complex code
in the middle of your program will probably make it harder to understand,
so instead you could put the code in a function and put the function itself
somewhere else in the program, away from the main body of the program.
This also means that if you want to alter the function it is easier to find. It
also makes the main body of the code easier to work through.

● If you have to carry out the same process in lots of different places in
the program, then instead of having to rewrite the same code over and
over again, you would create the code once as a function and call it from
the various places through the program. This has the benefit of keeping
programs smaller, and if you need to alter the way the function works,
you only have to alter one version of it.

Functional programming is a method of programming that only uses
functions. There is more on this in Chapters 46 and 47.

● Parameters and arguments
In order for a subroutine or function to operate efficiently you need a way to
control the data that it takes in. This is usually done by using parameters
and arguments. A parameter works like a variable in that it identifies the
data that you want a subroutine to take in and use. The argument is the
actual value being passed to the subroutine.

The way that this is implemented varies depending on the programming
language being used. As the subroutine being called is external to the
current subroutine, there needs to be a mechanism for ensuring that the
program knows how to handle the subroutine that has been called. It does
this using a block interface, which is essentially a block of code that
specifies the type and characteristics of the data being passed.

KEYWORD
Module: a number of subroutines
that form part of a program.

KEYWORD
Function: a subroutine that
returns a value.

KEYWORD
Functional programming:
a programming paradigm
that uses functions to create
programs.

KEYWORDS
Parameter: data being passed
into a subroutine.
Argument: an item of data being
passed to a subroutine.

Block interface: code that
describes the data being passed
from one subroutine to another.

Figure 4.1 Function keys on a calculator

LO
CAL AN

D
 G

LO
B

AL VAR
IAB

LES

25

● Local and global variables
As we have seen, it is highly likely that your program will be split up into
lots of subroutines and functions. If you do this then you have to decide on
the scope of any variables created. This means you have to construct your
program in a way that either:
● limits the existence of the variable to the subroutine or function in which

it was declared – a local variable, or
● allows the variable to be used anywhere in the program – a global variable.

The value of a variable is constantly changing throughout the program and
as you have seen, values may be passed around between subroutines. If
the subroutine changes the value stored in the variable, this may be passed
back to the original subroutine or on to another subroutine. An important
aspect of programming is keeping track of the state of variables and one
of the main causes of program errors is when the value of a variable is
changed within one subroutine, that then has an impact on another
subroutine. This is known as a side effect.

It is good practice to use local variables wherever possible and using them
has a number of advantages:
● You cannot inadvertently change the value being stored somewhere else

in the program.
● You could use the same variable name in different sections, and each

could be treated as a separate variable.
● You free up memory as each time a local variable is finished with, it is

removed from memory.

You should only use a global variable where it needs to be available
throughout the whole program. For example, you might store the password
to a program as a global variable if you wanted to make a password
accessible to different sections of your code.

When programming, different syntax is required to indicate whether the
variable is local or global. For example in Visual Basic:
● Local variables are declared using the Dim statement:
Dim Age As Integer declares a local variable called Age.

● Global variables are described as public:
Public Password As Text declares a global variable called
Password.

In Python all variables are assumed to be local when they are defined. If
you want a variable to be global you must tell Python to make it global by
using the global keyword, which actually declares functions not local
variables.
● global Password creates a global variable called Password
● Password = "password" creates a local variable called Password.

In some programming languages if you declare a variable in your code and
it is not inside a subroutine or function, then it is assumed to be global.
Therefore you need to be careful when declaring variables. The following
extract of code shows how you might set Password as a global variable and
then other variables as local in Visual Basic:

 4

Su
br

ou
ti

ne
s,

 lo
ca

l a
nd

 g
lo

ba
l v

ar
ia

bl
es

26

Public Password As String

Private Sub CalculateMathsGrade

Dim Score As Integer

Dim Grade As String

If Score > 50 then

Grade = "Pass"

Else

Grade = "Fail"

End Sub

Private Sub CalculateEnglishGrade

Dim Score As Integer

Dim Grade As String

If Score > 50 then

Grade = "Pass"

Else

Grade = "Fail"

End sub

There are two subroutines: CalculateMathsGrade and
CalculateEnglishGrade. The variable Password is a global variable
and therefore is accessible from either of the two subroutines. The Score
and Grade variables are local to each subroutine. This means that although
they have the same names in both, they are actually different variables
containing different values, a bit like having two people called John Smith
with different characteristics.

● Exception handling
There are many situations where a subroutine has to stop because of an
exceptional circumstance that causes an error. This is not necessarily an
unexpected event, just one that causes the current subroutine to stop. An
example would be a division by 0 error, where the subroutine is expecting a
number, but instead gets an undefined value caused by the division. When
this happens, the subroutine has been ‘thrown’ an error, which it must deal
with. If it is unable to ‘catch’ the error, the program could produce a fatal
error, causing the program to stop running completely.

In the same way that subroutines are triggered by events, there need to
be blocks of code that handle errors that are triggered whenever the error
occurs. These are often referred to as catch blocks, which are specific blocks
of code that are triggered in response to specific errors.

The normal procedure when this happens is:
● an error is thrown so the current subroutine stops or is paused
● the current state of the subroutine is saved
● the exception handling code (or catch block) is executed to take care of

the error
● the normal subroutine can then be run again, picking up from where it

was saved.

KEYWORD
Exception handling: the process
of dealing with events that cause
the current subroutine to stop.

A level only

EXCEPTIO
N

 H
AN

D
LIN

G

27

Exception
unexpected

Exception
expected

Normal program flow

Exception handler

Exception

Fatal program error

Figure 4.2 The exception handling process

Practice questions can be found at the end of the section on pages
46 and 47.

TASKS
1 Define the following terms and explain the difference between the two:

a) subroutine b) function.
2 Give examples of in-built functions that you might find in a

programming language.
3 Why is it good practice to construct programs using subroutines?
4 What is the advantage of using functions?
5 Define the following terms and explain the difference between the two:

a) algorithm b) code.
6 What is a module and how does it differ from a subroutine?
7 Explain how parameters and arguments are used to pass values and

variables into subroutines.
8 What is a block interface?
9 Why is it good practice to use local variables whenever possible?

10 Give an example of where you might use a global variable.
11 Explain how an exception handler works.

STUDY / RESEARCH TASKS
1 Write a program that calculates the square and square root of any

given number. Try to include the following features:
a) a subroutine
b) a function
c) a subroutine or function call
d) a parameter or argument
e) a local variable
f) a global variable.

2 Extend your program to include other common mathematical functions.
3 Write a program that takes in a set of numbers and then calculates the

mean, median and range using either in-built or user-defined functions.
4 Find examples of typical events that would require exception handling code.

KEY POINTS
• Subroutines or procedures

are a way of breaking up code
into manageable blocks of
code, each of which performs
a specific task.

• Subroutines are likely to have
other related subroutines.

• Breaking a program up into
subroutines is beneficial
for several reasons, mainly
related to being easier to
manage and maintain the
program.

• A function is a type of
subroutine that returns a set
value, for example, the square
root function.

• Parameters and arguments
are the data that are passed
into the function on which it
performs its computations.

• Local variables can only be
used within the subroutine in
which they were created.

• Global variables can be used
anywhere in a program.

• Exception handling is the way
in which the program deals
with events that may cause it
to stop.

5 Structured
programming

LEARNING OBJECTIVES
In this chapter you will learn how to:
• use hierarchy/structure charts to plan the design for a program
• use fl owcharts to describe a system
• write pseudo-code and test it by dry running
• use sensible naming conventions for program components
• write well-structured commented code.

INTRODUCTION
As we have seen in the fi rst four chapters, there are lots of aspects to
consider when creating a program including:

• working out the main processes
• identifying the data that is needed and how it will be stored
• working through the calculations that will be carried out on the data
• deciding what type of statements are needed
• organising the code into subroutines to create a working program.

Time and effort spent on designing a computer program are always
well worth it, and good program design should result in a more effi cient
and error-free result. It will also make creating the code easier if you
plan ahead.

This chapter looks specifi cally at the techniques that can be applied
to procedural or imperative programming languages. These
languages use sequences of instructions in the form of algorithms
and subroutines as described in the previous chapter. A-level students
need to be aware of other paradigms including object-oriented and
functional programming languages. These are covered in Chapter 6
and Chapters 46 and 47 respectively.

SPECIFICATION COVERAGE
3.1.2.1 Structured programming

3.3.1.2 Design

KEYWORDS
Procedural programming
languages: languages where the
programmer specifies the steps
that must be carried out in order
to achieve a result.
Imperative programming
languages: languages based on
giving the computer commands
or procedures to follow.

28

29

FLOW
CH

AR
TS

● Hierarchy or structure charts
Hierarchy or structure charts use a top-down approach to explain
how a program is put together. Starting from the program name, the
programmer breaks the problem down into a series of steps.

Each step is then broken down into finer steps so that each successive
layer of steps shows the subroutines that make up the program in more
detail.

The overall hierarchy of a program might look like this:
● programs are made up of modules
● modules are made up of subroutines and functions
● subroutines and functions are made up of algorithms
● algorithms are made up of lines of code
● lines of code are made of up statements (instructions) and data.

We have come across all of these before apart from the module. In
larger programs a module is a self-contained part of the program that
can be worked on in isolation from all the other modules. This enables
different programmers to work independently on different parts of large
programs before they are put together at the end to create the program
as a whole.

The text in a hierarchy chart at each level consists of only a few words
– if you want more detail about what the process involves you need to
move further down the diagram. The component parts for each section
are organised from left to right to show how the system will work.

Figure 5.1 shows just part of a structure diagram of a program showing the
program at the top, the modules beneath that and so on.

Program

ProcessInputInitialise Output

Capture
form

ValidateEnter data

Figure 5.1 A simple hierarchy or structure chart

● Flowcharts
A flowchart uses a set of recognised symbols to show how the components
of a system or a process work together. Some of the more common symbols
are shown in Figure 5.2.

KEYWORDS
Hierarchy chart: a diagram that
shows the design of a system
from the top down.
Structure chart: similar to a
hierarchy chart with the addition
of showing how data are passed
around the system.
Top-down approach: when
designing systems it means
that you start at the top of the
process and work your way
down into smaller and smaller
sub-processes.

KEYWORD
Flowchart: a diagram using
standard symbols that describes
a process or system.

30

 5
 S

tr
uc

tu
re

d
pr

og
ra

m
m

in
g

A system flowchart shows the tasks to be completed, the files that will
be used and the hardware that will be needed but only as an overview.
It is normally possible to create just one flowchart that shows the whole
system, but this is not always a good idea as modern programs can be
very large and cramming every process on to one flowchart might make
it too complex to be of any real use. It might be more advantageous to
create a separate systems flowchart for each section of the project.

The systems flowchart in Figure 5.3 shows the first few processes that are
used when a person starts to use an ATM (Automated Teller Machine) at
a bank.

KEYWORD
System flowchart: a diagram
that shows individual processes
within a system.

ProcessStart/stop
Input/
output

Printed
outputDecision Disk

Tape
Connector

Figure 5.2 Flowchart symbols

Enter
PIN

Is
PIN correct

?

Display
menu

Read details
from chip

Display
error message

Put card
in

machine

Screen

Screen

N

Y

Figure 5.3 An example of system flowchart for an ATM

31

N
AM

IN
G

 CO
N

VEN
TIO

N
S

● Pseudo-code
So far we have looked at diagrammatic ways of organising a program, but
the code that a programmer creates does not use diagrams, it uses lines
of code.

Pseudo-code is a way of writing code without having to worry too
much about using the correct syntax or constructs. It consists of a series
of commands that show the purpose of the program without getting
bogged down with the intricacies of the chosen high-level language. The
programmer will need to convert the pseudo-code into high-level code at a
later date.

Pseudo-code is not a true programming language though it may well use
some of the constructs and language of a high-level language. There is only
one rule that needs to be adhered to if pseudo-code is to be of any use and
that is that the language used needs to be consistent. Using the command
‘Save to File’ in one place then ‘Write to File’ in another will only make the
job of converting to a true high-level language harder.

Pseudo-code can be used at many levels. The line:

Sort NameFile by surname

does exactly the same as these lines:

Repeat

 Compare adjacent values, swap if necessary

Until No more swaps are needed

It will be up to the programmer to decide how far down they need to break
their pseudo-code before they can start to actually write the code.

Pseudo-code is very useful in that it allows a programmer to sort out
the overall structure of the program as it will eventually appear. The
fact that it can be used at many levels means the programmer does
not have to work out all the fine detail from the start. The process of
turning pseudo-code into programming code is covered in more detail
in Chapter 17.

● Naming conventions
Adding variables to a program as you go along is a recipe for disaster
and it shows a serious lack of planning. Before you start your actual
code you should draw up a list of all the variables you intend to use,
including details of the data types and whether they are going to be local
or global variables.

KEYWORD
Pseudo-code: a method of
writing code that does not
require knowledge of a particular
programming language.

KEYWORD
Naming conventions: the
process of giving meaningful
names to subroutines, functions,
variables and other user-defined
features in a program.

32

 5
 S

tr
uc

tu
re

d
pr

og
ra

m
m

in
g

These are some variables that are being declared so they can be used in a
Visual Basic program:

Dim LoadFileName As String

Dim Counter As Integer

Dim AverageScore as Single

Dim RejectFlag As Boolean

Giving the variables, constants, modules, functions and subroutines in a
program meaningful names is good practice. It makes a lot more sense to
call a variable that stores the number of pupils in a group GroupSize than
to call it Size or C3.

In the same way that programmers should sort out the variables, they
should also draw up a list of the functions and subroutines they intend to
use along with details of what each will do, what it will be called, and what
parameters it will need to have assigned to it.

● Code layout and comments
The final step to good program construction is to use the features of the
programming language to make the code itself as programmer-friendly as
possible. This might include adding suitable comments, especially to more
complex or unusual sections of code, and using gaps and indents to show the
overall structure of a program. Indenting loops can help to identify where a
loop begins and ends. It also helps when you are trying to debug a program.

The following two sets of code do the same thing – they place the first 12
values from the two times table in an array.

This first example provides no support for the programmer at all.

For X = 1 To 12

W(X) = 2 * X

Next

This second example has made use of a number of features:

‘routine to place multiples of 2 in array TwoTimes()

For Count = 1 To 12

 ‘counter counts from 1-12

 TwoTimes(Count) = 2 * Count

 ‘result in array TwoTimes

Next Count

‘end loop

The helpful features are:
● comments to show the purpose of the algorithm itself
● comments to show the purpose of each line
● sensible variable names such as Count and TwoTimes
● the contents of the loop have been indented.

D
R

Y R
U

N
S AN

D
 TR

ACE TAB
LES

33

● Dry runs and trace tables
No matter how careful a programmer is, even the simplest programs are likely
to contain bugs. These come in a number of guises and some are trapped
when the program is compiled, and others are trapped by the operating
system. However some bugs can remain elusive and the programmer might
have to resort to dry running the appropriate section of code.

Dry running is the process of following code through on paper. The variables
that are used are written down in a trace table. Note that dry running can
be done on pseudo-code or actual programming code. It is useful to dry
run pseudo-code as any errors in the overall design of the algorithm can be
identified before too much time has been spent programming it.

This is a simple example of a dry run:

For Counter = 1 To 3

 If StoreName(Counter) > StoreName(Counter + 1)_
 Then

 TempName StoreName(Counter)

 StoreName(Counter) StoreName(Counter + 1)

 StoreName(Counter + 1) TempName

 End If

Next Counter

The array called StoreName has four elements. The initial values for
StoreName and the other variables are shown in the trace table below.

Counter TempName StoreName

<empty>0 Kevin Jane Beth Linda

1 2 3 4

The program is now dry run.
Counter is set to 1 and the contents of StoreName(1) are compared
with the contents of StoreName(2). Because “Kevin” is greater than
“Jane” (alphabetically speaking) TempName takes the value “Kevin”,
StoreName(1) takes the value “Jane” and finally StoreName(2) takes
the value held in TempName – “Kevin”.

Counter TempName StoreName

Kevin Jane Beth Linda

1 2 3 4

1 Kevin Jane Kevin

Counter now increments to 2 and StoreName(2) is compared to
StoreName(3). “Kevin” is greater than “Beth” so TempName becomes
“Kevin”. Even though TempName already contains “Kevin” it is important
to realise that this is overwritten by the same name.

Counter TempName StoreName

Kevin Jane Beth Linda

1 2 3 4

1 Kevin Jane Kevin

Kevin2 Kevin Beth

KEYWORDS
Dry run: the process of stepping
through each line of code to
see what will happen before the
program is run.

Trace table: a method of
recording the result of each
step that takes place when dry
running code.

34

 5
 S

tr
uc

tu
re

d
pr

og
ra

m
m

in
g

TASKS
1 Draw a systems flowchart that shows how the computer system at a

supermarket handles the sale of goods at the POS (point of sale terminal).
2 The customers at a supermarket have the option of paying for their

goods by credit or debit card. Draw a systems flowchart to show how
this process works.

3 A programmer might choose to use both a flowchart and pseudo-code
when developing a program. Describe the benefits and drawbacks of
using each of these systems.

4 High-level languages support ‘user-defined variable names’. Explain
what is meant by this term.

5 What steps can a programmer take to make the code they write easier
for another programmer to follow?

STUDY / RESEARCH TASKS
1 Why is it considered bad practice to use the GoTo statement when

programming?
2 An alternative programming paradigm to procedural languages

is logic programming, for example Prolog. In what way does this
paradigm differ and what are the implications for the way in which
programs might be designed?

3 ‘All programs can be structured using only decisions, sequences and
loops.’ Explain whether you think this is true.

4 In what way do Pascal, Algol and some other programming languages
enforce structured design?

Counter now increases to 3, and “Kevin” is compared to “Linda”. “Kevin”
is less than “Linda” so the program jumps to the End If statement.

Counter TempName StoreName

Kevin Jane Beth Linda

1 2 3 4

1 Kevin Jane Kevin

Kevin2 Kevin Beth

3

Counter has now reached the end value of the loop so the program moves
on to whatever comes next.

You have probably realised by now that this algorithm is part of a simple
sort routine. Whilst a program is being developed a programmer might
also use techniques such as single stepping, where the program is executed
one line a time. The programmer can see the values of the variables
being used and may choose to insert breakpoints. A breakpoint stops the
execution of a program either so the programmer can check the variables
at that point or possibly just to show that a program has executed a
particular section of code.

Practice questions can be found at the end of the section on
pages 46 and 47.

KEY POINTS
• Hierarchy or structure charts

use a top-down approach to
explain how a program is put
together.

• A flowchart uses a set of
recognised symbols to show
how the components of a
system or a process work
together.

• Pseudo-code is a way of writing
code without having to worry
too much about using the
correct syntax or constructs.

• All the variables you intend
to use including details of the
data types and whether they
are going to be local or global
variables should be identified
at the start.

• Good program construction
is to use the features of the
program to make the code
itself as programmer-friendly
as possible.

• Dry running is the process
of following code through on
paper. The variables that are
used are written down in a
trace table.

35

6 Object-oriented
programming concepts

SPECIFICATION COVERAGE
3.1.2.1 Programming paradigms

3.1.2.3 Object-oriented programming

LEARNING OBJECTIVES
In this chapter you will learn:
• the key principles and methods of object-oriented programming (OOP)

including encapsulation, inheritance, instantiation, polymorphism,
abstraction and overriding

• that OOP programs are made up of classes and objects
• that classes are a blueprint containing properties and methods
• that objects are instances of a class containing the same properties

and methods of the class
• how to create class diagrams.

INTRODUCTION
In Chapter 5 we looked at structure charts as a method of planning
and organising programs. This is a top-down approach that breaks
programs into modules, which in turn get broken down into subroutines
and functions. Object-oriented programming can be thought of as an
extension to this structured approach as it is entirely modular.

The key difference between procedural and object-oriented programming
is that in procedural programming, the lines of code and the data the
code operates on are stored separately. An object-oriented program
puts all the data and the processes that can be carried out on that data
together in one place called an object and allows restrictions to be placed
on how the data can be manipulated by the code.

The examples in this chapter are given in Python, but all of the languages
offered by AQA for the Paper 1 exam also support object-oriented
programming.

Object-oriented programming can be described as being organised in a
way that reflects the real world. For example, in real-life you may have an
object, such as a bank. Inside that object there are various other objects
such as customers and financial transactions. Inside each of those objects
there are a number of data items and behaviours. For example, there are

A level only

36

 6
 O

bj
ec

t-
or

ie
nt

ed
 p

ro
gr

am
m

in
g

co
nc

ep
ts

data about customers. These data are handled in a particular way and
therefore have to be processed accordingly. For example, one process
might be to add new customer data. Another process might be that money
withdrawn needs to be deducted from the balance.

In object-oriented programming, a banking application would be created
to mirror these real-life relationships. So there might be one object for
customers and another for transactions. The customer object will then
contain customer data and all the processes needed for that data.

There are a number of advantages to this approach:
● Programs are written in modules, which means that it is easy to amend

programs as only the effected module needs editing.
● It is also easier to add new functionality to a program by adding a new

module.
● Most programs are written by teams of programmers so the modular

design approach allows groups of programmers to work independently
on self-contained modules.

● Objects can inherit attributes and behaviours making code reusable
throughout the program.

● Changes carried out to data are made within an object rather than in
the program. This makes it less likely that changes made to code will
inadvertently affect the results of another routine, which is a common
cause of bugs in software programs.

● Libraries can be created enabling code to be reused easily.

● Encapsulation
The concept of keeping the data and the code within the same object is called
encapsulation. The code is known as methods, which are the subroutines
contained within an object that are designed to perform particular tasks on
the data within the object. This is the main concept behind object-oriented
languages meaning that the objects are self-contained. The implication of this
is that there are far fewer side-effects than with procedural languages. A side-
effect is where a subroutine changes the value of a variable which then has
implications for other parts of the program.

In theory this cannot happen in object-oriented programming as the data
can only be directly manipulated by the methods contained within the
object. This concept is sometimes called information hiding, which means
that the data are directly available in the object that actually needs to use it.
Code outside of the class can only access data through the defined methods.

Customer

Properties

Methods

Name
Address
Date of birth

Add new customer
Edit customer
Delete customer

Account

Account number
Balance

Check balance
Add interest

Figure 6.1 Classes containing properties and methods

Figure 6.1 shows two classes, Customer and Account, both containing
their own properties and methods.

KEYWORDS
Encapsulation: the concept of
putting properties, methods and
data in one object.
Method: the code or routines
contained within a class.

KEYWORD
Modular design:a method of
system design that breaks a
whole system down into smaller
units, or modules.

KEYWORD
Properties: the defining
features of an object or class in
terms of its data.

EN
CAPSU

LATIO
N

37

The two main building blocks of an object-oriented program are classes
and objects:

● A class is a blueprint or master copy that defines a related group
of things. It contains properties, which describe what the data are,
and methods, which describe the way in which the data can behave.
However, it does not store any data. Classes can be created based on
other classes.

● Objects are created from a class. Every object is defined as an instance of
a class so will have the same properties and methods from the class from
which it is built. It will also contain the data on which the methods will
be run.

In the banking example:
● A class might be called Account which defines the properties and

methods of a bank account.
● All accounts have similar properties such as an Account Number and
CurrentBalance.

● They also have the same methods – they can GetCurrentBalance,
AddInterest and so on.

● Each individual type of account would be a subclass of the Account
class and they would have all the properties and methods of the
class Account in addition to properties and methods of their own.
Subclasses are explained later in the chapter.

● For example, two subclasses based on the class Account may be
Current and Mortgage. They both share the properties and methods
from the Account class.

● Current Account will have its own specific properties, such as
Overdraft and PaymentMethods, which are only a feature of
current accounts. Similarly Mortgage will have its own specific
properties, such as EndDate, which are unique to it.

● Objects are created from the class (or subclass) and represent a particular
instance of that class. For example, an object created from the Current
class would be one person’s current account and will contain data about
that specific account.

● Any number of objects can be created from a class.

When designing object-oriented programs, you can see how important
it is to think carefully about the properties and methods of each object
and how these might be organised into classes. Classes are fundamental
to the design of object-oriented programs. Therefore they are stored
where they can be reused either in the future, or by programmers
working on other modules. The definitions of all classes are stored in a
class library.

The code below shows a class called Account being created in Python.
This is the base class:

class Account():

 def init (self, accountNumber, openingDate,
currentBalance, interestRate):

self.accountNumber = accountNumber

self.openingDate = openingDate

self.currentBalance = currentBalance

KEYWORDS
Class: defines the properties
and methods of a group of
similar objects.
Object: a specific instance of
a class.

38

 6
 O

bj
ec

t-
or

ie
nt

ed
 p

ro
gr

am
m

in
g

co
nc

ep
ts

self.interestRate = interestRate

 def getAccountNumber(self):

return self.accountNumber

 def getCurrentBalance(self):

return self.currentBalance

 def addInterest(self):

 interest = self.currentBalance * self.
interestRate

self.currentBalance += interest

 def setInterestRate(self, interestRate):

self.interestRate = interestRate

● Inheritance
Inheritance in object-oriented languages acts in a similar way to the
biological definition of inheritance. You start out with a set of characteristics
and add to what already exists. You can add or change features and abilities
but cannot delete them directly.

Taking the bank account example mentioned earlier you might start with
a base class called Account. This will have properties and methods. For
example the properties may be:

AccountNumber: String

DateOpened: Date

CurrentBalance: Currency

InterestRate: Real

When programmed, the properties become variables with an appropriate
data type assigned.

The methods may include:

AddInterest

GetCurrentBalance

GetInterestRate

When programmed the methods become the subroutines (procedures or
functions) required. In this case a procedure or function would be defined
to calculate the amount of interest to add to the account.

The properties and methods defined in the base class are common to all
types of account. For example, whether the account was a current account
or mortgage account it would still have the same properties and methods.
In addition, the other account types would have additional properties and
methods so these can now be set up as subclasses along with any properties
and methods that are unique to the subclass.

For example, the current account might have a new property Overdraft,
which indicates whether the customer has an overdraft set up on their
account. This is unique to current accounts so would not appear as a

KEYWORD
Inheritance: the concept that
properties and methods in one
class can be shared with a
subclass.

IN
H

ER
ITAN

CE

39

property on the mortgage account. A method to set the overdraft called
setOverdraft could be defined in the subclass.

The mortgage account might have a property called EndDate, which is the
date that the mortgage is paid off. This is not a property that you would
use in a current account so needs to be set up in the Mortgage subclass.
A method may be set up called GetEndDate to identify the date that the
last payment needs to be made.

This relationship between the classes and subclasses can be shown as an
inheritance diagram as in Figure 6.2. Note that the direction of arrows
shows the path of inheritance.

Inheritance produces a hierarchical structure. In this scenario, Account
could be described as a base class, super class or parent class, as it is the
main class from which other classes Current and Mortgage are created.
Classes that inherit from others are called subclasses, derived classes or
child classes. This example has been simplified to include just two types
of account, but the same principle can now be used to define further
subclasses. For example, subclasses could be defined for savings accounts,
trust fund accounts and so on.

class Current(Account):

 def init (self, accountNumber, openingDate,
currentBalance, interestRate, paymentType,
overdraft):

 Account. init (self, accountNumber,
openingDate, currentBalance, interestRate)

self.paymentType = paymentType

self.overdraft = overdraft

 def setPaymentType(self, paymentType):

self.paymentType = paymentType

 def setOverdraft(self, overdraft):

self.overdraft = overdraft

 def getOverdraft(self):

return self.overdraft

class Mortgage(Account):

 def init (self, accountNumber, openingDate,
currentBalance, interestRate, endDate):

 Account. init (self, accountNumber,
openingDate, currentBalance, interestRate)

self.endDate = endDate

 def getEndDate(self):

return self.endDate

 def setEndDate(self, endDate):

self.endDate = endDate

Figure 6.2 An inheritance diagram for
Account

Account

Current Mortgage

40

 6
 O

bj
ec

t-
or

ie
nt

ed
 p

ro
gr

am
m

in
g

co
nc

ep
ts

● Class diagrams for inheritance
Class diagrams are a standard method for representing classes, their
properties and methods and the relationship between the classes. There are
different ways of representing the relationships between the classes. This
section deals with inheritance:
● They are hierarchical in structure with the base class at the top and the

subclasses shown beneath.
● A subclass inherits the properties and methods of the base class.
● They use arrows to shows the direction of inheritance.
● Each class is represented with a box made up of three sections to include

the class name, properties and methods.

Name

Properties
Base class or Superclass

Subclasses

Methods

Name

Properties

Methods

Name

Properties

Methods

Figure 6.3 A basic class diagram

A class diagram for the account example might look like this:

Base class or Superclass

Subclasses
Or Derived Classes

Current

– PaymentType: String
– Overdraft: Boolean

+ setPaymentType
+ setOverdraft
+ getOverdraft

Mortgage

– EndDate: Date

+ getEndDate
+ setEndDate

– AccountNumber: String
– OpeningDate: Date
– CurrentBalance: Currency
– InterestRate: Real

+ getAccountNumber
+ getCurrentBalance
+ addInterest
+ setInterestRate

Account

Figure 6.4 A class diagram for Account

KEYWORD
Class diagrams: a way of
representing the relationship
between classes.

41

PO
LYM

O
R

PH
ISM

 AN
D

 OVER
R

ID
IN

G

The class diagram:

● Uses a + or – to indicate the visibility of the properties and methods to
other classes. + means that the properties and methods are public to all
classes. – means that the properties and methods are private and can
only be used in that class.

● Uses a # to indicate that the properties and methods are protected so they
can be used in that class and any of its subclasses.

● Uses arrows with the arrow pointing to the base class to show where the
subclass is inheriting its properties and methods from.

● Defines the data types to be used for each variable.

● Instantiation
Instantiation is the process of creating an object from a class. In other
words, you are creating an actual instance of an object using the properties
and methods described in the class. With the Account example, an object
could be created from the class Account, which is a specific customer’s
current account. Many different objects can be created from the same class
so the programmer will need to go through the process of instantiation for
every object needed in the program.

When programming, there is a subroutine called a constructor, which is
called when an object is instantiated from a class to initialise the object.

new_account = Account(41344987, date.today(), 374.34,
0.032)

● Polymorphism and overriding
The literal meaning of polymorphism is to take on many shapes. In
object-oriented programming it describes a situation where a method
inherited from a base class can be redefined and used in different ways
depending on the data in the subclass that inherited it.

It is related to the hierarchy of classes and the way in which classes inherit
properties from other classes. For example, there may be a common
method that you want to carry out as part of your program. As this method
is critical to the program, it could be defined in a base class, which is then
inherited by other classes. However, the data contained in these new classes
is perhaps of a different type. Rather than have to define a new method,
polymorphism enables the original method to be redefined so that it will
work with the new data.

For example, we could define a method that worked out the interest
payment on an account. This method would be stored in the base class
Account. It would then be inherited by the Current and Mortgage
subclasses. The data needed to calculate interest might be different, for
example, a current account may have a higher rate of interest, or use a
different time period over which to calculate the payment. Each subclass
would define a different method to calculate the interest, but these would
have the same name as the calculate interest method in the base class.

KEYWORD
Instantiation: the process of
creating an object from a class.

KEYWORD
Polymorphism: the ability of
different types of data to be
manipulated with the same
method.

42

 6
 O

bj
ec

t-
or

ie
nt

ed
 p

ro
gr

am
m

in
g

co
nc

ep
ts

When the subclass implements the method it is called overriding because
it overrides (or replaces) the method in the base class. In this example, the
method for calculating interest is overridden for the Current object:

 # new method added to the Current class overriding
the addInterest method in the Account class

 def addInterest(self):

 # if the account has an overdraft, interest is
charged on the debt at 5%

 if self.overdraft:

charges = self.currentBalance * 0.05

self.currentBalance += charges

 # otherwise interest is applied in the same way
as the superclass (Account)

else:

Account.addInterest(self)

● Abstract, virtual and static methods
Object-oriented languages handle objects in three different ways. You
can think of the code inside an object as subroutines, which are a series
of instructions that it will carry out on the data. Due to the nature of the
relationships between objects and classes, it means that methods in one
object may be used on data contained within another object.

In order to define the behaviour of the methods, they can be set up in three
different ways:
● Static: the method can be used without an object of the class being

instantiated.
● Virtual: the method is defined in the base class but can be overridden

by the method in the subclass where it will be used. This is a feature of
polymorphism.

● Abstract: the actual method is not supplied in the base class, which
means that it must be provided in the subclass. In this case, the object is
being used as an interface between the method and the data.

Which one you use depends on the nature of the methods and the data
contained within the class and at what point you want the method to run.

● Aggregation
Aggregation is a method of creating new objects that contain existing
objects, based on the way in which objects are related. Object-oriented
programming is concerned with recreating real-life objects as programming
objects. In real life, objects are related to each other. For example, in a
business you might have an object called Workforce and another called
Job Roles. Under Workforce there may be further objects called
Manager and Employee. All of these objects exist in their own right, but
there is also relationship between them. For example:

KEYWORD
Overriding: where a method
described in the subclass takes
precedence over a method with
the same name in the base class.

D
ESIG

N
 PR

IN
CIPLES

43

● Managers and employees make up the workforce.
● Job roles can be taken on by managers or employees.
● Job roles define what the managers and employees do as part of the

workforce.

Composition aggregation
Workforce is made up of Manager and Employee. If you deleted
Workforce you would by definition be deleting Manager and
Employee. This is an example of composition aggregation, sometimes
just called composition and it is where one object is composed (or made
up of) two or more existing objects. You could say that Workforce is
instantiated (created) when Manager and Employee are combined.

This can be shown as a class diagram as follows. Notice the shape of the
arrow head, which indicates that Manager and Employee cannot exist
unless Workforce does.

Workforce

Manager Employee

Figure 6.5 Class diagram showing composition aggregation

Association aggregation
You could now extend the Workforce object to include a Job Role object.
There is a relationship between Manager, Employee and Job Role in
that the managers and employees all have specific job roles that they carry
out. However, if you deleted Job Role, the Manager and Employee
object would still be retained and still be usable objects as would the
Workforce object. This is due to the nature of the relationship in the
real world in that a job role is not fixed and therefore any manager or
employee could be given any job role. This is an example of association
aggregation where an object is made up of one or more objects but is not
entirely dependent on those objects for its own existence.

This can be shown as a class diagram as follows. Notice the shape of the
arrow head, which indicates that Manager and Employee can still exist
even if Job Role does not.

Job Role

Manager Employee

Figure 6.6 Class diagram showing association aggregation

● Design principles
There are three key design principles that are recognised as producing the
most elegant solution when programming using an object-oriented language.
● Encapsulate what varies: This is related to the concepts of encapsulation

and information-hiding and the basic concept is that everything that varies
should be put into its own class. This means that properties and methods are
subdivided into as many classes as needed to reflect the real-life scenario.

KEYWORD
Composition aggregation:
creating an object that contains
other objects, and will cease to
exist if the containing object is
destroyed.

KEYWORD
Association aggregation:
creating an object that contains
other objects, which can
continue to exist even if the
containing object is destroyed.

44

 6
 O

bj
ec

t-
or

ie
nt

ed
 p

ro
gr

am
m

in
g

co
nc

ep
ts

For example, with our accounts program we could have an Account
base class followed by Current, and Mortgage subclasses and we
could stop at that. However, further analysis would suggest that you
could create a subclass under Current for different types of current
account such as Standard, Premium, Student and Child as these
types of account may have properties and methods that are unique to
them. You would continue with this process until you were sure that you
had created a class for each unique set of properties and methods.

● Favour composition over inheritance: This principle refers to the way in
which classes and objects are instantiated (created). As we have seen objects
can be created from a base class and inherit its properties and methods. The
alternative is to use aggregation or composition to combine existing objects
to make new ones. This method is less error prone and enables simpler
maintenance. For example, with reference to the Workforce example,
rather than creating a new instance for Workforce we only need to create
Manager and Employee and can then combine the two. Providing
Manager and Employee are created correctly, then there should be
no errors in Workforce. Similarly any changes made to Manager or
Employee will be reflected in Workforce.

● Program to interfaces, not implementation: In object-oriented
programming an interface defines methods to be used, which are then
applied when classes are defined. In this sense an interface is an abstract
type which is implemented when a class is created. When a class is
created that adheres to the methods in the interface, it can be seen as
an implementation of the interface. With our accounts example, being
able to calculate interest and check the balance were two methods that
all accounts must have regardless of the exact class they are in so these
would be required by the interface. The way in which these operations
are carried out would be defined within any class that wanted to use the
interface. The interface ensures that they must be defined.
Programs can then be written based on the interfaces rather than each
individual implementation of a class. Using this methodology, if classes need
to be added to or amended, this can be done with reference to the interface,
meaning there will be little or no impact on the other classes in the program.
Practice questions can be found at the end of the section on
pages 46 and 47.

 TASKS
 1 In what way does object-oriented programming reflect the way things

work in real life?
 2 Using a real-life example, define the following terms explaining the

relationship between the three:
a) class
b) object
c) inheritance.

 3 Using the same real-life example, explain what properties and
methods are.

 4 Draw a class diagram for your real-life example.
 5 How does encapsulation prevent side effects?
 6 What are the two main ways to instantiate an object?

D
ESIG

N
 PR

IN
CIPLES

45

 7 Explain the difference between static, abstract and virtual methods.

 8 Explain the difference between composition aggregation and
association aggregation.

 9 What are polymorphism and overriding?
10 What is an interface in the context of object-oriented programming?
11 Explain the three main design principles for effective design.

 STUDY / RESEARCH TASKS
1 For your real-life example above, use an object-oriented programming

language to implement a solution. Include the following features:
• objects created using abstract, virtual and static methods
• inheritance
• aggregation
• polymorphism
• public, private and protected specifiers.

KEY POINTS
• Object-oriented programming can be described as being organised in

a way that reflects the real-world.
• An object-oriented program puts all the data and the processes

(methods) that can be carried out on that data in one place called an
object.

• The concept of keeping the data and the code within the same object
is called encapsulation.

• Class diagrams are a standard method for representing classes, their
properties and methods and the relationship between the classes.

• Inheritance in object-oriented languages acts in a similar way to the
biological definition of inheritance.

• Instantiation is the process of creating a real instance of a class,
which is an object.

• Polymorphism describes a situation where a method inherited from a
base class can be used in different ways depending on the data in the
subclass that inherited it.

• When the subclass implements the method it is called overriding
because it overrides (or replaces) the method in the subclass.

• Aggregation is a method of creating objects that contain other sorts of
object.

46

Se
ct

io
n

O
ne

: P
ra

ct
ic

e
Q

ue
st

io
ns

Section One: Practice questions
 1 The following code is part of a stock control system.

Dim Name As String

Dim Price As Real

Const VAT = 0.2

Type RecordDetails

 RecordType As String * 14

RecordCurrent As Integer

RecordRestock As Integer

End Type

a) Identify where each of the following have been used, and explain why the type of the variable chosen
is appropriate:
i) a variable that is used to store a whole number
ii) a variable that is used to store a decimal number.

b) Why has a constant been used to store VAT?
c) Some computer languages support ‘user-defi ned types’. Explain this term and give an example of a

user-defi ned variable in the code.

 2 A program has been written to analyse the results of a survey. For each of the following, name a suitable
data type and give a reason for your choice:
a) the number of pets owned by a household
b) a telephone number such as 0122453322
c) whether a household’s accommodation has central heating or not
d) the average number of children within a household.

 3 It is considered poor design to define an Age field when storing personal details. Describe a better way
of storing this data.

 4 What values can a Boolean expression take?

 5 The following section of pseudo-code is used to add and remove data in a queue.
‘routine to add to a circular queue
‘increment Rear pointer
 Rear ← Rear + 1
‘Check to see if end of array has been reached
‘If so go back to the start of the array
 If Rear = 9 Then Rear ← 0
‘add data

Put DataItem at position Rear in array
‘routine to remove data from a circular queue
‘remove data

Take DataItem from position Front in array
‘move Front on
 Front ← Front + 1
‘Check to see if the end of the array has been reached
‘If so go back to the start of the array

 If Front = 9 Then Front ← 0

47

Section O
ne: Practice questions

a) State a line of code that has a comment in it.
b) State a line of code that is an assignment statement.
c) State a conditional statement that has been used.
d) An array contains the characters E, C and F, with the front pointer on E (at index 0 in the array) and the

rear pointer on F (at index 2 in the array). Dry run the code above, showing what would happen if the
characters A, D and G were added to the queue.

e) Why is it good practice to create programs in modules?

 6 Write a program to implement the pseudo-code in question 5.

 7 Explain what techniques programmers can use to assist with the
design of a piece of software and how they can make their program
code easy to follow.

 8 Look at the following section of code and then answer the questions.
For Loop1 = 1 To NameCount - 1
 For Loop2 = 1 To NameCount - 1
 If NameStore(Loop2) > NameStore(Loop2 + 1) Then
 TempStore = NameStore(Loop2)
 NameStore(Loop2) = NameStore(Loop2 + 1)
 NameStore(Loop2 + 1) = TempStore
 End If
 Next
 Next
a) Name two different data types that are being used.
b) What is the purpose of the first line of code?
c) What is the purpose of the second line of code?
d) What is this algorithm doing?

 9 Explain the difference between local and global variables.

10 An object-orientated programming language will be used to create a system related to animals.
a) Suggest suitable properties and methods for a base class.
b) Suggest two further subclasses that could be built from the base class.
c) Explain the difference between an object and a class.
d) Draw a class diagram to show your answers to parts a and b.
e) Give one example of inheritance in this example.
f) Explain how an object can be instantiated.
g) Give one example of where you may need to use overriding.

Section Two:
Fundamentals of data
structures

 7

D
at

a
st

ru
ct

ur
es

 a
nd

 a
bs

tr
ac

t d
at

a
ty

pe
s

50

7 Data structures and
abstract data types

INTRODUCTION
There is a difference between what is required for AS and A level here
and this chapter has been split accordingly. AS-level students need only
study to the end of the section on binary fi les. A-level students need to be
aware of a much wider range of data structures and abstract data types
and also understand how to implement them in a programming language:
• Chapters 7–11 explain the data structures required for A level,

including coding on how to implement them.
• Chapters 12–16 cover some common algorithms required for A level,

including how to implement the abstract data types described in
Chapters 7–11.

In Chapter 1 we looked at the different ways individual items of data
might be stored. For example, we looked at storing a person’s age as
an integer and their name as a string. These are known as data types.
In this chapter we will look at the ways of storing larger volumes of
data in formats that make it easy for programs and users to access and
analyse. These are called data structures and abstract data types.

LEARNING OBJECTIVES
In this chapter you will learn:
• what data structures and abstract data types are
• what an array is and how to use one to store and access data
• what a fi le is and how it is used to store data
• the difference between text fi les and binary fi les
• how to read and write data to and from csv and binary fi les.

A-level students will learn:
• what static and dynamic data structures are
• the different characteristics of static and dynamic data structures.

SPECIFICATION COVERAGE
3.2.1.1 Data structures

3.2.1.2 Single- and multi-dimensional arrays (or equivalent)

3.2.1.3 Fields, records and fi les

3.2.1.4 Abstract data types/data structures

KEYWORDS
Data structure: a common
format for storing large volumes
of related data, which is an
implementation of an abstract
data type.
Abstract data type: a conceptual
model of how data can be stored
and the operations that can be
carried out on the data.

51

AR
R

AYS

● Data structure and abstract data type
A data structure is any method used to store data in an organised and
accessible format. Data structures normally contain data that are related
and the way that the data are organised enables different programs to
manipulate them in different ways. Different data structures tend to lend
themselves to different types of applications. For example, a text file
may be suitable for a database whereas a stack is suitable for handling
exceptions.

An abstract data type is a conceptual model of how the data are stored and
the operations that can be performed upon them. The data structure is an
implementation of this in a particular programming language.

● Arrays
We came across the concept of an array in Chapter 1. An array is a list or
table of data that has a variable name that identifies the list or table. Each
item in the table is called an element. An array can have many dimensions
but most arrays are either one-dimensional in which case they form a list or
can be visualised as a two-dimensional table.

Lists and arrays are static data structures that are created by the
programmer to store tables of data. In some programming languages
programmers need to define just how big an array is going to be at the start
of their program. This means that the size of the array and the amount of
memory put aside for it does not change.

You might find that you want to store a sequence of data in some way. For
example you might want to store the names of pupils in a class:

Name1 = "Derrick"

Name2 = "Peter"

Name3 = "Jill"

Name4 = "Lynn"

Carrying out any sort of work even on just these four names is going to be
very cumbersome. Imagine how difficult this would be if you wanted to
store 30 names or 3000 names. The best solution to this problem is to use
an array. In the example above, we could call the array StudentName.
Each element of the array can now be accessed using its position. For
example, the third element in the array is Jill (assuming indexing starts at 1
and not 0). This would be shown as: StudentName(3) = "Jill"

Another example could be to set up a one-dimensional array called
DaysInMonth. The third element would be set to 31 as that is the number
of days in March. As this table contains just one row of data it could also be
described as a list.

Element in
DaysInMonth

Contents of
that element

1

31

2

28

3

31

4

30

5

31

6

30

7

31

8

31

9

30

10

31

11

30

12

31

Figure 7.1 A one-dimensional array or list

KEYWORD
File: a collection of related data.

KEYWORD
Array: a set of related data
items stored under a single
identifier. Can work on one or
more dimensions.

52

 7
 D

at
a

st
ru

ct
ur

es
 a

nd
 a

bs
tr

ac
t d

at
a

ty
pe

s

An array has one or more dimensions – for example you might want to
store the mock exam results of a group of pupils. The array then might be
called Results and it would have two dimensions, one for the pupils and
the other for the subjects and might look something like this:

1

2

3

4

5

1 2 3 4 5 6 7

54 67 76 65 75 32 19

32 45 98 32 53

59 95

26

7112 32 54 56

32 21

47 65

12 43

35 99

22 16

14 88

82 4115

Figure 7.2 A two-dimensional array

You will note that the rows/columns are not labelled – it is up to the
programmer to remember which axis refers to the pupil and which to
the subject. In this diagram the 65 might represent the mark obtained by
Hilary in the French exam. If the table were called Results then Hilary’s
French mark would be stored in Results(4, 1) where the 4 identifies
the pupil and the 1 identifies the subject.

It is possible to work with multi-dimensional arrays. If you take the mock
exam paper array further, you might decide to store the exam results for
each exam paper. In this case the value in Results(4, 1, 2) could store
the mark Hilary got in the second paper of the French exam.

In fact you can have many more dimensions than this – a four-dimensional
array might store the marks gained for each question in each paper, so
Results(4, 1, 2, 12) might store the mark Hilary was given for
question 12 in paper 2 of the French mocks. As you add more and more
dimensions to the array it becomes increasingly difficult to conceptualise.

● Files
You will already be familiar with the concept of a file to store data. There
are hundreds of different file types, all of which have their own structure
depending on the specific use of the file. Some files are very specific in that
they can only be used on certain applications. Many file formats however
are portable, which means they can be used in a wide range of programs.
Two common portable formats that can be used when programming are
text files and binary files.

A text file is one that simply contains lines of text or other human-readable
characters, where each line is usually referred to as a record. There may be
different items of data stored and these are referred to as fields.

They may contain a header, which explains the content and structure of
the file and an end of file (EOF) marker so that the programs using the file
know when to stop. Common text file formats include txt used for non-
formatted or plain text and csv (comma separated variables), both of which
are used for transferring data between programs.

All files have an internal structure. For example, a csv file has fields that
are split up using commas. Most text files are delimited like this in some
way so that when the file is being used, the program knows where to look
for each item of data in the file. The following examples show a typical

KEYWORDS
Text file: a file that contains
human-readable characters.
Binary file: stores data as
sequences of 0s and 1s.
Record: one line of a text file.
Field: an item of data.

FILES

53

structure where each row represents a record and the fields are separated
either by tabs or commas:

A tab-delimited text (txt) file:

John Smith 22 Acacia Avenue LE11 1AA

Mary Jones 1 High Street LE12 5BD

Imran Siddiqi 12 Harrow Road LE13 1GG

Yin Li 24 Royal Road LE1 1AA

A comma separate variable (csv):

John,Smith,22 Acacia Avenue,LE11 1AA

Mary,Jones,1 High Street,LE12 5BD

Imran,Siddiqi,12 Harrow Road,LE13 1GG

Yin,Li,24 Royal Road,LE1 1AA

The two main actions you might want to carry out when working with text
files are:
● to write data from the program into a text file
● to read data into the program from a text file.

The following extract of Visual Basic-based code shows how you would
write data to a text file. In this case, data is being written from a two-
dimensional array called ArrayStore:

FileOpen(1, "NewTable.csv", OpenMode.Output)

‘ look at each row/record in turn

For RecordCount = 1 to 30

 ‘ load first field from the next record into
the temporary string

 RecordString = ArrayStore(recordcount,1)

 ‘ concatenate all the other fields

 For FieldCount = 2 To 4

 Recordstring = recordstring & "," & Arraystore
(Recordcount,fieldcount)

 Next

 ‘ write ‘record’ to file

 Print(1, OutputString)

Next

FileClose(1)

The following extract of code shows how you would read data from a text
file into a program using Visual Basic as an example:

‘load csv file from folder

FileOpen(1, "C:\Users\NameList.csv", OpenMode.Input)

Do

54

 7
 D

at
a

st
ru

ct
ur

es
 a

nd
 a

bs
tr

ac
t d

at
a

ty
pe

s

 grdTableIn.Rows.Add(1)

 grdTableOut.Rows.Add(1)

 Input(1, DownLoadText)

 grdTableIn.Rows(RowCount).Cells(0).Value =
DownLoadText & RowCount

 RowCount = RowCount + 1

Loop Until EOF(1)

FileClose(1)

● Binary files
A binary file is one that stores data as a series of 0s and 1s. Binary
representation is one of the cornerstones of how computers work and is
covered in detail in Chapter 25. At this stage it is important to understand
that all program code and all of the data that you might use in a program
including text, graphics and sound are all made up of 0s and 1s. These are
usually organised into groups of 8 bits, called bytes.

Binary files contain binary codes and usually contain some header
information that describes what these represent. As you can see from
Figure 7.3, binary files are not easily readable by a human, but can quickly
be interpreted by a program.

11101111 10111011 10111111 00111100 01101110 01101111 01100100 01100101
00100000 01101001 01100100 00111101 00100010 00110001 00110000 00110111
00110000 00100010 00100000 01110110 01100101 01110010 01110011 01101001
01101111 01101110 00111101 00100010 01100101 01100010 01100011 00110111
01100010 01100011 01100001 00110001 00101101 00110011 01100001 01100110
01100010 00101101 00110100 01100001 01100001 00110001 00101101 00111001
01100001 00110100 01100101 00101101 01100110 01100100 00110000 01100100
00110110 00110011 00110110 00110011 01100011 01100010 01100011 00110111
00100010 00100000 01110000 01100001 01110010 01100101 01101110 01110100
01001001 01000100 00111101 00100010 00101101 00110001 00100010 00100000
01101100 01100101 01110110 01100101 01101100 00111101 00100010 00110001
00100010 00100000 01110111 01110010 01101001 01110100 01100101 01110010
01001001 01000100 00111101 00100010 00110000 00100010 00100000 01100011
01110010 01100101 01100001 01110100 01101111 01110010 01001001 01000100
00111101 00100010 00110000 00100010 00100000 01101110 01101111 01100100
01100101 01010100 01111001 01110000 01100101 00111101 00100010 00110001
00110000 00110101 00110110 00100010 00100000 01110100 01100101 01101101
01110000 01101100 01100001 01110100 01100101 00111101 00100010 00110001
00110000 00110100 00110010 00100010 00100000 01110011 01101111 01110010
01110100 01001111 01110010 01100100 01100101 01110010 00111101 00100010
00110010 00100010 00100000 01100011 01110010 01100101 01100001 01110100
01100101 01000100 01100001 01110100 01100101 00111101 00100010 00110010
00110000 00110000 00110111 00101101 00110000 00110100 00101101 00110010
00110101 01010100 00110001 00111000 00111010 00110010 00111000 00111010
00110010 00110110 00100010 00100000 01110101 01110000 01100100 01100001
01110100 01100101 01000100 01100001 01110100 01100101 00111101 00100010

Figure 7.3 Output from a binary fi le

For example, the PNG image file is a binary file, can be used in a range
of applications and requires less memory than some other image formats.
Many program files (executables) are created as binary files so that they can
be used on other platforms.

The two main actions you might want to carry out when working with
binary files are:
● to write data from the program into a binary file
● to read data into the program from a binary file.

STATIC AN
D

 D
YN

AM
IC D

ATA STR
U

CTU
R

ES

55

The following code shows how you would write data to a binary file:

OpenFile ("DemoFile.bin", Binary) For Output as # 1

Write 1, "Help"

Write 1, True

Write 1, 3.123

Write 1, 5

Close #1

The following code shows how you would read data from a binary file into
a program:

Dim TTData as Binary

Open "TTFile" For Binary As #2

 ReDim TTData(1 To LOF(2)) As Byte

 Get 2, 1, TTData

Close #2

● Static and dynamic data
structures
The way that data can be stored can be split into two broad categories –
dynamic and static. This reflects the fact that sometimes the programmer
will know how big a data structure will get and therefore how much
memory is needed to store it. More often than not, the amount of data
stored within a data structure will vary while the program is being run.
Different data structures such as queues and stacks can be implemented
either as static or dynamic structures.
● Static: A static data structure stores a set amount of data which

is usually defined by the programmer. This is done by allocating a
set amount of memory to the data structure. Accessing individual
elements of data within a static structure is very quick as their
memory location is fixed. However, the data structure will take
up memory even if it doesn’t need it. Records and some arrays are
examples of static data structures.

● Dynamic: The word ‘dynamic’ means changeable. Dynamic data
structures can use more or less memory as needed through the
use of a heap. In basic terms, unused blocks of memory are placed
on a heap, which are then usable within a program. A dynamic data
structure is able to take more memory off the heap if it is needed
and also put blocks of unused memory back onto the heap if it is not
needed. This is a much more efficient use of resources and a more
flexible solution as elements can be added and removed much more
easily. Stacks, queues and binary trees are often implemented as
dynamic structures.

The programmer will normally put a limit on the maximum amount of
memory that any one data structure needs. However, it can lead to errors if
elements are removed from empty structures or added to full ones. There is
more on this in the following chapters.

A level only

KEYWORDS
Queue: a data structure where
the first item added is the first
item removed.
Stack: a data structure where
the last item added is the first
item removed.
Static data structure: a method
of storing data where the
amount of data stored (and
memory used to store it) is fixed.
Dynamic data structure: a
method of storing data where
the amount of data stored (and
memory used to store it) will
vary as the program is being run.
Heap: a pool of unused memory
that can be allocated to a
dynamic data structure.

56

 7
 D

at
a

st
ru

ct
ur

es
 a

nd
 a

bs
tr

ac
t d

at
a

ty
pe

s

KEY POINTS
• A data structure is any

method used to store data in
an organised and accessible
format.

• An abstract data type is a
conceptual model of how
data are organised and the
operations on them.

• An array is a data structure
that contains data of the same
type using a single identifier.

• A one-dimensional array is
also known as a list.

• Arrays can be multi-
dimensional.

• Files are used to store data.
• A text file is one that simply

contains lines of text or other
human-readable characters.

• A binary file is one that stores
data as a series of 0s and 1s.

• Static data structures store
a set amount of data which
is usually defined by the
programmer.

• Dynamic data structures can
use more or less memory as
needed through the use of a
heap.

STUDY / RESEARCH TASKS
1 Write code that will:

a) write data to a text file / read data from a text file
b) write data to a binary file / read data from a binary file.

2 Write code that will:
a) create an array
b) read data from an array.

3 Find out how a stack is used to manage a memory heap.
4 PNG is a common binary format. Find out about other commonly used

binary files.
5 Why might programmers create executable files as binary files?

TASKS
1 How can you access each element in an array?
2 Explain how you could use an array to keep track of personal best

times for the members of an athletic club. Your solution may require
several dimensions.

3 Explain the terms file, record and field in relation to data structures.
4 What are the typical uses of text files?
5 What are the typical uses of binary files?
6 Identify two examples of:

a) dynamic data structures
b) static data structures.

7 Identify two advantages of using dynamic data structures.
8 Identify two disadvantages of using dynamic data structures.
9 Why are stack and queues considered to be dynamic data structures?

Static data structures Dynamic data structures
Inefficient as memory is allocated that
may not be needed.

Efficient as the amount of memory
varies as needed.

Fast access to each element of data as
the memory location is fixed when the
program is written.

Slower access to each element as the
memory location is allocated at run-
time.

Memory addresses allocated will be
contiguous so quicker to access.

Memory addresses allocated may be
fragmented so slower to access.

Structures are a fixed size, making
them more predictable to work with.
For example, they can contain a header.

Structures vary in size so there needs to
be a mechanism for knowing the size of
the current structure.

The relationship between different
elements of data does not change.

The relationship between different
elements of data will change as the
program is run.

Table 7.1 Comparison of static and dynamic data structures

Practice questions can be found at the end of the section on page 90.

57

8 Queues and stacks

INTRODUCTION
Queues and stacks are both examples of abstract data types that could
be implemented as dynamic or static data structures. They are also
abstract data types, which means that they do not normally exist as
built-in data types but need to be created by the programmer using
existing data types. For example, a stack might be built from an array.
This chapter looks at the standard uses of stacks and queues and how
to implement and work with them.

LEARNING OBJECTIVES
In this chapter you will learn:
• how stacks and queues work and what they are used for
• the difference between a circular queue, linear queue and priority

queue
• how to write code to implement stacks and queues
• how to use nesting and recursion when implementing a stack.

SPECIFICATION COVERAGE
3.2.1.4 Abstract data types/data structures

3.2.2 Queues

3.2.3 Stacks

● How stacks work
A stack is an example of a LIFO (last in first out) structure that means that
the last item of data added is the first to be removed. A stack in a computer
works in exactly the same way as a stack of books waiting to be marked or
a stack of dishes waiting to be washed up – whichever item was added to
the top of the stack last will be the first one to be dealt with.

However, unlike the washing up where items are literally taken off the stack
as they are needed, the data in a computer stack is not actually removed.
What happens is that a variable called the stack pointer keeps track of
where the top of the stack is.

KEYWORDS
Stack: a LIFO structure where
the last item of data added is the
first to leave.
LIFO: last in first out refers to a
data structure such as a stack
where the last item of data
entered is the first item of data
to leave.

A level only

58

 8
 Q

ue
ue

s a
nd

 st
ac

ks

The process of adding a new item of data to the stack is called pushing
and taking an item off the stack is called popping. A further action called
peeking is used to identify the top of a stack. When an item is pushed onto
the stack the stack pointer moves up and when an item is popped off the
stack the pointer moves down, but a copy of the data is still left on the stack.

Here is a simplified example of a stack in use. Note that this stack can only
store six data items.

Bert

Cynthia

Cedric

Albert

Stack pointer

The stack pointer is used to show where the top of the stack is.

Linda

Bert

Cynthia

Cedric

Albert

Stack pointer

“Linda” has been pushed to the top of the stack so the pointer moves up.

Bert

Cynthia

Cedric

Albert

Stack pointer

The stack is popped so the data at the pointer (“Linda”) is read and the
pointer moves down.

It is possible for the stack to need more memory than has been allocated to
it. In the example given above, assuming that the stack had been set up as
a static data structure, if the CPU tried to push on three more data items,
the last one would have nowhere to go. In this case a stack overflow error
would occur. Similarly if the stack was empty and the CPU tried to pop
an item, this would result in a stack underflow as there is no data to be
popped.

KEYWORD
Pointer: a data item that
identifies a particular element in
a data structure – normally the
front or rear.

59

U
SES O

F STACK
S

● Implementing a stack
In the following two routines a single-dimension array called StackArray
has been used to represent the stack. The variable StackPointer is
being used to keep track of how far up or down the stack the pointer
should be and StackMaximum stores the maximum number of values
that can be stored on the stack.

‘routine to push on to a stack

‘check there is room on the stack

If StackPointer < StackMaximum Then

‘push on to the stack

StackPointer StackPointer + 1

StackArray(StackPointer) DataItem

Else

Error message "Data not saved – stack full"

End If

The error trap carries out an important task. The stack will only be
allocated a limited number of memory locations, which in this case is kept
in the variable StackMaximum. If the error routine was not there the
stack would overflow – there would be too much data to store in it.

This routine shows how an item can be popped off a stack. Notice that the
first line will trap an underflow error:

‘Routine to pop off a stack

‘check the stack is not empty

If StackPointer > 0 Then

 ‘pop off the stack

 DataItem StackArray(StackPointer)

 ‘decrease stack pointer

 StackPointer StackPointer – 1

Else

 Error message "There is no data to pop from the
stack"

End If

● Uses of stacks
There are many uses for stacks. Due to their LIFO nature they can be used
anywhere where you want the last data item in to be the first one out. A simple
application would be to reverse the contents of a list as shown below:

Mark WendyJaneAndrew

1 2 3 4

60

 8
 Q

ue
ue

s a
nd

 st
ac

ks

The list above would go into the stack as follow:

Wendy

Mark

Jane

Andrew

If you now pull the names off the stack in order you would get:

Jane Andrew

1 2 3 4

Wendy Mark

Stack frames
Stacks can be used to store information about a running program. In this
case it is known as a stack frame and a pointer will be used to identify
the start point of the frame. This is used as a call stack when running
programs as it can be used when a subroutine is running to call functions
and pass parameters and arguments.

Function call and
argument data

The function is called and data passed to it.
The return address is placed on the stack so that
when the function is finished, it will look at the
return address so it knows where to go back to.

The subroutine is running using local variables.
When a function is called, the current position is
saved in the stack as a saved frame pointer.

Return address

Saved frame pointer

This is the same mechanism that is used for handling interrupts and
exceptions in programs. Interrupts and exceptions are events where
hardware or software demand the attention of the processor and cause the
current program to stop. This could be something happening inside the
program that is running or it could be an external event, such as a power
failure, or a printer running out of paper.

When this happens, special blocks of code called interrupt handlers and
exceptions handlers are loaded into memory and executed. Whilst the new
demand is being dealt with, the details of the first program are stored on a
stack. As soon as the interrupt or exception has been dealt with, the details are
taken back off the stack and the first program can carry on wherever it left off.

Nesting and recursion
It is common practice to nest program constructs. For example, you might
want to put one selection process inside another, or you might have a
selection process being carried out inside an iterative loop. In this case the
details of the successive nested loops are stored on the stack.

For HourCounter = 0 To 23

 For MinuteCounter = 0 To 59

 For SecondCounter = 0 to 59

Output Hour , Minute , Second

KEYWORDS
Stack frame: a collection of data
about a subroutine call.
Call stack: a special type of
stack used to store information
about active subroutines and
functions within a program.

KEYWORDS
Nesting: the process of putting
one statement inside another
statement.
Recursion: the process of a
subroutine calling itself.

KEYWORD
Interrupt: a signal sent by
a device or program to the
processor requesting its
attention.

Q
U

EU
ES

61

 Next SecondCounter

 Next MinuteCounter

Next HourCounter

This pseudo-clock won’t keep very good time, but it does show how For/
Next loops can be nested inside each other.

Stacks also play a vital role in a process called recursion. This is where a
subroutine calls itself in order to complete a task.

● Queues
A queue is called a FIFO (first in first out) structure. A queue in a
computer acts just like people queuing for a bus – the first person in the
queue is going to be the first person to get on the bus and the first item of
data to be put into the queue in a computer will be the first to be taken out.

A common use of queues is when a peripheral such as a hard disk or a
keyboard is sending data to the CPU. It might be that the CPU is not in a
position to deal with the data straight away, so they are temporarily stored
in a queue. Data being sent from the CPU might also need to be stored,
and this is certainly the case when a document is sent to a printer. In this
case your document is placed in the queue until the printer (which is a
very slow device compared to the CPU) has the time to deal with the job.
Queues that are used in this way are also known as buffers.

Here is a simplified example of how a queue is used. This queue can only
store six data items.

Cedric AlbertCynthiaBert

Front
pointer

Rear
pointer

The queue has already been sent four data items, but none has yet been
removed. The first item in the queue is “Bert” indicated by the front pointer.
The last item in the queue is “Albert” indicated by the rear pointer.

When an item is added to the queue it is added at the end. If a new item
(“Linda”) is added, notice that the rear pointer has moved and now points
to the new item “Linda”. The front pointer has not moved.

Cedric Albert LindaCynthiaBert

Front
pointer

Rear
pointer

When a name is taken from the queue it is taken from the front. In this case
“Bert” is removed from the queue and the pointer moves to the next item in
the queue. The rear pointer does not move.

Cedric Albert LindaCynthia

Front
pointer

Rear
pointer

KEYWORDS
Queue: a FIFO structure where
data leaves in the order it
arrives.
FIFO: first in first out refers to a
data structure such as a queue
where the first item of data
entered is the first item of data
to leave.

62

 8
 Q

ue
ue

s a
nd

 st
ac

ks

Linear, circular and priority queues
The examples above show a linear queue, that is, where you can envisage
the data in a line. The first item in is the first item out. The maximum size
of the queue is fixed in this case, although it could be dynamic. A typical
method for storing data in a queue is to use a one-dimensional array.

A circular queue can be envisaged as a fixed-size ring where the back of
the queue is connected to the front. This is often referred to as a circular
buffer. As with a linear queue, it is the pointers that move rather than the
data. However, with a circular queue the first items of data can be seen as
being next to the last item of data in the queue.

A common implementation is for buffering, when items of data need to be
stored temporarily while they are waiting to be passed to/from a device.

543

3

15

24
21

Front Rear

Rear Front

Figure 8.1 Linear and circular queues

A priority queue adds a further element to the queue which is the priority
of each item. For example, if documents are being sent to print on a network
printer then it might be possible for the user or systems manager to control
the queue in some way. They may be able to force print jobs to the top of the
queue or to put print jobs on hold whilst others are pushed through. This is
known as a ‘priority’ queue and requires the programmer to assign priority
ratings to different jobs. Higher priority jobs are effectively able to jump
the queue. Where two jobs have the same priority, they will be handled
according to their position in the queue.

Implementing a linear queue
A queue is typically made up of a number of data items of the same type.
Therefore, a common implementation is to use an array. To demonstrate the
principle, this example shows a queue with a fixed size of nine elements.
There are currently five items in the queue and FP shows the front pointer
and RP shows the rear pointer.

2

Carly

3

Daphne

4

Erica

5 6 7 81

Belinda

0

Alice

FP RP

Note that it is possible for the queue to become empty or full as data is
added and removed, and that not every element has to have data in it.
Therefore, when the queue is implemented we need to know:
● the name of the array
● the maximum size of the queue
● whether the queue is full or empty
● where the front of the queue is
● where the rear of the queue is.

KEYWORD
Priority queue: a variation of a
FIFO structure where some data
may leave out of sequence where
it has a higher priority than other
data items.

KEYWORDS
Linear queue: a FIFO structure
organised as a line of data, such
as a list.
Circular queue: a FIFO data
structure implemented as a
ring where the front and rear
pointers can wrap around from
the end to the start of the array.

Q
U

EU
ES

63

Assuming that element 0 is the front of the queue and element 4 is the rear,
when an item is removed, the queue will then look like this:

2

Carly

3

Daphne

4

Erica

5 6 7 81

Belinda

0

FP RP

The front pointer has moved +1 so that the front is now pointing at
element 1. The rear pointer does not change so remains on position 4.

Any item of data added to the queue is added to the rear. In this case it
would be added in position 5 as this is the next available position. For
example, if we add “Beth”:

2

Carly

3

Daphne

4

Erica

5

Beth

6 7 81

Belinda

0

FP RP

The front pointer is now on position 1 and the rear pointer is on position 5.
Items can now be added and removed with the front and rear pointers moving
accordingly. For example, if we removed the next two elements and added a
new name “Jessica”, the queue would look like this:

2 3

Daphne

4

Erica

5

Beth

6

Jessica

7 810

FP RP

The front pointer will have moved forward to position 3 and the rear
pointer will have moved to position 6.

Eventually, if data items keep being added, the rear pointer will reach the end
of the array and there will be no more room in the array to add new elements,
despite some earlier locations in the array being empty because elements have
been removed from the front of the queue. The simplest way to deal with this
is to always keep the front pointer pointing at index 0 in the array, and to move
elements forward in the array each time an item is removed. This method is
simple, but it can be quite time consuming to move the elements along in the
array, especially if the queue is a long one. Therefore a more efficient method
of dealing with this problem, known as a circular queue, is more common.

Implementing a circular queue
A circular queue works in a similar way to a linear queue except the front and
rear pointers move when an item is added or removed, making more efficient
use of memory. For example, in the linear queue above, items 1, 2 and 3 have
all been removed. However, there is no way of adding items into those empty
elements in the array as the front pointer has moved to element 3.

The circular queue makes use of the spaces that are freed up at the front
of a queue after they have been removed. It does this by wrapping the
rear pointer around the array starting again at element 0 once the queue
becomes full. If we start with the same queue as before, the front pointer
is 0 and the rear pointer is 4.

2

Carly

3

Daphne

4

Erica

5 6 7 81

Belinda

0

Alice

FP RP

64

 8
 Q

ue
ue

s a
nd

 st
ac

ks

If two items are removed, the queue will then look like this:

2

Carly

3

Daphne

4

Erica

5 6 7 810

FP RP

Four new items are now added to the queue: “Jane”, “Davina”, “Yvonne “and
“Kelly”. Notice that the rear pointer is now on 8.

2

Carly

3

Daphne

4

Erica

5

Jane

6

Davina

7

Yvonne

8

Kelly

10

FP RP

As this is a circular queue, the rear pointer can now wrap back around to
the beginning. If a further item is added, the rear pointer would move to
position 0 as this free. To add “Maria”:

2

Carly

3

Daphne

4

Erica

5

Jane

6

Davina

7

Yvonne

8

Kelly

10

Maria

FPRP

In the following pseudo-code the variable Rear is used to point to the
end of the queue and Front is used to point to the start of the queue.
The pseudo-code does not deal with the situations of the queue being
either empty or full.

The code for adding a new item to a nine-element queue looks something
like this:

‘routine to add to a circular queue

‘increment Rear pointer

Rear Rear + 1

‘Check to see if end of array has been reached

‘If so go back to the start of the array

If Rear = 9 Then Rear 0

‘add data

Put DataItem at position Rear in array

The code for taking an item from the front of the queue might look like this:

‘routine to remove data from a circular queue

‘remove data

Take DataItem from position Front in array

‘move Front on

Front Front + 1

‘Check to see if the end of the array has been
reached

‘If so go back to the start of the array

If Front = 9 Then Front 0

Q
U

EU
ES

65

Implementing a priority queue
A priority queue can also be implemented using an array by assigning a
value to each element to indicate the priority. Items of data with the highest
priority are dealt with first. Where the priority is the same, then the items
are dealt with on a FIFO basis like a normal queue.

There are two possible solutions using an array. One option is to use a
standard queue where items are added in the usual way at the end of the
queue. When items are removed, each element in the array is checked for
its priority to identify the next item to be removed. Where this method is
used, adding data is straightforward but removing it is more complex.

Starting with the same queue, this time a priority is included shown here in
subscript and assuming that 1 is highest priority.

2

Carly2

3

Daphne3

4

Erica4

5 6 7 81

Belinda1

0

Alice2

FP RP

If an item is added, it is simply added with its priority at the end and the
rear pointer is moved. If “Jane” were added with a priority of 1:

2

Carly2

3

Daphne3

4

Erica4

5

Jane1

6 7 81

Belinda1

0

Alice2

FP RP

When data is removed, it is done so in order of priority. There are two
items with a priority of 1. In this case, “Belinda” would be removed first as
she is closest to the front of the queue. “Jane” would be the next item to be
removed. In this example it shows how the principle of FIFO is still being
used as “Belinda” entered the queue before “Jane”.

An alternative is to maintain the queue in priority order, which means that
when a new item is added, it is put into the correct position in the queue.
Removing items can then be done in the usual way by taking the item
at the front of the queue. Where this method is used, removing data is
straightforward but adding it is more complex.

Working on the same list, this time the names would be in priority order.
To remove the next item is just a case of removing the item at the front of
the queue.

2

Carly2

3

Daphne3

4

Erica4

5 6 7 81

Alice2

0

Belinda1

FP RP

Therefore the first item to be removed would be “Belinda” as she has the
highest priority:

2

Carly2

3

Daphne3

4

Erica4

5 6 7 81

Alice2

0

FP RP

66

 8
 Q

ue
ue

s a
nd

 st
ac

ks

If a new item is added, it will be put into the correct position based on its
priority. Where it has the same priority it will be added after the existing
items of the same priority. For example, if “Yvonne” is added with a priority
of 1:

2

Alice2

3

Carly2

4

Daphne3

5

Erica4

6 7 81

Yvonne1

0

FP RP

If “Kelly” is added with a priority of 2:

2

Alice2

3

Carly2

4

Kelly2

5

Daphne3

6

Erica4

7 81

Yvonne1

0

FP RP

Practice questions can be found at the end of the section on page 90.

TASKS
1 What is meant by the terms pushing and popping?
2 The name ”Robert” is pushed on to an empty stack. ”Felicity”, ”Martin”

and ”Sam” are then pushed onto the same stack in that order. What
data will be on the stack after the following operations? Pop one
name, push on ”Henry” then push ”George”, finally pop off one name.

3 Explain the purpose of the stack pointer.
4 A stack can be described as a LIFO and a queue as a FIFO. Use

examples to explain the terms LIFO and FIFO.
5 Explain the difference between static and dynamic data structures

with reference to stacks and queues.
6 Explain the difference between linear, priority and circular queues.

STUDY / RESEARCH TASKS
1 Explain how a circular queue can be used to cope with a user entering

data via a keyboard.
2 Write code that demonstrates the use of a flag to indicate if a user has

pressed an invalid key.
3 Explore other methods of implementing a priority queue other than

using an array, for example using linked lists or binary trees.
4 Write code to show how a pointer can be used to indicate the highest

value held in a 20-element array.

KEY POINTS
• Queues and stacks are

dynamic data structures.
• A stack is an example of

a LIFO (last in first out)
structure which means that
the last item of data added is
the first to be removed.

• A queue is called a FIFO (first
in first out) structure which
means that the first item of
data added is the first to be
removed.

• There are three types of
queues: linear, circular or
priority.

67

9 Graphs and trees

SPECIFICATION COVERAGE
3.2.4 Graphs

INTRODUCTION
A graph is a mathematical structure that models the relationship
between pairs of objects. The pairs of objects could be almost anything
including places, people, websites, numbers, physical components,
biological, chemical data or even concepts. The study of the use of
graphs is called graph theory and it is useful in computing as it allows
the programmer to model real-life situations that would otherwise be
abstract.

 LEARNING OBJECTIVES
In this chapter you will learn:
• what graphs are and how they are constructed and used
• that graphs can be directed or undirected, weighted or unweighted
• how to use adjacency lists and matrices to represent graphs
• what trees are and how they are used
• how to create a binary tree.

To start with an example, a graph could be used to model the relationship
between two places and how they are connected via a train line. In graph
theory, objects are called nodes or vertices and each connection is called
an edge or arc. In this simple example, we have two vertices, one for each
town and one edge, which in this case will be the train connection between
the two towns. A simple graph may look like this:

Town A Town B

A weighted graph can be created by adding values to the edges. In this
example, we might add the travel time between the two towns, so the
weighted graph would look like this:

Town A
30

Town B

KEYWORDS
Graph: a mathematical structure
that models the relationship
between pairs of objects.
Graph theory: the underlying
mathematical principles behind
the use of graphs.
Arc: a join or relationship
between two nodes – also known
as an edge.
Vertex/vertices: an object in a
graph – also known as a node.
(Vertices is the plural.)
Weighted graph: a graph that
has a data value labelled on each
edge.

A level only

68

9
G

ra
ph

s a
nd

 tr
ee

s

To extend this example, you might add in all of the towns on a particular
network, with the travel time between each point. Figure 9.1 shows a graph
that models the real-life situation so you can see that there is no direct
connection between some of the towns, therefore there is no edge between
some of the vertices.

Town A
30

60

30
30

2020

Town B

Town D
Town C

Town E

Figure 9.1 A graph structure to show journey times between towns

The graph now becomes quite useful as it could be used, for example, to find
the quickest journey times between two towns. For example, to travel by
train from Town A to Town E would be quicker via Town C and Town D
than via Town B.

Graphs can also be directed or undirected, which refers to the direction of
the relationship between two vertices.

An undirected graph is when the relationship between the vertices can
be in either direction. In this example, the train will go in either direction
between the towns, which means there is a two-way direction between the
vertices in the graph.

A directed graph (also known as a digraph) is where there is a one-way
relationship between the vertices. For example, we may produce a digraph
to represent a real-life situation where we are creating a family tree.
Figure 9.2 is a graph that shows parents and siblings.

Charles Pauline

Jack
Dave

Harry

Figure 9.2 Graph to show parents and siblings

In this case, Charles is the parent of Dave and Pauline, Pauline is the parent
of Jack and Harry. The arrows indicate that this is a one-way relationship.

● Uses of graphs
Graphs have a wide range of uses in computing, as they are able to model
complex real-life problems. There are a number of applications:
● Human networks: Human beings belong to numerous networks including

family, work and social groups. For example, LinkedIn is an online network
of business professionals and works on links between people. Once you
create a profile, you link to other professionals that you know and they in
turn link to all of the other people that they know. Each person is a vertex,
and each edge is a relationship between one person and another.

KEYWORDS
Undirected graph: a graph
where the relationship between
vertices is two-way.
Directed graph: a graph where
the relationship between vertices
is one-way.

U
SES O

F G
R

APH
S

69

KEYWORD
Latency: the time delay that
occurs when transmitting data
between devices.

● Transport networks: All transport works on the basis of a departure
point, arrival point and route. The departure and arrival points form the
vertices and the routes form the edges. There are several applications for
graph theory including calculating quickest routes, planning timetables,
scheduling and organising staff.

● The Internet and web: It is possible to ‘map’ the Internet or the World
Wide Web using graph theory. In the case of the Internet, each
connected device is a vertex with the physical connection forming the
edge. With the web, each website is a node, with each linked site forming
the edge. Figure 9.3 shows a map of the Internet.

Figure 9.3 Graph to show a ’map’ of the Internet

Notice that rather than forming a web shape, it looks more like a
fireworks display. Each of the concentrations of colour is where there is
an ISP as all the data is being routed through their servers.

● Computer science: Latency is a key factor in communication networks.
It refers to the time delay that occurs when data is being transmitted.
Graph theory could be used to calculate the quickest path to send data
around a microprocessor where each vertex is a processor component
and the edges are the buses that carry the data.

● Medical research: Understanding how diseases spread is critical to their
prevention. For example, if studying the spread of a flu virus, each case
of flu could be a node, or more likely, each location where there has been
an outbreak would be a vertex. The edges would be the distance between
locations. A weighted graph could be used to analyse the extent of outbreaks
in particular locations and how much that then spreads between vertices.

● Project management: Any kind of large-scale project can be modelled
using a graph. For example, this might be an engineering, construction
or IT project. In this case the vertices would be each of the actions
needed to complete the project and the edges would be the relationships
and dependencies that exist between the tasks.

● Game theory: This is used in wars and conflicts to try to understand the
causes of conflict and predict the likely actions that people might take
for different strategies. For example, in a battle, the vertices could be the
actions that one group might take, with the edges being the outcomes.

70

9
G

ra
ph

s a
nd

 tr
ee

s

Graph theory is also an important concept in relation to Dijkstra’s
algorithm. This calculates the shortest path between nodes. It has been
used for applications such as working out shortest distances between cities
and calculating shortest distances between vertices in computer networks.
This is covered in detail in Chapter 13.

● Adjacency list
A graph is an example of an abstract data type. So far we have considered
the graph in graphical form, but we need to represent it in a way that can
be stored and manipulated by the computer. The first method is to use a
list, called an adjacency list.

Adjacent means ‘next to’, so the idea of the adjacency list is to store the
value of the vertices along with the vertices that they are next to. There are
three basic formats for the list depending on whether the graph is direct or
undirected and whether it is weighted.

Undirected graph

Vertex Adjacent vertices
A B,C
B A,C,E
C A,B,D
D C,E
E B,D

The list shows each vertex and each vertex that it is adjacent to. All
adjacencies are shown as this is a two-way relationship.

Directed graph

Vertex Adjacent vertices
A B,D
B E
C
D C,E
E

The list only shows the one-way relationship between the vertices. For
example, D is connected to C but C is not connected to D.

Weighted graph

Vertex Adjacent vertices
A B,20,C,30
B A,20,C,30,E,25
C A,30,B,30,D,35
D C,35,E,40
E B,25,D,40

The list shows the value of each edge after each adjacent vertex. For
example, A is adjacent to B with a weighted value of 20, A is adjacent to
C with a weight value for 30 and so on. Notice that this example is an
undirected weighted graph.

A B

C
D

E

A B

C
D

E

A
20

30
30

35
40

25B

C
D

E

KEYWORD
Adjacency list: a data structure
that stores a list of nodes with
their adjacent nodes.

ADJACEN
CY M

ATR
IX

71

● Adjacency matrix
The second method for storing the data is to use an adjacency matrix.
This method uses a two-dimensional array or grid populated with 1s
and 0s.

Undirected graph

A B C D E

A 0 1 1 0 0

B 1 0 1 0 1

C 1 1 0 1 0

D 0 0 1 0 1

E 0 1 0 1 0

This works by putting a 1 in each cell where there is an edge and a 0 in each
cell where there is not an edge. For example, A is adjacent to B so there will
be a 1 in the grid where A and B intersect in the matrix. A is not adjacent to
D so there will be a 0 in the grid where A and D intersect in the matrix.

Directed graph

A B C D E

A 0 1 0 1 0

B 0 0 0 0 1

C 0 0 0 0 0

D 0 0 1 0 1

E 0 0 0 0 0

In this case, you read the matrix row by row, inserting a 1 where there is
a one-way relationship between two vertices and 0 where this isn’t. For
example, A has a one-way relationship to B so there is a 1 in the cell where
A and B intersect in the matrix. B does not have a one-way relationship to
A, so there is a 0 in the cell where B and A intersect in the matrix.

Weighted graph

A B C D E

A ∞ 20 30 ∞ ∞

B 20 ∞ 30 ∞ 25

C 30 30 ∞ 35 ∞

D ∞ ∞ 35 ∞ 40

E ∞ 25 ∞ 40 ∞

In this case, you follow the same process for an undirected graph, but this
time you input the weighted value rather than a 1. Instead of the 0, the
infinity sign is used.

A B

C
D

E

A B

C
D

E

A
20

30
30

35
40

25B

C
D

E

KEYWORD
Adjacency matrix: a data
structure set up as a two-
dimensional array or grid that
shows whether there is an edge
between each pair of nodes.

72

9
G

ra
ph

s a
nd

 tr
ee

s

● Adjacency list vs adjacency matrix
When deciding on which implementation to use it usually comes down to
two factors: speed and memory. Speed refers to how quickly the program will
be able to access the data structure and produce a result. Memory refers to
the amount of memory that each implementation will use. Bear in mind that
the graph structure is likely to be used with very large datasets, making these
issues critical. If you consider the simple examples above, five vertices will
produce 25 data items that need storing. 100 vertices would produce 10 000
and 1000 vertices would produce a million data items. If a single byte was
used to store each data item that would create a 1 MB file. If you envisage
thousands or even millions of vertices, the file sizes can get very large.

Table 9.1 shows the main factors.

Table 9.1 Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Only stores data where there is an
adjacency (edge) so requires less
memory.

Stores a value for every combination
of node adjacencies so requires
more memory.

The list has to be parsed to identify
whether particular adjacencies exist,
which increases the time taken to process
the data.

Adjacencies can be identified more
quickly as every combination is
already stored. Effectively the matrix
forms a look-up table of each node to
every other node.

Where there are not that many edges (few
adjacencies), this method would be more
suitable for the reasons stated above. This
is known as a sparse graph.

Where there are many edges (lots of
adjacencies), this method would be
more suitable for the reasons stated
above. This is known as a dense
graph.

There is more information on working out time and size complexity of
different algorithms in Chapter 25.

● Trees
A tree is an abstract data structure that is very similar to a graph in that
it has nodes and edges. It is called a tree because it is visualised as a
hierarchical structure (like a family tree) with branches. Trees can have a
root node, with all the other nodes branching away from the root.

The key difference with a tree compared to a graph is that it is connected and
undirected and can contain no cycles or loops. For example, A goes to B and
C, but you could not go from A to B to C or from A to C to B and back to A.

A tree could be visualised as follows:

A B

C
D

E

Figure 9.4 A tree structure

KEYWORDS
Tree: a data structure similar to
a graph, with no loops.
Node: an object in a graph – also
known as a vertex.
Edge: a join of relationship
between nodes – also known as
an arc.

TR
EES

73

KEYWORDS
Root: the starting node in a
rooted tree structure from which
all other nodes branch off.
Parent: a type of node in a tree,
where there are further nodes
below it.
Child: a node in a tree that has
nodes above it in the hierarchy.
Leaf: a node that does not have
any other nodes beneath it.

In this example, there are five nodes and four edges:

● A is the root node as all the other nodes branch away from it.
● A is also a parent node as it has two child nodes B and C.
● B is also a parent node and has two child nodes, D and E.
● C, D and E have no child nodes. These are sometimes called leaf nodes.
● You can see that there are no cycles. For example, A has an edge with C

forming a single path. It would not be possible for example to go from A
to C to D and back to A.

Trees have a number of uses. They:
● can be used to store data that has an inherent hierarchical structure. For

example, an operating system may use a tree for directories, files and
folders in its file management system

● are dynamic, which means that it is easy to add and delete nodes
● are easy to search and sort using standard traversal algorithms. There is

more on this in Chapter 16
● can be used to process the syntax of statements in natural and programming

languages so are commonly used when compiling programming code.

Binary search trees
A common implementation of a tree is the binary search tree. This is a directed
and rooted tree, which can have no more than two branches off each node and
is commonly used to store data that are input in a random order. The nature of
the structure means that data are automatically sorted as they are entered and
that it can be ‘traversed’ in order to search for and extract data from it.

The first item of data to be used is stored in the root node. The next (and
any subsequent) data item is dealt with by the following routine:
● If the value of the new data item is less than the value in the current node

then branch left, otherwise branch right.
● Keep repeating this process until you come to an ‘empty’ branch, then

put the new value in the node at the end of the branch.

This sounds awkward but look at the diagram below and try to follow
through how the name “Fred” has been added to the binary tree.

Daniel

GeorgeCharles

Belinda Cheryl Fred

Figure 9.5 An example of a binary tree

Daniel is the root node. Belinda, Cheryl and Fred can be classed as leaf
nodes because they have no nodes below them. Charles can be described as
the parent and Cheryl the child.

Implementing a binary tree
The code for creating a binary tree needs three arrays. The first (called
Node in the example below) stores the data itself. The second (Left in the
example) stores which node the left branch from a node moves to and the
third (Right) copes with branches to the right.

The data to add to the tree is stored in the variable AddItem and the root
node has already been set up with the name “Jim”. The algorithm adds
further data items to the binary tree:

KEYWORD
Binary tree: a tree where each
node can only have up to two
child nodes attached to it.

74

9
G

ra
ph

s a
nd

 tr
ee

s

‘Find next gap in the Node array

NodeCount ĸ 1

While Node(NodeCount) is not empty

NodeCount ĸ NodeCount + 1

End While

‘NodeCount stores the next blank

Node(NodeCount) ĸ AddItem

‘start at the root node

PresentNode ĸ 1

While Node(PresentNode) is not empty do

 ‘Branch Left or Right?

 If AddItem < Node(PresentNode) Then

 ‘If Left branch is empty then assign NodeCount

 If Left(PresentNode) = 0 Then

Left(PresentNode) ĸ NodeCount

 End If

PresentNode ĸ Left(PresentNode)

 Else

 ‘If Right branch is empty then assign NodeCount

 If Right(PresentNode) = 0 Then

Right(PresentNode) ĸ NodeCount

 End If

PresentNode ĸ Right(PresentNo)

 End If

End While

If the root starts with the name “Jim”, the arrays should look like this after
you have added the names Kevin, Alice and Belinda to the tree.

Node () Left() Right()

1 Jim 3 2

2 Kevin 0 0

3 Alice 0 4

4 Belinda 0 0

The binary tree this represents will look like this.

Belinda

Jim

Alice Kevin

Figure 9.6 The resultant binary tree

Practice questions can be found at the end of the section on page 90.

TR
EES

75

TASKS
1 Create an adjacency list and matrix from the following graphs.

A B

C D

A B

C D

2 Draw an undirected graph from the following adjacency matrix.

A

B

C

D

A B C D

0 1 1 1

1 0 1 1

1 1 0 0

1 1 0 0

3 Draw a directed graph from the following adjacency list.

Vertex Adjacent vertices

A B

B D

C D

D A

4 Draw a weighted undirected graph from the following data adjacency list.

Vertex Adjacent vertices

A B,5,C,3

B A,5,D,2

C A,3

D B,2

5 Draw a weighted undirected graph from the following data adjacency
matrix.

A B C D

A ∞ 10 20 ∞

B 10 ∞ ∞ 30

C 20 ∞ ∞ 20

D ∞ 30 20 ∞

6 Explain where it might be more appropriate to use an adjacency list
compared to an adjacency matrix.

7 Draw a binary tree from the following array:
Sequence Vertex Left Right

1 E 2 0

2 D 3 0

3 A 0 4

4 B 0 5

5 C 0 0

76

9
G

ra
ph

s a
nd

 tr
ee

s

8 Represent the following binary tree using arrays:
Blue

Aqua Green

Orange Purple

Show what would happen to the tree and the array if the following two
items of data were added: Yellow, Magenta.

STUDY / RESEARCH TASKS
1 Explain how the following well-known abstract problems were solved

using graph theory:
 a) bridges in Konigsberg
b) the travelling salesperson problem
c) the four-colour theorem (for colouring maps)
d) six degrees of separation (in social networks).

2 ‘No two web pages are separated by more than 19 clicks.’ How could
graph theory help you work out whether this is true or not?

3 Explain how graph theory could help computer security experts
understand how worms spread.

4 How might graph theory be applied to the problem of timetabling in a
school or college?

5 How might a tree be used to create routing algorithms that define how
data is sent around networks?

6 What are red–black B trees? How do they differ from binary trees?

KEY POINTS
• Graphs are a data structure made up of vertices (nodes) and edges,

which are the connections between the vertices.
• Graphs can be used to analyse the connections and relationships

between data items and are a useful tool for modelling real-life
situations.

• Graphs can be directed or undirected, meaning that there may be a
one-way or two-way connection between each vertex.

• Graphs can be weighted, meaning that a value can be applied to the
edges between nodes.

• An adjacency list or matrix can be used to identify which vertices
are connected to which others and whether there is any weight
associated with the edge.

• A tree structure is a connected, undirected graph that contains no
cycles.

• A binary tree structure is a special type of tree where each vertex can
have no more than two children.

77

 10 Hash tables and
dictionaries

INTRODUCTION
Hash tables and data dictionaries are both data structures made up of
two parts. They can be viewed as two-dimensional arrays, or tables with
one dimension being the data and the other being the key that identifi es
the location of the data in the table. Each key/value combination is
unique within the data structure.

LEARNING OBJECTIVES
In this chapter you will learn:
• what hash tables are used for and how to create them
• how to create a hashing algorithm
• how to avoid collisions in hashing algorithms
• what a dictionary data structure is and how to construct one.

SPECIFICATION COVERAGE
3.2.6 Hash tables

3.2.7 Dictionaries

● Hash tables
A hash table is a data structure made up of two parts, a table (or array) of
data, and a key, which identifies the location of the data within the table. A
hashing algorithm is carried out on the key, which then acts as an index
to the specific location of that data item within the array. You could think
of it as a look-up table that uses a key/value combination.

When the data need to be retrieved, for example, if a search is carried out
on the data, the same hashing algorithm is used on the key being searched
to calculate the index and therefore retrieve the data in one step. This is
a very efficient search technique and it is why hashing tables are used
extensively in applications where large datasets need to be accessed or
where speed of access is critical.

As an example, a customer database stored as an array may contain
records of millions of customers including CustomerID, Name, Address
and so on. A hashing algorithm could be applied to the CustomerID

KEYWORDS
Hash table: a data structure that
stores key/value pairs based
on an index calculated from an
algorithm.
Key/value pair: the key and its
associated data.

KEYWORD
Hashing algorithm: code that
creates a unique index from
given items of key data.

A level only

 1
0

H
as

h
ta

bl
es

 a
nd

 d
ic

ti
on

ar
ie

s

78

field, which can be used as the key in this case. This would generate
an index for each customer, which would point to the location of the
record in the array.

This could be visualised as follows:

Key Index Key/value pair

014563 01 014564, Mary Jones, 14 Acacia Avenue
02

014564 03 014563, John Smith, 1 High Street
04

014565 05
06 014565, Len Brown, 56 The Pines

Figure 10.1 Visualisation of a hash table

The array into which the data are being stored can be envisaged as a series
of slots, each of which has a unique index. The index can then be used to
access all of the data stored in the record. Note that the key/value pair is the
key and all of the data stored in relation to that key. In this case it would be
a customer record.

Uses of hashing algorithms
Hashing algorithms have many applications:
● Databases: Used to create indices for databases enabling quick storage

and retrieval of data.
● Memory addressing: Used to generate memory addresses where data will

be stored. It is particularly useful for cache memory, where data is placed
temporarily allowing the user fast access to programs and data stored in
the cache.

● Operating systems: As an example of memory addressing, some
operating systems use hashing tables to store and locate the executable
files of all its programs and utilities.

● Encryption: Used to encrypt data, hence the term ‘encryption key’. In
this case the algorithm must be complex so that if data is intercepted it is
not possible to reverse-engineer it.

● Checksums: A value calculated from a set of data that is going to be
transmitted. On receipt the algorithm is run again on the data and the
two results are compared as a way of checking whether the data has been
corrupted during transmission.

● Programming: Used to index keywords and identifiers as the compiler
will need access to these quickly as it compiles the program.

Hashing algorithms
To generate the index, you need a suitable algorithm. To start with we will
look at a very simple example to show the concept. You might have an array
with six elements used to store six values. We could calculate the index
using an algorithm that adds the numbers (digits) in the key together and
then performs a modulo 6 sum on the result, as there are six slots in our
hash table.
● For the first data item the value of the key might be 25463.
● Add the numbers (digits) together 2 + 5 + 4 + 6 + 3 = 20.
● Perform modulo 6 calculation so divide by 6 = 3 r 2.
● Therefore the Index = 2.
● The data is placed in slot 2.

0

1

2

3

4

5

34255

25463

KEYWORD
Cache: a high-speed temporary
area of memory.

H
ASH

 TAB
LES

79

● The second data item might have a key with the value 34255.
● Add the numbers (digits) together 3 + 4 + 2 + 5 + 5 = 19.
● Perform modulo 6 calculation so divide by 6 = 3 r 1.
● Therefore the Index = 1.
● The data is placed in slot 1.

This process then continues for every key. You can see from this how
the index is created from the data in the key. The real benefit of using an
algorithm is that it is used to store the data in the first place and then used
to locate the data when it is needed. The indices therefore are created and
recreated when they are needed.

Choosing a hashing algorithm
The basic example above demonstrates a few features and associated
problems when creating a suitable algorithm:
● A numeric value needs to be generated from the data in order to perform

the calculation. For non-numeric keys such as text and other characters,
the ASCII or Unicode value of each character is normally used.

● It must generate unique indices. For example, if the next item of data was
43525, the algorithm would generate the index of 1 again. There is already
data stored in this location so this has created a collision. It is theoretically
possible to create a perfect hashing algorithm that avoids collisions, but
in practice, they are unavoidable. A good algorithm will create as few as
possible and needs a mechanism to cope with collisions as they occur.

● It needs to create a uniform spread of indices. For example, if you were
storing millions of items of data into millions of slots the algorithm
needs to provide an even spread of index values from the data and avoid
clustering. This cuts down the possibility of collisions.

● There must be enough slots to store the volume of data. For example,
if a database is going to store 1 million records, the algorithm must be
capable of producing at least 1 million indices. In fact it would need
more than this to avoid collisions as the table fills up. Hash tables have a
load factor which is the number of keys divided by the number of slots.
A high load factor means that it will become increasingly difficult for the
algorithm to produce a unique result.

● It has to balance the issues of speed with complexity. For example, an
algorithm for a database needs to calculate the index very quickly. An
algorithm for encryption needs to be very complex, but may not need to
calculate the index quickly.

Creating suitable algorithms is sometimes described as a ‘black art’ as
there is no universally accepted method for doing it and the design of the
algorithm depends to a large extent on the application.

Collisions
One of the main features of a hashing algorithm is that it must produce
a unique index. Where a collision occurs, there must be some way of
handling it so that a unique index can be assigned to the key.

There are two main methods:
● Chaining: In this case, if a collision occurs, a list is created in that slot

and the key/value pair becomes elements of the list. If another collision
occurs, that key/value pair becomes the next element in the list and so
on. Figure 10.2 shows the concept.

KEYWORDS
Collision: when a hashing
algorithm produces the same
index for two or more different
keys.
Clustering: when a hashing
algorithm produces indices that
are not randomly distributed.
Load factor: the ratio of how
many indices are available to
how many there are in total.

KEYWORDS
Index: the location where values
will be stored, calculated from
the key.
Chaining: a technique for
generating a unique index when
there is a collision by adding the
key/value to a list stored at the
same index.

 1
0

H
as

h
ta

bl
es

 a
nd

 d
ic

ti
on

ar
ie

s

80

Where the index is unique, the key/value pairs work in the normal way.
Where two or more keys generate the same index, a list is formed. It is
called chaining as the additional key/value pairs get chained together
inside a list. Each key/value pair is uniquely identified by its position
within the list. In this example the keys 01236, 01237 and 01238 all
produced the same index so their key/values have been chained together.

● Rehashing: In this case, if a collision occurs, the same algorithm is run
again, or an alternative algorithm is run until a unique key is created.
This normally uses a technique called probing, which means that the
algorithm probes or searches for an empty slot. It could do this by simply
looking for the next available slot to the index where there was a clash.

Figure 10.3 Probing as a result of a collision

01236

01237

01238

00
01
02
03
04
05
06
07
08
09
10

01234

01235

Key Index Key/Value pair

01235 Jones

01234 Smith

01236 Harris
01237 James
01238 Brown

Figure 10.3 shows a simple linear probe where the next available slot is
used. This is not very sophisticated because if the hashing algorithm is
leading to clustering as in this example, the results are still going to be
clustered in around the same slots. A more sophisticated method is to apply
another hashing function to the index where the clash occurred, in order to
generate another one.

The following extract of code shows a hashing algorithm that creates a key
using the day and date of birth multiplied by 28 with modulo 100 applied
to the result. Notice that it also rehashes if there is a collision:

 Private Sub cmdFindRecord_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles cmdFindRecord.Click

01236

01237

01238

00
01
02
03
04
05
06
07
08
09
10

01234

01235

Key Index Key/Value pair List

01235 Jones

01234 Smith

01236 Harris 01237 James 01238 Brown

Figure 10.2 Chaining of key/value pairs when there is a collision

KEYWORD
Rehashing: the process of
running the hashing algorithm
again when a collision occurs.

H
ASH

 TAB
LES

81

 Dim FindRecord As String

 Dim FindDay As Integer

 Dim FindMonth As Integer

 Dim HashKey As Integer

 ‘ calculate hash key

 FindRecord = txtFindRecord.Text

 FindDay = Val(Mid(FindRecord, 1, 2))

 FindMonth = Val(Mid(findRecord, 4, 2))

 HashKey = (28 * (FindMonth - 1) + FindDay) Mod 100

 txtHashKey.Text = "(28 * (" & FindMonth & " - 1) +
" & FindDay & ") Mod 100 = " & HashKey

 If grdTable.Rows(HashKey).Cells(3).Value =
txtFindRecord.Text Then

‘ record found using first hash key

 grdTable.Rows(HashKey).DefaultCellStyle.
BackColor = Color.Red

MsgBox("Match found using hashing algorithm")

 grdTable.Rows(HashKey).DefaultCellStyle.
BackColor = Color.White

 Else

Do

HashKey = HashKey + 1

 If grdTable.Rows(HashKey).Cells(3).Value =
txtFindRecord.Text Then

‘ found using rehashing

 grdTable.Rows(HashKey).DefaultCellStyle.
BackColor = Color.Red

 MsgBox("Collision occured. Match found
using linear re-hashing")

 grdTable.Rows(HashKey).DefaultCellStyle.
BackColor = Color.White

 Exit Sub

End If

 Loop Until grdTable.Rows(HashKey).Cells(3).Value
= "" Or HashKey = 100

‘ record not found

MsgBox("No match for that date")

 End If

 End Sub

End Class

 1
0

H
as

h
ta

bl
es

 a
nd

 d
ic

ti
on

ar
ie

s

82

● Dictionaries
A dictionary is an abstract data type that maps keys to data. It is called an
associative array in that it deals with two sets of data that are associated
with each other. The dictionary data structure is analogous with a real-life
dictionary in that there is a word (the key) associated with a definition (the
data). This is similar to a hash table in that it has key/value pairs.

In the same way that a real-life dictionary is accessed randomly, a
dictionary data structure also requires random access. The common
procedures that you would need to carry out on a dictionary would be to
add, retrieve and delete data. Unlike a real-life dictionary however, the data
inside a dictionary data structure is unordered.

We could use the customer database example again here. Each record has
a key, which might be the CustomerID. This key links to all of the data
that is stored about the customer. At any time we may want to retrieve, add
or delete a customer record. Dictionary data structures are often used to
implement databases due to the fact that there will be inherent associations
within the data and that they need to be searched and sorted as a matter of
routine in order to retrieve data.

In simple terms the dictionary data structure can be envisaged as a two-
dimensional array:

Table 10.1 A two-dimensional array

Key
e.g. CustomerID

Associated data

01234 James Cochran, 12 Harbour Mews, Leicester

01235 Mary Abbot, 56 Eagle Street, Manchester

01236 Keith Fletcher, 3 Yarborough Road, Leeds

01237 Hussain Khan, 68 Lemon Street, Derby

01238 David Lui, 87 Threddle Lane, Northampton

01239 Rachel Young, The Forest Lodge, Kettering

As you can see from this example, dictionaries and hash tables are very
similar and in fact a hash table is one way of implementing a dictionary.
Dictionaries can also be created using binary trees (see Chapter 9).

Some programming languages such as Visual Basic and Python have a
dictionary data type built in. For example, in Python, it is possible to use
a dictionary constructor to build a dictionary directly from the key/value
pairs. Visual Basic has a dictionary object which allows key/value pairs to
be added directly.

The following Visual Basic-based pseudo-code shows the implementation of
a dictionary data structure using the data dictionary type. To add an item:

Dim Dict As Dictionary (Of String, Integer)

Dictionary.Add ("Anne", 10)

Dictionary.Add ("Dave", 52)

Dictionary.Add ("Ethel", 17)

KEYWORDS
Dictionary (data structure): a
data structure that maps keys
to data.
Associative array: a two-
dimensional structure containing
key/value pairs of data.

D
ICTIO

N
AR

IES

83

TASKS
1 What is a hash table data structure?
2 Suggest a suitable hashing algorithm that could be used to store

the names of everyone in your class. Write code to implement
your solution.

3 Identify three possible applications for hashing algorithms.
4 What are the main features of a good hashing algorithm?
5 What can you do to minimise the likelihood of collisions when creating

a hash table?
6 What is load factor?
7 What is clustering and how is it caused?
8 Explain in detail how a hashing algorithm can deal with collisions.
9 What is a dictionary data structure and how does it differ from a

hash table?
10 What are the main actions that you might want to carry out on data

stored in a dictionary?

STUDY / RESEARCH TASKS
1 How does private/public key encryption use hashing algorithms to

encrypt data?
2 How do hashing algorithms written for encryption vary from those

written for indexing databases?
3 Is it possible to write a perfect hashing function?
4 Research ‘Google Sparse Hash’.

KEY POINTS
• A hash table is a data

structure made up of two
parts, a table (or array)
of data, and a key, which
identifies the location of the
data within the table.

• A hashing algorithm is carried
out on the key, which then
acts as an index to the specific
location of that data item
within the array.

• Hashing algorithms must
create a range of keys
sufficient to assign unique
values to each item of data.

• Collisions occur when the
hashing algorithm generates
the same key from two
different items of data.

• Chaining or rehashing must
be carried out in the event of a
collision.

• A dictionary is an abstract data
type that maps keys to data.

• Dictionaries and hash tables
are similar data structures.

The data in speech marks is the key and the integer is the value assigned
to it in the format ("key", value) where key is a string and value is an
integer. This code simply adds three names to the dictionary.

To retrieve an item from the dictionary the key/value pair need to be identified:

For Each pair As KeyValuePair(Of String, Integer)
In dict

 MsgBox(pair.Key & " - " & pair.Value)

Next

This code would display the list of all the names in the dictionary in a
message box.

To delete an item:

Dictionary.Remove ("Anne")

This code would delete the item identified by the value input, in this
case, “Anne”.

Practice questions can be found at the end of the section on page 90.

84

 11 Vectors

INTRODUCTION
Vectors can be represented and applied in various ways both
mathematically and geometrically. They are used in different ways in
computing, for example:
• as a data structure
• as a method for mapping one value to another
• as a method of defi ning geometric shapes.

In this chapter we will look at all three interpretations of vectors.

LEARNING OBJECTIVES
In this chapter you will learn:
• what vectors are used for
• how to represent vectors as arrays, dictionaries and lists
• how to represent vectors as functions
• how to represent vectors as arrows. How to combine vectors using

addition, multiplication and convex combination
• how to apply vectors.

SPECIFICATION COVERAGE
3.2.8 Vectors

● Representing vectors as a data structure
When programming, vectors can be implemented as values stored in a
list. For example, the first six values of the Fibonacci sequence could be
represented as:

fibonacci[0] = 0; fibonacci[1] = 1; fibonacci[2] = 1;
fibonacci[3] = 2; fibonacci[4] = 3; fibonacci[5] = 5;

This representation could also be described
as a one-dimensional array where each
item of data is an element in the array,
which can be accessed by its location:

A dictionary is a data structure that maps a key to a value. As we have seen,
we can create sets of real numbers that can then be applied over the vectors.

2

1

3

2

4

3

5

5

1

1

0

0Data

Index

A level only

85

R
EPR

ESEN
TIN

G
 VECTO

R
S AS AR

R
OW

S

The dictionary structure allows us to call an index, which is then used as a
look-up to the real values.

{0: Value 1, 1: Value 2, 2: Value 3, 3: Value 4...}

The start of the Fibonacci sequence vector could be represented in a
dictionary as:

{0:0, 1:1, 2:1, 3:2, 4:3, 5:5}

● Representing vectors as a function
A function is a mathematical construct that maps an input to an output. For
example, the function f(x) = x2, simply maps the value of x to its square. A
vector can be used to represent a function. For example:

F = the function to create the vector

S = the complete set of values that the function can be applied to

R = the potential outputs of the function.

Therefore F: S → R

Note that all of the output values must be drawn from R, which is being
treated as a single field from which the function takes its values.

● Representing vectors as arrows
Geometrically, vectors can be represented as arrows as shown in Figure 11.1.

Figure 11.1 A vector represented as an arrow with magnitude and direction

v

The two dimensions of size (or magnitude) and direction are shown. The
direction of the arrow is shown by the arrow head and v represents the size.
The start of the arrow is called the tail and the top of the arrow, the head. To
quantify the size and direction of the arrow, think of it plotted on x and y axes:

0 1
1

2

3

2 3 4

Figure 11.2 A vector visualised as an arrow with a measurement

The arrow can be represented as a vector A in the format A = (x,y). x and
y are called the components of the vector and in this case would be the
distance from (0, 0) on an x and y axis. Therefore, this vector is described
as A = (4, 3) often shown in the format A = 4

3((to differentiate them from a
coordinate pair used to plot points on a graph.

KEYWORDS
Magnitude: one of the two
components of a vector – refers
to its size.
Direction: one of the two
components of a vector.
Components: the values within
a vector.

 1
1

Ve
ct

or
s

86

Already, you can see how useful vectors can be. With reference to vector
graphics for example, it would now be possible to resize an image simply
by changing the component values in the vector.

Scale 2 Scale 3 Scale 4

Figure 11.3 The effect of scaling a vector

Three-dimensional objects can be represented using the same method with
the addition of a further component, the z axis.

Figure 11.4 A visualisation of a vector in three dimensions

z

x-coordinate

y-coordinate

z-coordinate
y

x

In this example, the vector could be represented as A = (x, y, z).

● Vector addition
It is possible to add vectors together, which has the effect of translating or
displacing the vector. Geometrically, this could be visualised as joining the
tail of one to the head of another.

Figure 11.5 Adding vectors

a + b

ba

H

Notice that a new point H has been created which may be used as the head
of a new vector.

The sum of two vectors A and B can be represented as follows:

A = (A1, A2, A3)

B = (B1, B2, B3)

A + B = (A1 + B1, A2 + B2, A3 + B3)

Note that the two vectors must have the same dimension, which in this
case is three components. For example, if:

 A = (2, 3, 4) and B = (3, 5, 10) then A + B = (5, 8, 14)

SCALAR
–VECTO

R
 M

U
LTIPLICATIO

N

87

KEYWORD
Dot product: multiplying two
vectors together to produce a
number.

KEYWORD
Scalar: a real value used to
multiply a vector to scale the
vector.

● Scalar–vector multiplication
It is also possible to multiply vectors by a number, which has the effect
of scaling. The number is called a scalar as it represents the amount
by which you want change the scale of the vector. An analogy would be
changing the scale of a map. If you zoom in you are changing the scale. In
the case of a vector if you scale it by a factor of two, it will have twice the
magnitude. The direction however, will not change as a result of scaling.
You can envisage this geometrically as shown in Figure 11.6.

Figure 11.6 Scaling a vector

A

B

The original vector A = (3, 2). Multiply this by the scalar 2 results in vector
B = (6, 4). Notice that the tail position and direction do not change.

Dot product
Dot product is the process of combining two vectors to calculate a single
number. It is calculated in the following format:

A . B = AxBx + AyBy

A

Ax

Ay

B

By

Bx

Figure 11.7 The dot product of two vectors

In this example, A = (3, 5) and B = (7, 2)

Therefore the dot product is 3 × 7 + 5 × 2 = 31

This would also work in three dimensions by including z in the
components. For example, two vectors with the coordinates A = (5, 3, 2)
and B = (2, 7, 4) would result in a dot product of:

5 × 2 + 3 × 7 + 2 × 4 = 10 + 21 + 8 = 39

Convex combinations
When two vectors are combined to create a
third, a relationship exists between the three
vectors. In Figure 11.8 you can see that the
new vector c has been created at right angles
to the other vectors.

When these combinations are created,
they have to be done according to certain
mathematical principles. For example, a
convex combination of vectors is one where
the new vector must be within the vector
space of the two vectors from which it is made.

KEYWORDS
Convex combination: a method
of multiplying vectors that
produces a resulting vector
within the convex hull.
Vector space: a collection of
elements that can be formed by
adding or multiplying vectors
together. Figure 11.8 Combination of

vectors

a × b = c

b

a

 1
1

Ve
ct

or
s

88

This could be visualised as follows shown in Figure 11.9.

Figure 11.9 Convex combination of vectors

A

C

D

E

B

Vector AD is created by combining vectors AC and AB. Notice an imaginary
line between points B and C. The new vector must fall within the vector
space defined by the points A, B and C in the diagram. This is a visual
representation of what is called a convex hull that represents all of the
points that make up the vector space. Notice point E, which represents the
head for another vector. This falls outside the convex hull and is therefore
not a convex combination.

Mathematically, to perform a convex combination, you will be multiplying
one vector either by a scalar, or by another vector. This could be
represented as:

D = ĮAB + ȕAC

where AB and AC are the two vectors

Į and ȕ represent the real number that each vector will be multiplied by.

Į and ȕ must both be greater than or equal to 0 and Į + ȕ must equal 1. D
will then fall within the vector space.

Uses of dot product
Given two vectors u and v, it is possible to generate parity using the bitwise
AND and XOR operations.

For example, where u = [1, 1, 1, 1] and v = [1, 0, 1, 1], the dot product
would be u.v = 1. This is calculated by performing arithmetic over GF(2)
where GF has two elements 0 and 1. This calculation works out the parity
bit for even parity. The first vector will always be [1, 1, 1, 1] and in this
example the second vector is [1, 0, 1, 1]. As you can see, we would expect
the parity bit to be a 1 as the vector v currently has an odd number of 1s.

The calculation would work as follows:

u.v = [1, 1, 1, 1].[1, 0, 1, 1]

= 1 AND 1 XOR 1 AND 0 XOR 1 AND 1 XOR 1 AND 1

= 1 XOR 0 XOR 1 XOR 1

= 1

Arithmetic over GF(2) can be summarised in two small
tables. Multiplication can be achieved by bitwise AND
operation:

Addition can be achieved by bitwise XOR operation:

Subtraction is identical to addition, –1 = 1 and –0 = 0.

Practice questions can be found at the end of the section on page 90.

0× 1

0 0 0

1 0 1

0+ 1

0 0 1

1 1 0

KEYWORD
Convex hull: a spatial
representation of the vector
space between two vectors.

SCALAR
–VECTO

R
 M

U
LTIPLICATIO

N

89

TASKS
1 Show how a simple vector could be represented as:

a) a list
b) a function
c) an arrow.

2 Explain how a dictionary data structure can be used to represent a
vector.

3 Use an example to show how you can add two vectors together and
what effect this has on the vector.

4 Use an example to show how you can multiply a vector by a scalar and
what effect this has on the vector.

5 Use an example to show the dot product of two vectors.
6 What is a convex combination of vectors?

 STUDY / RESEARCH TASKS
1 Research how vectors are used to create computer games.
2 Explain how the length of a vector (envisaged as an arrow) is

determined from its coordinates.
3 Write code to perform:

a) vector addition
b) multiplication of a vector by a scalar
c) dot product calculation.

4 Research other methods of combining vectors including conical
combination and affine combination.

5 Vector space has a number of axioms. Look into these and explain why
they are essential in defining vector space. For example, associativity
of addition, distributivity of scalar multiplication.

KEY POINTS
• Vectors can be represented

as a list of numbers, as a
function and as a geometric
point in space.

• Vectors can be created as
a one-dimensional array or
dictionary.

• Vectors can be combined
using addition, multiplication
and convex combination.

• Addition of vectors has
the effect of translation or
displacement.

• Multiplication of vectors by
a scalar has the effect of
scaling.

• Dot product can be used to
generate parity.

90

Se
ct

io
n

Tw
o:

 P
ra

ct
ic

e
Q

ue
st

io
ns

Section Two: Practice questions
1 The following data needs to be stored and accessed:

C, D, B, A, F, G
a) Describe how this data would be added to and then removed from a stack.
b) Describe how this data would be added to and then removed from a queue.
c) Show how these data items would be added to a binary search tree.
d) Assuming the data has been added to a binary search tree, write out the sequence of values that would be

output from the tree following:
i) post-order traversal
ii) pre-order traversal
iii) in-order traversal.

2 The following adjacency list represents a graph.

Node Adjacent nodes

A B, 20, C, 30, D, 10

B A, 20, D, 20

C A, 30, D, 30

D A, 10, B, 20, C, 30

a) Draw the graph.
b) Create an adjacency matrix for the graph.
c) Explain why this graph is not a tree.

3 Vector A is stored in an array A = {4, 5} and vector B is stored in an array B = {6, 12}.
a) What is an array?
b) What is a vector?
c) Calculate the result of adding the two vectors together, showing your working.
d) Calculate the dot product of these two vectors, showing your working.

4 Look at the following section of code that generates a hash value and then answer the questions.

Dim FindRecord As String

Dim FindDay As Integer

Dim FindMonth As Integer

Dim HashKey As Integer

FindRecord = txtFindRecord.Text

FindDay = Val(Mid(FindRecord, 1, 2))

FindMonth = Val(Mid(findRecord, 4, 2))

HashKey = (28 * (FindMonth - 1) + FindDay) Mod 100

a) What is the purpose of a hash value?
b) Explain whether or not you think that this is an effective algorithm, justifying your view.
c) Suggest an alternative hashing algorithm for generating the hash value.

Section Three:
Fundamentals of
algorithms

92

 12 Graph and tree
traversal

INTRODUCTION
In Chapter 9 we looked at the graph and tree data types and how they
can be used. In this chapter you will learn how to implement and
traverse the structures. The word ‘traversing’ means ‘to move across’
and that is what you do when you traverse a graph or a tree – you move
across it, visiting nodes as you go.

LEARNING OBJECTIVES
In this chapter you will:
• consolidate your learning on graphs and trees
• learn how to implement and traverse a graph breadth fi rst

and depth fi rst
• learn how to implement and traverse a binary tree pre-order,

in-order and post-order
• learn how to apply stacks and queues and use recursion.

SPECIFICATION COVERAGE
3.3.1 Graph traversal

3.3.2 Tree traversal

● Implementing a graph
As we saw in Chapter 9, graphs can be implemented using adjacency
lists or matrices, which represent every vertex (node) and the edges (or
connections) between the vertices.

A B

C
D

E

Node Adjacent nodes

A B

B A, C, E

C B, D

D C, E

E B, D

Figure 12.1 Adjacency list and
corresponding graph

A level only

TR
AVER

SIN
G

 A G
R

APH

93

One possible implementation is to store this in an array showing each
vertex and whether there is an edge between vertices. For example, the
graph above could be represented by the following two-dimensional array:

Table 12.1 A two-dimensional array representing a graph

A B C D E

A 0 1 0 0 0

B 1 0 1 0 1

C 0 1 0 1 0

D 0 0 1 0 1

E 0 1 0 1 0

A 1 represents an edge between the two vertices and a 0 means there
is no edge. This approach can be used to represent any unweighted,
undirected graph.

● Traversing a graph
There are two ways of traversing the graph: depth first or breadth first.
● Depth first is a method that explores as far into a graph as possible

before backtracking to visit unvisited nodes. It is often implemented
using a recursive algorithm, which is explained later in the chapter.

● Breadth first is a method for traversing a graph that visits the nodes
closest to a starting point first. A queue is used to keep track of the
nodes to visit.

Using the graph in Figure 12.1 as an example, depth first works as follows:

Explanation Current node Visited nodes

Select the node to start from (A). A

Mark node A as visited. Choose a node that
is connected to A (B) and recursively call the
search routine to explore from this node.

A A

Mark node B as visited. Choose a node that is
connected to B and has not been visited (C) and
recursively call the search routine to explore
from this node.

B A B

Mark node C as visited. Choose a node that
is connected to C and has not been visited
(D) and recursively call the search routine to
explore from this node.

C A B C

Mark node D as visited. Choose a node that is
connected to D and has not been visited (E) and
recursively call the search routine to explore
from this node.

D A B C D

Mark node E as visited. All nodes connected
to E have already been visited, so unwind
recursion. There are no nodes left to visit
during this unwinding, so the algorithm will
terminate.

E A B C D E

Table 12.2 Depth first traversal

KEYWORDS
Implementation: creating code to
produce a programmed solution.
Array: a set of data items of the
same type grouped together with
the same identifier.
Edge: a connection between
two nodes in a graph or tree
structure.
Graph: a data type made up of
nodes and edges.

KEYWORDS
Depth first: a method for
traversing a graph that starts
at a chosen node and explores
as far as possible along each
branch away from the starting
node before backtracking.
Breadth first: a method for
traversing a graph that explores
nodes closest to the starting
node first before progressively
exploring nodes that are further
away.
Queue: a data structure where
the first item added is the first
item removed.
Node: an element of a graph
or tree.

 1
2

G
ra

ph
 a

nd
 tr

ee
 tr

av
er

sa
l

94

Using the graph in Figure 12.2 as an example, breadth first works by
visiting the starting node and then all of the nodes attached to it in order. It
then moves to the next closest nodes to repeat the process as follows:

Table 12.3 Breadth first traversal

Explanation Contents of queue

Add the node to start exploring from (A) to the queue. A

Add all nodes that are adjacent to node at front of queue
(A) and not already full explored to queue (B).

A B

Remove A from queue as fully explored. B

Add all nodes that are adjacent to B and not already fully
explored to queue (C, E).

B C E

Remove B from queue as fully explored. C E

Add all nodes that are adjacent to C and not already fully
explored to queue (D).

C E D

Remove C from queue as fully explored. E D

Add all nodes that are adjacent to E and not already fully
explored to queue (none).

E D

Remove E from queue as fully explored. E

Add all nodes that are adjacent to D and not already fully
explored to queue (none).

D

Remove D from queue as fully explored. Queue empty so
algorithm terminates.

The following code shows a Visual Basic implementation of a grid with
eight nodes. The code uses a CSV file to read in the adjacencies. Two
procedures have been created to traverse the tree depth first and breadth
first. The code is commented to explain how each subroutine works:

Public Class frmGraph

 Public RouteMatrix(8, 8) As Boolean

 Public NodeMatrix(8) As String

 Public VisitedMatrix(8) As Boolean

 Public NodeCount As Integer

 Public DataRow As String

 Public ThisNode As Integer

 Private Sub frmGraph_Load(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles MyBase.
Load

 ‘ count nodes

 NodeCount = 8

 ‘ populate arrays

 FileOpen(1, "C:\NodeTable.csv", OpenMode.Input)

 DataRow = LineInput(1)

 For Loop1 = 1 To NodeCount

dgvRoutes.Rows.Add()

A B

C
D

E

Figure 12.2 Adjacency list and
corresponding graph

TR
AVER

SIN
G

 A G
R

APH

95

Input(1, DataRow)

NodeMatrix(Loop1) = DataRow

VisitedMatrix(Loop1) = False

 dgvRoutes.Rows(Loop1 - 1).HeaderCell.Value =
DataRow

For Loop2 = 1 To NodeCount

Input(1, DataRow)

RouteMatrix(Loop1, Loop2) = DataRow

 dgvRoutes.Rows(Loop1 - 1).Cells(Loop2 - 1).
Value = DataRow

Next

 Next

 End Sub

 Private Sub btnDepthFirst_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles btnDepthFirst.Click

 Array.Clear(VisitedMatrix, 0, VisitedMatrix.
Length)

 txtDepthOut.Text = ""

 ‘ start with node ‘A’

 Depth(1)

 End Sub

 Private Sub Depth(ByVal ThisNode)

 txtDepthOut.Text = txtDepthOut.Text &
NodeMatrix(ThisNode) & vbCrLf

 VisitedMatrix(ThisNode) = True

 ‘ Look at each node, check for route

 For Loop1 = 1 To NodeCount

‘ check for route

If RouteMatrix(ThisNode, Loop1) = True Then

‘check node is unvisited

If VisitedMatrix(Loop1) = False Then

Depth(Loop1)

End If

End If

 Next

 End Sub

 1
2

G
ra

ph
 a

nd
 tr

ee
 tr

av
er

sa
l

96

 Private Sub btnBreadth_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnBreadth.Click

 ‘ reset visited array

 Array.Clear(VisitedMatrix, 0, VisitedMatrix.
Length)

 txtBreadthOut.Text = ""

 ‘ initialize

 Dim Queue(30) As Integer

 Dim QueueHead As Integer

 Dim QueueNext As Integer

 QueueHead = 1

 QueueNext = 1

 ThisNode = 1

 Queue(QueueNext) = ThisNode

 VisitedMatrix(1) = True

 QueueNext = QueueNext + 1

 Do

‘ take next item in queue

ThisNode = Queue(QueueHead)

QueueHead = QueueHead + 1

 txtBreadthOut.Text = txtBreadthOut.Text &
NodeMatrix(ThisNode) & vbCrLf

For Loop1 = 1 To NodeCount

‘ is node connected?

If RouteMatrix(ThisNode, Loop1) = True Then

‘ has node been visited

If VisitedMatrix(Loop1) = False Then

‘ add node reference to queue

VisitedMatrix(Loop1) = True

Queue(QueueNext) = Loop1

QueueNext = QueueNext + 1

End If

End If

Next

 Loop Until QueueHead = QueueNext

 End Sub

End Class

TR
AVER

SIN
G

 A B
IN

AR
Y TR

EE

97

● Traversing a binary tree
Implementing a binary tree was explained in Chapter 9. In this section,
you will learn how to traverse a tree. The process of traversing a binary
tree extracts all the data from the tree in some sort of order. There are three
ways of traversing a binary tree – pre-order, in-order and post-order.

To traverse a binary tree you start at the root node and move left, right or
visit depending on the type of traversal you are using. Moving left or
right entails ‘looking’ to see if there is a node in that direction and moving
if there is. Visit entails extracting the data at that node.

Traversing the binary tree in Figure 12.2 gives the
following results:

Table 12.4 Binary tree traversals

Pre-order Visit, Left, Right John, Helen, Kim

In-order Left, Visit, Right Helen, John, Kim

Post-order Left, Right, Visit Helen, Kim, John

Note that pre/in/post tells you when you do the visit stage.

This algorithm written in pseudo-code carries out an in-order traversal:

Set current node as root

Traverse

End

Define Procedure Traverse

 If there is a node to the left then

 Move left to child node

 Traverse

 End If

 Visit

 If there is a node to the right then

 Move right to child node

 Traverse

 End If

End Procedure

Here is how this algorithm traverses the
binary tree in Figure 12.3.

 1 The root node is set as the current node
(“Colin”).

 2 The procedure Traverse is called for the first time.
 3 There is a node to the left of the current node so move to the node to

the left so that we are now on the node containing “Bert”.
 4 The procedure Traverse is called for the second time. The details of

the first call of Traverse are pushed on to the stack.
 5 There is a node (“Alison”) to the left of “Bert” so move left. Current node

KEYWORDS
Binary tree: a structure where
each node can only have up to
two child nodes attached to it.
Pre-order: a method of
traversing a tree by visiting the
root, traversing the left subtree
and traversing the right subtree.
In-order: a method of traversing
a tree by traversing the left
subtree, visiting the root and
traversing the right subtree.
Post-order: a method of
traversing a tree by traversing
the left subtree, traversing the
right subtree and then visiting
the root.
Traversal: the process of
reading data from a tree or
graph by visiting all of the nodes.

Figure 12.2

John

KimHelen

Figure 12.3

Bert

CedricAlison

Colin

 1
2

G
ra

ph
 a

nd
 tr

ee
 tr

av
er

sa
l

98

 6 Traverse is called again. This time there is nothing to the left of the
current node.

 7 Visit the node – the term ‘visit’ is deliberately vague. It might mean
‘print it out’ or it might mean ‘enter the person’s date of birth’ or any
other process you want to carry out on each node.

 8 Now we need to check if there is a node to the right of “Alison” but
there is not, so move back up the branch to “Bert”.

 9 This call of Traverse has now been completed so the details of the
previous call can be popped off the stack.

10 We jumped out of the second call of Traverse after the first question
so we now visit the node “Bert”.

11 Now we look to the right of “Bert”. There is a node there (“Cedric”) so
we go to that node.

12 Traverse is called again so the details of the previous call of
Traverse are placed on the stack.

13 Now we are at “Cedric” we look left, then visit then look right.
14 This call is now finished so back up the branch to “Bert”.
15 We have now finished the call to “Bert” so that call of Traverse is

also complete, so it’s back up to “Colin”.
16 Visit “Colin”.
17 Try to go right, but there is nothing to go to.
18 Finish the first call to Traverse.

If you have followed this process through you should find that you have
visited the nodes in alphabetical order – Alison, Bert, Cedric and finally Colin.

This looks and sounds like a very complex process, but in fact it is a very
elegant solution to the problem. You must remember that although we have
only traversed a tree with four nodes, the process would be exactly the
same for a tree with 400 nodes. The only limitation is the number of calls
of Traverse that the stack can handle.

Traversing a binary tree in pre-order follows the same routine but in this
case you visit the root node as soon as you get to it. Traversing the tree given
above in pre-order would result in Colin, Bert, Alison and Cedric. The only
detail you would need to make the code carry out a pre-order traversal would
be to move the visit to before the first If statement like this.

‘Pre order traversal

Visit

If there is a node to the left then

 Move left to child node

 Traverse

End If

If there is a node to the right then

 Move right to child node

 Traverse

End If

A post-order traversal would result in the list Alison, Cedric, Bert and
Colin. In this case you visit the node after you have tried to go both left and
right from the node.

R
ECU

R
SIO

N

99

An interesting feature of all this is that no matter how you set out the four
nodes, an in-order traversal will always produce a sorted list, but pre-order
and post-order produce a different set of data if the data are rearranged.
Typical uses of each traversal are:
● Pre-order: This can be used with expression trees to evaluate the expression

using prefix notation. Evaluating an expression simply means that values
are to be placed into the expression to produce a result. Prefix means that
the operators in the expression are evaluated before the values.

● In-order: This is the equivalent of a binary search of the tree, which is
explained in more detail in the next chapter.

● Post-order: This will produce Reverse Polish Notation (RPN) and this is
covered in detail in Chapter 18. A post-order algorithm can also be used
to empty the contents of a tree.

● Recursion
Recursion is the process of calling a function from within itself. The
concept is very elegant, but trying to understand how it works is rather
more difficult. The algorithm described above that traverses a binary tree
uses recursion. Each time a call is made the current state of the procedure
must be stored on the stack.

The process to traverse a binary tree in order goes like this:

Define Procedure Traverse

 If there is a node to the left Then

 Go Left

 Traverse

 End If

 Visit

 If there is a node to the Right Then

 Go Right

 Traverse

 End If

End Procedure

After the procedure Traverse has been called for the first time the
program will check to see if there is a node to the left. If there is it goes left
then calls the procedure Traverse. This means that Traverse has been
called from inside the procedure Traverse, and if the next node also has
a node to its left then Traverse will be called from inside itself again.

Recursion has a base case and general cases. The base case is also known as
the terminating case and defines the point at which the recursive function
will stop calling itself. In the example above, the terminating case is when
there are no more nodes left to visit in the tree. The general cases are all of
the inputs which require the function to call itself. In the example above,
Traverse will continue to call itself if there is a node either on the right
or the left of the current node.

Practice questions can be found at the end of the section on page 132.

KEYWORD
Recursion: a technique where a
function can call itself in order
to complete a task.

KEYWORD
Binary search: a technique
for searching data that works
by splitting datasets in half
repeatedly until the search data
is found.

 1
2

G
ra

ph
 a

nd
 tr

ee
 tr

av
er

sa
l

100

TASKS
1 Draw a binary tree for the following data: Rose, Jasmine, George,

Naomi, Trevor and Stanley.
a) List the nodes that will be visited in order to find the node that

stores George.
b) Traverse the tree in pre-order and write down the value at each

node when you visit it.
c) Repeat this process for a post-order traversal.
d) Repeat this process for an in-order traversal.

2 Explain the term recursion and give an example where it might be used.
3 Write pseudo-code to show how the following graph could be

traversed: depth first and breadth first.

A B

C

STUDY / RESEARCH TASKS
1 Write pseudo-code to traverse a binary tree for the following data:

Rose, Jasmine, George, Naomi, Trevor and Stanley.
a) List the nodes that will be visited in order to find the node that

stores George.
b) Traverse the tree in pre-order and write down the value at each

node when you visit it.
c) Repeat this process for a post-order traversal.
d) Repeat this process for an in-order traversal.

2 Write code to implement and traverse the following graph.

A B

C
D

E

3 Turn your pseudo-code from question 1 above into an application
using a high-level language of your choice.

KEY POINTS
• Graphs can be represented

using an adjacency list or
matrix.

• Traversal is the process of
visiting the vertices (nodes) in
different orders to generate
different results.

• Graphs can be traversed
depth first or breadth first.

• Breadth first traversal finds
the shortest path between
vertices on unweighted
graphs.

• Binary trees can be traversed
in-order, post-order to pre-
order, to create different
outputs.

• Post-order traversal of a
binary tree can be used
to create Reverse Polish
Notation.

• Recursion is where a function
calls itself.

101

 13 Dijkstra’s shortest
path algorithm

INTRODUCTION
Dijkstra’s shortest path algorithm calculates the shortest distance
between two vertices (nodes) on a graph data type. The algorithm can
be used to find the shortest path from one node to all other nodes in
a graph. It was devised by Dutch computer scientist Edsger Dijkstra
and published in 1959. To understand the algorithm you must have
a good understanding of the graph data type that we looked at in
Chapter 10.

LEARNING OBJECTIVES
In this chapter you will:
• consolidate your learning about graphs
• learn what Dijkstra’s shortest path algorithm is and how it can be

applied
• learn how to trace Dijkstra’s shortest path algorithm
• learn how to implement Dijkstra’s shortest path algorithm.

SPECIFICATION COVERAGE
3.3.6 Optimisation algorithms

As an example, it can be used to solve problems like working out the
shortest distance between two towns.

Town A
30

60

30
30

2020

Town B

Town D
Town C

Town E

Figure 13.1 Graph to show journey time between towns

Consider the problem we looked at in Chapter 10 of working out the
shortest distance between Town A and Town E. On a simple graph like this
we could simply use trial and error to find the result. For example:

A level only

 1
3

D
ijk

st
ra

’s
 sh

or
te

st
 p

at
h

al
go

rit
hm

102

Possible routes Distance Total distance

A to B to E 30 + 60 90

A to C to B to E 20 + 20 + 60 100

A to C to D to E 20 + 30 + 30 80

A to B to C to D to E 30 + 20 + 30 + 30 110

The table shows all of the possible routes that we could take that do not
involve circuits, and also shows the shortest path, which is to go from A to
C to D and then to E.

As a quick reminder, graphs are made up of vertices (or nodes) and edges,
which are the connections between them. Some vertices are not connected
and therefore have no path between them. It is also possible to have
weighted graphs as with the example above, where there is a value attached
to each edge.

Dijkstra’s algorithm works by working out the shortest path between a
single source (the starting vertex) and every other vertex. As a result
it also produces the shortest path between the starting vertex and a
destination vertex, as in the example above. It only works on weighted
graphs with positive values on the edges.

Below are examples of some of the common applications that will require a
shortest path algorithm. Dijkstra’s algorithm is likely to be the basis of all of
these.
● Geographic information systems (GIS) such as satellite navigation

systems and mapping software where the vertices are geographical
locations and the edges show distance or drive-time.

● Telephone and computer network planning where the vertices are the
individual devices on the network and the edges could either be physical
distance or a measurement of network capability, such as bandwidth.

● Network routing/packet switching: where the vertices are network
devices and the edges are the connections between them. The algorithm
can be used to send data packets along the most efficient route. In fact
there is a routing protocol for TCP/IP networks called OSPF, which
stands for open shortest path first.

● Logistics and scheduling: wherever there is a large network of vehicles,
for example, delivery vehicles, buses or aeroplanes the algorithm can be
used to calculate the optimum routes.

Figure 13.2 A graph with multiple vertices and edges

Figure 13.2 is a visualisation of the problem above showing any number of
vertices and edges. As you can see, you could have a very large number of
possible paths, making the trial and error system impractical.

KEYWORD
Single source: in Dijkstra’s
algorithm it means that the
shortest path is calculated from
a single starting point.

TR
ACIN

G
 D

IJK
STR

A’S ALG
O

R
ITH

M

103

● Tracing Dijkstra’s algorithm
The algorithm works as follows using Figure 13.3 as an example and
assumes that we are looking for the shortest path between vertex A and G
rather than the shortest path from A to every node.

1 Start from the first vertex (in this case A).
2 Work out the weight (also known as the cost) for each edge between that

vertex and other connected vertices, e.g. A to B is 2 and A to C is 5.
3 Move on to the next nearest vertex and repeat the process. In this case it

would be B. This time you need to add the two weights together to get a
total weight between two points. For example:
● A to B to C would be 6.
● A to B to F would be 9.

4 We now have two options for getting from A to C:
● We could go from A to C direct with a weight of 5.
● We could go from A to B to C with a weight of 6.

5 As we are finding the shortest path, we now know that the quickest
route from A to C is to go direct from A to C. We need to retain this
information and ignore other routes that are longer.

6 Now repeat the process until all vertices have been visited and you get
to the destination vertex, which in this case is G.

A
2

5 4

6
3

4

4

B
7

2

F

G

ED
C

Figure 13.3 A map for tracing Dijkstra’s algorithm

The calculations become a little more complicated as you need to keep an
accumulated total of the weights between all sets of connected vertices, and
then choose the shortest one. Table 13.1 traces each stage of the algorithm and
we will work through the table a step at a time.

Table 13.1

Step Vertex A B C D E F G

1 A 0A 2A 5A ∞A ∞A ∞A ∞A

2 B 0A 2A 5A ∞B ∞B 9B ∞B

3 C 0A 2A 5A 11C ∞C 9B ∞C

4 F 0A 2A 5A 11C ∞F 9B 11F

5 0A 2A 5A 11C ∞F 9B 11F

KEYWORD
Shortest path: the shortest
distance between two vertices
based on the weighting of the
edges.

 1
3

D
ijk

st
ra

’s
 sh

or
te

st
 p

at
h

al
go

rit
hm

104

Step 1
● Place A in the first column and complete the distance between it and the

other vertices.
● Notice that A to A is shown as 0. A to B is 2, A to C is 5. These are all

shown with the subscript A to show clearly which vertex is being used.
This becomes important later on.

● Notice that where there is no edge, the value is shown as infinite.
● We have now finished with the vertex A as there are no other edges.

Step 2
● Now move onto the next nearest vertex to A, which is B as it has the

lowest value in the row above. Notice that the same value is placed in the
table for B as in the row above. This is because we already know that this
is the shortest path from A to B. In this case it is 2.

● The subscript A shows us clearly that the shortest path came from vertex A.
● The next path is B to C. This would be 4. However, we need to add on

the 2, which is the shortest path that it took to get from A to B in the first
place. This would give us a result of 6. However, this is higher than the
path we already have between A and C, so we do not include it. Instead
we keep the 5 from the row above. In other words, going from A to C
direct is a shorter path than going from A to B to C.

● As you move through the rows you always keep the lowest value from the
row above as this is the shortest path to that point.

Step 3
● Now move onto the next nearest vertex to B, which is C.
● Notice we can complete the table for the vertices that we have already

visited and finished with in red. This makes it clear that the vertices have
been dealt with and that we do not need to calculate them again.

● The next edge is between C and D. It has a weight of 6, but we have to add
the shortest weight that it took to get to C in the first place, which you can
see from the row above is 5. Therefore we put 11 in the table for the distance
from C to D with a subscript C to show which vertex we came from.

● C is not connected to any other vertex that has not already been
explored, so a standard way of showing this is to put the infinity sign in
the table against the other vertices.

● Notice that we had a connection between A and F (via B) of only 9, so
this stays in the column. This is because A to B to F is shorter than A to
C to D to F.

Step 4
● Now move on to the next nearest vertex, which is F (with a weight of 9).
● Complete the table in red up to that point as before to show that we have

finished with those vertices.
● Notice that we have been able to skip D and E as we already know that

these will not produce the shortest path as the distance to D is equal to
the shortest distance found to G so far. The algorithm will however have
to calculate these distances first before it can carry out the next step.

● F connects to G in 2, but you have to add on the shortest path to this
point, which is 9 making a total of 11.

IM
PLEM

EN
TIN

G
 D

IJK
STR

A’S SH
O

R
TEST PATH

 ALG
O

R
ITH

M

105

Step 5
● There are no more edges to be compared so this final step simply lists

the final values.
● Reading off the last row of the table you can see that the shortest path

between A and G is 11 and looking at the subscript letters you can see
that the route is A, B, F, G.

You can check this by looking at alternative routes and working out the
total weight. The two other possible paths in this example are:
● A, C, D, E, G with a total weight of 18
● A, C, B, F, G with a total weight of 18.

● Implementing Dijkstra’s shortest path
algorithm
The values for a weighted graph with eight vertices could be represented as
a two-dimensional array as follows:

Table 13.2 A two-dimensional array containing details for a graph

A B C D E F G

A 0 4 3 7 0 0 0

B 4 0 0 1 0 5 0

C 3 0 0 3 5 0 0

D 7 1 3 0 2 2 7

E 0 0 5 2 0 0 2

F 0 5 0 2 0 0 5

G 0 0 0 7 2 5 0

This would produce the following graph:

GE

C D

A B

F

4

2

5173

3

25 57

2

Figure 13.4 Graph created from the two-dimensional array in Table 13.2

This code reads in the data from an array stored in a csv file. It uses
recursion to visit each node and mark it as visited, recording the shortest
path between each. This means that it is able to produce the shortest path
between any two vertices visited as well as provide a shortest path between
the starting vertex A and the destination vertex G.

 1
3

D
ijk

st
ra

’s
 sh

or
te

st
 p

at
h

al
go

rit
hm

106

 Public MinDist(8) As Integer

 Public NodeFixed(8) As Boolean

 Public Route(8) As String

 Public ThisNode As Integer

 Public ThisMin As Integer

 Public ThisRoute As String

 Public DistToThisNode As Integer

 Public NodeCount As Integer

 ‘ generix ‘load data from file routine’

 Private Sub frmGraph_Load(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
MyBase.Load

 Dim DataRow As String

 ‘ count nodes

 NodeCount = 7

 ‘ populate arrays

FileOpen(1, "C:\NodeTable.csv", OpenMode.
Input)

 DataRow = LineInput(1)

 For Loop1 = 1 To NodeCount

dgvRoutes.Rows.Add()

dgvLowestValue.Rows.Add()

 dgvLowestValue.Rows(Loop1 - 1).Cells(0).Value =
999

MinDist(Loop1) = 999

Input(1, DataRow)

NodeName(Loop1) = DataRow

 dgvRoutes.Rows(Loop1 - 1).HeaderCell.Value =
DataRow

 dgvLowestValue.Rows(Loop1 - 1).HeaderCell.Value =
DataRow

For Loop2 = 1 To NodeCount

Input(1, DataRow)

RouteMatrix(Loop1, Loop2) = DataRow

 dgvRoutes.Rows(Loop1 - 1).Cells(Loop2 -
1).Value = DataRow

Next

 Next

 End Sub

IM
PLEM

EN
TIN

G
 D

IJK
STR

A’S SH
O

R
TEST PATH

 ALG
O

R
ITH

M

107

 Private Sub btnFind_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnFind.Click

 ‘ reset tracking table

 For Loop1 = 1 To NodeCount

 dgvLowestValue.Rows(Loop1 - 1).Cells(0).Value =
999

 dgvLowestValue.Rows(Loop1 - 1).Cells(1).Value =
False

Route(Loop1) = "A"

NodeFixed(Loop1) = False

MinDist(Loop1) = 999

 Next

 ‘ start recursive process

 MinDist(1) = 0

 CurrentNode(1)

 End Sub

 Private Sub CurrentNode(ByVal ThisNode)

 ‘ theoretically all distances start as infinity

 ‘ but infinity is not a concept a computer can

 ‘ cope with so I have used a value of 999

 DistToThisNode = MinDist(ThisNode)

 NodeFixed(ThisNode) = True

 ThisRoute = "" & Route(ThisNode)

 ‘ calculate distance using this node

 ‘ check all the nodes

 For Loop1 = 1 To NodeCount

‘ has node been fixed?

If NodeFixed(Loop1) = False Then

‘ is node connected to ThisNode?

If RouteMatrix(ThisNode, Loop1) <> 0 Then

‘ is potential distance shorter?

 If MinDist(Loop1) > DistToThisNode +
RouteMatrix(ThisNode, Loop1) Then

 MinDist(Loop1) = DistToThisNode +
RouteMatrix(ThisNode, Loop1)

 Route(Loop1) = ThisRoute &
NodeName(Loop1)

‘ update display

 1
3

D
ijk

st
ra

’s
 sh

or
te

st
 p

at
h

al
go

rit
hm

108

 dgvLowestValue.Rows(Loop1 - 1).Cells(0).
Value = MinDist(Loop1)

 dgvLowestValue.Rows(Loop1 - 1).Cells(1).
Value = NodeFixed(Loop1)

 dgvLowestValue.Rows(Loop1 - 1).Cells(2).
Value = Route(Loop1)

End If

End If

End If

 Next

 ‘find shortest distance leading to am unfixed node

 ThisMin = 999

 For Loop1 = 1 To NodeCount

‘ update display to show progress

 dgvLowestValue.Rows(Loop1 - 1).Cells(1).Value =
NodeFixed(Loop1)

‘ is node fixed?

If NodeFixed(Loop1) = False Then

‘ is this the shortest unfixed node?

If MinDist(Loop1) < ThisMin Then

‘ then record which node it leads to

ThisNode = Loop1

ThisMin = MinDist(Loop1)

End If

End If

 Next

 MsgBox("Current node is " & NodeName(ThisNode) &
vbCrLf & "click to move on", 0, "")

 ‘ if ThisMin is still 999 then all nodes are fixed

 If ThisMin <> 999 Then

CurrentNode(ThisNode)

 End If

 End Sub

End Class

Figure 13.5 is a screenshot from the program that shows the process being
tracked after a vertex has been visited.

IM
PLEM

EN
TIN

G
 D

IJK
STR

A’S SH
O

R
TEST PATH

 ALG
O

R
ITH

M

109

TASKS
1 Draw the graph that would be produced from the following array.

A B C D E

A 0 3 2 0 0

B 3 0 0 3 0

C 2 4 0 4 2

D 0 3 4 0 4

E 0 0 2 4 0

2 Write the array that would be needed to create the following graph.

A

C

D

E

F

G
B

4 4 7

5517

3 2

32

3 Using this graph, trace Dijkstra’s algorithm to show the shortest path
between A and G.

 STUDY / RESEARCH TASKS
1 Explain why Dijkstra’s shortest path algorithm would not solve ‘the

travelling salesman problem’.
2 What is meant by a greedy algorithm?
3 Explain the time complexity of Dijkstra’s algorithm using Big O

notation. (You may need to refer to Chapter 22 for details on Big O
notation.)

4 Research the open shortest path first protocol (OSFP).

KEY POINTS
• Dijkstra’s shortest path

algorithm calculates the
shortest distance between
two vertices (nodes) on a
graph data type.

• Graphs are made up of
vertices (or nodes) and edges,
which are the connections
between them.

• Dijkstra’s shortest path
algorithm only works on
weighted graphs with positive
values on the edges.

• Dijkstra’s shortest
path algorithm can be
implemented using the values
of a two-dimensional array.

Figure 13.5

Practice questions can be found at the end of the section on page 132.

110

INTRODUCTION
One of the main benefi ts of using a computer is the ability to search.
Consider how many everyday activities involve searching, for example:

• a cash machine searches for your bank account details to fi nd how
much (or little) money you have left in the account

• the computerised till at your local supermarket searches for the cost
of the goods you are buying

• a search engine on the Internet looks for the cheapest holiday to
the Algarve.

Most searches are carried out on data storage systems, but they are
used in other applications as well, for example, in the fi nd and replace
process on a word processor. A simple search might just look for one
keyword, but most search routines allow you to construct more complex
queries using logic statements such as OR, AND and NOT.

There are a number of different searching algorithms that can be used.
Which one you choose depends to a large extent on the data being
searched in terms of its size and complexity. The effi ciency of algorithms
is usually represented using Big O notation and there is more on this in
Chapter 22.

LEARNING OBJECTIVES
In this chapter you will learn:
• what a linear search is and how it could be implemented
• what a binary search is and how it could be implemented
• what a binary tree search is and how it could be implemented
• to compare the effi ciency of the different search methods.

SPECIFICATION COVERAGE
3.3.4 Searching algorithms

 14 Search algorithms –
binary, binary tree
and linear search

A level only

LIN
EAR

 SEAR
CH

111

● Linear search
A linear search works by looking at every item or set of data until the
details that you are searching for are found or you fail to find it altogether.
The efficiency of a search can be strongly influenced by the way that the
data is organised. If there is no logical or rational method in the way the
data has been stored then the only option is to use a linear search. This is
the simplest but also the least efficient method.

You might use a linear search to find a book on a bookshelf – you know it
is there somewhere but unless the books are organised in some way, say by
title or author, then you will have to check every title until you find the one
you want. A search might be coded something like this:

Repeat

 Look at the Title

Until Title is the one you want OR there are no more
books

The efficiency of the search also depends on the size of the dataset being
searched and where the search item is within it. The best-case scenario is
that it is near the beginning in which case it could find the result quickly.
However, in the worst-case scenario the search item may be near the end
of the dataset in which case it could take a long time. The speed of the
algorithm therefore is proportionate to the size of the dataset.

Below is a section of commented code from Visual Basic showing a linear
search. It is looking for a text string defined by txtFind.Text. Note that
it also carries out a count to work out how many ‘looks’ it has to do to find
the data:

Private Sub btnSearch_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnSearch.Click

 Dim CountLinear As Integer = 0

 txtTraceBinary.Text = ""

 txtTraceLinear.text = ""

 ‘ linear search

 Do

CountLinear = CountLinear + 1

Figure 14.1 Unsorted books

KEYWORD
Linear search: a simple search
technique that looks through
data one item at a time until the
search term is found.

 1
4

Se
ar

ch
 a

lg
or

it
hm

s –
 b

in
ar

y,
 b

in
ar

y
tr

ee
 a

nd
 li

ne
ar

 se
ar

ch

112

Block 8 contains the number 37, so blocks 1 to 8 can now be discarded.
Half way between 9 and 15 is 12 so look there next.

Figure 14.3

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

37

9 10 11 12 13 14 15

 txtTraceLinear.Text = txtTraceLinear.Text &
CountLinear & "-" & grdTable.Rows(CountLinear).
Cells(0).Value & vbCrLf

 Loop Until CountLinear = RowCount Or grdTable.
Rows(CountLinear).Cells(0).Value = txtFind.Text

 txtLinearLooks.Text = CountLinear

 ‘ match found?

 If grdTable.Rows(CountLinear).Cells(0).Value =
txtFind.Text Then

lblResult.Text = "Match Found"

 Else

lblResult.Text = "No Match Found"

 End If

 End Sub

End Class

● Binary search
If the data you want to look through is in some sort of logical order then
you might be able to use a technique called a binary search. This method
works in the same way as the children’s game where someone thinks of a
number between say 1 and 100 and you have to guess what it is by being
told if your guesses are higher or lower than the number.

A logical person would start with 50, because they could then discount
half of the numbers straight away. Guessing half way into the middle of
the remaining numbers (either 25 or 75) will allow half of the remaining
numbers to be discarded and so on. Each time you make a guess you halve
the number of options that are left to you, and you alter the range within
which the answer must be.

These 15 cells contain 15 numbers arranged in ascending order:

Use this method to find the number 51 which is contained in one of these
cells. Start in the middle – block 8.

Figure 14.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KEYWORD
Binary search: a technique
for searching data that works
by splitting datasets in half
repeatedly until the search data
is found.

B
IN

AR
Y SEAR

CH

113

Figure 14.4

Block 12 contains the number 57 so blocks 12 to 15 can be discarded. Half
way between blocks 9 and 11 is block 10 so look there.

Block 10 contains the number we are looking for. This has taken three
‘looks’ to find the missing number.

This pseudo-code shows how you might set out the process in a program.
In this case the record number that needs to be found is stored in a variable
called FindMe.

FindMe stores the record title that we are searching
for

LowestPointer 1

HighestPointer NumberofRecords

Do

 MiddlePointer (LowestPointer + HighestPointer) / 2

 If Record at MiddlePointer < FindMe Then

LowestPointer MiddlePointer + 1

 End If

 If Record at MiddlePointer > FindMe Then

 HighestPointer MiddlePointer - 1

 End If

Until Record at MiddlePointer = FindMe OR
LowestPointer = HighestPointer

The pointers LowestPointer and HighestPointer point to the first
and last locations in the file where the record you are looking for might be
located. The pointer MiddlePointer stores the number roughly half way
between the two extremes.

At first this seems like a very slow system, but in fact it is very efficient. If
you want to search through just three records it will take a maximum of
two ‘looks’ before you find a match and with seven records you will need
three ‘looks’ and so on. If you have one million records you would need
to take a maximum of just 20 ‘looks’, and it would take a maximum of 33
looks to find one person in the world which currently has a population of
over six billion.

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

37

9 10 11 12

57

13

x

14

x

15

x

Figure 14.5

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

37

9 10

51

11 12

57

13

x

14

x

15

x

 1
4

Se
ar

ch
 a

lg
or

it
hm

s –
 b

in
ar

y,
 b

in
ar

y
tr

ee
 a

nd
 li

ne
ar

 se
ar

ch

114

Below is a section of commented code from Visual Basic showing a binary
search. It is looking for a text string defined by txtFind.Text. Note that
it also carries out a count to work out how many ‘looks’ it has to do to find
the data.

 Private Sub btnSearch_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
Handles btnSearch.Click

 Dim MinNode As Integer = 0

 Dim MaxNode As Integer = RowCount

 Dim LookNode As Integer

 Dim LastNode As Integer

 Dim CountBinary As Integer = 0

 txtTraceBinary.Text = ""

 txtTraceLinear.text = ""

 ‘ binary search

 Do

CountBinary = CountBinary + 1

LastNode = LookNode

‘ calculate midpoint of remaining nodes

LookNode = Int(MinNode + MaxNode) / 2

 ‘ determine which half of remaining nodes to
discard

 If grdTable.Rows(LookNode).Cells(0).Value >
txtFind.Text Then

MaxNode = LookNode

Else

MinNode = LookNode

End If

 txtTraceBinary.Text = txtTraceBinary.Text
& LookNode & "-" & grdTable.Rows(LookNode).
Cells(0).Value & vbCrLf

 Loop Until grdTable.Rows(LookNode).Cells(0).Value
= txtFind.Text Or LastNode = LookNode

 txtBinaryLooks.Text = CountBinary

B
IN

AR
Y TR

EE SEAR
CH

115

● Binary tree search
Binary trees are often used in programs where data is very dynamic, which
means that data is constantly entering and leaving the tree. Where a binary
tree has been used the process of searching it is similar to the binary search
method described above except that rather than looking through a list
of data items, it must traverse the tree and look at the data item stored at
each node. In this routine the variable FindMe contains the name we are
looking for within the data stored in the tree and you will remember that
the ‘Root node’ is the node the tree is built from.

CurrentNode RootNode

Repeat

 If Current_Node > Find_Me then

 Move left to child node

 Else

 Move right to child node

 End If

Until CurrentNode equals FindMe Or

CurrentNode has no children

The following section of commented code shows how the binary tree
search is carried out. txtSearchFor.Text is the name of the variable
that will hold the text strings being searched for.

Private Sub txtSearchFor_KeyDown(ByVal sender As
Object, ByVal e As System.Windows.Forms.KeyEventArgs)
Handles txtSearchFor.KeyDown

 ‘ check for enter key press

 If e.KeyCode = Keys.Enter Then

Dim ThisNode As Integer = 1

 txtOutput.Text = "Root - " & NodeValue(1) &
vbCrLf

 Do Until NodeValue(ThisNode) = txtSearchFor.
Text Or ThisNode = 0

‘ move to node at left pointer

 If txtSearchFor.Text < NodeValue(ThisNode)
Then

ThisNode = PointerLeft(ThisNode)

 txtOutput.Text = txtOutput.Text & "L - " &
ThisNode & " - " & NodeValue(ThisNode) &
vbCrLf

End If

‘ move to node at right pointer

 If txtSearchFor.Text > NodeValue(ThisNode) Then

ThisNode = PointerRight(ThisNode)

KEYWORD
Binary tree search: a technique
for searching a binary tree that
traverses the tree until the
search term is found.

 1
4

Se
ar

ch
 a

lg
or

it
hm

s –
 b

in
ar

y,
 b

in
ar

y
tr

ee
 a

nd
 li

ne
ar

 se
ar

ch

116

 txtOutput.Text = txtOutput.Text & "R - " &
ThisNode & " - " & NodeValue(ThisNode) &
vbCrLf

End If

Loop

If NodeValue(ThisNode) = txtSearchFor.Text Then

txtOutput.Text = txtOutput.Text & "FOUND"

Else

txtOutput.Text = txtOutput.Text & "NOT FOUND"

 End If

 End If

 End Sub

End Class

A binary tree search is similar to the in-order tree traversal that we looked
at in the previous chapter.

Practice questions can be found at the end of the section on page 132.

TASKS
1 Explain how the three main search algorithms work: linear, binary and

binary tree search.
2 Explain the circumstances where you might use a binary search

compared to a linear search.
3 Why might a programmer use a binary tree structure?
4 Why is a binary search considered to be more efficient than a linear

search on large datasets?

STUDY / RESEARCH TASKS
1 Write code to implement, populate and search a binary tree.
2 Write code to carry out a linear search on a text string input by the

user.
3 Write code to carry out a binary search on a set of numeric data.
4 Research other search techniques and the circumstances under

which they might be used.
5 Find out about the Google search algorithm and explain its

advantages and limitations compared to other web search
algorithms.

KEY POINTS
• There are three main search

algorithms: binary, binary tree
and linear.

• A linear search starts at the
beginning of the data and goes
through each item until it
finds the search item.

• A binary search works by
splitting the data in half each
time until it finds the search
item.

• A binary tree search traverses
a binary tree until it finds the
search item.

• The selection of an
appropriate search method
depends on the how much
data is being searched and
how it is organised.

• Different search algorithms
have different time
complexities, meaning that
some will be more efficient
than others.

117

 15 Reverse Polish
Notation

INTRODUCTION
Reverse Polish Notation (RPN) is a way of writing mathematical
expressions in a format where the operators are written after the
operands. For example, the expression: 5 + 3 becomes 5 3 +. The main
advantages of this method are that it eliminates the need for brackets
and it puts the expression in a sequence that is more convenient for an
interpreter. To get a fuller understanding of RPN you need to know how
mathematical expressions are constructed and the sequence in which
they are evaluated.

LEARNING OBJECTIVES
In this chapter you will learn:
• how to evaluate mathematical expressions
• the difference between infi x, prefi x and postfi x expressions
• what Reverse Polish Notation (RPN) is and how it is used
• how to convert expressions from infi x to postfi x and vice versa
• how to trace an RPN algorithm
• how RPN can be implemented.

SPECIFICATION COVERAGE
3.3.3 Reverse Polish

● Evaluating expressions
To start with a simple example, if we have the expression 5 + 3, we know to
add the 3 to the 5 to create the result. This is known as an infix expression
because the operator (+) is between the operands (5 and 3).

This gets slightly more complicated where the expression is longer. For
example, 3 * 2 + 5 is another infix expression, which we would evaluate by
multiplying 3 and 2 and then adding 5 to the result to get 11. We evaluate
it in this way according to certain rules, which tell us which part of the
expression to evaluate first.

Brackets (or parentheses) are often used in expressions to make these rules
clearer. For example, (3 * 2) + 5 makes the sequence we must use much
clearer. These rules are sometimes referred to as BODMAS, which means
Brackets, Order, Division, Multiplication, Addition, Subtraction. This means:

KEYWORDS
Infix: expressions that are
written with the operators within
the operands, e.g. 2 + 3.
Operator: the mathematical
process within an expression.
BODMAS: a methodology
for evaluating mathematical
expressions in a particular
sequence.

KEYWORD
Reverse Polish Notation (RPN):
another term for postfix notation.

A level only

 1
5

Re
ve

rs
e

Po
lis

h
N

ot
at

io
n

118

● Evaluate the expression inside the brackets first.
● Then evaluate any orders, which are calculations like squares or square

roots.
● Carry out any division or multiplication. If both appear in the expression

then they have equal importance so you work from left to right.
● Then carry out any addition or subtraction. Again, if both operators

appear in an expression, they have equal importance so work left to right.

If we had the infix expression: 3 + (18 / 32 * 3) – 4 and evaluated it using
these rules we would:
● Evaluate the expression in the brackets first:

– Square the 3 to get 9.
– Work out 18 / 9 to get 2.
– Multiply 2 * 3 to get 6.

● Now we can carry out the addition 3 + 6 to get 9.
● Then subtract the 4 to get an answer of 5.

● Polish and Reverse Polish Notation
Polish Notation was invented by Polish mathematician Jan Lukasiewicz in
1924 and therefore pre-dates computers as we know them. It was developed
as a way of simplifying mathematical expressions, eliminating the need
for brackets completely, while still producing expressions without any
ambiguity as to how they should be processed. In the 1950s, it was adapted
to become Reverse Polish Notation (RPN) because it was evident that this
way of writing expressions was a convenient format for an interpreter as
it evaluates lines of programming code.

When code is written using a programming language, it has to be converted
from that language into machine code (0s and 1s) so that it can be
processed. The interpreter is a piece of software that carries out this task
by parsing each line of code. This means that it analyses each line of code
to check that it adheres to the rules of the language, known as the syntax.
When parsing expressions, the interpreter analyses the operands first and
then the operators. Therefore, it needs the operators to be on the right-hand
side of the expression.
● Polish Notation (also known as prefix) is a method of rearranging an

expression so that all of the operators are on the left and the operands
are on the right. For example: 7 + 3 becomes + 7 3.

● Reverse Polish Notation rearranges an expression so that all the operators
are on the right-hand side of the operands. So 7 + 3 becomes 7 3 +.

● Converting expressions
Notice that if you do change an infix notation to either prefix or
postfix, you do not change the order of the operands within the
expression. In the example above, the operands must appear in the
order 7 followed by 3.

Where there are brackets in an expression, the same rule applies to RPN;
you evaluate the expression in the brackets first. For example, the infix
expression (5 + 4) / (4 – 1) would have an RPN of 5 4 + 4 1 – /.

KEYWORDS
Polish Notation: another way of
describing prefix notation.
Interpreter: software that
translates and executes
programs line by line by
converting programming
statements either into machine
code or by calling instructions
to carry out the high-level
language statements.
Operand: a value within an
expression.

KEYWORDS
Prefix: expressions that are
written with the operators
before the operands, e.g. + 2 3
Postfix: expressions that are
written with the operators after
the operands, e.g. 2 3 +

EVALU
ATIN

G
 R

PN
 EXPR

ESSIO
N

S

119

● Notice how this is made up of two parts. The 5 + 4 is evaluated first and
the RPN is created for this part of the expression: 5 4 +.

● The second part of the expression of / (4 – 1) is then evaluated and
becomes 4 1 – /. Notice that the 4 – 1 is evaluated first as this is in
brackets and the final operator is the divide, which will then divide the
contents of the two bracketed expressions.

● Therefore, 5 + 4 = 9, 4 – 1 = 3 and 9 / 3 = 3.

Table 15.1 shows some more examples of expressions in infix format with
their equivalent postfix notation.

Table 15.1 Table to show conversion from infix to postfix notation

Infix Postfix Result Explanation

(6 * 3) – 1 6 3 * 1 – 17 Multiply 6 by 3 to get 18 and then minus 1

(6 * 2) / 3 6 2 * 3 / 4 Multiply 6 by 2 to get 12 and then divide by 3
to get 4

(4 * 3) / (6 * 2) 4 3 * 6 2 * / 1 Multiply 4 by 3 to get 12, then multiply 6 by 2
to get 12, divide the two answers to get 1.

It is possible to convert infix to postfix and vice versa. For example, the
postfix notation 3 4 + would equate to an infix notation of 3 + 4. Similarly:
● The postfix expression 18 3 / 2 + would become the infix expression

(18 / 3) + 2
● The postfix expression 20 5 / 6 2 + – would become the infix expression

(20 / 5) – (6 + 2)

● Evaluating RPN expressions
The most common method for evaluating postfix notation is to use a stack.
Consider the infix expression (2 * 3) + 5. The postfix notation would be
2 3 * 5 +. To evaluate this using a stack:

1 Push 2 onto the stack.
2 Push 3 onto the stack.
3 Push * onto the stack.
4 As * is an operator (multiply) we need to pop this and all of the operands

currently in the stack (2 and 3) and evaluate the expression 2 3 *
5 Push the answer (6) back onto the stack.
6 Push 5 onto the stack.
7 Push + onto the stack.
8 As + is an operator (plus) we need to pop 6 5 + and evaluate the

expression.
9 Push the result (11) onto the stack.

The stack could be visualised during the process as shown in Figure 15.1.

Figure 15.1 Representation of a stack implementing RPN

*
3

Steps 1–3

2

Steps 4–5

6

Steps 6–7

+

5

6

Steps 8–9

11

 1
5

Re
ve

rs
e

Po
lis

h
N

ot
at

io
n

120

The following code shows how an expression in the format A operand
B could be converted from infix to postfix notation. String-handling
expressions are used to identify and extract each part of the expression that
are stored temporarily before being rearranged into postfix notation.

Public Class frmConvert

 Public Source As String

 Public BracketL As String

 Public BracketR As String

 Public Expression As String

 Public Number1 As Integer

 Public Number2 As Integer

 Public Operand As String

 Public MainOperand As String

 Public Pointer As Integer

 Public AddToOutput As String

 Private Sub btnParse_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnParse.Click

 txtResult.Text = ""

 MainOperand = ""

 ‘store original expression in variable ‘Source’

 Source = txtSource.Text

 Do

‘ remove trailing spaces

Source = Trim(Source) + " "

‘ analyse next character in variable ‘Source’

Select Case Mid(Source, 1, 1)

Case "("

 ‘ extract part of main expression that is
in brackets

AddToOutput = Brackets(Source)

Case "+”, "/”, "*”, "-”

‘ next character is an operand

‘ store for now, add to end of expression

MainOperand = Mid(Source, 1, 1)

AddToOutput = ""

Source = Mid(Source, 3, 255)

Case Else

EVALU
ATIN

G
 R

PN
 EXPR

ESSIO
N

S

121

 ‘ next character(s) in expression is
numeric

Pointer = InStr(Source, " ")

Number1 = Mid(Source, 1, Pointer - 1)

 ‘ source contains remainder of the
original expression

Source = Mid(Source, Pointer + 1, 255)

AddToOutput = Number1 & " "

End Select

txtResult.Text = txtResult.Text & AddToOutput

 Loop Until Len(Source) < 2

 txtResult.Text = txtResult.Text & MainOperand

 End Sub

 Private Function Brackets(ByVal SplitMe)

 ‘ extract contents of brackets

 BracketL = InStr(source, "(")

 BracketR = InStr(source, ")")

 Expression = Mid(source, BracketL + 1, BracketR
- BracketL - 1)

 ‘ source holds the remainder of the original
expression

 source = Mid(source, BracketR + 1, 255)

 ‘expression is presumed to be in form A operand B

 BracketL = InStr(Expression, " ")

 Number1 = Mid(Expression, 1, BracketL - 1)

 Operand = Mid(Expression, BracketL + 1, 1)

 Number2 = Mid(Expression, BracketL + 3, 255)

 ‘return RPN formatted expression

 Brackets = Number1 & " " & Number2 & " " &
Operand & " "

 End Function

End Class

You may have noticed a similarity between the terminology used in this
chapter and the terminology used to traverse a binary tree. In fact there is
a direct relationship between the two:
● In-order traversal of a binary tree for an expression would produce an

expression in infix format.
● Post-order traversal would produce an expression in postfix format

or Reverse Polish Notation (RPN).
● Pre-order traversal would produce an expression in prefix format or

Polish notation.

KEYWORDS
In-order traversal: a method
of extracting data from a binary
tree that will result in an infix
expression.
Post-order traversal: a method
of extracting data from a binary
tree that will result in postfix
expressions.
Pre-order traversal: a method
of extracting data from a binary
tree that will result in prefix
expressions.

 1
5

Re
ve

rs
e

Po
lis

h
N

ot
at

io
n

122

Working with the same example, a binary tree can be built using the
postfix expression. In this case, 2 3 * 5 + could be represented in a binary
tree as shown in Figure 15.2.

Figure 15.2 A binary tree showing the two parts of the mathematical expression

+

× 5

2 3

Note that the left subtree carries out the multiplication and the right
subtree carries out the addition:
● A post-order traversal traverses the left subtree, traverses the right subtree

and then visits the root, giving the result 2 3 * 5 +.
● An in-order traversal traverses the left subtree, visits the root and

traverses the right subtree giving the result 2 * 3 + 5.
● A pre-order traversal visits the root, traverses the left subtree and then

traverses the right subtree giving the result + * 2 3 5.

● Applications of RPN
The code used in this chapter has been produced in Visual Basic, which is
considered to be a general purpose imperative language. Some languages
are specifically designed to be stack-oriented and would therefore be ideally
suited to this application. In these cases, the interpreter or compiler checks
all of the syntax with reference to the postfix (or RPN) notation of each
expression. Perhaps the most common of these is PostScript, which is used
to create vector graphics. This works by pushing operands onto the stack
until an operator is pushed on. At that point it pops the operands off the
stack with the operator, performs the calculation and pushes the answer
back to the stack.

RPN is closer to the way in which computers actually carry out
computations. You can look at infix as the way in which humans work,
that is, we expect an operand followed by an operator. Postfix is the way
in which processors work in that they are made up of a series of registers
and units all of which carry out different functions. For example, one
register will store values, while another (the arithmetic logic unit) carries
out calculations. Therefore, it needs to know all the operands first so it can
put them into the appropriate registers. At this point the processor needs to
know which operators to use so it knows what to do with the operands.

As you know, there are many different types of programming languages.
Some of these are high level, which means that the programmer can write in
code that is similar to normal language. Others are low-level, which means
that they are closer to the machine code (or 0s and 1s) that processors actually
use. Some of these low-level languages such as bytecode use postfix notation .

Practice questions can be found at the end of the section on page 132.

KEYWORD
Vector graphics: an image made
up of objects and coordinates.

APPLICATIO
N

S O
F R

PN

123

STUDY / RESEARCH TASKS
1 Research programming languages that use either prefix or postfix

notation. Why do they use this particular form of notation?
2 Write code to convert:

a) infix expressions to postfix
b) postfix expressions to infix.

3 Find out how Java converts high-level code to bytecode using postfix notation.
4 Why was RPN used as a way of programming early calculators?
5 Explain how a stack can be used to convert an infix expression to

a postfix expression.

TASKS
1 Convert the following expressions from infix to postfix (Reverse

Polish) notation.
a) 5 * 6 b) (5 * 4) – 3 c) (6 * 3) / (2 + 4)

2 Convert the following expressions from postfix to infix.
a) 12 4 / 2 + b) 4 4 * 2 2 * + c) 24 6 / 3 2 + 2 /

3 Draw a binary tree for the expression (5 + 6) * 3.
4 What would be the result of the following traversals on the tree you

made for question 3?
a) in-order b) post-order c) pre-order

5 What is the purpose of Reverse Polish Notation?
6 Explain why infix notation is used by humans whereas postfix notation

may be used by an interpreter or compiler.

KEY POINTS
• Reverse Polish Notation

(RPN) is a way of writing
mathematical expressions in
a format where the operators
are written after the operands.

• RPN is useful as it puts
expressions in a format
that can be used more
straightforwardly by an
interpreter.

• Infix refers to expressions that
are in the order that humans
work with, e.g. 5 + 3.

• Postfix refers to expressions
that are in RPN, e.g. 5 3 +.

• Prefix refers to expression
where the operators are first,
e.g. + 5 3.

• RPN can be evaluated using a
stack.

124

 16 Sorting algorithms–
bubble and merge

INTRODUCTION
Sorting is one of the most common processes you would normally want
to carry out on a set of data. Sorting simply means that the data are
put into a particular order, typically alphabetical or numerical in either
ascending or descending order.

There are lots of different ways of sorting data, and one of the skills that
programmers need, is to decide which method suits their needs best.
Some are particularly good when there are a lot of data to sort, others
are particularly good when the data are almost, but not quite in the right
order, and so on.

LEARNING OBJECTIVES
In this chapter you will learn:
• what a bubble sort is and how to implement one
• what a merge sort is and how to implement one
• how to compare the effi ciency of the two sorting methods.

SPECIFICATION COVERAGE
3.3.5 Sorting algorithms

● Bubble sort
If the data are held in an array you can sort the data by comparing each
element in the array with the following element. If the first item is bigger
than the second then you swap them. If you repeat this process enough
times the data will eventually be sorted in ascending order.

In this example the data are stored in an array called Storage and the
array holds NumberOfRecords records. The numbers at the start of
each line are there to help with the explanation – they are not part of the
algorithm.

1 For Loop1 = 1 To NumberOfRecords – 1

2 For Loop2 = 1 To NumberOfRecords – 1

3 If Storage(Loop2)> Storage(Loop2 + 1) Then

KEYWORD
Bubble sort: a technique
for putting data in order by
repeatedly stepping through
an array, comparing adjacent
elements and swapping them if
necessary until the array is in
order.

A level only

B
U

B
B

LE SO
R

T

125

4 Temporary Storage(Loop2)

5 Storage(Loop2) Storage(Loop2 + 1)

6 Storage(Loop2 + 1) Temporary

7 End If

8 Next Loop2

9 Next Loop1

Suppose the array Storage had eight elements.

The algorithm would work like this:
● For now we will ignore lines 1 and 9 in the algorithm and start with lines

2 to 8.
● Lines 2 to 8 are a For/Next loop – a form of iteration. In this case the

process is going to be repeated seven times. The instructions that are
going to be repeated are lines 3 to 7.

● Line 3 compares each element in the array with its neighbour. So the first
time the loop is processed Loop2 contains the value 1 so the contents
of Storage(1) is compared with the contents of Storage(2). In this
case these values would be 12 and 3, respectively.

● 12 is greater than 3 so lines 4, 5 and 6 are carried out and the values are
swapped round to leave the array as shown in Figure 16.2.

● The value of Loop2 is now incremented to 2 so the contents of
Storage(2) is compared and swapped if necessary with the contents of
Storage(3) and so on.

● This whole process of comparing and swapping carries on until all the
elements in the array have been examined. At the end of the loop the
array now looks like Figure 16.3.

● As you will have noticed this isn’t very sorted yet. That is why lines 1 and 9
are there. They now repeat the process all over again until the array is
finally sorted as shown in Figure 16.4.

This algorithm is called a bubble sort because each time the algorithm
carries out one pass of the array the larger numbers are bubbling to one end
of the array and the smaller ones to the opposite end.

This first example is actually very inefficient – it gets carried out regardless
of whether it needs to be or not, and there is a lot of unnecessary work for
the computer to do.

The second algorithm below carries out exactly the same process, but
in a more sophisticated way. This time the algorithm uses a flag called
CompletedFlag to record whether or not a swap has been made. If no
swaps have been made then the data must be sorted so there is no point in
carrying on.

KEYWORD
Iteration: repeating the same
process several times in order
to achieve a result.

3

16

4

9

5

11

6

1

7

6

8

8

2

3

1

12Data

Element

Figure 16.1

3

16

4

9

5

11

6

1

7

6

8

8

2

12

1

3

Figure 16.2

3

9

4

11

5

1

6

6

7

8

8

16

2

12

1

3

Figure 16.3

Figure 16.4

3

6

4

8

5

9

6

11

7

12

8

16

2

3

1

1

 1
6

So
rt

in
g

al
go

rit
hm

s–
bu

bb
le

 a
nd

 m
er

ge

126

Repeat

 CompletedFlag True

 For Counter = 1 To NumberOfRecords - 1

 If Storage(Counter) > Storage(Counter + 1) Then

Temporary Storage(Counter)

Storage(Counter) Storage(Counter + 1)

Storage(Counter + 1) Temporary

CompletedFlag False

 End If

 Next

Until CompletedFlag = True

The Visual Basic code below shows a bubble sort routine for text strings.

Private Sub btnSort_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnSort.Click

 Dim Loop1 As Integer

 Dim Loop2 As Integer

 Dim TempStore As String

 Dim RowsToSort As Integer

 RowsToSort = grdDataIn.RowCount - 2

 For Loop1 = 1 To RowsToSort - 1

 For Loop2 = 1 To RowsToSort - 1

 ‘compare each value in the table with the
following value

 ‘changing the inequality will sort high to low

 If grdDataIn.Rows(Loop2).Cells(0).Value >
grdDataIn.Rows(Loop2 + 1).Cells(0).Value Then

 ‘swap values to move larger values to later
cells

 TempStore = grdDataIn.Rows(Loop2).Cells(0).
Value

 grdDataIn.Rows(Loop2).Cells(0).Value =
grdDataIn.Rows(Loop2 + 1).Cells(0).Value

 grdDataIn.Rows(Loop2 + 1).Cells(0).Value =
TempStore

End If

 Next

 Next

End Sub

M
ER

G
E SO

R
T

127

● Merge sort
A merge sort is classified as a ‘divide and conquer’ algorithm, which breaks
a problem down into smaller and smaller units until it gets to a level where
the problem can be solved. What this means in the case of the sort routine is
that if you had a list with one element it is, by definition, sorted. Therefore, if
you start with a large list of elements, all you need to do is break the list down
into a series of smaller lists each containing one single element. You can then
compare the lists and merge them back together to produce a sorted list.

The merge process works as follows. Assume you have two lists that are
already sorted in order:

List 1
3
5
8
10

List 2
2
6
9

12

Figure 16.5

● Compare the first element of each list. In this case 3 would be compared
to 2. Put the lowest number in the new merge list. In this case we move
the 2. Our lists would now look like this:
List 1

3
5
8
10

List 2
2
6
9

12
Merge list = 2

Figure 16.6

● Repeat the process comparing the first element in each list and placing
the lowest item in the merge list. We now have 3 compared to 6, so our
lists will now look like this:
List 1

3
5
8
10

List 2
2
6
9

12
Merge list = 2, 3

Figure 16.7

● Repeat this process until there is only one element left and put this at the
end of the list. You now have one list containing the sorted elements.

To sort an unordered list, you first need to break the list down. For
example, if we have a list with eight elements as shown:

1262910835

Figure 16.8

● Split the list into half.

1262910835

Figure 16.9

● Keep splitting the list in half until each list only has one element:

KEYWORD
Merge sort: a technique for
putting data in order by splitting
lists into single elements
and then merging them back
together again.

 1
6

So
rt

in
g

al
go

rit
hm

s–
bu

bb
le

 a
nd

 m
er

ge

128

1262910835

5 3 8 10 9 2 6 12

Figure 16.10

You now effectively have eight lists, all containing one element. We need
to merge a pair of lists at a time until we have one complete list.

● Compare the first two lists, which are 5 and 3 and put the lowest number
first. We get:

53

Figure 16.11

● Compare the next two lists, which are 8 and 10 and put the lowest
number first. We get:

108

Figure 16.12

● Do this for the next two pairs of lists:

12692

Figure 16.13

We now have four lists:

1269210853

Figure 16.14

● Repeat the process merging these lists together. Start by comparing the
first element in each list and putting the lowest first as shown earlier. For
the first pair of lists:
– Comparing 3 and 8, we would put 3 in the merge list.
– Comparing 5 and 8 we would put 5 in the merge list.

● We then merge the 8 and the 10, which we know are already in the right
order to get:

10853

Figure 16.15
● Repeat this process for the other two lists and you get:

12962

Figure 16.16
● Now merge these two lists together in the same way to get:

1210986532

Figure 16.17

This is an efficient method of sorting where there are lots of elements in the
original list. This is because the algorithm works by halving the lists each
time. However, in terms of space, the merge sort will require more space
than a bubble sort to create the intermediary lists and the final merge list.
There is more on the efficiency of algorithms in Chapter 23.

M
ER

G
E SO

R
T

129

As you have probably worked out, you can use a loop to split down the
elements as many times as required to create single-element lists. Each
pair of lists can then be compared and merged as many times as needed
to reconstruct the list in the correct order. The following code shows the
process in Visual Basic.

 Public Sub MergeSort(ByVal ptrFirst As Integer,
ByVal ptrLast As Integer)

 Dim ptrMiddle As Integer

 If (ptrLast > ptrFirst) Then

 ‘ split list in half and carry out recursive call

 ptrMiddle = (ptrFirst + ptrLast) \ 2

 MergeSort(ptrFirst, ptrMiddle)

 MergeSort(ptrMiddle + 1, ptrLast)

 ‘ Merge the results.

 Merge(ptrFirst, ptrMiddle, ptrLast)

 End If

End Sub

‘ Merge two sorted sublists.

 Public Sub Merge(ByVal beginning As Integer, ByVal
ptrMiddle As Integer, ByVal ending As Integer)

 ReDim TempStore(RowCount)

 Dim CountLeft As Integer

 Dim CountRight As Integer

 Dim counterMain As Integer

 ‘ Copy the array into a temporary array

 For LoopCount = 1 To RowCount

 TempStore(LoopCount) = DataStore(LoopCount)

 Next

 ‘ CountLeft and CountRight point to next item to
save from left / right halves of the list

 CountLeft = beginning

 CountRight = ptrMiddle + 1

 ‘ counterMain is the index where we will put the
next item in the merged list.

 counterMain = beginning

 Do While (CountLeft <= ptrMiddle) And (CountRight
<= ending)

 ‘ Find the smaller of the two data at the top of
the left and right lists

 1
6

So
rt

in
g

al
go

rit
hm

s–
bu

bb
le

 a
nd

 m
er

ge

130

 If (TempStore(CountLeft) <= TempStore(CountRight))
Then

‘ smaller value is in left half

DataStore(counterMain) = TempStore(CountLeft)

CountLeft = CountLeft + 1

 Else

‘ smaller value is in right half

 DataStore(counterMain) = TempStore(CountRight)

CountRight = CountRight + 1

 End If

 counterMain = counterMain + 1

 Loop

 ‘ copy any data from the end of the list

 If CountLeft <= ptrMiddle Then

 ‘ copy from left half

 For LoopCount = 1 To ptrMiddle - CountLeft + 1

 DataStore(counterMain + LoopCount - 1) =
TempStore(CountLeft + LoopCount - 1)

 Next

 Else

 ‘ copy from right half

 For LoopCount = 1 To ending - CountRight + 1

 DataStore(counterMain + LoopCount - 1) =
TempStore(CountRight + LoopCount - 1)

 Next

 End If

End Sub

Notice that the code uses recursion, where a subroutine calls itself. In this
example the MergeSort subroutine calls itself.

Practice questions can be found at the end of the section on page 132.

M
ER

G
E SO

R
T

131

TASKS
1 Explain how you could use a bubble sort and a merge sort to sort the

following list of data:
 12, 3, 4, 8, 2, 6, 10, 5
2 Explain why a bubble sort requires data to be stored in an array.
3 Would a bubble sort or merge sort be the quickest way of sorting this

list? Explain your answer.
4 What if there were one million items in a list? Which would be the

quickest then? Explain you answer.
5 Bubble sort uses ‘iteration’ and a merge sort uses ‘recursion’. What

do these terms mean and why are they needed?

STUDY / RESEARCH TASKS
1 Write code to carry out a bubble sort and a merge sort on a list of

characters.
2 Research other algorithms that could be used to sort data. Explain the

circumstances where you might use one rather than the other.

KEY POINTS
• Sorting means that the data

is put into a particular order,
typically alphabetical or
numerical in either ascending
or descending order.

• There are different algorithms
that can be used to sort data.

• If the data is held in an array
you can sort the data by
comparing each element in
the array with the data in the
following element.

• A merge sort is classified
as a ‘divide and conquer’
algorithm, which breaks a
problem down into smaller
and smaller units until it gets
to a level where the problem
can be solved.

132

Section Three: Practice questions
1 Two methods for searching a dataset are a binary search and a linear search.

a) Write pseudo-code to show how a binary search works.
b) Explain how effi cient this method is on a large ordered set of data, compared to a linear search.

2 The following graph shows the distance between fi ve towns.

Town A
10

20

10
30

2030

Town B

Town D
Town C

Town E

a) Show this as an adjacency matrix.
b) Show this as an adjacency list.

3 Convert the following infix expressions into Reverse Polish Notation (RPN).
a) 5 + 6
b) 4 * 7 + 12

4 Explain one advantage of using RPN over infix notation.

5 A binary search tree is used to store data arriving in this sequence: d, c, a, f, b, g.
a) Draw a binary search tree to show how this could be implemented.
b) Write pseudo-code to add data to this binary search tree.
c) Write pseudo-code to carry out a traversal that will put this data into alphabetical order.

Se
ct

io
n

Th
re

e:
 P

ra
ct

ic
e

Q
ue

st
io

ns

Section Four:
Fundamentals of
computational
thinking

134

SPECIFICATION COVERAGE
3.4.1 Abstraction and automation

 17 Abstraction and
automation

● Logical reasoning
Logical reasoning is the process of using a given set of facts to determine
whether new facts are true or false. More formally it is concerned with
the concept of deductive reasoning which originates from the study of
mathematics and philosophy which identifies rules or premises and then
applies these to statements to come to a conclusion.

LEARNING OBJECTIVES
In this chapter you will learn how:
• to use logical reasoning
• to take a systematic approach to problem solving
• to defi ne problems using abstraction
• algorithms can be used to solve problems
• to hide the complexity of a problem from the user
• to decompose a problem and compose a solution
• to use computer models to recreate real-life problems and solutions.

INTRODUCTION
Computing is about processing data to solve a problem, for example
doing calculations using data. The modern defi nition of the term implies
the use of computer technology although much of the work needed to
solve the problem is actually done away from the computer itself. There
are techniques that programmers can use to help with problem solving
and in this chapter we will be looking at:
• abstraction, which is the concept of picking out common concepts

in order to reduce the problem to its essential defi ning features,
ignoring less signifi cant details

• automation, which is the process of creating a computer model and
putting it into action.

The focus of this chapter is on problems that typically require
mathematical calculations to solve them, as opposed to information
processing systems.

KEYWORDS
Problem solving: the process
of finding a solution to real-life
problems.
Automation: creating a
computer model of a real-life
situation and putting it into
action.
Logical reasoning: the process
of using a given set of facts to
determine whether new facts are
true or false.

PR
O

B
LEM

 SO
LVIN

G

135

Using logical reasoning is an important skill for you as computer scientists
as it is closely related to the issue of solving problems. Logical reasoning
helps you to understand the nature of problems, to identify the facts that
are relevant to the problem and to then be able to draw conclusions. It also
enables you to identify new facts that you can deduce are true based on
existing facts.

For example, we might have the following fact: ‘Alex is a boy’. From this
we might conclude that Alex is a boy’s name. We might have another fact:
‘Alex is a girl’. From this we might conclude that Alex is a girl’s name. By
combining the two facts we might reach a more accurate conclusion that
Alex can be a boy’s or a girl’s name.

Consider the following example:

Four friends sit at a concert together. Jane was sitting in seat A3.
Kian was sitting to the right of Jane in seat A4. In the seat to the
left of Jane was Ravi. Dev was sitting to the left of Ravi. Which
seat is Dev sitting in?

To reason this out you will notice that the seats are sequentially ordered
and there are just four people, so the answer is going to be somewhere
between A1 and A6. Ravi is to the left of Jane so must be in seat A2 and
Dev is to the left of Ravi so must be in seat A1.

The example below shows some facts that we might use when developing
a satnav system. It shows how new facts can be determined from existing
ones:
● Motorways have higher speed limits than single-lane roads.
● Single-lane roads have speed limits of between 30 mph and 60 mph.
● Dual carriageways have the same speed limits as motorways.
● Most roads in urban areas are single carriageway.

From these facts, we could determine further facts:
● A single-lane road could have a 40 mph speed limit.
● The speed limit on motorways must be more than 60 mph.
● Subject to traffic conditions, a journey would typically be quicker on a

dual carriageway than on a single-lane road.
● Journeys through towns are likely to be slower that journeys along

motorways.

● Problem solving
People have been solving problems using computational thinking for thousands
of years. In simple terms, it concerns identifying a problem and then working
out the steps required to solve it. In doing this, you need to take account of any
constraints that would impact on the solution. The objective is always to create
the most efficient solution to any given problem and to be able to apply the
solution to other, similar problems.

For example, humans have always travelled. The problem in this
scenario is how to get from the start to the destination in the quickest
and easiest way. Before humans were able to write things down, they
would give each other verbal instructions on how to get from A to B.
The next piece of technology to be used was the map, which provided
a more efficient and reusable method for solving the problem. Maps

17
 A

bs
tr

ac
ti

on
 a

nd
 a

ut
om

at
io

n

136

have become increasingly sophisticated over the years to include more
information for the user, although a certain amount of skill is required
in order to read them.

The latest technology is the ‘satnav’, which combines large datasets, often
being updated in real time with traffic information, being transmitted
wirelessly to small portable devices using a very simple user interface that
only requires the user to input the destination and then follow the verbal
and visual instructions.

Figure 17.1 A very early map

Figure 17.2 A modern map

ALG
O

R
ITH

M
S

137

Figure 17.3 A satnav

Defining and solving problems
This example demonstrates some of the key aspects of problem solving. In
the first instance the problem needs to be clearly defined. In this case the
problem is quite simple: How do I get from A to B? The solution however,
is complex. As a user, all you want to do is type in the destination and
then follow the instructions. However, as a computer scientist, you need to
consider a large range of issues and constraints in order to come up with a
solution. For example:
● How to define the start and end points of each journey, e.g. town name,

grid reference.
● What form of transport will be used, e.g. car, cycle, walking.
● What routes will be used, e.g. roads, ferries.
● What data is available, e.g. road networks, traffic information.
● How data is kept up to date.
● How to calculate the quickest or shortest route to the destination.
● How to recalculate the route in case of traffic jams or road closures.
● What communication channels will be available to transmit the

relevant data.
● How to present the information to the user in the most user-friendly way.

Having identified the problem you would then develop the most efficient
solution, which may require several iterations. One of the key aspects of
computing is that solutions must be checked to ensure that they do solve
the problem. With our satnav example, extensive testing will be undertaken
in-house by the manufacturers of the devices. They will also beta-test by
getting users to use the systems in real-life situations before releasing the
technology to the general public. The manufacturers will then constantly
review feedback from customers in order to refine the technology.

● Algorithms
You have already come across algorithms in Section One. Basically an
algorithm is a step-by-step procedure for carrying out a particular task.

17
 A

bs
tr

ac
ti

on
 a

nd
 a

ut
om

at
io

n

138

Algorithms are the building blocks of computer programs and ultimately
all problems are solved by writing algorithms. To take a very simple
example, to calculate how long it takes to do a journey you could use the
following algorithm:

TimeDeparted = 15:00

TimeArrived = 16:00

Drivetime = TimeArrived - TimeDeparted

This is an example of pseudo-code, which is a way of expressing the
algorithm without having to use any specific programming language.
The start point for programmers is often to work out what algorithms are
needed to solve a problem and then to write these in pseudo-code during
the planning stage. This can be a time-consuming process depending on
the complexity of the solution.

Programmers use a technique called hand-tracing or dry running to work
through their code. This means that they follow the code line by line to work
out what is happening. This can help them to identify any problems with
the code before it is implemented. There is an example of dry running in
Chapter 5. Most programs are made up of multiple related procedures so it is
important to identify how these link together to create the program as a whole.

When all of the procedures have been identified, the pseudo-code can
be converted into proper programming code using whatever language is
considered the most appropriate for solving the problem.

● Abstraction
The concept of abstraction is to reduce problems to their essential features.
Another way of explaining abstraction is that it is the process of finding
similarities or common aspects about the problem, while ignoring differences.
This is a useful concept for programmers as they can view the problem from
a high level, concentrating on the key aspects of designing a solution whilst
ignoring the detail, particularly during the initial design stages.

Once a solution has been identified for the current problem, a feature of
abstraction is that the abstraction from one problem can be applied to
another similar problem, which shares the same common features.

Broadly speaking there are two main type of abstraction.

Representational abstraction
This is the process of removing unnecessary details until it is possible to
represent the problem in a way that can be solved. This level of abstraction
could be described as viewing the ‘big picture’ – working out what is
relevant to solving the problem and what is unnecessary detail that can be
ignored.

With the satnav problem, at a basic level, the problem can be reduced to
finding the shortest distance between point A and point B. An abstraction
of that would be to:

● identify point A and point B in some way
● identify the connecting paths between A and B
● calculate the shortest path between A and B.

KEYWORD
Representational abstraction:
the process of removing
unnecessary details so that only
information that is required to
solve the problem remains.

KEYWORD
Algorithm: a sequence of
instructions.

AB
STR

ACTIO
N

139

Figure 17.4 Abstraction by generalisation for vehicles

Vehicles

Car Bus Lorry Van

Now that the abstraction is complete a solution can be created to solve the
problem. For example, a variation of Djikstra’s shortest path algorithm
could be developed. In addition, related problems can be solved using the
same abstraction.

Some information that would be found on a map would not be required to
find a shortest route. For example, the location of rivers, railway lines and
landmarks could be ignored, so the map stored by the satnav would be an
abstraction of the real location.

Abstraction by generalisation/categorisation
This is the process of placing aspects of the problem into broader categories
to arrive at a hierarchical representation. This involves recognising common
characteristics of representations so that more general representations
can be developed. We have already seen this concept applied with object-
oriented programming in Chapter 6, where subclasses are defined from the
characteristics of a base class.

For example, to represent information about cars and buses, we recognise
that they have a lot in common so generalise/categorise them both as
vehicles. When programming using an object-oriented language we can
represent this generalisation using inheritance.

KEYWORD
Abstraction by generalisation/
categorisation: the concept of
reducing problems by putting
similar aspects of a problem into
hierarchical categories.

KEYWORDS
Top-down design: related to the
modular approach, this starts
with the main system at the top
and breaks it down into smaller
and smaller units a bit like a
family tree.
Functional abstraction: breaking
down a complex problem into a
series of reusable functions.

The principle of abstraction can also be applied to various elements of
computing including:
● Procedural abstraction: This is the concept that all solutions can be

broken down into a series of procedures or subroutines. This in fact is
the way that all procedural languages work, enabling the programmer to
identify the main processes needed to complete the task and to contain
these within procedures. At the design stage it is sufficient for the
programmer to work out what each procedure will do without defining
how it will do it. The procedure may in turn call other procedures
although it does not need to know how these work in order to call them.
This is the basis for top-down design that we looked at in Chapter 5.
Other considerations include what event will trigger the procedure, how
procedures will link together, including any possible side effects, and
how errors will be handled.

● Functional abstraction: Similar to procedural abstraction, functional
abstraction focuses on common functions that can be used to solve
problems. Functions are a feature of procedural languages and the
cornerstone of functional programming, where all the main processes
are defined in terms of functions. Functions can be created for any
common procedure and functions can be built on top of other functions
producing higher levels of abstraction. All the program needs is for the
parameters to be input into the function in order to generate a result.
Using functions reduces complexity as the function only needs to be
written once.

17
 A

bs
tr

ac
ti

on
 a

nd
 a

ut
om

at
io

n

140

● Data abstraction: This is the process of organising and structuring data
in a way that produces a particular view of the data that is useful for
the programmer. Almost all data is abstracted, hence the term abstract
data types that we looked at in Chapter 7. For example, a queue is an
abstract data type, which may be made up of an array. By abstracting
the data into a queue, all the programmer has to do is push and pop to
the queue without having to worry about the structure of the underlying
dataset. Another feature of data abstraction is that the data can be
implemented in different ways. For example, once data is abstracted into
an array, it could be used to create other abstract data types such as stack
or a binary tree. This is known as data composition where data objects
are combined in order to create a compound structure.
Data abstraction involves separating the actual implementation from the
interface. In the satnav example, the algorithm needs to find the shortest
journey between two points. The interface provides this information but
how it is implemented is hidden. It doesn’t matter whether the data is
being stored in an array, as a vector or in a relational database, providing
the relevant answer is provided by the program.

● Problem abstraction: This is the process of reducing a problem down
to its simplest components until the underlying processing requirements
that solve the problem are identified. By doing this, these underlying
processes can be applied to solve analogous problems. For example,
satnavs use vectors (see Chapter 11) and a variation of Dijkstra’s
algorithm (see Chapter 13). Neither of these concepts were developed
specifically for the satnav, but both have been adopted to create the
required solution. Therefore, the underlying principles used to solve one
problem been applied to different problem with similar characteristics.
Another example is the use of graphs in general. In Chapter 9 we
looked at the use of graphs to explain relationships between nodes.
Many problems have been solved using graph theory, as the underlying
requirements of the problems are the same even though they may not
appear to be. For example, graphs are used to optimise the transmission
of data on computer networks, to model atomic and chemical structures,
to predict the spread of disease and to analyse social networks.

● Information hiding
In broad terms, information hiding is the process of providing a
definition or interface of a system or object, whilst keeping the inner
workings hidden. A common example of the principle is the car. All cars
have a common interface in that they have a steering wheel, gearbox, pedals
etc. By operating this common interface it is possible to operate the car. The
actual mechanics of how the car works is hidden. In fact, the mechanics of
how the car works may change without it impacting on the interface. For
example, changing from a petrol to a hybrid engine does not change the
basic principles of how to drive a car.

An example in computing is where a common interface such as a GUI is
used. With our satnav example, the interface prompts the user to input an
end point. The complexity of calculating the route is hidden. If the way in
which the route was calculated changed, it would not necessarily affect the
interface. In this way, information hiding separates the user interface from
the actual implementation of the program.

KEYWORD
Information hiding: the process
of hiding all details of an object
that do not contribute to its
essential characteristics.

KEYWORD
Data abstraction: hiding how
data is represented so that it is
easier to build a new kind of data
object, e.g. building a stack from
an array.

KEYWORD
Problem abstraction: removing
unnecessary details in a
problem until the underlying
problem is identified to see if this
is the same as a problem that
has already been solved.

D
ECO

M
PO

SITIO
N

/CO
M

PO
SITIO

N

141
End point

Journey

Start point

Satnav system

Input
travel data

Input travel
updates

Travel

National
roads

International
roads

Road network

Calculate route

Figure 17.5 Decomposition of a satnav system

KEYWORDS
Decomposition: breaking down
a large task into a series of
subtasks.
Composition: building up a
whole system from smaller
units. The opposite of
decomposition.

More specifically when programming, information hiding can be used
to define a set of behaviours on a dataset, where the data can only be
accessed through those behaviours. It is not possible for other parts of
the program to access the dataset directly. This prevents unintended
damage to the dataset and also means that how the dataset is stored can
be changed without affecting any programs that use it, as they do not
access it directly.

Information hiding is closely related to the concept of encapsulation
where data and behaviours are stored together within a class or object.
Encapsulation can be seen as a method of implementing the information-
hiding principle.

● Decomposition/Composition
A broad definition of decomposition is breaking large complex tasks
or processes down into smaller, more manageable tasks. Abstraction
techniques will be used in order to decompose the system requirements.

Procedural decomposition is the process of looking at a system as a
whole and then breaking that down into procedures or subroutines
needed to complete the task. This process is very similar to the idea of
the top-down approach we looked at in Chapter 5 where each main task
is identified, then the subtasks that make up each task. Depending on
the complexity of the system, subtasks may be further subdivided until
the designer reaches a level of detail that is sufficient to start building
the system.

Procedural composition is then the process of creating a working system
from the abstraction. This involves:
● writing all the procedures and linking them together to create compound

procedures
● creating data structures and combining them to form compound

structures.

A satnav system could be decomposed as follows:

17
 A

bs
tr

ac
ti

on
 a

nd
 a

ut
om

at
io

n

142

● Automation
Automation in this context is the process of creating computer models of
real-life situations and putting them into action. Most computer programs
are created to solve real problems. One of the objectives of creating
computer systems is to create elegant solutions to difficult problems.
The key to this is:
● understanding the problem
● being able to create suitable algorithms
● building the algorithms up into program code
● using appropriate data in order to solve the problem.

For example, computer models are widely used to analyse traffic flows
and to control traffic lights across road networks. Major cities and towns
often have severe traffic congestion and by controlling the traffic lights it
is possible to keep traffic moving more freely.

Figure 17.6 Computer model for traffic flow system

The screenshot in Figure 17.6 is from a software model called TRANSYT
and demonstrates the problem. Where one set of lights is on green you may
assume the traffic is flowing freely. However, by definition it means that
there is likely to be a queue of stationary traffic (or pedestrians) waiting at
a red light. Where there are several sets of traffic lights close together, the
problem becomes more difficult to solve.

Therefore, the outcome is simply to keep traffic moving as freely as possible
around the network. The solution is far more complex. The designer needs
to consider:
● the location of all traffic lights
● the number of roads that meet at each set of traffic lights
O how many lanes of traffic there are at each set of lights
● how much traffic there is on each of the lanes

AU
TO

M
ATIO

N

143

TASKS
1 From the following facts, use logical reasoning to determine further

facts that you know to be true:
a) every cat eats mice
b) some animals that eat mice are fat
c) all mice carry diseases
d) mice can run fast.

2 You are asked to work out the timetable for all the students in the
sixth form.
a) What factors do you need to take into account in order to solve this

problem?
b) Give an example of representational abstraction and abstraction by

category / generalisation in this scenario.
c) Explain how you might decompose the problem.

3 Define the following terms:
a) procedural abstraction
b) functional abstraction
c) data abstraction
d) problem abstraction.

4 Define information hiding and give an example of where it might be used.
5 Create a specification for a model to simulate any or all of the

following scenarios:
a) the likelihood of a particular team winning a competition
b) the speed at which a concert hall could be evacuated in the event of

a fire alarm
c) how many people and households there will be in the UK in 2050.

O what time of day it is, i.e. is it rush-hour and whether people are
generally heading into or out of the city

● whether the lights control a pedestrian crossing as well as a road.

There are probably many other considerations, but the challenge for the
designer is to identify the key factors that will make the model accurate. In
addition they need to consider what data to use and where to get it from. As
a minimum they will need data for:
● the roads in the network
● the physical location of the lights
● the volume of traffic on the road, which will either be historical or real-

time data.

Having collected all of this data, code must be written to optimise traffic
flows, which involves switching the signals and leaving them on green or
red for the correct amount of time. For example, if there is a busy main
road with heavy traffic, more time on green must be allowed at the expense
of traffic on the side roads.

Using automated models in this way requires constant calibration of the model.
This means that the designers need to see how well their modelled system works
in real life. If traffic is not flowing as expected they need to make changes either
to their algorithm or to their data in order to make the model more accurate.

Practice questions can be found at the end of the section on
pages 179 and 180.

17
 A

bs
tr

ac
ti

on
 a

nd
 a

ut
om

at
io

n

144

STUDY / RESEARCH TASKS
1 Explore the concept of computational thinking and consider examples

that predate the invention of the computer.
2 Models have been built to predict how many gold medals Britain will

win during Olympic Games. Find out what variables go into these
models and how accurate the predictions have been.

3 Research what data and algorithms are used in order to predict:
a) weather
b) tornados
c) tsunamis.

4 Find examples, other than those in this chapter, where an algorithm
developed to solve one problem has been used to solve a different
problem.

KEY POINTS
• Logical reasoning is the process of using a known set of facts to

defermine whether new facts are true or false.
• Problem solving is identifying a problem and then working out the

steps required to solve it.
• Simple problems may have complex solutions.
• An algorithm is a step-by-step procedure for carrying out a

particular task.
• Abstraction reduces unnecessary detail instead focusing on the

essential features that will solve the problem.
• Information hiding is the process of hiding all details of an object that

do not contribute to its essential characteristics.
• Decomposition is breaking large complex tasks or processes down

into smaller, more manageable tasks.
• Composition is then the process of creating a working system from

the abstraction.
• Automation in this context is the process of creating computer models

of real-life situations and putting them into action.

145

SPECIFICATION COVERAGE
3.4.2 Finite state machines

 18 Finite state machines

As a simple example, an automated door is an FSM:

State 0: Door closed State 1: Door open
Input: Button pressed

Input: Button pressed

Figure 18.1 A simple example of an FSM

Finite state machines are common in everyday life and include any devices
where there are a predefined set of steps and outcomes involved in the
operation of the machine.

In practice, finite state machines are used as a conceptual model to design
and describe systems. They are particularly useful at the design stage as
they force the designer to think about every possible input and how that
changes the state of the machine. As a result they are commonly used to
develop computer systems or design logic circuits and can also be used to
check the syntax of programming languages.

There are two main ways of representing an FSM: a state transition diagram
or a state transition table.

INTRODUCTION
In general terms a fi nite state machine (FSM) is any device that can
store its current status (or state) and can change state based on an
input. The FSM may receive further inputs, which in turn change the
state again. There are a fi nite (countable) number of transitions that may
take place. Some FSMs also have outputs, one type of which is called
a Mealy machine. Knowledge of these is only required for A level and is
covered at the end of the chapter.

KEYWORDS
Finite state machine (FSM): any
device that stores its current
status and whose status can
change as the result of an input.
Mainly used as a conceptual
model for designing and
describing systems.
Finite: countable.

LEARNING OBJECTIVES
In this chapter you will learn:
• what a fi nite state machine is and how it can be used
• how to use state transition diagrams
• how to use state transition tables.

A-level students will learn:
• how to use fi nite state machines with outputs.

146

 1
8

Fi
ni

te
 st

at
e

m
ac

hi
ne

s

● State transition diagrams
State transition diagrams use circles to represent each state and
arrows to represent the transitions that occur as the result of an input.
For example, a ticket machine in a car park requires two inputs: money
to be put in and the green button to be pressed. A double circle represents
the accepting or goal state, which in this case is the state that is required
in order to issue a ticket. FSMs do not necessarily need to have an
accepting state.

Input: Money inserted
S0 S1

Input: Button pressed
S2

Figure 18.2 A simple state transition diagram

In this case:
● S0 is the machine in its idle state, waiting for an input.
● S1 is its state after the money has been put in.
● S2 is its state after the button has been pressed. This is the accepting state.

The FSM has sequence and memory in that each transition is based on
the one before. For example, the button can only be pressed after the
money has been inserted. Whole systems or individual procedures can be
modelled using state transition diagrams. For example, the procedure for
logging onto a computer network might look like this:

S0

S1S2 Password
incorrect

Username
incorrect

Password
correct

Username
correct

Figure 18.3 State transition diagram to show the process of
logging onto a computer network

This shows the dependency of one state on the next. If the username is
correct it can change to the next state. If the password is correct it can move
on to the accepting state. Without the correct inputs the state will not change.

The example in Figure 18.4 shows an FSM that is used to check that the
rules of a programming language are being followed. It is a simplified
example using just the letters a, b and c, though in real life the FSM
could be set up to represent all of the acceptable words and combinations
of words usable in any particular programming language. Notice the
addition of a start arrow.

KEYWORDS
State transition diagram: a
visual representation of an FSM
using circles and arrows.
Accepting state: the state that
identifies whether an input has
been accepted.

STATE TR
AN

SITIO
N

 TAB
LES

147

Looking at the diagram you can see whether certain combinations of letters
are acceptable or not. For example:
● abc is an acceptable combination.
● abcc is an acceptable combination.
● acb is not acceptable. This would end in S4.
● abca is not acceptable as S3 is the accepting state so the final letter must

be a c. This would end in S4.

● State transition tables
The same information can also be represented as a table. These show the
input and the current state, which is the state before the input. It then
shows the state after the input. For example, a state transition table for
the automated door in Figure 18.1 would be:

KEYWORD
State transition table: a tabular
representation of an FSM
showing inputs, current state
and next state. Input Current state Next state

Button pressed Door closed Door open

Button pressed Door open Door closed

Input Current state Next state

Money inserted S0 S1

Button pressed S1 S2

S3 S2

S0

S4

S1
a

a, b, c bb

b, c

a, b

a, c

a

c

c

Figure 18.4 State transition diagram to show syntax rules

The table for the ticket machine in Figure 18.2 would be:

148

 1
8

Fi
ni

te
 st

at
e

m
ac

hi
ne

s

● Finite state machines
with outputs
Some finite state machines will produce output values based on the
input values. An example of this is a Mealy machine, named after the
man who invented it. An example of an application of a Mealy machine
could be a simple cipher where the letter input becomes transformed
into another letter. Figure 18.5 shows a simple three-letter shift cipher,
where A becomes D, B becomes E and so on.

This is a simple example that shows the concept of the Mealy
machine where the current state is transformed to a new state with
the output being shown. Mealy machines were originally devised to
define electronic circuits and are commonly used to express bitwise
operations. For example, Figure 18.6 shows a right arithmetic shift on a
binary value, which will have the effect of halving the value.

The state transition table for this would be:

Input Current state Output Next state

0 S0 0 S2

1 S0 0 S1

0 S1 1 S2

1 S1 1 S1

0 S2 0 S2

1 S2 0 S1

Practice questions can be found at the end of the section on
pages 179 and 180.

KEYWORDS
Mealy machine: a type of finite
state machine with outputs.
Cipher: an algorithm that
encrypts and decrypts data, also
known as code.
Shift cipher: a simple
substitution cipher where the
letters are coded by moving
a certain amount forwards or
backwards in the alphabet.

A level only

S0S0

A/D

B/E

C/F

Figure 18.5 State transition
diagram with outputs

The table for processing the letters in Figure 18.4 would be:

Input Current state Next state

a S0 S1

b S1 S2

c S1 S4

a S1 S4

b S2 S1

c S2 S3

a S2 S4

b S0 S4

c S0 S4

a S3 S4

b S3 S4

c S3 S3

a S4 S4

b S4 S4

c S4 S4

S0

S1

1/0

0/0

S2

1/1

0/0

0/11/0

Figure 18.6 A Mealy machine
performing a right shift

FIN
ITE STATE M

ACH
IN

ES W
ITH

 O
U

TPU
TS

149

TASKS
1 Looking at Figure 18.4, which of these are acceptable?

a) caabb
b) bac
c) aaabbccc
d) abc
e) aabbca

2 Draw a state transition diagram and table that evaluates whether a
sequence of bits has an even number of zeros.

3 What is a Mealy machine?
4 Draw a state transition diagram from the following table:

Input Current state Output Next state

1 S0 A S1

2 S2 B S1

3 S1 C S3

4 S3 D S2

5 Draw a state transition diagram that will carry out a bitwise
XOR operation.

STUDY / RESEARCH TASKS
1 Draw a state transition diagram and table that flips 0s to 1s within

a binary string.
2 Draw a state transition diagram and table to control the pointer in

a stack.
3 Research other practical applications of the FSM.

KEY POINTS
• A finite state machine (FSM) is

a concept that shows a device
that stores the current state
and how the state will change
as the result of an input.

• FSMs are used as a
conceptual model for
designing and describing
computer systems.

• FSMs can be used to check the
syntax of language including
programming languages.

• State transition diagrams are
a visual way of showing how
states change as the result of
an input.

• State transition tables are an
alternative way of showing
how states change as the
result of an input.

• A special type of FSM called
a Mealy machine can also
produce outputs.

150

INTRODUCTION
The Turing machine is a theoretical model developed by Alan Turing in
1936 as a way of trying to solve what was called ’the decision problem’.
In simple terms, the problem was whether it was theoretically possible
to solve any mathematical problem within a fi nite number of steps given
particular inputs. Turing developed a theoretical machine that was able
to carry out any algorithm and in doing so essentially produced a model
of what is computable.

It is worth noting that the Turing machine was devised as a concept rather
than as an actual machine and its invention predates microprocessors
and computing as we know it today. Scientists have since created physical
machines according to Turing’s model and software simulations have
also been made.

 LEARNING OBJECTIVES
In this chapter you will learn:
• that a Turing machine is a theoretical model for identifying whether a

problem is computable
• how the Turing machine works
• how state diagrams can be used to represent the workings of the

Turing machine
• how a universal machine can be constructed.

SPECIFICATION COVERAGE
3.4.5 A model of computation

 19 The Turing machine

KEYWORDS
Turing machine: a theoretical
model of computation.
Finite state machine (FSM): any
device that stores its current
status and whose status can
change as the result of an input.
Mainly used as a conceptual
model for designing and
describing systems.

A Turing machine is a finite state
machine (FSM) with the ability to
read and write data to an unlimited
tape. It can be visualised as shown
in Figure 19.1.

The basics of its operation are:
● The tape is divided into an

infinite number of cells. The
tape is used as memory.

● Each cell will contain a
symbol. This could be
a character or number.
Commonly the contents of the
tape are binary digits, i.e. 0s
and 1s, and the blank symbol, Figure 19.1 A Turing machine

Finite state
machine

Read/write
head

Tape

A level only

151

sometimes shown as a Ƒ. The acceptable symbols are known as the
alphabet.

● The read/write head can either read what is in the cell or write into
the cell. It can also erase the current contents of the cell, effectively
overwriting the contents.

● The tape can move left or right one cell at a time so that every cell is
accessible by the read/write head.

● The machine can halt at any point if it enters what is known as the
halting state, or if the entire input has been processed.

Despite being invented before computers as we know them now, you can
see that this model sounds very much like a modern PC, with the tape
representing memory and the cells representing memory addresses. Moving
the tape through the read/write head will produce sequences of characters,
which is analogous to a computer executing instructions in a program.

To represent programs in Turing machines you need:
● a start state – the state of the machine at the start of the program
● a halting state – the state that will stop the program running
● an alphabet – this is a list of the acceptable symbols that can go into each cell
● movement – the ability to move the head so that you can read/write to

every cell
● a transition function – indicating what should be written at each cell

and whether to move left or right based on the input read.

Controlling the machine is represented through state diagrams very similar
to the state transition diagrams that we looked at for FSMs. You can
visualise the tape as follows:

1 1 0 0 ® ®1®

Read/write head

Figure 19.2 The tape and read/write head

At the moment the read/write head is either reading or writing a 1 in the
current cell. In the examples used in this chapter the read/write head starts
with the left-most non-blank location. Note that the symbols in the other
cells are 0s, 1s or blanks. The arrows indicate that the head can move left
or right.

Figure 19.3 shows a state transition diagram for the transition function of a
Turing machine.

Figure 19.3 State diagram to show the operation of a Turing machine

S0 S1

SH

�/0,R

0/0,R

1/1,R

1/1,R

�/1,R

0/0,R

KEYWORDS
Alphabet: the acceptable
symbols (characters, numbers)
for a given Turing machine.

Read/write head: the theoretical
device that writes or reads from
the current call of a tape in a
Turing machine.
Halting state: stops the Turing
machine.
Start state: the initial state of a
Turing machine.
Transition function/rule: a
method of notating how a Turing
machine moves from one state
to another and how the data on
the tape changes.
State transition diagram: a
visual representation of the
transition function of a Turing
machine.

19 TH
E TU

R
IN

G
 M

ACH
IN

E

152

19
 T

he
 T

ur
in

g
m

ac
hi

ne

● S0 represents the starting state.
● SH represents the halting state.
● This diagram has one other state, S1, although it would be possible to

have as many states as required to represent an algorithm.
● Moving from one state to the next requires a transition function or transition

rule. These are determined by the arrows in the transition diagrams. The
rules are shown on the diagram in the format 1/1,R which means in this
case that if the input symbol is a 1, keep the symbol on the tape as a 1 and
then move the head right. Another example is Ƒ/0,R which means if the
input symbol is blank, change it to a 0 and move the head right.

● Writing the transition rules effectively creates an algorithm.

It is useful to be able to trace the steps that the machine will go through,
looking at the current state after each movement.

The Turing machine is in state S0 and the input symbol is 1. Therefore the
rule 1/1,R is applied which writes a 1 to the tape, moves the head right and
changes to state S1. The machine will now look like this:

1 1 0 0 ® ®1®

Read/write head

We are now on S1 in the state diagram. The rule 1/1,R is applied which writes
a 1 to the tape, moves the head to the right and changes back to state S0:

1 1 0 0 ® ®1®

Read/write head

The next step reads a 1, writes a 1, changes to state S1 and moves the head
right. Then the next two steps read a 0, so write a 0, move right and stay in
state S1 so the tape now looks like this:

1 1 0 0 ® ®1®

Read/write head

With the machine in this position, we are now in state S1 reading a Ƒ. The
rule now is to write a 0 to the tape, move right and move to the halting
state. The program now stops as the algorithm is complete and the final
contents of the tape are:

1 1 0 0 0 ®1®

Read/write head

U
N

IVER
SAL M

ACH
IN

E

153

This algorithm is an odd parity generator that ensures the number of 1s in
a binary string is odd:

● The start point is the left-most non-blank symbol in the binary string.
● Scanning the digits, if there are an even number of 1s then a 1 needs to

be added to ensure that it becomes odd.
● When a blank is reached, if there are already an odd number of 1s, a 0 is

added to maintain this number as odd.
● The program then halts.

This could be represented by the following instruction table:

State Read Write Move Next state

S0 Ƒ 1 R SH

S0 0 0 R S0

S0 1 1 R S1

S1 Ƒ 0 R SH

S1 0 0 R S1

S1 1 1 R S0

Another way of notating the Turing machine is to show the transition rules
in the following format:

į (Current State, Input Symbol) = (Next State, Output Symbol,
Movement)

The transition rules for the odd parity generator therefore could be written
with the following functions:

į (S0, Ƒ) = (SH, 1, R)

į (S0, 0) = (S0, 0, R)

į (S0, 1) = (S1, 1, R)

į (S1, Ƒ) = (SH, 0, R)

į (S1, 0) = (S1, 0, R)

į (S1, 1) = (S0, 1, R)

Note the use of Ƒ for a blank cell and the use of L and R for left and
right. Other notation may be used, for example, it is common to use
a B to represent a blank and left and right arrows (ĸ ĺ) to show
movement.

● Universal machine
At a theoretical level you can use the Turing machine on any problem that
is computable. The limitation of the Turing machine is that every process
we need to carry out requires its own Turing machine to do it. For a large
program, this could quickly become problematic. You could view this as

KEYWORD
Instruction table: a method of
describing a Turing machine in
tabular form.

154

19
 T

he
 T

ur
in

g
m

ac
hi

ne

a black box model where you define the inputs, the process carried out, and
the output:

Turing
machine

Input Output

If we want to add A and B:

Turing
machine

A, B A + B

To multiply A and B:

Turing
machine

A, B A × B

Every computation requires its own Turing machine and its own tape on
which to work. However, it is inevitable that you will want to combine
the results of several computations and this is why Turing developed the
concept of a universal machine.

Rather than defining each individual process within a single machine, the
universal machines takes two inputs:
● a description of all the individual Turing machines required to perform

the calculations
● all the inputs required for the calculations.

Universal
machine

Descriptions of
machines

Inputs

Outputs

Figure 19.4 The universal machine

Perhaps the easiest way to think of it is as a series of individual Turing
machines all linked together that can take any input and perform any
calculation defined by any of the component machines.

This is stored on one tape (rather than lots of individual tapes) with one block
of cells containing the instructions and one block of cells containing the
inputs. The result of this is a machine that can simulate any number of Turing
machines with their corresponding inputs and produce a range of outputs.

This is often seen as the earliest form of the stored program concept
(see Chapter 33) where instructions and data are stored in the same place
in memory. This is one of the key principles of modern computing even
though it was devised as long ago as 1936. As Turing machines break down
processes to small steps, this equates to many of the other techniques we
have looked at in this section, such as decomposition, where large problems
are broken down until a programmable solution can be found.

The concept of the Turing machine and the universal machine is closely
linked with the concept of computable problems (see Chapter 22) in that
they define what is computable. If it is possible to describe a Turing machine
to solve a problem, then it will be possible to write an algorithm to solve it.

Practice questions can be found at the end of the section on
pages 179 and 180.

KEYWORD
Universal machine: a machine
that can simulate a Turing
machine by reading a description
of the machine along with the
input of its own tape.

U
N

IVER
SAL M

ACH
IN

E

155

TASKS
1 Define the components of a Turing machine.
2 Why did Alan Turing develop the Turing machine?
3 Why did he develop the universal machine?
4 Identify two states that a Turing machine should have.
5 Draw a state transition diagram and instruction table and write the

transition rules (functions) for the following:
a) Create a counter that starts at 1 and adds 1 each time.
b) Perform a bit universion, i.e. change Os to 1s and 1s to Os.
c) Carry out a unary addition in the format: 1 + 1 = 11, or 11 + 1 = 111,

or 1 + 11 + 1 = 1111.
The alphabet will consist of blank, 1 and +.

6 Choose one of the above and draw a series of diagrams to show the
current state of the tape after each step.

7 Why are the Turing machine and universal machines still relevant to
modern computing?

STUDY / RESEARCH TASKS
1 Research the ‘Busy Beaver’ and how it can be solved using a Turing

machine.
2 Find a Turing machine simulator on the Internet and use it on the

algorithms described in question 5 above.

KEY POINTS
• The Turing machine is a

theoretical machine that
is able to carry out any
algorithm and in doing so
essentially produces a model
of what is computable. It
works with a tape of an infinite
length split into cells.

• Each cell has a value in it,
typically a 0, 1 or a blank, but
could have any symbols.

• The read/write head can move
in any direction along the
entire length of the tape.

• The read/write head reads
and writes values to the cells.

• A universal machine is a
machine that can simulate
any other Turing machine by
processing a description of
how the other Turing machine
works, that is, its transition
function, that is stored on the
tape alongside the data that is
to be processed.

 2
0

Re
gu

la
r a

nd
 c

on
te

xt
-f

re
e

la
ng

ua
ge

s

156

 20 Regular and context-
free languages

INTRODUCTION
A regular language is one that can be represented using regular
expressions. Regular expressions contain strings of characters that can
be matched to the contents of a set allowing you to fi nd patterns in data.
They are a powerful tool for searching and handling strings. They also
provide a shorthand defi nition of the contents of the set.

LEARNING OBJECTIVES
In this chapter you will learn:
• what regular expressions are and how they can be used to defi ne

and search sets
• how regular expressions can be used on text strings
• how to search using strings of regular expressions
• how context-free languages can be used to describe the syntax of

a programming language
• how Backus–Naur Form (BNF) is used
• how syntax diagrams are used.

SPECIFICATION COVERAGE
3.4.2.3 Regular expressions

3.4.2.4 Regular languages

3.4.2 Context-free languages

● Regular expressions
To start with an example, the expression a|b|c is a regular expression, which
means that the set will contain either an ‘a’ or a ‘b’ or a ‘c’. A set is a collection
of data that is unordered and contains each item at most once. It is written as
follows showing the name of the set and the contents within the brackets:
● alphabet = {a, b, c, d, e, f, g, ...}
● integers = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}

The contents of a set are typically characters and numbers and a regular
expression can be used to define and search the set. There are regular
expressions for handling text strings (covered in this chapter) and for
handling numbers (covered in the next chapter). There is also a relationship
between regular expressions and finite state machines in that all regular
expressions can be expressed as state transition diagrams for an FSM and
vice versa, and there is more on this in this chapter.

KEYWORD
Regular language: any language
that can be described using
regular expressions.

KEYWORD
Regular expression: notation
that contains strings of
characters that can be matched
to the contents of a set.

A level only

R
EG

U
LAR

 EXPR
ESSIO

N
S

157

Common regular expressions are shown in Table 20.1.

Table 20.1 Regular expressions with examples of outputs

Regular expression Meaning Strings produced

a|b|c a or b or c a
b
c

abc a and b and c abc

a*bc Zero or more a followed
by b and c

bc
abc
aabc
aaabc

(a|b)c a or b and c ac
bc

a+bc One or more a and b and c abc
aabc
aaabc

ab?c a and either zero or one b
and c

ac
abc

You can see that there may be many permutations of strings that might be
produced by a regular expression. For example, a*bc could produce a text
string with an infinite number of the letter ‘a’ at the beginning, but it would
have to end in bc.

Consider the following examples:
● (a|b|c)d*e would produce the following possible strings: ade, ae, be, bde,

ce and cde. There could in fact be an infinite number of the letter ‘d’ but
it would have to end in an e.

● (a+(b|c))d would produce abd or aabd or aaabd (and so on with the
preceding ‘a’) or the ‘b’ could be replaced by a ‘c’ in each string.

Perhaps the easiest way to understand all the permutations is to produce a
state transition diagram.

S0 S1

S3

S2

a

a, b, c

b

c
a, b

a, b, c

c

Figure 20.1 FSM to represent the regular expression a*bc

Figure 20.1 shows that ‘a’ can repeat any number of times and it must then
be followed by ‘b’ and a ‘c’. S2 represents the accepting state, so the last
letter produced by this expression has to be a ‘c’.

If you consider the expression a(bc)* it means that ‘a’ will be the first letter
followed by any number of ‘bc’. So ‘a’ would be one outcome as would abc
or abcbc or abcbcbc. This could be represented as a state transition diagram
as shown in Figure 20.2.

158

 2
0

Re
gu

la
r a

nd
 c

on
te

xt
-f

re
e

la
ng

ua
ge

s

S0 S1

S3

S2
a

b, c
c

a, b

b

c

Figure 20.2 FSM to represent the regular expression a(bc)*

Here the string must start with an ‘a’ and end with a ‘bc’. It is not possible
for the outcome to be a ‘c’ on its own.

It is also possible to write the regular expression from the state transition
diagram.

Consider the FSM in Figure 20.3; this diagram can only produce an ‘a’ or ‘b’
followed by a ‘c’, which would be written as (a|b)c.

S0 S1

S4

S2

c
a, b

a, b, c

c

a

b

Figure 20.3 FSM to represent the regular expression (a|b)c

● Searching strings
The power of regular expressions in this context is in using them to
identify patterns in strings. Common uses include data validation,
find and replace or searching for files with a particular file name. Most
programming languages support the use of regular expressions and
although the syntax and delimiters used may vary, the underlying
principle remains the same. There is a standard set of expressions
defined by POSIX.

Table 20.2 Standard expressions

Expression Definition Example

. Effectively a wildcard and matches
any character

.ole would match to mole,
hole, vole etc.

[] Matches to a single character within
the brackets

[mh]ole would match to mole
and hole but not vole.

[^] Matches to any character except
those in the brackets

[^ m]ole would match to hole
and vole but not mole.

* Matches the preceding characters
zero or more times

m*ole would match ole,
mole, mmole, mmmole, etc.

{m,n} Matches the preceding character at
least m but no more than n times

a{2,5} would match to aa,
aaa, aaaa and aaaaa.

CO
N

TEXT-FR
EE LAN

G
U

AG
ES

159

The following is an extract of Visual Basic-based pseudo-code showing how
a search string could be implemented using a regular expression to identify
numbers 0 to 9:

‘Set a variable that contains the search string

Dim myString As String = "Software Version 3"

‘Define the alphabet

Dim regex = New Regex("[0-9]")

‘Set a variable to store the matching characters

Dim match = regex.Match(myString)

‘Where a match is found between the alphabet and
the search string, write the matching characters to
the screen

If match.Success Then

Console.WriteLine(match.Value)

End If

This code would produce the output “3”. To use this code you will need to
import System.Text.RegularExpressions into your program.

● Context-free languages
A context-free language is a method of describing the syntax of a
language used where the syntax is complex. As we saw in the previous
chapter, one of the applications of state transition diagrams is to check that
the syntax rules of a language are being followed. The technique can be
used to check that different components of the code are in the correct place.

Regular expressions map directly to state transition diagrams. However,
there are situations where the grammar used within a language is too
complex to be defined by regular expressions. The key problem with
regular expressions is that they only work when matching or counting
other symbols in a string where there is a finite limit.

For example, consider a binary palindrome. This is a binary number that is the
same backwards as it is forwards, e.g. 01110. If you think about a palindrome
in normal language, for example, ‘anna’ or ‘level’, it would not be possible to
create a regular expression that describes the syntax as there is no regular
expression that can describe how each letter is used. Similarly with binary
palindromes, there is no regular expression for the patterns of zeros and ones.

Where the counting and matching is infinite, a context-free language is
needed. Context-free languages can also support notation for recursion
and are sometimes a clearer way of defining syntax even where regular
expressions can be used.

Backus–Naur Form (BNF)
The concept of context-free languages is that rules can be written that
define the syntax of the language which are completely unambiguous and
that can work beyond the current state. One method for doing this is to use
Backus–Naur notation, known as BNF (Backus–Naur Form).

KEYWORD
Backus–Naur Form (BNF):
a form of notation for
describing the syntax used by a
programming language.

KEYWORD
Context-free language: an
unambiguous way of describing
the syntax of a language useful
where the language is complex.

160

 2
0

Re
gu

la
r a

nd
 c

on
te

xt
-f

re
e

la
ng

ua
ge

s

In common with regular expressions, BNF produces a set of acceptable
strings, which effectively describe the rules of the language. It uses a set of
rules that define the language in the format:

<S> ::= <alternative1> | <alternative2> |
<alternative3>

<alternative1> ::= <alternative2> | <alternative4>

<alternative4> ::= terminal

BNF works by replacing the symbol on the left with the symbols on the
right until the string is defined. The idea is to keep going until you reach a
terminal, which is a rule that cannot be broken down any further. In the
example above:
● each symbol or element is enclosed within angle brackets <>
● the ::= means ‘is replaced with’ and defines the rule for the symbol
● each symbol needs to be split down further until you reach a terminal.

To define integers, a BNF expression may look like this:

<integer> ::= <digit> | <digit> <integer>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

This shows that an integer is defined as either a digit or a digit followed
by another integer. A digit is defined as the numbers 0 to 9 and this is a
terminal as there is no further rule needed to define digits. This expression
would be recursive as integer is defined in terms of itself.

Consider a more complex example, for customer details held in a database:

<customerdetails> ::= <name> <address>

<name> ::= <title> <firstname> <lastname>

<address> ::= <housenumber> <streetname> <town>
<county> <postcode>

...

<housenumber> ::= <integer>

<integer> ::= <digit> | <digit> <integer>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

 ...

This example shows how BNF can produce simple rules, which can be
written as:
● customer details must be made up of name and address.
● name must be made up of title, first name and last name.
O address must be made up of house number, street name, town, county

and postcode.
O house number must be made up of an integer.
● integer must be made up of a digit or another integer.

This is only a partial BNF definition and could be continued to further split
down the name into a series of acceptable characters, or the postcode into a
series of letters and numbers and so on.

KEYWORDS
Set: a collection of symbols in
any order that do no repeat.
Terminal: in BNF, it is the final
element that requires no further
rules.

CO
N

TEXT-FR
EE LAN

G
U

AG
ES

161

Syntax diagrams
Another way of representing BNF expressions or any kind of context-free
language is a syntax diagram. These map directly to BNF and use the
symbols:

text

text

text

Represents a terminal element.

Represents a non-terminal element and therefore will have another syntax
diagram that breaks it down into more detail.

Represents a non-terminal element that may be used more than once.

Figure 20.4 Syntax diagram symbols

Syntax diagrams are modular so there are likely to be many syntax
diagrams required to represent a whole language. Each has an entry and
exit point to identify the start and end of each particular part. For example,
an integer would be represented as shown in Figure 20.5.

digit

integer

Integer

0

1

2

3

4

5

6

7

8

9

Digit

Figure 20.5 Syntax diagram to represent an integer

Figure 20.6 shows how you could break the customer details example into a
series of syntax diagrams. This is just a partial diagram to demonstrate how
to get to a terminal. In this case there are a series of non-terminal stages
before you arrive at the terminal element, which are the actual characters
that comprise a person’s name.

KEYWORD
Syntax diagram: a method
of visualising rules written in
BNF or any other context-free
language.

162

 2
0

Re
gu

la
r a

nd
 c

on
te

xt
-f

re
e

la
ng

ua
ge

s

Name Address

Customer details

First name

Character

Name
First name Last name

Character
A

B

C

D

Figure 20.6 A syntax diagram for customer details

A worked example will help to explain this.

Suppose you wanted to create rules for a password that stated that for each
character within the password the user must select either a capital letter, a
lower case letter, a special character or a digit in any order. The BNF may
look like this:

<character> ::= <uppercase>|<lowercase>|<number>|<spe
cialcharacter>

<uppercase> ::= "A" – "Z"

<lowercase> ::= "a" – "z"

<number> ::= 0|1|2|3|4|5|6|7|8|9

<specialcharacter> ::= *| - | _ | % | ^

Note that we have reached a terminal on all our elements.

Suppose we wanted to insist that the first character was a capital letter
followed by any combination of other characters. The syntax diagram
would look like Figure 20.7.

Password

Upper
case

Upper
case

Lower
case

Number

Special
character

Figure 20.7 Syntax diagram to represent the creation of a valid password

Practice questions can be found at the end of the section on
pages 179 and 180.

CO
N

TEXT-FR
EE LAN

G
U

AG
ES

163

TASKS
1 Explain the difference between regular expressions and context-free

languages.
2 Identify two text strings that would be acceptable for the following

regular expressions:
a) a|b+c
b) (a|b)c*
c) a*b*c

3 Draw state transition diagrams for the three regular expressions in
question 2.

4 Write a regular expression for each of the following descriptions that
uses an alphabet of 0 and 1:
a) must start with a 1
b) any number of 0s followed by any number of 1s
c) any combination of 0s and 1s.

5 Use BNF to define the syntax of a car registration number in the
format LLNN LLL.

6 Draw a syntax diagram for question 5.

STUDY / RESEARCH TASKS
1 Use BNF to try and explain some of the rules of constructing a

sentence using the English language.
2 Research Extended Backus–Naur Form (EBNF).
3 Look into the work of Panini and the Sanskrit language. How does this

relate to BNF?

KEY POINTS
• Regular expressions are

a method of defining and
searching sets of data.

• Regular expressions can
be used to handle text and
numeric strings.

• A regular language is one that
uses regular expressions.

• Context-free languages are
methods that can be used
to describe the syntax of
programming languages.

• Backus–Naur Form (BNF) is a
notation for describing the syntax
of a programming language in
an unambiguous way.

• Syntax diagrams are a method
of visualising the syntax of
a particular programming
language.

164

SPECIFICATION COVERAGE
3.4.2.2 Maths for regular expressions

 21 Maths for regular
expressions

● Sets
As a reminder, a set is a collection of unordered values where each value appears
only once in the set. The values in the set are sometimes referred to as elements,
objects or members. The common format for representing a set is as follows:

A = {1, 2, 3, 4, 5}

where A is the name of the set and 1 to 5 are the values or elements within
it. Any value can be represented in a set. For example:
● b = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...} where b represents natural numbers
● _ = {..., –3, –2, –1, 0, 1, 2, 3, ...} where _ represents integers.

There is more on different sets of numbers in Chapter 27.

Set comprehension
In the example for A above, the set is defined by listing the actual numbers
within the set. It is also possible to define the contents or members of a
set using set comprehension. This means that the set is defined by the
properties that the members of the set must have. This is sometimes called
set building.

INTRODUCTION
In the previous chapter we looked at how to use regular expressions to
defi ne and search strings within a set. In this chapter we will be looking
at how regular expressions can be used on sets of numbers.

LEARNING OBJECTIVES
In this chapter you will learn:
• how sets can be created using set comprehension
• how sets can be represented in a programming language
• what the empty set is and how it is used
• what operations can be carried out on sets
• how sets can be fi nite or infi nite
• what a subset is and how they are created.

KEYWORDS
Natural number: a positive
whole number including zero.
Set comprehension: see Set
building.
Set building: the process of
creating sets by describing them
using notation rather than listing
the elements.

A level only

SETS

165

For example:

A = {x | x ∈ b x ≥ 1}

where:
● A is the name of the set
● the curly brackets { } represent the contents of the set
● x represents the actual values of the set that will be defined after the pipe |
● the pipe | means ‘such that’, meaning that the equation after the x defines

the values of x
● ∈ means ‘is a member of’
● b is all of the natural numbers, e.g. 0, 1, 2, 3 etc
● means ‘and’
● ≥ 1 means greater than or equal to one.

In this case we have used set comprehension to create a set of values
that are the natural numbers from 1 upwards, which we could show
as {1, 2, 3, 4, ...}. Note the use of the ellipsis (...) to indicate that the
sequence continues.

Let’s look at another example:

A = {x ∈ ^ | x = x2}

In this case x is a real number where the value of x is the same as the value
of x2. There are only two values that meet this criterion, which are 0 or 1.
Therefore A = {0, 1}.

Set comprehension is a powerful tool as it can be used to define complex
sets of values, without having to define every value. It means that the set
can be represented in an efficient and compact form. For example:

A = {2x | x ∈ b } would produce the elements {0, 2, 4, 6, 8, ...}

A = {x2 | x ∈ b } would produce the elements {0, 1, 4, 9, 16, ...}

Let’s look at an example using binary values. Standard notation for binary
values would be:

∑ = {0, 1}

This shows that the elements of the set of binary values are 0 or 1. To build
a set of all binary strings containing two bits, you could use ∑2 where the 2
indicates two bits. Therefore:

∑2 = {00, 01, 10, 11}

∑3 = {000, 001, 010, 011, 100, 101, 110, 111}

Again this shows how simple notation can be used to define a large number
of elements. In some cases the number of elements may be infinite. For
example:

A = {0n1n | n ≥ 1} would produce the set {01, 0011, 000111, 00001111, ...}
representing all binary stings with an equal number of 0s and 1s with the
0s preceding the 1s.

KEYWORD
Member: describes a value or
element that belongs to a set.

 2
1

M
at

hs
 fo

r r
eg

ul
ar

 e
xp

re
ss

io
ns

166

Representing sets in programming languages
Most programming languages have set-building routines enabling you to
create sets either by entering values or using set comprehension techniques.
For example:
● In Python you can write the code a = set ([0, 1, 2, 3]) where

the contents of the square brackets form the set.. Alternatively, you could
write the code a = set ([x**2 for x in [1, 2, 3]]), which
would produce the set {1, 4, 9}.

● In Haskell you can write the code [1..100], which makes a
list containing the values 1 to 100. This can be combined with
other functions to define a more complex list, for example
[x*2 | x <- [1..100]], will produce a list of the doubles of all the
numbers between 1 and 100.

● In C# you could write the code IEnumerable<int> numbers =
Enumerable.Range (0,9) to produce the integers 0 to 9. The code
var evens = from num in numbers where num % 2 == 0
select num; would then extract the even numbers.

The empty set
There is a special set known as the empty set which is represented either
as {} or as Ø. The empty set has no elements. However, it is not to be
confused with zero. The easiest way to think about it is as a container that
could contain something, but it is empty.

Consider the following question: How many countries begin with the letter
X? If you tried to put this answer in the container there would be nothing to
put in so you might put a zero in the container. The problem with this is that
the container is no longer empty as we now have one element in it – a zero.

Therefore in scenarios where an operation results in no answer we can use
the empty set. Consider the following operation:

A = {1, 3, 5, 7, 9, ...}

B = {2, 4, 6, 8, 10, ...}

A ∩ B = Ø

The ∩ represents intersection so this equation is looking for elements that
are in the first set that can also be found in the second set. As there aren’t
any, the answer is represented as the empty set by the Ø symbol.

Finite and infinite sets
We have already seen that some sets may contain a finite number of
elements, or that they may contain an infinite number of elements. For
example:
● A = {1, 2, 3, 4, 5} is a finite set with five elements
● A = {1, 2, 3, 4, 5, ...} is an infinite set made up of natural numbers
● A = {x | x ∈ b x ≥ 1} is an infinite set of natural numbers greater than zero.

Where a set is finite it has cardinality, which means that it can be
counted using natural numbers. It is also referred to as a countable
set. The cardinality of a set is simply the number of elements in the set.
We may also refer to this as the size of the set. For example, the first set
above has a cardinality of five as it has five elements. The empty set has a
cardinality of zero.

KEYWORD
Empty set: the set that contains
no values.

KEYWORDS
Finite set: a set where the
elements can be counted
using natural numbers up to a
particular number.
Infinite set: a set that is not finite.
Cardinality: the number of
elements in a set.
Countable set: a finite set where
the elements can be counted
using natural numbers.

SETS

167

Infinite sets do not have cardinality as we do not know the total size of the
set. However, for some infinite sets it is possible to go through the process
of counting the elements, even though you would never reach the end.
These are described as countably infinite sets as they can be counted off
against the natural (countable) numbers.

Set operations
It is possible to join two or more sets together to create a new set. This is
known as the Cartesian product. For example:

A = {a, b, c}

B = {1, 2, 3]

A × B would produce a set of all possible ordered pairs where:
● the first member of A is paired with the first member of B
● then the first member of A is paired with the second member of B and so

on for every member of B
● then the second member of A is paired with the first member of B
● the process is repeated until every member of A has been paired with

every member of B.

The resulting set or Cartesian product of the two sets would be: {(a,1), (a,2),
(a,3), (b,1), (b, 2), (b,3), (c,1), (c,2), (c,3)}. This could also be written as:

A × B = {x , y | x ∈ A y ∈ B}

Notice that the cardinality of the output set is always going to be the same
as the product of the two input sets. In this case, A and B both had a
cardinality of three, which means that our output set will have a cardinality
of nine (3 × 3).

When working with two or more sets there are different ways of defining
the relationship between the members of the two sets. There are three main
operations:
● Union: This means joining together two or more sets so that the new

set is a combination of both sets. This can be represented as A ∪ B. For
example, if A = {0, 1, 3, 5, 7, 9} and B = {0, 2, 4, 6, 8} then A ∪ B will be
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Note that the 0 is the only value common to
both sets and will only appear once in the combined set. This could be
represented visually as shown in Figure 21.1.

● Intersection: This means when two sets are joined together, the
resulting set contains those elements that are common to both. It can
be represented as A ∩ B. For example, if A = {1, 3, 5, 7, 9} and B = {1, 3,
4, 6, 8} then A ∩ B would be {1, 3}. This could be represented visually as
shown in Figure 21.2.

● Difference: This means that when two sets are joined together the
resulting set contains elements that are in either set, but not in their
intersection. This can be represented as A B or A ∆ B. For example,
if A = {1, 2, 3, 4, 5, 6, 7, 8} and B = {2, 4, 6, 8, 10} then the difference
would be {1, 3, 5, 7, 10}. This could be represented visually as shown
in Figure 21.3.

Figure 21.1 Venn diagram to represent
the union of two sets

Figure 21.2 Venn diagram to represent
the intersection of two sets

Figure 21.3 Venn diagram to represent
the difference between two sets

KEYWORDS
Countably infinite sets:
sets where the elements
can be put into a one-to-one
correspondence with the set of
natural numbers.
Cartesian product: combining
the elements of two or more sets
to create a set of ordered pairs.
Union: where two sets are joined
and all of the elements of both
sets are included in the joined set.
Intersection: describes which
elements are common to both
sets when two sets are joined.
Difference: describes which
elements differ when two sets
are joined together.

 2
1

M
at

hs
 fo

r r
eg

ul
ar

 e
xp

re
ss

io
ns

168

Subsets
Where all of the elements of one set are also contained within another set,
it is said to be a subset. For example, A = {1, 3, 5, 7, 9, ...} is a subset of
B = {1, 2, 3, 4, 5, ...} as all of the elements of A are contained within B. This
can be shown as A ⊂ B where the symbol means ‘is a proper subset of’.
The definition of a proper subset is one that has fewer elements than the
set. In this case, the subset A contains just the odd numbers from the other
set. Similarly we could say that A ⊂ B where A = {1, 2, 3, 4, 5] and B = {1, 2,
3, 4, 5, 6} as there is at least one number in B that is not in A.

The notation of a subset (as opposed to a proper subset) is A ⊆ B and
the distinction is that two sets that are the same can be said to be
subsets of one another. For example, where A = {1, 2, 3, 4, 5} and
B = {1, 2, 3, 4, 5} we can say that A is a subset of B because it contains
everything within B.

Practice questions can be found at the end of the section on
pages 179 and 180.

TASKS
1 What is cardinality?
2 Use set comprehension to represent all real numbers greater

than zero.
3 Use set comprehension to define all negative integers.
4 Use set comprehension to define the cube of all natural numbers.
5 Explain why the empty set is not the same as zero.
6 Use examples to explain the difference between union, intersection

and difference when joining two or more sets together.
7 Define the Cartesian product that would result from A = {x, y, z}

and B = {1, 2}.
8 What is the cardinality of a set resulting from the Cartesian product of

A with 8 elements and B with 9 elements?
9 Use an example to explain a proper subset.

STUDY / RESEARCH TASKS
1 Write code to define sets for:

a) all rational numbers greater than zero
b) all negative integers
c) the cube of all natural numbers.
Research other ways in which sets can be joined together including
supersets, power sets and complements.

2 Find out about ‘Hilbert’s paradox of the Grand Hotel’ to help you
understand the concept of countably infinite sets.

KEYWORDS
Subset: a set where the elements
of one are entirely contained
within the other; can include two
sets that are exactly the same.
Proper subset: where one set is
wholly contained within another
and the other set has additional
elements.

KEY POINTS
• A set is a collection of

unordered, non-repeated data
items of the same type.

• Set comprehension is the
process of building a set using
an expression.

• Programming languages
support set-building
techniques.

• The empty set is a set with no
values in it.

• Sets can have a finite or
infinite number of elements in
them.

• Sets can be combined in
different ways to create new
sets.

169

SPECIFICATION COVERAGE
3.4.4 Classifi cation of algorithms

 22 Big O notation and
classification of
algorithms

INTRODUCTION
An algorithm is a sequence of steps designed to perform a particular
task. As we have seen, programs are constructed from algorithms, which
may comprise a few lines of code or whole blocks of code, depending
on the complexity of the problem. For example, an A-level project might
have a few hundred lines of code. A typical phone app has around 100 000
lines of code and according to some estimates, the latest version of MS
Offi ce uses around 45 million lines of code. This illustrates that there is
usually a relationship between the size and scope of the problem and the
size and the scope of the code needed to provide a solution.

This chapter looks at how you can classify algorithms by their complexity
in terms of how much time code takes to achieve a result and how much
memory it requires. The method of describing the complexity of algorithms
is called Big O notation.

LEARNING OBJECTIVES
In this chapter you will learn:
• some algorithms are more effi cient than others
• how to classify algorithms by their time and space complexity
• how the basic mathematical functions describe time and space

complexity work
• how Big O notation classifi es algorithms in terms of their time and

space complexity work
• that some problems are tractable (solvable within a reasonable

amount of time on a computer) and some are intractable (not solvable
within a reasonable amount of time on a computer).

● Classifying algorithms
Faced with a problem, a programmer may come up with different algorithms
that provide a solution. One of the objectives for writing good code is to produce
an efficient solution. Efficiency is usually measured in terms of time and space:

KEYWORD
Algorithm: a set of instructions
required to complete a
particular task.

A level only

22
 B

ig
 O

 n
ot

at
io

n
an

d
cl

as
si

fi
ca

ti
on

 o
f a

lg
or

it
hm

s

170

● Time: how long does the algorithm take to run compared to other
algorithms.

● Space: how much space (memory) is required by the algorithm compared
to other algorithms.

The key consideration is what is called input size or problem size. Typically
this is the number of parameters or values that the algorithm will be
working on. For example, a search routine written to work on a dataset
with only a few values may not work as efficiently on a larger dataset with
hundreds of values.

The code below shows a bubble sort which is inefficient as it has to loop
through the whole dataset every time comparing and swapping two
adjacent items on each pass. If there were a million items of data it may
have to go round approximately 1 000 0002 times.

For Loop1 = 1 To NumberOfItems - 1

 For Loop2 = 1 To NumberOfItems - 1

 ‘ if the following name is smaller then swap

 If NameStore(Loop2) > NameStore(Loop2 + 1) Then

SwapData = NameStore(Loop2)

NameStore(Loop2) = NameStore(Loop2 + 1)

NameStore(Loop2 + 1) = SwapData

 End If

 Next

Next

The code could be made more efficient by checking whether any swaps
have taken place in each pass of the data. If a swap has taken place between
two data items than they do not need to be compared again on the next
iteration of the loop:

Do

SwapData = ""

 For Loop2 = 1 To CountTo

 If NameStore(Loop2) > NameStore(Loop2 + 1) Then

SwapData = NameStore(Loop2)

NameStore(Loop2) = NameStore(Loop2 + 1)

NameStore(Loop2 + 1) = SwapData

 End If

 Next

 CountTo = CountTo - 1

Loop Until SwapData = ""

In this chapter we will look at how to compare algorithms by analysing the
time and space requirements in response to changes in input size.

171

B
IG

 O
 N

OTATIO
N

● Functions
Comparing algorithms uses a technique called Big O notation. This uses
standard mathematical functions. Before we look at Big O, we need to
understand the functions it uses.

A function simply relates an input to an output. For example f(x) = x2 is
an example of a function. It means that you take the input value for the
function, x, and produce an output, which in this case is the squared value
of x. The set of values that can go into a function is called the domain and
the set of values that could possibly come out of it is called the codomain.
The set of values that are actually produced by the function is called the
range. It is always the case that the range will be a subset of the codomain.

Another important mathematical concept for understanding Big O is that
of permutations. If you consider an item of data such as a text string, or a
number, there are different ways in which the characters or digits can be
put together. For example:
● A word with two letters has two permutations: ‘to’ can be ‘to’ or ‘ot’.
● A word with three letters has six permutations: ‘dog’ can be ‘dog’, ‘dgo’,

‘odg’, ‘ogd’, ‘gdo’ or ‘god’.
● A word with four letters can have 24 permutations. Rather than work

through them the basic formula is that there are four ways to pick the
first letter, followed by three ways to pick the second letter followed by
two ways to pick the third letter and finally one way to pick the last
letter. This could be shown as 4 × 3 × 2 × 1, which gives 24.

● A word with five letters therefore has 5 × 4 × 3 × 2 × 1 = 120
permutations.

This is called the factorial function and can be denoted by n! Where n is
an integer. For our five-letter word, we could show this as 5! which means
5 × 4 × 3 × 2 × 1 = 120.

● Big O notation
Big O notation is a method of describing the time and space complexity
of an algorithm. It looks at the worst-case scenario by essentially asking
the question: how much slower will this code run if we give it 1000 things
to work on instead of 1? For example, if you had a bubble sort routine that
compared the first two items of data and swapped them if necessary, then
compared the next two items of data and so on, this might work quite quickly
on a list of 10 items. But what if you asked it to sort a list of 1 million items?

Big O notation provides a measure of how much the running time
requirements of the code will grow as the magnitude of the inputs changes.
Big O calculates the upper bound, which is the maximum amount of time
it would take an algorithm to complete. The notation refers to the order of
growth, also known as the order of complexity, which is a measure of how
much more time or space it takes to execute the code as the input size
increases. The format is a capital letter O followed by a function. All of the
explanations below relate specifically to time complexity, rather than
space complexity.

KEYWORDS
Function: relates each element
of a set with the element of
another set.
Domain: all the values that
may be input to a mathematical
function.
Codomain: all the values that may
be output from a mathematical
function.
Factorial: the product of all
positive integers less than or
equal to n, e.g. 3! is 3 × 2 × 1.

KEYWORDS
Space complexity: the concept
of how much space an algorithm
requires.
Input size: in Big O notation the
size of whatever you are asking
an algorithm to work with, e.g.
data, parameters.
Time complexity: the concept
of how much time an algorithm
requires.

22
 B

ig
 O

 n
ot

at
io

n
an

d
cl

as
si

fi
ca

ti
on

 o
f a

lg
or

it
hm

s

172

Big O notation uses five main classifications:

● O(1), known as constant time, means that the algorithm will always
execute in exactly the same amount of time regardless of the input size.
Accessing an array would be an example of this as each element of the
array is accessed directly by referring to its position. Therefore, it would
not take any longer to access a single element if there were one or ten
million items in the array. Note that O(1) does not necessarily mean that
the code will run quickly, it just means that it will take the same amount
of time (it is constant) regardless of the input.
If you were to represent this as a graph, it might look like Figure 22.1.

This shows that however much the input size increases, the time taken to
run the algorithm remains the same.

Input size

O(1)

Ti
m

e

Figure 22.1 Graph to represent constant function

● O(N) represents a linear function and it means that the runtime of the
algorithm will increase in direct proportion with the input size. For
example, there could be a relationship where if you input twice as much
data, the algorithm will take twice as long.
This could be represented as y = x where every change in x produces
a corresponding change in y. The linear relationship may be more
complex. Another example of O(N) is y = 2x which means that every
change in x would produce double this change in y. This could be
represented graphically as shown in Figure 22.2.

Input size

O(N)Ti
m

e

Figure 22.2 Graph to represent linear function

Looping around a list would be an example of this because the code needs
to access every element of the list. If you increase the size of the list the
amount of time taken to carry out the loop will increase by a linear amount.

● O(N2) is an example of a polynomial function and it means that the runtime
of the algorithm will increase proportionate to the square of the input size.
To take a simplified example, let’s say that one item takes 1 second (12). Ten

KEYWORD
Constant time: in Big O notation
where the time taken to run an
algorithm does not vary with the
input size.

KEYWORD
Linear time: in Big O notation
where the time taken to run an
algorithm increases in direct
proportion with the input size.

B
IG

 O
 N

OTATIO
N

173

items therefore would take 100 seconds (102) and 100 items would take
10 000 seconds (1002). This could be represented as y = x2. This could be
represented graphically as shown in Figure 22.3.

Input size

O(N2)

Ti
m

e
Figure 22.3 Graph to represent polynomial function

Iterative or nested statements such as bubble sorts and insertion sorts
are examples of these as the program has to go back through itself again
with each iteration. The following code shows a bubble sort using a loop:

Private Sub btnSort_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnSort.Click

 Dim Loop1 As Integer

 Dim Loop2 As Integer

 Dim TempStore As String

 Dim RowsToSort As Integer

 RowsToSort = grdDataIn.RowCount - 2

 For Loop1 = 1 To RowsToSort - 1

For Loop2 = 1 To RowsToSort - 1

‘ compare each value in the table with the
following value

‘ changing the > operator will sort high
to low

 If grdDataIn.Rows(Loop2).Cells(0).Value >
grdDataIn.Rows(Loop2 + 1).Cells(0).Value Then

‘ swap values to move larger values to
later cells

 TempStore = grdDataIn.Rows(Loop2).Cells(0).
Value

 grdDataIn.Rows(Loop2).Cells(0).Value =
grdDataIn.Rows(Loop2 + 1).Cells(0).Value

 grdDataIn.Rows(Loop2 + 1).Cells(0).Value =
TempStore

End If

Next

 Next

 End Sub

22
 B

ig
 O

 n
ot

at
io

n
an

d
cl

as
si

fi
ca

ti
on

 o
f a

lg
or

it
hm

s

174

● O(2N) is an example of an exponential function where the runtime
will double with every additional unit increase in the input size. To
take a simplified example, one item might take 1 second, two items
would take 2 seconds, three items 4 seconds and so on. Ten items of
data would take 512 seconds. This can be expressed as y = 2x where
x is each individual item being input and y represents the time taken.
Obviously the amount of time taken to process each input will start to
become unworkable. Problems with an exponential order of growth are
often referred to as intractable problems, which means that they can’t
be solved with a computer in a reasonable time. There is more on this
later in the chapter.

Figure 22.4 Graph to represent exponential function

Input size

O(2N)Ti
m

e

● O(logN) represents a logarithmic function which uses an exponent to
raise the value of a base number in order to produce the desired number.
For example, with y = log2x, this means we are using base 2. If x = 8 then
y must equal 3 as you have to multiply 2 by 2 by 2 or 23 in order to get 8.
In base ten, y = log10x, if x = 10 000 then y must equal 4 as 10 × 10 × 10 ×
10 or 104 equals 10 000.

The usefulness of this can be shown by looking at a binary search.
These work by continually splitting the data in half until the item being
searched for is found (see Chapter 9). It is called a binary search as it
splits the data in two each time. Therefore it has a time complexity of
O(log2N) as each subsequent split of the data takes less time as only
half the data is being searched. The number of data items is halving
each time so even large datasets can be searched with a relatively small
number of comparisons:

KEYWORDS
Exponential time: in Big O
notation where the time taken
to run an algorithm increases
as an exponential function of the
number of inputs. For example,
for each additional input the time
taken might double.
Logarithmic time: in Big O
notation where the time taken
to run an algorithm increased
or decreases in line with a
logarithm.

Number of data items Number of comparisons needed in a binary search

2 1

4 2

8 3

16 4

128 8

65 356 16

1 048 576 20

4 294 967 296 32

Table 22.1

D
ER

IVIN
G

 TH
E CO

M
PLEXITY O

F AN
 ALG

O
R

ITH
M

175

Table 21.1 shows the way in which the size of the input data that can
be searched increases exponentially with each comparison. Therefore
to carry out a binary search of over 4 billion items would only actually
take up to 32 comparisons within the dataset.

This could be represented graphically as shown in Figure 22.5.

Input size

O(logN)

Ti
m

e

Figure 22.5 Graph to represent logarithmic function

The value of using Big O notation is that you can find the most efficient
solution for your problem. Remember that Big O uses the upper bound so is
a good measure of how scalable your solution is, that is, how efficient it will
be as the input size increases. As a broad rule of thumb:
● An O(1) algorithm scales the best as it never takes any longer to run.
● An O(logN) algorithm is the next most efficient.
● An O(N) algorithm is the next most efficient.
● An O(N2) algorithm is a polynomial and is considered to be the point

beyond which algorithms start to become intractable. Note that the
superscript number could be any value.

● An O(2N) algorithm is the least efficient and considered intractable.

● Deriving the complexity of an algorithm
It is possible to derive the time complexity of an algorithm by looking at the
contents of the code. For example:
● An algorithm that requires no data and contains no loops or recursion,

such as a simple assignment statement or comparison statement, will
have a time complexity of O(1).

● An algorithm that loops through an array accessing each data item once
will have a time complexity of O(N).

● An algorithm with inner and outer loops will be polynomial with
runtime increasing depending on the depth of the nesting and the
number of loops. In this case it will be O(N 2).

● The addition of a loop within the inner loop would alter the polynomial
time to O(N 3).

● An algorithm that uses recursion to call itself could have a time
complexity of O(a N).

It is not always easy to work out the precise time complexity of an algorithm as
it may depend on how many times parts of the algorithm may run, based on
the outcome of conditional statements. For example, with an If statement, part
of the algorithm will only need to run if a condition is true. Therefore the actual
number of times that some of the program code executes will depend upon the
data that is input to the algorithm when it is carried out.

KEYWORD
Polynomial time: in Big O
notation where the time taken to
run the algorithm is a polynomial
function of the input size, e.g. the
square of the input size.

22
 B

ig
 O

 n
ot

at
io

n
an

d
cl

as
si

fi
ca

ti
on

 o
f a

lg
or

it
hm

s

176

With Big O notation, to describe the complexity of a problem, the usual
practice is to quote the worst-case scenario for the most efficient algorithm.
However, in choosing a suitable algorithm it is possible to make a
comparison between the worst, best and average cases based on time
complexity.

Some common algorithms are known to have certain time complexities as
shown in Table 22.2.

Table 22.2 Common algorithms with time complexity in Big O notation

Complexity Algorithms

O(1) Indexing an array

O(logN) Binary search

O(N) Linear search of an array

O(N2) Bubble sort
Selection sort
Insertion sort

O(2N) Intractable problems

● Tractable and intractable problems
A tractable problem is one that is said to be solvable in polynomial time.
In simple terms this means that the algorithm that solves the problem runs
quickly enough for it to be practical to solve the problem on a computer.

Intractable problems are those which are theoretically possible to solve,
but cannot be solved within polynomial time. The problem may be solvable if
the input size is small, but as soon as the input size increases it is considered
impractical to try and solve it on a computer. A classic example is ‘the
travelling salesman’ problem, which is primarily a conceptual problem that has
been tackled by mathematicians and computer scientists for over 100 years:
● A salesman has to travel between a number of cities.
● The distance between each pair of cities is known.
● He must visit each city just once and then return to his start point.
● He must calculate the shortest route.

On the face of it, there may be a simple solution to this problem, particularly
if there are only a small number of cities to visit. However, as the number of
cities increases, the permutations of routes grow at a much faster rate.

There are many similar problems that involve calculating distances between
pairs of points. For example, some analysis looks at points on a circuit board
in order to optimise data transmission. As we have seen, the time complexity
of a problem is typically concerned with looking at the worst-case scenario,
so must consider thousands of points. To date, algorithms have been created
that can calculate the actual shortest distance between around 85 000 pairs
of points. These algorithms have a very large time complexity that go well
beyond polynomial time and are therefore considered intractable.

Faced with intractable problems, programmers often produce heuristic
algorithms. Having accepted that the perfect solution is not possible, a
solution that provides an incomplete or approximate solution is seen as
being preferable to no solution at all. Often this will involve ignoring certain
complex elements of the problem, or accepting a solution that is not optimal.

KEYWORDS
Tractable problem: a problem
that can be solved in an
acceptable amount of time.
Intractable problem: a problem
that cannot be solved within an
acceptable time frame.
Heuristic: with algorithms it is a
method for producing a ‘rule of
thumb’ to produce an acceptable
solution to intractable problems.

U
N

SO
LVAB

LE PR
O

B
LEM

S

177

Heuristics often uses ‘rules of thumb’ and therefore cannot guarantee
accurate results for every possible set of inputs. Instead they produce results
that may be accurate for common uses of the program, but less accurate
where the program is being used with less likely inputs. The objective with
a heuristic algorithm is to produce an acceptable solution in an acceptable
time frame, where the optimum solution would simply take too long.

For example, several heuristic solutions have been developed for the travelling
salesman problem that theoretically enable millions of cities to be considered.
None of these compare every possible pair of cities so they do not create an
actual solution. Instead they produce an approximate solution, which may
well be very accurate. Estimates of some of these methods produce results
that may be within 5% degree of accuracy of the optimum solution.

● Unsolvable problems
Unsolvable problems are those which will never be solved regardless of
how much computing power is available either now or in the future and
regardless of how much time is given to solve it. The ‘halting problem’
is an example of a problem that is proven to be unsolvable. In simple
terms, the halting problem is whether it is possible to make a program to
determine if a program will finish running for a particular set of inputs.

The question devised by Alan Turing in the 1930s asks whether it would be
possible to write a computer program to solve the halting problem. The
conclusion is that the problem is unsolvable, as it is proven that it cannot be done.

The halting problem is considered to be one of the first unsolvable problem
ever identified and has led to the discovery of many other unsolvable
problems. This area of computing has led to a general acceptance that there
are some problems which:
● simply cannot be solved by computers (unsolvable problems)
● can theoretically be solved by computers but it is not possible within a

reasonable time frame (intractable problems)
Practice questions can be found at the end of the section on
pages 179 and 180.

TASKS
1 Why is it important to develop algorithms that take account of time

and space requirements?
2 What is input size?
3 Explain why a problem might be more time consuming to solve as the

input size increases.
4 Use an example to explain the domain, codomain and range within a

function.
5 What is a factorial?
6 Describe the five main classifications used in Big O notation and give

an example of an algorithm for each of the time complexities.
7 What is the most and least efficient time complexity according to Big O

notation?
8 Why are some problems considered intractable?
9 What is the halting problem?

KEYWORDS
Unsolvable problem: a problem
that it has been proved cannot
be solved on a computer.
Halting problem: an example of
an unsolvable problem where it
is impossible to write a program
that can work out whether
another problem will halt given a
particular input.

22
 B

ig
 O

 n
ot

at
io

n
an

d
cl

as
si

fi
ca

ti
on

 o
f a

lg
or

it
hm

s

178

STUDY / RESEARCH TASKS
1 What is P and why is it important when designing algorithms?
2 Research other problems that are considered intractable such as:

a) P = NP problem
b) the k-server problem.

3 Write code for a binary search and a linear search. Explain the time
complexity of each with reference to your code.

4 Research the space complexity of different data structures, e.g. array,
list, linked list, binary tree.

KEY POINTS
• Some algorithms are more

efficient than others in terms
of their time and space
complexity.

• Time complexity is the amount
of time an algorithm takes
to solve a problem and is the
main focus of study for A level.

• Space complexity is the
amount of memory an
algorithm takes to solve a
problem.

• Big O notation is a method
of comparing algorithms in
terms of their time and space
complexity.

• Big O notation uses standard
mathematical functions to
classify algorithms.

179

Section Four: Practice questions

Section Four: Practice questions
1 A holiday tour business wants to create a new computer system. They offer 30 different tours every year,

each of which can have up to 50 people on it. The tour company organises the travel and hotel arrangements
and lays on a number of excursions. They need to organise tour guides to accompany their customers and
manage all of the payments from customers and to suppliers.
a) Explain how you could use abstraction by generalisation /categorisation to break this problem down.
b) Produce a hierarchy chart to show how you could decompose this problem.
c) List at least six items of data that the tour business will need to collect.
d) Give two examples of how information hiding could be used in this scenario.

2 The fi nite state machine (FSM) shown processes a language with an alphabet of a, b and c.
a) Which of these input strings would be accepted?

 i) aaabc
 ii) baabc
 iii) aaaab
 iv) abc

b) Which of the states is the accepting state?
c) Draw a transition table for this FSM.
d) Write a regular expression that would recognise the same language

as this FSM.
3 Backus–Naur Form (BNF) can be used to define the rules of a language.

In the example below BNF is used to define parts of the addresses.
 <fulladdress> ::= <housenumber>_<street>_<town>_

<county>_<postcode>
 ...

<street> ::= <character> | <character> <street>
<character> ::= <A|B|D|E...>

 ...
<housenumber> ::= <digit> | <digit> <housenumber>

 <digit> ::= <0|1|2|3|4...>
a) Give an example of where regular expressions could be used in the

example above.
b) The BNF above is incomplete. Write all the rules needed for

<fulladdress>, including a rule to defi ne a postcode, which is made
up of up of two characters, two integers and a space, an integer and two
characters, e.g. LE11 1AA.

4 The common orders of time complexity are shown in the table.

Time complexity

O(1)

O(n2)

O(log2 n)

O (kn)

O (n)

a) Describe in words what O(1) means.
b) Which is the time complexity of an intractable problem?
c) What is meant by an intractable problem?
d) Which is the time complexity for a binary search?
e) Which is the time complexity for a linear search?
f) On average, would a binary search or a linear search be quickest on a list of just fi ve items? Explain

your answer.

S3S2

S4

S1

C

C

C

a, b

a, b

a, b

a, b, c

180

Se
ct

io
n

Fo
ur

: P
ra

ct
ic

e
Q

ue
st

io
ns

5 A Turing machine is represented by the following transition table.
a) What is a Turing machine?
b) What is a Universal Turing machine?

State Read Write Move Next state

SO 1 0 R S1

SO 0 1 R S1

SO B 0 R SH

S1 1 1 R S1

S1 0 0 R S0

S1 B 1 R SH

c) Draw a state transition diagram for the instructions in the table.
d) Write out the instructions in the format:

δ (Current State, Input Symbol) = (Next State, Output Symbol, Movement)
e) The Turing machine is carrying out a computation. Its starting state is S0 and the contents of the tape and

location of the tape head are shown below. State SH is the halting state. Trace the computation, showing
the contents of the tape, the current position of the read/write head and the current state as the input
symbols are processed.

1 1 0 0 0 �1�

Read/write head

Section Five:
Fundamentals of data
representation

182

 23 Number systems

INTRODUCTION
A number is a unit of mathematical data used to count, quantify, label
and measure. We are used to using standard number systems such as
the decimal system and over the next few chapters you will learn about
binary and hexadecimal too. In this chapter we will look at how different
types or sets of numbers can be used in different ways in computing.

SPECIFICATION COVERAGE
3.5.1.1 Natural numbers

3.5.1.2 Integer numbers

3.5.1.3 Rational numbers

3.5.1.4 Irrational numbers

3.5.1.5 Real numbers

3.5.1.6 Ordinal numbers

3.5.1.7 Counting and measuring

LEARNING OBJECTIVES
In this chapter you will learn:
• there are different types of numbers such as natural numbers,

integers, rational and irrational numbers, real numbers and ordinals
• that numbers are used in different ways to produce different outcomes
• how an array is used to store numbers
• the importance of numbers for counting and measuring.

● Natural numbers
These are the most recognisable type of number as they are the numbers that
we use every day for counting and ordering. Typically these are numbers
made up of the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. This is known as
decimal or base 10 as there are ten different digits that we use. Using a
single-digit number we can represent a maximum value of 9. We simply
add a new digit, to create the numbers 10–99. We then continue adding
digits to create hundreds, thousands and so on.

KEYWORD
Natural number: a positive
whole number including zero.

183

R
ATIO

N
AL N

U
M

B
ER

S

Each extra digit we add is worth ten times as much as the previous
digit, as it is base 10. This is an important concept and will help you to
understand the binary system in the next chapter. We can use this system
to represent an infinite range of numbers, the basic principle being that
there are only actually ten different digits on which all the numbers are
based. It is a common mistake to view natural numbers as 1 to 10, whereas
in fact they are 0 to infinity. The inclusion of 0 as a natural number
has implications in computing. For example, if you set a counter when
programming, the first instance of the counter will be 0 rather than 1.

The mathematical symbol for natural numbers is N or b so you might
represent them as follows:

b = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …}

● Integer numbers
An integer is a whole number whose value can be positive or negative.
Zero is also classed as an integer. A whole number is one that does not
contain a fractional part, which means there can be no fractions after the
number and no decimal place values.

Negative values are indicated by the minus sign (–). The relationship
between the negative and positive integers is that if you add the two you get
back to zero. For example –3 + 3 = 0 or 3 + (–3) = 0.

Integers are one of the standard data types that can be used when defining
variables and constants in programming languages. In theory, there are an
infinite number of integers that can be represented. In practice, different
languages have variations of integer types depending on the size of the
number that needs to be stored. In Visual Basic for example, the Integer
type uses four bytes allowing integers in the range –2 147 483 648 through
2 147 483 647 to be created. It has another data type called Long to handle
integers that will be outside this range.

The mathematical symbol for integer numbers is Z or _ so you might
represent them as follows:

_ = {..., –3, –2, –1, 0, 1, 2, 3, ...}

● Rational numbers
A rational number is one that can be expressed as a fraction, also known
as a quotient. Fractions are made up of two integers with the value being
the ratio between the two. The ratio can be expressed as a fraction or as
its decimal equivalent. For example we know ½ as half, and it can also be
represented as a decimal as 0.5.

The top integer is called the numerator and the bottom integer is called the
denominator. The numerator can be any integer, which means that it can be
any positive or negative whole number. The value of the fraction therefore
can be negative or positive and it can be greater or less than one, or zero.
Fractions can also result in the value of one. For example 5

5
 = 1 or 8

8
 = 1.

This means that by definition all integers are rational numbers.

The only rule is that the denominator can be any integer apart from zero,
as to divide by zero creates an undefined result. For example if you divided

KEYWORD
Rational number: any number
that can be expressed as a
fraction or ratio of integers.

KEYWORD
Integer: any whole positive or
negative number including zero.

23
 N

um
be

r s
ys

te
m

s

184

3 by 0, the answer is not 0 as it is not possible to define how many times
0 goes into 3. This creates specific problems in computer programming as
a program may not be able to continue when it comes across an undefined
result. This is called a ‘divide by zero’ error and programmers need to be
aware of it and trap it by writing appropriate code.

The mathematical symbol for rational numbers is Q or a.

● Irrational numbers
An irrational number is any number that cannot be represented as a ratio
of integers because the decimal equivalent would go on forever without
repeating. A classic example of an irrational number is π. As a fraction, a
widely used approximation is 22

7 . In decimal form, the number is infinite
so it has to be truncated (cut off) to a set number of decimal places, for
example to 3.14 or if more accuracy is required, to 3.1415926535.

Some square roots and cube roots are irrational numbers. A square root
can be represented as x = n2. If you start with a simple example, the square
root of 16 is 4. If you try to calculate the square root of 2, 3 or 99, you will
find that it is impossible as there is no number that you can square that will
exactly make 2, 3 or 99.

A feature of an irrational number is that the values after the decimal place
do not repeat in a pattern. For example, there is no pattern to the decimal
places in π. Recurring decimals do have a pattern and therefore are classed
as rational numbers. For example, one-third = 0.333... recurring.

The implication in computing is that where irrational numbers need to be
handled, the programmer needs to decide on the level of precision that is
required and therefore how much memory to allocate to storing the value.
In simple terms, this might mean defining the number of places to use after
the decimal point. Computers handle this in a specific way using fixed and
floating point numbers and there is more on this in Chapter 25.

● Real numbers
A real number is any positive or negative value and can include a
fractional part. Integers, rational numbers and irrational numbers are all
real numbers. The defining feature of a real number is that the fractional
part can be any length, allowing the number to represent a measurement to
any level of precision and accuracy required.

For example on a scale between 1 and 10, real numbers can be used to
break that down into units of 0.1. On a scale between 0 and 0.1, real
numbers can be used to break that down into units of 0.01 and so on.
There is an infinite range of numbers that can be generated.

Real numbers are used to measure continuous or infinitely changing values.
For programmers, the issue is in defining how accurate and precise a
numbers needs to be for the application. Consider the following examples:

1 A surveyor working on a road may need to take measurements ranging
from several kilometres to several metres, e.g. 10.15 km.

2 An Olympic race timer for the 100 m may need to deal with a range from
8 to 15 seconds accurate to a thousandths of a second, e.g. 9.934 seconds.

KEYWORD
Irrational number: a number
that cannot be represented
as a fraction or ratio as the
decimal form will contain infinite
repeating values.

KEYWORD
Real number: any positive or
negative number with or without
a fractional part.

185

CO
U

N
TIN

G
 AN

D
 M

EASU
R

EM
EN

T

3 A sensor taking readings of the core temperature in a nuclear power
station may need to cope with numbers from 0 to 600 degrees accurate
to five decimal places, e.g. 325.65744.

As with irrational numbers, computers deal with real numbers using fixed
or floating point techniques that are described in detail in Chapter 25.

● Ordinal numbers
Ordinal numbers are those that identify the position of something within
a list. For example: first, second and third. They are often used with
cardinal numbers, which identify the size of the list. For example, you
might say you were third out of 20.

In computing, ordinal numbers are used to identify the position (location)
of data within an ordered set. Consider the following set:

S = {’Anne’, ‘Asif ’, ‘John’, ‘Mary’, ‘Wanda’, ...}

This set is said to be well-ordered as it has an internal structure that
defines the relationship between the data items. In this case, the data is
made up of names in ascending alphabetical order. The ordinal number
is one that shows the order of the data so in this case the first item S(1) =
Anne, the second item S(2) = Asif, the third item S(3) is John and so on.

This is a useful technique to locate and manipulate data within certain data
structures such as lists, queues and arrays. Some programming languages
support an ordinal data type, which will contain a value that can be
counted and ordered.

A one-dimensional array called Register shows a list of names in a register:

Allen Brown Christie Davali Ennis

Ordinal numbers are used to assign the data as follows:

Register(1) = "Allen"

Register(2) = "Brown"

A table called Exam shows the results for each student:

Allen Brown Christie Davali Ennis

50 75 82 90 45

Ordinal numbers are used to extract the data as follows:

Exam(1,2) = 50

Exam(2,2) = 75

● Counting and measurement
As we have seen, the basic use of numbers is to count and measure. We use
different types of numbers in different ways depending on the task. For
example, we:
● count using natural numbers as we only need to use positive whole numbers
● measure using real numbers as the range of numbers may be positive or

negative and may require a fractional part.

KEYWORDS
Ordinal number: a number used
to identify position relative to
other numbers.
Cardinal number: a number that
identifies the size of something.
Well-ordered set: a group of
related numbers with a defined
order.
Array: a data structure where
data items are grouped together
under a single identifier and are
then accessed based on their
position.

23
 N

um
be

r s
ys

te
m

s

186

The use of natural numbers to count is common in programming. For example:
● a counter may be used to keep track of how many times a loop statement

is repeated
● the program counter in the processor keeps track of which instruction

needs to be processed next
● a natural number is used to identify the location of data within a data structure
● a variable may be set up to keep count, for example, of the number of

items in a stock control system, or the score in a computer game.

The use of real numbers to measure is common in programming. For example:
● CNC machines handle measurements that vary from millimetres to

metres and must work to a high degree of accuracy
● microwave cookers control and measure both time and temperature
● power stations use data control systems to optimise the production of

electricity
● robotics engineers use real-time measurements of the environment in

which the robot is working.
Practice questions can be found at the end of the section on page 228.

TASKS
1 What are the defining features of:

a) natural numbers d) irrational numbers
b) integers e) real numbers?
c) rational numbers

2 Why is it important for programmers to distinguish between the
different types of numbers?

3 Use an example to explain the difference between an ordinal number
and a cardinal number.

4 Explain why all integers are rational numbers.
5 Why does dividing a number by zero not result in a value of zero?
6 What type of numbers would be needed to record the following data?

a) the number of runners in a race
b) the position of runners as they finish a race
c) the temperature on race day
d) the time it took to run the race

7 Identify three computer applications that make use of:
a) real numbers b) natural numbers.

STUDY / RESEARCH TASKS
1 Find out about the irrational numbers called ‘Euler’s number’ and ‘the

Golden Ratio’.
2 Apart from 2, 3 and 99, identify some other square roots that are

irrational numbers.
3 Find out which number types are supported as data types in a

programming language of your choice.
4 Why do programming languages often have several different data

types for an integer?
5 The Ancient Greeks did not recognise the number zero. How did their

number systems work without it?

KEY POINTS
• It is important to understand

that there are different types
of numbers.

• We use the word decimal to
refer to numbers that are
base 10, that is, made up of
the numbers 0 to 9.

• Numbers are used to count
and to measure (or quantify).

• Numbers used to count
are called ordinals and are
an important concept in
computing, for example, when
identifying the location of
items within a list.

• As a programmer, you need to
choose the right number type
when working with data, e.g.
whether to work with a number
as an integer or a real number.

187

 24 Number bases

INTRODUCTION
Computers process data in digital form. This means that the data is
represented as discrete values, in the form of zeros and ones. This is
known as binary data and in this chapter you will discover how binary
is used and how it relates to other number bases such as decimal and
hexadecimal.

SPECIFICATION COVERAGE
3.5.2.1 Number base

3.5.3.1 Bits and bytes

3.5.3.2 Units

LEARNING OBJECTIVES
In this chapter you will learn:
• the function of bits and bytes and how they are combined to form

larger units
• how number bases work including binary, decimal and hexadecimal
• how to convert binary to decimal and vice versa
• how to convert binary to hexadecimal and vice versa
• how to convert decimal to hexadecimal and vice versa.

● The bit
Computers process data in digital form. Essentially this means that they
use microprocessors, also referred to as chips or silicon chips, to control
them. A chip is a small piece of silicon implanted with millions of electronic
circuits. The chip receives pulses of electricity that are passed around
these microscopic circuits in a way that allows computers to represent text,
numbers, sounds and graphics. But how?

It all comes down to the bit. A bit is a binary digit. The processor can only
handle electricity in a relatively simple way – either electricity is flowing, or
it is not. This is often referred to as two states. The processor can recognise
whether it is receiving an off signal or an on signal. This is handled as a
zero (0) for off and a one (1) for on. Each binary digit therefore is either a 0
(no signal) or a 1 (a signal).

KEYWORDS
Number base: the number
of digits available within a
particular number system, e.g.
base 10 for decimal, base 2 for
binary.
Bit: a single binary digit from a
binary number – either a zero or
a one.

24
 N

um
be

r b
as

es

188

The processor now needs to convert these 0s and 1s into something useful
for the user. Although it might be difficult to comprehend, everything you
use your computer for is represented internally by a series of 0s and 1s. To
help you understand this, think of Morse code.

Morse code only uses two signals – a dot and a dash. These two states can be
used to create every letter in the alphabet. It achieves this by stringing dots and
dashes together in different combinations. Perhaps the most well-known piece
of Morse code is ‘dot dot dot – dash dash dash – dot dot dot’. ‘dot dot dot’ is S
and ‘dash dash dash’ is O; SOS is recognised as the standard distress call.

Computers string zeros and ones together in a similar way to represent text,
numbers, sound, video and everything else we use our computers for. The
really clever thing about computers is their ability to string zeros and ones
together at very high speed. The clock speed of your computer indicates the
speed at which the signals are sent around the processor. In simple terms,
a clock speed of 2 GHz means that it will receive 2 billion of these on/off
pulses per second.

● The byte
The first hint most students get of the nature of the byte is when they begin
to measure the size of memory or disk space in terms of megabytes, gigabytes
and terabytes. A single byte is a string of eight bits. Eight is a useful number
of bits as it creates enough permutations (or combinations) of zeros and ones
to represent every character on your keyboard. Follow this through:
● With one bit we have two permutations: 0 and 1.
● With two bits we have four permutations: 00, 01, 10 and 11. This could

be represented as 22 or 2 × 2. As we increase the number of bits, we
increase the number of permutations by the power of two.

O Three bits would give us 23 which is 2 × 2 × 2 = 8 permutations.
● Four bits would give us 24 permutations which is 2 × 2 × 2 × 2 = 16

permutations.

If we stop at four you can see that 4 bits would give us enough permutations to
represent 16 different letters of the alphabet, 16 different numbers, 16 different
colours or 16 different sounds. If we move onto 8 bits, we get 28 which is
256 permutations. Therefore, 8 bits is enough to represent every letter in the
alphabet and every keyboard character with a few to spare. 8 bits is referred to
as a byte, which typically represents one character.

The basic equation here is that the more bits you use, the greater the range of
numbers, characters, sounds or colours that can be created. Taking numbers as
an example, as we have seen, 8 bits would be enough to represent 256 different
numbers (0–255). As the number of bits increases, the range of numbers
increases rapidly. For example 216 would give 65 536 permutations, 224 would
give approximately 1.6 million and 232 would give over 4 billion permutations.

● Units
Larger combinations of bytes are used to measure the capacity of memory
and storage devices. The size of the units can be referred to either using
binary or decimal prefixes. For example, in decimal, the term kilo is
commonly used to indicate a unit that is 1000 times larger than a single

KEYWORD
Byte: a group of bits, typically 8,
used to represent a single
character.

KEYWORD
Unit: the grouping together of bits
or bytes to form larger blocks of
measurement, e.g. GB, MB.

N
U

M
B

ER
 B

ASES

189

unit. So the correct term would be kilobyte (KB). In binary, the correct
term is actually kibibyte (Ki) with 1024 bytes being the nearest binary
equivalent to 1000.

Common units are shown below using both binary and decimal prefixes:

Table 24.1 Common binary and decimal units

Binary Decimal

kibibyte Ki 210 kilobyte KB 103

mebibyte Mi 220 megabyte MB 106

gibibyte Gi 230 gigabyte GB 109

tebibyte Ti 240 terabyte TB 1012

● Number bases
A number base indicates how many different digits are available when
using a particular number system. For example, decimal is number base 10
which means that it uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and binary
is number base 2 which means that it uses two digits: 0 and 1. Different
number bases are needed for different purposes. Humans use number base
10 whereas computers use binary which is a form of digital data.

The number base determines how many digits are needed to represent a
number. For example, the number 98 in decimal (base 10) requires two
digits. The binary (base 2) equivalent is 1100010 which requires seven
digits. As a consequence of this there are many occasions in computing
when very long binary codes are needed. To solve this problem, other
number bases can be used, which require fewer digits to represent
numbers. For example, some aspects of computing involve number base 16
which is referred to as hexadecimal.

The accepted method for representing different number bases (in textbooks
and exam questions) is to show the number with the base in subscript.
For example:
● 4310 is decimal
● 10112 is binary
● 2A716 is hexadecimal.

Hexadecimal
Hexadecimal or hex is particularly useful for representing large numbers
as fewer digits are required. Hex is used in a number of ways. Memory
addresses are shown in hex format as are colour codes. The main advantage
of hex is that two hex digits represent one byte.

Consider the number 110100112. This is an 8-bit code which when
converted to decimal equals 21110. The same number in hex is D316. This
basic example shows that an 8-bit code in binary can be represented as a
two-digit code in hex. Consequently hex is often referred to as ‘shorthand’
for binary as it requires fewer digits.

As it is number base 16, hex uses 16 different digits: 0 to 9 and A to F.
Table 24.2 shows decimal numbers up to 31 with their hex equivalents.

24
 N

um
be

r b
as

es

190

Table 24.2 Hex look-up table

Decimal Hex Decimal Hex

0 0 16 10

1 1 17 11

2 2 18 12

3 3 19 13

4 4 20 14

5 5 21 15

6 6 22 16

7 7 23 17

8 8 24 18

9 9 25 19

10 A 26 1A

11 B 27 1B

12 C 28 1C

13 D 29 1D

14 E 30 1E

15 F 31 1F

There is scope for confusion here as humans rarely use letters as numbers.
Also, the numbers in hex may convert to different numbers in decimal. For
example, the number 16 in decimal is the equivalent of the number 10 (one
zero) in hex.

● Working with number bases
When performing any calculations, humans use number base 10 probably
because we have ten digits on our hands. Commonly this system is known
as decimal and uses 10 different digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. When
we get to 9 we add an extra digit to the left and start again. When we get to
99, we add a further digit to the left and so on. Each digit we add is worth
ten times the previous digit. This is easier to understand if you think back
to how you were taught maths at primary school.

The number 2098 is easy to understand in decimal terms. To state the
obvious, it is made up of (2 × 1000) + (0 × 100) + (9 × 10) + (8 × 1). When
creating a number, we start with the units and add further digits as needed
to create the number we want.

Binary is number base 2 and works on exactly the same principle. This time
we only have two digits, 0 and 1. It has to be binary because computers only
work by receiving a zero or one (off and on). So, 1 is the biggest number we
can have with one bit. To increase the size of the number, we add more bits.
Each bit is worth two times the previous bit because we are using number
base 2. The table below shows an 8-bit binary number 10000111. Notice the
value of each new bit is doubling each time, as binary is base 2.

32

0

16

0

8

0

4

1

2

1

1

1

64

0

128

1

W
O

R
K

IN
G

 W
ITH

 N
U

M
B

ER
 B

ASES

191

Again, using the same principle as with decimal to work out the number
we have:

(1 × 128) + (1 × 4) + (1 × 2) + (1 × 1). This adds up to 135.

Therefore 10000111 in binary = 135 in decimal.

Binary to decimal conversions
Binary numbers are converted to decimal integers as follows:
● Write down a binary number (e.g. 10000111).
● Above the number, starting from the least significant bit (LSB) write the

number 1.
● As you move left from the LSB to the most significant bit (MSB) double

the value of the previous number:

32

0

16

0

8

0

4

1

2

1

1

1

64

0

128

1

MSB LSB

● Wherever there is a 1, add the decimal value: the above example represents
one 128, one 4, one 2 and a 1 giving a total value of 135 (128 + 4 + 2 + 1 =
135). Therefore 10000111 in binary equals 135 as a decimal integer.

Decimal to binary conversions
To convert a decimal integer to a binary number, use the same method as
above, but working the other way. For example, to convert the number 98:
● Write down the power of 2 sequence. (Eight bits are used here but you

will notice that you only need seven for this example.)

32 16 8 4 2 164128

MSB LSB

● Starting from the MSB put a 1 or 0 in each column as necessary to
ensure that it adds up to 98 as follows:

● 0 under 128
● 1 under 64
● 1 under 32
● 0 under 16
● 0 under 8
● 0 under 4
● 1 under 2
● 0 under 1

Therefore 01100010 = 98.

Another way of carrying out this calculation is to carry out repeated
divisions on the decimal number as follows:
● 98 divide by 2 = 49 with a remainder of 0
● 49 divide by 2 = 24 with a remainder of 1
● 24 divide by 2 = 12 with a remainder of 0
● 12 divide by 2 = 6 with a remainder of 0
● 6 divide by 2 = 3 with a remainder of 0
● 3 divide by 2 = 1 with a remainder of 1
● 1 divide by 2 = 0 with a remainder of 1

24
 N

um
be

r b
as

es

192

Notice that you keep dividing by 2 until there is nothing left to divide.
Reading from the bottom this gives us 1100010 which equals 98. (Note that
the leading zero is omitted.)

Check your answer by working it back the other way:

32

1

16

0

8

0

4

0

2

1

1

0

64

1

128

0

MSB LSB

64 + 32 + 2 = 98

Decimal to hex conversions
A common approach to convert decimal integers to hex is to first convert
the decimal to binary and then convert the binary to hex. Taking the
decimal number 211 as an example:
● Work out the binary equivalent.

32

0

16

1

8

0

4

0

2

1

1

1

64

1

128

1

● Split the binary number into two groups of four bits and convert each
into the hex equivalent.

2

0

1

1

8

0

4

0

2

1

1

1

4

1

8

1

Therefore 110100012 = 21110

8 + 4 + 1 = D (the hex equivalent of 13) and 2 + 1 = 3

Therefore 21110 = 110100112 = D316

Hex to decimal conversions
The process here is to convert the hex to binary, and then the binary into
decimal. Hex to binary conversions are the reverse of the above process.
Take the hex number, and then convert each digit in turn into its binary
equivalent using groups of four bits. Take 2A316 as an example:

2

1

1

0

8

1

4

0

2

1

1

0

8

0

4

0

2

1

1

1

4

0

8

0

2 A 3

2 = 0010, A = 1010, 3 = 0011

Therefore 10101000112 is the binary equivalent of 2A316

This binary code can then be converted into decimal in the usual way:

128

1

64

0

32

1

16

0

8

0

4

0

2

1

1

1

256

0

512

1

512 + 128 + 32 + 2 + 1 = 67510

When carrying out a conversion, it is useful to remember the binary
equivalent of the 16 digits used in hex as shown in Table 24.2.
Practice questions can be found at the end of the section on page 228.

W
O

R
K

IN
G

 W
ITH

 N
U

M
B

ER
 B

ASES

193

TASKS
1 Explain why computers can only process data in binary form.
2 What is the biggest decimal integer you can represent with:

a) 4 bits? b) 8 bits? c) 16 bits?
3 How many different permutations of numbers can you represent with:

a) 4 bits? d) 20 bits?
b) 8 bits? e) 24 bits?
c) 16 bits?

4 Convert the following decimal numbers into binary:
a) 10 d) 65
b) 12 e) 165
c) 15

5 Some programming languages use hexadecimal. Explain what
hexadecimal is and what the benefits are of using this system
compared to binary or decimal.

6 Convert the following hexadecimal numbers into binary:
a) 10 b) 12 c) 1F d) F1

7 Convert the following hexadecimal numbers into decimal:
a) E b) 21 c) 17 d) AB

8 Identify a situation where it would be appropriate to use the following
units of measurement:
a) kilobyte b) megabyte c) terabyte.

STUDY / RESEARCH TASKS
1 Write a program that converts binary to decimal and vice versa.
2 Write a program that converts hex to decimal and vice versa.
3 In computing we commonly use binary, decimal and hexadecimal. In

the past, computing also used octal. Find out how it works, what it
was used for and why it is not widely used in computing these days.

4 Ancient number systems did not use zero. Explain how a number
system can work without a zero.

5 Apart from the ones you have already looked at, what other number
bases are used, or have been used throughout history?

6 Why do we use base 12 and base 60 for telling the time rather than
base 10?

7 Find a simulation of a binary watch online. See if you can learn to tell
the time as quickly in binary as you can using decimals.

8 Identify a situation where it would be appropriate to use the following
units of measurement:
• exabyte
• zettabyte
• yottabyte.

KEY POINTS
• Computers process data in

digital form, that is, as series
of discrete values.

• 0s and 1s are called binary
digits or bits.

• Bits are grouped together
to create bytes.

• Bytes are grouped together to
create kilobytes, megabytes,
gigabytes and terabytes.

• Computing uses three main
number bases: binary
(base 2), decimal (base 10)
and hexadecimal (base 16).

• You need to be able to convert
between the three number
bases.

194

 25 The binary number
system

INTRODUCTION
In the previous chapter we looked at the common number systems and
bases. We use different number bases, as humans tend to work with
decimals and computers can only process data in binary. As computer
science students, we need to know how binary works and how the
computer carries out calculations in binary.

SPECIFICATION COVERAGE
3.5.4.1 Unsigned binary

3.5.4.2 Unsigned binary arithmetic

3.5.4.3 Signed binary using two’s complement

3.5.4.4 Numbers with a fractional part

3.5.4.5 Rounding errors (A level only)

3.5.4.6 Absolute and relative errors (A level only)

3.5.4.7 Range and precision (A level only)

3.5.4.8 Normalisation and fl oating point form (A level only)

3.5.4.9 Underfl ow and overfl ow (A level only)

LEARNING OBJECTIVES
In this chapter you will learn:
• how to add and multiply positive binary integers
• how to work with signed binary numbers using two’s complement
• how fi xed numbers are used to represent fractions.

A-level students will learn:
• how fl oating point numbers are used to represent fractions
• what overfl ow and underfl ow are
• how to round binary numbers
• what precision and normalisation are with reference to binary numbers.

● Adding unsigned binary integers
In the previous chapter we looked at converting between number bases. As
computers can only process binary data, it is also important to understand
how they carry out basic calculations using binary.

KEYWORD
Unsigned binary: binary that
represents positive numbers only.

195

TYPES O
F N

U
M

B
ER

S

To add two numbers together in binary, first line up the numbers in the
same way as you would do column addition in decimal:

0 0 1 1 0 0 1 0 +

1 0 1 1 0 1 0 1

1 1 1 0 0 1 1 1

1 1

Now add the columns starting from the right-hand side, remembering that
you can only use 0s and 1s:
● 0 + 0 will equal 0 so put 0 on the answer line
● 0 + 1 or 1 + 0 will both equal 1 so put 1 in the answer line
● 1 + 1 will equal 10 (one, zero) so you will put 0 in the answer line and

carry the 1
● 1 + 1 + 1 will equal 11 (one, one) so you will put 1 in the answer line and

carry the 1

You can check your answer back by converting all the numbers to decimal,
carrying out the addition and then converting the answer back to binary. In
this case, the first number is 50, the second number is 181, so the answer
should be 231.

● Multiplying unsigned binary integers
To multiply in binary, you multiply the first number by each of the digits
of the second number in turn starting from the right-hand side (in the
same way that you would do multiplication in decimal). This means you
are either multiplying each digit by 0 or by 1, which will give you either a
0 or 1 as the answer. You then do the same for the next digit, shifting your
answers to the left as you would in decimal multiplication.

You then carry out a binary addition to find the final answer. For example,
to multiply 11011 by 11:

1 1 0 1 1 ×

1 1

1 1 0 1 1

1 1 0 1 1 0

1 0 1 0 0 0 1

1 1 1 1

Again you can work this out by converting the binary to decimal to check
your answer. In this case the first number is 27 (twenty-seven), the second
number is 3 (three), so the answer is 81 (eighty-one).

● Types of numbers
In computing terms it is important to distinguish between different types of
numbers. So far in this chapter we have only looked at integers, which are
whole numbers. More specifically we have only looked at unsigned integers,
which means that all the numbers have been positive. Computers also need
to handle real numbers – positive and negative numbers which may be
shown to several decimal places. Many computer applications will require
very large or very small numbers to be handled to a high degree of accuracy.

Note the
zero on the LSB as the numbers

have been shifted to the left.

25
 T

he
 b

in
ar

y
nu

m
be

r s
ys

te
m

196

● Two’s complement
Two’s complement is a method used to represent signed integers in
binary form. This means that it can be used to represent positive and
negative integers. This method is very similar to the methods described
in Chapter 24 and so it is assumed that you already have a good
understanding of this before attempting this section. The purpose of this
section is to show how two’s complement can represent negative integers.

Assume we want to convert the binary code 10011100 into decimal using
two’s complement:
● Write out the denary equivalents as shown:

32 16 8 4 2 164–128

MSB LSB

● You will notice that with two’s complement, the most significant
bit becomes negative. Using an 8-bit code, this means that the MSB
represents a value of –128

● Now write in the binary code:

32

0

16

1

8

1

4

1

2

0

1

0

64

0

–128

1

MSB LSB

● Now add up the values:
–128 + 16 + 8 + 4 = –100

Converting from denary to binary using two’s complement can be slightly
more difficult for negative numbers as you will be starting from a negative
number and working forward. Remember that with two’s complement,
when the MSB is 1 it means that the number must be negative. You may
find it easier to use the following method:
● To convert –102 into binary, first write out the binary equivalent of +102

as shown:

32

1

16

0

8

0

4

1

2

1

1

0

64

1

128

0

MSB LSB

● Starting at the LSB, write out the number again until you come to the
first 1.

● Then reverse all the remaining bits, that is, 0 becomes 1 and 1 becomes 0.
● The number becomes 10011010.
● The number is now in two’s complement.

32

0

16

1

8

1

4

0

2

1

1

0

64

0

–128

1

MSB LSB

To check, add these up: –128 + 16 + 8 + 2 = –102

With 8 bits it is possible to represent 256 different numbers. These range
from –128 to 127. For an arbitrary number of bits (n), 2n different values
can be represented. If the n bits are used to store an unsigned binary value

KEYWORD
Two’s complement: a method
of working with signed binary
values.

FIXED
 PO

IN
T N

U
M

B
ER

S

197

then the highest value that could be represented would be 2n – 1 as 0 is one
of the values that can be represented. With two’s complement for 8 bits the
range is –128 through to 127 and for n bits it would be –2n–1 to 2n–1 – 1.

Adding and subtracting using two’s complement
Adding numbers together using two’s complement is the same as adding
numbers together in decimal: you add up the total and carry values across
to the next column. For example, in decimal to add 48 to 83:

4 8

8 3 +

1 3 1

1 1

Binary addition is the same. To add 01101100 to 10001000:
0 1 1 0 1 1 0 0

1 0 0 0 1 0 0 0 +

1 1 1 1 0 1 0 0

1

Remember that in binary 1 + 1 = 10 and that 1 + 1 + 1 = 11

The only true arithmetic that the computer can carry out is addition.
In order to carry out subtractions, the method used is to convert the
number to be subtracted to a negative number, and then to add the negative
number. For example 20 – 13 in denary would actually be performed by
adding 20 to –13 giving the answer of 7. To do this in binary:
● Calculate the binary equivalent of 20 which equals 00010100
● Calculate the binary equivalent of –13 which equals 11110011
● Add 20 to –13 in binary form:

0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1 +

0 0 0 0 0 1 1 1

1 1 1

● Check your answer back by converting it to denary and the answer is 7
which is correct.

● You may notice that this calculation would have a final 1 to be
carried. This is called an ‘overflow bit’ and is handled separately to the
calculation. There is more on this later in the chapter.

● Fixed point numbers
In order to represent real decimal numbers, that is, numbers with decimal
places or a fractional part, fixed point representation can be used. In the
same way that decimal has a decimal point, binary has a binary point. The
numbers after the binary point represent fractions. For example, if you
had an 8-bit binary code, you may place the binary point after the fourth
bit as shown:

0 0 1 1 0 001

The binary point is not actually stored in the 8-bit code, its position is fixed
by the programmer. It is shown here purely to aid understanding.

KEYWORD
Fixed point: where the decimal/
binary point is fixed within a
number.

25
 T

he
 b

in
ar

y
nu

m
be

r s
ys

te
m

198

To convert this to a decimal number is a similar process to the other
conversions we have done. This time, the digits after the binary point
become fractions as follows:

2

1

1

0 0 1 1 0

4

1

8

0

1
2

1
4

1
8

1
16

The conversion of the bits before the binary point are handled in the same way
as before with each value doubling as you move from right to left. The numbers
after the binary point halve each time as you move from left to right as shown.

Therefore the number above is

4 + 2 + 1
4
 + 1

8

giving a total of 6 3
8
 or 6.375.

The binary point can be placed anywhere within the byte but the position
of the binary point restricts the size of the number that can be represented
and also the accuracy of the number. With the binary point in the position
shown in this example:
● The smallest number we could represent (apart from 0) is 0000.0001

which is
1
16 or 0.0625.

● The next number we could represent is 0000.0010 which is
1
8
,

2
16 or

0.125. It is not possible to represent any number between 0.0625 and 0.125
● The largest number we could represent is 1111.1111 which is 15 15

16
 or

15.9375
● Moving the binary point to the left means that we can have more

accurate decimals but reduces the range of whole numbers available.
● Moving the binary point to the right increases the range of whole

numbers but reduces the accuracy.
● It remains the case that with an 8-bit code, we can represent 256

different combinations regardless of where we put the binary point.

The same techniques can also be used to represent negative numbers:

2

1

1

0 1 1 0 0

4

1

–8

1

1
2

1
4

1
8

1
16

This number would be:

–8 + 4 + 2 + 1
2 + 1

4 = –1 1
4

● Floating point numbers
The big problem with all the 8-bit systems we have investigated so far
is that they can only store a very limited range of numbers. The biggest
positive number we have been able to store so far is only 255 and the
smallest positive number is 0.0625. There will be many scenarios when a
program needs to cope with numbers that are larger or smaller than this.
There are two ways round this problem:
● The first is to allocate more bits to store the number. For example, a

16-bit unsigned code would allow you to store all the integers from 0 to
65 535; a 24-bit code would allow you to cope with 16 777 216 different
combinations; and so on.

A level only

FLOATIN
G

 PO
IN

T N
U

M
B

ER
S

199

● If you wanted to store negative and positive numbers you would need to
use the two’s complement system outlined above. Using 16 bits would
allow you to store between –32 768 and 32 767.

The problem with allocating an ever-increasing number of bits to store large
numbers is knowing when to stop. The solution to this is to use a floating
point number representation.

In floating point, the binary point can be moved depending on the number
that you are trying to represent. It ‘floats’ from left to right rather than
being in a fixed position. In the previous example, the binary point was
fixed after the fourth bit and this presented serious limitations on both
the range and accuracy of numbers that can be represented. Floating point
extends the fixed point technique described in the previous section and
also involves two’s complement so you should not attempt this section until
you are happy with these two concepts.

A floating point number is made up of two parts – the mantissa and
the exponent. In decimal, we often have to calculate large numbers
on our calculators. Most calculators have an eight- or ten-digit display
and often the numbers we are calculating need more digits. When this
happens, an exponent and mantissa are used. For example, the number
450 000 000 000, which is 45 and ten zeros, would be shown as 4.5 × 1011.
4.5 is the mantissa and 11 is the exponent meaning that the decimal place
is moved 11 places to the right.

In binary, the exponent and mantissa are used to allow the binary point to
float as in the previous example. Remember that the mantissa and/or the
exponent may be negative as the two’s complement method is also used on
each part. Consider the following 12-bit code: 000011000011.

The code can be broken down as follows:
● the first eight bits are the mantissa which can be broken down further as:

– the MSB is 0 which means that the number is positive
– the next seven bits are the rest of the mantissa: 0001100

● the remaining four bits are the exponent: 0011.

It is common to show the mantissa and exponent more clearly as follows:

0 0 0 01 10

Mantissa

0 0 1 1

Exponent

0

● First, work out the exponent in the usual way, remembering that two’s
complement is being used.

Therefore the exponent is +3.

2

1

1

1

4

0

–8

0

This means that the binary point will ‘float’ three places to the right.

● Now calculate the mantissa. The binary point is always placed after the
most significant bit as follows:

0 0 1 1 0 00

–1

0

1
2

1
4

1
8

1
16

1
32

1
64

1
128

KEYWORD
Floating point: where the
decimal/binary point can move
within a number.

25
 T

he
 b

in
ar

y
nu

m
be

r s
ys

te
m

200

● The point now floats three places to the right. The values for the
conversion have changed because the binary point has now moved.

2

0

1

0 1 1 0 0

4

0

8

0

1
2

1
4

1
8

1
16

● Therefore, 00001100 0011 = 0.75

The following example shows the whole process of working out the floating
point binary value of a decimal value. In this example, the value is 6.75:
● The first stage is to calculate the binary value using fixed point

representation:

2

1

1

0 1 1 0 0

4

1

8

0

1
2

1
4

1
8

1
16

● The number needs to be normalised and there is more on this in a later
section. At this stage, what this means is that for a positive number, the
binary value must start with 01.
This means that we need to move the floating point to the left 3 places as
we convert to floating point:

1 0 1 110

● We now need to use the exponent to indicate that the floating point
needs to be moved three places back to the right:

1 0 1 11

Mantissa

0 1

Exponent

1

● In this case therefore we have used a 6-bit mantissa and a 2-bit exponent
to represent the value. It is possible to increase the number of bits used
to both increase the accuracy and range of values. For example, a 3-bit
exponent would enable the floating point to be moved up to six places.

Two’s complement can also be used on the mantissa or exponent to
represent negative values. The process of converting negatives is similar.
A negative exponent would move the binary point to the left rather than
the right.

For the value –10.5:
● First calculate the fixed point representation of the positive value, that

is 10.5:

4

0

2

1

1

0 1 0 0

8

1

–16

0

1
2

1
4

1
8

● Starting at the LSB, write out the number again until you come to the first 1.
● Then reverse all the remaining bits, that is, 0 becomes 1 and 1 becomes 0.

4

1

2

0

1

1 1 0 0

8

0

–16

1

1
2

1
4

1
8

● The number is now in two’s complement.

FLOATIN
G

 PO
IN

T N
U

M
B

ER
S

201

● Normalise the number, which for a negative value means you need to
position the binary point so that the first bit of the mantissa after the
binary point is the first 0 in the number. This means floating (moving) it
four places to the left:

1 0 1 1 0 001

● We now need to use the exponent to indicate that the floating point
needs to be moved four places back to the right:

1 1 1 0000

Mantissa

1

Exponent

1 0 0

● In this case therefore we have used an 8-bit mantissa and a 3-bit
exponent to represent the value.

This is a simplified example to show the concept. The real power of
floating point is that the binary point can be moved several hundred
places to the left or right as necessary to represent either very large or
very small numbers.

An alternative way of representing the values is to use the same method
that is also used to represent very large or very small numbers in base 10.
For example, the value 3.345 × 103 means that the decimal point should
be moved 3 places to the right. The value therefore is 3345. You can do the
same in binary. For example with a 6-bit mantissa of 010011 and a 3-bit
exponent of 100 this would be 19 × 24.

Fixed point compared to floating point
As you have seen, fixed point and floating point are two methods for
representing values. Both systems have their advantages. The advantages of
using floating point are:
● a much wider range of numbers can be produced with the same number

of bits as the fixed point system
● consequently, floating point lends itself to applications where a wide

range of values may need to be represented.

The advantages of using fixed point are:
● The values are handled in the same way as decimal values so any

hardware configured to work with integers, can be used on reals.
This also makes the processing of fixed point numbers faster than
floating point values as there is no processing required to move the
binary point.

● The absolute error will always be the same, whereas with floating point
numbers the absolute error could vary. This means that precision
is retained albeit within a more limited range than floating point
representation.

● It is suited to applications where speed is more important that precision,
e.g. some aspects of gaming or digital signal processing.

● It is suited to applications where an absolute level of precision is required,
e.g. currency, where the number of places after the binary point does not
need to change.

25
 T

he
 b

in
ar

y
nu

m
be

r s
ys

te
m

202

● Underflow and overflow
It is possible when using signed binary that you will generate a number
that is either too large or too small to be represented by the number of
bits that are available to store it. When the number is too large, we get an
overflow and when it is too small we get an underflow.

Looking at an overflow first, as we have seen, the most significant bit (MSB)
is used to indicate whether the number is positive or negative. 0 means
positive and 1 means negative.

To take a simple example, using two’s complement with just 8-bits, we
could represent the numbers –128 to +127. What would happen therefore
if we asked the computer to calculate a number that returned the value of
+128. If it used the MSB, we would actually get the answer –128.

For example, if 00000001 (1 in decimal) was added to 01111111 (127
in decimal), it would generate the answer 1000000 (128 in decimal).
However, using two’s complement, we would actually get the answer –128
as shown below:

32

0

16

0

8

0

4

0

2

0

1

0

64

0

–128

1

As another example, if we added 78 to 75 we would expect to get 163. In
binary with 8 bits this would be 128 + 32 + 2 + 1:

32

1

16

0

8

0

4

0

2

1

1

1

64

0

128

1

In two’s complement we would actually get the answer –128 + 32 + 2 + 1 = 93:

32

1

16

0

8

0

4

0

2

1

1

1

64

0

–128

1

Underflow is a similar concept but occurs when the number is too small to
be represented with the number of bits allocated.

If a calculation generated a small positive or negative number (i.e. one
that is close to zero), then there may not be enough bits to represent it.
The example below has 6 bits and a fixed point. If we tried to represent
the value 1

64
 or 0.015625 it would create an underflow error as the

smallest number we can represent with 6 bits and a fixed point is 1
32

 or
0.03125.

0 0 0 10

1

0

1
2

1
4

1
8

1
16

1
32

As you can see, an underflow or overflow could cause serious errors in a
program. It could generate erroneous results or even cause the program
to crash. There are various methods for dealing with overflows and
underflows. A common method is the use of a flag to indicate where an
overflow or underflow has occurred and to ‘carry’ the additional bits in the
same way that you carry digits when adding up in decimal. Overflow can
also be represented as ∞.

KEYWORDS
Signed binary: binary with a
positive or negative sign.
Overflow: when a number is too
large to be represented with the
number of bits allocated.
Underflow: when a number is
too small to be represented with
the number of bits allocated.

N
O

R
M

ALISATIO
N

 AN
D

 PR
ECISIO

N

203

● Normalisation and precision
Normalisation is a technique used to ensure that when numbers are
represented they are as precise as possible in relation to how many bits are
being used. Another benefit is that normalisation ensures that only one
representation of a number is possible. The easiest way to think about this
is to consider how many decimal places you would choose to use when
representing a decimal number.

Assume that you are creating a system to record the results of various
athletics events: 100 m, 400 m and 1500 m, and that you allow six digits to
store the time taken for each race.
● The winner of the 100 m event ran it in 10.4357 s. Four numbers have

been used after the decimal place to provide a precise number.
● The winner of the 400 m event took 47.3453 s. Again four numbers are

used after the decimal place.
● The winner of the 1500 m race took 150.435 s. This time, the number

is only precise to three decimal places as three digits are needed for the
integer. The decimal point has floated here in order to represent the
number. However, the result is not as precise as the results for the 100 m
and 400 m races.

● The result of the 100 m race could be stored as 010.436. However this
would not be sensible as the number is not as precise as it could be with
six digits available.

The same thing happens when using a mantissa and exponent. With a fixed
number of bits that can be used to represent the mantissa, the precision
of the number can be affected by where the binary point is positioned. The
exponent is used to ensure that the floating point is placed to optimise the
precision of the number.

For example 234 000 can be represented as:
● 23 400 × 101

● 2.34 × 105

● 0.00000234 × 1011

The second option is the best way to represent the number as it uses the
least number of digits yet provides a precise result. This number is referred
to as being in ‘normal form’ or ‘normalised’.

With binary codes, normalisation is equally important. In order to be
‘normalised’ the first bit of the mantissa, after the binary point, should
always be a 1 for positive numbers, or a 0 for negative numbers and the bit
before the binary point should be the opposite. So a normalised positive
floating point number must start 0.1 and a normalised negative floating
point number must start 1.0. For example, the binary equivalent of 108 in
decimal using an 8-bit code would be 01101100:
● The normalised mantissa would be 0.1101100
● The binary point will have to be moved seven places to the right in order

to convert it back to the original number
● Therefore the exponent must be 7
● Two’s complement for 7 is 0111.
● Therefore the normalised representation of 108 is 0.11011000111.

KEYWORDS
Normalisation: a process
for adjusting numbers onto a
common scale.
Precision: how accurate a
number is.

25
 T

he
 b

in
ar

y
nu

m
be

r s
ys

te
m

204

You might be wondering why it is worth showing 108 in this way when it
could be shown more simply as 01101100. The reason for this is that with
an 8-bit mantissa and a 4-bit exponent it is possible to represent a much
wider range of positive and negative numbers than using eight bits alone.

For example, if you had 8 bits and a fixed point you could represent:

● Lowest positive value: 1
16

 or 0.0625

2

0

1

0 0 0 0 1

4

0

8

0

1
2

1
4

1
8

1
16

● Highest value: 15.9375 or 15 15
16

2

1

1

1 1 1 1 1

4

1

8

1

1
2

1
4

1
8

1
16

With a floating point and 8 bits for the mantissa and 4 bits for the exponent
and assuming that two’s complement is being used on both, the range of
values would be:
● +127 for the mantissa and +7 for the exponent
● –128 for the mantissa and –8 for the exponent

● Rounding errors
When working with decimal numbers, we are used to the idea of rounding
numbers up or down. As a consequence, we will get rounding errors. For

example, 1
3
 in decimal is 0.3 recurring. Consequently we are comfortable

with using 0.33 or perhaps 0.333 to represent 1
3

. Obviously there is
a degree of error in this calculation. Whether it is acceptable or not
depends on what our program was doing. If it was taking exact scientific
measurements we might want a greater degree of accuracy.

A similar phenomenon occurs with binary representation. For example, if
you try to convert 0.1 in decimal into binary you will find that you get a
recurring number, so it is not possible to exactly represent it. If we continue
the binary examples we used before, if you try to represent 1.95 with 8-bits
and a fixed point:

1.1111010 would give us 1.953125:

1 0 1 0

1

1 1 1 1

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1.1111001 would give us 1.9453125:

1 0 0 1

1

1 1 1 1

1
2

1
4

1
8

1
16

1
32

1
64

1
128

With 8 bits the nearest we can get is 0.003125 out. We could extend the
number of bits that we use to try and get an answer that is closer to 1.95.

It is the job of the programmer to decide on what is an accurate enough
number and to allocate an appropriate number of bits to store the data to
the required level of precision.

AB
SO

LU
TE AN

D
 R

ELATIVE ER
R

O
R

S

205

● Absolute and relative errors
There are two main methods for calculating the degree of error in numbers
that we use within a program. The absolute error is the actual mathematical
difference between the answer and the approximation of it that you can
store. For example, if a calculation requires 8 decimal places, but we only
allocate 8 digits, we would have to either round or truncate the number. So
the number 1.65746552 would become 1.6574655. In this case, to work out
the absolute error we would subtract the two values and that would give us
an absolute error of 0.00000002. Note that the absolute error is always a
positive number.

You could apply a margin of error when deciding whether a number is
accurate enough. For example, you could apply an absolute measure. In
the example above you could identify ±0.00005 as an acceptable margin
of error.

You can see that for a number that is around 1, this degree of accuracy is
probably sufficient. If the number we were storing was larger, for example
111 001.65746552, you would probably not need to store it to eight decimal
places anyway. Perhaps one or two decimal places would be sufficient.

However, if the number was much smaller, e.g. a microscopic measurement,
you might need a much larger number of decimal places.

This is where the idea of a relative error comes in. Rather than applying a
rigid margin of error, you would look at the value that was being stored and
then decide on a relative margin of error. In this way you are comparing the
actual result to the expected result. For example you might decide that ±5%
would be sufficient. This would mean that for a number in the thousands,
you would not need any decimal places and you could store it as an integer.
With very small numbers, you might need to allocate 10 decimal places with
no whole number at all in order to record the result as accurately as needed.

Relative error can be calculated using the formula:

Relative error = Absolute error / Number intended to be stored

For example, if trying to represent the value 6.95 using floating point
with an 8-bit mantissa and a 3-bit exponent, it could be shown as
0.1101111011. This works out to be 6.9375. Therefore:

Absolute error = 6.95 – 6.9375 = 0.0125

Relative error = 0.0125 / 6.95 = 0.001798561151

Practice questions can be found at the end of the section on
page 228.

KEYWORDS
Mantissa: the significant digits
that make up a number.
Exponent: the ‘power of’ part
of a number indicating how far
a binary point should be shifted
left or right.

25
 T

he
 b

in
ar

y
nu

m
be

r s
ys

te
m

206

TASKS
1 Explain the term ‘unsigned integer’.
2 Show how an 8-bit two’s complement integer would be used to store:

a) +64 b) –64 c) +100 d) –100
3 Add the binary numbers 1001 and 1100. Leave your answer as a binary

number.
4 Use two’s complement to carry out the following calculations.

a) 12 + 8 b) 25 – 17
5 Describe the benefits of using a fixed point number system over

floating point.
6 Convert 31

4
 into a binary number.

7 Convert the binary number 10.11 into its decimal equivalent.
8 A computer uses 12 bits to store numbers in floating point format.

Seven bits are used to store the mantissa and the other five bits the
exponent. Both parts use two’s complement. The following numbers
are stored using this system. Work out their decimal equivalents.
a) 011100001111 b) 101000011111

9 Represent the following decimal values as floating point binary values.
a) 13.5 b) –3.75

10 Explain why floating point numbers should always be normalised.
11 011.111010000 is used to represent the decimal value 3.9.

a) What is actual decimal value represented?
b) Calculate the relative and absolute error.
c) Explain how the floating point system could create a more accurate

representation of 3.9.

KEY POINTS
• Binary addition and

multiplication of positive
integers use the same
methodology as decimal
addition and multiplication.

• Two’s complement is a
method used to represent
signed integers in binary form.

• Fixed point binary numbers
are used to represent
fractions. The binary point is
in a fixed position.

• Floating point binary numbers
are used to represent
fractions. The binary point can
move position.

• A floating point number is
made up of two parts – the
mantissa and the exponent.

• It is possible that when using
signed binary you will generate
a number that is either too large
or too small to be represented
by the number of bits that are
available to store it.

• Normalisation is a technique
used to ensure that when
numbers are represented they
are as precise as possible in
relation to how many bits are
being used.

• When working with decimal
numbers, we are used to the
idea of rounding numbers up
or down. As a consequence,
we will get rounding errors,
which can be quantified as
absolute or relative.

• Precision refers to how
accurate the number needs
to be in the context that it is
being used.

207

 26 Coding systems

INTRODUCTION
In addition to the various number systems described in Chapter 23,
binary codes can also be used to represent text and characters. The
term character is used in the widest sense to include all the keyboard
characters, control and special characters. Each character has a
character code, which is its binary representation.

There is an important distinction to be made here about the way in which
binary can be used to represent numbers either as true numbers, or as
characters. So far, we have looked at the pure binary representation of
a number. This means that we are able to carry out calculations using
that number. Sometimes numbers are not used as part of mathematical
calculations and the character code for the number will be used instead.
For example, a house number in an address or a telephone number uses
numerical characters. In these cases, different coding systems are used.

SPECIFICATION COVERAGE
3.5.5.1 Character form of a decimal digit

3.5.5.2 ASCII and Unicode

3.5.5.3 Error checking and correction

3.5.6 Representing images, sound and other data (all
subsections except 3.5.6.10 Encryption)

LEARNING OBJECTIVES
In this chapter you will learn:
• how all forms of data are represented as 0s and 1s
• that ASCII and Unicode are coding systems for characters and numbers
• how to check for and correct errors in data
• how bit-mapped graphics are created
• how analogue and digital data are transmitted and converted
• how sound is sampled and digitised
• how to compress data using lossy and lossless techniques.

A-level students will learn:
• how vector graphics are created.

KEYWORD
Character code: a binary
representation of a particular
letter, number or special
character.

208

 2
6

C
od

in
g

sy
st

em
s

● ASCII and Unicode
In the early days of computing, programmers would combine groups
(sequences) of 0s and 1s to represent different things. For example,
they might decide that 00000000 could be used to represent an A and
00000001 could be used to represent a B and so on. The problem was that
different programmers used their own coding systems so the sequences
meant different things to different people.

As a result of the confusion this caused, a standard was agreed upon for
the representation of all the keyboard characters, including the numbers,
and other commonly used functions. This standard is called ASCII or the
American Standard Code for Information Interchange. In fact, a 7-bit code
was agreed upon as 7 bits gives 128 permutations, which is enough for
the most commonly used characters. More recently, extended ASCII was
introduced which is an 8-bit code allowing for 256 characters.

Table 26.1 shows an extract of the keyboard characters and the string of
bits that represent them. You don’t need to remember any of these but it is
useful to understand the principle behind them.

Table 26.1 ASCII look-up table

Char Decimal Binary Char Decimal Binary Char Decimal Binary

! 33 00100001 0 48 00110000 F 70 01000110

“ 34 00100010 1 49 00110001 G 71 01000111

35 00100011 2 50 00110010 H 72 01001000

$ 36 00100100 3 51 00110011 a 97 01100001

% 37 00100101 4 52 00110100 b 98 01100010

& 38 00100110 5 53 00110101 c 99 01100011

‘ 39 00100111 6 54 00110110 d 100 01100100

(40 00101000 7 55 00110111 e 101 01100101

) 41 00101001 8 56 00111000 f 102 01100110

* 42 00101010 9 57 00111001 g 103 01100111

+ 43 00101011 A 65 01000001 h 104 01101000

, 44 00101100 B 66 01000010 i 105 01101001

- 45 00101101 C 67 01000011 j 106 01101010

. 46 00101110 D 68 01000100 k 107 01101011

/ 47 00101111 E 69 01000101 l 108 01101100

You will notice that all the keyboard characters have a code covering upper
and lower case letters, numbers on the keypad, special characters (%, @,
/, #, etc.) and non-printing characters (ACK, BS, etc.). Non-printing codes
mainly cover the communication codes that are used to allow devices to be
understood by the processor.

ASCII was until recently the standard method of converting keyboard
and other characters into binary codes. However, ASCII does have certain
limitations:

KEYWORD
ASCII: a standard binary coding
system for characters and
numbers.

ER
R

O
R

 CH
ECK

IN
G

 AN
D

 CO
R

R
ECTIO

N

209

● 256 characters are not sufficient to represent all of the possible
characters, numbers and symbols.

● It was initially developed in English and therefore did not represent all of
the other languages and scripts in the world.

● Widespread use of the web made it more important to have a universal
international coding system.

● The range of platforms and programs has increased dramatically with more
developers from around the world using a much wider range of characters.

As a result, a new standard called Unicode has emerged which follows the
same basic principles as ASCII in that in one of its forms it has a unique
8-bit code for every keyboard character on a standard English keyboard.
ASCII codes have been subsumed within Unicode meaning that the
ASCII code for a capital letter A is 65 and so is the Unicode code for the
same character. Unicode also includes international characters for over 20
countries and even includes conversions of classical and ancient characters.

To represent these extra characters it is obviously necessary to use more than
8 bits per character and there are two common encodings of Unicode in use
today (UTF-8 and UTF-16). As the name suggests the latter is a 16-bit code.

Unicode is being constantly developed and updated to include more of
the ‘diverse languages of the modern world’, for example, the Arabic and
Chinese alphabets are significantly different to English and even alphabets
that are similar to English, such as French and German, still contain
specific characters not found on standard English keyboards.

The importance of any standard is that it is universally adopted, which in
this case involves everyone in the computing industry throughout the world.
The increased use of the Internet has meant that much more data is being
passed around global networks. If different encoding systems are used it
means that data can be corrupted when used on any system other than that
on which it was created. Unicode aims to cover every platform in terms of
hardware and operating systems, every foreign language and every program.

● Error checking and correction
Data is being transmitted around the computer all the time. All of this
data is made up of strings of 0s and 1s. It is possible that the data can get
corrupted at any point either when it is being processed or transmitted.
There are various methods for checking and correcting errors in data.

A parity bit is a method of detecting errors in data during transmission.
The way it works is quite simple, but it will not identify all errors in
transmission. When you send data, it is being sent as a series of 0s and
1s. In Figure 26.1, a Unicode character is transmitted as the binary code
01101111. It is quite possible that this code could get corrupted as it is
passed around either inside the computer or across a network.

As you will read in Section Nine these codes are being sent on carrier
waves. Any slight variation in the frequency could mean that a 0 is
misinterpreted as a 1. This would make the data very unreliable. Depending
on the nature of the data, this could be critical. In the top example the
parity bit is set to a 0 to maintain an even number of ones. The bottom
example shows another binary code where the parity bit is set to 1 in order
to ensure an even number of ones.

KEYWORD
Unicode: a standard binary
coding system that has
superseded ASCII.

KEYWORD
Parity bit: a method of checking
binary codes by counting the
number of 0s and 1s in the code.

0 1 1 0 1 1 1 1 0

1 0 1 1 1 1

Parity bit = 0 to ensure number of ones is even

10 0

Parity bit = 1 to ensure number of ones is even

0 1 0 0 1 0 0 1 1

0 0 1 0 0 110 1

Parity
bit

Parity
bit

Figure 26.1 Even parity

210

 2
6

C
od

in
g

sy
st

em
s

One method for detecting errors is to count the number of ones in each
byte before the data is sent to see whether there is an even or odd number.
At the receiving end, the code can be checked to see whether the number is
still odd or even.
● Even parity: the number of 1s in the code are counted. If there are an odd

number of 1s, the parity bit is set to one to make the total number of 1s
even. When the data is received, it is checked to ensure that there are still
an even number of 1s. If there are, then the data is assumed to be correct.

● Odd parity: the number of 1s in the code are counted. If there are an even
number of 1s, the parity bit is set to one to make the total number of 1s
odd. When the data is received, it is checked to ensure that there are still
an odd number of 1s. If there are, the data is assumed to be correct.

Majority voting
Majority voting is another method of identifying errors in transmitted
data. In this case, each bit is sent three times. So the binary code 1001
would be sent as:

111000000111

When the data is checked, you would expect to see patterns of three bits.
In this case, it is 111 for the first bit, then 000 and so on. Where there is a
discrepancy, you can use majority voting to see which bit occurs the most
frequently. For example, if the same code 1001 was received as:

101010000111

you could assume that the first bit should be 1 as two out of three of the
three bits are 1. You would assume that the second bit is 0 as two of the
three bits are 0. The last two bits are 0 and 1 as there appears to be no
errors in this part of the code.

This same principle can also be applied on a larger scale. For example,
on the Space Shuttle missions, the Columbia had at least four computers
processing the same data and comparing each other’s results. Where there
was a discrepancy between results, the majority voting method was used to
identify what was considered to be the correct course of action.

Check digits
Check digits are a common way of checking data, often when they are
being entered into a computer. For example, check digits are used on the
barcodes printed on goods at a supermarket. Like a parity bit, a check digit
is a value that is added to the end of a number to try and ensure that the
number is not corrupted in any way.

The check digit is created by taking the digits that make up the number
itself and using them in some way to create a single digit. The simplest,
but most error-prone method is to add the digits of the number together,
and keep on adding the digits until you have only a single digit remaining.
So the digits of 123456 add up to 21 and 2 and 1 in turn add up to 3,
so the number with its check digit becomes 1234563. When the data is
being processed the check digit is recalculated and compared with the
digit that has been transmitted. Where the check digit is the same then it
is assumed that the data is correct. Where there is a discrepancy, an error
message is generated.

KEYWORD
Majority voting: a method of
checking for errors by producing
the same data several times and
checking it is the same each time.

KEYWORD
Check digit: a digit added to the
end of binary data to check the
data is accurate.

B
IT-M

APPED
 G

R
APH

ICS

211

The problem with this system is that if two numbers are transposed
(swapped round) the check digit will be the same. For example, the
numbers 1234 and 4321 both add up to 10 and therefore produce a check
digit of 1. In order to overcome this, each number in the pattern is given a
weighting. This means that each number is multiplied by a different weight
or scaling factor. A common method for calculating a check digit is known
as a modulo-11 and is shown below.
● Original number 2 3 0 4 5
● Weighting 6 5 4 3 2

(this starts from 2, not 1)
● Multiply by weight 12 15 0 12 10
● Add together 12 +15 +0 +12 +10 = 49
● Divide by 11 49 ÷ 11 = 4 remainder 5
● Subtract the remainder from 11 11 – 5 = 6
● So the check digit is 6 and this makes the number 230456

● Bit-mapped graphics
Up to now we have concentrated on how binary can represent text and
numbers. It is also used to represent sound and graphics. Graphics are the
display of pictures on your computer and can range in complexity from
simple line drawings through to full animations. All computer graphics are
represented using sequences of binary digits (bits).

The display on a monitor is made up of thousands of tiny dots or picture
elements called pixels. A typical monitor might have a grid of 1366 by
768 pixels. This is known as the resolution. This term is also used on
individual picture files. So the formula for the resolution of a file in pixels is:

resolution = width × height

You can also define resolution in terms of the number of pixels per inch
(PPI). For example, a monitor that is 12 × 9 inches, which is 1366 by
768, will have 1366 divided by 12 pixels per inch, or around 114 PPI on
the horizontal axis and 768 divided by 9, which is around 85 PPI on the
vertical axis.

Each of these pixels can be controlled to display different colours. By
combining the pixels, a picture is created on the screen. At a very simple
level, each pixel could be controlled by one bit. This means that each
pixel is mapped to one bit in memory. The bit could be set to either 0 or 1
representing off or on which in this case would be black or white.

KEYWORDS
Bit-mapped graphic: an image
made up of individual pixels.
Pixel: an individual picture
element.
Resolution: width × height or
pixels per inch.

10010010

00110111

Data displayed on screenData stored in memory

Figure 26.2 Bit-mapped display

212

 2
6

C
od

in
g

sy
st

em
s

To create colour graphics, each pixel is mapped to more than one bit. For
example, a pixel might be represented by a byte (8 bits) in memory. This
means that each pixel could be any one of 28 or 256 different colours. The
amount of memory allocated to each pixel is referred to as the colour
depth. Your computer will contain a graphics card for controlling graphics.
The amount of memory allocated for bit-mapping depends on the amount
of memory on this card:

 storage = resolution × colour depth

If 24 bits were allocated to each pixel this would give 224 combinations or
16 777 216 different colours. Twenty-four bits are typically used as eight
bits are allocated to each of the three primary colours: red, green and blue
(RGB) from which all other colours are created. This means that with a
1024 × 768 display with 24 bits per pixel you get 18 874 368 bits or 2.35 MB
of memory to make one picture as calculated as follows:
● screen resolution of 1024 × 768 = 786 432 pixels
● 24 bits are allocated to each pixel to give 786 432 × 24 = 18 874 368 bits
● divide by 8 to get the answer in bytes = 2 359 296 bytes
● convert to megabytes to get 2.36 MB.

Note that bitmaps may also contain metadata, which means that the bitmap
file will be storing information about itself. Metadata is normally found at
the beginning of the file in a header, and might include information such as
the file type, the width and height in pixels and the colour depth.

Vector graphics
Vector graphics are created using objects and coordinates. A vector is a
measure of quantity and direction. It is easier to think of vector graphics
as geometric shapes. For example, if we had a vector graphic of a square it
would be made up of four coordinates with lines drawn between them. To
rescale the object requires an adjustment of the coordinates. Therefore, the
graphics are being controlled mathematically rather than being completely
regenerated as with a bit map. An image created on the screen will be made
up of lines and the scale and position of the lines will be adjusted as the
screen display changes to create an image.

Consider the two images in Figure 26.3.

The first image is a series of lines, the second image is the same series of
lines but the dimensions are different. If this second image was stored as
a vector graphic, the file would contain the new dimensions. One of the
advantages of this method is that the file would be much smaller than a bit-
mapped file containing the same image because vector graphics files contain
the mathematical description required to create an image rather than
storing the actual image as with a bit-mapped graphic. They also facilitate
perfect rescaling as, when drawn at a different scale, it is done using the
mathematical description. They are not practical for every scenario where
graphics are needed such as scanning and digital photography.

CAD/CAM packages make use of vector graphics as these packages tend
to use line-based drawings. Some two- and three-dimensional animation
programs also use vector graphics. This is because an animated image is
a series of still images combined together. Once the still image has been
created, the vectors can be manipulated to create the various frames within
the animation.

KEYWORD
Colour depth: the number of bits
or bytes allocated to represent the
colour of a pixel in a bit-mapped
graphic.

KEYWORD
Vector graphic: an image made
up of objects and coordinates.

Start coordinate

Figure 26.3 Scaled vector graphic

A level only

AN
ALO

G
U

E AN
D

 D
IG

ITAL SIG
N

ALS

213

Vector images are made up of primitives, which are the basic pieces of data
needed to create an image. Typically this will be points, lines, curves and
polygons. This includes common shapes and will also include letters. The
colour gradient may also be contained as a primitive.

● Analogue and digital signals
All the processing carried out by a computer is digital, yet there are
occasions when either the input or output required are analogue. For
example, some of the data sent around the Internet are sent in analogue
form over the telephone network. This is because the telephone lines were
originally designed to carry voice data which are analogue. A microphone
takes speech input which is analogue, or a musical instrument digital
interface (MIDI) takes in data from a musical instrument which may be
analogue.

Analogue data are data that are infinitely variable and are often represented
in the form of a wave. Figure 26.4 shows a typical sound wave.

Time

Am
pl

itu
de

Figure 26.4 An analogue wave

Digital data are often represented as discrete values shown in Figure 26.5
with the ons and offs shown as set peaks and troughs. As we have seen in
this section, digital data are often represented as a sequence of 0s and 1s.

ON

OFF

Figure 26.5 A digital signal

Analogue to digital conversions
The problem arises when we need to input analogue data into the computer
or when we want to output digital data from the computer in analogue form.
In order to do this, a converter is needed, which could be either an analogue
to digital converter (ADC) or a digital to analogue convertor (DAC).

One example where an ADC is used is between a microphone and a
computer. The microphone inputs sound in the form of changes in air
pressure and then converts them into electrical signals. These analogue
electrical signals are then converted by the ADC into digital signals that the
computer can process.

Another example is a MIDI device for an acoustic guitar. This device fits
beneath the strings on the guitar and when the strings are played they
generate an analogue sound wave. The sound waves are picked up and
converted to digital form.

MIDI uses event messages to control various properties of the sound. These
messages are typically encoded in binary and provide communication

214

 2
6

C
od

in
g

sy
st

em
s

between MIDI devices or between a MIDI device and the processor. For
example, on a MIDI keyboard, an event message may contain data on:
● when to play a note
● when to stop playing the note
● timing a note to play with other notes or sounds
● timing a note to play with other MIDI-enabled devices
● what pitch a note is
● how loud to play it
● what effect to use when playing it.
The advantages of using midi files over other digital audio formats are:
● MIDI files tend to be much smaller. This means they require less memory

and also load faster, which is particularly advantageous if the MIDI file is
embedded in a web page

● MIDI files are completely editable as individual instruments can be
selected and modified

● MIDI supports a very wide range of instruments providing more choices
for music production

● MIDI files can produce very high quality and authentic reproduction of
the instrument.

● Sound sampling and synthesis
Sampling is the process of converting analogue sound waves into digital
form to create what is commonly known as digitised or digital sound.
This is sometimes referred to as analogue to digital (ADC) conversion.
An analogue sound wave is infinitely variable so in order to store this
digitally, a series of readings at fixed intervals are taken from the wave
in order to create the discrete data values that are a defining feature of
binary data. These readings are then stored as binary codes. It is called
sampling because you do not record every single change in amplitude of
the waveform. Instead, you choose set points at which a reading
(or sample) will be taken.

Figure 26.7 shows the points at which the sample readings are taken.

Time

Am
pl

itu
de

Sampling point

0

Figure 26.7 Sampling an analogue wave (1)

The amplitude of the wave is only recorded at the point where each sample
is taken. Other variations in the amplitude are not recorded. Therefore, to
create an exact replica of the analogue sound would require a sample to
be taken every time the amplitude of the wave changed even by a small
amount. However, the human ear doesn’t notice very small changes, so
sound can be faithfully created with fewer samples. Taking more samples

Figure 26.6 A MIDI keyboard

SO
U

N
D

 SAM
PLIN

G
 AN

D
 SYN

TH
ESIS

215

allows more accurate reproduction of the original analogue sound. Consider
the following example:

Imagine that the sound wave shown in Figures 26.8 and 26.9 represents
part of a song. The first sample would create a more accurate recording as it
involves more samples. However, it would require much more memory and
storage space than the sample in the second diagram where fewer samples
have been used.

To calculate how large the file size will become you can use the following
calculation:

sample rate (Hz) × length of recording (seconds) × sampling resolution (bits)

Sample rate represents the number of samples that will be taken per
second. The length of the recording is simply measured in seconds and the
sampling resolution refers to the number of bits allocated to representing
the sound.

For example the following three samples are recorded at a resolution of
16 bits (two bytes).

0011 1100 0000 0011

1111 0101 0110 0101

0110 0110 0011 1110

Assuming a sample rate of 44 000 Hz, with a recording lasted 60 seconds,
the file size would be:

 44 000 × 60 × 16 = 42 240 000 bits = 5 280 000 bytes or 5.28 MB

When deciding on the optimum sampling rate, many programmers refer
to Nyquist’s Theorem, which states that to faithfully recreate the analogue
signal, you should sample at least twice the highest frequency. For example,
if the human ear can cope with frequencies of 20 Hz – 20 000 Hz, then the
analogue frequency must be sampled at at least 40 000 Hz. The reason for
doubling the frequency is to ensure that the sample covers the complete
range of peaks and troughs in the analogue signal, which then allows a
faithful reproduction of the sound.

Samples can be edited to remove any background noise or interference
from the original sound wave. Some people argue that CDs produce better
quality sound than vinyl disks for this reason.

Sound synthesis is another term that is used to refer to sound that is
produced digitally rather than in analogue format. It means that the sound
is synthesised or manufactured rather than being in its original analogue
format. By definition, all sounds created by a computer are digital.

After sound has been digitally recorded, in order to hear it, the user will
use either earphones or speakers. These devices are driven by audio signals
yet the data is stored as digital signals. In order to convert it so that it can
be amplified and played, a digital to analogue convertor (DAC) is required.
Typically, the DAC is embedded in the device that plays the audio data and
the signal is passed in analogue form to the loudspeakers or headphones.

Time

Am
pl

itu
de

Sampling point

0

Figure 26.8 Sampling an analogue
wave (2)

Time

Am
pl

itu
de

Sampling point

0

Figure 26.9 Sampling an analogue
wave (3)

216

 2
6

C
od

in
g

sy
st

em
s

● Data compression
There are many scenarios where the files used to store data can get very
large. For example, high resolution photographs or music sampled at a high
frequency will result in files that could be several megabytes. A whole movie
will take up several gigabytes. In order to reduce storage requirements, and
make it quicker to transmit these files, they are often compressed.

Compression is the process of encoding information with fewer bits, so that
the files take up less memory. There are several methods for doing it, depending
on the type of data being encoded. You are probably familiar with the concept
of using zip files, or reducing a high resolution image to low resolution. Many
familiar file types such as jpeg, mpeg and mp3 are compressed files.

Any type of data can be compressed and different techniques are used
depending on the data type. These techniques lead to either lossless or lossy
compression.
● Lossless means that the compressed file is as accurate as it was before

compression, i.e. no data is lost.
● Lossy means that there will be some degradation in the data, for

example, a grainier image might be produced.

Lossless compression
Imagine a picture made up of millions of pixels. The picture file will
contain data about each pixel, for example its colour. So part of the file
might simply read: blue, blue, blue, dozens of times where there is a run of
blue pixels. Rather than storing this same data over and over, you can use
‘run-length encoding’, which states that the next x pixels will be blue. So
B,B,B,B,B,B,B,B becomes 8B. This is a simple example but you can see that
only two encoded digits are needed to represent eight uncompressed ones,
and there is no loss of data accuracy.

When compressing text files, dictionary-based compression techniques
can be used. These work on the basis that within the text, there will be
common strings of characters. Rather than rewriting these same strings,
they can be coded in some way.

For example, the characters ‘tion’ are commonly found at the end of many
words, such as ‘station’, ‘nation’ and ‘creation’. Rather than storing the
words individually, ‘tion’ can be encoded to the dictionary and then used in
combination with other prefixes to form words. At the same time, ‘sta’, ‘na’
and ‘crea’ can be encoded to the dictionary as they too can be made into
other words. Now when you need to encode any words that contain those
strings of text, you can use the dictionary entry rather than writing the
whole strings out again in the file.

For example, you could have a dictionary file set up with tokens or codes
that represent different words or parts of words. Following on from the
example above, we could assign numeric tokens as follows:

Data Token

tion 1

sta 2

na 3

crea 4

KEYWORD
Compression: the process of
reducing the number of bits
required to represent data.

KEYWORDS
Run-length encoding: a
method of compressing data by
eliminating repeated data.
Dictionary-based encoding:
a method of compressing text
files.

D
ATA CO

M
PR

ESSIO
N

217

A data file containing the strings 21, 31, 41 would result in the words
‘station’, ‘nation’ and ‘creation’ but use six characters instead of
21 characters.

Dictionary-based techniques can be used on non-text data if it is considered
as a sequence of 0s and 1s.

Lossy compression
There are cases where lossless compression still results in a large file as
there is a limit to how small it can get, while still maintaining accuracy. In
some cases where the amount of memory is an issue, or where data is being
transmitted across a network and the speed of transmission is vital, it might
be necessary to make these files even smaller.

Figure 26.10 Lower resolution images resulting in pixellation

This is often the case with streaming audio or video. In these cases, a
compression technique that leads to some degradation in data quality may
be acceptable. For example, if you were streaming a movie, you might not
expect the picture quality to be as good as that on a DVD.

Programmers must take into account issues such as memory and
transmission requirements when deciding on the most appropriate
compression techniques. The widespread use of mobile data on various
portable devices means that lossy compression is commonly used, even
though it leads to a degradation of the original data.

Lossy compression techniques work by identifying data that can be
removed, while still creating an acceptable representation. In the case of
audio, graphics and video, the user will have some control over the level
of compression and therefore the quality of the compressed file. For
example, a low resolution JPEG file will have more of the original data
removed and therefore produce a pixellated image.

JPEG compression works by breaking an image up into blocks of 8 × 8 pixels.
In each block, the data is converted into frequencies. Some frequencies are
considered to be more important than others.

218

 2
6

C
od

in
g

sy
st

em
s

TASKS
1 The number 5 could be represented in binary as 00000101. Using

ASCII the binary code for 5 is 00110101. Explain why there are two
different binary codes for the same number.

2 Describe how the following methods work and explain why none of
them are guaranteed to spot all errors in data.
a) parity bit b) majority voting c) check digits

3 What is a bit-mapped graphic?
4 If eight bits of memory are allocated to each colour (red, green. blue)

within a pixel, how many megabytes of memory are needed to store a
1024 × 768 display?

5 What is a vector graphic?
6 Give two examples where analogue data needs to be converted to

digital data.
7 Give two examples where digital data needs to be converted to

analogue data.
8 ‘Analogue produces a purer sound than digital.’ Give one reason why

this statement could be true.
9 Explain why the storage of video with sound requires a large amount

of disk space.
10 Explain two situations where you might use:

a) lossy compression b) lossless compression.
11 Explain the difference between odd and even parity, giving an example

of each.

Figure 26.11 JPEG image broken into 8 × 8 pixel grids with high and low frequencies

This is because high frequency data is more difficult for the human eye to
perceive so changes made to high frequency data will be less noticeable.
Low frequency data on the other hand is more noticeable.

For example, in Figure 26.11, the 8 × 8 pixel grid is of a grey road. This is
a high frequency image as the human eye will not notice slight changes in
the grey. However, if you look at the red box that represents another 8 × 8
grid, there is a large contrast between the dark building and the light sky.
When compressing the image it is important to maintain this contrast. The
slight contrasts in grey on the road are much less important.

Therefore JPEG analyses the pixel data within each 8 × 8 block and
removes data that is least likely to affect the human perception of the
image. It then uses the same run-time encoding methods described above
to eliminate any repeating data to reduce the file size.

Practice questions can be found at the end of the section on page 228.

D
ATA CO

M
PR

ESSIO
N

219

STUDY / RESEARCH TASKS
1 Identify one application where it would be more appropriate to use

vector graphics rather than bit-mapped graphics.
2 Identify one application where it would be more appropriate to use bit-

mapped graphics rather than vector graphics.
3 What is the standard sampling rate for CD audio quality?
4 Video messages sent via mobile phone often appear slightly jagged

and jerky. Explain why this is the case.
5 What is a CODEC?
6 Research one of the better known compressed file types and find out

what compression algorithm is used.
7 Research the LZ77, LZ78 and LZW compression methods.

KEY POINTS
• Binary codes can be used to

represent text, characters,
numbers, graphics, video and
audio.

• ASCII and Unicode are
systems for representing
characters.

• It is possible that the data
can get corrupted at any
point when it is being either
processed or transmitted.

• Error detection and correction
methods include check digits
and majority voting.

• Bit-mapped graphics are
made up of individual pixels
(picture elements).

• Vector graphics are composed
of objects.

• Resolution is the measure of the
height and width of an image.

• Analogue signals such as
sound waves need to be
converted into digital form so
they can be processed by the
computer by sampling.

• Data is compressed to make
file sizes more manageable.

• Compression can either
be lossless, which means
no degradation of the data
after compression, or lossy,
which means there will be
degradation of the data.

220

 27 Encryption

INTRODUCTION
Encryption is the process of scrambling data so that it cannot be
understood by another person unless they know the encryption method
and key used. Decryption is the process of turning the scrambled data
back into data that can be understood. Data is encrypted before it is
transmitted and decrypted when it is received. Therefore encryption
keeps data secure during transmission.

Data

 SENDER RECEIVER

UNAUTHORISED ACCESS

Figure 27.1 Unauthorised interception of data

SPECIFICATION COVERAGE
3.5.6.8 Encryption in AS Level

3.5.6.10 Encryption in A Level

LEARNING OBJECTIVES
In this chapter you will learn:
• what encryption is and why it is important
• the basics of encryption techniques
• how to encrypt a message using the Caesar cipher
• how to encrypt a message using a transposition cipher
• how to encrypt a message using the Vernam cipher
• how to use frequency analysis to help decrypt ciphers
• what computational security is.

KEYWORDS
Encryption: the process of
turning plaintext into scrambled
ciphertext, which can only be
understood if it is decrypted.
Decryption: the process of
deciphering encrypted data or
messages.

EN
CR

YPTIO
N

 B
ASICS

221

Data are vulnerable when they are accessed by a third party who should not
have access to them. This might occur if someone gains access to saved files
on a computer, or when data are transmitted across networks. Often the
nature of the data being sent is personal or sensitive and there is a risk if
someone were to intercept them. For example:
● online banking transactions need to be kept secure to prevent theft and

fraud
● health information needs to be kept secure as it contains very sensitive

personal information
● government security data needs to be kept secure as they could have

implications for national security.

In fact the use of encryption is closely linked to matters of government
and military security as many techniques were developed and used during
conflicts. With the widespread use of the Internet over recent years,
encryption has become a vital mechanism for securing data sent across
local and wide area networks.

● Encryption basics
All encryption works on the basis of turning plaintext into ciphertext as
shown in Figure 27.2.

The message is written
in ‘plaintext’

“BROADSWORD
CALLING DANNY BOY”

SENDER

“DTQCFUYQTF ECNNKPI
FCPPA DQA”

“BROADSWORD CALLING
DANNY BOY” RECEIVER

The message is encrypted
into ‘ciphertext’ using

an algorithm

The message is sent

The message is received

The message is decrypted
back into ‘plaintext’ as
receiver knows how the

algorithm encrypted the data

Figure 27.2 The encryption–decryption process

Plaintext is the original data in a format that can be understood. The data
are then encrypted or encoded using an algorithm that turns the data into
ciphertext. The message can then be sent. Encryption does not prevent the
data from being intercepted, it just makes them meaningless to the person
who intercepted them unless they know how the data have been encrypted.

It is common practice therefore for people to try and work out what algorithm
has been used, that is, to try and crack the code. There are many famous
examples of code-breakers throughout history, not least the work done on
the German Enigma machine during WWII by both Polish and British
mathematicians. Many people believe that their ability to crack this code

KEYWORDS
Plaintext: data in human-
readable form.
Ciphertext: data that has been
encrypted.

27
 E

nc
ry

pt
io

n

222

enabled the Allies to win the war as they were able to intercept and read
messages about the German war effort.

There are various techniques for encrypting data and in this chapter we
will be considering two of the common ones: the Caesar cipher and the
Vernam cipher. We will also be considering transposition ciphers.
A-level students also need to be aware of public and private key encryption
and this is covered in Chapter 44.

A key is a piece of data used in encryption that defines the way in which
plaintext is turned into ciphertext. You will see some examples in this
chapter. The key that is used by the sender to encrypt the message must be
known by the receiver so that they can decrypt the message. Some keys,
like those used with a Caesar cipher are too easy to work out, whereas
other keys like those used on a Vernam cipher are theoretically impossible
to crack.

● The Caesar cipher
Named after the Roman Emperor who used it for all of his personal
correspondence, the Caesar cipher is an example of a shift or substitution
cipher. This method substitutes each letter of the alphabet for another
character by simply shifting the letters forwards or backwards. A variation
on this would be to shift letters on a random basis.

The diagram below shows a substitution cipher with a two-letter shift.
In this case, the message: “BROADSWORD CALLING DANNY BOY”
becomes “DTQCFVYQTF ECNNJPI FCPPA DQA”.

A B

A B

C D E F G H I J K L M N O P Q R S T U V W X Y Z

C D E F G H I J K L M N O P Q R S T U V W X Y Z

A random substitution might look like this:

A B

U H

C D E F G H I J K L M N O P Q R S T U V W X Y Z

O Z P C Y D B Q X K L A V W R I S M J E G N F T

Our message when encrypted with this random substitution becomes:
“ZMROCJFRMC POAAXWB COWWU ZAU”.

Both of these methods would be fairly easy to work out, even without the
key. It could be made more secure by adding a keyword, for example, you
might select the word “BEESWAX”. First, you need to delete any repeated
letters in the word, leaving you with “BESWAX”. Then add this word
to the start of the alphabet. In other words, the first seven letters of the
alphabet are substituted for the keyword. Then add the remaining letters
in alphabetical order:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B E S W A X C D F G H I J K L M N O P Q R T U V Y Z

The message can then be encrypted. With any of these three examples, the
receiver would need to know what key is being used. If it is a two-letter
shift then they only need to shift +2 to decrypt the message. If a keyword
is being used then they need to know the keyword. In the case of the
random substitution they would need the entire look-up table. Therefore to

KEYWORDS
Caesar cipher:
a substitution cipher where
one character of plaintext
is substituted for another,
which becomes the
ciphertext.
Vernam cipher: a method
of encryption that uses
a one-time pad (key) to
create ciphertext that is
mathematically impossible
to decrypt without the key.
Transposition cipher:
a method of encryption
where the characters are
rearranged to form an
anagram.
Key: in cryptography it is
the data that is used to
encrypt and decrypt the
data.
Substitution cipher:
a method of encryption
where one character is
substituted for another to
create ciphertext.

FR
EQ

U
EN

CY AN
ALYSIS

223

decipher the code, the recipient would need the key, which in this case is
the keyword, and the encryption method.

A further level of complexity can be added to a substitution cipher with the
use of more than one alphabet. This is known as a polyalphabetic cipher
and rather than having one set of substitutions it could have any number of
alphabets or look-up tables to work with. For example, there might be ten
different versions of the look-up table above. Each letter that is encrypted is
passed through all of them to produce a final encrypted letter. For example,
using four different alphabets an example might look like this:
● The letter ‘A’ is encrypted using the first alphabet to the letter ‘W’
● The letter ‘W’ is encrypted using the second alphabet to the letter ‘S’
● The letter ‘S’ is encrypted using the third alphabet to the letter ‘P’
● The letter ‘P’ is encrypted using the fourth alphabet to the letter ‘D’.

The letter “D” is then used in the encrypted message. All four alphabets will
be needed to decrypt the message.

This concept goes back to the 15th century and is known as the Alberti cipher.
This is also one of the underlying principles used in the Enigma machine,
where several randomised alphabets were used to encrypt a message.

● Frequency analysis
The Caesar cipher is one of the easiest to crack because of the nature of
language. In English, for example, there are certain letters that are used
more frequently than others and certain combinations of letters that are
also common. By examining ciphertext for frequently used letters and
patterns of letters it is possible to work out what letter has been substituted
for which other letter.

For example, a frequency analysis of letters used in most English writing
might look like Figure 27.3.

a
0

0.02

0.04

0.06

0.08

0.1

0.12

Re
la

tiv
e

fre
qu

en
cy

0.14

b c d e f g h i j k

Letter

l m n o p q r s t u v w x y z

Figure 27.3 Frequency analysis of letter usage

KEYWORD
Polyalphabetic: using more than
one alphabet.

KEYWORD
Frequency analysis:
in cryptography it is the study
of how often different letters or
phrases are used.

Notice that ‘e’ is the most frequently used letter followed by ‘t’. ‘ j’ and ‘x’ are
used infrequently. If you took a large block of ciphertext and carried out the

27
 E

nc
ry

pt
io

n

224

same analysis you would find a pattern. For example, if the ‘e’ was replaced
by a ‘p’, then ‘p’ would be the most frequently used letter in the ciphertext
and you can therefore assume that e = p. You could do this for all of the
other letters by matching their frequencies.

In modern computing, cryptography like this could be cracked instantly,
so more sophisticated methods have been developed.

● Transposition cipher
With this type of cipher, the letters of the message are transposed, or rearranged
to form an anagram. You must rearrange the letters according to a set pattern
to make it possible to decrypt the message. One way of doing this is called the
railfence method where the message is split across several lines. For example:

B O D W R C L I G

R A S O D A L N

If you now read the message off line by line it becomes:
“BODWRCLIGRASODALN”. If you were decrypting this message you
would need to know that the key is that it has been split over two lines.

To decrypt it, you simply read it back by moving down and then up. You
could use any combination of lines and line lengths. For example, you
could put the message across three lines:

O W C I

B D R L G

R A S O D A L N

In this case, the message becomes: “BDRLGRASODALNOWCI”.

A variation is to put the message into a grid. This is called a route
cipher. For example, the same message is placed into a 6 × 3 grid.

Reading down in columns from left to right will decrypt the
message. Notice that you can add null or meaningless values if
you have spare cells in your grid. In this case, the letter ‘A’ has
been added to the bottom right-hand cell.

As with Caesar ciphers, complexity can be added to the key with the addition
of a keyword before the main message. It is also common practice to combine
then apply a substitution cipher to the transposed message so that there are
two codes to crack to decipher the original message as shown in Figure 27.4.

Message

BROADSWORD
CALLING

Transposition cipher Message sent

6 × 3 grid “HEISENBERG”

Substitution cipher
using keyword

BWLROLORIADNDCGSAA EWFPLFLPASKSIRQHH

Figure 27.4 A substitution cipher

B

R

O

A

D

S

W

O

R

D

C

A

L

L

I

N

G

A

Although more complex than a straight transposition cipher, it is still
possible to decrypt this message without knowing the key using a
combination of frequency analysis and anagram deciphering.

KEYWORDS
Railfence cipher: a type of
transposition cipher that
encodes the message by
splitting it over rows.
Route cipher: a type of
transposition cipher that
encodes the message by placing
it into a grid.

VER
N

AM
 CIPH

ER

225

● Vernam cipher
Gilbert Vernam invented this cipher around 100 years ago as a means of
keeping data secure whilst it was being transmitted using telex machines.
The Vernam cipher is an example of a class of encryption techniques
known as one-time pad techniques. The key that is used is a sequence of
letters that should be as long as the plaintext that is being encoded. The key
can be recorded on a pad, although in the Vernam case the key was written
on a punched taped for input into the telex device. For maximum security,
a particular key should only be used to encrypt one message, hence the
name one-time pad.
To encrypt a message, each character in the plaintext is combined with
the character at the corresponding position in the key by converting
the corresponding plaintext and key characters into a binary code
(originally a 5-bit Baudot code) and using a logical XOR on these binary
representations to produce a new binary code, which in turn maps back to
a character. Once the ciphertext is created the key is never used again for
encryption, although it will be used once more to decrypt the ciphertext.

A message is encrypted and decrypted as follows:
● The key is created, which is a completely random sequence of characters.

For example, each letter in the plaintext message “BROADSWORD” is
combined with the letter at the corresponding position in the key that is
written on the pad or tape:

BPlaintext message R O A D S W O R D

HKey E L K K J V T U I

● For each character in the plaintext and the key, the 5-bit Baudot
representation is identified. For example, B = 11001, H = 10100. A logical
XOR is then performed on the two values, which is a bitwise operation
that results in a 1 only if the two bits being compared are different. In
this case:

1Baudot code for plaintext B 1 0 0 1

1Baudot code for one-time pad H 0 1 0 0

0XOR the two codes to produce ciphertext 1 1 0 1

● The Baudot table is then used to find the corresponding character
that is represented by 01101, which is F. Therefore the first character
in the ciphertext becomes F. This process is repeated for each letter in
the plaintext.

● On receipt of the ciphertext, assuming the receiver has access to the key,
an XOR can be performed on the ciphertext with the key to find the
original plaintext:

0Baudot code for ciphertext F 1 1 0 1

1Baudot code for key H 0 1 0 0

1XOR the two codes to reproduce plaintext 1 0 0 1

● You can see that the result of the XOR operation is 11001, which is
the original plaintext character of B. This process is repeated on every
character in the ciphertext.

KEYWORDS
One-time pad: a key that is
only used once to encrypt and
decrypt a message and is then
discarded.
Baudot code: a five-digit
character code that predates
ASCII and Unicode.

27
 E

nc
ry

pt
io

n

226

Nowadays, it is more likely that a character code such as ASCII or Unicode
would be used to convert the characters to binary values instead of the
Baudot code.

Once the entire message has been encrypted and decrypted the key
is destroyed and a new random key is created. As long as the key is
completely random, and is kept secret and only used once, then it is
mathematically impossible to crack the code.

This is because the key is entirely random and therefore creates outcomes
that are random. If you don’t know the key, then ciphertext letter A is just
as likely to be plaintext H as it is L, or any other letter. Indeed, if the letter
A occurred at more than one position in the ciphertext then it is likely
that each occurrence of an A will correspond to a different letter in the
plaintext. If someone intercepted the message, the best they could do is to
try all possible keys to work out every possible plaintext, but there would
be a huge number of these and no way to know which the correct one was.

This is known as perfect security and it means that however much time
and ciphertext a cryptographer has to work with, they will never be able
to crack the code.

In practice, complete security is more difficult to achieve as:
● generating completely random numbers is complex as any algorithm is

likely to contain some element of predictability
● letting the receiver know what the key is (key exchange) is difficult as

this information itself could be intercepted
● there is no way of authenticating the sender and receiver so if the key was

intercepted, messages could be sent from unauthorised sources.

● Computational security
The Vernam or one-time pad cipher is the only cipher that is considered
to be 100% mathematically secure. All other ciphers can be cracked given
enough time and enough ciphertext to work on. This leads to the concept
of computational security or computational hardness. A cipher that
is computationally secure is theoretically breakable but not when using
current technology in a timeframe that would be useful. This recognises the
fact that although most encryption can theoretically be cracked, in practice
it will be secure enough to withstand most threats.

When devising encryption algorithms it means that programmers need
to be aware that some levels of encryption are harder to crack than others
and that the level of security they use needs to be commensurate with the
level of risk of the data being intercepted. For example, you would expect
a much more sophisticated level of encryption on a data file being used to
store data on military movements than one used to store a school project.

Computational security means that cryptographers need to be aware of the
ways in which their encryption could be cracked. In addition to frequency
analysis discussed earlier, there are several different methods for cracking
codes:
● Identifying commonly used techniques: Many ciphers are based on

substitution or transposition. Experienced cryptographers are able to
recognise patterns in data that has been encrypted using these methods.

KEYWORDS
Computational security:
a concept of how secure data
encryption is.
Computational hardness: the
degree of difficulty in cracking a
cipher.

CO
M

PU
TATIO

N
AL SECU

R
ITY

227

● Reverse engineering: This is the process of going back step by step until
you work out how something has been put together.

O Dictionary attacks: This is the process of using a dictionary that contains
common words and phrases. After each attempt to decrypt text is made,
the text can be compared to the dictionary to see if it matches.

● Brute force: This is similar to a dictionary attack but takes much longer as
rather than looking at common words and phrases it looks at every single
permutation of characters that can be created and then compares the
decrypted text to these permutations.

Practice questions can be found at the end of the section on page 228.

TASKS
1 What is encryption and why is it used?
2 Explain the use of a key in encrypting and decrypting data.
3 Encrypt a message using:

a) a simple shift cipher
b) a simple substitution cipher
c) a substitution cipher with a keyword.
You could do this on paper or create a programmed solution.

4 What is a polyalphabetic substitution cipher?
5 Why are substitution ciphers relatively easy to crack?
6 Encrypt a message using a transposition cipher. You could do this on

paper or create a programmed solution.
7 Explain how the Vernam (one-time pad) cipher works with the aid of an

example. You could do this on paper or create a programmed solution.
8 Why is the Vernam cipher said to be mathematically unbreakable?
9 What conditions must be met for a Vernam cipher to be 100% secure?

10 How are most codes cracked?
11 What is computational security?

STUDY / RESEARCH TASKS
1 Create a timeline of famous codes and ciphers that have been used

throughout history.
2 Research the Enigma machine and find out how messages sent using

it were encoded and how the code was eventually cracked.
3 There are many examples of ciphers and codes that have never been

cracked. Find out about them. Why has no-one ever managed to
decipher them?

4 According to the government, as many as 80% of large business
experience security breaches every year. What are the implications
for large organisations if their data is compromised?

KEY POINTS
• Data are vulnerable to

interception whenever they
are being transmitted.

• Encryption is the process of
scrambling data so that they
can only be understood if they
are decrypted.

• Decryption is the process of
turning encrypted data back
into meaningful data.

• A cipher is a code or key
applied to plaintext to turn it
into ciphertext.

• There are three main types
of cipher you need to be
aware of: Caesar, Vernam and
transposition.

• As a programmer you need
to be conscious of security
issues relating to your own
programs and data.

228

Se
ct

io
n

Fi
ve

: P
ra

ct
ic

e
Q

ue
st

io
ns

Section Five: Practice questions
1 Represent the decimal value 6.125 as an unsigned fixed point number, with 4 bits before and 4 bits after the

binary point.

2 Represent the decimal value –57 as an 8-bit two’s complement binary integer.

3 Describe what happens when using 8-bit two’s complement to perform the calculation 56 + 87, by
performing the addition and commenting on the result.

4 Calculate the decimal equivalent of the following floating point numbers, which are stored using two’s
complement. Note there is an 8-bit mantissa and a 4-bit exponent:
a) 0.0110000 0010
b) 1.0010100 0100

5 Write the normalised floating point representation of –7.5 using an 8-bit mantissa and a 4-bit exponent.
Explain how you arrived at your answer.

6 Hexadecimal numbers are used widely in computing.
a) Give one example of where hexadecimal numbers are used, and explain why they are used here rather

than binary numbers.
b) Convert the binary data 10110111 00111110 into hexadecimal.
c) What is the decimal equivalent of the hexadecimal number E4?

7 For digital audio systems, signals received from a microphone are sampled and the measurement of the
amplitude of the waveform can be stored as digital data. To reproduce the sound, the digital data are fed
through a digital-to-analogue converter.
a) Explain how the sample rate affects the quality of sound.
b) Why does the digital data need to be passed through a digital-to-analogue convertor?
c) Explain how Nyquist’s Theorem applies to this scenario.

8 A secure message needs to be sent across an open network. In order to keep it secure it must be encrypted.
The message is: “Head South”.
a) Describe what is meant by encryption.
b) Encrypt the message using a Caesar cipher. Explain your method.
c) The Vernam cipher is said to be impossible to crack. Identify two conditions that must be met to ensure

the security of plaintext encrypted with a Vernam cipher.
d) Identify one protocol that could be used to increase security when sending data around a wide area

network.
e) Some governments can insist on being provided with a ‘back door’ into encrypted data. Give two reasons

why organisations might object to providing governments with this access.

9 The 8 × 8 grid represents how a mono bitmap image is stored. Each grid
represents a pixel.

a) If one bit is used to represent each pixel, write out a possible bit string
for row 1.

b) How could run-length encoding be used to compress the fi le?
c) Explain how a bitmap could be used to store a colour image.
d) Explain the difference between a bitmap image and a vector image.

10 Explain in detail how digital cameras capture an image.

11 Describe one example of when it might be necessary to convert analogue signals to digital and one example
when it might be necessary to convert digital signals to analogue.

Row 1

Section Six:
Fundamentals of
computer systems

230

 28 Hardware and
software

INTRODUCTION
The term ‘system’ is often used to refer to the various physical
components of your computer – the monitor, keyboard, etc. A computer
system has two main elements: hardware and software. It is only when
the two are combined that you create a fully working system. There is
no point in having one without the other. Some defi nitions of a computer
system add in a third vital element – the user. In this chapter we will
look at the main elements of hardware and software that make up a
computer system.

SPECIFICATION COVERAGE
3.6.1 Hardware and software

LEARNING OBJECTIVES
In this chapter you will learn:
• the defi nition of hardware and software
• that hardware is classifi ed into internal and external components
• that there are many different types of software
• many programs are created to make a computer system work, such

as operating systems, library and utility programs
• specifi c software exists to convert programming code into machine

code
• how the operating system manages resources.

● Hardware
Computer hardware is the physical components of the computer. Sometimes
this is described as ‘the parts you can touch’. This is not particularly helpful
as many elements of hardware are contained inside your computer and can
only be seen (or touched) by taking off the case. Therefore, it is important
to distinguish between the internal components, which are the processing
and storage devices, and external components, normally referred to as
peripherals.

KEYWORDS
Hardware: a generic term
for the physical parts of the
computer, both internal and
external.
Software: a generic term for any
program that can be run on a
computer.

H
AR

D
W

AR
E

231

● External components (peripherals): The external components of hardware
are the parts that you can touch, for example the monitor, mouse, keyboard,
and printer. The external components are used either to get data into or out
of the system. Consequently, they are referred to as input and output (I/O)
devices. Some storage devices are also external, for example DVD and flash
drives may be added as peripherals. Input devices include the keyboard,
mouse, scanner, digital camera and microphone. Output devices include the
monitor, printer and speakers.

Figure 28.1 External hardware devices

● Internal components (processing and storage): the internal hardware
components are housed within the casing of the computer and include
the processor, the hard disk, memory chips, sound cards, graphics cards
and the circuitry required to connect all of these devices to each other
and to the I/O devices.

Figure 28.2 Internal hardware components

232

 2
8

H
ar

dw
ar

e
an

d
so

ft
w

ar
e

● Software
Hardware is useless on its own unless we have some programs to run on
it. Software is the general term used to describe all of the programs that
we run on our computers. These programs contain instructions that the
processor will carry out in order to complete various tasks.

This covers an enormous range of possibilities from standard applications,
such as word processors, spreadsheets and databases, to more specific
applications, such as web-authoring software and games. It also includes
programs that the computer needs in order to manage all of its resources,
such as file management and virus-checking software. As users, we tend to
be aware of the software that we use on a regular basis, yet this is only one
part of the software that is on our computers.

The range of software is so great now that some classification is needed in
order to make sense of it all. A first level of distinction is made between
application software and system software.

Application software
Application software refers to all of the programs that the user uses in order
to complete a particular task. In effect, it is what users use their computers for.
People do not buy computers for the sake of it, they buy them because they
have a need to do something: write essays, email, manage a business, create
web pages, etc. To carry out any of these, application software is needed that
has the necessary features.

There is a wide range of application software available and, in most cases,
a number of different applications to choose from that complete the same
task. For example, you need application software to access web pages on the
Internet – it is called a browser. There are three main ones to choose from:
Internet Explorer, Google Chrome and Mozilla Firefox; and many more less
well known ones. All of them do the same thing although there are subtle
differences between them.

System software
Whereas application software is what we use our computers for, system
software covers a range of programs that are concerned with the more
technical aspects of setting up and running the computer. Many aspects
of system software are invisible to the user which means that they will
not even realise that they have system software on their computer. System
software exists to support the applications software.

There are four main types: utility programs; library programs; compilers,
assemblers and interpreters; and operating system software.

Utility programs
This covers software that is written to carry out certain housekeeping tasks
on your computer. They are normally supplied with the operating system
though they can be purchased separately. Utility programs are often
made available as free downloads. Utility programs are designed to enhance
the use of your computer and programs though your computer will still
work without them.

KEYWORD
Application software: programs
that perform specific tasks
that would need doing even
if computers didn’t exist,
e.g. editing text, carrying out
calculations.

KEYWORD
Utility programs: programs that
perform specific common task
related to running the computer,
e.g. zipping files.

SO
FTW

AR
E

233

A common example of a utility program is compression software which
allows you to compress files, making them much smaller. Other examples
include anti-virus software, back-up software and registry cleaners.

Library programs
Library programs are similar to utility programs in that they are written
to carry out common tasks. The word library indicates that there will be a
number of software tools available to the users of the system.

Whereas some utility programs are non-essential, library programs tend to
be critical for the applications for which they were built. For example, the
Windows operating system uses Dynamically Linked Library (DLL) files,
which contain code, data and resources. These are similar to executable
files and are loaded dynamically by Windows as they are required. There
are hundreds of DLL files that carry out a wide range of actions including
controlling dialog boxes, managing memory, displaying text and graphics
and configuring device drivers.

The Python programming languages also has an extensive library that
contains built-in modules that provide various standard system functions
and solutions. For example, the library contains code modules for handling
common data types, displaying fonts and graphics and performing
mathematical and functional operations.

Translators: compilers, assemblers and interpreters
Translators are software used by programmers to convert programs from
one language to another. There are three types: compilers, assemblers
and interpreters. At some point, every piece of software, whether it is
application software or system software, has to be written by a programmer.
A program is simply a series of instructions written by a programmer that
the computer’s processor must carry out.

In order to write software, programmers use programming languages which
allow them to write code in a way that is user-friendly for the programmer.
However, the processor will not understand the programmers’ code, so
it has to be translated into machine code, that is, 0s and 1s. Compilers,
assemblers and interpreters are used to carry out this translation process.
There is more detail on how these work in Chapter 29.

Operating system software
An operating system is a collection of software designed to act as an
interface between the user and the computer and manages the overall
operation of the computer. It links together the hardware, the applications
and the user, but hides the true complexity of the computer from the user
and other software – a so-called virtual machine.

When you are using a computer you are obviously aware of the applications
software you are using, whether it is an Internet browser, a spreadsheet
or a game of some sort, but you are much less aware of the software that
is running in the background. The systems software is dominated by the
operating system (OS).

The OS in a modern computer is very large. For example, Microsoft
Windows 8 needs a minimum of 1 GB of RAM and 16 GB of hard disk space

KEYWORDS
Translators: software that
converts programming language
instructions into 0s and 1s
(machine code). There are three
types – compilers, assemblers
and interpreters.
Compiler: a program that
translates a high-level language
into machine code by translating
all of the code.
Assembler: a program that
translates a program written in
assembly language into machine
code.
Interpreter: a program for
translating a high-level language
by reading each statement in the
source code and immediately
performing the action.
Operating system software:
a suite of programs designed
to control the operations of the
computer.
Virtual machine: the concept
that all of the complexities of
using a computer are hidden
from the user and other
software by the operating
system.

KEYWORD
Library programs: code, data
and resources that can be called
by other programs.

234

 2
8

H
ar

dw
ar

e
an

d
so

ft
w

ar
e

when the computer is in use. This gives you some idea of the complexity of
the OS. This is because the OS carries out many tasks. For example it:
● controls the start-up configuration of your computer, including what

icons to put on your desktop and what backdrop to use
● recognises when you have pressed a mouse button and then decides

what, if any, action to take
● sends signals to the hard disk controller, telling it what program to

transfer to memory
● decides which sections of memory to allocate to the program you are

intending to use and manages memory to ensure all of the programs you
want to run are allocated the space they need

● attempts to cope with errors as and when they occur. For example, if a
printer sends an ‘out of paper error’ or you fail to save a file correctly, it
is the operating system that displays the appropriate message

● makes sure that your computer shuts down properly when you have finished
● controls print queues
● manages the users on a network – it maintains the lists of usernames and

passwords and controls which files and resources users have access to.

● Resource management
Computers are capable of running many programs, seemingly at the same
time. It is the job of the operating system to make sure that each program is
allocated enough memory to operate efficiently.

In a computer with only one processor, only one program can actually be
live at any one moment in time. In order to allow more than one program
to appear to run simultaneously, the operating system has to allocate access
to the processor and other resources such as peripherals and memory. One
of the main tasks that an operating system has to do is to make sure that all
these allocations make the best possible use of the available resources.

Usually the most heavily used resource in a computer is the processor. The
process of allocating access to the processor and other resources is called
scheduling. The simplest way that an operating system can schedule access to
the processor is to allocate each task a time slice. This means that each task is
given an equal amount of processor time. This process of passing access to the
processor from one task to the next is also known as ‘round-robin’ scheduling.

Time slicing is a crude system because a particular task might not need all
or even any of its allotted time slice with the processor. For example, a word
processor might be waiting for the slowest part of any computer system, the
user, to press a key. Waiting for this to happen is a waste of processor time
and so a more sophisticated scheduler might pass the time slice on to the
next task before the word processor’s time slice has expired.

Managing input/output devices
The operating system also controls the way in which the various input and
output devices are allocated, controlled and used by the programs that are
using them. Common examples would include:
● allocating print jobs to printers
● rendering the windows, frames and dialog boxes to the screen
● controlling the read/write access to the hard disk.

KEYWORDS
Resource management: how
an operating system manages
hardware and software to optimise
the performance of the computer.
Processor: a device that carries
out computation on data by
following instructions, in order
to produce an output.
Scheduling: a technique to
ensure that different users or
different programs are able to
work on the same computer
system at the same time.

R
ESO

U
R

CE M
AN

AG
EM

EN
T

235

Accessing some devices is a relatively slow process compared to the speed at
which the processor can handle requests. At the same time there are likely
to be competing requests where several processes are waiting for the same
device. For example, reading and writing to a standard hard disk is relatively
slow. Rather than wait for each process to end before it can continue, the OS
can effectively create a queue of commands that are waiting for the device
and then handle each request in sequence or based on priority.

Every input/output device has a device driver, which is a piece of software that
enables the device to communicate with the OS. Device drivers are often built
in to the OS or installed when new devices are attached. When the OS starts
up it loads the various drivers for all of the input/output devices it detects.

There is more on how input/output devices connect to the computer in
Chapter 32.

Memory management
In the same way that the operating system of a computer controls the way
files are stored on a secondary storage system, such as a hard disk, the
operating system also controls how the primary memory or RAM is used.

The operating system stores details of all the unallocated locations in a
section of memory known as the heap. When an application needs some
memory, this is allocated from the heap, and once an application has
finished with a memory location or perhaps an application is closed, the
now unneeded memory locations are returned to the heap.

When a user asks for a file to be loaded, it is the job of the memory
management routines to check to see if enough memory is available and
then allocate the appropriate memory and load the file in to those locations.

The operating system controls the use of main memory by creating a
memory map, which shows which blocks of memory have been allocated
to each task. This way an operating system can control more than one task
in the RAM at any one time. The amount of memory needed by each task
is dependent on the size of the program itself, the variables that will be
needed and any files that might be generated by the task, but it is up to the
operating system to decide how much space can be allocated.

When the operating system processes a request to load an application or
file from the hard disk it is the job of the memory management system to
decide whereabouts in the RAM the file will be stored.

As you add to a file it is highly likely that the work will need more than one
block of RAM. In this case, a type of linked list is used to show where each
subsequent block is stored.

App1 File1 unused

In this stylised example of a memory map, the application, App1 was
loaded first and work started on File1.

App1 File1 App2 File1 unused

After a while the application App2 is loaded, then work carried on with
File1. Because App2 is now in the memory, File1 is now spread across
two sections of RAM.

App1 File1 App2 File1 File2 File1 unused

KEYWORD
Memory management: how the
operating system uses RAM to
optimise the performance of the
computer.

236

 2
8

H
ar

dw
ar

e
an

d
so

ft
w

ar
e

A little work is done using App2 which generates File2, and then work
recommences on File1 which is now spread across three sections of RAM
and so on.

App1 unused App2 unused File2 unused

File1 is now saved and then deleted from RAM, the memory map now
looks something like this.

App1 App2 File2 unused

The operating system might now decide to rationalise this and move the
applications and existing files so that all the unused space is put together.
Even with this simple example you can see that managing the memory can
be a complex task for the operating system to control.

Virtual memory and paging
In some cases, the application or file you are trying to work with will be too big
to fit in the available RAM. In this case a process called virtual memory can be
used. This involves using secondary storage such as a hard disk to store code or
files that would normally be held in RAM. The operating system then treats that
part of the hard disk as if it is part of the RAM, hence the name virtual memory.

An alternative method is to hold a kernel or central block of the code
in RAM. Other sections of code known as ‘pages’ are loaded from the
secondary storage as and when they are needed. Using this method allows
very large applications to run in a small section of RAM. This in turn frees
up memory for other applications to use.

A word processor will hold instructions about how to cope with the text
itself in the kernel but if the user selects a less commonly used task, such
as spell checking or mail merging, the appropriate page of the program will
be loaded into RAM from the hard disk. This downloading often causes a
noticeable delay in the operation of the application.

File management
One of the many tasks the operating system has to deal with is managing
files – this includes controlling the structures that are used to store the files.

The hard disk on a home computer is likely to contain many thousands of
files and without some sort of logical storage structure it would be impossible
to find a specific file amongst so many. The operating system on a home
computer uses folders or directories. These allow the user to group similar
files together so that, for example, all the files for your Computing course
might be kept in one folder whilst all the photos from your digital camera
would be kept in another. In the case of the photos, it is highly likely that
there will be folders within folders. The way folders like these are arranged
is known as a hierarchical structure – it looks rather like an inverted tree and
indeed the start or base folder is normally referred to as the root folder.

Each file has a filename but because of the folder structure it is possible to
use the same filename for different files. In the coursework/photo example
there might be a folder called miscellaneous and a file called latest
in each area. Obviously this is not particularly good practice, especially if
you want to move files between folders and you lose track of which folders
you are working with. It is a good practice to use folder and file names that
indicate what they are being used for.

KEYWORD
File management: how an
operating system stores and
retrieves files.

R
ESO

U
R

CE M
AN

AG
EM

EN
T

237

As hard disks get larger and larger, it is becoming increasingly common to
split up or partition a hard disk. This means that although you actually only
have one hard disk in your computer, the operating system splits it up into
a number of partitions or logical drives. This means your computer seems
to be fitted with more than one hard drive. You might use this system to
store your applications on one logical drive and your data on another.

Module
2

Module
1

Mock
AS

Module
2

Module
1

Mock
A

Exam
papers

Work
sheets

Mark
book

School

Figure 28.3 Hierarchical file structure

Practice questions can be found at the end of the section on page 264.

TASKS
1 Explain the terms hardware and software, differentiating between

different types of hardware and software.
2 Identify two utility programs that are not normally part of an

operating system.
3 Explain the term virtual machine in the context of an operating system.

This should include details of the main tasks performed by the OS.
4 Explain how it is possible for two programs to apparently be running

at the same time.
5 Explain how it is possible for two files with the same name to be

stored in a file structure.
6 Explain the difference between resource and file management.

STUDY / RESEARCH TASKS
1 What type of software is a DLL and what is its purpose?
2 What are the most common operating systems in use for mobile

devices?
3 Compare two commonly used operating systems. Why would you

choose to use one over the other?
4 Open source operating systems such as Linux are not as widely used

as Windows or Mac OS. Why not?
5 In a computer system with multiple processors, what implications

does this have for how the OS handles resources?

KEY POINTS
• A computer system is made

up of hardware and software.
• Hardware is usually classified

in terms of internal and
external components.

• System software includes the
operating system, library and
utility programs.

• Compilers, interpreters and
assemblers are programs
that convert high-level
programming language into
executable instructions.

• The operating system plays
a critical role in managing
resources.

238

 29 Classification of
programming
languages and
translation

INTRODUCTION
Most programming is now done using high-level programming
languages. In this chapter we will look at how programming languages
have developed over time, in particular looking at the main types of
programming languages and the different methods (or paradigms) of
programming. Linked with this is the way in which the code that you
write as a programmer is converted into 0s and 1s so that it can be
understood and processed by the processor.

SPECIFICATION COVERAGE
3.6.2 Classifi cation of programming languages

3.6.3 Types of translator

LEARNING OBJECTIVES
In this chapter you will learn:
• how programming can be performed in machine code, assembly

language and high-level languages
• that there are different methods of programming known as

paradigms
• how interpreters and compilers are used to turn programming code

into machine code (0s and 1s)
• what bytecode is.

● Types of programming languages
Although computers as we know them have only been around since the
mid-1940s they have changed beyond all recognition in that short time
span. Programming the early computers was a very tedious business as
programs were entered as a sequence of switch settings. Each switch was
either on or off so by combining enough switches the programmer could
represent different things.

TYPES O
F PR

O
G

R
AM

M
IN

G
 LAN

G
U

AG
ES

239

Thankfully, programming computers has become a much simpler process,
though the ever-increasing complexity of the computers themselves brings
its own problems.

As computers have developed then so have the programming languages
that can be used on them. There are three main types of languages:
● Machine code
● Assembly language
● High-level language

Machine code
The processor of a computer can only work with binary digits (bits). This
means that all the instructions given to a computer must, ultimately, be a
pattern of 0s and 1s. Programs written in this format are said to be written in
machine code. Having to write everything down as a sequence of 0s and 1s
means that the programs are going to be very long-winded, and because
everything is entered as bits there is a high risk of making a mistake. One
way to make these bits easier to understand is to show a sequence of bits as
either a decimal or hexadecimal number.

To compound the problem further, it is also going to be very difficult to
track down any errors or bugs that exist in the code. One final problem is
that because machine code is written for a specific processor, it is unlikely to
be very portable. This means that it will only work on a computer with the
same type of processor as it was written for.

Nevertheless because you are writing instructions that can be used directly
by the processor, they will be executed very quickly and the processor will
do exactly what you tell it to do.

Assembly language
The need to make programs more programmer-friendly led to the
development of assembly languages. Rather than using sequences of
0s and 1s, an assembly language allows programmers to write code using
words. There is a very strong connection between machine code and
assembly language. This is because assembly language is basically machine
code with words. The number of words that can be used in an assembly
language is generally small. Each of these commands translates directly into
one command in machine code. This is called a one-to-one relationship.

Most, but not all, assembly codes use a system of abbreviated words called
mnemonics. In the small section of assembly code below, the mnemonic
LDR stands for Load Register and STR means Store Register.
ADD and SUB should be rather more obvious. In this simplified example
all the numbers following each mnemonic refer to memory addresses – the
place in memory where numbers are written to or read from.

LDR 20

ADD 43

STR 20

SUB 41

STR 45

These two are known as low-level languages

KEYWORD
Machine code: the lowest level
of code made up of 0s and 1s.

KEYWORDS
Assembly language: a way
of programming that involves
writing mnemonics.
Mnemonics: short codes that
are used as instructions when
programming, e.g. LDR, ADD.

29
 C

la
ss

if
ic

at
io

n
of

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s a

nd
 tr

an
sl

at
io

n

240

This code does the following:
● loads the accumulator with the contents of address 20
● adds the value held in memory location 43 to the value held in the

accumulator
● stores the contents of the accumulator to address 20
● subtracts the value held in memory location 41 from the value held in the

accumulator
● stores the contents of the accumulator to address 45.

Although assembly language uses words, some of which you might
recognise, the code is not particularly easy to understand.

Before any code written in assembly language can be executed it has to
be converted into machine code. This is because the processor can only
understand binary digits (0s and 1s) – the words are meaningless to the
computer, so the words must be converted into these binary digits. This
conversion process is carried out by an assembler. The assembler will be
able to identify some, but not all, of the errors that are likely to be hidden
somewhere in the code. The code that the programmer creates is known as
the source code. The assembler takes this source code and translates
it into a machine code version that is known as the object code. As with
machine code, assembly languages are based on one processor so they are
generally not very portable.

Assembly language is still used in certain situations today as it has a
number of advantages over high-level languages:
● Programs are executed quickly as a compiler does not optimise the

machine code that it produces as effectively as a programmer who codes
in an assembly language that maps directly to machine code.

● Program code is relatively compact for the same reason.
● Assembly language allows direct manipulation of the registers on the

processor, giving high levels of control.

Its main uses are where direct manipulation of hardware is required, for
example in embedded systems where a low level of interaction is required
with hardware. The processors in these systems may be relatively slow and
have limited memory in which case the efficiency of an assembly language
is needed. This may mean that very few commands are needed to operate
the device. Therefore, these instructions can be programmed directly to the
processor using an assembly language.

Real-time applications may also use assembly language as they need to
respond very quickly to inputs. This is particularly relevant where it is an
embedded system.

Assembly language does have other uses where only low-level coding
is required. For example, some device drivers are written in assembly
language, particularly for customised hardware and software.

KEYWORDS
Source code: programming code
that has not yet been compiled
into an executable file.
Assembler: a program that
translates a program written in
assembly language into machine
code.
Object code: compiled code that
can be run as an executable on
any computer.

TYPES O
F PR

O
G

R
AM

M
IN

G
 LAN

G
U

AG
ES

241

High-level languages
Machine code and assembly languages are known collectively as low-level
languages. The increasingly complex demands made on computers meant
that writing programs in assembly code was too slow and cumbersome.
High-level languages were developed to overcome this problem.

Whereas low-level languages are machine-oriented, high-level languages are
problem-oriented. This means that the commands and the way the program
is structured are based on what the program will have to do rather than
the components of the computer it will be used with. This means that a
program written in a high-level language will be portable. It can be written
on one type of computer and then executed on other types of computer.

There are many different high-level languages available, each being written
to cope with the demands of a specific type of problem. For example, some
high-level languages are specifically designed for scientific applications,
others for manipulating databases, whilst others are used to create web
pages. The language the programmer chooses will depend to a large extent
on the nature of the problem they are trying to solve.

High-level languages are often classified into three groups based on the
programming paradigm we saw in Chapter 5. A paradigm is a concept for
the way something works:
● Imperative languages: Also known as procedural languages, these work

by typing in lists of instructions (known as subroutines or procedures)
that the computer has to follow. Every time the program is run, it follows
the same set of instructions.

● Object-oriented languages: These work by creating objects where the
instructions and data required to run the program are contained within
a single object. Objects can be further grouped into classes.

● Declarative languages: These work by describing what the program
should accomplish rather than how it should accomplish it. One type
of declarative language is logic programming, which is used widely in
the fields of artificial intelligence and works by programming in facts
and rules, rather than instructions. The program then uses these facts
and rules to interrogate the data and provide results. Another type of
declarative language is a functional language, which works by treating
procedures more like mathematical functions. The building blocks of the
program therefore are functions rather than lists of instructions.

The main characteristics of a high-level language are:
● It is easier for a programmer to identify what a command does as the

keywords are more like natural language.
● Like assembly languages, high-level languages need to be translated.
● Unlike assembly code, one command in a high-level language might be

represented by a whole sequence of machine code instructions. This is
called a one-to-many relationship.

● They are portable.
● They make use of a wide variety of program structures to make the

process of program writing more straightforward. As a result they are
also easier to maintain.

KEYWORDS
Imperative language:
a language based on giving
the computer commands or
procedures to follow.
Object-oriented language:
a programming paradigm that
encapsulates instructions and
data together into objects.
Declarative languages:
languages that declare of specify
what properties a result should
have, e.g. results will be based on
functions.
Functional language: a
programming paradigm that
uses mathematical functions.

KEYWORDS
Low-level language: machine
code and assembly language.
High-level language: a
programming language that
allows programs to be written
using English keywords and that
is platform independent.

29
 C

la
ss

if
ic

at
io

n
of

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s a

nd
 tr

an
sl

at
io

n

242

● Translating high-level languages
One of the main features of high-level languages is that they are programmer-
friendly. Unfortunately this means the computer will not understand any of
the high-level language source code, so it will have to be translated in some
way. This process is called translation and in order to carry it out a special
piece of systems software called a translator is needed.

The assembler is the translator used for low-level languages and there
are two types of translator for high-level languages: an interpreter and a
compiler.

Interpreter
An interpreter works by reading a statement of the source code and
immediately performing the required action. It may do this by interpreting
the syntax of each statement, or by calling predefined routines. In some
cases, the source code is translated into an intermediate format before it
is executed. Interpreters may examine every statement, which can reduce
efficiency. For example, in an iterative statement, the interpreter will read
the same statement once for each iteration.

Typically an interpreter only converts what needs to be translated.
For example when the line of code:

If Age<17 Then Output = "Cannot drive a car"

needs to be translated, only the first section of the code If Age<17 Then
is translated and executed. The second part of the code is only translated
if the condition is true. This saves time as only the code that is needed is
converted. Some interpreters translate an entire line of code before they
execute it. These are known as line interpreters.

Benefits of using an interpreter:
● You do not need to compile the whole program in order to run sections

of code. You can execute the code one statement at a time.
● As the code is translated each time it is executed, program code can be

run on processors with different instruction sets.
● Because of this, an interpreter is most likely to be used whilst a program

is being developed.

Drawbacks of using an interpreter:
● No matter how many times a section of code is revisited in a program it

will need translating every time. This means that the overall time needed
to execute a program can be very long.

● The source code can only be translated and therefore executed on a
computer that has the same interpreter installed.

● The source code must be distributed to users, whereas with a compiled
program, only the executable code is needed.

Compiler
A compiler converts the whole source code into object code before the
program can be executed. The good thing about this is that once you have
carried out this process you will have some object code that can be executed
immediately every time, so the execution time will be quick. This is ideal once
you have sorted out all the bugs in your program.

KEYWORD
Compiler: a program that
translates a high-level language
into machine code by translating
all of the code.

KEYWORDS
Translator: the general name
for any program that translates
code from one language to
another, for example translating
source code into machine code.
Interpreter: a program for
translating a high-level language
by reading each statement in the
source code and immediately
performing the action.

B
YTECO

D
E

243

Benefits of using a compiler:
● Once the source code has been compiled you no longer need the

compiler or the source code.
● If you want to pass your object code on to someone else to use they will

find it difficult to work out what the original source code was. This
process of working out what the source code was is known as reverse
engineering.

Drawbacks of using a compiler:
● Because the whole program has to be converted from source code to

object code every time you make even the slightest alteration to your
code, it can take a long time to debug.

● The object code will only run on a computer that has the same
platform.

● Bytecode
Some programming languages use bytecode, which is an instruction set
that can be executed using a virtual machine. The virtual machine can
emulate the architecture of a computer, meaning that the source code
written using bytecode can be translated into a format that can be executed
on any platform.

For example, Java bytecode is compiled using either one or two bytes to
define the instruction and then any number of bytes to pass the parameters.
This code can then be executed on any computer that is running the Java
Virtual Machine regardless of what type of processor or operating system is
being used.

Microsoft Common Intermediate Language (CIL) works on a similar basis
where, as the name suggests, rather than translating source code into
machine code that is specific to a platform, the source code is translated
into an intermediate code. This intermediate code can then be executed by
the virtual machine.

Practice questions can be found at the end of the section on page 264.

KEYWORD
Bytecode: an instruction set
used for programming that can
be executed on any computer
using a virtual machine.

29
 C

la
ss

if
ic

at
io

n
of

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s a

nd
 tr

an
sl

at
io

n

244

TASKS
1 Under what circumstances would you compile a high-level computer

program?
2 Explain the benefits of using a high-level language compared to an

assembly language.
3 Explain the differences between a compiler and an interpreter.
4 Why are machine code and assembly languages said to be

machine-oriented?
5 Explain why there are so many different high-level languages.
6 Explain why some programmers still write programs in an assembly

language.
7 Explain why assembly language and machine code are said to have a

‘one-to-one’ relationship.
8 Why must assembly language programs be assembled before they

can be executed?

 STUDY / RESEARCH TASKS
1 What is meant by the term artificial intelligence and what type of

programming language might you use if working in this area?
2 What features would you expect to find in a programming language

that was designed to work in a control environment?
3 There are dozens of programming languages available. Select one

particular language, e.g. Java, C#, Python or Visual Basic, and explain
why the language was originally developed.

KEY POINTS
• There are three main types

of programming languages:
machine code, assembly
language and high-level
languages.

• Machine code and assembly
language are known as low-
level languages.

• Machine code uses 0s and 1s.
• Assembly languages use

mnemonics.
• High-level languages use

natural language keywords.
• Assembly language needs to

be converted to machine code
using an assembler.

• High-level languages need
to be converted to machine
code using an interpreter or a
compiler.

• There are three main
programming paradigms:
imperative (procedural),
declarative and object-
oriented.

• Bytecode is an instruction
set that can be implemented
using a virtual machine
and is therefore platform-
independent.

245

 30 Boolean algebra

INTRODUCTION
Boolean algebra is a form of algebra named after George Boole who
originally developed it in the mid-1800s. The study of Boolean algebra
is closely linked to logic gates, so this chapter should be read in
conjunction with Chapter 31.

The basic principle is that logical expressions can be evaluated that will
result in one of two results/outcomes – either TRUE or FALSE.
For example, the following are examples of Boolean expressions:

The button has been pressed

5 < 10

Age > 17 and hold a driving licence

SPECIFICATION COVERAGE
3.6.4 Logic gates

3.6.5 Boolean algebra

 LEARNING OBJECTIVES
In this chapter you will learn:
• that Boolean algebra produces a result that either equals TRUE or FALSE
• how truth tables are used to represent Boolean expressions
• how to use the AND, OR and NOT operators on their own or grouped

together
• how to use NAND, NOR and XOR operators
• how to simplify Boolean expressions
• how De Morgan’s Law allows Boolean expressions to be created using

only NAND or NOR operators.

Although Boolean logic predates computers, it has become an important
aspect of computing, as the result is one of two states, which equates to
binary and the way the electronic circuitry of the processor works. For
example, for the first expression: The button has been pressed,
we could represent the input as A as follows:
● A = 1 where 1 means that the statement is TRUE
● A = 0 where 0 means the statement is FALSE.

KEYWORD
Boolean expression: an
equation made up of Boolean
operations.

246

 3
0

Bo
ol

ea
n

al
ge

br
a

As there is one input there are two possible results, 0 and 1. Boolean logic
can be used to evaluate statements with any number of inputs to return a
TRUE or FALSE value. The statement about the driving licence above has
two inputs. To evaluate it:

At least 17 = 1

Under 17 = 0

and

Hold a licence = 1

No licence = 0

In this case there are four possible inputs: 00, 01, 10, 11.

● Truth tables
We can use a truth table to combine the permutations of 0s and 1s and
work out which shows whether the answer is TRUE or FALSE. Table 30.1
shows all the possible inputs and the output of each combination as follows.
In this example: A = at least 17 and B = Holds a licence.
Q shows the possible results.

Inputs Output

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

Table 30.1 A truth table

This particular truth table is an example of an AND gate as both inputs
need to be 1 in order to generate an output of 1. In our example above you
have to be at least 17 and hold a driving licence to legally drive a car. The
two inputs need to be ANDed together to generate the final result.

In this case there is only one combination of A and B that will lead to a
TRUE statement being returned, which is where A and B are both 1.

When creating Boolean statements it is possible to use the relational
operators in Table 30.2.

Operator Name of operator

‹ less than

‹= less than or equal to

== equal to

!= not equal to

›= greater than or equal to

› greater than

Table 30.2 Relational operators

KEYWORDS
Truth table: a method of
representing/calculating
the result of every possible
combination of inputs in a
Boolean expression.
AND gate: result is true if both
inputs are true.

KEYWORD
Boolean operation: a single
Boolean function.

Statements can be combined to form more complex expressions and this is
done using six main Boolean operations: AND, OR, NOT, NAND, NOR
and XOR. We will look at each of these in turn.

O
R

 O
PER

ATIO
N

● AND operation
As we saw in the first example, in an AND statement, all conditions (inputs)
must be TRUE to generate a TRUE output. For example in an embedded
system to control a lift, you might evaluate this statement:

Button has been pressed AND Door is closed

where:

A = Button pressed

B = Doors closed.

A = 1 means the button has been pressed, A = 0 means the button has not
been pressed.

B = 1 means the door is closed, B = 0 means the door is not closed.

Q is whether or not the lift should move.

A AND B = Q, which can also be notated as A.B = Q

KEYWORD
OR: Boolean operation that
outputs true if either of its inputs
are true.

Inputs Output

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

Table 30.3 Truth table for AND

The expression therefore is only TRUE when A and B are both 1. You could
also say that the expression is TRUE when Q = 1.

● OR operation
An OR expression can return a TRUE result when any of the inputs are
true. Consider the following expression that could be used to validate an
employee’s ID:

Proof of ID is Passport OR Driving Licence

where:

A = Passport

B = Driving Licence.

A = 1 means the employee has a passport, A = 0 means the employee does
not have a passport.

B = 1 means the employee has a driving licence, B = 0 means the employee
does not have a driving licence.

Q means that the employee has either a passport or a driving licence and
therefore has at least one valid form of ID.

This is written as A+B = Q with the + representing the OR expression.

247

248

 3
0

Bo
ol

ea
n

al
ge

br
a

Inputs Output

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Table 30.4 Truth table for OR

A Q

0 1

1 0

Table 30.5 Truth table for NOT

KEYWORD
NOT: Boolean operation that
inverts the result so true
becomes false and false
becomes true.

Inputs Intermediate step Output (from A AND NOT B)

A B NOT B Q

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

Table 30.6 Extended truth table for A AND NOT B

In this example there are three possible TRUE results. As long as the
employee has one of the types of ID, then this results in a TRUE result.

● NOT operation
The NOT statement inverts the input so that TRUE becomes FALSE and
FALSE becomes TRUE.

This is written as Q = NOT A or Q = A. Notice the overbar above the A,
which is standard notation for NOT.

Notice that the results are inverted so FALSE becomes TRUE and TRUE
becomes FALSE.

The NOT statement can be used in combination with other Boolean
expressions to create more complex selections. For example, when searching
the web, it is possible to use the minus key (–) to exclude results that are
nothing to do with your topic. This effectively uses a NOT operation. Consider
the following expression for a web search about Python programming:

Python – snake is the same as Python NOT snake

A = 1 if Python is found; A = 0 if Python is not found.

B = 1 if snake is found; B = 0 if snake is not found.

When we NOT the B input we get a TRUE if snake is not found (as we have
inverted it).

This is then ANDed with the A input to generate the final outcome of TRUE or
FALSE. This is because in a search engine there is an assumed AND between
the Python and the NOT which would make the full statement read as Python
and NOT snake. As you can see this is the logic we require for the search.

The overall search result can be represented as in Table 30.6.

N
O

R
 O

PER
ATIO

N

249

● Combining AND and OR expressions
AND expressions can be combined with OR expressions to create more
complex statements. For example, to input data from a barcode:

Barcode scanner on and barcode scanned

or

Barcode number input manually

A = Barcode scanner on: A = 1 means yes, A = 0 means no.

B = Barcode scanned: B = 1 means yes, B = 0 means no.

C = Barcode number input manually: C = 1 means yes, C = 0 means no.

Q indicates whether the data from the barcode has been read or not, either
automatically or manually.

For data to be input from the barcode, the scanner must be on and barcode
scanned, or the barcode must be input manually.

In this case,

Q = A AND B OR C

which can also be written as:

Q = A.B+C

In Boolean notation, + means OR and . means AND.

● NAND operation
NAND is a combination of NOT and AND and produces a TRUE result
if any of the inputs are false. It is commonly used to create NAND gates
on integrated circuits, which can be used for example, to create solid state
drives (see Chapter 35).

The truth table would be as shown in Table 30.7.

KEYWORDS
NOR: Boolean operation that
outputs true if all of its inputs
are false.
NOR gate: result is true if both
inputs are false.

Inputs Output

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

Table 30.7 Truth table for NAND

KEYWORDS
NAND: Boolean operation that
outputs true if any of the inputs
are false.
NAND gate: result is true if any
of the inputs are false.

This is written as A.B, which means NOT A.B. This could be described as
the inverted form of A.B.

● NOR operation
The NOR or NOT OR expression results in a TRUE value only if all inputs
are FALSE. It means that the answer is TRUE if it is neither A nor B. It is
used to create NOR gates on integrated circuits, which can be used for
example to make CMOS devices (see Chapter 35).

250

 3
0

Bo
ol

ea
n

al
ge

br
a

Inputs Output

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

Table 30.8 Truth table for NOR

KEYWORD
XOR: Boolean operation that is
true if either input is true but not
if both inputs are true.

The truth table would be as shown in Table 30.8.

This is written as A+B, which means it is NOT A+B. This could be
described as the inverted form of A+B.

● XOR operation
The exclusive OR expression produces a TRUE result only when one of the
inputs is TRUE and the other is FALSE. If they are both TRUE it returns a
FALSE result. It can be used to carry out bitwise operations and to create
an adder in logic circuits. There is an example of this in the next chapter.

The truth table would be as shown in Table 30.9.

Inputs Output

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Table 30.9 Truth table for XOR

This is written as Q = A⊕B, which means Q is true when either A or B are
true, but not when both are true.

● Simplifying Boolean expressions
When using Boolean expressions it is good practice to reduce the
expression into its simplest form. As Boolean algebra is used to create logic
gates, simplifying the expressions also simplifies the actual circuit that will
be built, reducing the number of components needed, which in turn will
make the circuit cheaper to make, more efficient in operation and more
reliable as fewer gates are being used.

To help visualise the process for ensuring that Boolean expressions are in
their simplest form you can run it through a truth table. For example, take
the expression A.B+A. The values of A can be 0 or 1 and the values of B
can be 0 or 1 leading to four possible inputs: 00, 01, 10, 11.

The first part of the statement is A.B so the result is true when A and B = 1.
The truth table would look like Table 30.10.

SIM
PLIFYIN

G
 B

O
O

LEAN
 EXPR

ESSIO
N

S

251

Next we look at the +A part of the expression, which means OR A in
Boolean expressions. This means that (A.B)+A will be true when A and B is
1 or A is 1.

A B A.B

0 0 0

0 1 0

1 0 0

1 1 1

Table 30.10 Truth table for A AND B

A B A.B (A.B)+A

0 0 0 0

1 0 0 1

0 1 0 0

1 1 1 1

Table 30.11 Truth table for (A.B)+A

Looking at the final column of Table 3.11 you can see that (A.B)+A is only
true when A is true. Therefore the expression can be reduced to A:

(A.B)+A = A

An expression may be made up of many variables, usually referenced as
letters (A, B, C etc) each of which can produce a result of 0 or 1. This can
lead to the creation of complex Boolean expressions. Therefore rules have
been developed as a method of simplifying expressions. Table 30.12 shows
the common rules associated with what are known as Boolean identities.

In this section we will look at how the rules can be used to simplify an
expression. Note that De Morgan’s Law is covered separately in the next
section.

Table 30.12 Common rules associated with Boolean identities

Identity name AND form OR form

Identity A.1 = A A+0 = A

Null (or Dominance) Law A.0 = 0 A+1 = 1

Idempotence Law A.A = A A+A = A

Inverse Law A.A = 0 A+A = 1

Commutative Law A.B = B.A A+B = B+A

Associative Law (A.B).C = A.(B.C) (A+B)+C = A+(B+C)

Distributive Law A+B.C = (A+B).(A+C) A.(B+C) = A.B+A.C

Absorption Law A.(A+B) = A A+A.B = A

De Morgan’s Law (A.B) = A+B (A+B) = A.B

Double Complement Law A = A

252

 3
0

Bo
ol

ea
n

al
ge

br
a

Table 30.13 Explanations of the main identities and rules

A.B = B.A The order in which two variables are ANDed makes
no difference

A+B = B+A The order in which two variables are ORed makes
no difference

A.0 = 0 A variable ANDed with 0 equals 0

A+1 = 1 A variable ORed with 1 equals 1

A+0 = A A variable ORed with 0 equals the variable

A.1 = A A variable ANDed with 1 equals the variable

A.A = A A variable ANDed with itself equals the variable

A+A = A A variable ORed with itself equals the variable

A.A = 0 A variable ANDed with its inverse equals 0

A+A = 1 A variable ORed with its inverse equals 1

 A = A A variable that is double inversed equals the variable

(A.B).C = A.(B.C) It makes no difference how the variables are
grouped together when ANDed

(A+B)+C = A+(B+C) It makes no difference how the variables are
grouped together when ORed

A.(B+C) = A.B+A.C The expression can be distributed or factored out,
meaning that variables can be moved in and out of
brackets either side of the expression. In English
this expression would be A AND (B OR C) = (A AND B)
OR (A AND C).

The rules can be used to simplify expressions.

A+A.B = A

This means A OR (A AND B) = A and can be proved by looking at the truth
table (Table 30.11) above.

To use an example with an inverse:

A+A.B = A+B

This means that A OR (NOT A AND B) = A OR B. It could be proved
that this is true by drawing out a truth table for the two expressions.
Alternatively this can be deduced by logical reasoning:
● Suppose that A is 1, then A+A.B will be 1.
● On the other hand, suppose that A is 0. Then A+A.B will only evaluate to

1 if A.B is 1, which will only be true if B is 1.
● So, A+A.B = 1 when A = 1 or when B = 1, hence it is equivalent to A+B.

To use an example that uses distribution: (A+B).(A+C) = A+B.C

This means (A OR B) AND (A OR C) is the same as A OR (B AND C). This
can be achieved by factoring out the A.

The more complex example below shows the stages that you might go
through to simplify an expression:

(A+B).C.C+(A+A).B

Starting with the first part of the expression (A+B).C.C:

(A+B).0 Any value ANDed with its inverse = 0

0 Any value ANDed with 0 = 0

D
E M

O
R

GAN
’S LAW

253

Now taking the second part of the expression (A+A).B:

(A+A) Any value ORed with its inverse = 1

1.B Any value ANDed with 1 is the variable = B

So putting both parts of the expression together we get 0+B. When you OR
a variable with 0 you get the variable so the answer is B. Therefore we can
say that the simplified expression of (A+B).C.C+(A+A).B is B.

● De Morgan’s Law
De Morgan’s Law is another way of simplifying Boolean statements
by inverting all the variables, changing ANDs to OR and ORs to ANDs
and then inverting the whole expression. One application is to simplify
statements so that only NAND or NOR gates are used. This makes it much
simpler to create logic gates and circuits, which in turn makes it easier
to design and build microprocessors. For example, solid state drives are
made up of NAND gates.

In simple terms this means that ANDs can replace ORs and ORs can
replace ANDs. This works as long as the rest of the expression is changed,
or negated to take account of this.

The basic principles are:
● Rule 1: NOT (A AND B) is the same as (NOT A) OR (NOT B)
● Rule 2: NOT (A OR B) is the same as (NOT A) AND (NOT B)

In algebraic notation:
● Rule 1: A.B is the same as A+B
● Rule 2: A+B is the same as A.B

The Venn diagram in Figure 30.1 shows the concept. The area outside the
Venn diagram is X. We can define X as being:
● NOT in A+B and
● NOT in A and also NOT in B.

A

A B

B+

Figure 30.1 Venn diagram representing NOT (A and B)

KEYWORD
De Morgan’s Law: a process for
simplifying Boolean expressions

This could be written as follows:

X = A+B

X = A .B

A.B = A +B

254

 3
0

Bo
ol

ea
n

al
ge

br
a

When using De Morgan’s Law to write Boolean expressions, the following
steps must be taken:
● You can only apply De Morgan’s Law to one operator at a time.
● If the operator is an OR change it to an AND, and vice versa.
● Invert the terms on either side of the operator.
● Invert the entire expression.

For example, Figure 30.2 shows how to simplify the expression: A+A .B.

A + A � B

Apply
De Morgan's Law
to this operator

Apply
De Morgan's Law
to this operator

=

=

=

=

=

=

=

A + A + B

A + A + B

A � A + B

A � (A + B)

A � A + A ���B

O + A ���B

A ���B

Figure 30.2 Applying De Morgan’s Law

This can also be shown by a truth table:

A B A B A.B A+A.B A+A.B

0 0 1 1 1 1 0

0 1 1 0 0 0 1

1 0 0 1 0 1 0

1 1 0 0 0 1 0

The final column of the truth table only has a 1 in the row where A = 0 and
B = 1, therefore the result obtained using De Morgan’s Law is confirmed
by the truth table, i.e. that the expression is equivalent to A.B.
Practice questions can be found at the end of the section on page 264.

TASKS
1 Write an example of a Boolean expression and draw the

corresponding truth table for each of the following expressions.
a) AND
b) OR
c) NOT
d) NOR
e) NAND
 f) XOR

2 Write an example of a Boolean expression for a real-life situation
where you could use any combination of:
a) AND
b) OR
c) NOT

3 Give an example of where you could use the following Boolean
expressions.
a) NAND
b) NOR
c) XOR

D
E M

O
R

GAN
’S LAW

255

4 Simplify the following expressions.
a) (A+Ā).B

b) (A+B)+B
 c) A.(B+B)
d) B.(A+B)
e) A.B.C+A.B

5 What are the principles of De Morgan’s Law?

STUDY / RESEARCH TASKS
1 Use Venn diagrams to represent each of the six main expressions.
2 Research the relationship between the NAND expression and solid

state drives.
3 Research the relationship between the NOR expression and CMOS.
4 How is Boolean logic applied to web searching?
5 Set yourself some Boolean expressions and then go through

the process of simplifying them, using De Morgan’s Law where
necessary.

KEY POINTS
• Boolean algebra returns a

values that is either TRUE or
FALSE.

• Truth tables are a visual
method of showing the results
of a Boolean expression.

• You need to know how to
construct AND, OR, NOT,
NAND, NOR and XOR
statements and combine
them to create more complex
expressions.

• You should always try to
create Boolean expressions in
their simplest form.

• De Morgan’s Law is a method
that can be used to simplify
Boolean algebra expressions.

256

31 Logic gates

INTRODUCTION
Logic gates are electronic components used in registers, memory chips
and processors to evaluate Boolean expressions. Therefore, before you
read this chapter, you must understand the basic Boolean expressions
described in the previous chapter. This is because there is a one-to-one
relationship between Boolean expressions and logic gates.

Logic gates are represented as logic diagrams and also have a
corresponding truth table. Consequently there is a logic diagram for
each of the main Boolean expressions that we have looked at in the
previous chapter.

LEARNING OBJECTIVES
In this chapter you will learn:
• that there is a one-to-one relationship between logic gates and

Boolean expressions
• how logic gates are combined to build circuits within processors
• how logic gates are used to evaluate Boolean expressions to produce

a result
• how logic gates can be combined to create full systems
• what full and half adders are.

A-level students will learn:
• what an edge-triggered D-type fl ip-fl op is.

SPECIFICATION COVERAGE
3.6.4 Logic gates

3.6.5 Boolean algebra

KEYWORDS
Logic gate: an electronic
component used to perform
Boolean algorithms.
Boolean expressions: an
equation made up of Boolean
operations.

257

The logic gates for each of the six basic Boolean expressions are shown in
Figure 31.1.

Gate Symbol Operator

A+B

A

AsB

AsB

A+B

and

or

not

nand

nor

xor A + B

Figure 31.1 Logic gate symbols and corresponding Boolean expressions

Logic gates take inputs and produce a single output. In the electronic
circuit, the inputs are voltages with a high voltage representing a 1 and
a low voltage representing a 0. For example, the logic gate for an AND
expression is shown below:

A

B

2-input AND Gate

Q

Figure 31.2 The AND gate

A and B are the inputs and Q is the output so this diagram is the equivalent
of A.B = Q

The standard ANSI/IEEE standard 91-1984 diagram for each logic gate is
shown below along with its truth table and Boolean notation for ease of
reference.

Symbol

Boolean expression Q = A.B A AND B = Q

Truth table

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

A

B

2-input AND Gate

Q

Figure 31.3 The AND gate with truth table

KEYWORD
AND gate: result is true if both
inputs are true.

31 LO
G

IC GATES

258

 3
1

Lo
gi

c
ga

te
s

Symbol

Boolean expression Q = A+B A OR B = Q

Truth table

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

A

B

2-input OR Gate

Q

Figure 31.4 The OR gate with truth table

Symbol

Boolean expression Q = NOT A or A The inversion of A = Q

Truth table

A Q

0 1

1 0

A

Inverter or NOT Gate

Q

Figure 31.5 The NOT gate with truth table

Symbol

Boolean expression Q = A.B A AND B = NOT Q

Truth table

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

A

B

2-input NAND Gate

Q

Figure 31.6 The NAND gate with truth table

Symbol

Boolean expression Q = A+B A OR B = NOT Q

Truth table

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

A

B

2-input NOR Gate

Q

Figure 31.7 The NOR gate with truth table

KEYWORD
NAND gate: result is true if any
of the inputs are false.

KEYWORD
OR gate: result is true if either
input is true.

KEYWORD
NOT gate: inverts the result so
true becomes false and false
becomes true.

KEYWORD
NOR gate: result is true if both
inputs are false.

CO
M

B
IN

IN
G

 LO
G

IC GATES

259

Symbol

Boolean expression Q = A + B

Truth table

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

A

B

2-input Ex-OR Gate

Q

Figure 31.8 The XOR gate with truth table

● Combining logic gates
Logic circuits are made up of a series of logic gates to create full systems.
These can get very complex as there may be thousands of gates connected
together. The output from the first gate becomes the input for the second
gate and so on. Therefore there will be various values generated until a final
value of Q is arrived at.

For example, Figure 31.9 shows a simple alarm system where A and B are
inputs from sensors and C is the manual override to turn the alarm off.
O A or B = 1 means that the sensors have picked up an intruder.
O A or B = 0 means that the sensors have not picked up an intruder.
O C = 1 means that the override button has been pressed to turn the alarm

off.
O C = 0 means that the alarm will continue to sound.

Therefore the only scenario where the alarm would sound is if either A OR
B = 1 AND C = 0, which could be written as (A+B).C

This could be shown as Q = (A+B).C and represented in the logic diagram
in Figure 31.9 with the corresponding truth table.

A+BA

B

C

(A+B)sC

C

Inputs

A B C Q
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Outputs

Figure 31.9 A logic circuit with truth table

KEYWORD
Logic circuit: a combination of
logic gates.

KEYWORD
XOR gate: result is true if either
input is true but not if both
inputs are true.

260

 3
1

Lo
gi

c
ga

te
s

To follow this through:
O Inputs from A and B pass through an OR gate.
O Input C passes through a NOT gate.
O These two results are passed through an AND gate to create the final

result.

In the example above a logic circuit has been constructed from the Boolean
expression. It is also possible to construct a Boolean expression from a logic
circuit. For example:

C+D

A

B

C

D

(AsB)s(C+D)

AsB

As the logic circuits get more complex, so the corresponding Boolean
expression will get more complex:

A

B

C

AsB A+(AsB)+C

A+(AsB)

A

● Full and half adder
To add together binary numbers, electronic circuits called adders are used.
These are formed by combining logic gates together. Adders are commonly
found in the Arithmetic Logic Unit (ALU) in the CPU. There are two
main types, the half adder and the full adder. To understand this
section, you need to make sure you have read Chapter 24 on adding binary
numbers together.

Adders take in two bits A and B and add them to create a sum, S. So A + B = S.
There is a further bit required called a carry bit, for when the result of the sum
requires a further digit. For example, binary addition of 1 + 1 results in 10
(i.e. 0 carry 1), so the carry bit is needed to store this additional bit.

A half adder calculates the sum and stores the value of the carry bit C as well
as the result S. The logic diagram to represent this is shown in Figure 31.10.

A
S

C

B

Figure 31.10 A logic circuit for a half adder

KEYWORDS
Arithmetic Logic Unit (ALU):
part of the processor that
processes and manipulates data.
Half adder: a circuit that
performs addition using inputs
from A and B only.
Full adder: a circuit that
performs addition using inputs
from A and B plus a carry bit.
Carry bit: used to store a 0 or 1
depending on the result of binary
addition.

FU
LL AN

D
 H

ALF AD
D

ER

261

The XOR gate is used to look at inputs A and B:
O If A = 0 and B = 1 or if A = 1 and B = 0 then the value for S will be 1.
O Where A and B are both 0, the sum will be 0.
O Where A and B are both 1, then the answer is 10 in binary, which means

that 0 is the result for S with the 1 put into the carry bit.

The truth table shows the values of C and S for every possible input of A and B.

Inputs Outputs
A B C S
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 0

Half adders can be added/chained together to create a full adder. Full
adders take three inputs, which are the two binary digits to be added, plus
the carry bit from the previous addition. The output is the sum (S) plus the
carry bit. Notice in the logic diagram below that Cin represents the value of
the carry bit at the start of the addition and Cout is the value of the carry bit
at the end. Cout from the first addition becomes Cin on the second addition
and so on.

A

Cin

Cout

B S

Figure 31.11 A logic circuit for a full adder

O The XOR gate works in the same way as a half adder to identify where the
values of A and B are different. Where they are different the result is 1;
where they are the same the result is 0.

O A second XOR gate is used to perform the same function on the result of
A and B with the value of Cin to generate S.

O A and B are ANDed together.
O Cin is ANDed with the result A XOR B.
O These two are ORed together to calculate Cout.

The truth table shows the values of Cin and Cout and S for every possible
input of A and B.

Inputs Outputs
A B Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

262

 3
1

Lo
gi

c
ga

te
s

● Edge-triggered D-type flip-flop
Logic gates and logic circuits show how 0s and 1s can be manipulated to
evaluate Boolean expressions. Data is passed around these gates and circuits
at very high speed. However, as soon as the next set of inputs are fed in, the
previous inputs are lost. As we have seen, often the next set of inputs come
from the outputs of the previous calculation. Therefore some form of memory is
needed and this is provided by a flip-flop, which is capable of storing one bit.

Logic circuit

Memory unit

Primary
outputs

Secondary
outputs

Primary
inputs

Secondary
inputs

Figure 31.12 An edge-triggered D-type flip-flop

This means that the logic circuit is now receiving two sets of inputs,
primary and secondary. It uses the system clock to synchronise these
requests. Each pulse of the system clock has a rising edge and a falling
edge, which represents each pulse of the clock.

Figure 31.13 How the ‘edge’ triggers a change of state

A level only

KEYWORDS
Flip-flop: a memory unit that
can store one bit.
Edge-triggered D-type flip-
flop: a memory unit that
changes state with each pulse of
the clock.
Clock: a device that generates a
signal used to synchronise the
components of a computer.

Clock period

Clock width Rising edge

Falling edge

In the case of an edge-triggered D-type flip-flop this means that on each pulse
of the clock, the flip-flop will change state. This means that for each pulse
of the clock, data coming from the input will be stored in the flip-flop and
continue to be output until the next trigger pulse is received.

Practice questions can be found at the end of the section on
page 264.

ED
G

E-TR
IG

G
ER

ED
 D

-TYPE FLIP-FLO
P

263

STUDY / RESEARCH TASKS
1 Create a full specification for an embedded system, e.g. operation of a

lift or an alarm system, implemented in the form of logic diagrams.
2 Research SR, T and JK flip-flops. Find out how they work.
3 Explore how NAND gates can be used to create memory chips.

KEY POINTS
• Logic gates are a way of

designing and describing
the way in which electronic
components within registers
and processor are constructed.

• Logic gates evaluate Boolean
expressions.

• There are six main symbols
that relate directly to the six
main Boolean expressions.

• Logic gates can be combined
to represent more complex
systems.

• Logic gates effectively
show how 0s and 1s are
manipulated and binary
addition takes place within
them using either a half or full
adder.

• An edge-triggered D-type
flip-flop is a memory unit that
temporarily stores the result
of an operation.

TASKS
1 What is the relationship between Boolean algebra and logic gates?
2 What is a logic circuit?
3 Draw the logic diagram and truth table for each of the six main logic

gates:
a) AND
b) OR
c) NOT
d) NOR
e) NAND
f) XOR

4 Draw a logic diagram for the following Boolean expressions.
a) (A+B)+(C.D)
b) (A+B).C
c) (A.B).C.D

5 Write the Boolean expression to build this circuit:

A

B

C

Q

D

6 Draw a logic diagram and truth table for a half adder.
7 Draw a logic diagram using only NAND operations for A + B.
8 What is the purpose of a flip-flop and what is the specific purpose of

the edge-triggered D-type flip-flop?

264

Se
ct

io
n

Si
x:

 P
ra

ct
ic

e
Q

ue
st

io
ns

Section Six: Practice questions
1 Three categories of programming languages are machine code, assembly

language and high level language.
a) Describe what is meant by machine code.
b) A programmer writes a program using assembly language. What has to be

done to this program before it can be executed?
c) Some high-level languages are classifi ed as imperative. What is meant by

imperative?
d) Give an example of an imperative high-level language.
e) What is the relationship between an imperative high-level language

statement and its machine code equivalent?
f) Give two disadvantages of programming in machine code or assembly

language, compared with programming in imperative high-level languages.

2 In addition to the procedural paradigm, two other common paradigms are
object-oriented and functional.
a) Describe one of the main features of object-oriented programming and

one situation where it could be used.
b) Describe one of the main features of functional programming and one

situation where it could be used.

3 An operating system creates a virtual machine.
a) What is meant by the term virtual machine?
b) Explain how the operating system is able to have two different

applications running at the same time.
c) Give two examples of utility programs.

4 Complex systems can be represented using logic gates and truth tables.
a) Draw the symbol and truth table for the OR gate.
b) Give an example of how logic gates can be combined to represent a logic

circuit.
c) Logic gates have corresponding Boolean expressions. Write Boolean

expressions to demonstrate:
 i) the NAND gate
ii) the NOR gate.

d) Simplify the following expressions:
 i) A.B.(A+B)
ii) A+−A.B
iii) A+B+A.B

Section Seven:
Fundamentals of
computer
organisation and
architecture

266

SPECIFICATION COVERAGE
3.7.1.1 Internal hardware components of a computer

32 Internal hardware
of a computer

● Processor
The processor is a device that carries out computation on data by following
instructions. It handles all of the instructions that it receives from the user
and from the hardware and software. For example, you may press ‘A’ on the
keyboard in which case an electrical signal is sent either wirelessly or through
the cable into the USB port at the back of the computer. This signal is routed
through the processor which recognises the signal as an ‘A’. It then sends a
signal to the monitor which displays the letter.

LEARNING OBJECTIVES
In this chapter you will learn:
• how the processor works
• about the different types of memory and what memory is used for
• how buses are used to pass data and instructions
• how external devices are handled
• the difference between the von Neumann and Harvard architectures.

INTRODUCTION
A computer is any machine or device that processes data. The word
computer also implies that the machine is electronic or digital. In simple
terms this means that it will contain one or more microprocessors that
can be programmed to control the device. Microprocessors are made
up of microscopic electronic circuits and belong to a group of devices
commonly referred to as chips.

This defi nition is deliberately broad. It is important as A-level students
that you realise that your PC (Personal Computer) is only one type
of computer and that there are other types in common use. For
example, you could look at any number of devices and describe them
as computers – a burglar alarm, a microwave oven and a mobile phone
all fi t this defi nition. Computers used in this context are referred to as
embedded systems as the chip is embedded within another device.

KEYWORD
Processor: a device that carries
out computation on data by
following instructions, in order
to produce an output.

M
AIN

 M
EM

O
R

Y

267

Obviously, it is more complicated than this and the process of displaying
a letter on a monitor requires the processor to carry out a number of
processes which are invisible to the user. The processor will also be
receiving instructions from other programs and other devices at the same
time. A further complexity is added by the fact that many computers now
contain processors with multiple cores and the actions of each will need
coordinating.

Physically, the processor is made up of a thin slice of silicon approximately
2 cm square. Using microscopic manufacturing techniques, the silicon
is implanted with millions of transistors. Microscopic wires called buses
connect groups of transistors together. The transistors are used to control
the flow of electrical pulses that are timed via the computer’s clock. The
pulses of electricity represent different parts of the instruction that the
processor is carrying out. Each of these pulses is routed around the circuitry
of these transistors at very high speeds. In theory a 3 GHz processor could
process 3000 million instructions per second.

Generally speaking, the higher the clock speed of the processor, the faster it
will carry out instructions and the faster your computer will work. There are
other factors that affect performance, which are covered later. Manufacturers
of processors such as Intel and AMD bring out newer, faster chips each year.

● Main memory
Memory is used to store data and instructions. It is connected to the
processor which will fetch the data and instructions it needs from memory,
decode the instructions and then execute them. This is commonly known
as the fetch–execute cycle and is a key principle in modern computing.
There is more on this in the next chapter. Any new data created will be
stored back into memory. Put simply, memory is a medium of storage.
There are two main types: RAM and ROM.

RAM – Random Access Memory
RAM is temporary storage space that can be accessed very quickly. This
means that applications such as word processors and spreadsheets will
run at high speed. Speed of operation becomes more apparent when you
use your computer for games or videos as these require more memory in
order to refresh the graphics. Physically, RAM is a chip or series of chips
on which the data is stored electronically. It is made up of millions of cells,
each of which has its own unique address. Each cell can contain either an
instruction or some data.

The cells can be accessed as they are needed by the processor, by
referencing the address. That is they can be accessed randomly, hence the
name. Because they are electronic they are able to be accessed quickly.
However, RAM is volatile, which means that when you turn your computer
off, all of the contents of RAM are lost.

Whenever a program is run on your computer, the entire program or
parts of it are loaded into RAM. The more memory you have, the more
applications you can have loaded at any one time. For example, if you load
a spreadsheet file, both the file and the spreadsheet application are stored
in RAM. When you are creating formulae, these are stored temporarily in

Figure 32.1 A modern processor

Figure 32.2 RAM chips

KEYWORDS
Main memory: stores data and
instructions that will be used by
the processor.
Fetch–execute cycle: the
continuous process carried out
by the processor when running
programs.
Random Access Memory (RAM):
stores data and can be read to
and written from.
Chip: an electronic component
contained within a thin slice of
silicon.

32
 I

nt
er

na
l h

ar
dw

ar
e

of
 a

 c
om

pu
te

r

268

RAM. If you turn the computer off without saving it will close down the
spreadsheet and your work will be lost.

As for processors, manufacturers are always bringing out more powerful
memory chips and the price of memory has actually fallen over the years.
In 1997, 32 MB was fairly standard. By 2003, 512 MB was standard. By
2014, 4–8 GB became the standard range for laptops and desktops. Software
manufacturers are also bringing out new products all the time that take
advantage of the larger memory available. You may have noticed this
yourself as certain programs will not run on machines that do not have
enough memory.

ROM – Read Only Memory
ROM is also a method of storing data and instructions. However, it is
not volatile which means that the contents of ROM are not lost when you
switch off. Unlike RAM, the user cannot alter the contents of ROM as it is
read-only. It is important to note that it is possible to have programmable
ROM, which is used in memory sticks and other devices. The definition
here is of traditional ROM used within a PC.

In this case, ROM is used to store a limited number of instructions relating
to the set up of the computer. These settings are stored in the BIOS which
stands for Basic Input/Output System.

When you switch on your computer it carries out a number of instructions.
For example, it checks the hardware devices are plugged in and it loads
parts of the operating system. All of these instructions are stored in ROM.
The instructions are programmed into ROM by the manufacturer of the PC.

● Addressable memory
Memory is made up of millions of addressable cells and the various
instructions and data that make up a program will be stored across a
number of these cells. Each address can be uniquely identified. It is the job
of the processor to retrieve each instruction and data item and to carry out
instructions in a sequential manner.

Memory is organised in a systematic way. Using the addresses, different
programs can be stored in different parts of memory. For example, a block
of memory addresses will be allocated for the operating system, another
block for the application software and so on. This way, the processor is able
to find the data and instructions it needs much more quickly than if the
programs were stored completely randomly.

A memory map can be produced which shows which programs are stored at
which addresses. You will see that memory addresses are normally shown
in hexadecimal format rather than binary as the hex version is shorter.

● Buses
Buses are groups of parallel microscopic wires that connect the
processor to the various input and output controllers being used by the
computer. They are also used to connect the internal components of a
microprocessor, known as registers (more on these in Chapter 33), and

Library programs

Utility programs

Operating
system

Applications

87FF

83FF

8200

8000

Figure 32.3 A basic memory map

KEYWORD
Read Only Memory (ROM):
stores data and can be read
from, but not written to (unless
programmable ROM).

B
U

SES

269

to connect the microprocessor to memory. There are three types of bus:
data, address and control.

Data bus
The instructions and data that comprise a computer program pass back
and forth between the processor and memory as the program is run. The
data bus carries the data both to and from memory and to and from
the I/O controllers, that is, they are bi-directional or two-way. The
instructions and data held in memory will vary in size. Each memory cell
will have a width measured in bits. For example, it may have a width of
32 bits.

CPU

Memory

Data bus

Address bus

Control bus

Figure 32.4 Buses connecting the processor to memory

The data bus connects the registers to each other and to memory. The
amount of data that can be passed along the bus depends on how many
wires are in the bus. An 8-bit data bus has eight wires. There are only two
things that can pass down each wire, that is a 0 or a 1. Therefore, by using
eight wires on the data bus, we can transmit any item of data that can be
represented using 28 combinations which is 256. As we saw in Section Five,
these patterns can be used to represent text, numbers, sound and graphics
or instructions.

Therefore, when large data items are transmitted, the data will have to be
split into smaller parts which are sent one after the other. The greater the
width of the data bus, in terms of wires, the more data can be transmitted
in one pulse of the clock. Consequently, the size of the data bus is a key
factor in determining the overall speed and performance of the computer.
32-bit and 64-bit buses are the norm at the time of writing. The data bus
width is usually the same as the word length of the processor and the
same as the memory word length.

Address bus
The address bus only goes in one direction – from the processor into
memory. All the instructions and data that a processor needs to carry out
a task are stored in memory. Every memory location has an address. The
processor carries out the instructions one after the other. The address
bus is used by the processor and carries the memory address of the next
instruction or data item. The address bus therefore is used to access
anything that is stored in memory, not just instructions.

KEYWORDS
Word length: the number of
bits that can be addressed,
transferred or manipulated as
one unit.
Address bus: used to specify a
physical address in memory so
that the data bus can access it.

KEYWORDS
Bus: microscopic parallel wires
that transmit data between
internal components.
Data bus: transfers data
between the processor and
memory.
Input/Output (I/O) controller:
controls the flow of information
between the processor and the
input and output devices.

32
 I

nt
er

na
l h

ar
dw

ar
e

of
 a

 c
om

pu
te

r

270

The size of the address bus is also measured in bits and represents the
amount of memory that is addressable. An 8-bit bus would only give 256
directly addressable memory cells. This means that a program could
only consist of a maximum of 256 separate instructions and/or data items.
If we assume that each memory address can store 8 bits (one byte) of data
then we would have 256 bytes of memory available. This would be useless
on modern computers.

You may have realised from Section Five that each additional wire will
double the capacity. Consequently 24 lines on the address bus would
give 224 combinations, which means it can access 16 MB of memory. A
32-bit address bus, which is common for most PCs, would provide 4 GB
of addressable memory. A 64-bit address bus would provide, in theory,
addressable memory of 16.8 million terabytes.

Control bus
The control bus is a bi-directional bus which sends control signals to
the registers, the data and address buses. There is a lot of data flowing
around the processor, between the processor and memory, and between the
processor and the input and output controllers. Data buses are sending data
to and from memory while address buses send only to memory.

The job of the control bus therefore is to ensure that the correct data
is travelling to the right place at the right time. This involves the
synchronisation of signals and the control of access to the data and address
buses which are being shared by a number of devices.

For example, a signal on the control bus would dictate the direction of
data transmission through the data bus; it would also indicate whether it
was reading to or writing from an I/O port. The control bus will also be
transmitting the pulses being delivered by the system’s clock.

● Input/Output (I/O) controllers
In addition to the direct link between the processor and main memory, the
processor will also receive and send instructions and data to the various
input and output devices connected to the computer. Basic I/O devices
would be the keyboard, monitor, mouse and printer, though modern
computer systems would typically include several other devices.

Physically, these I/O devices are connected via the I/O ports (usually USB
ports) on your computer as shown in Figure 32.5. The ports are physical
connections that allow I/O devices to be plugged in. For example, the
printer will be plugged into one of the USB ports. Signals will be passed
in both directions through the printer cable, via the port and through the
processor to send and receive the instructions.

Inside the computer, the data buses carry the signals to and from the
processor. In order to do this the processor is working in the same way as
if it were sending data to or from memory. The difference, however, is that
the processor does not communicate directly with the I/O devices. Instead,
there is an interface called an I/O controller.

KEYWORDS
Addressable memory: the
concept that data and instructions
are stored in memory using
discrete addresses.

Control bus: controls the flow of
data between the processor and
other parts of the computer.

VO
N

 N
EU

M
AN

N
 AN

D
 H

AR
VAR

D
 AR

CH
ITECTU

R
ES

271

Controllers consist of their own circuitry that handle the data flowing between
the processor and the device. Every device will have its own controller
which allows new devices to be connected to the processor at any time. As
a minimum, therefore, a typical computer will have a monitor controller, a
mouse controller, a keyboard controller and a hard disk controller.

A key feature of an I/O controller is that it will translate signals from the device
into the format required by the processor. There are many different devices
and many different types of processor and it is the I/O controller that provides
the flexibility to add new devices without having to redesign the processor.

Another important feature is that the I/O devices themselves respond
relatively slowly compared to the speed at which a processor can work.
Therefore the I/O controller is used to buffer data being sent between the
processor and the device, so that the processor does not have to wait for the
individual device to respond.

● Von Neumann and Harvard architectures
In Section One we identified that a program is a series of instructions that
the processor will carry out. Programs also require the data on which these
instructions will be carried out. As we have seen, a program is loaded into
main memory when it is run. In simple terms it means that the instructions
and data that comprise a program are both stored in main memory and
must both pass through the same bus (the data bus) in and out of memory.

The early computers that used this concept were known as ‘von Neumann’
machines after the man who first invented the technique in the 1940s. Most
modern PCs use this technique and so are also von Neumann machines.

The word ‘architecture’ is widely used in computing and usually refers
to the way that something is built. For example, a microprocessor has
an architecture that refers to the way that the chip is built. The von
Neumann method of building computers therefore is often referred to as
von Neumann architecture.

An alternative method of building chips is the Harvard architecture.
The key difference between this and von Neumann is that separate buses
are used for data and instructions, both of which address different parts of
memory. So rather than storing data and instructions in the same memory
and then passing them through the same bus, there are two separate buses
addressing two different memories.

KEYWORDS
Von Neumann architecture: a
technique for building a processor
where data and instructions are
stored in the same memory and
accessed via buses.
Harvard architecture: a technique
for building a processor that uses
separate buses and memory for
data and instructions.

Figure 32.5 Physical ports on a standard PC

32
 I

nt
er

na
l h

ar
dw

ar
e

of
 a

 c
om

pu
te

r

272

TASKS
1 Identify the three other terms that are commonly used to mean main

memory.
2 Identify one advantage of increasing the amount of RAM in a PC.
3 Describe the purpose of the following components:

a) processor
b) random access memory
c) read only memory.

4 Explain why it is necessary to have ROM, RAM and a hard disk within a
computer system.

5 Identify one advantage of increasing the capacity of the hard disk.
6 On a games console, explain why it can take over a minute to load a game.
7 What is the maximum amount of data that can pass down a 16-bit data

bus in one stage of the fetch–execute cycle?
8 What is the largest amount of addressable memory available with a

16-bit address bus?
9 Name and describe the function of the three different buses.

10 Identify three functions carried out by the control bus.
11 Give two reasons why I/O devices are handled by controllers rather

than being connected directly to the processor.

Data bus

Address bus

Von Neumann architecture

Memory CPU

Address bus

Data bus

Instruction bus

Address bus

Harvard architecture

Data
Memory

Instruction
Memory CPU

Figure 32.6 The von Neumann and Harvard architectures

The advantage of this is that the instructions and data are handled more
quickly as they do not have to share the same bus. Therefore a program
running on Harvard architecture can be executed faster and more
efficiently. Harvard architecture is widely used on embedded computer
systems such as mobile phones, burglar alarms etc. where there is a specific
use, rather than being used within general purpose PCs.

Many such devices use a technique called Digital Signal Processing (DSP). The
idea of DSP is to take continuous real world data such as audio or video data
and then to compress it to enable faster processing. Chips that are optimised
for DSP tend to have much lower power requirements, making them ideal for
applications such as mobile phones where power consumption is critical.

Practice questions can be found at the end of the section on page 298.

VO
N

 N
EU

M
AN

N
 AN

D
 H

AR
VAR

D
 AR

CH
ITECTU

R
ES

273

STUDY / RESEARCH TASKS
1 Recommend a suitable specification for a computer system for online

gaming. How would the specification of this system vary from one that
was designed to handle a large database?

2 Moore’s Law broadly states that processor performance will double
every two years. He made this prediction in 1965. Is it true and do you
think it will continue to be true?

3 Some people believe that the next big advance in microprocessor
technology is when we move on from the silicon chip. What are the
limitations of the silicon chip and what might replace it in the future?

KEY POINTS
• The processor handles and

processes instructions from
the hardware and software.

• Processors can handle
millions of instructions every
second.

• Memory is made up of
millions of addressable cells.

• Data and instructions
are fetched, decoded and
executed.

• There are two main types of
main memory, RAM and ROM.

• The processor is connected
to main memory and data and
instructions are passed around
circuitry known as buses.

• In von Neumann architecture,
instructions and data are
stored together in memory.

• In Harvard architecture,
separate memory is used for
data and instructions.

274

SPECIFICATION COVERAGE
3.7.2.1 The meaning of the stored program concept

3.7.3.1 The processor and its components

3.7.3.2 The fetch–execute cycle and the role of registers within it

3.7.3.6 Factors affecting processor performance

3.7.3.6 Interrupts (A Level only)

33 The stored
program concept
and processor
components

LEARNING OBJECTIVES
In this chapter you will learn:
• how instructions are handles using the stored program concept
• what happens at each stage of the fetch–execute cycle
• that a processor is made up of components including registers and

units
• how the registers and units are used to handle instructions
• what factors affect processor performance.

A-level students will also learn:
• what an interrupt is and how a processor handles it.

INTRODUCTION
In this chapter we look in more detail at what happens during the
fetch–execute cycle, looking specifi cally at the physical components
of the processor and how data and instructions are handled internally.
The processor is made up of microscopic registers and units and each
instruction will be passed around these components, manipulating 0s
and 1s in order to create a result. This chapter explains what happens at
each stage of the cycle. In addition, we consider the factors that affect
the overall performance of the processor.

A-level students also need to be aware of the interrupt and this is
covered at the end of the chapter.

TH
E STO

R
ED

 PR
O

G
R

AM
 CO

N
CEPT

275

● The stored program concept
As you saw in the previous chapter, the von Neumann concept was to store
instructions and data in the same memory unit. Each instruction or data
item is fetched from memory, decoded and then executed, with any new
data created being placed back into memory. Every time a program is run,
the processor runs through this fetch–execute cycle.

Therefore, all the processor is doing is running through this cycle over and
over again, millions of times every second. The computer’s clock times the
electrical pulses into the processor.
O Fetch – the processor fetches the program’s next instruction from

memory. The instruction will be stored at a memory address and will
contain the instruction in binary code.

● Decode – the processor works out what the binary code at that address
means.

O Execute – the processor carries out the instruction which may involve
reading an item of data from memory, performing a calculation or
writing data back into memory.

It is worth pointing out that a simple instruction for a user, for example,
adding two numbers together, would actually involve a number of cycles
for the processor. There is also an unanswered question in terms of how the
processor fetches, decodes and executes each instruction. To understand
this fully, you need to understand the architecture of the processor.
Processors are made up of a number of components including the clock,
control unit, arithmetic logic unit and various registers.

System
clock

Control
unit

Accumulator PC MAR CIR MDR

Internal address bus

Internal data bus

Address
bus

Data
busALU

Figure 33.1 Machine architecture – the processor

The control unit
The control unit is the part of the processor that supervises the fetch–execute
cycle. The control unit also makes sure that all the data that is being processed
is routed correctly – it is put in the correct register or section of memory.

The arithmetic logic unit (ALU)
The ALU carries out two types of operation – arithmetic and logic. The ALU
can be used to carry out the normal mathematical functions such as add,
subtract, multiply and divide, and some other less familiar processes such as
shifting. This process is described in more detail later in the chapter.

The ALU is also used to compare two values and decide if one is less than,
greater than or the same as another. Some comparisons will result in either
TRUE or FALSE being recorded.

KEYWORDS
Control unit: part of the
processor that manages the
execution of instructions.
Arithmetic Logic Unit (ALU):
part of the processor that
processes and manipulates
data.

KEYWORDS
Stored program concept: the
idea that instructions and data
are stored together in memory.
Fetch–execute cycle: the
continuous process carried out
by the processor when running
programs.

33
 T

he
 st

or
ed

 p
ro

gr
am

 c
on

ce
pt

 a
nd

 p
ro

ce
ss

or
 c

om
po

ne
nt

s

276

The ALU is sent an operation code (op-code) and the operands (the data to
be processed). The ALU then uses logical operations such as OR, AND and
NOT to carry out the appropriate process. In some computers, a separate
arithmetic unit (AU) is used to cope with floating-point operations.

The clock
All computers have an internal clock. The clock generates a signal that is
used to synchronise the operation of the processor and the movement of
data around the other components of the computer.

The speed of a clock is measured in either megahertz (MHz – millions of
cycles per second) or gigahertz (GHz – 1000 million cycles per second).
In 1990 a clock speed of between 4 and 5 MHz was the norm. In 2000,
1 GHz clock speeds were common. The typical clock speed at the time of
writing is 2–3 GHz.

Registers
The control unit needs somewhere to store details of the operations being
dealt with by the fetch–execute cycle and the ALU needs somewhere to put
the results of any operations it carries out. There are a number of storage
locations within the processor that are used to store this sort of data. They
are called registers and although they have a very limited storage capacity
they play a vital role in the operation of the computer.

A register must be large enough to hold an instruction – for example, in
a 32-bit instruction computer, a register must be 32 bits in length. Some
of these registers are general purpose but a number are used for a specific
purpose:
O The status register keeps track of the status of various parts of the

computer – for example, if an overflow error has occurred during an
arithmetic operation.

O The interrupt register is a type of status register. It stores details of any
signals that have been received by the processor from other components
attached to it, for example, the I/O controller for the printer. This will
receive input and output requests from processor and then send device-
specific instructions to the printer. The I/O controller performs any
necessary conversion of signals between the processor and a peripheral,
ensuring that new peripherals can easily be connected. We will be
looking at the role of interrupts later in the chapter.

There are four registers that are used by the processor as part of the
fetch–execute cycle:
O The Current Instruction Register (CIR) stores the instruction that is

currently being executed by the processor.
O The Program Counter (PC) stores the memory location of the next

instruction that will be needed by the processor.
O The Memory Buffer Register (MBR), also known as the Memory

Data Register (MDR), holds the data that has just been read from or is
about to be written to main memory.

O The Memory Address Register (MAR) stores the memory location
where data in the MBR is about to be written to or read from.

KEYWORDS
Register: a small section of
temporary storage that is part
of the processor. Stores data or
control instructions during the
fetch–decode–execute cycle.
Status register: keeps track
of the various functions of the
computer such as if the result of
the last calculation was positive
or negative.
Interrupt register: stores
details of incoming interrupts.
Current Instruction Register
(CIR): register that stores the
instructions that the CPU is
currently decoding/executing.
Program counter (PC): register
that stores the address of the
next instruction to be taken
from main memory into the
processor.
Memory Buffer Register (MBR):
register that holds data that is
either written to or copied from
the CPU.
Memory Data Register (MDR):
another name for the MBR.
Memory Address Register
(MAR): register that stores the
location of the address that data
is either written to or copied
from by the processor.

KEYWORD
Clock: a device that generates a
signal used to synchronise the
components of a computer.

FACTO
R

S AFFECTIN
G

 PR
O

CESSO
R

 PER
FO

R
M

AN
CE

277

How the cycle works

Figure 33.2 The fetch–execute cycle

Fetch

Execute Decode

O Fetch: The PC holds the address of the next instruction. The processor
sends this address along the address bus to the main memory. The
contents of the memory location at that address are sent via the data
bus to the CIR and the PC is incremented. The details of addresses are
initially loaded into the MAR and the data initially goes to the MBR.
Some instructions need to load a number of bytes or words, so they may
need to be fetched as successive parts of a single instruction.

O Execute: The processor then takes the instruction from the CIR and
decides what to do with it. It does this by referring to the instruction set.
These instruction sets are either classed as an RISC (reduced instruction
set) or a CISC (complex instruction set). An instruction set is a library of
all the things the processor can be asked to do. Each instruction in the
instruction set is accompanied by details of what the processor should
do when it receives that particular instruction. This might be to send the
contents of the MBR to the ALU. There is a detailed example of how this
works in the next chapter.
Once the instruction that has just been taken from the memory has been
decoded, the processor now carries out the instruction. It then goes
back to the top of the cycle and fetches the next instruction. A simple
instruction will require only a single clock cycle, whereas a complex
instruction may need three or four. The results of any calculations are
written either to a register or a memory location.

● Factors affecting processor performance
There are a number of factors that affect processor performance. Often
these factors have to be looked at in combination to understand how
quickly a processor will work. For example, clock speed is seen as an
important measure of performance, but increasing clock speed alone may
not have a positive effect if other components within the processor are
limited. There is no point fitting a faster clock to a computer if you do not
change the components that are going to make use of that pulse as well.
O Clock speed: As we saw earlier, clock speed is one measure of the

performance of the computer. It indicates how fast each instruction will
be executed. In theory therefore, increasing the clock speed will increase
the speed at which the processor executes instructions.

O Bus width: The processor needs to optimise the use of the clock pulse.
One way of doing this is to increase the bus width. In the last chapter
we looked at the data bus and address bus and saw how the width of the
bus showed how many bits could be transferred in one pulse of the
clock. Increasing the width of the data bus means that more bits and
therefore more data can be passed down it with each pulse of the clock,

KEYWORD
Bus width: the number of bits
that can be sent down a bus in
one go.

33
 T

he
 st

or
ed

 p
ro

gr
am

 c
on

ce
pt

 a
nd

 p
ro

ce
ss

or
 c

om
po

ne
nt

s

278

which in turn means more data can be processed within a given time
interval. Increasing the width of the address bus will increase the
amount of memory that can be addressed and therefore allows more
memory to be installed on the computer.

O Word length: Related to the data bus width is the word length. A
word is a collection of bits that can be addressed and manipulated as a
single unit. Computer systems may have a word length of 32 or 64 bits,
indicating that 64 bits of data can be handled in one pulse of the clock.
Word length and bus width are closely related in that a system with a
64-bit word length will need 64-bit buses.

O Multiple cores: Most computer systems have one processor. One way
of increasing system performance is to use several processors. For
convenience, multiple processors can be incorporated onto one single
chip; this is known as a multi-core processor. A dual-core processor
therefore has two processors on the one chip and will run much faster
than a single-core system, which only has one processor. The term ‘core’
is used to define the components that enable instructions to be fetched
and executed.

O Cache memory: Caching is a technique where instructions and data that
are needed frequently, are placed into a temporary area of memory that
is separate from main memory. The advantage of this is that the cache
can be accessed much more quickly than main memory, so programs
run faster. The key to this is ensuring that the most commonly used
functions or data used in a program are placed into the cache.

Figure 33.3 Cache memory

Processor
Cache memory

Main memory

● Interrupts
The processor in a computer is always working, irrespective of whether
there is an application active or not. This is because the operating system,
which is itself a large collection of programs, is always active. This means
that the fetch–execute cycle is always in use. If an error occurs or a device
wants the computer to start doing something else then we need some
way to grab the processor’s attention. The way to do this is to send an
interrupt. An interrupt is a signal sent to the processor by a program or an
external source such as a hard disk, printer or keyboard.

There are a number of different sources of an interrupt. These are some
typical examples:
O a printer sends a request for more data to be sent to it
O the user presses a key or clicks a mouse button
O an error occurs during the execution of a program, for example, if the

program tries to divide by zero or tries to access a file that does not exist
O an item of hardware develops a fault
O the user sends a signal to the computer asking for a program to be

terminated
O the power supply detects that the power is about to go off
O the operating system wants to pass control to another user in a

A level only

KEYWORDS
Word length: the number of
bits that can be addressed,
transferred or manipulated as
one unit.
Multi-core: a chip with more
than one processor.
Cache: a high-speed temporary
area of memory.

KEYWORD
Interrupt: a signal sent by
a device or program to the
processor requesting its
attention.

IN
TER

R
U

PTS

279

How the interrupt works
What happens is that an additional step is added to the fetch–execute cycle.
This extra step fits between the completion of one execution and the start
of the next. After each execution the processor checks to see if an interrupt
has been sent by looking at the contents of the interrupt register.

Fetch

Check for interrupt Decode

Execute

Figure 33.4 The fetch–execute cycle with interrupts

If an interrupt has occurred the processor will stop whatever it is doing in
order to service the interrupt. It does this using the Interrupt Service
Routine (ISR) which calls the routine required to handle the interrupt.
Most interrupts are only temporary so the processor needs to be able to
put aside the current task before it can start on the interrupt. It does this
by placing the contents of the registers, such as the PC and CIR on to the
system stack. Once the interrupt has been processed the CPU will retrieve
the values from the stack, put them back in the appropriate registers and
carry on.

Priorities
Sometimes the program that has interrupted the running of the processor
is itself stopped by another interrupt. In this case the processor will either
place details of its current task on the stack or it will assess the priority of
the interrupts and decide which one needs to be serviced first. Assigning
different interrupts different priority levels means that the really important
signals, such as a signal indicating that the power supply is about to be lost,
get dealt with first.

Table 33.1 shows some of the processes that can generate an interrupt, and
the priority level that is attached to that interrupt. Level 1 is the highest
priority, 5 the lowest. Interrupts with the same priority level are dealt with
on a first-come first-served basis.

Table 33.1 Priorities, interrupts and possible causes

Level Type Possible causes

1 Hardware
failure

Power failure – this could have catastrophic
consequences if it is not dealt with immediately so it
is allocated the top priority.

2 Reset interrupt Some computers have a reset button or routine that
literally resets the computer to a start-up position.

3 Program error The current application is about to crash so the OS
will attempt to recover the situation. Possible errors
could be variables called but not defined, division by
zero, overflow, misuse of command word, etc.

4 Timer Some computers run in a multitasking or
multiprogramming environment. A timer interrupt is
used as part of the time slicing process.

5 Input/Output Request from printer for more data, incoming data
from a keyboard to a mouse key press, etc.

KEYWORDS
Interrupt Service Routine: calls
the routine required to handle an
interrupt.
Priorities: a method for
assigning importance to
interrupts in order to process
them in the right order.

33
 T

he
 st

or
ed

 p
ro

gr
am

 c
on

ce
pt

 a
nd

 p
ro

ce
ss

or
 c

om
po

ne
nt

s

280

TASKS
1 Describe what happens at each stage of the fetch–execute cycle.
2 What is the maximum amount of data that can pass down a 16-bit data

bus in one stage of the fetch–execute cycle?
3 What is the ALU and what function does it perform?
4 Explain what the clock in a computer does.
5 The processor has access to many registers. What is a register?
6 The control unit uses four registers to control the execution of a

program. They are the CIR, PC, MAR and MBR. Explain what each of
these is and the part it has to play in the execution of a program.

7 Why might clock speed be an inaccurate way of measuring the
performance of a computer system?

8 Why are the contents of the registers put on the stack before
an interrupt is processed?

9 Why is it important that different types of interrupts have different
priorities?

10 Explain how the vectored interrupt mechanism works.

STUDY / RESEARCH TASKS
1 Some of the major causes of interrupts are listed in the chapter. Find

out about other causes of interrupts and try to decide what priority
level you would give each.

2 What is over-clocking and what are the positive and negative effects of
it on your computer?

3 What are the implications for the operating system of a multi-core
processor?

4 Explain why having a dual-core system does not make your computer
twice as fast.

KEYWORD
Vectored interrupt mechanism:
a method of handling interrupts
by pointing to the first memory
address of the instructions
needed.

KEY POINTS
• The stored program concept

is the idea of instructions and
data being stored together in
memory.

• The fetch–execute cycle
explains how an instruction
is fetched from memory,
and executed to produce a
result and place this back into
memory.

• There are a number of
key components of the
processor including: the
clock, the control unit, the
arithmetic logic unit and
various registers. You need
to know how an instruction
passes through all of these
components.

• There are a combination
of factors that affect the
performance of a processor
including clock speed, bus
width, word length and
caching.

• An interrupt is a signal (e.g.
from a hardware device)
that stops the processor
from carrying out its current
instruction in order to deal
with another task.

Vectored interrupt mechanism
Once the values of the registers have been pushed to the stack, the
processor is then free to handle the interrupt. This can be done using a
technique called a vectored interrupt mechanism.

Each interrupt has an associated section of code that tells the processor
how to deal with that particular interrupt. When the processor receives an
interrupt it needs to know how to find that code. Every type of interrupt
has an associated memory address known as a vector. This vector points
to the starting address of the code associated with each interrupt.

So when an interrupt occurs, the processor identifies what kind of
interrupt it is, then finds its associated interrupt vector. It then uses this
to jump to the address specified by the vector, from where it runs the
Interrupt Service Routine (ISR).

Practice questions can be found at the end of the section on page 298.

281

INTRODUCTION
In Chapter 29, we looked at the different types of programming language
and the distinction between low- and high-level languages. At machine
code level, programming is carried out by directly manipulating 0s
and 1s. The next level up is to use assembly language, where the code
is made up of mnemonics. In this chapter we will look at how to write
assembly language code.

LEARNING OBJECTIVES
In this chapter you will learn:
• how to use mnemonics to write code using assembly language
• the difference between immediate and direct addressing
• how to use different types of operation codes: data transfer,

arithmetic operation, logical (bitwise) operations and branch
operations.

SPECIFICATION COVERAGE
3.7.3.3 The processor instruction set

3.7.3.4 Addressing modes

3.7.3.5 Machine-code/assembly language operations

● Instruction set
In order to write this code you need to be familiar with the mnemonics
that can be used and this will depend on what processor is being used.
Each processor will have its own instruction set. These instruction sets
are either classed as RISC (reduced instruction set) or CISC (complex
instruction set). An instruction set is the patterns of 0s and 1s that a
particular processor recognises as commands, along with their associated
meanings.

A typical assembly language statement consists of four parts as shown in
Figure 34.1.

KEYWORD
Instruction set: the patterns
of 0s and 1s that a particular
processor recognises as
commands, along with their
associated meanings.

 34 The processor
instruction set and
addressing modes

34
 T

he
 p

ro
ce

ss
or

 in
st

ru
ct

io
n

se
t a

nd
 a

dd
re

ss
in

g
m

od
es

282

O Operation code: The operation code, or opcode as it is more commonly
called, is shown as a mnemonic consisting of one to four characters. The
mnemonic usually uses letters that help to explain what the command
does. For example, ADD, MOV and CMP translate into add, move and
compare. There are more details about operation codes later in this
chapter.

O Operands: The number of operands following an operation code
and the way they are interpreted depends on the sort of code it is. For
example, the command CMP must be followed by two operands – the
first identifies the memory address or register that is to be accessed and
the second the data that is to be compared with. Note that with the
ARM6 architecture, the first operand always refers to a register.

O The use of # indicates the addressing mode. In this case the # refers to
immediate addressing, which means that the value that follows it is the
actual data item. There is more on addressing modes later in the chapter.

O Comments: The comment part of the statement is optional. Assembly
language programs can be hard to follow. Assembly language programs
tend to be very long, so being able to add comments makes them easier
to understand.

Our example uses the mnemonic for a compare command, and this
particular comparison entails comparing the contents of register 1 with the
value 10.

In machine code, the instruction will operate using a fixed number of bits.
Within that, the operator, operand and addressing mode will be assigned a
certain number of bits. For example, a 32-bit system means that the whole
instruction is 32-bits. It might assign 12 bits for the opcode, 4 bits for the
addressing mode and 16 bits for the operand. Some instruction sets fix the
number of bits that can be used for each part of the instruction, whereas
others enable the bit allocations to vary. Increasing the number of bits
assigned to each instruction will therefore increase the range of opcodes
and operands that can be used within a particular instruction set.

KEYWORDS
Opcode: an operation code or
instructions used in assembly
language.
Operand: a value or memory
address that forms part of an
assembly language instruction.
Addressing mode: the way in
which the operand is interpreted.

Assembly language: a way of
programming using mnemonics.
Mnemonics: short codes that
are used as instructions when
programming, e.g. LDR, ADD.

Figure 34.1 A typical assembly language statement

Operation code
or opcode

Operands Addressing mode Comment

CMP r1, #10 ‘compare the value in register 1 with the value 10’

1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1

Opcode Addressing mode Operand

Figure 34.2 An example of how an instruction set might assign bits to instructions

IM
M

ED
IATE AN

D
 D

IR
ECT AD

D
R

ESSIN
G

283

A worked example
The following program shows how the assembly language instructions
would be written for the following program code:

if y = 10 then

 x 9

else

 y y + 1

endif

The assembly language code based on the ARM 6 processor instruction set
would be as follows:

CMP r1, #10 ‘compares the value of variable y
with the value 10’

BNE else ‘branches if the value in variable y
is not equal to 10’

MOV r2, #9 ‘moves the value 9 into register 2,
which contain variable x’

B endif ‘branch to the end of the statement
block

else

ADD r1, r1, #1 ‘adds 1 onto the value of variable y
already held in register 1

endif

Note that r1 is being used to store the value of y and r2 to store the value
of x.

● Immediate and direct addressing
In order to access anything that is held in memory you need to know
its address. The address is a number that tells the computer where in
memory to go to find a specific item of data. You might visualise the
memory of a computer as a vast set of pigeon-holes, each with its own
name or address. Data is put into or copied out of memory in different
ways using addressing modes. Two of the main addressing modes are:
O Direct addressing: Using a direct address mode tells the CPU

which address contains the data you want to access. So LDR
r1, 100 would copy the data held in memory location 100 into
register 1.

O Immediate addressing: Rather than loading the contents of a
memory address, the immediate address method loads the data
directly. Therefore, the operand would have to be the actual number
that you wish to use. A command such as MOV r1, #10 would move
the value 10 into register 1.

KEYWORDS
Direct address: the operand is
the datum.
Immediate address: the
operand is the memory address
or register number.

34
 T

he
 p

ro
ce

ss
or

 in
st

ru
ct

io
n

se
t a

nd
 a

dd
re

ss
in

g
m

od
es

284

● Types of operation codes
The operation codes of an assembly language can be placed in one of four
groups: data transfer operations, arithmetic operations, logical operations,
and branch operations.

Data transfer operations
These include commands (such as the one detailed in the example
above) that move data between the registers and main memory. Typical
instructions include Move (MOV), Store (STR) and Load (LDR).

Arithmetic operations
Apart from the four normal arithmetic functions – add, subtract, multiply
and divide – this section also includes the increment (increase by one),
decrement (reduce by one), negate (reverse the sign), compare (two values)
and shift instructions. The status register is used to record certain features
of a calculation. These include whether the calculation has generated an
overflow error or whether the result is zero or negative. Shift instructions
are used to move the bits within a register. Shifts can move bits either left
or right.

A logical shift can be used to extract the content of just one bit. This is
achieved by repeatedly shifting until the bit you want is put in the carry bit.
If this bit pattern:

1 0 1 1 1 10 0

is operated on with a shift right then it becomes:

0 1 0 1 1 1 00 1 (Carry bit)

The least significant bit (the right-hand most) is placed in a carry bit; in this
case it is a 1, and a 0 is placed in the most significant bit (left-hand most).

This type of shift is called a shift right. It is also possible to carry out a
shift left. An alternative to this is rotate left and rotate right where the bit
positions are shifted in a loop. A rotate right therefore would mean that the
LSB became the MSB and all the other bits would shift one to the right.

Logical operations
This includes the logical bitwise functions AND, OR, NOT and XOR. Bitwise
means that each bit within a bit string is compared to a corresponding bit in
another bit string of the same length. The results of these operations can be
used to compare and calculate values. They can also be used to mask out or
ignore the contents of some of the bits in a byte.

KEYWORDS
Data transfer operations:
operations within an instruction set
that move data around between the
registers and memory.
Arithmetic operations:
operations within an instruction
set that perform basic maths,
such as add and subtract.
Shift instructions: operations
within an instruction set that
move bits within a register.

KEYWORD
Logical operations: operations
within an instruction set that
move the bits around within the
operand.

0 0 1 1
0 0 1 0
0 0 1 0

AND
=

AND will compare each bit in the string. Where they are both 1, the answer
is 1. Otherwise the result is 0. This effectively produces a mask allowing
just parts of the bit string to be used. This would be useful for example, if
identifying a parity bit.

0 0 1 1
0 0 1 0
0 0 1 1

OR
=

OR will compare each bit in the string. If either or both bits are 1 then the
result is 1. Otherwise the result is 0. This could be used to set up a mask
where if any of the bits are 1, the flag is TRUE.

TYPES O
F O

PER
ATIO

N
 CO

D
ES

285

Branch operations
Without the ability to branch or jump, all assembly programs and by extension
all high-level languages, would have to be linear. There are a number of ways
you can create a branch. A B command carries out an unconditional jump
round a section of code. This means that there are no conditions attached so
the jump will take place regardless of any prevailing conditions.

Conditional branches take the form:
� BNE – branch if not equal
� BEQ – branch if equal
� BGT – branch if greater than
� BLT – branch if less than.

The result of the last comparison will determine whether the jump is
executed or not. This is where the labels come in.

All the complex structures that are taken for granted in high-level
languages such as arrays and iterative routines can be constructed from
these basic operation codes. Using a high-level language hides a lot of the
complex nature of the assembly language.

Table 34.1 The ARM processor set codes

LDR Rd, <memory ref> Load the value stored in the memory location specified by <memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in register n and store the result in
register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value in register n and store the result
in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2> Compare the value stored in register n with the value specified by <operand2>.

B <label> Always branch to the instruction at position <label> in the program.

B<condition> <label> Conditionally branch to the instruction at position <label> in the program if the
last comparison met the criteria specified by the <condition>. Possible values for
<condition> and their meaning are:
• EQ: equal to
• NE: not equal to
• GT: greater than
• LT: less than.

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in register n and the value
specified by <operand2> and store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in register n and the value specified
by <operand2> and store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical exclusive or (XOR) operation between the value in register n and the
value specified by <operand2> and store the result in register d.

NOT will negate each value so that a 0 becomes a 1 and 1 becomes a 0. The
result is the equivalent of the two’s complement value –1. In this case, +3
becomes –4.

0 0 1 1
1 1 0 0

NOT
=

XOR will compare each bit and return a 0 if both bits are 0 or both bits are 1.
If one bit is 0 and the other is 1 then it will return a 1. This is commonly used
to set a register to 0 as if you perform an XOR operation of a number on itself,
it will always return a zero.

0 0 1 1
0 0 1 1
0 0 0 0

XOR
=

KEYWORD
Branch operations: operations
within an instruction set that
allow you to move from one part
of the program to another.

34
 T

he
 p

ro
ce

ss
or

 in
st

ru
ct

io
n

se
t a

nd
 a

dd
re

ss
in

g
m

od
es

286

TASKS
1 Explain the difference between direct and immediate addressing.
2 What is an operation code?
3 Some, but not all, operation codes are followed by one or more

operands.
a) What is an operand?
b) Why does the number of operands vary from one operation code to

the next?
4 Give an example to illustrate each of the following types of operation

code:
a) data transfer
b) arithmetic operation
c) logical operation
d) branch operation.

5 Write assembly language instructions to create a counter that counts
from 0 to 10 and then halts.

6 Write assembly language for the following pseudo-code. X should be
stored as a variable in memory.
if x > 0

then x = x -1

 Halt

STUDY / RESEARCH TASKS
1 Describe the key differences between a CISC and a RISC and give

examples of where each different type of instruction set might be
used.

2 Download and experiment with a CPU or instruction set simulator.
3 Research other addressing modes including: indirect addressing,

displacement addressing, indexed addressing and base register
addressing.

KEY POINTS
• In order to write assembly

code you need to be familiar
with the mnemonics that can
be used and this will depend
on what processor is being
used.

• Instructions are made up of
opcode and operand.

• Direct addressing tells
the CPU which memory or
register address contains the
data you want to access.

• Immediate addressing loads
the data directly from the
operand.

• Logical operations include the
logical bitwise functions AND,
OR, NOT and XOR.

• Transfer operations move
data between the registers
and main memory.

• Arithmetic operations include
add, subtract, multiply,
divide, increment, decrement,
negate, compare and shift
instructions.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value specified by <operand2> and store the
result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number of bits specified by
<operand2> and store the result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the number of bits specified by
<operand2> and store the result in register d.

HALT Stops the execution of the program.

<operand2> can be interpreted in two different ways, depending upon
whether the first symbol is a # or an R:
O # – Use the decimal value specified after the #, e.g. #25 means use the

decimal value 25.
O Rm – Use the value stored in register m, e.g. R6 means use the value

stored in register 6.

Practice questions can be found at the end of the section on page 298.

287

 35 External hardware
devices

INTRODUCTION
In Chapter 32 we looked in detail at the main internal hardware
components. This chapter considers external hardware including a
range of input, output and storage devices. The defi nition of external
hardware includes the hard disk as it is a form of secondary storage that
is external to the processor.

There is an enormous range of devices that are available for computer
systems and as AS- and A-level students you do not need to know how
all of them work. In this chapter we concentrate on those devices that
are stipulated in the specifi cation as you must understand the main
characteristics, purposes, suitability and principles of operation of
these: the digital camera, barcode reader, laser printer and RFID.

LEARNING OBJECTIVES
In this chapter you will learn:
• how a digital camera works
• how a barcode reader works
• how RFID works
• how a laser printer works
• how magnetic, solid state and optical disks work
• the applications of each of these devices.

SPECIFICATION COVERAGE
3.7.4 External hardware devices

● Digital camera
A digital camera is a device for recording still and moving images in
digital form that can then be processed further using specialised software.
In common with other devices, the camera is taking analogue data, in this
case light waves, and converting them into binary (0s and 1s). It does this
in the following way:
O When a photograph is taken the shutter opens and lets light in through

the lens.

KEYWORD
Digital camera: a device for
creating digital images of
photographs, which can be
printed or transferred onto a
computer to be manipulated and
stored.

35
 E

xt
er

na
l h

ar
dw

ar
e

de
vi

ce
s

288

O The light is focused onto a sensor, which is usually either a charge
coupled device (CCD) or a complementary metal oxide
semiconductor (CMOS).

O The sensors are made up of millions of transistors, each of which stores
the data for one or more pixels. (A pixel is a picture element or individual
dot, and the whole image will be made up of millions of pixels.)

O As the light hits the sensor, it is converted into electrons and the amount
of charge is recorded for each pixel in digital form.

O With light, all colours can be created from red, green and blue (RGB).
Therefore to record colour, the camera will either have three different
sensors, or use three different filters – one for red, one for green and one
for blue.

● The data are typically stored on removable storage devices, usually
referred to as flash memory, which uses programmable ROM
(see solid state disks later in this chapter).

O Data are usually stored in compressed files, for example, TIFF, JPG or
PNG.

O RAW files can also be generated, which are uncompressed and therefore
contain all of the data from the original photograph.

O This digital data can now be decoded and manipulated using specialised
software.

Light is let in through the shutter (1) and focused by the lens (2). It is
directed through RGB filters (3) before being focused onto the CCD or
CMOS sensor (4).

Figure 35.2 shows how the light is passed through the RGB filters to enable
all possible colours to be created.

The capability of digital cameras is often quantified in terms of how many
megapixels it uses to record images. For example, a 12 megapixel camera
will create an image made up of 12 million separate picture elements. This
means that the sensor is breaking the image down into very small units
and taking separate readings for each unit. The consequence is that the

Figure 35.2 Red, green and blue (RGB) filters

CCD

Lens Mirrors

CCD

CCD

Figure 35.1 The workings of a digital camera

1

2

3 4

KEYWORDS
Charge coupled device (CCD):
in digital cameras it is a sensor
that records the amount of light
received and convert it into a
digital value.
Complementary metal oxide
semiconductor (CMOS): is an
alternative technology that
performs the same functions as
a CCD.

KEYWORD
RGB filter: red, green and blue
filters that light passes through
in order to create all other
colours.

B
AR

CO
D

E R
EAD

ER

289

image can be recreated very accurately without blurring or pixellation.
This creates high resolution images and is useful if the image is going to be
printed and enlarged.

Figure 35.3 shows an enlarged area to demonstrate the effect of pixellation.

However, for many users, a lower resolution is sufficient as it is more likely
that the image will be taken using a smart phone and then transmitted
over a mobile network. Lower resolution images will not be as accurate a
reflection of the real image but they do have much smaller file sizes, making
it more suitable for this application. Software can be used to alter the
resolution of the image to make it suitable for the way in which the image is
being used. It does this by compressing the image and many of the common
file types used in digital photography such as JPG and TIFF are examples of
compressed files. All of the original data collected by the camera’s sensors
are still available in the original file, which is said to be in raw format.

Compression and resolution were covered in detail in Chapter 26.

● Barcode reader
Barcode readers are one of a series of input devices that use scanner
technology. These work in the following way:
O A light, usually an LED or laser is passed over an image.
O Some form of light sensor is used to measure the intensity of light being

reflected back. This is converted into a current effectively generating a
waveform. This could be achieved using a photodiode or a CCD sensor
in the same way as a digital camera.

O White areas reflect most light and black areas the least, making it
possible to use the waveform to distinguish the patterns of black and
white bars.

O The waveform is analogue and therefore needs to be converted into
digital form using an analogue to digital convertor.

O The encoding will convert the black and white into binary codes, for
example, black = 0 and white = 1.

O The signal is decoded into a form that can then be interpreted by
software.

KEYWORD
Barcode reader: a device that
uses lasers or LEDs to read
the black and white lines of a
barcode.

Figure 35.3 The effect of pixellation

KEYWORDS
Compression: the process of
reducing the size of a file.
Resolution: the number of pixels
used to create an image.

35
 E

xt
er

na
l h

ar
dw

ar
e

de
vi

ce
s

290

Figure 35.5 A barcode

Figure 35.6 A QR code

KEYWORD
Radio frequency identification
(RFID): a microscopic device
that stores data and transmits it
using radio waves – usually used
in tags to track items.

There are many different types of barcode. Perhaps the most common is
the UPC (universal product code) barcode, which uses a series of black and
white lines of different widths with a printed number underneath. The lines
are one of four widths and are encoded to represent the values 1 to 4. They
are designed to be read reliably by a machine. The numbers are there as a
manual over-ride and include a check digit.

Barcodes are used primarily for inputting product details at the point of
sale. Typical uses include food, electrical products and books. Barcodes on
food products are passed over a scanner built in to the checkout. Products
that are physically bigger than food items, such as those sold in DIY stores,
are more difficult to scan so hand-held scanners tend to be used. There are
different classifications of barcodes, a common iteration being the European
Article Number (EAN) which is standard for food products sold in the UK.
The encoded data in the barcode is linked to a point-of-sale (POS) database
system that matches the code to a particular item or product, where price
details are also stored.

More recently, the same technology has been applied to codes that are made
up of blocks of black and white symbols rather than lines. One example
is the QR code, which has been widely adopted as it can be read with a
scanner embedded within a smart phone and can contain a wider range of
information than a barcode.

● RFID
Radio frequency identification (RFID) is a technique where small
wireless tracking devices or tags are embedded onto or into other items.
The tags, which are typically about the size of a grain of rice, can be
attached to almost anything and will contain data about the item being
tracked. Typical uses include tagging pets or livestock or tracking products
through a production line. Increasingly, RFID is being used in retail
environments to tag products or to enable customer payments.

RFID works in the following way:
O The tag, which can be microscopically small, contains a chip, which

contains the data about the item and a modem to modulate and
demodulate the radio signals.

O The tag also contains an antennae to send and receive signals.
O Tags can be either active, which means they have their own power source

in the form of a small battery, or passive, which means that they will pick
up electromagnetic power when they are in range of a RFID reader.

Figure 35.4 A barcode reader and barcode

LASER
 PR

IN
TER

291

O Signals and therefore data can be transmitted in both directions using
radio frequencies. This may be over a short or long distance depending
on what the tags are being used for and how they are powered. The
typical range of RFID tag is between 1 and 100 metres.

O Tags may be used simply to track the physical location of the tagged item
or the item may transmit data back.

RFID is a relatively new technology and it is being put to various uses,
some of which are controversial. Applications include:
O tracking individuals, particularly vulnerable adults such as Alzheimer’s

patients
O use in electronic passports to keep track of where people travel
O tags have been added to credit and debit cards to allow users to make

contactless payment via RFID in a shop
O transport and distribution companies can use RFID to track shipments

and deliveries
O tags have been added to high value items, for example artworks in

museums or equipment in hospitals.

● Laser printer
A laser printer works in the same way as a photocopier to produce high
quality black and white and/or colour images. In fact, many laser printers
are now ‘all-in-one’ combining the functions of scanning, copying and
printing. They work in the following way:
O A rotating drum inside the printer is coated in a chemical which holds an

electrical charge.
O The laser beam is reflected onto the drum and where the light hits the

drum the charge is discharged, effectively creating the image on the
drum.

O As the drum rotates it picks up toner which is attracted to the charged
part of the drum.

O Paper is passed over the drum and by charging the paper with the
opposite charge to the toner, the toner is attracted to the paper and away
from the drum.

O The paper is heat treated to fuse the toner onto the paper.

Reader or
Interrogator

Tag or
Transponder

Antenna

Computer

Figure 35.7 An RFID tag system

KEYWORD
Laser printer: a device that uses
lasers and toner to create mono
and colour prints.

35
 E

xt
er

na
l h

ar
dw

ar
e

de
vi

ce
s

292

To achieve colour printing, four different coloured toners are used, and the
process of transferring the toner to the drum is repeated for each colour.
In some printers, a transfer belt is used to hold the four-colour image and
therefore transfer it just once from the belt onto the paper, rather than
having to pass the paper round the drum four times. Using light on a
screen, creating all possible colours needs three primary colours: red, green
and blue (RGB). When printing, four colours are needed: cyan, magenta,
yellow and black (CMYK).

The cost of laser printers and toner cartridges has been reducing over recent
years making them a common choice for personal and business users. Laser
printers vary in size from small home printers costing around £100 through
to large commercial machines that can cost tens of thousands of pounds.

One of the main advantages of laser printing is the speed, with home
printers typically printing around 20 pages per minute with an output of a
few hundred pages a month. A typical commercial laser printer can produce
200 pages per minute and is designed to print millions of copies a month.

● Magnetic hard disk
Within a computer system, main memory or the Immediate Access Store
(IAS) is used to store programs and data. It gives the user high speed access
to applications and data, but is only temporary so the contents will be lost
when the computer is switched off. To get around this there needs to be
some form of permanent storage. There are a number of devices, known as
secondary storage devices, that will permanently store data.
Hard disks are constructed of hard metallic material and are hermetically
sealed. This is to protect them from being corrupted by dust or other
debris. Most hard disks are in fact made up of a number of disks arranged
in a stack. The disks are coated with a thin film of magnetic material.
Changes in the direction of magnetism represent zeros and ones.

Paper in Drum

Toner is dispersed
onto the drum
from roller
to create a
negative of
the image

Corona wires
charge the
drum

Corona wires
discharge
the paper

Corona wires
attract toner
from the drum
onto the paper

Laser beam charges
the drum at certain
points to create
the image on
the drum

Fuser melts
the toner
onto the paper

Mirror directs
the beam onto
the drum

Figure 35.8 The workings of a laser printer

KEYWORD
Hard disk (HDD): a secondary
storage device made up of
metallic disks that stores data
magnetically.

M
AG

N
ETIC H

AR
D

 D
ISK

293

Hard disks spin at speeds between 3600 and 12 500 rpm as a series of
heads read from and write to the disks. The heads do not actually touch
the surface of the disk but float slightly above it by virtue of the speed
at which the disk spins. There is an actuator arm which moves the head
across surface of the disk as it spins. The combination of the rotating of the
disks with the lateral movement of the arm means that the heads can access
every part of the disk surface.

The surface of the disk is organised into concentric tracks and each track
is split into sectors each of which can be individually addressed by the
operating system. Because the head assembly can read any one of several
disks, a cylinder reference is also used to identify which of the disks in the
stack is being addressed.

Each sector has the same capacity and a large file will be stored over a
number of sectors. The operating system groups sectors together into
clusters to make storage easier to manage. There will be many occasions
when a whole cluster is not needed. For example, a file may require five
whole clusters and only part of a sixth. In this case, the whole cluster is
allocated to the file even though it is not needed. This means that the disk
is likely to have redundant space on it.

Disks Cylinders
Head

assembly

Figure 35.9 A magnetic hard disk array

TracksSectors

Figure 35.10 Tracks and sectors on a magnetic hard disk

35
 E

xt
er

na
l h

ar
dw

ar
e

de
vi

ce
s

294

The typical capacity of a hard disk at the time of writing is 1 TB. As hard
disks are created with larger capacities there is an issue with the speed
at which data can be retrieved from the disk. This is a feature of the
physical speed at which it can spin along with the rate at which data can
be transferred. In terms of relative speed, magnetic hard disks enable faster
access than optical disks, but slower access than solid state disks.

● Optical disk
Optical disk is a generic term for all variations of CD, DVD and Blu-Ray
that use laser technology to read and write data. An optical disk is made
up of one single spiral track that starts in the middle and works its way to
the edge of the CD. The laser will read the data that are contained within
this track by reading the pits and lands in combination with a sensor that
measures how much light is reflected.

For read-only optical disks, when data is written it is encoded as of a series
of bumps, or pits and lands within the track on the disk. A protective layer is
then put over the surface to prevent any corruption of the data. The pattern of
pits and lands are used to represent data. When the CD is read, the pits and
lands are read by the laser which then interprets each as different electrical
signals. In turn the electrical signals can be converted into binary codes.

For writeable optical disks, rather than using pits and lands the disk is
coated with a photosensitive dye, which is translucent. When writing to
the disk, the laser will alter the state of a dye spot that is coated onto the
surface making it opaque. The dye reflects a certain amount of light. A write
laser alters the density of the dye and a read laser interprets the different
densities to create binary patterns which in turn can represent data. Write
lasers are higher powered than read lasers.

(b) Top view of a CD showing single spiral

(a) Side view of a CD showing pits and lands

Laser
beam

Lands Pits

Protective coating
applied after CD
is written

Laser head

Figure 35.11 The workings of an optical disk
Laser-burned dye
spots store data

Burned dye
spots absorb

light = 0

Unburned
areas reflect

light = 1

Reflective
aluminumLabel

Protective
polycarbonate

Dye

Figure 35.12 The workings of a
writeable optical disk

SO
LID

 STATE D
ISK

 (SSD
)

295

● Solid state disk (SSD)
High-speed access to memory is achieved using memory cards, made up
of semiconductors. As these are entirely electronic and have no mechanical
parts, high-speed data transfer can be achieved. However, the problem
is that they are volatile, which means that as soon as the power is lost,
they lose their data. This is why hard disks are used as they use magnetic
memory, which is non-volatile so is not lost when the power is switched
off. However, access times for magnetic hard disks are relatively slow as the
disk has to spin and an arm has to move across the surface of the disk until
the data is found. This is known as latency.

A relatively new development is the solid state disk, also known as a
solid state drive, which is made up of semiconductors, but is also non-
volatile, meaning that data is not lost when there is no power. A common
implementation of this is the flash drive or memory stick, but this
technology is also used to replace hard disks in computer systems.

The term solid state disk is misleading is there is no actual disk, instead
they use programmable ROM chips, similar to memory cards, hence the
alternative description as a drive rather than a disk. However these are
stored inside a unit that looks like a hard disk and commonly uses a type of
memory called NAND memory. This organises data into blocks in a similar
way to a traditional hard disk as described earlier, with a controller being
used to manage the blocks of data.

Blocks of a set physical size will be made up of binary data. When reading
and writing, data can only be accessed in blocks. On a traditional hard
disk, blocks will be allocated to different clusters on the disk. With SSD,
blocks are allocated to particular semiconductors. The advantage of this is
that data can be added and deleted in blocks to different areas of the drive,
so that only small parts of the drive have to be erased and written to. This
enables very fast access times.

The semiconductors are able to retain their data due to the type of transistor
used. It uses what is a called a floating gate transistor, which is able
to trap and store charge. A floating gate transistor contains two gates: a
floating gate and a control gate. A thin layer of oxide is placed between the
two gates, effectively trapping the charge inside the floating gate even when
the power is turned off.

Control Gate

Insulating oxide
layers

NAND memory

Floating Gate

Source
n+

Drain
n+

P = Substrate

Figure 35.14 The workings of ‘flash’ memory

KEYWORDS
Controller: in SSDs a controller
is needed to organise data into
blocks for storage purposes.
Block: in data storage it is the
concept of storing data into set
groups of bits and bytes of a
fixed length.
Floating gate transistor: in
SSDs it is a type of non-volatile
transistor that stores data even
without a power source.

Figure 35.13 Inside a solid state disk

35
 E

xt
er

na
l h

ar
dw

ar
e

de
vi

ce
s

296

As there are no moving parts, SSDs are considered to be more reliable than
HDDs as there is less chance of mechanical failure. Also, as there are no
physical sectors, an SDD never needs to be defragmented, which means that
its performance will not degrade over time as the disk gets full and it won’t
take longer to find the blocks of data.

● Storage devices compared
In this chapter we have looked at three main types of secondary storage.
In addition to knowing how they work, you should also have a good
understanding of where you would use one type rather than the other and
be able to make comparisons between the capabilities of each. Table 35.1
shows a relative comparison.

Table 35.1 Comparison of HDD, SSD, CD/DVD and Blu-ray

Hard disk (HDD) Solid state disk (SDD) Optical disk (CD/DVD) Optical disk (Blu-ray)

Typical capacity High (1 TB) Medium (500 GB) Low (900 MB to 1.7 GB) Low to medium (25–50 GB)

Relative cost Medium High Low Low

Easily portable External disks
are available

External disks are
available

Yes Yes

Relative power
consumption

High Low High High

Relative speed of
access

Medium High Low Low

Latency High Low Very High High

Fragmentation None

Reliability Good Very good Fair Fair

Relative physical size Large Small Large Large

The differing characteristics of each device lend themselves to particular
applications. HDD and SSD are broadly comparable in terms of what you would
use them for, which is as the main secondary storage device in a PC or laptop.

SSD enable access times up to 100 times faster than HDD and are
physically smaller, lending themselves perfectly for use in laptops. However,
the relative cost per GB compared to HDD is higher and the largest capacity
is limited to about 1 TB (at the time of writing), although this will inevitably
increase over time. This has implications for business and organisational
users who may require large amounts of storage capacity.

Large-scale users may consider a hybrid implementation where some
aspects use SSD and others use HDD. For example, the operating system
and applications could be run from computers using SSD and the data
storage could be handled using HDD.

Optical disks are a cheap form of portable storage and lend themselves to
creating inexpensive back-ups of important data and programs. Original
copies of software are also generally stored on optical disks as they are
easily transportable and can be stored safely off-site. However, their very
limited storage capacity means that they are only generally suitable for
small-scale back-ups, normally of home systems. Access time is also very
slow on an optical drive, again limiting their use to back-up purposes.
Practice questions can be found at the end of the section on
page 298.

STO
R

AG
E D

EVICES CO
M

PAR
ED

297

KEY POINTS
• Digital cameras work by

directing light into sensors
made up of millions of cells
and then converting this data
into digital form.

• Digital cameras are often
compared in terms of the
number of pixels that they use
to create an image.

• Three colours (red, green,
blue) are needed to create all
possible colours.

• Laser printers work by
transferring toner off a drum
and onto paper with electrical
charge.

• Four print colours (cyan,
magenta, yellow and black)
are required to create all
possible colours.

• RFID tags are tiny devices
that can be attached to
anything and transmit a signal
containing data that can be
picked up by a reader.

• Optical disks such as CDs and
DVD use lasers to read pits
and lands on the surface of
the disk that are encoded to
represent data.

• Magnetic hard disks are
made up of an array of
metallic disks that are read
by a reading head that floats
across the surface.

• Solid state disks used
programmable ROM chips.

TASKS
1 What are the key differences between the way an HDD works and the

way an SSD works?
2 What is the purpose of an RGB filter?
3 Identify the most appropriate storage device in the following

scenarios. Justify your choice.
a) Creating a back-up of a school network each night.
b) Transferring a document from home to school.
c) Creating a back-up of all the work on a stand-alone computer.
d) Storing a feature-length movie.
e) Storing a number of audio files.

4 Explain how a digital camera turns analogue data into digital data.
5 Explain the common formats that are possible for digital images. Why

are the different formats available?
6 How does RFID work and what are the possible applications of it?
7 How do laser printers work?

STUDY / RESEARCH TASKS
1 Explain the difference between DVD-ROM, DVD-R and DVD-RW.
2 How do USB ‘sticks’ work?
3 Research the latest specification for SSDs. What is the limiting factor

on the storage capacity of this type of drive?
4 Provide a detailed comparison of inkjet and laser printers in terms of

speed, quality, initial cost and ongoing costs.
5 Will increasing the number of megapixels on a digital camera always

lead to a better quality image?

298

Se
ct

io
n

Se
ve

n:
 P

ra
ct

ic
e

Q
ue

st
io

ns

Section Seven: Practice questions
1 Processors use the fetch–execute cycle.

a) Describe in full sentences how the fetch–execute cycle works in relation to the main registers:
Current Instruction Register (CIR), Memory Address Register (MAR), Memory Buffer Register
(MBR), Program Counter (PC) and Status Register (SR).

b) Explain the three types of buses used in a computer and what they do during the fetch–execute cycle.
c) An interrupt will suspend execution of the current program by the processor. What is an interrupt?

2 Explain the difference between the Von Neumann and Harvard architectures.

3 Write assembly language instructions that would perform the same task as the pseudo-code below.
Use the registers r1 and r2 to store the variables A and B.

If A = 1 THEN

 B 2

 ELSE

 A A + 1

 ENDIF

4 Two alternatives for data storage are hard disk drives (HDD) and solid state disks (SSD).
a) Describe the key principles of how each work.
b) State two advantages of HDD over SSD.
c) State two advantages of SSD over HDD.

5 Explain how the following can lead to faster execution of programs:
a) increasing the clock speed
b) modifying the width of the data bus
c) utilising cache memory.

6 ‘Police officers would be able to respond faster to emergency calls and spend more time on the street
if they made better use of modern technology.’ Why might some people object to police officers using
new technology?

7 Name the most suitable storage medium for each of the following.
a) Backing up a 30 Kb email message
b) Backing up 2 Gb of data
c) Distributing a software package requiring 500 Mb of storage space.

Section Eight:
Consequences of uses
of computing

300

 36 Moral, ethical, legal
and cultural issues

INTRODUCTION
We are living through a technological revolution. There have been
massive developments in computer science over recent years that have
fundamentally changed the way that people use technology, the way in
which information is used and even the way in which we live our lives. All
of these changes have brought about a large number of moral, social,
legal and cultural issues, which have implications for us as individual
members of society but also for us as computer scientists.

LEARNING OBJECTIVES
In this chapter you will learn:
• how technological innovation leads to moral, ethical, legal and

cultural issues
• how our own moral and ethical beliefs can be applied to computer

science
• what legal issues are related to the world of computing
• how computers and modern technology effect our culture.

SPECIFICATION COVERAGE
3.8 Consequences of uses of computing

● Technological change
Consider the major innovations over the last 30 years:
O 1985 – Network file systems developed
O 1989 – Tim-Berners Lee invents the World Wide Web
O 1991 – Linux is created by Linus Torvalds
O 1993 – The widespread adoption of email
O 1997 – Broadband is available to home users
O 1998 – Google is developed
O 1999 – WiFi becomes a recognised standard
O 2004 – Facebook is founded
O 2005 – YouTube is founded
O 2006 – Twitter is created
O 2010 – Apple unveils the iPad.

301

TH
E U

SE AN
D

 M
ISU

SE O
F PER

SO
N

AL D
ATA

At the same time, look how quickly hardware technology has advanced
over recent years. In 1985, when the first network file system was
created, most computers were found in the offices of businesses and large
organisations. During the 1990s, people started to buy PCs for the home.
The typical home user will now have a number of wireless devices that
connect seamlessly to their own home network and to the Internet. Recent
telecommunications developments such as 4G mean that we now live in an
‘always connected’ society.

All of these changes bring massive opportunities for individuals and
organisations working in computing and related industries. For example:
O Five of the worlds’ top 25 richest companies are IT businesses.
O The owners of Google and Facebook are personally worth billions of

pounds even though the businesses only started in 1998 and 2004
respectively.

O Lesser known businesses like Dropcam and Skybox Imaging have been
sold to Google for over 500 million US dollars, even though they only
started in 2009.

O IT managers and directors are in the top ten list of best paid jobs in
the UK.

O Programmers can earn over £60 000 a year.

● Moral and ethical issues
A moral issue is one that concerns our own individual behaviour and our own
personal concept of right and wrong. We learn our moral values from other
people such as our parents, teachers and peers, and we learn them for ourselves
from experience. Ethics vary slightly from morals in that they are a way of
trying to define a set of moral values or principles that people within society
live by. Ethical issues are sometimes referred to therefore as social issues.

There are said to be ‘no rights and wrongs’ with morals and ethics as all
issues are a matter of personal opinion. Some people argue that even actions
that are illegal might still be ethical. As A-level students you need to be
aware of some of the issues, and understand the implications. One of the
main issues is the widespread collection and use or misuse of personal data.

● The use and misuse of personal data
The collection, use and misuse of personal data has become one of the
most topical issues in computer science. Most organisations collect data
on an ongoing basis and much of these data are personal. At a basic level
this might be name and address information, but may also include data
about individuals’ finances, health, relationship status, family, employment
history and even their personal views.

This presents a number of issues. For example:
O Personal privacy: A lot of data are collected as a matter of routine and as

individuals we may not have explicitly consented to them being collected
and used.

O Data security: Much of the data are stored online or on networks
connected to the Internet. How can we be sure they are safe from
unauthorised users?

KEYWORD
Ethical issues: factors that
define the set of moral values by
which society functions.

36
 M

or
al

, e
th

ic
al

, l
eg

al
 a

nd
 c

ul
tu

ra
l i

ss
ue

s

302

O Misuse of data: Data collected for one purpose are used for a different
purpose. In many cases, data are sold on to other organisations.

O ‘Big Brother’: Many people have concerns that personal data are being
used by government to monitor individuals and that this is a breach of
our basic human rights.

O Online profile: Every time you do anything online such as use social
media or contribute to a forum, that data may stay online for years and
contribute to what people know about you.

O Profiling: Large organisations often accumulate data in order to build
up a profile of individuals. This could have a negative impact on an
individual.

In many cases, personal data are being collected, stored and used in an
ethical way and in a way that benefits the individual. The case study below
shows how technology has massively improved the way we do our banking.

 CASE STUDY 1: BANKING – THE BENEFITS OF TECHNOLOGY
Around 30 years ago, if you wanted to carry out any banking transaction
you had to do it between the hours of 9 a.m. and 3 p.m. on a weekday as
this was when banks used to open. The invention of cash machines in
the 1980s was a technological revolution giving customers access to
their money 24 hours a day. The invention of online banking in the 1990s
meant that almost all transactions could be done at any time on any day
of the week, including paying bills, setting up direct debits and moving
money from one account to another. Some estimates suggest that as
many as half of all web users now do their banking online.

 CASE STUDY 2: BANKING – THE THREAT OF TECHNOLOGY
According to some sources there are as many as 250 000 phishing
attacks every year. This is where fraudsters attempt to get bank
account details by sending emails that appear to be from your bank. An
estimated £20m worth of online frauds are carried out on an annual
basis using this and other methods. Some customers have lost hundreds
of thousands of pounds in individual attacks that use sophisticated
software to emulate the online banking websites.

● Other moral and social issues
There are a number of other moral and ethical issues relating to computer
science:
O Unauthorised access: Hackers gain access to systems for different

reasons. Hacking for the purposes of committing fraud is considered to
be wrong by many people. However, there are groups of people called
ethical hackers who claim that they hack in order to expose weaknesses
in system security. They claim that their actions therefore are for the
good of society.

KEYWORD
Unauthorised access: where
computer systems or data are
used by people who are not the
intended users.

However, there are risks and there is a trade-off between the value of the
system for organisations and individuals and the possible threats.

OTH
ER

 M
O

R
AL AN

D
 SO

CIAL ISSU
ES

303

O Unauthorised use of software: Some people believe that software
companies and programmers spend hours developing programs and
should therefore be rewarded for their work. Some people believe that
software is too expensive, requires too many updates and that software
companies are exploitative. Therefore, downloading or copying software
is morally defendable.

O Inappropriate behaviour: There is evidence that people’s behaviour
changes when they are online. In the worst cases this can lead to online
bullying, trolling and other forms of abuse that may then spread into the
real world.

O Inappropriate content: A lot of content on the Internet is what most
people would consider to be inappropriate. This includes pornography,
violence or sites promoting religious or ethnic hatred. These sites may
not be illegal but there is concern about what effect they have on the
society, particularly younger people.

O Freedom of speech: Some people believe that you should be able to say
whatever you like, even if that offends other people. The Internet gives
almost everyone the ability to do that. It therefore raises the issue of
whether there should be some code that all Internet users should adhere
to when expressing their views.

O Unemployment: A broader social issue relates to the impact that new
technology has on people’s working lives. For example, many businesses
such as retail and banking may no longer need to employ as many people
in their stores and branches. On the other hand, they may create more
jobs in IT for employees working in their online businesses.

O Access to the Internet: It is difficult to know how many people have
access to the Internet. Some estimates are that there are 2.5 billion
Internet users. There are 7 billion people in the world, so that means
only around 35% of the world’s population have access to it. An
estimated 15% of the UK population do not have Internet access. Are
they disadvantaged by this?

As is clear from the topics discussed above, ethical and moral issues
become a matter of debate. When you are using your own computer at
home, you make your own moral decisions about these issues. When you
are using a computer in a school, college or any other organisation, you
normally have to agree to a code of conduct.

The British Computer Society (BCS) has produced a code of conduct and
a code of ethics that guide individuals and organisations on the ethical
use of computer systems in general, including Internet usage. Observing
the code is a condition of membership to the society and although it is not
legally enforceable, any breaches of the code could lead to dismissal of an
employee, or a student being asked to leave a college. The codes applies to
users of computer systems and also to programmers and developers who
create computer systems.

The main principles of the code of conduct are that members should:
O always operate in the public interest
O have a duty to the organisation that they work for, or the college they

attend
O have a duty to the profession
O maintain professional competence and integrity.

KEYWORDS
Moral issues: factors that define
how an individual acts and
behaves.
Code of conduct: a voluntary
set of rules that define the
way in which individuals and
organisations will behave.

36
 M

or
al

, e
th

ic
al

, l
eg

al
 a

nd
 c

ul
tu

ra
l i

ss
ue

s

304

● Legal issues
As AS- and A-level students you are not expected to learn the details of all
of the Acts listed in this section. However, you may be asked to consider
issues in a legal context, so it is important to have some understanding of
the current legal framework in terms of how it relates to computing.

Legal issues relate to those issues where a law has been passed by the
government. There are very few Acts of Parliament that are specific to the
world of computing. The two main ones are the Data Protection Act and
the Computer Misuse Act. In addition, the Freedom of Information Act,
the Regulation of Investigatory Powers Act and the Copyright, Designs and
Patents Act are of particular relevance to computing.

Also, using a computer does not exempt you from all the other laws of the
land. For example, someone who carries out an act of fraud on the Internet
can be prosecuted under the Fraud Act. Someone who steals computer
data can be prosecuted under the Theft Act. Someone who makes false
allegations about someone else in an email can be prosecuted for libel.

Legislators and those who enforce the law have two main issues:
O Geographical limitations: Most UK laws only apply in the UK. With the

global nature of the Internet it can be difficult to prove where a particular
offence took place. Also, if the perpetrator breaks a UK law but they are
based in another country, it can be difficult to prosecute them. Different
countries have different laws and therefore there is no universal way of
regulating the computer industry or the Internet.

O Constant change: Many acts are introduced in response to current events.
As technology develops so rapidly, laws often become out of date quite
quickly. The Computer Misuse Act is a good example of this as it was
introduced before the widespread adoption of the Internet.

● Data Protection Act
The Data Protection Act was first introduced in 1984 as a result of
public concerns about the increasing use of computers to store personal
information. It has since been updated to reflect the enormous changes in
the use of information during the 1990s. It places controls on organisations
and individuals that store personal data electronically. The definition of
personal data is any data on an individual where the person (known as the
data subject) is alive and can be individually identified.

The Act states that with a few exemptions, any person or organisation
storing personal data must register with the Information Commissioner.
‘Information Commissioner’ is a confusing term in that it relates to an
actual person and the organisation that they run. The organisation itself is
independent but was set up by the government to oversee Data Protection
and Freedom of Information. The commissioner’s mission is:

‘We shall develop respect for the private lives of individuals and encourage
the openness and accountability of public authorities
O by promoting good information handling practice and enforcing data

protection and freedom of information legislation; and
O by seeking to influence national and international thinking on privacy

and information access issues.’

KEYWORD
Legal issues: factors that have
been made into laws by the
government.

305

CO
M

PU
TER

 M
ISU

SE ACT

There are eight main principles behind the Data Protection Act. Anyone
processing personal data must comply with the eight enforceable principles
of good practice. They say that data must be:
O fairly and lawfully processed
O processed for limited purposes
O adequate, relevant and not excessive
O accurate
O not kept longer than necessary
O processed in accordance with the data subject’s rights
O secure
O not transferred to countries without adequate data protection.

Another feature of the Act is that data subjects have the right to know what
data are stored about them by any particular individual or organisation.
These are known as subject access rights. If this information is incorrect
then the data subject has the right to have it corrected. The organisation
must be given notice and may charge a small fee to the data subject.

● Freedom of Information Act
The Freedom of Information Act extends the subject access rights of the
Data Protection Act and gives general rights of access to information held
by public authorities such as hospitals, doctors, dentists, the police, schools
and colleges. Both Acts are overseen by the Information Commissioner.

The Act gives individuals access to both personal and non-personal data
held by public authorities. The idea behind the Act was to provide more
openness between the public and government agencies. Therefore, the
agencies are obliged to give the public access to information and to respond
to individual requests for information. Much of this is done through
websites and email communications.

● Computer Misuse Act
The Computer Misuse Act was introduced primarily to prevent hacking
(data misuse) and contains three specific offences relating to computer
usage:
O Unauthorised access to computer programs or data: This includes some

forms of hacking including breaking through password protection and
firewalls, decrypting files and stealing another user’s identity.

O Unauthorised access with further criminal intent: An extension of
the first offence where there is a clear intention to carry out a further
criminal act such as an act of fraud or a copyright breach.

O Unauthorised modification of computer material: This includes falsifying
bank details or exam grades, spreading viruses designed to corrupt data
and programs and interfering with system files.

The Act was introduced before the widespread use of the Internet, which
has led to problems with enforcement. Prior to the Internet, hacking did
take place, but not on the scale that it does today. There are now millions
of computers and networks connected to the Internet and the opportunities
for hackers have increased enormously.

KEYWORD
Data misuse: using data for
purposes other than for which it
was collected.

36
 M

or
al

, e
th

ic
al

, l
eg

al
 a

nd
 c

ul
tu

ra
l i

ss
ue

s

306

There have been some amendments to the Act and there is pressure on the
government from the computer industry and other businesses operating on
the Internet, to introduce new laws to reflect the current activities of the
cyber-criminal.

● Regulation of Investigatory Powers
(RIP) Act
The RIP Act was introduced to clarify the powers that government agencies
have when investigating crime or suspected crime. It is not specific to the
world of computing but was introduced partly to take account of changes in
communication technology and the widespread use of the Internet.

There are five main parts to the Act. The most relevant to computing are
Part 1 which relates to the interception of communications, including
electronic data, and Part 3 which covers the investigation of electronic data
protected by encryption. In simple terms, it gives the police and other law
enforcement agencies the right to intercept communications where there
is suspicion of criminal activity. They also have the right to decipher these
data if they are encrypted even if this means that the user must tell the
police how to decrypt the data.

It also allows employers to monitor the computer activity of their
employees, for example, by monitoring their email traffic or tracking which
websites they visit during work time. This raises a number of issues relating
to civil liberties.

● Copyright, Designs and Patents Act
This Act gives rights to the creators of certain kinds of material allowing
them control over the way in which the material is used. The law covers the
copying, adapting and renting of materials.

The law covers all types of materials but of particular relevance to computing are:
O original works including instruction manuals, computer programs and

some types of databases
O web content
O original musical works
O sound recordings
O films and videos.

Copyright applies to all works regardless of the format. Consequently,
work produced on the Internet is also covered by copyright. It is illegal to
produce pirate copies of software or run more versions on a network than
have been paid for. It is an offence to adapt existing versions of software
without permission. It is also an offence to download music or films
without the permission of the copyright holder.

In computing, two techniques are used to protect copyright:
O Digital Rights Management (DRM): This uses access control software to

limit the way in which users can control, use, copy, print or edit digital
content that they have bought.

O Licensing: Normally used for software, this provides users with a paper-
based or digital proof that they have purchased software legally and
details what they are allowed to do with the software.

KEYWORD
Copyright: the legal ownership
that applies to software, music,
films and other content.

307

CU
LTU

R
AL ISSU

ES

● Other acts relevant to computing
Other acts that are particularly relevant to computing are:
O The Official Secrets Act prevents the disclosure of government data

relating to national security.
O The Defamation Act prevents people from making untrue statements

about others which will lead to their reputation being damaged.
O The Obscene Publications Act and the Protection of Children Act prevent

people from disseminating pornographic or violent images.
O The Health and Safety (Display Screen Equipment) Regulations provides

regulation on the correct use screens and is a specific addition to the
Health and Safety at Work Act, which contains more general regulation
on keeping employees safe.

O The Equality Act makes it illegal to discriminate against anyone of the
grounds of sex, sexual orientation, ethnicity, religion, disability or age.
This includes the dissemination of derogatory material.

● Cultural issues
Cultural issues are all of the factors that influence the beliefs, attitudes
and actions of people within society. Common cultural influences are
family, the media, politics, economics and religion. There are cultural
differences between different groups of people. For example, people from
different countries often have a different culture.

There are elements of computer use that have a cultural impact in that they
can change our attitudes, beliefs and actions:
O Over-use of data: There are fears that we are becoming completely

dependent on data. Data are being collected about us by every
single organisation we deal with including government agencies and
businesses. Many decisions about the way in which the country is run
are based on data analysis.

O Invasive technologies: A lot of data are collected without our consent.
Satellite images and Google StreetView enable anyone to look at your
house. Zoopla and other websites tell everyone how much you paid for it.

O Over-reliance on computers: What happens when computer systems fail?
At a simple level you might lose some data on your computer. At a more
serious level people may be in physical danger or even die as a result of
computer failure.

O Over-reliance on technology companies: According to some sources,
two-thirds of all Internet searches are done through Google. That is
around 115 billion searches a month. Wikipedia often appears on the
front page of search results. This gives these two organisations a massive
influence over the information we access.

O ‘Big brother’ culture: The original meaning of ‘big brother’ is that the
government is watching everything we do and that we have to modify our
behaviour to meet expected behaviours. With the increasing use of CCTV,
the desire for national identity cards and the monitoring of emails and
mobile phone calls, some people believe that we heading in that direction.

O Globalisation: As we become more connected to other cultures, we are
more likely to be influenced by them. For example, many individuals
and organisations use technology to try and influence the debate on
religion and politics.

KEYWORD
Cultural issues: factors that
have an impact on the ways in
which we function as a society.

36
 M

or
al

, e
th

ic
al

, l
eg

al
 a

nd
 c

ul
tu

ra
l i

ss
ue

s

308

TASKS
1 Define the following terms from the Data Protection Act:

a) data subject
b) personal data
c) subject access rights.

2 A large bank uses data collected from customers with personal
loans to provide a car manufacturer with a list of people who have
bought new cars using their loans. Which of the eight data protection
principles have been breached?

3 Describe the three main principles of the Computer Misuse Act.
4 Apart from the laws above, identify three other pieces of legislation

that apply when using computers.
5 Why might some people be worried about the amount of personal data

being stored about them?
6 Has the Internet had a positive or negative effect on society as a

whole?
7 What moral responsibilities do you think programmers have?
8 Is it morally acceptable to download software without paying for it?

STUDY / RESEARCH TASKS
1 Explain why the Computer Misuse Act is inadequate as a measure for

preventing hacking.
2 There is currently a lot of pressure on the government to update the

laws relating to computer misuse. Why is the current legislation
considered by some to be ineffective and what could be done to
improve it?

3 Do you consider the RIP Act to be an infringement of civil liberties?
4 Should the Internet be censored?
5 Some countries do censor the Internet. Find a country that does

impose censorship and describe how they do it.

KEY POINTS
• We are living through a

technological revolution
and as computer scientists
we must consider the
consequences of computing
on individuals and society as a
whole.

• Computing can bring about
massive benefits but can
also have a negative effect on
individuals and society.

• There are a number of
laws relating specifically to
computing and other common
laws also apply to actions
that are undertaken on a
computer.

• The Internet and World Wide
Web have had a massive
influence on our culture and
will continue to do so.

Section Nine:
Fundamentals of
communication and
networking

310

 37 Communication basics

INTRODUCTION
One of the key aspects of computing is communication. For example,
input and output devices need to communicate with the processor,
the hard disk needs to communicate with memory and so on.
Communication in this sense takes place through the transmission of
data and instructions. We have already looked at many examples of
data transmission inside the computer. In this section, we are more
concerned with communication between computers and peripheral
devices and also between one computer and another across local and
global networks. This section will also include a detailed analysis of the
infrastructure that makes up the Internet.

LEARNING OBJECTIVES
In this chapter you will learn:
• what serial and parallel data transmission are
• what bandwidth, bit rate and baud rate are and the differences

between them
• how latency affects the actual speed of transmission
• what synchronous and asynchronous data transmission are
• how devices establish communication through handshaking
• which protocols are used to establish rules and standards by which

transmissions can take place.

SPECIFICATION COVERAGE
3.9.1 Communication methods

Computer data can be transmitted using a variety of media. For example,
there are a number of different cable types that can be selected, or
microwave links can be used where wireless applications are needed. As we
saw in Chapter 26, data is transmitted either in digital form, or is modulated
into analogue. In either case, you should view the transmission of data as
a series of signals being sent that represent different binary codes which
in turn can represent text, numbers, sound or graphics. It is important
to understand the difference between analogue and digital as most
communication methods involve converting one to the other. Therefore, it is
recommended that you read Chapter 26 again before reading this chapter.

311

B
AN

D
W

IDTH

● Serial and parallel transmission
Serial transmission sends and receives data one bit at a time in
sequence. Serial connections are used to connect most of the peripherals
to the computer such as the mouse and keyboard, and it is serial cables
that connect computers together to form a network.

The speed of the transmission will depend on the type of cabling used so it
is not necessarily the case that serial transmission is slow. For example, the
Universal Serial Bus or USB is a high-speed serial connection that allows
peripheral devices to be connected to your computer. Serial network cables
are capable of transmissions rates of 1 Gbps (1000 million bits per second).

Parallel data transmission uses a number of wires to send a number of bits
simultaneously. The more wires there are, the more data can be sent at any
one time. We have already come across parallel transmission in relation
to the buses used inside the computer. A 32-bit parallel connection, for
example, may connect the processor and memory together.

KEYWORDS
Serial transmission: data is
transmitted one bit at a time
down a single wire.
Parallel transmission: data
is transmitted several bits at a
time using multiple wires.

Figure 37.1 Serial and parallel communication

ANANA B

NANA BA

ANA BAN

NA BANA

A BANAN

BANANA

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Serial: data transmitted one character at a time

B B

A A

N N

A A

N N

A

Step 1

Parallel: data transmitted in one go

A

Parallel cables use more wires and are therefore more expensive to produce
than serial cables. The signal will also degrade as distance or speed
increases due to interference between the lines. Another problem is timing
the signals so that the data sent down each wire arrive at the other end
at the correct time and in sequence with data being transmitted through
the other wires. This is known as synchronisation and this becomes more
difficult as the number of wires increases.

● Bandwidth
Bandwidth is the term used to describe the amount of data that can be
transmitted along a communication channel. It relates to the range of
frequencies that are available on the carrier wave that carries the data.
The range in this case is the difference between the upper and lower
frequencies. As the range of frequencies increases so does the amount of

KEYWORD
Bandwidth: a measure of the
capacity of the channel down
which the data is being sent.
Measured in hertz (Hz).

37
 C

om
m

un
ic

at
io

n
ba

si
cs

312

data that can be transmitted within the same time frame. We have already
touched on the relative speed at which data can be transmitted. Speed is a
vital factor in communications.

Bandwidth is measured in hertz (Hz) and megahertz (mHz). Network cabling
has a bandwidth of up to 500 mHz meaning there are 500 million cycles per
second. As the number of cycles increases, more data can be carried.

In common with other aspects of computing, bandwidth increases over time
and therefore more data can be transmitted more quickly as each year passes.

● Bit rate
Bit rate is the term used to describe the speed at which a particular
transmission is taking place. It is closely linked to the bandwidth because
the bit rate will be limited by how much bandwidth is available.

Bit rate is measured in bits per second (bps). Bandwidth represents
the frequencies and therefore the capacity that is available and bit rate
represents the actual speed of transfer. It is important to note that
bandwidth and bit rate are not the same thing. Bandwidth is the range of
frequencies that can be transmitted and bit rate is the number of bits that
can be transmitted per unit of time. The bit rate that can be achieved is
directly proportional to bandwidth.

● Baud rate
Baud rate is another term used to describe the speed at which data can be
transmitted. One baud represents one electronic state change per second. An
electronic state change may be a change in frequency of the carrier wave, a
change in voltage, a change in amplitude or a shift of a waveform. Traditionally,
one bit is sent on each state change so one baud roughly equates to one bit
per second. However, it is possible to send more than one bit per state change
by using different voltage levels to represent the bits. In this case rather than
sending bits, you are sending ‘symbols’, which may have any number of bits in
them. The baud rate is determined by the transmission medium.

As we have seen data is transmitted on carrier waves. If 400 bits of data
were transmitted at a bit-rate of 400 bps then it would take 1 second. If
4 bits were encoded into each symbol the data would be transferred in a
quarter of the time; the baud rate would be 100 baud. Whether or not this
could be achieved would depend upon the transmission medium. Figure
37.2 shows how 4 bits are encoded and transmitted at each electronic stage.

KEYWORD
Bit rate: the rate at which data
is actually being transmitted.
Measured in bits per second.

Time

Vo
lta

ge

0101

0000

1111

1010 1010

Figure 37.2 Bit rate and baud rate

313

LATEN
CY

This is slightly confusing but reflects the fact that the baud was originally
developed in the late 1800s for use on telegraph machines and therefore
predates the widespread use of computers and networks. It is more
common now to find speeds quoted in terms of bits per second as this is
an easier way of understanding the measurement of transmission rates.

● Latency
Latency is the general term used to explain the time delay that occurs when
any component within a computer system is responding to an instruction. This
is because the instruction is being transmitted down cables, through buses and
logic gates, all of which takes time. Therefore, latency can occur at any stage of
the transmission process. These delays could be so short as to be unnoticeable.

For example, when you press a key on your keyboard, there is a latency of
fractions of a microsecond as the instruction is transmitted down the cable,
around the buses and registers in the processor and along another cable to
the screen. When using the Internet, the latency may be more noticeable as
the number of connections and components in the process is greater.

There are three general causes of latency when communicating data:
O Propagation latency: The amount of time it takes for a logic gate within a

circuit to transmit the data.
O Transmission latency: The amount of time it takes to pass through a

particular communication medium, for example, fibre optic would have a
lower latency than copper cable.

O Processing latency: The amount of time it takes data to pass around a
network depending on how many servers or devices it has to pass through.

You may be familiar with the concept of a ping test, which is often used to
measure the speed of an Internet connection. It works by sending a data
item to another point on the network and calculating how long it takes to
come back again. Even if you have a notional speed of 8 Mbps, you may
only be getting 4 Mbps and this may be due in part to latency.

Figure 37.3 A ping test

KEYWORD
Latency: the time delay that
occurs when transmitting data
between devices.

37
 C

om
m

un
ic

at
io

n
ba

si
cs

314

● Synchronous and asynchronous data
transmission
Synchronous means ‘occurring at the same time’ or ‘having the same
speed’. In the context of transmissions this means that the two devices
which are communicating will synchronise their transmission signals.
Using the system clock, the computer sending the data will control the
transmission rate to be in time with the device or computer receiving the
signal. If the two devices are not synchronised then data could be lost
during transmission. Once they are synchronised the two devices can send
and receive data without need for any further information.

Asynchronous transmission does not require the permanent
synchronisation of the sender’s and receiver’s system clocks. Instead,
it synchronises only for the duration of the transmission by sending
additional bits of information called start and stop bits.

For example, to send a character may require an 8-bit code to be
transmitted. In addition to the eight bits, asynchronous data
transmission requires at least two other bits. At the start of the eight
bits there is a start bit and at the end, a stop bit. The character may also
include a parity bit as described in Chapter 30.

The process works as follows:
O The start bit causes the receiver to synchronise its clock to the same rate

as the sender. This means that timing of the transmission and receipt are
the same on both devices, that is, they are in step.

O Both devices must already have agreed on how many bits of data will
follow (commonly 7 or 8 bits), whether a parity bit is being used, what
type of parity it is, and how many stop bits there will be.

O The stop bit (or bits) indicate that the data has arrived so the processor
on the receiver’s device can now handle those bits, for example, by
copying them into memory. The stop bit is also important as it allows the
receiver to identify when the next start bit arrives, as the stop and start
bits always have different values.

O If there is more data then another start bit will be sent and the cycle will
continue.

O The sender’s device sends data as soon as it is available rather than
waiting for the clock pulse or a synchronisation signal from the
receiving device.

KEYWORDS
Asynchronous data
transmission: data is
transmitted between two
devices that do not share a
common clock signal.

Start bit: a bit used to indicate
the start of a unit of data in
asynchronous data transmission
Stop bit: a bit used to indicate
the end of a unit of data in
asynchronous data transmission
Parity bit: a method of checking
binary codes by counting the
number of 0a and 1s in the code.

Asynchronous

synchronous

Stop

Sender Receiver

Data Start

Sender Receiver

Data

Stop Data Start

Figure 37.4 Asynchronous and synchronous data

Figure 37.5 Start, stop and parity bits

0 1 1 0 1 0 0 1 0 1

1 0 1 0 0 1 0

Digital data being transmitted

Start
bitData

Parity
bit

Stop
bit

110

315

PR
OTO

CO
LS

To send a character requires an 11-bit code of which only eight bits are the
actual data. This is necessary so that the receiving device knows where
each byte of data starts and stops. However, it does reduce the amount of
actual data that can be transmitted in a given time frame. Transfer rates are
measured in bits per second. In this case we are using three additional bits
for every character we send. With synchronous data transmission, we
could use all 11 bits for data.

● Protocols
One of the biggest problems with computer communications is getting the
various computers, networks, and peripheral devices to talk to each other.
If we just take the example of accessing a website, there are a number of
different transmissions that take place in order for this to happen: the
mouse has to transmit data to the serial port, which in turn passes a signal
to the processor; the processor transmits to the router which transmits over
the telephone system, probably via a satellite to your ISP and so on.

There are so many different manufacturers of hardware and so many
different ways of transmitting data that it is essential that there are accepted
standards for data transmission. It might help to think of this in terms of
the way that people from around the world communicate with each other.
We all have our own languages and customs. When we deal with each
other, we agree on what the rules of communication are going to be. For
example, we may all agree to speak in the same language.

Protocols are a method for ensuring that different computers can
communicate with each other.

A protocol is a set of rules. In the context of communications, there are a
number of rules that have been established in relation to the transmission
of data. Protocols cover aspects such as the format in which data should
be transmitted and how items of data are identified.

From using the Internet, you will probably already have come across four
common protocols:
O TCP/IP: Transmission Control Protocol/Internet Protocol is actually

two protocols that are usually referred to as one and relate to the set of
rules that govern the transmission of data around the Internet. Data sent
around the Internet are split into packets. TCP/IP handles the routing
and re-assembly of these data packets.

O HTTP: Hypertext Transfer Protocol. You may have seen http preceding
Internet addresses, for example, http://www.aqa.org.uk, though you
do not need to type it in yourself these days. HTTP is the set of rules
governing the exchange of the different types of file that make up
displayable web pages.

O FTP: File Transfer Protocol is similar to HTTP in that it provides the
rules for the transfer of files on the Internet. FTP is commonly used
when downloading program files or when you create a web page and
upload to the ISP’s server.

Practice questions can be found at the end of the section on
pages 360 and 361.

KEYWORDS
Protocols: sets of rules.
TCP/IP: a set of protocols (set
of rules) for all TCP/IP network
transmissions.
HTTP (Hypertext transfer
protocol): the protocol (set of
rules) to define the identification,
request and transfer of
multimedia content over the
Internet.
FTP: a protocol (set of rules)
for handling file uploads and
downloads.

KEYWORD
Synchronous data transmission:
data is transmitted where the
pulse of the clock of the sending
and receiving device are in time
with each other. The devices may
share a common clock.

37
 C

om
m

un
ic

at
io

n
ba

si
cs

316

STUDY / RESEARCH TASKS
1 Explain why you rarely achieve the connection speed that is

theoretically possible from your Internet connection.
2 What are the highest bit rates that are theoretically possible between

two devices using
a) serial communications?
b) parallel communications?

3 Which country has the highest average Internet speeds? Where does
the UK come in the world rankings and why?

KEY POINTS
• Serial transmission sends

data one bit at a time.
• Parallel transmission sends

data several bits at a time.
• Bandwidth is a measure of

the physical capacity of a
communication channel.

• Bit rate and baud rate are
methods for quantifying how
much data can actually be
transmitted within a certain
time frame.

• Latency is the delay that
occurs when data is being
transmitted.

• Synchronous data
transmission takes place
between devices that have
synchronised their clocks.

• Asynchronous transmission
does not require devices to be
synchronised, instead it sends
extra bits of data (start and
stop bits).

• Protocols are the rules that
define how transmission will
take place.

TASKS
1 Identify two scenarios where a computer might use:

a) serial connections
b) parallel connections.

2 What are the advantages of USB connections over traditional serial
connections?

3 Explain the difference between synchronous and asynchronous data
transmission.

4 Explain the relationship between bit rate, baud rate and bandwidth.
5 Why are protocols needed in computing?
6 What is latency and what are the main causes of it?

317

38 Networks

LEARNING OBJECTIVES
In this chapter you will learn:
• what components are needed to construct a network, including

servers, clients, routers, switches and network cards
• how networks can be constructed using different topologies
• the benefi ts of using different topologies
• how networks can be client–server or peer-to-peer
• how wireless networks work
• how data is transmitted in frames and packets
• how data being transmitted used protocols to prevent collisions of

data and keep data secure.

INTRODUCTION
A network is any number of computers connected together for
communication, sharing processing power, storage capacity and other
resources. In its simplest form this could be two or three computers
connected in someone’s home or in a small offi ce. At the other end of the
scale, there are large global networks and, of course, the Internet, which is
a global network of networks.

Connections between the computers are made using either various types
of cables or wirelessly using radio signals as a means of connection.
Each device or computer within a network is often referred to as a node.

SPECIFICATION COVERAGE
3.9.2 Networking

● Network basics
In order to connect to a network, a computer must have a network adapter,
more commonly known as a Network Interface Card (NIC). The NIC is a
printed circuit board which is contained inside the computer like any other
card (graphics and sound cards, for example). The NIC will be specifically
designed to allow the computer to connect either via cable or wirelessly to
the particular network topology being used. The type of card also dictates
the speed of data transmissions that will be available between this device
and the network.

KEYWORDS
Network: devices that are
connected together to share data
and resources.
Network adapter / Network
Interface Card (NIC): a card that
enables devices to connect to a
network.

38
 N

et
w

or
ks

318

Networks are usually described in terms of the geographical area that they
cover and the way in which the connections are configured, known as
network topology.

A Local Area Network (LAN) is a number of computers and peripherals
connected over a small geographical distance, covering one building or site.
LANs are common in businesses, educational establishments, hospitals and
even the home. Most LANs are made up of one or more servers and clients.
A server is a high specification computer with sufficient processing power
and storage capacity to service a number of users. A client is any computer
attached to the network.

A Wide Area Network (WAN) is a number of computers and peripherals
connected together over a large geographical distance. This could mean any
network that extends beyond a single site right up to global networks such
as the Internet. WANs make use of a wider variety of communication media
including telephone wires, microwave links, satellite connections and fibre
optic cables.

KEYWORDS
Network topology: the layout
of a network usually in terms of
its conceptual layout rather than
physical layout.
Local Area Network (LAN):
a network over a small
geographical distance – usually
on one site and typically used by
one organisation.
Wide Area Network (WAN):
a network spread over a large
geographical distance.

Router

Workstations

The Internet

Server

Figure 38.1 A LAN connected to the Internet

In addition to the server and client the other critical device within a
network is a router. Modern routers are actually a number of devices
merged together into a single device. The typical router for a home network:
● receives every packet of data being transmitted, reads the header of the

packet and then forwards it to its destination
● acts as a firewall, preventing certain packets from being forwarded
O acts as an switch, creating a connection between two devices on a

network
O provides a wireless access point transmitting a WiFi signal
● acts as a modem to convert digital signals to analogue so that they can be

transmitted down standard telephone cables.

STAR
 TO

PO
LO

GY

319

● Star topology
There are two main topologies (layouts) for networks in use today – the star
and the bus. A star topology takes its name from the simplified way in
which it can be represented on paper as shown below. This shows the way
that the devices are conceptually connected together.

KEYWORD
Star topology: a way of
connecting devices in a network
where each workstation has
a dedicated cable to a central
computer or switch.

Figure 38.2 A star network

Workstation

File server WorkstationWorkstation

Workstation

Printer

Internet
connection

Figure 38.2 shows each client connected to a central server via an
individual connection. The main feature is the dedicated connection
between server and client. In reality it will be a switch in the centre
with the server attached to one of the ports. The server will be a high
specification machine with a large amount of processing power and storage
capacity. The clients have access to the server through the cabling.

Software may be stored centrally on the server and can be installed,
upgraded and maintained via the server. The server will also contain an
operating system that controls the users’ access to the system and also
includes various administration functions such as managing the print
queue.

The software can also be held locally at the client. If it is held locally the
start-up time is low, but it is harder to maintain and upgrade. Holding the
programs centrally means the administrator has much better control over
the software and who has access to it.

A real star network may not look anything like the diagram as it is unlikely
that the clients will just happen to make a star shape. Also, there will be
additional hardware devices such as switches and routers between the
server and the clients.

However, this is what topology is – it shows the conceptual or logical layout
rather than the actual or physical layout.

38
 N

et
w

or
ks

320

● Bus topology
The other main network topology is the bus topology, where all of the
nodes within the network are connected via one main cable. If there is a
main server, all of the clients connect to it down this main cable. This cable
carries data between the server and the clients with each client branching
off the main bus cable.

Figure 38.3 A bus network

File serverWorkstation Workstation

Workstation

Printer

Internet
connection

Workstation

Advantages of star topology Disadvantages of star topology

Fast connection speed as each client
has a dedicated cable.

Expensive to set up due to increased
cabling costs.

Will not slow down as much as other
network topologies when many users
are online.

If the cable fails then that client may
not be able to receive data.

Fault-finding is simpler as individual
faults are easier to trace.

Difficult to install as multiple
cables are needed. The problem is
exaggerated where the LAN is split
across a number of buildings.

Relatively secure as the connection
from client to server is unique.

The server can get congested as all
communications must pass though it.

New clients can be added without
affecting the other clients.

If one cable or client fails, then only
that client is affected.

Table 38.1 Advantages and disadvantages of the star topology

KEYWORD
Bus topology: a network layout
that uses one main data cable as
a backbone to transmit data.

The main cable or backbone must allow high-speed data transmission as
all data must pass down this one channel. A common implementation of
the bus system is an Ethernet network system, which has several variants.
Ethernet is modelled on the bus network in that there is one central cable
which carries all the data around the network. Ethernet cards are installed
in each client to allow them to connect using the relevant protocols with a
switch directing packets of data to the appropriate client using the address
for the designated client.

CLIEN
T–SER

VER
 N

ETW
O

R
K

S

321

There is a distinction to be made between the physical topology and
logical topology of a network. Physical topology refers to the actual
connection of cables. However, it is possible for networks that are
connected in a particular physical topology to act in a different way with
the addition of more hardware and software. For example, some Ethernet
networks were physically laid out as a star, but used hubs to repeat signals
effectively creating a bus network.

● Client–server networks
In the star and bus topologies, the diagram shows a main server. Although
the clients have local resources in terms of processing power, and storage
capacity, they are controlled by the server. This means that when new
software is installed, for example, it can be installed on the server and then
distributed to the clients.

There are a wide range of services that the client may request including:
● access to a printer
● providing a secure connection to the Internet
O access to email
O access to applications
● access to files.

This is the most common way of constructing a LAN with a large number
of users. The server will be a high-end computer with a large amount of
processing power and storage capacity. It needs to be big enough and fast
enough to cope with the demands placed upon it by the clients.

The clients on the other hand do not need to be of such a high specification.
The current trend is to have a thin client which refers to the fact that the
client will not have a CD drive or expansion slots, thus reducing the cost of
the client.

A-level students need to have a more detailed understanding of
client–server networks and this is covered in Chapter 42.

Advantages of bus topology Disadvantages of bus topology

Cheaper to install than a star topology
as only one main cable is required.

Less secure than a star network as all
data are transmitted down one main
cable.

Easier to install than a star topology. Transmission times get slower when
more users are on the network.

Easy to add new clients by branching
them off the main cable.

If the main cable fails, then all clients
are affected.

Less reliable than a star network due to
reliance on the main cable.

More difficult to find faults.

Table 38.2 Advantages and disadvantages of a bus network

KEYWORD
Client–server: a network
methodology where one
computer has the main
processing power and storage
and the other computers act as
clients requesting services from
the server.

KEYWORDS
Physical topology: the way in
which devices in a network are
physically connected.
Logical topology: the conceptual
way in data is transmitted
around a network (see Physical
topology).

38
 N

et
w

or
ks

322

● Peer-to-peer networks
In a peer-to-peer network, no one computer is in overall control of
the network. Instead the resources of each computer or workstation
are available to all the computers in the network. Each workstation
therefore can act either as a client or as the server, depending on the
current task.

This is more common among smaller networks or for certain applications
such as file-sharing. Peer-to-peer networks can be created without the
need for a special network operating system. With the growth in home
computing, it is increasingly common to find peer-to-peer networks in
private houses. These are often set up to allow every computer in the home
to share a connection to the Internet or printer.

KEYWORDS
Wireless Wide Area Network
(WWAN): a WAN that does not
use cables, but sends data using
radio waves.
Media Access Control (MAC)
address: a unique code that
identifies a particular device on
a network.
WiFi: a standard method for
connecting devices wirelessly to
a network and to the Internet.
Wireless Local Area Network
(WLAN): a LAN that does not
use cables but connects using
radio waves.

KEYWORD
Peer-to-peer: a network
methodology where all devices
in a network share resources
between them rather than
having a server.

Client server Peer-to-peer

Key: Green = Server Black = Client Blue = Workstation

Figure 38.4 Client–server and peer-to-peer networks

● Wireless networks
A wireless network varies from a wired network in that it does not use cables
to make the physical connections between devices. Instead, the data is sent
using radio waves. Wireless networks can be implemented over small or
large geographical distances so it is possible to have wireless LANs (WLAN)
and wireless WANs (WWAN). Many business and home networks are set
up wirelessly doing away with the need for costly cabling and enabling easy
access to the network from any device with a wireless network adapter (NIC).

All devices that are on a network have what is called a Media Access
Control (MAC) address. This is a unique identifier encoded into the
network interface card (NIC) in the format of six groups of two hex digits
separated by colons, e.g. 02:32:45:77:89:ab. Any devices that connect to a
network using WiFi will connect through a wireless access point and must
have its own unique MAC address. Every NIC ever manufactured has a
unique address meaning that they can be used to identify every device
uniquely. The first half of the MAC address is the manufacturer code and
the second half is the unique device code allocated by that manufacturer.

WiFi is the generic term for a Wireless Local Area Network (WLAN)
where devices can connect wirelessly to each other and where a connection
can be made to the Internet providing one of the devices in the network is
online. WiFi operates to a generic standard called IEEE 802.11, ensuring

W
IR

ELESS N
ETW

O
R

K
S

323

that all devices are compliant and can connect and transmit data around
the network.

Different communication devices are needed to create a wireless network,
depending on the geographical coverage. For example, a WLAN in a home
of office may have a wireless router that transmits a WiFi signal that is
accessible within a few metres of the device. (802.11n is about 70 m indoors
and 250 m outdoors. 802.11g is a little lower.) WiFi hotspots are set up by
telecommunication companies and also use wireless routers to allow access
over a larger distance of around 250 metres. These may be slower because
the signal degrades with distance and there will be more users sharing the
same signal and there may be interference.

WWANs usually make use of mobile phone networks, which in turn use
satellites and transmitters and receivers located on towers around the
country. These are capable of transmitting signals over long distances
using set frequencies.

Figure 38.5 A wireless network connecting to the Internet

Protocols
There are sets of standards or protocols for wireless communications and
WiFi to ensure that all devices are able to connect with each other and
transmit and receive data. A protocol called Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) was developed to enable the various
devices to transmit data at high speeds without interfering with each other.

When data are sent around networks, they are sent in frames with all the
frames being re-assembled at the receiving end. Any device on a wireless
network may attempt to send frames. These data frames can be picked up
by any nodes or devices within range. Before each frame is sent, the device
uses the CSMA/CA protocol to see whether the transmission medium is
idle or whether another device is using it. If the transmission media is idle,
the data are sent. If it is busy, the device will wait and try again later. Each
device will then wait a random amount of time before checking to see if the
medium is free again so that it can send the data. This is known as a back-off
mechanism and is random to reduce the chances of both devices trying to
send simultaneously again.

KEYWORD
Protocols: sets of rules.

38
 N

et
w

or
ks

324

If the transmission medium is free then the data can be sent. On receipt of
the data, an acknowledgment is sent back to the sending device to confirm
that the data have been received and not corrupted. If this is not received,
again it will wait a random amount of time before resending.

An optional extension to the protocol is a system called Request to Send/
Clear to Send (RTS/CTS), which works between the nodes on a network.
The RTS sends a message to the receiving node or access point and if a CTS
message is received, it knows that the node is idle and that the data frame can
be sent. If no CTS message is received, it will wait and send another RTS later.

SSID
One of the issues when using wireless networks is ensuring that the various
devices are connecting to the correct WLAN. As all of the data are being sent
through radio waves rather than cables, each device needs a way of ensuring
that it is connecting to the correct network. The standard method of doing this
is using a Service Set Identifier (SSID), which is a 32-character code put
into the header of each packet of data being sent.

Each code is locally unique to the particular WLAN that is being used and
therefore acts as an identifier allowing that frame of data to be transmitted around
the WLAN. The network interface card must also be programmed with the same
32-character code so that the device can connect to the WLAN in the first place.

Network security
Another issue with wireless technology is that it can be less secure than
a wired system. This is because the signals travel through the air and are
therefore easier to intercept than signals passing through wires. A potential
hacker can tap into the radio signal being sent using receiving devices and
read the data signals. There are a number of steps that can be taken to
increase the level of security on a wireless network:
● Change the SSID from the default value and hide it from transmission.
● Ensure that all devices are WiFi Protected Access (WPA/WPA2)

compliant.
O Use strong encryption (WPA/WPA2) (see Chapter 40).
● Create a ‘white list’ of MAC addresses from devices that you know to be

trustworthy.

Practice questions can be found at the end of the section on
pages 360 and 361.

RTS/CTS

RTS
(Request to send)

CTS
(Clear to send)

Data

ACK

ClientsAccess point
Access point

Wireless stations

A B C

Figure 38.6 The CSMA/CA protocol using RTS/CTS

KEYWORD
WiFi Protected Access (WPA/
WPA2): a protocol for encrypting
data and ensuring security on
WiFi networks.

KEYWORDS
Request to Send / Clear to Send
(RTS/CTS): a protocol to ensure
data does not collide when
being transmitted on wireless
networks.
Service Set Identifier (SSID):
a locally unique 32-character
code that identifies a device on a
wireless network.

W
IR

ELESS N
ETW

O
R

K
S

325

STUDY / RESEARCH TASKS
1 ‘No more wires.’ How likely is it that wireless networks will completely

replace networks with cables?
2 Identify three advantages and three disadvantages of wireless

networking.
3 Networking is the connection of computers and other devices. Explain

how a network may incorporate:
a) mobile phones
b) tablets.

4 What are the advantages of integrating these devices into a network?
5 How likely is it that the phone landline will become a thing of the past?

KEY POINTS
• A network is a collection of

connected devices.
• Networks are either Local

Area (LAN) or Wide Area
(WAN) and may be wired or
wireless.

• Networks can be constructed
in a star or bus topology.

• Client–server networks have
a server providing resources
and services to clients.

• Peer-to-peer networks share
resources between a number
of workstations.

• All devices need a network
interface card (NIC) and
media access control (MAC)
address in order to connect to
a network.

• Various protocols and
standards exist for wireless
networks including the 802.11
WiFi standard and CSMA/CA
collision protocol.

• There are particular issues
with wireless networks in
ensuring that wireless devices
connect securely to the
correct network.

TASKS
1 Draw a diagram to show the following LAN topologies:

a) bus
b) star.

2 Give three reasons why an organisation may choose to install a star
topology rather than a bus topology.

3 Give three reasons why an organisation may choose to install a bus
topology rather than a star topology.

4 Define the following terms:
a) local area network
b) wide area network.

5 The Internet is often described as a ‘network of networks’. It is also
referred to as a Wide Area Network. Explain each of these terms and
discuss which is the most accurate definition.

6 Explain how the CSMA/CA protocol is used to manage frames of data
being transmitted around wireless networks.

7 Give one example of an application that requires a client–server
network.

8 Give an example where a peer-to-peer network might be used.
9 Why are protocols so important in networks? Give examples.

10 What is the difference between a white list and a black list?

326

 39 The Internet

LEARNING OBJECTIVES
In this chapter you will learn:
• how the Internet started and how it is different from the WWW
• how resources are registered, identifi ed and located on the Internet
• how IP addresses and domain names are used
• that data is sent in packets and is routed around the network
• that different parts of a network and individual devices can be

identifi ed using IP addresses
• what ports and sockets are and how they are used.

INTRODUCTION
The Internet is described as a network of networks. It is a global
interconnection of computers and networks. The Internet has had an
enormous impact on society and is changing the way we communicate,
work, socialise, shop and bank. It has grown exponentially over the last
10 years and now has an estimated 2.5 billion users worldwide, which
is around a third of the world’s population. This chapter examines
the way that the Internet is structured and the basics of how data is
transmitted around it.

SPECIFICATION COVERAGE
3.5.5.3 Error checking and correction

3.9.3.1 The Internet and how it works

3.9.4.3 IP address structure

3.9.4.4 Subnet masking

3.9.4.5 IP standards

3.9.4.6 Public and private IP addresses

3.9.4.8 Network address translation (NAT)

4.9.4.9 Port forwarding

A level only

327

U
N

IFO
R

M
 R

ESO
U

R
CE LO

CATO
R

 (U
R

L)

● The Internet and the World Wide Web
The Internet started life as ARPANET in the late 1960s. ARPANET was
a collection of connected computers set up by the American military as a
secure way of transferring sensitive data during the Cold War with Russia.
During the 1980s the network expanded and was used by a much wider
community including universities and research centres.

The Internet as we know it now started to take shape in the mid-1980s
when Tim Berners-Lee, a British scientist working in Switzerland,
created the World Wide Web (WWW). Berners-Lee had been using
the Internet to transmit and receive research documents but had found
the interface very clumsy. As a result he developed the concept of an
organised browser to allow people to navigate and search the Internet
more easily. As a consequence, the WWW is perceived as being the same
as the Internet. In fact, the WWW is a service provided on the Internet,
albeit one used by millions of people. It is possible to use the Internet
without using the WWW.

After this, many other organisations began to use the WWW to offer
services to users. During the 1990s there was an explosion in the range of
services on offer from Internet Service Providers, from search engines to
email. This coincided with a massive increase in the number of people who
were buying PCs for home use. Manufacturers of home PCs began to supply
computers with pre-installed browsers and modems ready to be connected
to the Internet.

● Uniform Resource Locator (URL)
A URL is the full address used to find files on the Internet. For example:

http://www.awebsite.co.uk/index.html

The contents of the file that a URL locates will vary depending on
the Internet protocol being used. In this example, hypertext transfer
protocol (HTTP) is being used. The file it points to is an html file called
index.html which contains hyperlinks to further pages. HTTP indicates
that the file can be accessed using a browser. Consequently, most URLs
start with HTTP although it is not always necessary to type it in the
address line.

KEYWORD
Uniform resource locator
(URL): a method for identifying
the location of resources (e.g.
websites) on the Internet.

KEYWORD
Internet: a global network of
networks.

Figure 39.1 Uniform resource locator

Indicates the protocol being
used. In this case the hypertext
transfer protocol indicates that
the file is a web page.

Indicates which server is being
accessed.

Name of the
organisation.

Indicates the type
of organisation.

Country
code

The name of the
file being accessed.
In this case an html file.

http : // www . awebsite . co . uk / index.html

328

 3
9

Th
e

In
te

rn
et

The address is made up of several parts:
● the protocol being used, which could be http, https or ftp
● the domain name, which is the location of the resource on the Internet
● the filename to locate the specific file needed. If the file is located within

a subdirectory on the server then a pathname, including the directory
name and filename, will be given instead of a simple filename.

● Domain name
The domain name identifies organisations or groups on the Internet. For
example:

bbc.co.uk
● bbc is the name of the organisation. Domain names have to be unique

so organisations had to act quickly to secure a domain name that is the
same as the name of their organisation. All domain names are registered
with a central agency called ICANN to ensure uniqueness.

● .co indicates that it is a company. This part of the name is referred to as
the top-level domain name. It indicates the type of organisation. There are
some commonly used top-level domains which you should be aware of.
t .com indicates that the organisation is commercial, that is, a business
t .gov indicates that the organisation is part of the government
t .ac indicates that the organisation is an academic institution, usually a

college or university
t .sch indicates that the organisation is a school
t .org indicates an organisation other than a commercial business, for

example, a charity or trade union
t .net indicates a company providing Internet services.

● .uk indicates that the website is registered in the UK. There are a number of
two-letter country codes and new ones are being added all the time. Country
codes are abbreviated using their own language as in these examples:
t .au is Australia
t .de is Germany (Deutschland)
t .it is Italy (Italia)
t .es is Spain (Espania).

● Notice in the example above that it was not necessary to type in www before
the domain name. www indicates the host server for the resource. Often
the www does not need to be typed as most commonly used websites are
accessed via www. Where the www is typed the domain name is known as
a fully qualified domain name (FQDN) and is completely unambiguous as it
can only relate to one host. The domain bbc.co.uk might also contain other
hosts with different names, e.g. mail.bbc.co.uk or ftp.bbc.co.uk.

● IP address
An Internet Protocol (IP) address is a dotted quad number that identifies
every computer that sends or receives data on a network and on the Internet.
This was originally devised as a 32-bit or 4-byte code made up of four decimal
numbers separated by dots as follows: 234.233.32.123. As one byte is allocated
to each of the four sets of numbers, the range of each is between 0 and 255.

The numbers themselves make little sense to us as users, which is why we
use the domain name. Domain names are designed to be easy to remember
and relevant to the organisations.

KEYWORD
Domain name: the recognisable
name of a domain on the Internet.

KEYWORD
Internet Protocol (IP) address:
a unique number that identifies
devices on a network.

PO
R

TS

329

However, the protocol used to transmit data (TCP/IP) can only work with
numbers. Therefore, every domain name is mapped to a number. This number
is the real Internet address and identifies the computer that is transmitting or
receiving data. It is called an IP address because it uses the Internet Protocol.

A domain name is sometimes described as a proxy for the IP address
which means that the user types in a domain name which is transferred to
a domain name server (DNS) which then translates the name into the
IP address. An analogy could be the ability to store numbers on a mobile
phone. The user selects a name from the list which is then looked at to find
and dial the actual telephone number.

Some IP addresses are classed as private or non-routable addresses.
Typically these are the IP addresses used by devices on a private network,
perhaps in a home, school or business. The IP address is needed in order to
route data around the network, however it does not need to be made public
as that device is not directly connected to the Internet. It is hidden behind
a router or firewall. Non-routable addresses only have to be unique within
the LAN and therefore do not need to be allocated on a global basis.

When connection to the Internet is required, the device will be connected
to a router or proxy server in order to connect. In this case the IP address
of that router or server needs to be a public or routable address in which
case it becomes a unique address that is registered under the domain name
system (see below).

Workstation 1

Workstation 2

Workstation 3

NAT router The Internet

Private IP
address

Public IP
address

Figure 39.2 Public and private IP addresses

● Ports
A port is used to identify a particular process or application on a network.
The port address is a 16-bit number attached to the IP address. By addressing
that port, a process or application will be accessed on the client.

Port addresses are often used to run processes for common networking
tasks and many have been assigned port numbers that are in widespread
use. For example, port 25 is used for the SMTP application that checks
for incoming email on an email server. Port 110 is used for the POP3
application that fetches email from the email server.

KEYWORD
Domain name server (DNS):
a server that contains domain
names and associated IP
addresses.

KEYWORDS
Port: used to identify a
particular process or application
on a network.
POP3: a protocol (set of rules)
for receiving emails.

330

 3
9

Th
e

In
te

rn
et

There are around 250 ‘well-known ports’, which are used to launch various
processes, many of which are applications related to other protocols, such as
FTP, DHCP and SSH, all of which are covered later in the book. Table 39.1
shows some of the common well-known ports, which have been designated as
such because they are some of the most widely used networking services.

Table 39.1 Well-known ports and services

Some well-known port numbers Services

21 FTP

22 SSH

23 Telnet

25 SMTP

53 DNS

80 HTTP

110 POP3

143 IMAP

When a client sends a request to the server using a well-known port, the
server needs to respond back to a client port and not the well-known port
on the client side. For example, if a server receives a request on port 80, it
does not send it back to port 80 on the client. Therefore as part of the client
request, a source port must also be sent so that the server knows which
port to send it back to.

The Secure Shell Protocol (SSH) can be run using port 22 on the well-
known ports list. This protocol is explained in more detail in Chapter 41
and is used to provide remote access to computers. Routing through port
22 means that you have the advantage of the extra security when accessing
files using HTTP, downloading or uploading files using FTP, or accessing
mail using either SMTP or POP3.

● Network Address Translation (NAT)
The system that is used to match up the private IP addresses with the
public ones is called Network Address Translation (NAT). This has two
main advantages. One is that a unique IP address is not needed for every
single device on a network, only on the router or server that is physically
connected. This means that only the public IP address needs to be
registered with the domain name server (DNS) system. The second
advantage is that there is an increased level of security as the private IP
address is not being broadcast over the Internet, making that device more
secure from unauthorised access.

The router will track connections and maintain a listing of the mappings
between private IP addresses and port numbers and the corresponding
public address. It does this by adding entries to a translation table which act
as a look-up between the internal IP address and the external IP address.

The following is a common way that NAT can work when a workstation on
the internal network wants to load data from a server on the Internet:
● The workstation on the internal network sends a packet to the server on the

Internet to request some data, including its own internal IP address and port
number in the packet so that the server knows where to return the data to.

KEYWORD
Domain name server (DNS)
system: a system of connected
domain name servers that
provides the IP address of every
website on the Internet.

KEYWORD
Secure shell (SSH) protocol: a
protocol (set of rules) for remote
access to computers.

PO
R

T FO
R

W
AR

D
IN

G

331

● The router replaces the internal IP address and port number in
the packet with its external IP address and a port number that it
generates. This port number will be unique to this communication,
within a certain time frame (port numbers are eventually reused or
they would run out).

● The router stores the mapping information from the internal IP address
and port number to external port number in the translation table.

● Data sent back from the server will be received by the router which
will look up the port number in the translation table to identify which
machine on the internal network sent the request to the server.

● The router’s IP address in the packet will be replaced with the originating
workstation’s IP address and port number, as read from the translation table.

● The reply packet can then be sent on to the originating workstation.
● Where the translation table does not contain a match to a port number in

a packet received from a computer on the Internet, the packet is dropped
because it is not a packet sent in response to a request from within the
network and may be a hacking attempt.

● The internal IP address and port are never made public on the external
network.

Workstation on an
internal network

Internal IP
address
and port
number

Router

External IP
address
and port
number

External
network

Translation table stores:
internal IP address/external IP address
source port
translation port

Figure 39.3 Network address translation

● Port forwarding
Port forwarding is commonly used when a server inside a private network,
with a non-routable IP address, is to be used to provide services to clients on
the Internet. As the server has a non-routable IP address, it cannot be accessed
directly from the Internet. Therefore the client on the Internet must use the
public IP address of the router that connects the private network with the server
on it to initiate a connection. This router can be programmed so that requests
sent to it on a particular port number are forwarded to a device with a specific
IP address within the network. This is port forwarding. So, if the server was a
web server with non-routable IP address 192.168.20.4 and the router had public
routable IP address 103.12.94.56 then the router could be programmed to
forward all requests made from the Internet to port 80 of its IP address to port
80 of the sever with IP address 192.168.20.4.

KEYWORD
Port forwarding: a method of
routing data through additional
ports.

332

 3
9

Th
e

In
te

rn
et

● Sockets
A network socket is an endpoint of a communication flow across a
computer network. Sockets are created in software not hardware. A TCP/
IP socket is made up from the combination of an IP address and a port
number. When a computer needs to communicate with a server it will send
a request to the server using the server’s IP address and port number for
that type of request (e.g. HTTP is usually port 80).
Sockets can be created at any time to enable a network connection to be
established to or from a computer. For example, Client A is being used on a
LAN with a local IP address 192.168.233.100 and wishes to request a web
page from Server B which has IP address 192.168.233.2. As a web page is
being requested, port 80 on the server will be used so Client A will send its
request to the socket address 192.168.233.2:80. Server B will be listening
for web page requests on port 80.
In the request sent to the server, Client A will include its own IP
address and a port number that has been temporarily generated for this
communication, such as 50272. This is included so that the server knows
to send the data back to socket address 192.168.233.100:50272. The client
will listen on this port number for a reply. The transport layer of the TCP/IP
stack uses the port number to direct packets to the correct application.

● Subnet masking
IP addresses are split into a network identifier and a host identifier. For
example, the IP address 120.176.134.32 could be split up with the first part
identifying the network and the last part being the actual device (or host) that
is being used. So 120.176.134 is the network ID and 32 is the host ID. The
network may be a local network, or it could be a remote network and the device
could be a computer, printer or router, etc. Network IDs can also be written
with zeros in the parts of the IP address that would be used to identify the host,
e.g. the network ID 120.176.134 could alternatively be written as 120.176.134.0.

Addresses are split up in this way to make networks easier to manage
and to make it more efficient when routing data. For example, in a LAN
split across two buildings, the administrator may find it useful to allocate
IP addresses according to which building each computer is in. Where
a network is separated in this way, each part is known as a subnet or
subnetwork. Data sent to a particular computer will only travel around the
parts of the network that it needs to, making the network more efficient.

When a computer on a network sends data to another computer, it needs
to identify whether it is on the same subnet as the other computer. If it is,
it can send data to it directly. If it is not, it will send data to the relevant
router or gateway, which will in turn send the data on to the correct
subnet and computer.

A gateway is a node on a network that acts as a connection point to another
network with different protocols. For example, in an organisation, a
gateway may be used to connect two different company networks together.
For a home user, a gateway may be used by their Internet Service Provider
(ISP) to provide access to the Internet.

The gateway carries out all of the protocol conversion required to enable the
two networks to work together.

KEYWORD
Socket: an endpoint of a
communication flow across a
computer network.

KEYWORD
Subnet masking: a method of
dividing a network into multiple
smaller networks.

KEYWORD
Gateway: a node on a network
that acts as a connection point to
another network with different
protocols.

IP AD
D

R
ESS V4 AN

D
 V6

333

To identify whether the destination computer is on the same subnet, the
sending computer needs to look at the network portion of the destination
IP address to see if it is the same as its own. In the example above, if sender
and receiver are on the same subnet, they would both have 120.176.134 as
the first part of their IP address.
To do this a subnet mask is used. To understand this you need to remember
your binary conversions as the IP address needs to be converted to its
binary equivalent so that a bitwise logical AND can be performed. For
example, the address 120.176.134.32 in binary is
01111000.10110000.01000110.00100000
Each device on a subnet is programmed with the same subnet mask.
Within the subnet mask, a value of 1 is assigned to all the bits that are part
of the network ID and a 0 to all of the parts that identify the host. In our
case, the first three octets are the network address so the mask would be
11111111.11111111.11111111.00000000.
If the computer with IP address 120.176.134.32 has data to send to the
computer with IP address 120.176.134.75 then the following operation will
be carried out on the sending computer to check if the two computers are
on the same subnet:
● 0 1 1 1 1 0 0 0 . 1 0 1 1 0 0 0 0 . 1 0 0 0 0 1 1 0 . 0 0 1 0 0 0 0 0 Full IP address of sending

computer
● 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0 AND Subnet mask
● 0 1 1 1 0 0 0 0 . 1 0 1 1 0 0 0 0 . 1 0 0 0 0 1 1 0 . 0 0 0 0 0 0 0 0 = Network ID of sending

computer
● 0 1 1 1 1 0 0 0 . 1 0 1 1 0 0 0 0 . 1 0 0 0 0 1 1 0 . 0 1 0 0 1 0 1 1 Full IP address of

destination computer
● 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0 AND Subnet mask
● 0 1 1 1 0 0 0 0 . 1 0 1 1 0 0 0 0 . 1 0 0 0 0 1 1 0 . 0 0 0 0 0 0 0 0 = Network ID of

destination computer
As the sending computer and destination computer both have the same
network ID, the data can be sent directly from the sending computer to
the destination. Otherwise, the data would be sent to a router that could
forward the transmission to the subnet that the destination computer is on.

● IP address v4 and v6
It soon became apparent that as the Internet was growing at such a rate, the
original 32-bit code was not going to provide enough permutations for the
number of devices that would be present on the Internet. Consequently a
new system, known as IPv6 was created, which uses 128 bits represented
as eight groups of four hex numbers separated by colons as follows:
13E7:0000:0000:0000:51D5:9CC8:C0A8:6420
This massively increases the range of numbers available as there are more
digits in the number, and hex is being used rather than decimal allowing
for a greater range within each group of numbers.
The v6 IP addresses are slowly replacing the original v4 format, although
both systems are still in use at the time of writing. All of the concepts
relating to IP addresses are the same regardless of the format. For example,
subnetting can still be used on the v6 format.
There is more in TCP/IP in Chapter 41.

334

 3
9

Th
e

In
te

rn
et

● Dynamic Host Configuration Protocol
(DHCP)
IP addresses are defined as either static or dynamic. Static IP addresses are
ones that are assigned and then never change. Dynamic IP addresses are
allocated every time a device connects to a network and this is perhaps the
most common approach. The allocation is done automatically by an application
as you log on. For home users, this is typically assigned by your ISP.

In simple terms, the application looks for an available IP address from its
pool of addresses and allocates it to your device. Where there are hundreds
of users logging on and off a network all the time, this is a very efficient
system as it means the administrator does not have to do it manually.

Windows DHCP clients
make requests for IP addresses

DHCP server listens
for requests and
issues IP addresses

Network
workstation (PC)

File server running DHCP
services (IP address server)

Figure 39.4 The DCHP server

A dedicated DHCP server is used on the network and handles the requests
by managing a pool of available IP addresses, usually within a defined
range of numbers depending on how the network is physically configured.
In simple terms a user attempting to log on is making a request and the
server will then offer that device a particular IP address, which may be the
last used address for that device, or the next available address within the
pool. When the user logs off, the reverse process takes place, freeing up the
IP address for the next user.

● Domain name server (DNS) system
Some estimates suggest that there are as many as a billion websites and the
number is growing all the time, as is the number of users. This presents
a complex problem in terms of allocating unique domain names to all of
these sites. This job is carried out by large international organisations and
they use the domain name server system.

Once allocated, the domain names are mapped to a unique IP address and
this information is stored in databases on large servers called domain name
servers (DNS). Humans use domain names as they are easier to remember
than IP addresses. It is the DNS that maps the domain names to the IP
addresses.

KEYWORD
Dynamic Host Configuration
Protocol (DHCP): a set of rules
for allocating locally unique IP
addresses to devices as they
connect to a network.

IN
TER

N
ET R

EG
ISTR

IES

335

Figure 39.5 shows how this works. If a user on their laptop wants to
connect to the BBC website, a request is sent to the DNS to establish the
IP address. The DNS looks in its database and sends the IP address to
the laptop. A connection can then be established between the laptop and
the BBC server.

As there are millions of addresses to be stored, all of this information
cannot be stored on a single server. Consequently there are hundreds
of DNSs in use around the world, all of which are connected to each
other. Where that particular DNS does not store the IP address, it will
send a request to other DNSs until the relevant information is found.
The entire DNS system therefore has to be carefully organised and
controlled across the whole world to ensure that no two domain names
or IP addresses are duplicated and to make sure that these addresses
are available whenever they are requested. In simple terms, you could
compare it to a massive directory enquiries system like we have for
telephone numbers.

● Internet registries
The organisation that oversees the allocation of domain names and IP
addresses is called ICANN – the Internet Corporation for Assigned Names
and Numbers, who are based in the USA. They have a department called
the Internet Assigned Numbers Authority (IANA), who at the time of
writing, manage a further five large organisations around the world called
Regional Internet Registries (RIR). Each of these has a defined region
of the world and therefore a defined set of IP addresses that they are
responsible for allocating.

In Europe, the RIR is called RIPE NCC. In turn, each RIR has several
members called National Internet Registries (one per country) who in
turn have members called Local Internet Registries, all of whom have
responsibility for allocating the IP addresses in specific geographical
areas. It is organised into this hierarchical structure to make it easier
to manage and to ensure that domain names and IP addresses are not
duplicated.

KEYWORDS
Internet registries:
organisations who allocate and
administer domain names and IP
addresses.
Regional Internet Registry
(RIR): one of five large
organisations that allocate and
administer domain names and IP
addresses in different parts of
the world.

IP address sent

Connection established using IP
address received from DNS

Request for
IP address BBC Server

DNS Server

Home Laptop

Figure 39.5 Process for connecting to the DNS server

336

 3
9

Th
e

In
te

rn
et

● Routing and gateways
In any communication there must be a sender and a receiver and a
connection must be established between the two. There are a number of
ways in which this connection can be made. When you connect to the
Internet, a connection is established between your computer and the
website that you are visiting. You probably realise that this is not a direct
link. In the first instance, you connect to your Internet Service Provider
(ISP) which in turn connects to the ISP hosting the website.

In fact, there may be many more connections in the circuit. Data being
transmitted around a WAN will be sent via a number of nodes. A node
is one of the connections within the network. In old-fashioned telephone
terms we would call them exchanges. In Internet terms, there are thousands
of nodes and, therefore, thousands of routes that a communication may
take to reach its destination. Figure 39.7 shows the basic idea.

The transmission will be routed through a number of nodes before a
connection is established between sender and receiver. The router is used
to send the data to the appropriate node on the network. It knows where to
send it as each piece of data is sent as a packet, and it will read the header
information in each packet of data being sent.

Figure 39.7 Circuit switching

Source
computer

Destination
computer

Possible circuits

Circuit established Node

AFRINIC
African Network

Information
Centre

APNIC
Asia Pacific

Network
Information

Centre

ARIN
American

Registry for
Internet Numbers

LACNIC
Latin American
and Caribbean

IP Address
Regional Registry

RIPE NCC
RIPE Network
Coordination

Centre

MemberMember

IANA
Internet Assigned
Numbers Authority

Member MemberMember

Member Member

NIR

Figure 39.6 The global structure of Internet registries

KEYWORD
Packet: a block of data being
transmitted.

PACK
ET SW

ITCH
IN

G

337

As the Internet is often referred to as a ‘network of networks’, data packets
often need to be transmitted between networks as well as around them.
Sometimes the networks will be dissimilar in that they use different
protocols. When data are passed between two networks that use different
protocols, a gateway must be used to convert between the two protocols.
As the name implies, routing finds the optimum route between sender and
receiver, which may be made up of many nodes. At each stage of the routing
process, the data packets are sent to the next router in the path, often with
reference to a routing table. The routing table stores information on the
possible routes that each data packet may take between nodes on its path from
sender to receiver. Routing algorithms are used identify the next best step.

● Packet switching
One of the methods used to send data across networks is called packet
switching. Data sent over the Internet are broken down into smaller chunks
called packets. Each packet of data will also contain additional information
including a packet sequence number, a source and destination address and a
checksum. Packets of data are normally made up of a header, body and footer.
For example, in a 1 KB packet, it might contain:

Contains:
s��-!#�ADDRESS�OF�SENDER�AND�RECEIVER
s��THE�SENDER�AND�RECEIVER�)0�ADDRESS
s��WHICH�PROTOCOL�IS�BEING�USED
s��PACKET�NUMBER�OR�SEQUENCE�NUMBER

Header (200 bytes)

Contains:
s��THE�ACTUAL�DATA�THEMSELVES
�����OR�PART�OF�THEM	�Body (822 bytes)

Contains:
s��A�CHECKSUM

Footer (2 bytes)

Figure 39.8 The contents of a typical packet of data

The packets are sent to their destination using the destination address.
They are re-assembled at the other end using the packet sequence number.

The checksum will identify any errors. It works by adding together the
values of all the data held in a packet and transmitting those data along with
the packet. For example, if the data contain number, it could add all of those
numbers up and send the total value as the checksum. When the packet is
received, the values could be added up and compared to the checksum. If it
is the same then the chances are that the data have been received correctly.
Where the checksum is different, the packet will be sent again.

Each packet can take a different route to its destination as it can be re-
assembled at the other end regardless of the sequence in which packets
are received. Therefore, the packets are routed via the least congested
and therefore the quickest route. Data are transferred quicker using this
method and are more secure as the packets are taking different routes. This
optimises the use of each connection compared to circuit switching.

KEYWORD
Checksum: a method of
checking the integrity of data by
calculating a sum based on the
data being sent.

KEYWORD
Routing: the process of directing
packets of data between
networks.

KEYWORD
Packet switching: a method for
transmitting packets of data via
the quickest route on a network.

338

 3
9

Th
e

In
te

rn
et

TASKS
1 Explain how packet switching works and how it enables fast

transmission of data.
2 What are the components of a data packet?
3 Explain how a subnet mask can be used to route data to a particular

part of a network.
4 Write out a URL and label each part.
5 Explain the relationship between a domain name and an IP address.
6 There is a one-to-one relationship between an IP address and a

domain name. Why are both needed?
7 How is it possible to ensure that no two websites have the same name

or IP address?
8 Describe the difference between a socket and a port.
9 What are ‘well-known ports’? Give some examples.

10 What is the relationship between an IP address and a socket address?
11 Explain how port forwarding works.
12 Give an example of how you could calculate a checksum from a data

packet containing text.

STUDY / RESEARCH TASKS
1 IP addresses are 32-bit numbers made up of four groups of numbers:

###.###.###.###. What are the first and last IP addresses available
using this format? How many IP addresses are possible?

2 Which ISP currently has the highest number of users? Identify all the
factors that have led to their success.

3 There are stories on the Internet that there are only 13 main DNS
servers and that most of these are in America. How likely is this to be
true? What would be the impact on the security of the Internet if there
were just 13 DNS servers?

4 Some organisations have tried to create a worldwide map of Internet
connections, e.g, the ‘Internet Mapping Project’. Look at one of these
maps. Explain why they all show clusters or hotspots of activity.

KEY POINTS
• The Internet is a global

network of networks.
• The WWW is a resource

available on the Internet made
up of millions of websites and
web pages.

• A uniform resource locator
(URL) is the unique address of
a resource on the Internet.

• A domain name identifies a
domain on the Internet and
is usually registered to a
particular organisation or
individual.

• The IP address is a numeric
identifier that maps to the
domain name.

• IP addresses are allocated to
devices on a network either
statistically or dynamically.

• A port identifies a specific
application that can be
accessed via a network.
Common applications have
dedicated port numbers which
are called well-known ports.

• A socket is an endpoint of a
communication flow across a
computer network.

• Subnet masking is a method
of identifying different subsets
of a network.

• Internet domain names and IP
addresses are administered by
Internet Registries using the
Database Name Server (DNS).

• Data is sent in packets and
routed around using packet
switching.

Figure 39.9 Packet switching showing three packets

Practice questions can be found at the end of the section
on pages 360 and 361.

Packet 2
Packet 3

Source
computer

Destination
computer

Packet 1

339

 40 Internet security

LEARNING OBJECTIVES
In this chapter you will learn:
• how a fi rewall and proxy server can be used to protect a network
• how public/private key encryption is used to protect data
• how digital certifi cates and signatures are used to authenticate websites
• to understand the risk posed by Trojans, viruses and worms and how

to protect against them.

INTRODUCTION
There are some inherent risks when using the Internet. These often
relate to the potential threat of someone discovering personal or
sensitive information about individuals and organisations and the
information being misused. There is also an increasing risk from
worms, Trojans and viruses which can cause network failure, corruption
of fi les or denial of service leading to serious damage or signifi cant
problems for the individuals and organisations who are the victims.
There are a number of measures that can be employed to either prevent
or minimise the risks from these threats.

SPECIFICATION COVERAGE
3.9.3.2 Internet security

● Firewall
A firewall describes the technique used to protect an organisation’s
network from unauthorised access by users outside the network. A
firewall can be constructed using hardware, software or a combination of
both. The most secure firewalls tend to be those constructed from both
hardware and software.

An organisation that has a local area network will have a number
of computers linked together which will all have access to internal
information. The LAN may also allow users to access the Internet and
this is where the network becomes vulnerable. By utilising the LAN’s
connection to the Internet it is possible for hackers to use techniques and
tools to access information stored on the LAN.

KEYWORD
Firewall: hardware or software for
protecting against unauthorised
access to a network.

A level only

340

 4
0

In
te

rn
et

 se
cu

ri
ty

There are a number of ways of creating a firewall. One method, known
as packet filtering, uses two network interface cards (NICs) –
one for the LAN and one for the Internet. When data packets are
received through the Internet NIC, they can be examined before
being passed around internally via the LAN NIC. Firewall software is
used to examine the packets to ensure that they do not contain any
unauthorised data. At a basic level, the header of each packet can be
examined to check that it has come from a recognised source. If it has
then it can be routed around the LAN. If it hasn’t then that packet can
be rejected.

Firewall software may also have a facility that keeps a log of all the data
being transmitted so that it can be traced. The IP address of the computer
sending each packet can be recorded. It may also generate automatic
warnings if it identifies that the server is being attacked by hackers.

At a more sophisticated level, rather than just examining the header
information, it is possible to examine the actual contents of each data
packet. This is called stateful inspection and also involves the firewall
examining where each data packet has come from. It keeps track of all
open communication channels and therefore knows the context of each
packet it receives. For example, if the packet is received from a known
communication source and forms part of an existing series of packets, it
will be accepted. When it comes from an unknown source or port, it may
be rejected.

As firewalls have developed over the years, it has become possible to
examine each packet in more detail, looking not just at the data but also
the protocols being used, the IP address and the port or socket address of
the source. This means that packets can be blocked for various reasons,
for example if they contain malware, if they come from an untrusted or
unknown source, or if they involve an unknown process.

● Proxy server
One security measure that can be used at this stage is a proxy server.
The word proxy means ‘on behalf of ’ so in this context it is a server
that acts on behalf of another computer. By routing through a proxy
server there is no direct connection between the computer on the LAN
and the Internet. Instead, all requests get passed through the proxy
server and can be evaluated to ensure that they come from a legitimate
source or to filter users so that they only have access to specific
websites.

Figure 40.1 A firewall

KEYWORD
Packet filtering: a technique
for examining the contents
of packets on a network and
rejecting them if they do not
conform to certain rules.

KEYWORD
Stateful inspection: a technique
for examining the contents
of packets on a network and
rejecting them if they do not
form part of a recognised
communication.

PR
IVATE/PU

B
LIC K

EY EN
CR

YPTIO
N

341

In Figure 40.2, the arrows represent requests which are then filtered
through the proxy server, with only certain data being allowed through in
each direction depending on how the proxy server has been set up.

● Private/public key encryption
In Chapter 27 we looked at the way in which data can be encrypted so that
if it were intercepted, it would make no sense to the person who intercepted
it. Encryption techniques make use of a key, which is a string of numbers
or characters that are used as a code to encrypt and then decrypt the
message. Typically the key may be 128-bit or 256-bit enabling billions of
permutations for the way in which data can be encrypted. Without the key,
the message cannot be understood.

One method is symmetric encryption where one key is shared between
the sender and the recipient as shown in Figure 40.3.

SENDER

Data encrypted
using key

Data sent

Key sent separately

RECEIVER

Data received and
decrypted using key

Figure 40.3 Symmetric encryption

In addition to the data, at some point the sender has to send the receiver
the key. This is known as key exchange. It is possible but not advisable to
send the key with the data. Other methods of key exchange include using
digital signatures or certificates, or using password-protected systems. Once
the key is sent and in the receiver’s computer, it can then be used to encrypt
and decrypt further messages.

There is an inherent weakness with this system in that if the key is
intercepted then it would be possible to work out what it is, therefore
making all further communications vulnerable to unauthorised access. One
way of getting round this is to use asymmetric encryption, which makes
use of two related keys in combination, a private one and a public one.
The algorithm used to create the two keys results in so many permutations
that it is almost impossible to work out the combined key. Both sender and
receiver have their own pair of public and private keys.

For example, with two computers A and B:
● A will have a private key known only to A.
● A will also have a public key, which is mathematically related to the

private key. It is called a public key as anyone can access it.
● B will also have a private key and a related public key.
● For A to send a secure message to B, A will first encrypt the message

using B’s public key.

Workstation on LAN World wide webProxy server

Figure 40.2 A proxy server

KEYWORDS
Asymmetric encryption: where
a public and private key are used
to encrypt and decrypt data.

Private key: a code used to
encrypt/decrypt data that is
only known by one user but
is mathematically linked to a
corresponding public key.
Public key: a code used to
encrypt/decrypt data that can be
made public and is linked to a
corresponding private key.

KEYWORD
Symmetric encryption: where
the sender and receiver both
use the same key to encrypt and
decrypt data.

342

 4
0

In
te

rn
et

 se
cu

ri
ty

● As the private and public keys are related, the message can only be
decrypted by B using B’s private key.

● As no-one else knows B’s private key, even if the message were
intercepted, it could not be decrypted.

A

Data encrypted
using B’s public key

Data sent
B

Data decrypted
using B’s private key

Figure 40.4 Public and private key encryption

An important factor that makes asymmetric encryption so secure is
that although the two keys are mathematically related, it is virtually
impossible to work out what the private key is from looking at the
public key. This is mainly due to the large number of digits being
used in the keys and the algorithms being used which will produce
billions of possible permutations. At the time of writing, 1024-bit keys
are common although as computing power increases, it becomes more
likely that these codes are feasibly breakable and the number of bits
used will increase.

● Digital certificates and signatures
A digital certificate is a means of proving who you are when dealing with
people and organisations on the Internet. It is usually used by businesses
to authenticate that they are genuine and is important in the use of
asymmetric encryption as a secure way of sharing public keys. Certificates
are also used by some government agencies such as the Inland Revenue.
The certificate typically contains the name of the organisation, their
domain and server name and a serial number which is registered with a
Certification Authority who issues the certificates.

Digital certificates, sometimes referred to as SSL (Secure Socket Layer)
certificates, were introduced to encourage people to do business on
the Internet, as many consumers were, and still are concerned about
fraud. If a hacker discovers your credit card number, then they could
purchase items from the Internet using your card. Websites using digital
certificates usually advertise the fact prominently on the site using the
logo of the Certification Authority. Issuing organisations at the time
of writing include Symantec (under the VeriSign and Thawte brands),
Comodo Group, Go Daddy and Global Sign. You may see their names
and logos on various websites.

A digital signature is another method of ensuring the authenticity of
the sender. In the same way that a signature helps to prove someone’s
identity in real life, a digital signature does the same thing on the computer.
However, rather than being an actual signature, a digital signature uses
mathematical functions and the public/private key method.

For example, if A wants to send a message to B with a digital signature:
● The message being sent has a publicly known hashing algorithm applied

to it (see Chapter 10) to create what is known as a hash.
● The hash is encrypted using A’s private key as described earlier in the

chapter.

KEYWORDS
Digital certificate: a method
of ensuring that an encrypted
message is from a trusted
source as they have a certificate
from a Certification Authority.
Certification Authority: a
trusted organisation that
provides digital certificates and
signatures.

KEYWORD
Digital signature: a method
of ensuring that an encrypted
message is from a trusted
source as they have a unique,
encrypted signature verified by a
Certification Authority.

TR
OJAN

S

343

● The hash is appended to the message and becomes the digital signature.
● The message is sent to B who then uses A’s public key to decrypt the hash.
● The hash is then put through the same publicly known algorithm and the

result is compared to that in the original message.
● Where the two hashes are the same, the message is authenticated and

where they are different then the message cannot be authenticated.

● Trojans
A Trojan is a computer program designed to cause harm to a computer
system or to allow a hacker unauthorised access. It is one of a group
of malware programs, which is short for malicious software. The
distinguishing feature of a Trojan is that it is hidden away inside another
file and that it is not always obvious that a computer is infected. The Trojan
does not replicate itself in the same way as other malware and therefore it
can remain undetected for a long time.

This gives a hacker the opportunity to access a computer remotely without
the knowledge of the user. Once access is achieved it is possible to carry
out theft of data with a view to carrying out further crime. Alternatively,
the Trojan may simply be used to cause damage to the computer or data
stored on it.

Hackers are individuals or groups that gain or attempt to gain unauthorised
access to individual computers or the networks of organisations. Hackers’
motives vary enormously. At one end of the scale there is the amateur
hacker who views hacking as a game and simply enjoys breaking into other
people’s systems. When they get in, they rarely do any damage. At the other
end of the scale, there are professional hackers who can make a living by
carrying out fraudulent acts.

There are also groups of ‘ethical hackers’ who enjoy the notoriety that
hacking brings. These people tend to target large organisations such as
Microsoft in order to expose weaknesses in their security measures. Their
justification for this is to make big businesses take a more serious approach
to Internet security. Other hackers have political or religious motivations
and may target the websites of government agencies or religious groups
in order to get their own views across. In some cases, hacking is used as a
form of terrorism or sabotage against a particular nation.

 CASE STUDY: FLAME
The Flame malware, first reported in 2012, is being classed as a new
generation of superbug that is part Trojan, part worm and part virus.
Unlike many other malware programs, Flame is quite large at 20 MB
and its origin is currently unknown. Once it has installed itself it has the
capability to monitor network traffic, access data and programs, take
screenshots, record conversations and monitor keystrokes among other
things.

The malware is proliferating in the Middle East and is so large and
complex that some people believe it can only have been written by
a state government for the purposes of collecting information and
espionage.

KEYWORD
Trojan: malware that is hidden
within another file on your
computer.

344

 4
0

In
te

rn
et

 se
cu

ri
ty

● Viruses
A virus is a small malware program that is designed to cause damage to a
computer system or the data stored on it. A computer gets infected when
the malware installs itself on the computer from a number of sources
including pop-ups, email attachments or file downloads.

The virus itself will be attached to another file but once installed on the
host machine, it will activate. The defining feature of a virus is that it
replicates itself and can therefore cause extensive damage to individual
computers and networks as, like a human virus, it can spread anywhere.

Viruses are created for various reasons and have various impacts. At the
lowest level a virus may simply display an unwanted message. At the other
end of the scale, viruses can destroy whole networks and entire databases.

● Worms
The nature of the Internet means that viruses now have the potential to
spread very quickly around the world. Many of the world’s most infamous
viruses are classed as worms. Worms replicate themselves and are
designed to spread, exploiting any weaknesses in a computer’s defences.
The defining feature of a worm is that it does not need to be attached to
another file to infect the computer.

Router

Connection

Worm spreading

Infected
workstation

Workstation

Server

WorkstationWorkstation

Server

Server

Server

Router

Server

Figure 40.5 How worms spread

Figure 40.5 shows how a worm can quickly be passed around a network
and any other network that connects to it. In this scenario, it is possible for
every computer connected to get infected.

Well-known worms over recent years include ‘Mydoom’, ‘Sobig.f ’, ‘Iloveyou’
and ‘Melissa’. All of these proliferated via email and were able to spread
quickly as the malware was automatically sent to the email address list of
infected machines. Malware such as this infected millions of computers,
caused billions of pounds worth of damage and forced some very large
websites to close down temporarily.

KEYWORD
Virus: a generic term for
malware where the program
attaches itself to another file in
order to infect a computer.

KEYWORD
Worm: malware or a type of
virus that replicates itself and
spreads around a computer
system. It does not need to be
attached to another file in order
to infect a computer.

PR
OTECTIN

G
 AGAIN

ST TR
OJAN

S, VIR
U

SES AN
D

 W
O

R
M

S

345

● Protecting against Trojans, viruses
and worms
There are several ways of reducing the risks and the actions taken depend
on what kind of user you are:
● as a user there are actions you can take to protect your own computer

and data
● as a programmer there are steps you can take when writing your code

that will make programs more secure
● as a system administrator, there are particular steps that can be taken to

keep the whole system more secure.

As users there are many things we can do as individuals to protect our
computers:
● use anti-virus software and other anti-malware software and keep it up to

date
● keep operating system software up to date
● use a firewall
● do not open attachments or click on pop-ups from unknown senders
● operate a white list of trusted sites
● ensure sites use HTTPS, digital signatures and certificates
● use passwords on programs and files
● encrypt data files.

As programmers we can:
● select a programming language with in-built security features including

tools that check for common security errors
● use recognised encryption techniques for all data stored within the

program
● set administrative rights as part of the program and carefully control

access and permission rights for different users
● don’t load up lots of Internet services as part of your code unless they are

needed
● thoroughly test your code as errors can be exploited, specifically testing

for known security issues
● keep code up to date in light of new security threats
● never trust the user! Many threats are internal to an organisation

and might not be malicious. Major problems can be caused through
accidental misuse by a user.

As a system administrator we can:
● ensure that requests are coming from recognised sources
● use a network firewall and use the packet filtering and stateful inspection

techniques as described earlier in this chapter
● use encryption techniques as described earlier and ensure digital

certificates and signatures are used and are up to date
● keep anti-virus software up to date
● update the network operating system regularly.

Practice questions can be found at the end of the section on
pages 360 and 361.

346

 4
0

In
te

rn
et

 se
cu

ri
ty

TASKS
1 Describe why symmetric encryption is not considered to be as secure

as asymmetric encryption.
2 Explain how public and private keys are used in asymmetric encryption.
3 Explain how hashing is used to create a digital signature.
4 Describe how hardware and software can be used to create a firewall.
5 Describe three measures that a user can take to prevent unauthorised

access to computer systems.
6 Describe three ways in which a computer system can be protected

against viruses.
7 Discuss the following techniques, considering how effective they are

against hackers:
a) encryption
b) digital certificate
c) digital signatures.

STUDY / RESEARCH TASKS
1 There are organisations that exist to help programmers write more

secure code. One such organisation is the Common Weakness
Enumeration (cwe.mitre.org). Find out about the most common
security weaknesses listed on their website.

2 Three common errors in writing secure code are:
a) buffer overflows
b) cross-site scripting
c) SQL injection.
Find out what these mean and how as a programmer you could prevent
these errors occurring.

3 New viruses come out every day. Identify a recent virus. What does the
virus do? What was the intention of the person who wrote it?

4 ‘No system is 100 per cent safe.’ Discuss this statement considering
all the methods available to an organisation to protect their computer
systems and data.

5 Identify an organisation that provides digital certificates. Explain the
level of security they provide for users.

KEY POINTS
• A firewall can be implemented

using software and hardware
and protects networks from
unauthorised access.

• Data can be routed through
a proxy server so that a
network’s server is not
connected directly to the
Internet.

• Symmetric encryption is
where the sender and receiver
both use the same key to
encrypt and decrypt data.

• Private/public key encryption
or asymmetric encryption
uses two related keys, a
public key to encrypt data and
a private key to decrypt data.

• Digital certificates and
signatures are verified by
trustworthy organisations and
ensures that data is coming
from a trusted source.

• Viruses, Trojans and worms
are all examples of malicious
programs that can cause
damage to your data or
systems.

347

 41 Transmission Control
Protocol / Internet
Protocol (TCP/IP)

SPECIFICATION COVERAGE
3.9.4.1 TCIP/IP

3.9.4.2 Standard application layer protocols

LEARNING OBJECTIVES
In this chapter you will learn:
• how the TCP/IP stack is used to transmit data packets around networks
• about the four layers of the TCP/IP stack
• how sockets and ports are used in IP networks
• about the common transmission protocols including HTTP, FTP

and SSH
• how email and webs servers are used.

INTRODUCTION
You have already come across the concept of a protocol, which is
essentially a set of rules. In communications terms, it refers to the
various rules that govern how data is sent around networks. In this
chapter, we will be looking specifi cally at protocols that are relevant
to networks and in particular the various layers of the Transmission
Control Protocol and Internet Protocol (TCP/IP) stack which set the rules
relating to the transmission of data in TCP/IP networks.

The TCP/IP stack defines the rules relating to transmission of data packets.
IP controls the delivery of the packets and TCP keeps track of the packets
and re-assembles them on receipt. TCP/IP is made up of a number of layers
which are collectively referred to as a protocol stack. The TCP/IP stack is in
line with the International Standard communication protocol stack called
the Open System Interconnection (OSI) model. Within each layer there are
a number of other protocols.

KEYWORDS
TCP/IP: a set of protocols (set
of rules) for all TCP/IP network
transmissions.
Protocols: sets of rules.

A level only

 4
1

Tr
an

sm
is

si
on

 C
on

tr
ol

 P
ro

to
co

l /
 In

te
rn

et
 P

ro
to

co
l (

TC
P/

IP
)

348

TCP/IP is made up of four main layers, as shown in Figure 41.1:
● Layer 4 – Application layer: The application layer handles the

Domain Name System and a series of other protocols such as FTP,
HTTP, HTTPS, POP3, SMTP and SSH, which are covered later in
this chapter.
For example: incoming and outgoing data are converted from one
presentation format to another; presentation formats are standardised
so that different types of data (sound, graphics, video, etc.) can be
understood by the receiving device; data that have been compressed or
encrypted can be interpreted.

● Layer 3 – Transport layer: This contains most of the configuration
and coordination associated with the transmission that ensures that all
the packets have arrived and that there are no errors in the packets. It
also handles the way in which connections are made to create a path
for data to travel between nodes. The sender and receiver are identified
and authenticated and the communication is set up, coordinated and
terminated. Network resources are identified to ensure that they are
sufficient for the communication to take place.
For example: connections can be opened and closed; port
numbers are used to pass packets to the correct application in the
application layer.

● Layer 2 – Network or Internet layer: Defines the IP addresses of devices
that send and receive data and handles the creation and routing of
packets being sent and received.

● Layer 1 – Link layer: This layer provides synchronisation of devices
so that the receiving device can manage the flow of data being
received. It identifies what network topology is being used and
controls the physical signals that transmit the strings of bits around
the network, that is, the actual transmission of the 0s and 1s. It also
controls physical characteristics such as data transmission rates and
the physical connections in a network. On wireless networks it handles
the CSMA/CA protocol.

The highest level is closer to the user in that the
processes are usually handled using either the
operating system or application software. The
lower layers are handled using a combination of
hardware and software including the physical
or wireless connections between devices. It is
referred to as a stack because of the way in which
the request from the client machine passes down
through the layers of the protocol and then back
up through the layers of the server side, as shown
in Figure 41.2. This means that the last action
that takes place in the Link layer on the client
computer becomes the first action in the Link
layer in the server. This is an example of the last
in first out (LIFO) structure that characterises a
stack.

Application layer

TCP/IP

Transport layer

Internet layer

Link layer

Figure 41.1 The layers of
the TCP/IP stack

Client Web Server

Network layer

Link layer

Data communication channel

Transport layer

Application layerApplication layer

Transport layer

Network layer

Link layer

Figure 41.2 Simulation of the TCP/IP stack

KEYWORD
Port: an addressable location on
a network that links to a process
or application.

349

● Hypertext Transfer Protocol (HTTP) and
Secure HTTP (HTTPS)
Hypertext Transfer Protocol (HTTP) is the set of rules that govern how
multimedia files are transmitted around the Internet. The content of the
WWW is such that text, graphics, video and sound can all be transferred as
part of a web page. HTTP ensures that the files are transferred and received
in a common format. HTTP handles the transmission of this data. The
formatting and display of web pages is handled separately, typically by HTML.

Hypertext refers to the fact that the web pages will have hyperlinks to
other files. When you select a URL, either by typing it in or by clicking on
a hyperlink, the HTTP protocol on your computer sends a request to the IP
address of the computer that contains the web page. The HTTP protocol on
this computer than handles the request and sends back the web page in the
appropriate format.

This uses the client–server model which means that your web browser
acts as a client, requesting the services of the computer that contains the
web page, the server. Both client and server computers must use the same
protocols so that the files can be sent and received in the same format.

HTTPS is an extension of the protocol with added security. This is
commonly used on websites where personal information is used, such
as banking websites. Additional security includes authenticating the web
server and encrypting data that is being transmitted. It works by using
either the Secure Socket Layer (SSL) protocol or the Transport Layer
Security (TLS) protocol, both of which use data encryption.

● File Transfer Protocol (FTP)
FTP is another set of rules relating to the transfer of files around the
Internet. It is commonly used when a web page is uploaded from the
computer of the person who created the site to the web hosting server. It is
also used when software is downloaded from websites. When FTP is being
used for this purpose, it will be shown as the prefix in the URL.

It is similar to HTTP in that it works using the standard layers of TCP/IP.
However, HTTP tends to be used to transfer viewable content (web pages)
whereas FTP is commonly used to transfer program and data files.

File transfer can be anonymous or non-anonymous (protected) depending
on whether you need to identify yourself before the download. Where the
site is protected a username and password is required. Anonymous sites do
not require this.

● Secure Shell (SSH) Protocol
The Internet is often used to enable a user to connect to a remote computer
and execute programs and access resources on that computer. An example
of this might be when a computer engineer fixes a problem remotely, or
where you have access to school and college resources by logging on at
home. This uses the client–server model whereby the computer that you
use acts as the client and the computer that you control is the server. The
server computer is more commonly referred to as the host.

HTTP

HTTP and HTTPS

Client Server

HTTP + SSL/TLSClient Server

Figure 41.3 HTTP and HTTPS

KEYWORDS
HTTP: a protocol (set of rules)
for transmitting and displaying
web pages.
Client–server model: a way
of implementing a connection
between computers where one
computer (the client) makes
use of resources of another
computer (the server).
HTTPS: as above but with
encrypted transmission.

KEYWORD
FTP: a protocol (set of rules)
for handling file uploads and
downloads.

KEYWORD
Secure Shell (SSH) Protocol:
a protocol (set of rules) for
remote access to computers.

SECU
R

E SH
ELL (SSH

) PR
OTO

CO
L

 4
1

Tr
an

sm
is

si
on

 C
on

tr
ol

 P
ro

to
co

l /
 In

te
rn

et
 P

ro
to

co
l (

TC
P/

IP
)

350

In these situations, SSH is used to improve the security of the connection. It
does this partially by creating a secure network of nodes through which the
access is made available. Encryption is used on the data being transmitted
using public key encryption (see Chapter 27). In addition, password and
username login details would normally be required.

As SSH is secure, it is a useful protocol through which to access other
services. For example, if you wanted to access the email server remotely, it
would be more secure to do this using an SSH protocol than to access the
email server without it.

SSH commands are usually input using a command line interface. This
means that you have to know specific command words and the syntax (or
format) in which you need to type the words in. This is similar to the old
Disk Operating System or DOS interface that was the only way to operate
computers until graphical user interfaces (such as Windows) were developed.

For example, to move around folders in Windows you would just click on
the folder you wanted. In SSH folders are called directories and you need to
remember various mnemonics. For example:
● cd change directory
● cd/windows/programfiles change to the windows / program files directory
● rm essay.doc delete the file essay.doc
● mv essay.doc essay1.doc rename essay.doc to essay1.doc
● cp essay.doc essay1.doc create a copy of the file essay.doc called essay1.doc
● vi essay.doc create a file called essay.doc

● Simple Mail Transfer Protocol (SMTP) and
Post Office Protocol (POP3)
SMTP and POP3 are protocols used for sending and receiving emails.
SMTP is a specific protocol for sending emails and works through a series
of SMTP servers which store the email addresses of senders and recipients.
By linking with DNS servers, the IP address of the recipient is identified
and a connection can be established between sender and receiver. The data
in the email can then be transmitted. SMTP uses ports 25 and 587.

Where the data cannot be sent for any reason, SMTP uses a queuing system to
hold on to the email and then attempts to send it at a later time. It will continue
to do this for a set number of times. If it still fails to send, it will send a message
back to the sender indicating that delivery has failed. You also get a message if
the SMTP or DNS server fails to identify the email address or IP address.

Mail ServerMail Server

SMTP

SMTP SMTP

SMTP SMTP

Outbound mail

Inbound mail

User

User

Mail Server Mail Server

POP/IMAP

Internet

Internet

Figure 41.4 The SMTP and POP protocols

KEYWORDS
SMTP: a protocol (set of rules)
for sending emails.
POP3: a protocol (set of rules)
for receiving emails.

351

In order to receive mail, the client must first connect to the email server.
POP3 is a protocol which checks for incoming mail using port 110. It works
by creating a text file of any incoming messages associated with your email
address. If a message is received, it will append it to your text file and the
next time you log on, you will be able to access it in the form of an email
message using an email client, which is the chosen email application being
used on the network, such as MS Outlook.

● Email and web servers
Within a network, there may be one or more servers providing access to
applications, storage space and other resources. Often servers are set up to
perform specific functions on the network. Two examples of this are email
servers and web servers.
● Email server: This is typically a high specification machine with large

storage capacity that stores a database of all the network users and their
email addresses. It also stores all outgoing and incoming mail. Specific
software on the server is used to handle the storage and transmission
of emails, allowing users to access their emails regardless of what
other services are available. For example, accessing email would not be
dependent on having a particular ISP.
Typically an email application would be chosen within the organisation
and all users would have access to it as an email client. When the user
started to use the application, if POP3 was being used, port 110 would
be used to retrieve incoming emails while port 25 would be used to send
emails by SMTP.

● Web server: This is a server that hosts a website and handles traffic
from users to the site. For a home user, the web server will typically
be provided by their ISP. For business users it would be common
to have one or more servers dedicated as web servers. This is of
particular importance where the website is critical to the success of the
organisation. For example, an online retailer would need enough web
servers to ensure that users can get quick access to the website at all
times. There have been many examples of servers crashing or slowing
down due to unexpectedly large numbers of people accessing them.
Data stored on a web server may be in various formats including text,
scripts, and multimedia content. Web servers will make use of various
protocols including HTTP to ensure that all of these data are correctly
handled and formatted so that they appear correctly when viewed over the
Internet regardless of the hardware and software being used by the user.

● Web browsers
A web browser is an application that allows users to view web pages and
other resources and is critical in ensuring that websites appear exactly how
they were designed. In simple terms a browser needs to retrieve resources via
the URL, format them so that they display correctly on the screen and allow
some form of navigation and other user features such as bookmarking and
searching. This process may require several requests being made to the server
in order to load the various resources that make up a web page including
scripts, image, and style sheets. Not surprisingly, the main browsers such as
Internet Explorer, Google Chrome and Mozilla Firefox all have similar features.

KEYWORDS
Email server: a dedicated
computer on a network for
handling email.
Web server: a dedicated
computer on a network for
handling web content.

KEYWORD
Web browser: an application for
viewing web pages.

W
EB

 B
R

OW
SER

S

 4
1

Tr
an

sm
is

si
on

 C
on

tr
ol

 P
ro

to
co

l /
 In

te
rn

et
 P

ro
to

co
l (

TC
P/

IP
)

352

When a web page is loaded, a request is made to the domain name server
(DNS), which translates the URL into an IP address. This IP address is then
used to access the web page host. The host then serves the web page to the
browser on the client computer as shown in Figure 41.5. All browsers must
work within many of the protocols that we have looked at in this chapter,
mainly the hypertext transfer protocol, which defines how data is transmitted.

DNS Server

Web Server

Browser/Client

Send URL http//www.bluemoonstudio.org

Translates URL to IP address
returns to browser

Browser connects to web server using
IP address

Web server sends web pages to browser

1

2

3

4

Figure 41.5 The process of requesting and receiving a web page

When a web page is loaded, the browser may cache it, which means that it is
able to store it temporarily. The advantage of this is that if the user wishes to
revisit the same page then it can be retrieved from the local cache rather than
having to make the request to the DNS and host servers again. This renders
the page much more quickly and reduces the dependence on bandwidth.
However, if the page has changed on the host server, the version of the page
held in the cache may be out of date and therefore will need refreshing.

Practice questions can be found at the end of the section
on pages 360 and 361.

TASKS
1 What are the four layers of the TCP/IP stack?
2 Explain the need for protocols such as FTP and HTTP.
3 What are the key differences between HTTP and HTTPS?
4 How is it possible to complete access to a computer remotely using SSH?
5 Why might a network administrator choose to allocate servers to

specific tasks?

STUDY / RESEARCH TASKS
1 Describe the process that Nominet uses to allocate domain names.
2 The WWW is one service available via the Internet. Identify two other

services that are available.
3 Identify three browsers that are available and explain why you might

choose to use one rather than the others.
4 Identify other ways in which information can be downloaded from the

Internet without accessing the WWW.
5 What is Telnet protocol and why is it no longer in widespread use?
6 Telnet is sometimes associated with hacking. Why is this the case, and

what security measures could prevent its use for unauthorised purposes?
7 What are the alternatives to POP3?

KEY POINTS
• Protocols are sets of rules.

There are several protocols
that related to the transmission
of data around networks.

• The TCP/IP stack is a four-
layered set of protocols for
computer networks, including
the Internet.

• A socket is an endpoint
of a communication flow
on a computer network
that uniquely identifies an
application and device.

• Hypertext Transfer Protocol
(HTTP) is the set of rules that
govern how multimedia files
are transmitted around the
Internet.

• FTP is a set of rules relating
to the transfer of files around
the Internet.

• SSH is a set of rules relating
to the remote access of
computers on a network.

• SMTP and POP3 are protocols
relating to email.

353

 42 The client–server model

SPECIFICATION COVERAGE
3.9.4.10 Client–server model

3.9.4.11 Thin- versus thick-client computing

LEARNING OBJECTIVES
In this chapter you will learn:
• that the client–server model is one where a high specifi cation server

provides resources to any number of lower specifi cation clients
• how an application programming interface provides a common way

for programs to work together across networks
• what CRUD and REST are and how they are used
• what JSON and XML are and how they are used
• what thick- and thin-client computing is and how they compare.

INTRODUCTION
The client–server model is a methodology for connecting computers
together, usually over a network where one computer provides access
to resources for other computers that are connected to it. Typically this
might involve having a main server with large amounts of processing
power and storage capacity with any number of other computers
(clients) attached to it that then use the resources of the server.

The client may have few resources of its
own and therefore has to request the
services of the server. In a typical star
topology like the one shown in
Figure 42.1, each client
has its own physical
cable connection to
the server.

Server

Client

Client Client

Client

Figure 42.1 A typical star network

A level only

 4
2

Th
e

cl
ie

nt
–s

er
ve

r m
od

el

354

In a small network, there may be one server where all of the programs and
data are stored. Each client then requests a service as and when it needs it.
This might be to run a particular application, access a particular data file,
or gain access to the Internet. In practice, there are more likely to be several
servers in the network serving hundreds of clients. Servers and clients can
take on different roles depending on what tasks are completed by the users.
Examples of different servers include:
● File server: In a traditional network, the file server contains any type of

computer file, which could be programs or data.
● Web server: A server is used to serve up web pages for an Intranet.
● Proxy server: Each client computer is provided with a gateway to the

Internet through the server.
● Print server: All client print requests are sent to the same server where

they are prioritised, buffered and then printed.
● Database server: The server will store the contents of the databases and

access to the data will come from the individual clients.
● Application server: The server executes all of the procedures needed to

run applications.

The client–server model works on the basic principle of sender and receiver.
To initiate any communication and sharing of resources, the client must
make a request to the server. In turn the server responds to that request
and then provides the service that is being requested.

Server

ClientClient

ClientClient

request

request request

request

Figure 42.2 The client–server model

The client–server model is also used on the Internet. For example, email
is built on this model with each user being the client, sending requests to
their email provider, who responds to each request as it is received. FTP
services also use the model with the client making a request to upload a
file, which is then handled by the FTP server.

● Application Program Interface (API)
As we saw in Chapter 41, in order to communicate with each other
effectively, protocols are needed to define the rules by which the
communication will take place. All of these requests and the corresponding
transfer of services from server to client take place in the application layer
of the TCP/IP stack, which we looked at in detail in Chapter 41.

In addition to the protocols, an application program interface (API) is
used. An API defines the way in which programs can work together. They
are usually made up of standardised subroutines that can be customised to
provide an interface between one program and another. When using web
services, an API can also define the protocols that will be used.

KEYWORD
Application program interface
(API): a set of subroutines that
enable one program to interface
with another program

CR
U

D
 AN

D
 R

EST

355

One of these is the websocket protocol, which creates a connection
between a client and a server. The client first sends a handshaking
request to the server in order to establish the connection. In response,
the server creates a full duplex connection on a single socket. This allows
simultaneous exchange of data in both directions enabling the client and
server to communicate on an ongoing basis without the need to constantly
refresh a full web page. Effectively, the websocket has created a dedicated
link between the two computers. This is routed through port 80, the
dedicated HTTP port, meaning that it will work in situations where non-
web Internet connections have been blocked using a firewall.

Handshake (HTTP upgrade)

Client

WEBSOCKETS
A VISUAL REPRESENTATION

Server

Bi-directional messages

connection opened

PubNub

open and persistent connection

One side closes channel
connection closed

Tim
e

Figure 42.3 A websocket handling data passing between client and server

Data is sent in packets called messages, with minimal header
information, allowing for very fast transfer of data in both directions.
As these are all going down a persistent connection it allows for
real-time collaboration between client and server. This is of
particular value for certain web applications, where data is
constantly changing and time is critical. For example, an
online travel agent needs to respond instantly to ensure that
one holiday is not sold to two different people at the same
time; a share dealer requires an instantaneous share price in
order to make a trade.

● CRUD and REST
Many users access databases through a network or over the Internet. In
these situations, there are conventions and styles that are used to ensure
that data is stored, managed and represented correctly in the database.

The four main processes required with databases can be defined by the
acronym CRUD:
● C: Create
● R: Retrieve
● U: Update
● D: Delete

As well as representing the main database functions, it also refers to the
way in which data is actually displayed and reported on via the user
interface. Without these four functions it is not possible to have a complete
database. All databases will conform to the CRUD principle regardless of

KEYWORD
CRUD: an acronym that
explains the main functions of a
database: Create, Read, Update,
Delete.

KEYWORDS
Packet: a block of data being
transmitted.
Message: the name given to a
packet of data being transmitted
using the websocket protocol.

KEYWORD
Websocket protocol: a set of
rules that creates a persistent
connection between two
computers on a network to
enable real-time collaboration.

 4
2

Th
e

cl
ie

nt
–s

er
ve

r m
od

el

356

KEYWORDS
SQL (Structured query
language): a programming
language used to manage data
within a relational database.
REST (Representational State
Transfer): a methodology for
implementing a networked
database.
HTTP (Hypertext transfer
protocol): the protocol (set of
rules) to define the identification,
request and transfer of
multimedia content over the
Internet.

how they are built. Relational databases, which are covered in Chapter 43,
conform to the CRUD standard. In fact there is a one-to-one relationship
between CRUD and SQL commands as shown in the table below:

CRUD SQL
Create INSERT
Retrieve SELECT
Update UPDATE
Delete DELETE

REST stands for Representational State Transfer and is a design
methodology for networked database applications. It uses the hypertext
transfer protocol (HTTP) to carry out each of the four CRUD operations on
a networked database.

HTTP uses request methods which define the way in which data will be
handled. In the same way that CRUD can be mapped to SQL statements, it
can also be mapped to the HTTP request methods.

CRUD HTTP
Create POST
Retrieve GET
Update PUT
Delete DELETE

REST is an efficient way of implementing database applications over a
network as it makes use of existing protocols within HTTP, which has
already been adopted as the standard way of transferring data. This means
that it will work on any type of local machine architecture, with any
operating system and can be run through a firewall for added security. The
basic process is shown in Figure 42.4.

Request for resources using URL e.g. http://example.com/database/customer = brown
(HTTP retrieve)

Browser Database
Server

Data sent back using
JSON or XML
(HTTP response)

CLIENT SERVERWeb Server API

Figure 42.4 The REST model

● The client makes a request to the server from the browser of the local
machine.

● The service requested is the database identified by its Uniform Resource
Locator (URL), which uniquely identifies the resource on the server and
contains the database query.

● The API is run from the server and accessed by the browser to coordinate
processes between client and server applications.

● HTML files are used to ensure data is displayed in the correct format on
the client side.

● Requests and data are transferred using HTTP.
● JSON (JavaScript Online Notation) or XML (Extensible Markup

Language) are used to return the results of the query.

JSO
N

 (JAVASCR
IPT O

N
LIN

E N
OTATIO

N
) AN

D
 XM

L (EXTEN
SIB

LE M
AR

K
U

P LAN
G

U
AG

E)

357

For example, to create a query to find all customers named ‘Brown’ might
look like this:
http://www.example.com/customers/brown
This query, which looks like a normal URL, is sent to the server using the
GET statement in HTTP. The result of the query will then be returned in
JSON or XML format as shown in the next section.

● JSON (JavaScript Online Notation) and
XML (Extensible Markup Language)
JSON and XML are two alternative methods for formatting data objects
that are being transferred across servers and web applications. Both have
become standard methods.

JSON is a data format originally created as part of the JavaScript
programming language, but now available as a standalone format that can
be implemented using most programming languages. It is defined as
human-readable and is made up of an object and values. For example,
a database of names might look like this:

{"customers":[
 {"firstName":"Alan", "lastName":”Brown"},
 {"firstName":"Asif", "lastName":"Javid"},
 {"firstName":"Mary", "lastName":"Smith"}
]}

In this case the objects are firstName and lastName and the values of
each are shown in speech marks. In standard database terms an object is a
field and a value is record.

JSON is a compact code that is very easy to understand from a human point
of view and therefore easy to implement. Similarly it is easy for computers
to parse (or interpret) as each object and value is clearly defined and
described on each line.

XML is a markup language that defines how data is encoded. Formatting
data in XML is similar to writing code in a programming language and
therefore requires more knowledge than producing a JSON file. The
example below shows the same database of names written in XML:

<customers>
 <customer>

 <firstName>Alan</firstName>
<lastName>Brown</lastName>

 </customer>
 <customer>

 <firstName>Asif</firstName>
<lastName>Javid</lastName>

 </customer>
 <customer>

 <firstName>Mary</firstName>
<lastName>Smith</lastName>

 </customer>
</customers>

KEYWORDS
JSON (JavaScript object
notation): a standard format for
transmitting data.
XML (Extensible markup
language): a method of defining
data formats for data that will be
transmitted around a network.

 4
2

Th
e

cl
ie

nt
–s

er
ve

r m
od

el

358

KEYWORD
Client–server database: a way
of implementing a database
where the database is put into
a server and various users
can access it from their
workstations. The processing,
for example, running a query,
will take place on the server.

● JSON vs XML
JSON and XML have developed as the two main methods of sharing data
on networked client–server databases. They have many things in
common but there are also differences. Table 42.1 summarises the main
similarities and differences:

Table 42.1 Comparison of JSON and XML

JSON XML
Human

readable
Very easy to read as it is based on
defining objects and values.

Slightly less easy to read as data
is contained within markup tags.

Compact
code

Less code is created than XML. Requires more code then JSON.

Speed of
parsing

Quicker than XML as data is clearly
defined as object and value.

Slower than JSON as the data
has to be extracted from the tags.

Ease of
creation

Easier to create as the syntax of
the coding is easier.

Similar to programming so
therefore more knowledge is
required.

Flexibility
and

extendibility

Works with a limited range of
data types, which may not be
sufficient for all applications.

Provides complete freedom
over what data types are
created and therefore allows
greater flexibility.

● Thin- vs thick-client computing
A thin client is a computer that depends heavily on a more powerful
server to fulfil most of its requirements and processing. The server
would be a large powerful computer with lots of processing power and
storage capacity that stores the main programs and datasets. The client
then taps into these resources, which are not available on the local
machine, using a much lower specification computer. In this scenario
the majority of hardware and software resources are at the server end.
In this scenario the server actually runs the software with the client
machine simply acting as a ‘terminal’ with very little processing power
and no hard disk.

A thick client is a fully specified computer like the ones most people have
at home. They do not need servers to carry out their processing most of the
time. In thick- client computing the resources are allocated between client
and server in a different way giving the client greater processing power,
more local storage and access to software that is installed and run from
the client machine. In this scenario more of the hardware and software
resources are at the client end.

The decision on whether to configure a network using a thin- or thick-
client model depends largely on what tasks users are completing and
what resources they need. Also, with many applications being hosted
on the Internet and accessed via browsers, organisations can move more
towards thin clients with services available via the Internet rather than
via the LAN.

There are advantages and disadvantages with each system as shown in
Tables 42.2 and 42.3.

KEYWORDS
Thin client: in a network
where one computer contains
the majority of resources,
processing power and storage
capacity, which it distributes to
other clients.
Thick client: in a network
where resources, processing
power and storage capacity are
distributed between the server
and the client computers.
Terminal: a computer that has
little or no processing power or
storage capacity used as a client
in a thin client network.

TH
IN

- VS TH
ICK

-CLIEN
T CO

M
PU

TIN
G

359

Table 42.3 Advantages and disadvantages of the thick-client model

Advantages Disadvantages
Reduced pressure on the server leading to more uptime. Reduced security if clients can download software or access

the Internet remotely.
Clients can store programs and data locally giving them
more control.

More difficult to manage and update as new hardware and
software need installing on each client machine.

Fewer servers and lower bandwidth can be used. Data is more likely to be lost or deleted on the client side.
Suitable for tablets and mobile phones that require more of
the processing and storage to be done on the server side.

Can be difficult to ensure data integrity where many clients are
working on local data.

TASKS
1 What are the principles of the client–server model? Give examples of

where it might be used.
2 What is thin- and thick-client computing?
3 Give three advantages and three disadvantages of thin-client computing.
4 What is the purpose of an API?
5 Explain how the websocket protocol creates a persistent connection

between client and server.
6 Explain the relationship between CRUD, REST, SQL and HTTP.
7 Explain where you might use JSON and XML and why you might

choose to use one rather than the other.

STUDY / RESEARCH TASKS
1 Will all applications eventually be hosted on the Internet and accessed

via a browser?
2 Research some commonly used APIs.
3 How is full duplex transmission achieved on a network?
4 What is SOAP and how does it compare to REST?
5 Research into other data transfer formats such as YAML or SXML.
6 JSON and XML have been adopted as standard. Why do some formats

get adopted and other disappear?

KEY POINTS
• The client–server model is a

methodology for connecting
computers together, usually
over a network where one
computer provides access to
resources for other computers
that are connected to it.

• An application program
interface (API) defines the way
in which programs can work
together.

• CRUD stands for Create,
Retrieve, Update, Delete.

• Representational State
Transfer is a design
methodology for networked
database applications.

• JSON and XML are two
alternative methods for
formatting data objects that
are being transferred across
servers and web applications.

• A thin client is a computer
that depends heavily on a
more powerful server to fulfil
most of its requirements and
processing

• A thick client is a fully specified
computer like the ones most
people have at home.

Table 42.2 Advantages and disadvantages of the thin-client model

Advantages Disadvantages
Easy and cheaper to set up new clients as fewer resources
are needed.

Clients are dependent on the server so if it goes down, all
clients are affected.

The server can be configured to distribute all the hardware
and software resources needed.

Can slow down with heavy use.

Hardware and software changes only need to be implemented
on the server.

May require greater bandwidth to cope with client request.

Easier for the network manager to control clients. High-specification servers are expensive.
Greater security as clients have fewer access rights.

Practice questions can be found at the end of the section on pages 360 and 361.

360

Se
ct

io
n

N
in

e:
 P

ra
ct

ic
e

Q
ue

st
io

ns

Section Nine: Practice questions
1 When data is transmitted, additional bits of data are often added to each bit string.

a) Asynchronous data transmission uses start and stop bits. Use an example to explain the purpose of these.
b) The ASCII coding system uses seven bits to encode a character. The eighth bit can be used as a parity bit.

Explain how a parity bit is used when transmitting ASCII codes using even parity.
c) Use an example to show how a check digit can be used. What is the purpose of the check digit?

2 A college uses a LAN (Local Area Network) to share software and printers between its students.
The diagram shows the current topology.

Workstation

File server WorkstationWorkstation

Workstation

Printer

Internet
connection

a) Name this topology.
b) Give one advantage of this topology.
c) Give one disadvantage of this topology.

3 Computers could be connected in a topology such as a star or bus. State one advantage of a bus topology
over a star topology.

4 An example of a fully qualified domain name is www.aqa.org.uk. Using this example, explain each part of
the address:
a) www b) aqa c) org d) uk

5 The domain name is referred to as a look-up for the IP address.
a) What does this mean?
b) Why do users prefer to use a domain name rather than an IP address to access a server?

6 The Internet is one example of a WAN (Wide Area Network).
a) Describe a WAN.
b) Identify two protocols that are used on the Internet. Why are protocols needed?
c) Explain how security of data transmission could be improved with the use of a digital signature.
d) Describe how public and private keys are used to create asymmetric encryption.

7 A computer connects to a server using port 60. The IP address and port number create a socket address.
a) What is a socket?
b) What is a port number?
c) What is an IP address?
d) How can computers connected to a network be identifi ed?

361

Section N
ine: Practice questions

 8 Port A of the router in the diagram is assigned the IP address 192.168.1.1. Port B is assigned the IP address
213.208.10.146. Which of these IP addresses needs to be registered with an Internet Registry and why?

Workstation1 Workstation2 Workstation3

Switch

ISP

Port A
Router
Port B

 9 Some governments put pressure on ISPs to monitor and control the way in which users access the Internet.
Give two reasons why governments may want to control users’ access to the Internet.

10 Explain how the collision detection system called Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) CMSA/CA protocol works in a WiFi network.

11 What is the relationship between baud rate, bit rate and bandwidth?

12 The star topology in Figure 38.2 is configured as a client–server network.
a) Explain the term client–server.
b) Under what circumstances might a peer-to-peer network be used?
c) Explain the difference between a thick and a thin client.

13 The full IP address of a workstation in a network is shown in binary as:

 01110101.00110010.10010100.10101000

The administrator uses a subnet mask to identify the fi rst 24 bits of the IP address: 255.255.255.0.
Show how the subnet mask would be applied and what the resulting address would be.

14 What are the main features of the Secure Shell (SSH) protocol?

Section Ten:
Fundamentals of
databases

364

INTRODUCTION
A relational database models data as mathematical relations, with
each relation being composed of tuples of data, and the data within
each tuple being related in some way. When a relational database
model is implemented by software, a relational database program will
represent each relation as a table, and each tuple will be a record within
a table. The data in different tables can be linked together to express
relationships that exist between the data in the tables.

LEARNING OBJECTIVES
In this chapter you will learn:
• how relational databases store related data in linked tables
• how to defi ne relationships between tables and link them together

using primary and foreign keys
• how to represent relationships using Entity Relationship (ER) diagrams
• how to defi ne the data within a relational database
• what the main components of a relational database are and how to set

one up
• how to normalise a relational database.

SPECIFICATION COVERAGE
3.10.1 Conceptual data models and entity relationship modelling

3.10.2 Relational databases

3.10.3 Database design and normalisation techniques

 43 Relational databases

● Relationships
If you were to set up a database for a movie download site, you may create
one table to store customer data, one to store data about the movies and
one to store download details:
● The CUSTOMER table contains data all of which are related to the

customer, for example, their name and address.
● The MOVIE table contains data related to the movie, for example, the title

and genre.

KEYWORD
Relational database: a method of
creating a database using tables
of related data, with relationships
between the tables.

KEYWORD
Table: a method for implementing
on entity and attributes as a
group of related data.

A level only

365

EN
TITY R

ELATIO
N

SH
IP D

IAG
R

AM
S

● The DOWNLOAD table contains data related to the actual download itself,
for example, when it was downloaded, how much the customer paid,
what file type was downloaded.

There are some real-world relationships between these three tables. For
example:
● one-to-many: one customer may have many downloads
● many-to-many: one customer could download many movies and one

movie could be downloaded by many customers.

It is also possible, albeit less common, to have a one-to-one relationship
although there are none in this particular example.

● Entities
In a relational database, a relation stores information about an entity and
its attributes. An entity is an object about which data will be stored. In our
movie example, a customer may be an entity that has attributes such as
name and address. These relations are described and stored within tables.
In this example, we have already identified three tables: CUSTOMER,
MOVIE and DOWNLOAD.

One of the first tasks when creating a relational database is to decide on
how many tables are needed to solve the problem. To do this, you must use
a technique called normalisation, which ensures that databases are truly
relational and are organised effectively. In view of this a further table called
MOVIEFORMAT is added to the database. The reasons for this are explained
in more detail later in this chapter in the section on normalisation.

Note that it is common practice to identify tables with capital letters and
this has been adopted in this book.

● Attributes
An attribute is a piece of information about an entity, which is implemented
as a field in a relational database. With the movie download database
example, we will store different items of data relating to each entity in a
table. Possible attributes, only some of which we will use, include:

CUSTOMER: Customer Name, Address, Phone Number, Date
of Birth

MOVIE: Movie Title, Age Classification, Genre

DOWNLOAD: Date of Download, Price, Method of Payment

MOVIEFORMAT: File type

● Entity relationship diagrams
A relationship is the link created between two entities. Each entity is likely
to be related to at least one of the other entities. There are three types, or
degrees, of relationship, two of which exist in the movie database:
● One-to-many: One customer will have many downloads.
● Many-to-many: Many customers could have many downloads.

KEYWORD
Entity: an object about which
data will be stored.

KEYWORD
Attribute: a characteristic or
piece of information about an
entity, which would be stored as
a field in a relational database.

366

 4
3

Re
la

ti
on

al
 d

at
ab

as
es

Entity relationship diagrams are used to show these relationships as
shown in Figure 43.1.

Notice that the name of the entity is shown in the box with the lines
indicating the nature of the relationship. Labels are usually added above the
lines to clarify the relationship.

The nature of relationships is sometimes hard to define. You should choose
the one that best describes the relationship in logical terms. In our example
you could say that the relationship between CUSTOMER and DOWNLOAD
could be any one of the three:
● One customer has one download.
● One customer has many downloads.
● Many customers have many downloads.

However, the most accurate way to describe it is that one customer could
have many downloads because this best describes the nature of the
relationship in a real-life context.

When creating a relational database, you should replace any many-to-
many relationships with one-to-many relationships. In the example, we
replace the many customers to many movies relationship setting up the
DOWNLOAD entity as a link as shown:

CUSTOMER MOVIEDOWNLOAD

Figure 43.2 Resolving a many-to-many relationship

The third type of relationship, which does not exist in the movie database,
is a one-to-one relationship. In a school, if a teacher only taught in one
classroom and that classroom was only used by the one teacher, then
this would be a one-to-one relationship. This relationship is shown in
Figure 43.3.

teaches inTeacher Classroom

Figure 43.3 Entity relationship diagram for a one-to-one relationship

● Primary key and entity identifier
The primary key is the attribute in each table that uniquely identifies
each record. It is related to the concept of an entity identifier, which is an
attribute that can be used to uniquely identify each instance of an entity at
the conceptual level. There must be a way of ensuring that every record in
an entity table can be identified individually, otherwise the relationships
between the tables cannot be made. For example, in the CUSTOMER table
we will need to store hundreds of names and addresses. We could use the

KEYWORDS
Primary key: an attribute that
can be used to uniquely identify
every record within a table.
Entity identifier: an attribute
which can uniquely identify each
instance of an entity.

KEYWORD
Entity relationship diagram:
a visual method of describing
relationships between entities. CUSTOMER DOWNLOAD

may have many

CUSTOMER MOVIE
may download many

One-to-many

Many-to-many

Figure 43.1 Entity relationship diagram

FO
R

EIG
N

 K
EY

367

customer’s name as the primary key but if there were two customers with
the same name, then we would not be able to tell one from the other. There
are three possible solutions:
● Use a unique attribute: Sometimes there is an attribute that is already

unique. For example, if you were storing personal details you could use
the National Insurance number as this is unique to every person in the
country. If you were storing data about cars, you could use the Vehicle
Identification Number (VIN) as this is unique to a particular car.

● Create a unique attribute: We could invent a unique code or identifier
(ID) for each customer. Then if two people had the same name, the
ID would be used so that you knew which was which. This could
be used in our example as we could create a customer ID. Some
relational database programs such as Microsoft Access have a facility
called ‘AutoNumber’ which automatically allocates a unique number
to each record.

● Use a composite key: Two or more attributes could be used in
combination. For example, using name and address as a composite key
may ensure that each record is unique as it is unlikely that you will have
two customers with the same name at the same address. However, it is
still possible, for example, a father and son who are both called John
Smith who live at the same address.

● Foreign key
A foreign key is an attribute that appears in more than one table and is
used to create the link between tables. The foreign key in a table must be
a primary key from another table. For example, if one customer can have
more than one download, how do we create the one-to-many relationship
between the CUSTOMER table and the DOWNLOAD table?

The answer is to put the CustomerID in the DOWNLOAD table as a foreign
key. The relationships in our movie download case study could be shown as
in Figure 43.4.

Primary keys shown
in bold

Foreign keys shown
in italics

 CUSTOMER

CustomerID
CustomerName
Address
PhoneNumber
DateOfBirth

 MOVIE

MovieID
MovieTitle
AgeClassification
Genre
FormatID

 MOVIE FORMAT

FormatID
FileType

 DOWNLOAD

DownloadID
DateOfDownload
Price
MethodOfPayment
CustomerID
MovieID

Figure 43.4 Links between tables

● Primary keys have been added for each entity in the form of unique IDs.
● CustomerID appears on the CUSTOMER table as the primary key and

on the DOWNLOAD table as a foreign key.
● MovieID appears on the MOVIE table as the primary key and on the
DOWNLOAD table as a foreign key.

● FormatID appears on the MOVIEFORMAT table as the primary key and
on the MOVIE table as the foreign key.

KEYWORD
Foreign key: an attribute in a
table that is a primary key in
another table and is used to link
tables together.

368

 4
3

Re
la

ti
on

al
 d

at
ab

as
es

Now that the relationships have been created, the four tables become
one database. Users of the database will be unaware of the structure in
the background. As far as they are concerned they are dealing with one
database that contains all the information they need. It is common practice
to write out the details of relational databases in standard database notation
as shown:

CUSTOMER (CustomerID, CustomerName, Address,
PhoneNumber, DateOfBirth)

MOVIE (MovieID, MovieTitle, AgeClassification, Genre,
FormatID)

DOWNLOAD (DownloadID, DateOfDownload, Price,
MethodOfPayment, CustomerID, MovieID)

MOVIEFORMAT (FormatID, FileType)

Note:
● the name of the table is shown in capitals
● all the attributes are placed between brackets
● primary keys are underlined.

● Normalisation
Normalisation is the process of ensuring that a relational database conforms
to certain rules that ensure that the data within it is stored in the most efficient
way. In simple terms a database is normalised when there is no redundant data
and when each item of data is stored in the correct table and at an atomic level.
● Redundant data occurs when the same field is unnecessarily duplicated

in two or more tables. For example, many different customers may
download the same movie. If all the movie details were stored every time
it was downloaded, much of the data would be redundant as we only
actually need to store the movie details once and then link those details
to each customer who downloads it.

● Storing the same data multiple times can also lead to the problem of data
inconsistency, for example we might store the same customer’s details
several times but the telephone number stored might differ. How would
we know which was correct?

● Storing data at an atomic level means that they cannot be further
decomposed. For example, a table may contain an attribute called Address
that stores the full address of the customer. At an atomic level, this could
be decomposed into several attributes, for example: HouseNumber,
Street, Town, County, or AddressLine1, AddressLine2 etc.

When a database is constructed according to these rules it is said to be in
normal form.

There are various levels of normal form and the level that a programmer
needs to go to depends on the complexity of the database. For A level, you
should be able to develop a database to ‘third normal form’ (3NF). The
process of normalisation is shown below for the movie download database.

First normal form (1NF)
First normal form is achieved by ensuring that a table does not contain
repeating attributes or repeating groups and that all of the data in the table

KEYWORD
Normalisation: the process
of ensuring that a relational
database is structured
efficiently.

N
O

R
M

ALISATIO
N

369

● This is not in first normal form (1NF) because there are repeating groups,
which are shown in the DateOfDownload, MovieID, MovieTitle,
Genre, Format and FileType columns. A repeating group is when
a group of values is stored in a particular row/column intersection in a
database table instead of a single value.

● To satisfy first normal form, the repeating groups should be replaced by
creating one record for each download as shown in Table 43.2.

Table 43.2

CustomerID CustomerName Address DateOfDownload MovieID MovieTitle Genre Format FileType

1 John Smith 1 High
Street

19/03/15 1 The Hangover Comedy LowRes MPEG-2

1 John Smith 1 High
Street

19/03/15 2 22 Jump Street Comedy LowRes MPEG-2

2 Mary Jones 14 Acacia
Avenue

19/03/15 3 The Hunger
Games

Sci-Fi HiRes MPEG-4

2 Mary Jones 14 Acacia
Avenue

19/03/15 4 Robocop Sci-Fi HiRes MPEG-4

2 Mary Jones 14 Acacia
Avenue

19/03/15 2 22 Jump Street Comedy LowRes MPEG-2

3 John Smith 23 Maple
Drive

19/03/15 5 How to Train
Your Dragon

Children HiRes MPEG-4

3 John Smith 23 Maple
Drive

19/03/15 4 Robocop Sci-Fi HiRes MPEG-4

● If a customer downloads more than one movie then there will be
multiple records for the same customer. In the case of Mary Jones, she
has three records in the table as she has downloaded three movies.

● Each download can now be uniquely identified with a composite key
made up of CustomerID and MovieID, so this could be made
into the primary key. It is possible that one customer could download
the same movie again, in which case this primary key would not be
adequate, but for this example we will assume that a customer will only
download the same movie once.

Second normal form (2NF)
Second normal form is achieved by ensuring the database is in first normal
form and then removing attributes that depend upon part but not all of the
primary key by creating additional tables.

Table 43.1

CustomerID CustomerName Address DateOfDownload MovieID Movie Title Genre Format FileType

1 John Smith 1 High
Street

19/03/15
19/03/15

1
2

The Hangover
22 Jump Street

Comedy
Comedy

LowRes
LowRes

MPEG-2
MPEG-2

2 Mary Jones 14 Acacia
Avenue

19/03/15
19/03/15
19/03/15

3
4
2

The Hunger Games
Robocop
22 Jump Street

Sci-Fi
Sci-Fi
Comedy

HiRes
HiRes
LowRes

MPEG-4
MPEG-4
MPEG-2

3 John Smith 23 Maple
Drive

19/03/15

19/03/15

5

4

How to Train Your
Dragon
Robocop

Children

Sci-Fi

HiRes

HiRes

MPEG-4

MPEG-4

is atomic. For example, a first attempt at creating a database for the movie
download system might produce Table 43.1.

370

 4
3

Re
la

ti
on

al
 d

at
ab

as
es

The non-key attributes are all the other attributes apart from the primary
key. For example, Address, DateOfDownload, Genre and
FileType are non-key attributes. To be in second normal form, any non-
key attributes that depend upon part but not all of the primary key should
be removed to another table. For example, the Address of the customer is
dependent on the CustomerID, but not on the MovieID. Similarly, the
Genre is dependent on the MovieID but not on the CustomerID. So,
both Address and Genre are examples of attributes that depend on part
but not all of the primary key. This means that separate tables are needed to
store the customer data and the movie data.

To start with, we will separate the information about customer downloads
and movies into two tables:

Table 43.3 CUSTOMER DOWNLOAD

CustomerID CustomerName Address DateOfDownload MovieID

1 John Smith 1 High Street 19/03/15 1

1 John Smith 1 High Street 19/03/15 2

2 Mary Jones 14 Acacia
Avenue

19/03/15 3

2 Mary Jones 14 Acacia
Avenue

19/03/15 4

2 Mary Jones 14 Acacia
Avenue

19/03/15 2

3 John Smith 23 Maple Drive 19/03/15 5

3 John Smith 23 Maple Drive 19/03/15 4

Table 43.4 MOVIE

MovieID MovieTitle Genre Format FileType

1 The Hangover Comedy LowRes MPEG-2

2 22 Jump Street Comedy LowRes MPEG-2

3 The Hunger Games Sci-Fi HiRes MPEG-4

4 Robocop Sci-Fi HiRes MPEG-4

5 How to Train Your Dragon Children HiRes MPEG-4

Notice that when we split the initial table up into two tables, we have kept
an attribute which is common to both tables (MovieID) so that we can
link the information in the two tables together.

Each movie in the MOVIE table (Table 43.4) is now identified by the
primary key MovieID. Every non-key attribute in the MOVIE table
depends on the whole of this primary key, so this table is now in
second normal form. The MovieID field also exists in the CUSTOMER
DOWNLOAD table, as a foreign key.

The CUSTOMER DOWNLOAD table (Table 43.3) is more problematic as
the primary key for this table would be a composite key made up of
the CustomerID and the MovieID. Together, these two fields form a
primary key as they would be unique to each record because we have
assumed that a particular customer will only download the same movie
once. It is still the case that this table is not in second normal form as
it contains attributes that depend upon part, but not all, of the primary

N
O

R
M

ALISATIO
N

371

key. For example, CustomerName depends upon the CustomerID
but not the MovieID. The solution is to split this table up further into a
CUSTOMER table and a DOWNLOAD table:

Table 43.5 CUSTOMER

CustomerID CustomerName Address

1 John Smith 1 High Street

2 Mary Jones 14 Acacia Avenue

3 John Smith 23 Maple Drive

Table 43.6 DOWNLOAD

CustomerID MovieID DateOfDownload

1 1 19/03/15

1 2 19/03/15

2 3 19/03/15

2 4 19/03/15

2 2 19/03/15

3 5 19/03/15

3 4 19/03/15

The CUSTOMER table (Table 43.5) now has the attribute CustomerID as
the primary key. The two other attributes in this table depend on the whole
of the primary key so this table is now in second normal form. In fact, as
the primary key for this table consists of only one attribute, it would not be
possible for an attribute to depend upon part but not all of this.

As we have assumed that each customer will download a movie only
once, the DOWNLOAD table (Table 43.6) can have a composite key made
up of CustomerID and MovieID. The only other attribute in the table,
DateOfDownload, depends on both of these, so this table is also in
second normal form.

Third normal form (3NF)
Third normal form is achieved by ensuring the database is in second
normal form and then removing non-key attributes that depend upon other
non-key attributes by creating additional tables.

If we look at each of the three tables in turn:
● Table 43.4 MOVIE: It can be noted that the FileType depends upon the
Format. All LowRes films are recorded in MPEG-2 format and all HiRes
films are recorded in MPEG-4 format. Therefore, the non-key attribute
FileType depends upon the non-key attribute Format so we can split the
format information off from the movie information to create two new tables:

Table 43.7 MOVIE

MovieID MovieTitle Genre Format

1 The Hangover Comedy LowRes

2 22 Jump Street Comedy LowRes

3 The Hunger Games Sci-Fi HiRes

4 Robocop Sci-Fi HiRes

5 How to Train Your Dragon Children HiRes

372

 4
3

Re
la

ti
on

al
 d

at
ab

as
es

Table 43.8 MOVIEFORMAT

Format FileType

LowRes MPEG-2

HiRes MPEG-4

Both of these tables are now in third normal form. Table 43.7 MOVIE
has MovieID as the primary key and all the non-key attributes in this
table depend upon MovieID and no other non-key attributes. Table 43.8
MOVIEFORMAT has Format as the primary key and only contains one
other attribute, FileType. As there is only one non-key attribute in this
table, it must be in third normal form as it is not possible for a non-key
attribute to depend on another non-key attribute.
● Table 43.5 CUSTOMER: The Address and Name both depend on the
CustomerID and not on each other, so this table is already in third
normal form.

● Table 43.6 DOWNLOAD: There is only one non-key attribute, so this
cannot possibly depend upon another non-key attribute, so this table
must already be in third normal form.

Fully normalised design
The final, fully normalised design of the database is as follows:

CUSTOMER
CustomerID CustomerName Address

1 John Smith 1 High Street

2 Mary Jones 14 Acacia Avenue

3 John Smith 23 Maple Drive

MOVIE
MovieID MovieTitle Genre Format

1 The Hangover Comedy LowRes

2 22 Jump Street Comedy LowRes

3 The Hunger Games Sci-Fi HiRes

4 Robocop Sci-Fi HiRes

5 How to Train Your Dragon Children HiRes

MOVIEFORMAT
Format FileType

LowRes MPEG-2

HiRes MPEG-4

DOWNLOAD
CustomerID MovieID DateOfDownload

1 1 19/03/15

1 2 19/03/15

2 3 19/03/15

2 4 19/03/15

2 2 19/03/15

3 5 19/03/15

3 4 19/03/15

N
O

R
M

ALISATIO
N

373

● The CustomerID is the primary key of the CUSTOMER table and a
foreign key in the DOWNLOAD table.

● The MovieID is the primary key of the MOVIE table and a foreign key in
the DOWNLOAD table.

● The Format is the primary key of the MOVIEFORMAT table and a
foreign key in the MOVIE table.

● The DOWNLOAD table has a composite key made up of CustomerID
and MovieID.

● At this point, a database designer might choose to add an additional
field, DownloadID, to the DOWNLOAD table which would be unique
for each download. This would mean that the composite key of
CustomerID+MovieID could be replaced by a primary key that was
just one field. This might be considered to be an improvement, but it is
not required for normalisation.

In summary, the characteristics that a relation database design must have to
be fully normalised are:
● All of the data must be atomic / there must be no repeating groups / no

repeating attributes.
● There should be no partial dependencies, where a non-key attribute

depends upon part but not all of the primary key.
● There should be no non-key dependencies, where a non-key attribute

depends upon another non-key attribute.

Practice questions can be found at the end of the section on
pages 390 and 391.

TASKS
1 What is a relational database?
2 Explain the following terms:

a) entity b) attribute c) relationship.
3 Describe how primary keys and foreign keys are used to create

relationships between tables.
4 A company employs engineers to fix faults on photocopiers. The

company has 20 engineers and over 200 clients. The engineers
will travel to client sites in order to fix their machines and can fix
between one and five machines a day. The company employs a ‘work
controller’ who takes the call from the client and then allocates an
engineer to the job. She uses a relational database to keep track of
all the details relating to the clients, engineers and jobs. Part of the
database is shown below in standard notation:
CLIENT (Name, Address)

ENGINEER (Name, Address)

JOB (Date, Nature of Problem)
a) Suggest a suitable identifier for each table.
b) Draw an entity-relationship diagram to show the relationship

between the three entities.
c) Suggest foreign keys that could be used to create the relationships.
d) Identify four other attributes that the company may store.
e) Now complete the standard notation.
f) How could attributes be combined to form a composite key the
ENGINEER table?

374

 4
3

Re
la

ti
on

al
 d

at
ab

as
es

STUDY / RESEARCH TASKS
1 There are further stages of normalisation beyond third normal form

(3NF) including fourth normal form (4NF) and Boyce-Codd normal
form (BCNF). Research these and find out why they are necessary.

2 What is a flat-file database and why is a relational database more
suited to storing complex data?

3 Create a relational database for the movie download database used in
this chapter, using a programming language or database application
available within your centre.

KEY POINTS
• Relational databases are

made up of related data
stored within a series of
linked tables.

• Entity relationship diagrams
can be used to show the
relationships that exist
between tables.

• The main relationships are:
one-to-one, one-to-many and
many-to-many.

• Primary keys uniquely identify
each record within a table.

• A foreign key in one table is
the primary key in another
table and is used to link the
tables together.

• Normalisation is the process
of ensuring that data is stored
efficiently to eliminate data
redundancy and ensure data
consistency.

5 A garage uses a database to store details about its customers, their
cars and the repairs that are carried out. The system is currently
stored as a single table, an extract of which is shown below.
a) Identify three problems with the way the database is currently

stored.
b) A relational database is to be designed using three tables:
CUSTOMER, CAR and REPAIR. Normalise the database to 3NF
showing your answer in standard notation:
ENTITYNAME (Primary key, attribute 1, attribute 2 …)
This will involve identifying suitable primary and foreign keys.

Customer Address Reg no Make of car Date
repaired

Repair
carried out

John
Brown

1 High
Street

M222
HGG

Ford Escort 11/03/15 Replace
exhaust

Mary
Jones

10 Low
Road

K222
HKK

VW Golf 11/03/15 Electrical
fault

John
Brown

1 High
Street

P333
AAA

Citroen
Saxo

11/03/15 New tyres

Jane Fox 2 New
Lane

J123
AAA

VW Polo 11/03/15 Starter
motor

375

INTRODUCTION
Structured Query Language (SQL) is a specialised programming
language that is used for managing relational databases. Its functions
allow users to defi ne tables, insert, update and delete data and to
carry out queries on data to produce and output subsets of the main
data. In common with other programming languages, SQL works
by typing in lines of code. Examples are shown below for the main
functions using the movie download database from the previous
chapter as an example.

LEARNING OBJECTIVES
In this chapter you will learn:
• how to use SQL to defi ne a table, enter, update and delete data
• how to use SQL to query data, including searching and sorting
• what a client–server database is and what problems are caused when

there is shared access to a database
• what a database management system is.

SPECIFICATION COVERAGE
3.10.4 Structured query language (SQL)

3.10.5 Client–server databases

 44 Structured query
language (SQL)

● Defining a table
To create a table the user needs to define the name of the table and each
of the attributes including the data type and length. If you have used MS
Access or any other proprietary database package, you will notice that this
is a very similar process, but is achieved through typing code in the correct
syntax rather than using a graphical user interface.

KEYWORD
Structured query language
(SQL): a specialised
programming language for
manipulating databases.

KEYWORDS
Table: a method for implementing
an entity and attributes as a
group of related data.
Syntax: the rules of how words
are used within a given language.

A level only

376

 4
4

St
ru

ct
ur

ed
 q

ue
ry

 la
ng

ua
ge

 (S
Q

L)

CREATE TABLE Customer

(

CustomerID varchar (5),

CustomerName varchar (255),

CustomerAddress varchar (255),

PRIMARY KEY (CustomerID)

);

Notice the syntax of the commands with the data type and maximum
length shown for each attribute in the table. This example also shows how
the primary key can be assigned from existing attributes.

There are a number of supported data types, with examples shown in
Table 44.1.

Table 44.1 Examples of supported data types in SQL

Character (n) character string with fixed length (n)

Varchar (n) character string variable length with maximum field length (n)

Boolean true or false

Int short for integer and is a whole number

Decimal (p,s) decimal number with number of digits before and after the
decimal point

Real any number up to 7 decimal places

Date in the format day, month, year

Time in the format hour, minutes, seconds

● Entering and updating data
To enter data into a table, you need to specify the name of the table and the
column where you want to enter it:

INSERT INTO Customer (CustomerID, Name, Address)

VALUES ("1", "John Smith", "1 High Street");

This will create a row of data in the Customer table entering the details for
John Smith. An alternative syntax can be used where every field is being
entered as follows:

INSERT INTO Customer

VALUES ("1", "John Smith", "1 High Street");

As every field is being entered it is not necessary to input all the field
names.

To update data, you need to specify the table and column and identify the item
of data that needs updating. For example, to update John Smith’s address:

UPDATE Customer

SET Address = "29 Wellington Street"

WHERE CustomerID = "1";

Notice that the WHERE command is being used to make a selection using the
CustomerID rather than the name to ensure the correct record is updated.

377

Q
U

ER
YIN

G
 D

ATA

● Deleting data
Deleting data is a similar process to updating data as you have to define the
table and then use a selection statement to identify the data that you want
to delete. To delete John Smith from the database:

DELETE FROM Customer

WHERE CustomerID = "1";

Note that John Smith’s unique ID is used to identify which record to delete
to avoid the possibility of there being more than one customer named John
Smith and the wrong record being deleted.

You can use wildcards within a selection statement. For example, to delete
all records:

DELETE * FROM Customer;

This will delete all of the records while keeping the structure of the table
intact. You can also delete all records as follows:

DELETE FROM Customer;

● Querying data
In simple terms a query is a search and/or sort. An extract of code is
shown below relating to a query that extracts the name and address of all
customers called John Smith in the database:

SELECT CustomerName, CustomerAddress

FROM Customer

WHERE CustomerName = "John Smith"

ORDER BY CustomerName DESC;
● SELECT: Identifies the columns that you wish to extract. In this

example, all the columns are from one table. Where the columns are
from more than one table and if the field name is used in more than
one table, it is necessary to include the name of the table followed by a
full stop and then the name of the column. For example, Customer.
CustomerName indicates that we wish to extract the CustomerName
column from the Customer table.

● FROM: Indicates the table or tables that are needed to extract the data. In
this example, there is only one table. If there were more, you would have
to list them all, separating them with commas.

● WHERE: Indicates the condition that must be met. In this case, the
condition is CustomerName = "John Smith". There may not be any
conditions, for example, you may simply want to print a list of customer
names. If this is the case, the WHERE statement can be left out altogether.

More complex statements can be used within the WHERE structure
including AND and OR statements. For example, the condition could be
CustomerName = "John Smith" OR CustomerName = "Mary
Jones". To extract all the data for such records, the following SQL would
be written:

KEYWORD
Query: a search or sort carried
out on data that retrieves the
answer to a question.

378

 4
4

St
ru

ct
ur

ed
 q

ue
ry

 la
ng

ua
ge

 (S
Q

L)

SELECT *

FROM Customer

WHERE CustomerName = "John Smith" OR CustomerName =
"Mary Jones";

Note that the * is used as a wildcard which means that all attributes are
extracted when the query is run.

● Example
Suppose we wanted to perform a query to produce the name and address of
all customers who have downloaded movies on a particular day, perhaps to
identify the total value of downloads on that day. The extract should be sorted
in ascending order by customer name. This involves querying three tables.

CUSTOMER
CustomerID CustomerName Address PhoneNumber DateOfBirth

1 John Smith 1 High Street 01555 354354 30/03/67

2 Mary Jones 12 Acacia Avenue 01555 564333 23/04/78

3 John Smith 23 Maple Drive 01555 653535 23/08/72

MOVIE
MovieID MovieDownloaded GenreClassification Age Price

1 Robocop SciFi PG 12.99

2 How to Train Your Dragon Kids PG 10.99

3 22 Jump Street Comedy 15 9.99

4 The Hunger Games Drama PG 9.99

5 The Hangover Comedy 18 10.99

DOWNLOAD
DownloadID DateOfDownload CustomerID MovieID

1 19/03/15 1 1

2 19/03/15 1 2

3 19/03/15 1 3

4 19/03/15 2 3

5 20/03/15 2 4

6 20/03/15 3 1

7 20/03/15 3 1

SELECT CustomerName, Address, DateOfDownload,
Movie.MovieID, MovieDownloaded, Price

FROM Customer, Download, Movie

WHERE Download.DateOfDownload = "19/03/15" AND
Customer.CustomerID = Download.CustomerID AND
Movie.MovieID = Download.MovieID

ORDER BY CustomerName DESC;

Note that the table names are being shown in the SELECT statement as
more than one table is being used to perform the query. This would extract
the following data:

CLIEN
T–SER

VER
 D

ATAB
ASES

This data may be extracted in the form of a table, or may be compiled
directly into a report. Notice the use of the DESC command after the
ORDER BY to ensure the data is sorted in descending order.

● Client–server databases
Where databases are being used in a network environment it is likely
that there will be a dedicated database server, particularly where the
organisation has a large and complex database. The database server
holds and manages the database itself so that all amendments, searches
and so on are carried out at the server.

This would normally be done through a database management system
or DBMS, which is a program that controls the data that is kept on the
database. This will help to maintain the integrity of the data as it ensures
that there is only ever one version of the data.

One of the biggest benefits of working with a database is that it can be
accessed by many different users or programs and the data can in turn be
used in many different ways. However this can generate problems – what
happens if two programs try to access and update the same item of data at
the same time? What happens if a program needs to add a new attribute
to an entity, but other programs that access the same dataset don’t ‘know’
about the extra attribute?

The DBMS controls the data that are kept on the database. It also manages
how the data are stored, whereabouts in the system they are kept, and it can
control access rights as well. The diagram shows how the four departments
in a company all access the data files via the DBMS – none of them have
direct access to the data.

Marketing Sales

DBMS

PersonnelProduction

Database

Figure 44.1 Database management system

KEYWORDS
Client–server database: a way
of implementing a database
where the database is put into
a server and various users
can access it from their
workstations. The processing,
for example, running a query,
will take place on the server.

Database management system:
software that enables the
management of all aspects of
a database including adding,
updating and querying data.

CustomerName Address DateOfDownload MovieID MovieDownloaded Price

John Smith 1 High Street 19/03/15 1 Robocop 12.99

John Smith 1 High Street 19/03/15 2 How to Train Your Dragon 10.99

John Smith 1 High Street 19/03/15 3 22 Jump Street 9.99

Mary Jones 14 Acacia Avenue 19/03/15 3 22 Jump Street 9.99

379

380

 4
4

St
ru

ct
ur

ed
 q

ue
ry

 la
ng

ua
ge

 (S
Q

L)

● Issues with concurrent access
on shared databases
One common problem with a database that is accessible to a number of
users is what to do if a number of users are trying to access the same data
at the same time. As long as the users are only reading the data this is not a
problem, but if two or more users want to write data there will be problems.

Imagine two users both want to put some data in the same location. The
first person presses the save button and their updated data get saved to the
file. A few seconds later the second presses their save button. Their data
now overwrite the first person’s data but how do you know which is the
most up-to-date version?
● Record locks: One solution to these problems is to put a lock on the

data. As soon as a user with write access takes an item of data a lock
is put on that data item so that no other user can save to that location,
and the second person will not be able to save their version of the data
without acknowledging that the data may have been altered by another
user. You can see a simplified version of this process in use across a
network. Two users can both load the same word-processed file, but only
the first person to load will be given write access – the other person will
see a read-only version of the file.

● Serialisation: This is the process of only allowing transactions on a
particular database to take place one at a time, that is, in serial format.
This process, which is managed by the DBMS, ensures that each
transaction is carried out in the correct sequence to avoid compromising
the integrity of the data. For example, a typical transaction maybe to
read data to or from a record. If another transaction is taking place on
that record at the same time, then serialisation ensures that the two
transactions take place one after each other in the correct order. The
DBMS will be used to identify which transactions need serialising and
also provide a schedule for dealing with them.

● Timestamp ordering: Every transaction that takes place on the
database will have a read and write timestamp that indicates the last
time the record was written to or read from.
To ensure serialisation, the timestamp can be used as a method of
sequencing the transactions. To avoid concurrency issues where two
transactions are taking place on the same record at the same time, the
DBMS can use the timestamp to identify the last action that took place
and it will use a protocol to decide whether to execute the current
transaction or not based on the timestamp.

● Commitment ordering: This system looks at each command it has
been asked to execute on the database in terms of when it was made but
also in terms of whether it should take precedence over other commands.
This depends on the nature of the command and what the impact of it
is on the database. For example, where a command from one user could
cause deadlock, it would be blocked until the dependent action was
completed. This can be implemented by building a graph of transaction
dependencies.

Practice questions can be found at the end of the section on
pages 390 and 391.

KEYWORDS
Record locks: a technique to
temporarily prevent access
to certain records held on a
database.
Serialisation: a technique to
ensure that only one transaction
at a time is executed from
multiple users on a database.
Timestamp ordering: a
technique to ensure multiple
users can execute commands on
a shared database based on the
timestamp of when the data was
last written to or read from.
Commitment ordering: a
technique to ensure concurrent
transactions on a shared
database are executed based
on the timestamp of when
the request is made and also
the precedence the request
takes over other simultaneous
request.

ISSU
ES W

ITH
 CO

N
CU

R
R

EN
T ACCESS O

N
 SH

AR
ED

 D
ATAB

ASES

381

STUDY / RESEARCH TASKS
1 A database can either be held on a database server or it can be

distributed to the users on a local basis. Explain how these two
systems work.

2 What is an object-oriented database and how does it differ from a
relational database?

TASKS
1 Write SQL code to create the following queries from the movie

download database example used in this chapter.
a) Select all kid’s movies.
b) Select all customers who have downloaded comedy films.
c) Select all customers born before 1972.
d) Select all customers who downloaded movies on 20/03/13 sorted in

descending order on CustomerName.
2 Give an example of a how a wildcard can be used when using SQL.
3 What issues might arise when multiple users have access to the

same database at the same time? What can be done to avoid these
problems?

KEY POINTS
• SQL is a query language

usually used with relational
databases, which works in a
similar way to a programming
language in that you need to
type in lines of code.

• SQL can be used to define
tables and add, update and
remove data.

• SQL can be used to search
and sort data held within one
of more tables.

• A database management
system (DBMS) is used to
control and administrate
databases.

• Databases can be made
available to users using the
client–server model where
the database is stored on a
database server.

• Problems can arise where
several users are accessing
the data at the same time.

• There are various techniques
for dealing with these
problems including record
locking, serialisation,
timestamp ordering and
commitment ordering.

382

 45 Big data

SPECIFICATION COVERAGE
3.11 Big data

LEARNING OBJECTIVES
In this chapter you will learn:
• how to defi ne big data and what specifi c issues programmers face

when dealing with it
• in what circumstances big data is created and used
• how data can be structured or unstructured
• how machine learning techniques can be applied to big data
• how to model big data
• how distributed processing techniques can be used with big data
• how functional programming techniques are useful on big data.

INTRODUCTION
Big data is a generic term given to datasets that are so large or
complicated that it is diffi cult to store, manipulate and analyse them.
The diffi culty partly comes from the fact that the dataset is so massive
that you would need multiple servers to physically store and provide
access to it within a timescale that is useful. Another complication is
that standard database software would not be able to cope with the
quantity of data generated so it would be diffi cult to structure the data
and produce any meaningful analysis of them. A further complexity is
the speed at which the data are changing as many big data projects use
data that are being updated in real-time.

Data are usually collected for a specific purpose. Data are given structure
to turn them into information and information then has to be used for it
to become knowledge. If the quantity of data cannot be structured and
analysed, then they cannot produce any useful results. This is the challenge
of working with big data – if it can’t be turned into useful information,
there is little point collecting it in the first place.

are structured
to produceData

is used
to produceInformation Knowledge

Figure 45.1 The data, information, knowledge process

KEYWORD
Big data: a generic term for
large or complex datasets that
are difficult to store and analyse.

A level only

EXAM
PLES O

F B
IG

 D
ATA

383

Big data is a difficult term to define as there is no accepted quantifiable
definition. The three main features of big data are:
● volume: the sheer amount of data is on a very large scale
● variety: the type of data being collected is wide-ranging, varied and may

be difficult to classify
● velocity: the data changes quickly and may include constantly changing

data sources.

● Examples of big data
Big data is used for different purposes. In some cases, it is used to record
factual data such as banking transactions. However, it is increasingly being
used to analyse trends and try to make predictions based on relationships
and correlations within the data. For example, scientists use data to predict
the impact of climate change; business analysts use big data to predict sales;
healthcare specialists use it to predict the spread of diseases; meteorologists
use it to predict major weather events.

Big data is being created all the time in many different areas of life.
Examples include:
● Scientific research: Scientists generate large volumes of data that could be

measured in terms of petabytes or exabytes. These may be from readings
from weather sensors, data collected from telescopic observations,
biological results of experiments or global statistics on health issues. In
all of these cases, the data are being collected and analysed for scientific
purposes, usually to improve the quality of people’s lives. For example,
the human genome project uses masses of data to try to find the causes
of genetic illnesses, with a view to eradicating them.

● Retail: All large businesses make use of data. Online retailers in
particular can have millions of customers generating billions of sales.
These data are used to improve the performance of the business. Sales
data can be collected and analysed to help spot trends in consumer
behaviour enabling businesses to become more profitable.

● Banking: The banking sector has to handle billions of transactions on an
annual basis. They need to keep these data secure and have an audit trail
of every single transaction to prevent against loss and fraud.

● Government: Most government departments and agencies have
massive datasets. For example, the NHS records every single patient,
appointment and operation. These data are critical to the successful
treatment of patients and in many cases are a matter of life and death.

● Mobile networks: There were an estimated 4.6 billion mobile phone
contracts around the world at the time of writing. All of the customer
and call data are recorded to enable bills to be generated.

● Security: Legislation allows for mobile phone calls, texts, email messages
and other online communications to be recorded. This represents billions
of items of data every day and can be used by the security services to
spot terrorist threats.

● Real-time applications: Many applications, particularly online and
mobile, make use of real-time data. For example, weather apps take data
readings from sensors, city traders use software that enables trading
based on second-by-second share price fluctuations.

 4
5

Bi
g

da
ta

384

● The Internet: A lot of big data gets created through everyday use of the
Internet. For example, data from social media websites could be analysed
to understand social attitudes and trends. Data from search queries can
be used to understand how people use the web.

As you can see from the range of examples, one of the challenges of
working with big data is that the dataset is constantly changing as new
data are arriving. For example, weather data may be collected from remote
sensors every few seconds. To be useful, the data may need to be stored,
processed and transmitted to data users within a few seconds or minutes.

The concept of latency is critical here as it is in other areas of computing.
In this context, latency could be described as the time delay between a user
making a request for data and those data being received, or the amount
of time it takes to turn the raw data into meaningful information. With
big data there may be a large degree of latency due to the amount of time
taken to access and manipulate the sheer number of records. For some
applications a large amount of latency may be acceptable, for others, the
data may need to be processed within seconds.

● Structured and unstructured data
Big data provides major challenges not just in terms of the volume of data
and frequency of change, but also the nature of the data being collected.
Most databases work on the model that the data will fall into columns and
rows, otherwise referred to as fields and records. This makes data easy to
organise and store as they can be entered into the appropriate fields. When
data are analysed, it is relatively easy to carry out searches and sorts to
query the data as we saw in the previous chapter.

However, some data do not fit into this model. Data can be defined as either
structured or unstructured.
● Structured data: These are data that can be defined using traditional

database techniques using fields and records. This means that it is
possible to give each data item a field name and type. For example,
customer data would fall into this category as it is possible to identify a
field for name and address. Banking data would be structured as it would
be possible to define sort code and bank account number as fields.

CASE STUDY: H1N1 AND GOOGLE
When there is a flu pandemic, health services around
the world have to respond quickly to introduce
vaccination programmes, ensuring that they have
enough vaccine and that it gets to the right people.
There is a major problem in targeting resources to the
neediest places and predicting where the outbreak
will cause the greatest loss of life. Various health
organisations such as the NHS in the UK and the Center
for Disease Control (CDC) in the USA use big data,
which is fed into them from health care professionals
around the country and around the world.

Historical data can be used to understand how
viruses might spread and more up-to-date data

are used to understand what is happening in the
immediate term. The data are not real-time as there
is a delay in receiving and capturing them.

To help with this issue, Google set up their own
big data project called Google Flu Trends (GFT),
which analysed real-time data of searches being
made relating to flu. The theory is that there
is a correlation between people searching for
information about flu, with the actual incidence of flu
symptoms. By matching the geographical location of
the searches, it would be possible to predict areas
where flu is prevalent or spreading on a daily basis.

KEYWORD
Structured data: data that
fit into a standard database
structure of columns and rows
(fields and records).

KEYWORD
Latency: the time delay that
occurs when transmitting data
between devices.

M
ACH

IN
E LEAR

N
IN

G
 TECH

N
IQ

U
ES

385

● Unstructured data: These are data that cannot be defined in columns
and rows. These might include multimedia data, web pages and the
contents of emails, documents, presentations. It is important to note that
although each of these types of data has its own structure, they do not fit
easily into the standard database structure therefore making it difficult to
analyse the contents of the data.

● Machine learning techniques
Where quantitative data are stored in standard relational database format
it makes it relatively simple to query data to produce results. For example,
if an online retailer wanted to know how many of a particular product
they sold this week, they can do a simple query to find this information.
Even on a large dataset, this could be produced relatively quickly and
accurately.

However, qualitative data are much harder to analyse and it is this type
of data that is most likely to be unstructured. For example, if the online
retailer asks for feedback from their website in the form of customer
comments, they could receive millions of items of data, all written in
free text. It would take a long time for someone to read all of these, so
techniques collectively known as machine learning can be used to automate
the process.

Machine learning covers everything from pattern recognition to artificial
intelligence systems. In this context, at a simple level, the machine could
learn to look for patterns of words within a text in determining the nature
of the feedback. For example, it could look for positive or negative words
to classify the feedback as positive or negative. In order to do this, it would
need to be programmed with the words or phrases to look for.

A more advanced form of machine learning is where the computer is able
to develop its own knowledge based on the data it is manipulating. This is
particularly valuable with big data as there may be patterns and correlations
that exist within the data that are not immediately obvious. One technique,
called predictive analytics, is widely used in the financial and insurance
sectors to predict risk.

CASE STUDY: CAIS
CAIS (pronounced keys) is the Credit Account Information Sharing
database that stores over 400 million records of credit transactions,
everything from bank loans, to credit cards and overdrafts. This
information is used by banks and other lenders to determine whether
a customer has a good or bad credit history and to identify the level of
risk associated with that customer. Different lenders can use the data
to determine a credit score, which in turn helps them to set credit limits
and interest rates.

It is an example of big data, where the data need to be very accurate and
provided quickly, normally within a few seconds or minutes during the
loan application process.

KEYWORD
Unstructured data: data that do
not fit into a standard database
structure of columns and rows
(fields and records).

 4
5

Bi
g

da
ta

386

● Issues with big data
There are a number of issues with big data.
● Datasets are so large that they are too difficult to store and analyse.
● Unstructured data can be very difficult to analyse in an automated way.
● Specialised software is needed to manage and then extract meaningful

information from the data.
● Massive storage and processing power is needed, meaning that many big

data applications may only be carried out on supercomputers or large
dedicated networks.

● Data are constantly changing so it is difficult to keep track of every change.
● Finding a correlation in a dataset does not necessarily mean you have

found the answer to a problem. In other words, it is possible to infer the
wrong conclusion from the data.

● There is an issue with concurrency where several users are working on
the data at the same time.

● Modelling big data
Most big datasets are stored in what are called data warehouses, which as
the name suggests are very large. In common with a normal warehouse,
there needs to be some system for understanding what is stored within the
warehouse. One method is to use fact-based modelling which attempts to
identify fundamental facts within the data that in turn identify all of the
entities within the data. These are represented as diagrams or expressed in
natural language.

For example, a large online retailer may have millions of items of data.
They will record uniquely identifiable, time-stamped facts such as ‘We sold
1 million rechargable batteries’ or ‘We sold 2 million clock radios’. Facts
such as these can be defined in a more abstract form such as ‘We sold
QUANTITY PRODUCTS’. In this format, it is possible to model other data
that the retailer records.

To represent this in graphical form, graph schema can be
created based on the graph data type that we looked at in
Chapter 9. Graphs are made up of nodes, properties and
edges. A graph schema for a dataset for an online retailer
might look like that shown in Figure 45.2.
● A node is an entity such as a customer, product or picker.
● A property is relevant data relating to the node, such as

the customer or product name.
● An edge shows the link and describes the relationship

between the two nodes, for example it shows which
customer bought which product, or which picker has been
assigned to collect and post the items.

These are considered to be more efficient models for dealing
with large amounts of constantly changing data. In the
example above, the online retailer might want to link two
orders made by the same customer at the same time to the
same picker in the distribution centre.

bought
ID: 2004

bought
ID: 2005purchased by

ID: 1001purchased by
ID: 1001

picks
ID: 2004

picked by
ID: 3001

picked by
ID: 3001

picks
ID: 2005

ID: 1001
Name: Smith
Date: 13/09/14

ID: 2004
Product: Tablet

ID: 3001
Picker: Jones
Date: 13/09/14

ID: 2005
Product: Mobile

phone

Figure 45.2 Graph schema for big data

KEYWORDS
Modelling: recreating a real-life
situation on a computer.
Graph schema (database): a
method of defining a database
in terms of nodes, edges and
properties.
Node: in database modelling, it
is an entity.
Properties: in database modelling,
it is items of information stored
within each entity.
Edge: in a database graph
schema, it refers to the link and
relationship between two nodes.

D
ISTR

IB
U

TED
 PR

O
CESSIN

G

387

● Distributed processing
The main issue with big data is that one computer cannot store all of the data
or analyse it quickly enough. One solution is to split the work over several
computers, typically by adding more servers or workstations to a network
and then distributing the processing between the processors of each.

This is known as distributed processing or distributed computing.
For big data, often a dedicated network is set up to work on the same main
task. Typically, one computer will be allocated as the master computer
within the network and will control the others through the operating
system and specialist software. Each computer on the network is allocated
its own subtask and messages are then passed between the computers
in order to meet the overall goal. The network can be implemented on a
client–server or peer-to-peer basis.

This can be implemented as a distributed network with each of the main
computers being a server and then further workstations being attached
to the server. Similarly, the network can be extended to include Internet
services, such as the use of online data storage. This is an example of cloud
computing where the Internet is used to provide a service that you would
normally get from the LAN.

Sensor

Sensor

Sensor

Sensor

Inputs

Router

Cloud
computing

Workstation

Workstation

Workstation

Database
server

Server

Server

Workstation

Workstation

Workstation

Figure 45.3 Distributed processing

Big data is almost bound to require distributed computing of some sort
as the data entry source is usually remote to the computer where the data
are stored and analysed. For example, customer data will come from the
Internet or meteorological data will come from remote sensors.

Where specialist software is used to tackle a task using distributed
computing, it is referred to as a distributed program. There are
implications for programmers writing distributed programs in terms of
dealing with multiple users and ensuring the integrity of large datasets.
One resolution to this is to use functional programming techniques.

Functional programming for distributed programs
In Chapter 5 we looked at programming paradigms, which describe the way
in which any particular programming language works. For example, Visual
Basic is described as an imperative or procedural language as the programmer
has to define the list of steps required to implement the program. Key features
of imperative languages are the need to declare variables and to identify the
correct sequence of events to achieve the desired outcome.

KEYWORD
Distributed processing /
computing: the principle of
spreading large and complex
tasks over a number of
computers or servers.

KEYWORDS
Distributed program: a
program specifically written
to be used in a distributed
processing environment.
Functional programming:
a programming paradigm
that uses functions to create
programs.

 4
5

Bi
g

da
ta

388

Functional programs differ in that they use expressions that are similar to
normal mathematical expressions in order to evaluate data. There are no
variables as such, as every item of data is treated as a function. A feature of a
variable in an imperative language is that it is mutable, which means it will
change as the program runs. This means that it will have a state, which is the
current value of the variable at any given point when the program is being run.

This is said to have side effects, which means that the programmer has
changed the state of a variable and this may impact on how the program runs.
This is a normal consequence of using imperative or object-oriented
languages. Where the side effect is known it is then possible to write future
lines of code in the knowledge of what has gone before.

This presents a problem where many computers might be working on the
same data at the same time, as each computer will need to know the state
of the variable at any point. With functions, the values and the expressions
are all that is needed make up the lines of programming code. This means
that the value produced by any one line of code is entirely the result of the
function and is not dependent on the state of any of the variables.

This makes this type of coding particularly suited to analysing big data
using distributed processing, as there will be multiple users all accessing
the data at the same time from different computers. This is known as
concurrence and it is problematic because it can cause data locking as we
saw in the previous chapter. Also, where there are several users, the side
effects of any previous coding may not be apparent.

Because functional programming does not use variables as such and as the
value of the variable is not changing, there will be few or no side effects.
This means that the user always gets the original value of the variable to
put into their own functions and the output of the function will be local to
their machine.

There is more on functional programming in the next two chapters.

TASKS
1 Define ‘big data’.
2 What problems are associated with big data?
3 How can machine learning techniques be used to analyse

qualitative data?
4 Give three scenarios where big data could be used.
5 Give three examples of how big data could be used to predict future

events.
6 Create a database graph scheme that shows how data about you

might be stored and used by your school/college.
7 How does distributed processing help with storing and analysing

big data?
8 What is a programming paradigm?
9 What features of functional programming make it particularly useful for

writing programs to be used in a distributed processing environment?

KEYWORDS
Variable: a data item whose
value will change as the
program is run.
Mutable: changeable.
State: in programming it refers
to the state that the variables are
in, i.e. the value that is currently
stored.
Side effects: in programming it
refers to the fact that the value
contained within a variable will
change as the program is run,
which has implications for other
parts of the program.
Imperative language: a
language based on giving
the computer commands or
procedures to follow.
Object-oriented language: a
programming paradigm that
encapsulates instructions and
data together into objects.
Function: a subroutine that
returns a single value.
Concurrence: the concept of two
users trying to access the same
data item at the same time.

Practice questions can be found at the end of the section on
pages 390 and 391.

D
ISTR

IB
U

TED
 PR

O
CESSIN

G

389

STUDY / RESEARCH TASKS
1 How successful has the Google Flu Trends (GFT) program been in

predicting outbreaks of flu?
2 How is big data being collected and used by scientists working on the

Large Hadron Collider at CERN?
3 Will single processor computers simply become a thing of the past?
4 ‘When analysing data, the more data you have, the more accurate your

results will be.’ Is this statement necessarily true?
5 What are the main features, advantages and disadvantages of cloud

computing?
6 Can computers think for themselves?

KEY POINTS
• Big data is data that are either

too large or too complex to
be handled using traditional
database techniques.

• Big data is becoming more
common, particularly with
the volumes of data being
generated via the Internet.

• Some data cannot be
structured into the columns
and rows of a traditional
database.

• Unstructured data are
more difficult to query
and techniques such as
machine learning are used to
interrogate unstructured data.

• Data models can be produced
to try and understand how big
data is structured.

• Big data is often spread
across a number of servers
in order to cope with its size.
Where this is the case there
is an added complication of
working on data split across
two or more servers.

390

Se
ct

io
n

Te
n:

 P
ra

ct
ic

e
Q

ue
st

io
ns

Section Ten: Practice questions
1 A hospital stores details of its wards, patients and their medical conditions in a database.

● For each patient their unique patient number, surname, forename, address, date of birth and gender are
stored.

● Wards have a unique name and a number of beds. The name of the nurse in charge is also recorded.
● Each medical condition is assigned a unique medical condition number and the name and the

recommended standard treatment are recorded.
● Patients may suffer from one or more medical conditions and a particular medical condition may be

attributed to more than one patient.
● The medical conditions of each patient are recorded.
● A patient can be assigned to only one ward at any one time.
● Each ward may have patients with different medical conditions but each patient can be assigned to only

one ward at any one time.
● Four entities for the hospital database are Ward, Patient, MedicalCondition,
PatientMedicalCondition.
a) Copy the partially completed entity relationship diagram and show

three more relationships which exist between the given entities.
b) Using the standard format (TABLENAME [PrimaryKey, Non-

keyAttribute1, Non-keyAttribute2, etc.]) to describe
tables, state all attributes for the following entities underlining the
primary key in each case.
i) Ward
ii) Patient
iii) MedicalCondition
iv) PatientMedicalCondition

2 In a multi-user database, concurrent access is allowed to each data item.
a) What is meant by concurrent access?
b) Why must concurrent access be controlled in a multi-user database?

3 Acme Ltd supply products to their customers. The data requirements for the database system are defined as
follows.
● A unique ProductID and product description are recorded for each product.
● The quantity in stock of a particular product is recorded.
● A unique CustomerID is assigned and the name, address and telephone number of each customer is

recorded.
● An order placed by a customer will be for one or more products.
● Acme Ltd assigns a unique code to each customer order, AcmeOrderNo.
● A customer placing an order must supply a code, CustomerOrderNo, which the customer uses to

identify the particular order.
● A customer may place one or more orders.
● Each new order from a particular customer will have a different customer order code.
● A particular order will contain one or more lines with each line numbered; the fi rst is 1, the second is

2 and so on.
● Each line will reference a particular product and the quantity ordered.
● A specifi c product reference will appear only once in any particular order placed with Acme Ltd.
● After normalisation, the database contains four tables based on the entities Customer, Product,
Order, Orderline.

Patient
Patient
Medical

Condition

Medical
ConditionWard

391

Section Ten: Practice questions

a) Show three more relationships which exist between the given entities by
completing the diagram below.
Using the standard format TableName (PrimaryKey, Attribute1,
Attribute2, etc.) describe tables, stating all attributes, for the
following entities underlining the primary key in each case.
i) Product

ii) Customer
iii) Order
iv) OrderLine

b) Using SQL commands SELECT, FROM, WHERE and ORDER BY,
write an SQL statement to query the database tables for all customer
names where the orders have been despatched in ascending order of
AcmeOrderNo.

4 The widespread use of the Internet has led to a massive increase in the volumes of data being collected.
Some of this falls into the category of ‘big data’.
a) What is meant by big data?
b) Give two examples of big data.
c) Why might functional programming be suitable when working with big data?
d) How does distributed processing help with big data?
e) Why might some people have concerns about the way in which data is collected about them over

the Internet?

Customer

Orders Orderline

Product

Section Eleven:
Fundamentals of
functional
programming

394

INTRODUCTION
In Chapter 23 you were introduced to the concept
of a mathematical function, which is an expression
or rule that takes an input value from a set and
returns an output value from another set. For
example, the function f could map the input set
{1, 2, 3, 4, 5} to an output set {1, 4, 9, 16, 25}, in which
case the function could be described as f(x) = x2 as
each value in the input set is squared to produce
the corresponding value in the output set.

In Chapter 4 we looked at using functions within
programming languages where they are used as
a type of subroutine that requires an argument to be entered, which is
the value that the function needs to work on. It will then return a result.
In the next two chapters we will look at functions in more detail. In
particular we will examine the functional programming paradigm, which
uses functions as a way of constructing algorithms.

LEARNING OBJECTIVES
In this chapter you will learn:
• what the functional programming paradigm is
• how functions can be used to construct programming code
• what a function type is
• what a fi rst-class object is and how they are used in code
• how to apply functions fully and partially
• how to combine existing functions to make new ones.

SPECIFICATION COVERAGE
3.12.1 Functional programming paradigm

 46 Basics of functional
programming

FUNCTION f:

Input x

Output x2

Figure 46.1 A basic
function

A level only

395

TH
E FU

N
CTIO

N
AL PR

O
G

R
AM

M
IN

G
 PAR

AD
IG

M

● The functional programming paradigm
A programming paradigm is a method of programming. In your studies so
far you have come across two main paradigms:
● Procedural languages: Also known as imperative languages, these require

the programmer to input lines of instructions in sequence, which the
program then carries out.

● Object-oriented languages: The programmer creates self-contained
objects that contain code and data.

The functional programming paradigm is an example of a declarative
programming language where all the algorithms call functions. This
means that the lines of code look and behave like mathematical functions,
requiring an input and producing an output. A value is produced for each
function call. The idea is that there is one main function, which in turn
calls further functions in order to achieve a specific task. Each function may
call another function, or call itself recursively in order to generate a result.

The concept is that where a function is being used, it will always return the
same value if it is given the same input so there can be no unforeseen side
effects. One of the problems with procedural programming languages
is that the value of a variable can change throughout the program and that
changes made to the value in one subroutine may have an impact within
another subroutine. Programmers often spend a lot of time tracking the
value of variables when debugging, trying to find out where a program has
gone wrong. In theory, a well-designed functional program will not have
this problem.

The motivations behind using the functional programming paradigm include:
● Program requirements may be better defined as a series of abstractions

based on functions rather than a more complex series of steps.
● Broader abstractions can lead to fewer errors during implementation.
O Functions can be applied at any level of data abstraction making them

highly re-usable within a program.
O Functional code is easier to test and debug as each function cannot have

any side effects, so only needs testing once.
O There are no concurrency issues as no data is modified by two threads at

the same time.
● In multi-processor environments the sequence that functions are

evaluated in is not critical.

As functional programs use mathematical expressions they lend themselves
to writing applications that require lots of calculations. For example they
are used to improve the reliability of mobile telephone networks, to analyse
large volumes of financial data, to create control systems in the field of
robotics, as well as in the aerospace industry.

There are some languages that specifically use the functional programming
paradigm such as Lisp, Haskell, Standard ML, Scheme and Erlang. Other
languages provide support for functional programming including Python,
Perl, C#, D, F#, Java 8 and Delphi XE.

KEYWORDS
Functional programming
paradigm: a language where
each line of code is made up
of calls to a function, which in
turn may be made up of other
functions, or result in a value.
Declarative programming
languages: languages that
declare of specify what
properties a result should have,
e.g. results will be based on
functions.
Procedural programming
languages: languages where
the programmer specifies the
steps that must be carried out
in order to achieve a result.

396

 4
6

Ba
si

cs
 o

f f
un

ct
io

na
l p

ro
gr

am
m

in
g

● Function types
A function type refers to the way in which the expression is created. All
functions are of the type A → B where it is defined with an argument type (A)
and a result type (B). In our example, A is the set that contains {1, 2, 3, 4, 5}
and B is the set that contains {1, 4, 9, 16, 25}.

A is also called the domain and contains objects within a particular data
type, in this case integers. B is called the codomain and is the set from
which the output values are chosen. As we saw in Chapter 23 there are
many standard sets of values such as integers, reals etc. that a set can be
drawn from. Note that not every value that exists in the codomain will
necessarily be output. The values that are used are referred to as the range.

In functional programming, a value that is passed to a function is known
as an argument. For example in the expressions a = f(x) and b = f(2, 4), x, 2
and 4 are arguments.

● First-class objects and higher
order functions
Within a functional programming environment, a function is a first-
class object. This means that it has certain properties and can be used
in particular ways within the program. A broad definition of a first-class
object is any object that can be passed as an argument to or can be returned
by a function. In functional programming, this means that a function can
be passed as an argument to another function or can be returned from a
function as the result. Other objects, such as integer values which can be
passed as arguments to a function, are also first-class objects.

A function which can accept another function as an argument is known as
a higher order function, the three most common of which are map, fold
and filter. There is more on how these three functions work in the next
chapter.

As an example of a first-class object, in Haskell you might write the
function:

map (*2) [1,2,3,4,5]

map is a function, which takes in another function and applies it to every
element in a list. *2 (multiply by two) is the function that map is taking in.
[1,2,3,4,5] is the list on which the function is applied.

The result of this higher order function would be [2,4,6,8,10]

In this example, map is a higher order function and *2, 1, 2, 3, 4 and 5 are
all first-class objects.

● Function application
The process of providing the function with its inputs is known as function
application. With our earlier example we had the function f(x) = x2 and
two sets – the domain and codomain. Set A (the domain) contained the
inputs, which were all integers and set B (the codomain) contained the
outputs, also integers.

KEYWORDS
First-class object: any object
that can be used as an argument
or result of a function call.
Higher order function: a
function that takes a function as
its inputs or creates a function
as its output.

KEYWORD
Function application: the
process of calculating the result
of a function by passing it some
data to produce a result.

KEYWORDS
Function type: refers to the
way in which the expression is
created, for example, integer
of the domain and codomain,
where f: A → B is the type of
function.
Domain: a set of data of the
same type which are the inputs
of a function.
Codomain: the set of values
from which the outputs of a
function must be drawn.

397

PAR
TIAL FU

N
CTIO

N
 APPLICATIO

N

We input a single value from A, which can be described as the function
taking its argument, or the argument being passed to the function. The
function is then applied to the argument, which in this case means it
squares it, to produce an output in B.

Consider a function to calculate the volume of a box:

volume = int x int x int → int

In this example the values 3, 4 and 5 are input to the function called
volume. The argument is actually three values, which would be defined
within the code as height, width and breadth.

let cuboidvolume height width breadth = height *
width * breadth

cuboidvolume 3 4 5

60

● Partial function application
In the cuboidvolume example, the function takes three values as a
single argument as it needs them to perform the calculation. However, it
is possible to pass any number of arguments into a function. Where this
is the case, partial function application can be used to fix the number of
arguments that will be passed.

The idea of this is that when you have one function that takes lots of
arguments, by partially applying the function you effectively create a
new function that performs just part of the calculation. The partial
application of a function can produce results that are useful in their own
right in addition to the full application of the function.

For example, consider the two notations for a function that adds two
integers together by taking two arguments:

add: int x int → int add: int → int → int
● The first is a full application of the function which takes two integers

as arguments and adds them together to create a result that is also an
integer. Both values are passed as arguments at the same time.

● The second is a partial application that shows a new function being
created, which always adds the first argument value onto a number. This
new function is then applied to the second argument to produce the
overall result.

If you applied this to a function as follows:
● Full function application would add x and y at the same time to create a

result:
add (x,y): add (2,3) = 5

● Partial function application would produce the function add2. This
function would then be used with the second argument to produce the
final result:
add (x,y): add (2,3) = add2 (3) = 5

KEYWORD
Partial application (of a
function): the process of
applying a function by creating
an intermediate function by
fixing some of the arguments to
the function.

398

 4
6

Ba
si

cs
 o

f f
un

ct
io

na
l p

ro
gr

am
m

in
g

● Function composition
Function composition is the process of creating a new function by
combining two existing functions together. This is one of the key principles
of functional programming as the concept is to have complex functions
that in turn are made up of simpler functions. As each component function
produces its result, this is passed as an argument result to the calling
function. This process continues for each of the component functions until
a result is produced for the complex function as a whole.

For example, imagine you have two functions with f being applied to
domain A and g being applied to the domain B:

f: A → B

g: B → C

Composition of these two functions would mean that the result of function
f, becomes the input for function g.

In function f, A is the domain and B is the codomain, so A results in B.

In function g, B is the domain and C is the codomain, so B results in C.

Therefore a function composition of the two would result in A being the
domain and C being the codomain, from which the range (output) is
produced.

It can be visualised as follows:

Apply f
Apply function f
on the domain
of A

B is the codomain
of f, which becomes
the domain of g
Apply function g on
to B

Apply g
C is the codomain
of g(f(x))

Figure 46.2 Composition of functions

Example
Let’s assume that the function f is f(x) = x2 and function g is g(x) = x + 3.
To work out the composition of g and f:
● pass an argument with the value of, for example, 4
● function f squares it and produces the result 16
● 16 is the input for function g
O g adds 3 to the result
● the result of the combined function is 19.

This could be shown in the following notation:

g ° f where º means the composition of functions g and f

f(x) = x2

g(x) = x + 3

g º f becomes g(f(x)) = x2 + 3

Practice questions can be found at the end of the section on page 405.

KEYWORD
Function composition:
combining two or more functions
together to create more complex
functions.

FU
N

CTIO
N

 CO
M

PO
SITIO

N

399

STUDY / RESEARCH TASKS
1 Research the way in which functional programming helps

telecommunications create mobile networks that are highly reliable.
2 Research programming languages that are specifically designed

around the functional programming paradigm.
3 Some programming languages such as C# and Python are procedural

languages, but provide support for the functional programming
paradigm. Pick one of these two languages and find out how this
support is provided.

KEY POINTS
• A mathematical function is an

expression or rule that takes
an input value from a set and
returns an output value from
another set.

• A programming paradigm
defines a methodology for
programming.

• Functions can be of different
types defined by the way they
are constructed.

• A function is an example of a
first-class object.

• A broad definition of a first-
class object is any object that
can be passed as an argument
or can be returned from a
function.

• Functions can be applied
partially or fully.

• Functions can be combined
together to create new
functions.

TASKS
1 Describe the basic properties of a function.
2 Define the functional programming paradigm.
3 What are the main reasons for using functional languages compared

to procedural languages?
4 What is a first-class object? Give two examples.
5 Show the full and partial application of the equation f(a, b, c) = a + b – c

with a set of integers.
6 Use function composition to combine the equation f(x) = x3

with g(x) = x + 3.

400

INTRODUCTION
In the previous chapter we looked at the basic principles and concepts
behind functional programming. In this chapter we look at how to write
simple functional programs focusing on handling lists and also looking
at the higher order functions: map, fi lter and reduce.

LEARNING OBJECTIVES
In this chapter you will learn how to:
• use higher order functions
• use the map, fold and fi lter functions
• manipulate lists using a functional programming language.

SPECIFICATION COVERAGE
3.12.2 Writing functional programs

3.12.3 Lists in functional programming

 47 Writing functional
programs

● Higher-order functions
In the functional programming paradigm, a higher order function is
one that:
● takes a function or functions as its argument
● produces a function as the result of a function
● or does both of the above.

As we saw in the last chapter, the ability to combine functions is a key
component in functional programming. Higher order functions are
therefore those that can form part of larger more complex applications in
order to produce a result.

● The map function
The map function applies a given function to every element within a
list and returns a corresponding list of results. In this chapter we will
look at code that can carry out the function on every element of the list
in one pass.

KEYWORDS
Higher order function: a function
that takes a function as its inputs
or creates a function as its output.
Map function: a function that
generates an output list from an
input list by applying a function
to each element in the input list.

A level only

TH
E FILTER

 FU
N

CTIO
N

401

If we use a simple example f(x) = x2, our data might look like this when
represented as a list:

1

List1 List2

2

3

4
f(x) = x2

Apply function

5

6

...

1

4

9

16

25

36

...

Figure 47.1 A function applied to a list that generates a new list

It is called a map function because it maps one element of the input list
(List1) to the corresponding element in the output list (List2). The function
it performs could be anything.

The code to carry our f(x) = x2 function to a list of integers is:

square x = x * x

map square [1,2,3,4,5,6]

● The filter function
The filter function processes a list and then creates a new list that
contains elements that match certain criteria. You may have come across
filtering in database or spreadsheet programs where you filter a dataset
to create a subset of the data of records matching a certain criteria. The
operation is very similar to a search.

In order to create the filtered list, some kind of selection criteria needs to be
applied to the list. This is sometimes called a predicate function and returns
a Boolean value of either TRUE or FALSE. For example, a list could be
filtered to include all values over 50, or all odd numbers. The way in which
the statement is actually written depends on the programming language
being used. Typical examples would be If, Select, Remove_if,
list.filter and where statements.

For example, we might use the function odd to filter the odd numbers in a
list (List1) into a new list (List2).

1

2

3

4
Filter = odd

Apply function

5

6

...

1

3

5

...

Figure 47.2 A function to filter odd values from a list

KEYWORD
Filter function: a method of
creating a subset based on
specified criteria.

402

 4
7

W
ri

ti
ng

 fu
nc

ti
on

al
 p

ro
gr

am
s As you can see from Table 47.1 we have reduced or folded a list with five

elements down to a single result. You can see that the instructions needed are
the same each time. Therefore, we would only need to write one algorithm to
carry out the process. This is a good example of efficient code as regardless of
how many items were in the list, only one algorithm would be needed.

The code to carry out the reduce or fold function is:

foldl (+) 0 [1,2,3,4,5]

● List processing
As we have seen, a list is a set of data items of the same type stored using a
single identifier. It is made up of any number of elements and can contain
any type of numeric or text strings. The only rule is that you cannot mix
data types within a list. This means that you are then able to carry out
operations on lists of data, which is much more efficient than trying to carry
our operations on individual data items. In fact, we have already seen with
the example in this chapter how useful and efficient the list structure can be.

Lists have a few components as shown in Table 47.2. Consider the following
list of names called FirstNames: [Abdul, Brian, Chloe, Dave, Marlon,
Nigel, Rafi, Sunil].

The code to carry the filter function is:

filter odd [1,2,3,4,5,6]

● The reduce or fold function
The reduce or fold function takes a list of values and reduces it to a
single value. This is a recursive process as the function keeps processing
until the list is empty.

The logic behind it is that if you can carry out a function on the first item
of a list, then you can carry out the same function on every item of the list.
For example, if you took a simple example where you wanted to add the
items of a list together, you could reduce the list until you ended up with
just one item in it. Let’s assume the numbers 1–5 are in the list:

Instructions Original list Apply function (add) Result

Start with a list [1, 2, 3, 4, 5]

Take the first item out of the original
list and apply the function

[2, 3, 4, 5] 1 1

Recurse [3, 4, 5] 2 + 1 3

Recurse [4, 5] 3 + 3 6

Recurse [5] 4 + 6 10

Recurse [empty] 5 + 10 15

List is now empty so the function
will not recurse

Table 47.1 The process of reducing/folding a list

KEYWORDS
List: a collection of data items of
the same type.
Identifier: the name of a list.

KEYWORD
Reduce/fold function: a method
of reducing a list to a single
element by combining the
elements using a function.

LIST PR
O

CESSIN
G

403

An important concept is that the tail of the list is not just the last item, but
all of the items apart from the head. This is a useful concept as it allows lists
to be defined in terms of a head and a tail, which can speed up processing.

It is important to remember that a list can be empty. This may be when
it is set up and no data has been entered or it may be after a list has been
processed and there is no data left to process. The empty list is often
represented as brackets with nothing between them, e.g [].

There are various standard processes that can be carried out on lists as
shown in Table 47.3.

Process Description Haskell code

Return the head of a list Identifies the first element in the list. head [1,2,3,4,5]
1

Return the tail of a list Identifies all of the other elements apart from the
head.

tail [1,2,3,4,5]
[2,3,4,5]

Test for an empty list Checks whether there are any elements in the list. let MyList = [4,8,15,16,23,42]
MyList
[4,8,15,16,23,42]
null MyList
False
let MyList = []
MyList
[]
null MyList
True

Return the length of a list Identifies how many elements there are in a list. length [1,2,3,4,5]
5

Construct an empty list Creates a list that has no elements in it. let emptylist=[]
emptylist
[]

Prepend an item to a list Adds an item to the beginning of a list. Let SetA = [1,2,3,4]
SetA
[1,2,3,4]
let SetB = [0] ++ SetA
SetB
[0,1,2,3,4]

Append an item to a list Adds an item to the end of a list. let SetC = SetA ++ [0]
SetC
[1,2,3,4,0]

KEYWORD
Tail: every element in a list apart
from the head.
Head: the first element in a list.
Empty list: a list with no
elements in it.

List components Explanation

Identifier The name given to the list. In this case: FirstNames.

Data type Identifies the data type being stored, e.g. text strings, integers, reals.
In this case, it is text strings.

Elements These are the individual values stored in the list. These are identified
by their position in the list. For example, ‘Dave’ is element 3 assuming
that the first element starts in position 0.

Head The first element in a list. In this case it is Abdul.

Tail All the other elements in the list apart from the head.

Length The number of elements in the list. In this case there are eight.

Table 47.2 Components of lists

Table 47.3 Standard processes that can be carried out on lists

Practice questions can be found at the end of the section on page 405.

404

 4
7

W
ri

ti
ng

 fu
nc

ti
on

al
 p

ro
gr

am
s

STUDY / RESEARCH TASKS
1 Using a functional programming language of your choice, create your

own applications to solve other problems. For example you could
create:
a) a scientific calculator application that included common functions

such as square, square root, sine, cosine etc.
b) a username generator for a network manager that takes a user’s

real name and automatically generates and stores a username
for them.

2 Research real-world applications of functional languages.

KEY POINTS
• A higher order function takes

a function or functions as its
argument and/or produces
a function as the result of a
function.

• The map function applies
a given function to every
element within a list and
returns a corresponding list
of results.

• The filter function processes
a list and then creates a new
list that contains elements
that match certain criteria.

• The reduce or fold function
takes a list of values and
reduces it to a single value by
applying a function.

• Functional programming uses
lists of values. The functions
can be applied to each
element in the list.

TASKS
1 Using a suitable programming language, write your own code that will:

a) Place the following values in a list: 2, 5, 3, 6, 4, 8, 9
b) Identify the value at the head of the list
c) Identify how many elements are in the list
d) Apply a function to double every value in the list
e) Filter values greater than 5
f) Add all the values in the list together by reducing/folding it until

there is just one element
g) Create a message to indicate if the list is empty.

405

Section Eleven: Practice questions

Section Eleven: Practice questions
1 A functional program is being used to process the following list.

item (0) 2

item (1) 4

item (2) 6

item (3) 8

item (4) 10

a) Write a function that would generate the set of numbers shown in the table.
b) Suggest a suitable identifi er for the data.
c) Suggest a suitable data type for the elements of the list.
d) What value or values are at the head of the list?
e) What value or values are at the tail of the list?

2 Write Haskell code to reduce/fold a list.

3 Trace the reduce/fold algorithm in the table below.

Instructions Original list Apply function (add) New list

Start with a list {2, 4, 6, 8, 10}

Use the table to explain what is meant by the term recursion.

4 Write Haskell code that will produce a new list (from an existing list)
of values over 10 using the higher order function ‘filter’.

5 What is a higher order function?

Section Twelve:
Software
development

408

INTRODUCTION
Software development is the process of creating and maintaining
programs or applications. Software development is a process
comprising a number of stages that a developer will work through
to solve computer-based problems, typically: analysis, design,
implementation, testing and evaluation. A system is more than just
the programs that will be needed – it might include the fi le structures,
hardware, operating system and people that will be working with it.

There is no requirement to work through every single stage as it will
depend on the nature of the development. For example, to create a
brand new application from
scratch, a developer will work
through every stage. However,
to produce an update for an
existing application may only
need the developer to work
through two or three of the
stages. For AS level you need to
be familiar with the processes
that take place at each stage.
For A level, you will work
through each stage for your
A-level project, which is worth
20% of your A-level grade.
There is more on how to tackle
the project in the next chapter.

LEARNING OBJECTIVES
In this chapter you will:
• learn about the main stages of software development
• look in detail at the components of each stage: analysis, design,

implementation, testing and evaluation.

SPECIFICATION COVERAGE
3.3.1 Aspects of software development

3.13.1 Aspects of software development

 48 Aspects of software
development

Problem

Design

Evaluation Analysis

Implemention

Testing

Figure 48.1 Stages of system development

AN
ALYSIS

409

● Analysis
The first stage is to identify and fully analyse the nature of the problem.
We have already looked at some of the methods for defining problems in
Chapter 17. Analysis also includes:
● understanding what has prompted the need for a new system
● gathering information
● carrying out a feasibility study.

Defining the problem
Having identified that there is a problem with an existing system or
perhaps seen a new area that needs developing, it is very important to keep
an open mind and concentrate on getting to grips with what the problem
involves rather than looking for possible solutions. This involves identifying
the scope of a problem and being realistic about how much of the problem a
new system can solve. Any constraining factors may be identified here.

If you are creating a solution for someone else it is important that you agree
the specification and scope of the work before you start. In general, the
more you can involve the end users, the less likely you are to do something
they do not want.

Prompts for a new system
There are many reasons for creating a new computer system. Many of these
are based on the ever-increasing demands that are made of existing systems
and the ever-changing advances in computer technology.
● Some existing systems simply cannot cope with the increased volume

of data they are being asked to handle. For example, the way in which a
bank maintains its data has changed beyond all recognition in the last
20 years, and banks have spent many millions of pounds updating their
systems.

● New technology has meant that existing systems soon become outdated.
For example, at one time it took a lot of time and effort to book a holiday.
Now it can all be done in real time with the flights you want booked in a
matter of minutes.

O The current system may be inflexible or inefficient. For example, the
number of people flying is increasing every year and this has placed
pressure on the airport immigration authorities. Computer-readable
passports allow immigration staff far greater control and instant access
to details of the person in front of them.

O New technology has created new opportunities. You have only to look
at the way the use of the Internet has exploded to realise how many
new opportunities such as e-commerce and e-banking there are.
Other developments such as computer control and GPS have created
other totally new fields. For example, cars are becoming increasingly
automated. Current technology enables cars to park themselves.

O Commercial reasons. Many new systems are created in order to generate
demand from customers. There isn’t necessarily a need for a new system
but companies introduce them because customers will buy them.

O New platforms and operating systems. Businesses create new systems to
take full advantage of new platforms and operating systems. For example
thousands of new apps have been created for iOS and Android devices.

KEYWORD
Analysis: the first stage of
system development where
the problem is identified,
researched and alternative
solutions proposed.

410

 4
8

A
sp

ec
ts

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t

O Increased processing power. As processing power increases, new software
is written to take advantage of it. Some applications that are processor
intensive may become feasible with the advent of faster processors.

● Increased network power. Many applications are developed to take
advantage of ever increasing connectivity. For example, many of the
leading applications written over the last few years have been based on
social media.

Methods of gathering information
If the problem that you are going to tackle is based on an existing system
then it may be worthwhile investigating how it currently works, though
there are times when a completely fresh approach to a problem might lead
to a better solution. Asking for opinions about a possible new system is a
good idea too. There are several ways in which you can gather data about
an existing system:
● Interview people who are involved with the current system. This will

probably include the systems administrator, the people actually using
the system and their customers or clients. Although this can be a time-
consuming process, talking to the people who are actually using the
existing system will give valuable first-hand knowledge and you can
follow up on any comments that they might make. A drawback is that
each person you talk to may give you a very personal view of the system.

● Unless they are carefully structured the data collected from an interview
can be hard to make use of. Asking someone to fill in a carefully
designed questionnaire or carrying out a survey will allow you to carry
out a more accurate analysis of the responses, but these tend to restrict
the data you gather to definite, closed answers. Questionnaires allow you
to gather a lot of data relatively quickly.

O Although it can be very time consuming, observation of current practices
will help to identify problem areas. It is objective rather than subjective
and you may spot something that everyone else has missed.

● Examination of the current system including the files, paperwork and
processes used will help to identify the data requirements of the new
system. It will also help with the creation of the human–computer
interface (HCI) of the new system. This process will also help you to see
the overall scope of the problem.

Feasibility study
A feasibility study is a preliminary report to the person that asked for the
new system in the first place. It will identify possible solutions and suggest
the best way forward. The report will indicate how practical a solution is
in terms of time and other resources, such as the availability of suitable
software and hardware and the abilities of the end user to cope with the
proposed method of solution.

Possible solutions might include doing nothing, having bespoke software
written for you, writing the software yourself or buying an existing package
‘off the shelf ’ and tailoring it to your needs.

KEYWORD
Feasibility study: an analysis
of whether it is possible or
desirable to create a system.

D
ESIG

N

411

● Design
Before work can start on the actual creation of the solution, the availability
of appropriate hardware and software should be assessed. The choice of
hardware will be driven by the users’ needs and by the way in which data
will be manipulated and stored. Work will begin on the file structures and
algorithms that are going to be used.

Most big projects are far too big to be considered as one complete problem.
The best solution is often to break them down into smaller modules. Each
module will be self-contained, and the programmer will test it on its own.
This approach will allow more than one person to work on the solution.
Often the view a user has of the system will need to be defined so that all
the modules will have the same ‘feel’.
The process of looking at a big problem and breaking it down into smaller
problems and then breaking each of the smaller problems down, and so
on until each problem is manageable is known as the ‘top-down’ design
approach. The benefits of this approach are similar to the modular design
system mentioned above, though there is the potential problem of getting
too engrossed in small details such as the fine-tuning of the human–
computer interface. It makes more sense to solve the overall problem first
before you get too involved in screen layouts.

Data flow diagram (DFD)
There are a number of ways of representing a problem and its possible
solution. A data flow diagram is concerned purely with how data are
moved round a system and as such it only needs four symbols.

Process
e.g. validate code

External entity
e.g. user

document/OMR

Storage
e.g. stock file

Data flow
e.g. customer ID

Figure 48.2 Data flow diagram symbols

The next diagram shows how a DFD might be used. It shows what happens
after the electricity meter at a house has been read.

Calculate
bill

Validate
entry

Meter
reading

Bill

Customer file

Customer
details

Customer file

Updated
details

Figure 48.3 A DFD showing data flows for reading an electricity meter

KEYWORD
Data flow diagram (DFD):
a visual method of showing how
data passes around a system.

KEYWORDS
Design: the second stage of
system development where the
algorithms, data and interface
are designed.
Top-down design: related to the
modular approach, this starts
with the main system at the top
and breaks it down into smaller
and smaller units a bit like a
family tree.
Modular design: a method of
system design that breaks a
whole system down into smaller
units, or modules.

412

 4
8

A
sp

ec
ts

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t

Describing algorithms
At this stage, a description of the algorithms that will be used should be
included. These will not be fully formed lines of code as it is only the
design stage. For example, if search or sort algorithms are needed, they can
be identified at this stage.

It may be appropriate to work the algorithms into pseudo-code that
reflects the programming language being used. For example, if a functional
programming language is being used, the main functions should be
identified at the design stage. If a relational database is being used, the
main SQL statements should be identified.

Data dictionary
Where relevant, a data dictionary should be produced to show what data
will be used and how it will be stored. Careful planning at this stage will
reduce the number of problems that will be encountered later in the project.
This is of particular relevance to database projects.

Details of the data to be stored, including the data type, length, title and any
validation checks, will be stored in a data dictionary. This can be seen as a
database about the database – it holds background details but not the data
itself. Figure 48.4 shows part of the definition of a table in Microsoft Access.
This forms part of the data dictionary that defines the whole solution.

Figure 48.4 Data dictionary definition of a table from MS Access

Variables table and data structures
It is important to decide what variables a program will need and what
purpose they will serve. Some programming languages will only let the
programmer use variables that have been declared. Declaring variables
at the start of the program allows the programmer much tighter control
of their program. The programmer will need to decide about certain
characteristics of each variable – type, length, name and whether the
variable is local or global. This example shows how three global variables
might be set up in Visual Basic.

Public Age As Integer

Public Name As String

Public WearsGlasses As Boolean

In Chapter 4 we met the concept of using blocks or modules to make
a project more manageable. Allocating names to these procedures and
defining local variables used within them is also best carried out at this
stage.

KEYWORD
Data dictionary: a list of all the
data being used in the system
including name, length, data
type and validation.

KEYWORD
Variables table: a list of all the
variables that a program will
use, including names and data
types.

IM
PLEM

EN
TATIO

N

413

Volumetrics
The volume of data that a system will be asked to handle both now and in
the future will have a bearing on how the programmer decides to store and
handle the data. They will need to consider the throughput of data – how
many transactions the system will need to cope with in a given time span –
and also how much data the system will need to store at any one time. This
will affect the storage media that is used, and it will also be a consideration
when back-up strategies are being decided. The programmer will also
need to consider how many users will be allowed to access the files and
programs at one time.

It is important to realise that the databases that most students see in their
time at school or college are generally small. Even a pupil database in a
school with 1200 pupils is very small compared to the high street banks
that have literally millions of customers each with hundreds of fields of data
stored about them. The computers used by the DVLA store details of well
over 20 million cars which means the planning needed for this project is
very different to planning how the secretary of a swimming club will store
their data.

The human–computer interface (HCI)
The human–computer interface is the term given to any form of
communication between a computer and its user. For the majority of us this
might seem limited to the computer screen with its familiar graphical user
interface (GUI), but it can also include the layout of buttons on a mobile
phone or house alarm system and the way information is presented on a
tablet or smart phone or the flight controls of a new aircraft.

There are a number of aspects that need to be considered when designing
an effective HCI. These include:
● Ease of use: There is no point creating sophisticated software if the

functions are hidden behind a series of screens and button presses.
A good HCI will feel almost intuitive.

● Target audience: What suits a child might not necessarily suit an adult
so it is important that the programmer is aware of who the end user is
going to be.

O Technology: There is little point in creating a screen layout that works
comfortably on a 21 inch flat screen if the target audience mostly use
tablets and smart phones.

● Ergonomics: The interface should be ‘comfortable’ to use. This is
important if the user is likely to be sitting with the interface for a long
period of time, for example, an airline pilot or a tele-sales operative.

● Implementation
This stage is when the application is actually written creating the fully
working system using the appropriate tools identified in the feasibility
study. The process of implementing a system is based on the design,
and the programmer(s) will need to be fully aware of the requirements
set out in the design. It is important to note that many systems are
modular and that the different modules do not all have to be written at
the same time. For example, some parts of the system may still be at the

KEYWORD
Implementation: the third
stage of system development
where the actual code and data
structures are created.

414

 4
8

A
sp

ec
ts

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t

design stage while other parts are being implemented. In some cases,
one module is dependent on another one. In other cases, the design of
one part of the system may change as a result of the implementation of
another part.

It is important to realise that systems development has to be a responsive
process and that the developer may need to respond to issues as they arise
throughout the development process.

Prototypes
Creating a solution to a problem can be very costly both in terms of finance
and time. There is little point in presenting the end user with a completed
project if they are going to ask you to alter various details. In this case it
would be a good idea to produce a prototype.

The functionality of a prototype may vary depending on the nature of the
project. For example, the human–computer interface may be very well
developed in the prototype and quite closely reflect the finished system.
However, the functionality behind it may be incomplete.

At this stage the end user is asked to comment on the product so far, and
they will check to make sure all the major functions work as expected.

● Testing
It is important that the system is tested to make sure it performs as
expected. There are a number of test strategies that can be used and it is
important to understand that any testing plan must include tests that are
carried out as the code is written and not just at the end.

Test data are data that generate a known result, and test data will need
to be devised that tests every aspect of the solution from the expected
responses to the extremes that humans can subject a computer program
to. As individual units or modules are completed they are tested to ensure
they carry out the functions they contain. As the project proceeds, modules
can be fitted together and at this stage integration testing takes place.
This process makes sure that the modules work together. A lot of these
processes make use of test data.

Test data are data that will generate a known response. Typically three
types of test data are used:
● Normal: Data that the system is expected to handle as they are within

an acceptable range. For example, an age field could be tested with values
between 0 and 110.

● Boundary: Data that are on the extremes of the acceptable range. This
means testing the minimum and maximum values and those that are just
inside and just outside the range. For example, with age, you might use
0, 1, 109 and 110.

● Erroneous: Data that are clearly incorrect and therefore you would
expect the program to catch the error. For example, test data for age
could be 1000 or an item of text instead of a value.

KEYWORD
Prototype: a stripped down
version of a whole system
built at the design stage to test
whether the concept works.

KEYWORDS
Testing: the fourth stage of
system development that
includes a range of tests using a
variety of data.
Normal test data: test data that
is within the expected range for
the system and should therefore
produce the correct result.
Boundary test data: test data on
or close to the boundary of the
acceptable range.
Erroneous test data: test data
that is clearly incorrect and
should produce an error.

TESTIN
G

415

Development testing
Black box testing involves entering test data into a routine or procedure
and checking the resulting output against the expected outcome. Basically,
it tests that an input produces the correct output without actually
examining how it does it.

White box testing involves testing every aspect of a routine or procedure.
Whilst black box testing is concerned with testing the data handling,
white box testing considers all the other processes that are involved – for
example, how the program reacts if it fails to find a suitable printer. White
box testing checks all pathways through the code, looking inside it and
potentially adding extra commands to check what is happening.

Unit testing makes sure each unit carries out the function it has been
designed for. It incorporates both black box and white box testing.

Once all units have been tested, they are put together to form bigger
sections. Integration testing is the process of making sure that the different
modules that have been tested as individual units will work together.

System testing
System testing involves testing the system as a complete unit rather than
as individual modules and making sure that it satisfies the specification
agreed with the user.

Alpha testing is carried out on the finished system. This involves
creating test data in-house. This test data will try to cover all the possible
eventualities, so they will allow the system to be tested under normal
conditions. The benefits of this process are that any problems that are
found can be rectified before true live data are used by the end user.
Another benefit of using a known set of test data is that if necessary the
system can be stopped and restarted.

Some program developers will release an early or beta version of their new
program to their potential users. At this stage the software is bound to
have ‘bugs’ in it and the users are expected to send details of the problems
they have encountered back to the programmers for them to resolve. This
process is known as beta testing.

The benefits of this system are that passing your software to a number of
people that have not been involved with the development will mean the
testers will all use the system in slightly different ways and so highlight
faults that might not have been found by normal means.

Although the developers will test the system they have developed as
thoroughly as possible, it is the end users that need to be satisfied that the
solution does what they wanted it to. Acceptance testing is carried out by
the intended user. They enter their own live data and make sure the system
matches the specification that was agreed with the program writers.

Some problems may only come to light some time after the system has been
implemented by the user. These might include issues involving the volume
of data the system is asked to cope with. Problems such as these will be
resolved as part of the systems maintenance.

KEYWORD
System testing: a range of tests
carried out on the system once it
has been completed.

KEYWORDS
Development testing: testing
that takes place during the
development of the program.
Black box testing: using test
data to test for an expected
outcome.
White box testing: checks all
pathways through the code,
looking inside it and potentially
adding extra commands to
check what is happening.
Unit testing: testing carried
out on just one module or
component of the whole system.

416

 4
8

A
sp

ec
ts

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t

● Evaluation
The final stage of the system development is evaluation. The solution
that has been created was designed to match the specification that
was agreed with the user. An evaluation compares the actual outcome
with this specification. It should also contain suggestions for future
improvements. It is these improvements and refinements that start off the
whole cycle all over again. Evaluation may take place over an extended
period of time. In fact, many systems are constantly being evaluated.
There may be several criteria used to evaluate a system. For example:
● Functionality: Does it do what it is supposed to?
● Ease of use: This is not the same as ‘easy to use’ but it means that the

level of complexity is appropriate to the user.
O Ease of implementation: How easy was it to transfer from the old system

to the new system?
O Reliability: A measure of how much the system is ‘up’ or ‘down’.
O Performance: Does the system meet its performance criteria, which might

relate e.g. to the speed of operation or the amount of data it can handle?
O Cost effectiveness: Refers to how much it costs to implement the solution

and whether the cost is justified.
O Ease of maintenance and adaptability: How easy is it to fix faults or add

new modules?
● Longevity: How future-proof is the system?

TASKS
1 You have been asked to gather data about an existing system from

the employees that use it. You can either interview them or ask them
to complete a questionnaire, or possibly even both. Compare the
benefits and drawbacks of these two methods.

2 What are the benefits of using a top-down approach to solve a problem?
3 What is prototyping?
4 Explain why it is important for a programmer to define the variables

they intend to use before they start writing the code itself.
5 What is meant by the term ‘volumetrics’?
6 Explain the difference between white box and black box testing.
7 Software companies sometimes release beta versions of their

software. What is a beta version, and what are the benefits to the
company of using this technique?

STUDY / RESEARCH TASKS
1 A company has developed an electronic system for registering pupils

in a school. Draw up a table comparing the pros and cons of the
various methods of delivering support for this program.

2 Describe five features of a good HCI (human–computer interface).
3 Describe the benefits and drawbacks of using off-the-shelf software,

having bespoke software created or writing it ‘in house’.
4 Draw a data flow diagram to show what happens when you take money out

of your bank account via an ATM. Remember it only shows the flow of data.

KEY POINTS
• Software development is

the process of creating and
maintaining programs or
applications. The first stage
is analysis to identify and
fully analyse the nature of the
problem.

• The second stage is design
where suitable algorithms,
data structures and user
interfaces are identified.

• The third stage is
implementation when the
program is written.

• The fourth stage is testing,
where various methods are
used to ensure the system
works and does what it was
designed to do.

• The final stage is evaluation
where the system is
assessed.

KEYWORD
Evaluation: the final stage of
system development where the
system is judged according to
certain criteria.

417

INTRODUCTION
The A-level non-exam assessment constitutes 20% of the total A-level
grade and requires you to work on a project either to identify a real
problem that can be solved with a computer-based solution or to
investigate a specifi c aspect of computer science. You are required to
work through all of the stages of system development to produce a
programmed solution. This is a major piece of work that should take
at least 50 hours, with the majority of the marks available for the
technical solution.

LEARNING OBJECTIVES
In this chapter you will learn:
• how to select an appropriate problem for your project
• how to tackle each section of the project
• how to interpret the mark scheme
• what programming skills and techniques you can use
• how to document your project.

SPECIFICATION COVERAGE
3.14 Non-exam assessment – the computing practical project

 49 Non-exam
assessment (NEA)

● Selecting a project
The information given in this chapter relates specifically to the documentation
required for the AQA A-level practical project now referred to as the non-exam
assessment on the specification.

This project involves working through the stages of software development
(see previous chapter) in the production of a solution to a chosen problem/
investigation. Students should be aware of the agile approach to software
development, the characteristics of which are:
● Planning is adaptive, which means that it may need to change during the

stages of development.
● Developments may evolve as the technical solution is being written, for

example, after a prototype has been created.

A level only

418

 4
9

N
on

-e
xa

m
 a

ss
es

sm
en

t (
N

EA
)

O Technical solutions should be completed well ahead of schedule to allow
time for changes to be made.

● There should be a culture of continuous improvement, which may mean
adding to or changing aspects of your code.

As a result of this you do not necessarily have to complete each stage of
system development in order. However, your final write-up should be
presented in the correct order.

You are expected either:
● to identify a realistic problem with a real end user and create a

system that allows interaction with the user and involve the storage,
manipulation and output of data, or

● to investigate a specific aspect of computing such as artificial intelligence
or 3D graphical modelling with reference to a project supervisor.

You need to think about the areas of computing that interest you and
that you are good at so that you can show off your programming skills.
The solution must be completed using coding and 42 out of the 75 marks
available are allocated to the technical solution.

The solution is assessed in five sections in accordance with the headings
used for system development in the previous chapter.

Analysis 9

Documented design 12

Technical solution 42

Testing 8

Evaluation 4

Total 75

Table 49.1 Breakdown of marks for A-level project

● Choosing a problem or investigation
Considerable thought should be given to the choice of project. Many
students choose problems that are either too easy or too hard and as a
consequence, they do not give themselves the opportunity to score highly
in this area. AQA students must have a real end user or supervisor and
this is sometimes the hardest part of the project. The project requires
evidence of dialogue so you need to find a user who you can speak to or
communicate with throughout the project rather than just at the beginning
and end.
● Start with family and friends to see if there is anything they do on which

you could base a project. For example, you could choose something
based on their work.

● Many students base projects on their own work experience placements,
particularly if they still have contacts at the organisation.

● Another source of projects is your own hobbies and interests. For
example, you may be able to create systems related to gaming, social
media, clubs or societies that you are involved in.

You should also base your choice on the tools and skills that you know
are available in your centre, and on your level of expertise with different

AN
ALYSIS

419

software. For example, it may be easier to produce your coursework using
Visual Basic or Python if that is what you have been using throughout your
course. You will probably find that there is plenty of help available on these
packages from your school/college and from online forums.

The following is a sample of project ideas. This is not an exhaustive list.
● A simulation of a business or scientific issue. For example, a business

issue such as modelling share prices, or a scientific issue such as
modelling flu epidemics.

● An investigation of a well-known problem such as the game of life, the
Towers of Hanoi or the travelling salesman problem.

O A solution to a data processing problem for an organisation, such
as: membership systems (e.g. clubs, gyms), booking systems for
organisations such as holiday companies or medical appointments; stock
control systems; student timetabling and school reporting systems.

O The solution of an optimisation problem, such as production of a rota,
shortest-path problems or route finding.

O A computer game.
O An application of artificial intelligence or investigation into machine

learning algorithms.
O A control system operated using a device such as an Arduino board,

Raspberry Pi or robotic arm.
O A website with dynamic content, driven by a database back-end. Note

that the creation of a static website will not be sufficient for A level.
O Rendering a three-dimensional world on screen.
O An app for a mobile phone or tablet of a suitable complexity, perhaps

chosen from the list above.
● Exploring large datasets, looking for and visualising correlations.

It is worth noting that the best projects are often the most realistic. It is
much better if there is a real problem rather than a pretend one. Don’t be
scared to do something original even if it is very specific in what it will do.

● Analysis
This is possibly the hardest part of the project as it involves identifying and
interviewing a real user or working with a project supervisor. If your user
has a genuine problem that needs solving then this section is much easier as
they will provide much of the information you need. Your analysis should
include:
● General background information on the organisation or person you are

creating the system for. This should be sufficient for a third party to read
and understand.

● A description of the problem with a clear statement that describes the
problem area and specific problem that is being solved/investigated.

● An analysis of the critical path of the project in terms of identifying
the main stages and the sequence which these should be done and the
dependency between the stages.

O An outline of how the problem was researched, which might include an
interview or questionnaire involving the user/supervisor.

O Source documents from the current system where relevant, or evidence of
research into the chosen aspect of computing.

O Observation of the existing system where relevant.

420

 4
9

N
on

-e
xa

m
 a

ss
es

sm
en

t (
N

EA
)

O A list of the user’s requirements and any limitations.
O A list of general and specific objectives that are realistic, achievable and

measurable.
● Any modelling that helps inform the design stage, which may include

graph models, entity-relationships models, data flow diagrams.

This section is marked according to four main criteria. These are:
● How well the problem has been scoped and whether it has been

explained in a way that is easy to understand.
● Whether there is a fully documented set of measurable and appropriate

specific objectives.
O Whether the requirements were identified though proper research and

dialogue with the user.
● Whether the problem has been sufficiently well modelled to be of use in

subsequent stages.

● Design
AQA do not require full designs of every button, form, report, etc. They
only need to see evidence of design for the ‘key aspects’ in a form that a
third party could understand. This will typically be a mixture of written
explanation and diagrams which could include:
● The overall system design, perhaps in the form of a top-down design

diagram, system flowchart or entity relationship model.
● A description of the main modules that will make up the system.
O A description of the data items including data types and structures.
O A description of the file structures being used.
O Explanation of the main algorithms that will be used. It may be

appropriate to use pseudo-code or specific code, for example SQL
queries.

O A sample of rough designs of inputs and outputs including forms and
reports. Examples of the design of the human–computer interface.

● An explanation of any library software that will be used, e.g. scientific or
data visualisation libraries.

O An explanation of any database or web design frameworks being used.
● It is acceptable to show screenshots of any aspect of the design from the

programmed solution even though these will not actually be produced
until the technical solution is complete.

This section is marked by looking at how well your design describes how
the key aspects of the solution are structured:
● fully/nearly fully explained
● adequately explained
O partially explained
● inadequately explained.

● Technical solution
This is the main part of the project where most marks are awarded. It is
split into two parts:
● The completeness of the solution: A total of 15 marks are available

here and awarded depending on how well your solution meets the

SYSTEM
 TESTIN

G

421

requirements that you identified in your analysis. The three bands are:
Meets almost all requirements / Meets many requirements / Meet some
requirements. The total marks awarded will be a matter of judgement.
Where you cannot meet all of the requirements, you are advised to
identify the main requirements of the system and make sure that you
meet these.

● The techniques used: 27 marks are available in this section and are
awarded based on how proficient you are at using certain programming
techniques. Note that to be proficient means that you have successfully
implemented a particular part of the code. That is, your code must
actually work.

You must include enough evidence to prove that you have fully implemented
the design. This could include:
● Self-documenting code, which means code that uses meaningful

identifiers, logical structures and annotation (comments) that allows a
third party to understand it.

● An overview guide, which amongst other things includes the names of
entities such as executables, data filenames/URLs, database names and
pathnames.

O Explanations of particularly difficult-to-understand code sections.
● A careful division of the presentation of the code listing into

appropriately labelled sections.

This section is marked according to two tables provided by AQA in the
specification:
● 3.14.3.4.1 Table 1 Example technical skills: This provides three lists of

programming algorithms and techniques. These are labelled A, B and C
with A being the more complex through to C being the most simple.

● 3.14.3.4.2 Table 2 Coding styles: These show the level of proficiency that
you might achieve when using the techniques described in the first table.
You can be awarded Excellent, Good or Basic.

Your teacher will make a judgement on the complexity and proficiency
of the code you have written using these two tables as a guide. You
should refer to these tables before you implement your solution and try
to use a selection of the technical skills or comparable techniques listed.
You should also make your own judgement about whether to attempt
more difficult techniques if there is a risk that you will not successfully
implement them.

● System testing
There must be evidence that testing has been carried out and that the tests
were designed to ensure the system works as specified. You do not need to
include evidence of every test, but you do need a representative sample that
shows each type of test and you should ensure that the tests cover the main
objectives of the project. This section should include:
● An overview of the test strategy including an explanation of the test data

used. Test data should include normal (typical), boundary and erroneous
data. As well as testing individual functions there should be ‘whole
system’ tests that help to prove that the original objectives of the system
have been met.

422

 4
9

N
on

-e
xa

m
 a

ss
es

sm
en

t (
N

EA
)

● Evidence that tests have been carried out including annotated hard
copies.

O All possible outcomes should be tested with a table to show expected and
actual outcome.

● Samples of screenshots or actual print-outs as evidence.

This section is marked according to two main criteria:
● Clear, well-presented evidence of testing.
● Evidence that the testing proves that the system is robust and works as

intended.

● Evaluation
It is important to be honest about whether the project has been a success
or not:
● Copy the original objectives that you wrote in the analysis section. Go

through each and explain whether you met the objective. If you met the
objective, explain how effectively it was met and if you did not meet the
objective, explain why not.

● Give your user a chance to use the system and ask them for general and
specific comments. Don’t invent the user/supervisor feedback – it will be
obvious.

O Address the user/supervisor feedback explaining how you may
incorporate any changes they have requested.

● Based on these comments and your own opinions, identify any ways in
which the system could be improved or enhanced.

This section is marked according to three main criteria:
● Whether you have considered and addressed suggestions for

improvements.
● Whether you have obtained real feedback from your user(s)/supervisor.
● Whether you have fully considered how well the solution meets its

objectives.

● General advice on projects
The A-level project is a major undertaking if you want to get a good mark.
Students who do well with coursework tend to get the best A-level grades
overall. It’s a comforting feeling when you go into the exam to know that
you already have a good mark in your project. The reverse is also true – a
poor project mark leaves you with a lot to make up in the exam room.

Students who do well in their project:
● Plan the project well.
● Stick to deadlines project.
O Ask their teachers lots of sensible questions.
O Refer to the specification and other resources provided by AQA, such as

the Examiner’s Report on last year’s projects.
O Have a real user/supervisor and use real feedback.
O Consult with the user/supervisor throughout the project.
O Have an interest in the problem they have chosen to solve.
● Work on the project outside lesson time.

KEY POINTS
• The A-level project

involves working
through the stages
of the system
development.

• You are expected to
identify a realistic
problem with a real
end user or investigate
a specific aspect
of computing with
reference to a project
supervisor.

• You should also base
your choice of problem
on the tools and skills
that you know are
available in your centre,
and on your level of
expertise with different
software.

• AQA need to see
evidence of design for
the ’key aspects’ in a
form that a third party
could understand.

• 42 out of the total of
75 marks are available
for the technical solution.

• Students must
reference the AQA
specification to see
what skills are needed
and at what level.

• The system should
be fully tested and
evaluated.

423

Glossary
Abstract data type: a conceptual model of how data can be

stored and the operations that can be carried out on the data.
Abstraction by generalisation/categorisation: the concept

of reducing problems by putting similar aspects of a
problem into hierarchical categories.

Accepting state: the state that identifies whether an input
string has been accepted. Also known as the goal state.

Address bus: used to specify a physical address in memory
so that the data bus can access it.

Addressable memory: the concept that data and instructions
are stored in memory using discrete addresses.

Addressing mode: the way in which the operand is
interpreted.

Adjacency list: a data structure that stores a list of nodes
with their adjacent nodes.

Adjacency matrix: a data structure set up as a two-
dimensional array or grid that shows whether there is an
edge between each pair of nodes.

Algorithm: a sequence of steps that can be followed to
complete a task and that always terminates.

Alphabet: the acceptable symbols (characters, numbers) for
a given Turing machine.

Analysis: the first stage of system development where the
problem is identified, researched and alternative solutions
proposed.

AND: Boolean operation that outputs true if both inputs are
true.

AND gate: result is true if both inputs are true.
Application program interface (API): a set of subroutines

that enable one program to interface with another program.
Application software: programs that perform specific tasks

that would need doing even if computers didn’t exist, e.g.
editing text, carrying out calculations.

Arc: a join or relationship between two nodes – also known as
an edge.

Argument: a value that is passed into a function or
subroutine.

Arithmetic Logic Unit (ALU): part of the processor that
processes and manipulates data.

Arithmetic operation: instructions that perform basic maths
such as +, –, /, ×.

Array: a set of related data items stored under a single
identifier and are accessed based on their position. Can
work on one or more dimensions.

ASCII: a standard binary coding system for characters and
numbers.

Assembler: a program that translates a program written in
assembly language into machine code.

Assembly language: a way of programming using
mnemonics.

Assignment: the process of giving a value to a variable or
constant.

Association aggregation: creating an object that contains
other objects, which can continue to exist even if the
containing object is destroyed.

Associative array: a two-dimensional structure containing
key/value pairs of data.

Asymmetric encryption: where a public and private key are
used to encrypt and decrypt data.

Asynchronous data transmission: data is transmitted
between two devices that do not share a common clock
signal.

Attribute: a characteristic or piece of information about
an entity, which would be stored as a field in a relational
database.

Automation: creating a computer model of a real-life
situation and putting it into action.

Backus–Naur Form (BNF): a form of notation for describing
the syntax used by a programming language.

Bandwidth: a measure of the capacity of the channel down
which the data is being sent. Measured in hertz (Hz).

Barcode reader: a device that uses lasers or LEDs to read
the black and white lines of a barcode.

Baudot code: a five-digit character code that predates ASCII
and Unicode.

Big data: a generic term for large or complex datasets that
are difficult to store and analyse.

Binary file: stores data as sequences of 0s and 1s.
Binary search: a technique for searching data that works by

splitting datasets in half repeatedly until the search data is
found.

Binary tree search: a technique for searching a binary tree
that traversed the tree until the search term is found.

Binary tree: a structure where each node can only have up to
two child nodes attached to it.

Bit: a single binary digit from a binary number – either a zero
or a one.

Bit rate: the rate at which data is actually being transmitted.
Measured in bits per second.

Bit-mapped graphic: an image made up of individual pixels.
Black box testing: using test data to test for an expected

outcome.
Block: in data storage it is the concept of storing data into set

groups of bits and bytes of a fixed length.
Block interface: code that describes the data being passed

from one subroutine to another.
BODMAS: a methodology for evaluating mathematical

expressions in a particular sequence.
Boolean expression: an equation made up of Boolean

operations.
Boolean operation: a single Boolean function that results in

a TRUE or FALSE value.
Boundary test data: test data on or close to the boundary of

the acceptable range.
Branch operations: operations within an instruction set that

allow you to move from one part of the program to another.
Breadth first: a method for traversing a graph that explores

nodes closest to the starting node first before progressively
exploring nodes that are further away.

Bubble sort: a technique for putting data in order by
repeatedly stepping through an array, comparing adjacent
elements and swapping them if necessary until the array is
in order.

Bus: microscopic parallel wires that transmit data between
internal components.

G
LO

SS
A

R
Y

424

Bus topology: a network layout that uses one main data cable
as a backbone to transmit data.

Bus width: the number of bits that can be sent down a bus in
one go.

Byte: a group of bits, typically 8, used to represent a single
character.

Bytecode: an instruction set used for programming that can
be executed on any computer using a virtual machine.

Cache: a high-speed temporary area of memory.
Caesar cipher: a substitution cipher where one character

of plaintext is substituted for another, which becomes the
ciphertext.

Call stack: a special type of stack used to store information
about active subroutines and functions within a program.

Cardinal number: a number that identifies the size of
something.

Cardinality: the number of elements in a set.
Carry bit: used to store a 0 or 1 depending on the result of

binary addition.
Cartesian product: combining the elements of two or more

sets to create a set of ordered pairs.
Certification Authority: a trusted organisation that provides

digital certificates and signatures.
Chaining: a technique for generating a unique index when

there is a collision by adding the key/value to a list stored at
the same index.

Character code: a binary representation of a particular letter,
number or special character.

Charge coupled device (CCD): in digital cameras it is a
sensor that records the amount of light received and
convert it into a digital value.

Check digit: a digit added to the end of binary data to check
the data is accurate.

Checksum: a method of checking the integrity of data by
calculating a sum based on the data being sent.

Child: a node in a tree that has nodes above it in the
hierarchy.

Chip: an electronic component contained within a thin slice of
silicon.

Cipher: an algorithm that encrypts and decrypts data, also
known as code.

Ciphertext: data that has been encrypted.
Circular queue: a FIFO data structure implemented as a ring

where the front and rear pointers can wrap around from
the end to the start of the array.

Class: defines the properties and methods of a group of
similar objects.

Class diagram: a way of representing the relationship
between classes.

Client–server: a network methodology where one computer
has the main processing power and storage and the other
computers act as clients requesting services from the
server.

Client–server database: a way of implementing a database
where the database is put into a server and various users
can access it from their workstations. The processing, for
example, running a query, will take place on the server.

Client–server model: a way of implementing a connection
between computers where one computer (the client) makes
use of resources of another computer (the server).

Clock: a device that generates a signal used to synchronise
the components of a computer.

Clustering: when a hashing algorithm produces indices that
are not randomly distributed.

Code of conduct: a voluntary set of rules that define the way
in which individuals and organisations will behave.

Codomain: all the values that may be output from a
mathematical function.

Collision: when a hashing algorithm produces the same
index for two or more different keys.

Colour depth: the number of bits or bytes allocated to
represent the colour of a pixel in a bit-mapped graphic.

Commitment ordering: a technique to ensure concurrent
transactions on a shared database are executed based on
the timestamp of when the request is made and also the
precedence the request takes over other simultaneous
request.

Compiler: a program that translates a high-level language
into machine code by translating all of the code.

Complementary metal oxide semiconductor (CMOS): is an
alternative technology that performs the same functions as
a CCD.

Components: the values within a vector.
Composition: building up a whole system from smaller units.

The opposite of decomposition.
Composition aggregation: creating an object that contains

other objects, and will cease to exist if the containing object
is destroyed.

Compression: the process of reducing the size of a file.
Computational hardness: the degree of difficulty in cracking

a cipher.
Computational security: a concept of how secure data

encryption is.
Concurrence: the concept of two users trying to access the

same data item at the same time.
Constant: an item of data whose value does not change.
Constant time: in Big O notation where the time taken to run

an algorithm does not vary with the input size.
Context-free language: an unambiguous way of describing

the syntax of a language useful where the language is
complex.

Control bus: controls the flow of data between the processor
and other parts of the computer.

Control unit: part of the processor that manages the
execution of instructions.

Controller: in SSDs a controller is needed to organise data
into blocks for storage purposes.

Convex combinations: a method of multiplying vectors that
produces a resulting vector within the convex hull.

Convex hull: a spatial representation of the vector space
between two vectors.

Copyright: the legal ownership that applies to software,
music, films and other content.

Countable set: a finite set where the elements can be
counted using natural numbers.

Countably infinite sets: sets where the elements can be put
into a one-to-one correspondence with the set of natural
numbers.

CRUD: an acronym that explains the main functions of a
database: Create, Read, Update, Delete.

Cultural issues: factors that have an impact on the ways in
which we function as a society.

Current Instruction Register (CIR): register that stores the
instructions that the CPU is currently decoding/executing.

G
lossary

425

Data abstraction: hiding how data is represented so that it
is easier to build a new kind of data object, e.g. building a
stack from an array.

Data bus: transfers data between the processor and memory.
Data dictionary: a list of all the data being used in the system

including name, length, data type and validation.
Data flow diagram (DFD): a visual method of showing how

data passes around a system.
Data misuse: using data for purposes other than for which it

was collected.
Data structure: a common format for storing large volumes

of related data, which is an implementation of an abstract
data type.

Data transfer operations: operations within an instruction
set that move data around between the registers and
memory.

Data type: determines what sort of data is being stored, e.g.
integer, real, and how it will be handled by the program.

Database management system: software that enables the
management of all aspects of a database including adding,
updating and querying data.

De Morgan’s Law: a process for simplifying Boolean
expressions.

Debug: the process of finding and correcting errors in
programs.

Declaration: the process of defining variables and constants
in terms of their name and data type.

Declarative language: languages that declare of specify what
properties a result should have, e.g. results will be based
on functions.

Decomposition: breaking down a large task into a series of
subtasks.

Decryption: the process of deciphering encrypted data or
messages.

Definite iteration: a process that repeats a set number of times.
Depth first: a method for traversing a graph that starts at

a chosen node and explores as far as possible along each
branch away from the starting node before backtracking.

Design: the second stage of system development where the
algorithms, data and interface are designed.

Development testing: testing that takes place during the
development of the program.

Dictionary (data structure): a data structure that maps keys
to data.

Dictionary-based encoding: a method of compressing text files.
Difference: describes which elements differ when two sets

are joined together.
Digital camera: a device for creating digital images of

photographs, which can be printed or transferred onto a
computer to be manipulated and stored.

Digital certificate: a method of ensuring that an encrypted
message is from a trusted source as they have a certificate
from a Certification Authority.

Digital signature: a method of ensuring that an encrypted
message is from a trusted source as they have a unique,
encrypted signature verified by a Certification Authority.

Direct address: the operand is the datum.
Directed graph: a graph where the relationship between

nodes is one-way.
Direction: one of the two components of a vector.
Distributed processing/computing: the principle of

spreading large and complex tasks over a number of
computers or servers.

Distributed program: a program specifically written to be
used in a distributed processing environment.

Domain: all the values that may be input to a mathematical
function.

Domain name: the recognisable name of a domain on
the Internet.

Domain name server (DNS): a server that contains domain
names and associated IP addresses.

Domain name server (DNS) system: a system of connected
domain name servers that provides the IP address of every
website on the Internet.

Dot product: multiplying two vectors together to produce
another vector.

Dry run: the process of stepping through each line of code to
see what will happen before the program is run.

Dynamic data structure: a method of storing data where the
amount of data stored (and memory used to store it) will
vary as the program is being run.

Dynamic Host Configuration Protocol (DHCP): a set of rules
for allocating locally unique IP addresses to devices as they
connect to a network.

Edge (programming): a connection between two nodes in a
graph or tree structure – also known as an arc.

Edge: in a database graph schema, it refers to the link and
relationship between two nodes.

Element: an single value within a set or list – also called a
member.

Email server: a dedicated computer on a network for
handling email.

Empty list: a list with no elements in it.
Empty set: the set that contains no values.
Encapsulation: the concept of putting properties, methods

and data in one object.
Encryption: the process of turning plaintext into scrambled

ciphertext, which can only be understood if it is decrypted.
Entity: an object about which data will be stored.
Entity identifier: an attribute which can uniquely identify

each instance of an entity.
Entity relationship diagram: a visual method of describing

relationships between entities.
Erroneous test data: test data that is clearly incorrect and

should produce an error.
Ethical issues: factors that define the set of moral values by

which society functions.
Evaluation: the final stage of system development where the

system is judged according to certain criteria.
Event: something that happens when a program is being run.
Exception handling: the process of dealing with events that

cause the current subroutine to stop.
Exponent: the ‘power of’ part of a number indicating how far

a binary point should be shifted left or right.
Exponential time: in Big O notation where the time taken

to run an algorithm increases as an exponential function
of the number of inputs. For example, for each additional
input the time taken might double.

Factorial: the product of all positive integers less than or
equal to n, e.g. 3! is 3 × 2 × 1.

Feasibility study: an analysis of whether it is possible or
desirable to create a system.

Fetch–execute cycle: the continuous process carried out by
the processor when running programs.

Field: an item of data.

G
LO

SS
A

R
Y

426

FIFO: first in first out refers to a data structure such as a
queue where the first item of data entered is the first item
of data to leave.

File: a collection of related data.
File management: how an operating system stores and

retrieves files.
Filter function: a method of creating a subset based on

specified criteria.
Finite: countable.
Finite set: a set where the elements can be counted using

natural numbers up to a particular number.
Finite state machine (FSM): any device that stores its current

status and whose status can change as the result of an
input. Mainly used as a conceptual model for designing and
describing systems.

Firewall: hardware or software for protecting against
unauthorised access to a network.

First-class object: any object that can be used as an
argument or result of a function call.

Fixed point: where the decimal/binary point is fixed within a
number.

Flip-flop: a memory unit that can store one bit.
Floating gate transistor: in SSDs it is a type of non-volatile

transistor that stores data even without a power source.
Floating point: where the decimal/binary point can move

within a number.
Flowchart: a diagram using standard symbols that describes

a process or system.
Foreign key: an attribute in a table that is a primary key in

another table and is used to link tables together.
Frequency analysis: in cryptography it is the study of how

often different letters or phrases are used.
FTP: a protocol (set of rules) for handling file uploads and

downloads.
Full adder: a circuit that performs addition using inputs from

A and B plus a carry bit.
Function (maths): an expression that takes an input value

from a set and returns an output value from another set.
Function (programming): a subroutine that returns a value.
Function application: the process of calculating the result of

a function by passing it some data to produce a result.
Function composition: combining two or more functions

together to create more complex functions.
Function type: refers to the way in which the expression is

created, for example, integer of the domain and codomain,
where f: A → B is the type of function.

Functional abstraction: breaking down a complex problem
into a series of reusable functions.

Functional language: a programming paradigm that uses
mathematical functions.

Functional programming: a programming paradigm that
uses functions to create programs.

Functional programming paradigm: a language where each
line of code is made up of calls to a function, which in turn
may be made up of other functions, or result in a value.

Gateway: a node in a network that acts as a connection point
to another network with different protocols.

Global variable: a variable that is available anywhere in the
program.

Graph schema (database): a method of defining a database in
terms of nodes, edges and properties.

Graph theory: the underlying mathematical principles behind
the use of graphs.

Graph (maths): a structure that models the relationship
between pairs of objects.

Graph (programming): a data structure made up of
connected vertices and edges.

Half adder: a circuit that performs addition using inputs from
A and B only.

Halting problem: an example of an unsolvable problem
where it is impossible to write a program that can work out
whether another problem will halt given a particular input.

Halting state: stops the Turing machine.
Hard disk (HDD): a secondary storage device made up of

metallic disks that stores data magnetically.
Hardware: a generic term for the physical parts of the

computer, both internal and external.
Harvard architecture: a technique for building a processor

that uses separate buses and memory for data and
instructions.

Hash table: a data structure that stores key/value pairs
based on an index calculated from an algorithm.

Hashing algorithm: code that creates a unique index from
given items of key data.

Head: the first element in a list.
Heap: a pool of unused memory allocated to a dynamic data

structure.
Heuristic: with algorithms it is a method for producing a ‘rule

of thumb’ to produce an acceptable solution to intractable
problems.

Hierarchy chart: a diagram that shows the design of a
system from the top down.

Higher order function: a function that takes a function as its
inputs or creates a function as its output.

High-level language: a programing language that allows
programs to be written using English keywords and that is
platform independent.

HTTP (Hypertext transfer protocol): the protocol (set of
rules) to define the identification, request and transfer of
multimedia content over the Internet.

HTTPS: as above but with encrypted transmission.
Identifier: the name of a list.
Immediate address: the operand is the memory address or

register number.
Imperative language: a language based on giving the

computer commands or procedures to follow.
Implementation: creating code to produce a programmed

solution.
Implementation: the third stage of system development

where the actual code and data structures are created.
Indefinite iteration: a process that repeats until a certain

condition is met.
Index: the location where values will be stored, calculated

from the key.
Infinite set: a set that is not finite.
Infix: expressions that are written with the operators within

the operands, e.g. 2 + 3.
Information hiding: the process of hiding all details of an

object that do not contribute to its essential characteristics.
Inheritance: the concept that properties and methods in one

class can be shared with a subclass.
In-order: a method of traversing a tree by traversing the left

subtree, visiting the root and traversing the right subtree.

G
lossary

427

In-order traversal: a method of extracting data from a binary
tree that will result in an infix expression.

Input size: in Big O notation the size of whatever you are
asking an algorithm to work with, e.g. data, parameters.

Input/Output (I/O) controller: controls the flow of
information between the processor and the input and
output devices.

Instantiation: the process of creating an object from a class.
Instruction set: the patterns of 0s and 1s that a particular

processor recognises as commands, along with their
associated meanings.

Instruction table: a method of describing a Turing machine in
tabular form.

Integer: any whole positive or negative number including
zero.

Internet Protocol (IP) address: a unique number that
identifies devices on a network.

Internet: a global network of networks.
Internet registries: organisations who allocate and

administer domain names and IP addresses.
Interpreter: a program for translating a high-level language

by reading each statement in the source code and
immediately performing the action.

Interrupt: a signal sent by a device or program to the
processor requesting its attention.

Interrupt register: stores details of incoming interrupts.
Interrupt Service Routine: calls the routine required to

handle an interrupt.
Intersection: describes which elements are common to both

sets when two sets are joined.
Intractable problem: a problem that cannot be solved within

an acceptable time frame.
Irrational number: a number that cannot be represented as

a fraction or ratio as the decimal form will contain infinite
repeating values.

Iteration: repeating the same process several times in order
to achieve a result.

JSON (JavaScript object notation): a standard format for
transmitting data.

Key: in cryptography it is the data that is used to encrypt and
decrypt the data.

Key/value pair: the key and its associated data.
Laser printer: a device that uses lasers and toner to create

mono and colour prints.
Latency: the time delay that occurs when transmitting data

between devices.
Leaf: a node that does not have any other nodes beneath it.
Legal issues: factors that have been made into laws by the

government.
Library programs: code, data and resources that can be

called by other programs.
LIFO: last in first out refers to a data structure such as a

stack where the last item of data entered is the first item of
data to leave.

Linear queue: a FIFO structure organised as a line of data,
such as a list.

Linear search: a simple search technique that looks through
data one item at a time until the search term is found.

Linear time: in Big O notation where the time taken to run an
algorithm increases in direct proportion with the input size.

List: a collection of data items of the same type.

Load factor: the ratio of how many indices are available to
how many there are in total.

Local Area Network (LAN): a network over a small
geographical distance – usually on one site and typically
used by one organisation.

Local variable: a variable that is available only in specified
subroutines and functions.

Logarithmic time: in Big O notation where the time taken
to run an algorithm increased or decreases in line with a
logarithm.

Logic circuit: a combination of logic gates.
Logic gate: an electronic component used to perform

Boolean algorithms.
Logical reasoning: the process of using a given set of facts to

determine whether new facts are true or false.
Logical network topology: the conceptual way in data is

transmitted around a network (see Physical network
topology).

Logical operations: operations within an instruction set that
move the bits around within the operand.

Loop: a repeated process.
Low-level language: machine code and assembly language.
Machine code: the lowest level of code made up of 0s and 1s.
Magnitude: one of the two components of a vector – refers to

its size.
Main memory: stores data and instructions that will be used

by the processor.
Majority voting: a method of checking for errors by producing

the same data several times and checking it is the same
each time.

Mantissa: the significant digits that make up a number.
Map function: a function that generates an output list from an

input list by applying a function to each element in the input
list.

Mealy machine: a type of finite state machine with outputs.
Media Access Control (MAC) address: a unique code that

identifies a particular device on a network.
Member: describes a value or element that belongs to a set.
Memory: the location where instructions and data are stored

on the computer.
Memory address: a specific location in memory where

instructions or data is stored.
Memory Address Register (MAR): register that stores the

location of the address that data is either written to or
copied from by the processor.

Memory Buffer Register (MBR): register that holds data that
is either written to or copied from the CPU.

Memory Data Register (MDR): another name for the MBR.
Memory management: how the operating system uses RAM

to optimise the performance of the computer.
Merge sort: a technique for putting data in order by splitting

lists into single elements and then merging them back
together again.

Message: the name given to a packet of data being
transmitted using the websocket protocol.

Method: the code or routines contained within a class or
method.

Mnemonics: short codes that are used as instructions when
programming, e.g. LDR, ADD.

Modelling: recreating a real-life situation on a computer.
Modular design: a method of system design that breaks a

whole system down into smaller units, or modules.

G
LO

SS
A

R
Y

428

Module: a number of subroutines that form part of a
program.

Moral issues: factors that define how an individual acts and
behaves.

Multi-core: a chip with more than one processor.
Mutable: changeable.
Naming conventions: the process of giving meaningful

names to subroutines, functions, variables and other user-
defined features in a program.

NAND: Boolean operation that outputs true if any of its inputs
are false.

NAND gate: result is true if any of the inputs are false.
Natural number: a positive whole number including zero.
Nesting: placing one set of instructions within another set of

instructions.
Network: devices that are connected together to share data

and resources.
Network adapter/Network Interface Card (NIC): a card that

enables devices to connect to a network.
Network topology: the layout of a network usually in terms of

its conceptual layout rather than physical layout.
Node: an element of a graph or tree – also known as a vertex.
Node: in database modelling, it is an entity.
NOR: Boolean operation that outputs true if all of its inputs

are false.
NOR gate: result is true if both inputs are false.
Normal test data: test data that is within the expected range

for the system and should therefore produce the correct
result.

Normalisation: a process for adjusting numbers onto a
common scale.

Normalisation: the process of ensuring that a relational
database is structured efficiently.

NOT: Boolean operation that inverts the result so true
becomes false and false becomes true.

NOT gate: inverts the result so true becomes false and false
becomes true.

Number base: the number of digits available within a
particular number system, e.g. base 10 for decimal, base 2
for binary.

Object: a specific instance of a class.
Object code: compiled code that can be run as an executable

on any computer.
Object-oriented language: a programming paradigm that

encapsulates instructions and data together into objects.
One-time pad: a key that is only used once to encrypt and

decrypt a message and is then discarded.
Opcode: an operation code or instructions used in assembly

language.
Operand (maths): a value within an expression.
Operand (programming): a value or memory address that

forms part of an assembly language instruction.
Operating system software: a suite of programs designed to

control the operations of the computer.
Operator: the mathematical process within an expression.
OR: Boolean operation that outputs true if either of its inputs

are true.
OR gate: result is true if either input is true.
Ordinal number: a number used to identify position relative

to other numbers.
Overflow: when a number is too large to be represented with

the number of bits allocated.

Overriding: where the methods described in the subclass
take precedence over those described in the base class.

Packet: a block of data being transmitted.
Packet filtering: a technique for examining the contents of

packets on a network and rejecting them if they do not
conform to certain rules.

Packet switching: a method for transmitting packets of data
via the quickest route on a network.

Parallel transmission: data is transmitted several bits at a
time using multiple wires.

Parameter: data being passed into a subroutine.
Parent: a type of node in a tree, where there are further

nodes below it.
Parity bit: a method of checking binary codes by counting the

number of 0a and 1s in the code.
Partial application (of a function): the process of applying a

function by creating an intermediate function by fixing some
of the arguments to the function.

Peer-to-peer: a network methodology where all devices in a
network share resources between them rather than having
a server.

Physical network topology: the way in which devices in a
network are physically connected.

Pixel: a picture element – the smallest unit that combined
with other pixels makes up a picture, for example, a digital
photograph.

Plaintext: data in human-readable form.
Pointer: a data item that identifies a particular element in a

data structure – normally the front or rear.
Polish notation: another way of describing prefix notation.
Polyalphabetic: using more than one alphabet.
Polymorphism: the ability for different types of data to be

manipulated with the same method.
Polynomial time: in Big O notation where the time taken to

run the algorithm is a polynomial function of the input size,
e.g. the square of the input size.

POP3: a protocol (set of rules) for receiving emails.
Port: an addressable location on a network that links to a

process or application.
Port forwarding: a method of routing data through additional

ports.
Postfix: expressions that are written with the operators after

the operands, e.g. 2 3 +
Post-order: a method of traversing a tree by traversing the

left subtree, traversing the right subtree and then visiting
the root.

Post-order traversal: a method of extracting data from a
binary tree that will result in postfix expressions.

Precision: how accurate a number is.
Prefix: expressions that are written with the operators before

the operands, e.g. + 2 3
Pre-order: a method of traversing a tree by visiting the root,

traversing the left subtree and traversing the right subtree.
Pre-order traversal: a method of extracting data from a

binary tree that will result in prefix expressions.
Primary key: an attribute that can be used to uniquely identify

every record within a table.
Priorities: a method for assigning importance to interrupts in

order to process them in the right order.
Priority queue: a variation of a FIFO structure where some

data may leave out of sequence where it has a higher
priority than other data items.

G
lossary

429

Private key: a code used to encrypt/decrypt data that is
only known by one user but is mathematically linked to a
corresponding public key.

Problem abstraction: removing unnecessary details in a
problem until the underlying problem is identified to see if
this is the same as a problem that has already been solved.

Problem solving: the process of finding a solution to real-life
problems.

Procedural programming languages: languages where the
programmer specifies the steps that must be carried out in
order to achieve a result.

Procedure: another term for a subroutine.
Processor: a device that carries out computation on data by

following instructions, in order to produce an output.
Program counter (PC): register that stores the address of

the next instruction to be taken from main memory into the
processor.

Proper subset: where one set is wholly contained within
another and the other set has additional elements.

Properties: the defining features of an object or class in
terms of its data.

Properties: in database modelling, the items of information
stored within each entity.

Protocols: sets of rules.
Prototype: a stripped down version of a whole system built at

the design stage to test whether the concept works.
Pseudo-code: a method of writing code that does not require

knowledge of a particular programming language.
Pseudo-random number generation: common in

programming languages, a function that produces a
random number that is not 100% random.

Public key: a code used to encrypt/decrypt data that can be
made public and is linked to a corresponding private key.

Query: a search or sort carried out on data that retrieves the
answer to a question.

Queue: a data structure where the first item added is the first
item removed.

Radio frequency identification (RFID): a microscopic device
that stores data and transmits it using radio waves –
usually used in tags to track items.

Railfence cipher: a type of transposition cipher that encodes
the message by splitting it over rows.

Random Access Memory (RAM): stores data and can be read
to and written from.

Random number generation: a function that produces a
completely random number.

Rational number: any number that can be expressed as a
fraction or ratio of integers.

Read Only Memory (ROM): stores data and can be read from,
but not written to (unless programmable ROM).

Read/write head: the theoretical device that writes
or reads from the current cell of a tape in a Turing
machine.

Real number: any positive or negative number with or without
a fractional part.

Record: one line of a text file.
Record locks: a technique to temporarily prevent access to

certain records held on a database.
Recursion: the process of a subroutine calling itself.
Reduce/fold function: a method of reducing a list to a single

element by combining the elements using a function.

Regional Internet Registry (RIR): one of five large
organisations that allocate and administer domain names
and IP addresses in different parts of the world.

Registers: a small section of temporary storage that is part
of the processor. Stores data or control instructions during
the fetch–decode–execute cycle.

Regular expression: notation that contains strings of
characters that can be matched to the contents of a set.

Regular language: any language that can be described using
regular expressions.

Rehashing: the process of running the hashing algorithm
again when a collision occurs.

Relational database: a method of creating a database using
tables of related data, with relationships between the
tables.

Relational operations: expressions that compare two values
such as equal to or greater than.

Representational abstraction: the process of removing
unnecessary details so that only information that is
required to solve the problem remains.

Request to send/Clear to send (RTS/CTS): a protocol to
ensure data does not collide when being transmitted on
wireless networks.

Resolution: width × height of an image or number of pixels
per inch.

Resource management: how an operating system manages
hardware and software to optimise the performance of the
computer.

REST (Representational State Transfer): a methodology for
implementing a networked database.

Reverse Polish Notation (RPN): another term for postfix
notation.

RGB filter: red, green and blue filters that light passes
through in order to create all other colours.

Root: the starting node in a rooted tree structure from which
all other nodes branch off.

Rounding: reducing the number of digits used to represent
a number while maintaining a value that is approximately
equivalent.

Route cipher: a type of transposition cipher that encodes the
message by placing it into a grid.

Routine: another term for a subroutine.
Routing: the process of directing packets of data between

networks.
Run-length encoding: a method of compressing data by

eliminating repeated data.
Scalar: a real value used to multiply a vector to scale the

vector.
Scheduling: a technique to ensure that different users or

different programs are able to work on the same computer
system at the same time.

Selection: the principle of choosing what action to take based
on certain criteria.

Sequence: the principle of putting the correct instructions in
the right order within a program.

Serial transmission: data is transmitted one bit at a time
down a single wire.

Serialisation: a technique to ensure that only one transaction
at a time is executed from multiple users on a database.

Service Set Identifier (SSID): a locally unique 32-character
code that identifies a device on a wireless network.

G
LO

SS
A

R
Y

430

Set: a collection of unordered, non-repeating numbers or
symbols.

Set building: the process of creating sets by describing them
using notation rather than listing the elements.

Set comprehension: see Set building.
Shift cipher: a simple substitution cipher where the letters

are coded by moving a certain amount forwards or
backwards in the alphabet.

Shift instructions: operations within an instruction set that
move bits within a register.

Shortest path: the shortest distance between two vertices
based on the weighting of the edges.

Side effects: in programming it refers to the fact that
the value contained within a variable will change as the
program is run, which has implications for other parts of
the program.

Signed binary: binary with a positive or negative sign.
Single source: in Dijkstra’s algorithm it means that the

shortest path is calculated from a single starting point.
SMTP: a protocol (set of rules) for sending emails.
Socket: an endpoint of a communication flow across a

computer network.
Software: a generic term for any program that can be run on

a computer.
Source code: programming code that has not yet been

compiled into an executable file.
Space complexity: the concept of how much space an

algorithm requires.
Secure Shell (SSH) Protocol: a protocol (set of rules) for

remote access to computers.
Stack: a data structure where the last item added is the first

item removed.
Stack frame: a collection of data about a subroutine call.
Star topology: a way of connecting devices in a network

where each workstation has a dedicated cable to a central
computer or switch.

Start bit: a bit used to indicate the start of a unit of data in
asynchronous data transmission.

Start state: the initial state of a Turing machine.
State transition diagram: a visual representation of an FSM

using circles and arrows.
State transition table: a tabular representation of an FSM

showing inputs, current state and next state.
State: in programming it refers to the state that the variables

are in, i.e. the values that are currently stored.
Stateful inspection: a technique for examining the contents

of packets on a network and rejecting them if they do not
form part of a recognised communication.

Static data structure: a method of storing data where the
amount of data stored (and memory used to store it) is fixed.

Status register: keeps track of the various functions of the
computer such as if the result of the last calculation was
positive or negative.

Stop bit: a bit used to indicate the end of a unit of data in
asynchronous data transmission.

Stored program concept: the idea that instructions and data
are stored together in memory.

String-handling functions: actions that can be carried out on
sequences of characters.

Structure chart: similar to a hierarchy chart with the addition
of showing how data is passed around the system.

Structured data: data that fits into a standard database
structure of columns and rows (fields and records).

Structured Query Language (SQL): a specialised
programming language for manipulating databases.

Subnet masking: a method of dividing a network into multiple
smaller networks.

Subprogram: another term for a subroutine.
Subroutine: a named block of code designed to carry out a

specific task.
Subset: a set where the elements of one are entirely

contained within the other; can include two sets that are
exactly the same.

Substitution cipher: a method of encryption where one
character is substituted for another to create ciphertext.

Symmetric encryption: where the sender and receiver both
use the same key to encrypt and decrypt data.

Synchronous data transmission: data is transmitted where
the pulse of the clock of the sending and receiving device
are in time with each other. The devices may share a
common clock.

Syntax: the rules of how words are used within a given
language.

Syntax diagram: a method of visualising rules written in BNF
or any other context-free language.

System flowchart: a diagram that shows individual
processes within a system.

System testing: a range of tests carried out on the system
once it has been completed.

Table: a method for implementing an entity and attributes as
a group of related data.

Tail: every element in a list apart from the head.
TCP/IP: a set of protocols (set of rules) for all TCP/IP network

transmissions.
Terminal: a computer that has little or no processing power

or storage capacity used as a client in a thin client network;
on a syntax diagram it is the final element that requires no
further rules.

Testing: the fourth stage of system development that
includes a range of tests using a variety of data.

Text file: a file that contains human-readable characters.
Thick client: in a network where resources, processing

power and storage capacity are distributed between the
server and the client computers.

Thin client: in a network where one computer contains the
majority of resources, processing power and storage
capacity, which it distributes to other clients.

Time complexity: the concept of how much time an algorithm
requires.

Timestamp ordering: a technique to ensure multiple users
can execute commands on a shared database based on
the timestamp of when the data was last written to or
read from.

Top-down approach: when designing systems it means that
you start at the top of the process and work your way down
into smaller and smaller sub-processes.

Top-down design: related to the modular approach, this
starts with the main system at the top and breaks it down
into smaller and smaller units a bit like a family tree.

Trace table: a method of recording the result of each step
that takes place when dry running code.

Tractable problem: a problem that can be solved in an
acceptable amount of time.

G
lossary

431

Transition function/rule: a method of notating how a Turing
machine moves from one state to another and how the data
on the tape changes.

Translator: the general name for any program that translates
code from one language to another, for example translating
source code into machine code. There are three types –
compilers, assemblers and interpreters.

Transposition cipher: a method of encryption where the
characters are rearranged to form an anagram.

Traversal: the process of reading data from a tree or graph
by visiting all of the nodes.

Tree: a data structure similar to a graph, with no loops.
Trojan: malware that is hidden within another file on your

computer.
Truncating: the process of cutting off a number after a

certain number of characters or decimal places.
Truth table: a method of representing/calculating the result

of every possible combination of inputs in a Boolean
expression.

Turing machine: a theoretical model of computation.
Two’s complement: a method of working with signed binary

values.
Unauthorised access: where computer systems or data are

used by people who are not the intended users.
Underflow: when a number is too small to be represented

with the number of bits allocated.
Undirected graph: a graph where the relationship between

nodes is two-way.
Unicode: a standard binary coding system that has

superseded ASCII.
Uniform resource locator (URL): a method for identifying the

location of resources (e.g. websites) on the Internet.
Union: where two sets are joined and all of the elements of

both sets are included in the joined set.
Unit: the grouping together of bits or bytes to form larger

blocks of measurement, e.g. GB, MB.
Unit testing: testing carried out on just one module or

component of the whole system.
Universal machine: a machine that can simulate a Turing

machine by reading a description of the machine along with
the input of its own tape.

Unsigned binary: binary that represents positive numbers only.
Unsolvable problem: a problem that it has been proved

cannot be solved on a computer.
Unstructured data: data that does not fit into a standard

database structure of columns and rows (fields and
records).

Utility programs: programs that perform specific common
task related to running the computer, e.g. zipping files.

Variable: a data item whose value will change during the
execution of the program.

Variables table: a list of all the variables that a program will
use, including names and data types.

Vector graphic: an image made up of objects and
coordinates.

Vector space: a collection of elements that can be formed by
adding or multiplying vectors together.

Vectored interrupt mechanism: a method of handling
interrupts by pointing to the first memory address of the
instructions needed.

Vernam cipher: a method of encryption that uses a one-
time pad (key) to create ciphertext that is mathematically
impossible to decrypt without the key.

Vertex (plural vertices): a point or node on a graph or
network.

Virtual machine: the concept that all of the complexities of
using a computer are hidden from the user by the operating
system.

Virus: a generic term for malware where the program
attaches itself to another file in order to infect a computer.

Von Neumann architecture: a technique for building a
processor where data and instructions are stored in the
same memory and accessed via buses.

Web browser: an application for viewing web pages.
Web server: a dedicated computer on a network for handling

web content.
Websocket protocol: a set of rules that creates a persistent

connection between two computers on a network to enable
real-time collaboration.

Weighted graph: a graph with values attached to the edges.
Well-ordered set: a group of related numbers with a

defined order.
White box testing: checks all pathways through the code,

looking inside it and potentially adding extra commands to
check what is happening.

Wide Area Network (WAN): a network spread over a large
geographical distance.

WiFi: a standard method for connecting devices wirelessly to
a network and to the Internet.

WiFi protected access (WPA/WPA2): a protocol for
encrypting data and ensuring security on WiFi networks.

Wireless Local Area Network (WLAN): a LAN that does not
use cables but connects using radio waves.

Wireless Wide Area Network (WWAN): a WAN that does not
use cables, but sends data using radio waves.

Word length: the number of bits that can be addressed,
transferred or manipulated as one unit.

Worm: malware or a type of virus that replicates itself and
spreads around a computer system. It does not need to be
attached to another file in order to infect a computer.

XML (Extensible markup language): a method of defining
data formats for data that will be transmitted around a
network.

XOR: Boolean operation that is true if either input is true but
not if both inputs are true.

XOR gate: true if either input is true but not if both inputs
are true.

433

Index
A
absolute error 205
Absorption Law, Boolean identities 251
abstract data types 50–1, 57

see also queues; stacks
abstraction 134, 138

by generalisation/categorisation 139–40
representational 138–9

accepting states 146
adders 260–1
addressable memory 268, 270
address bus 269–70
addressing modes 282, 283
adjacency lists 70
adjacency matrices 71–2
aggregation 42–3
algorithms 2, 137–8, 169

Big O notation 171–5
binary search 112–14
binary tree search 115–16
binary tree traversal 97–9
bubble sort 124–6
deriving the complexity of 175–6
Dijkstra’s shortest path algorithm 101–9
efficiency of 169–70
graph traversal 93–6
heuristics 176–7
linear search 111–12
merge sort 127–30

alpha testing 415
analogue data 213
analogue to digital conversions 213–14
analysis stage, system development

409–10, 419–20
AND 17, 247, 284

combination with OR 249
AND gates 246, 257
application program interfaces (APIs)

354–5
application software 232
arcs (edges) 67, 72, 386
arguments 24
Arithmetic Logic Units (ALUs) 260, 275–6
arithmetic operations 15–16, 284
arrays 6, 51–2, 185

associative 82
implementation of graphs 93

ASCII (American Standard Code for
Information Interchange) 18, 208–9

assemblers 233, 240
assembly languages 239–40

operation codes 284–6
typical statement 281–2
worked example 283

assignment 3, 9
association aggregation 43
associative arrays 82

Associative Law, Boolean identities
251, 252

asymmetric encryption 341–2
asynchronous data transmission 314–15
attributes, relational databases 365
automation 134, 142–3

B
back-off mechanisms 323
Backus–Naur Form (BNF) 159–60
bandwidth 311–12
banking, impact of technological

change 302
barcode readers 289–90
barcodes 290
Baudot code 225
baud rate 312–13
beta testing 415
big data 382–3

distributed processing 387–8
examples of 383–4
issues with 386
machine learning techniques 385
modelling of 386
structured and unstructured 384–5

Big O notation 171–5
binary 190

absolute and relative errors 205
fixed point numbers 197–8
floating point numbers 198–201
normalisation and precision 203–4
rounding errors 204
two’s complement method 196–7
underflow and overflow 202
unsigned binary arithmetic 194–5

binary files 52, 54–5
binary search 99, 112–14
binary to decimal conversions 191
binary trees 73–4

traversal of 97–9, 121–2
binary tree search 115–16
BIOS (Basic Input/Output System) 268
bit-mapped graphics 211–12
bit rate 312
bits (binary digits) 187–8
bitwise functions 284
black box testing 415
block interfaces 24
blocks, data storage 295
Blu-Ray 294, 296
BODMAS 117–18
Boolean data 5
Boolean expressions 245–6

De Morgan’s Law 253–4
simplification of 250–4
see also logic circuits; logic gates

Boolean identities, associated rules 251–3
Boolean operations 16–17, 246

AND 247
combining AND and OR 249
NAND 249
NOR 249–50
NOT 248
OR 247–8
XOR 250

boundary test data 414
branch operations 285
breadth first traversal of graphs 93, 94, 96
bubble sort 124–6
built-in data types 6
buses 268–70
bus networks 320–1
bus width 277–8
bytecode 243
bytes 188

C
C#, common operations 20
caches 78, 278
Caesar cipher 222–3
CAIS (Credit Account Information Sharing)

database 385
call stacks 60
cardinality of a set 166–7
cardinal numbers 185
carry bits 260
Cartesian product of sets 167
Case statements 10
CDs 294, 296
Certification Authorities 342
chaining, hashing algorithms 79–80
character codes 18, 207, 208–9
character data type 5
charge coupled devices (CCDs) 288
check digits 210–11
checksums 337
child nodes 73
chips 267
ciphers 148

see also encryption
ciphertext 221
circuit switching 336
circular queues 62, 63–4
class diagrams 40–1
classes, object-oriented programs 37
client–server databases 379
client–server model 321, 349, 353–4

application program interfaces
(APIs) 354–5

CRUD and REST 355–7
JSON and XML 357–8
thin- versus thick-client computing

358–9
clocks 262
clock speeds 276, 277
clustering, hashing algorithms 79

434

code layout 32
codes of conduct 303
codomain of a function 171, 396
collisions, hashing algorithms 79–81
colour depth 212
comments, addition to code 32
commitment ordering, database

transactions 380
communication 310

bandwidth 311–12
baud rate 312–13
bit rate 312
handshaking and protocols 315
latency 313
serial and parallel transmission 311
synchronous and asynchronous data

transmission 314–15
see also Internet; networks

Commutative Law, Boolean identities
251, 252

compilers 233, 242–3
complementary metal oxide semiconductors

(CMOSs) 288
components of a vector 85
composition 141
composition aggregation 43
compression 216–18
computational hardness 226
computational security 226–7
Computer Misuse Act 305–6
computer models 142–3

of big data 386
computers, definition of 266
concatenation 18
concurrence 380, 388
constants 3–4
constant time, Big O notation 172
context-free languages 159

Backus–Naur Form (BNF) 159–60
syntax diagrams 161–2

control bus 270
controllers 295
control unit 275
convex combinations of vectors 87–8
convex hull 88
copyright 306
countable sets 166
countably infinite sets 167
counting 185–6
CRUD principle 355–6
cryptography see ciphers; encryption
CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance)
protocol 323–4

cultural issues 307
Current Instruction Register (CIR) 276

D
data 3

constants and variables 3–4
ethical issues 301–2
see also big data

data abstraction 140
database management systems 379
databases

client–server databases 379
CRUD principle 355–6
issues with concurrent access 380
see also relational databases; structured

query language (SQL)
data bus 269
data compression 216–18
data dictionaries 412
data flow diagrams (DFDs) 411
data misuse see hacking
Data Protection Act 304–5
data structures 50–1

arrays 51–2
dictionaries 82–3
files 52–5
hash tables 77–8
REST model 356–7
static and dynamic 55–6

data transfer operations 284
data types 4–6, 50–1

built-in and user-defined 6–7
in SQL 376

date/time data types 5
debugging 4
decimal to binary conversions 191–2
decimal to hex conversions 192
declarations 4, 32
declarative languages 241, 395
decomposition 141
decryption 220
definite iteration 11
De Morgan’s Law 251, 253–4
depth first traversal of graphs 93, 94–5
design stage, system development

410, 420
development testing 415
device drivers 235
dictionaries 82–3
dictionary-based encoding 216–17
difference between sets 167
digital cameras 287–9
digital certificates 342
digital data 213
Digital Rights Management (DRM) 306
Digital Signal Processing (DSP) 272
digital signatures 342–3
Dijkstra’s shortest path algorithm

70, 101–2
how it works 103–5
implementation of 105–9

direct address mode 283
directed graphs (diagraphs) 68, 70, 71
direction of a vector 85
distributed processing (distributed

computing) 387–8
distributed programs 387–8
Distributive Law, Boolean identities

251, 252
‘divide and conquer’ algorithms 127

domain names 328
domain name servers (DNSs)

329, 330, 334–5
domain of a function 171, 396
dot product of vectors 87, 88
Double Complement Law, Boolean

identities 251
dry running 33, 138
DVDs 294, 296
dynamic data structures 55–6
Dynamic Host Configuration Protocol

(DHCP) 334

E
edges (arcs) 67, 72, 386
edge-triggered D-type flip-flops 262
elements 6
email servers 351
empty list 403
empty set 166
encapsulation 36–8
encryption 220

basics of 221–2
Caesar cipher 222–3
code-cracking methods 226–7
computational security 226–7
frequency analysis 223–4
private/public key encryption 341–2
transposition ciphers 224
uses of 221
Vernam cipher 225–6

entities, relational databases 365
entity identifiers 366–7
entity relationship diagrams 365–6
erroneous test data 414
error checking and correction 209–11
errors

absolute and relative 205
rounding errors 204

Ethernet network systems 320
ethical issues 301–3
evaluation stage, system development

416, 422
events 23
exception handling 26–7, 60
exponent, floating point numbers

199–201, 205
exponential time, Big O notation 174
expressions

evaluation of 117–18
Reverse Polish Notation 119–22

F
factorial function 171
feasibility studies 410
fetch-execute cycle 267, 275, 277

interrupts 279
fields 52
FIFO (first in first out) structures 61

see also queues
file management 236–7
files 51, 52–4

binary 54–5

IN
D

E
X

Index

435

File Transfer Protocol (FTP) 315, 349
filter function 401–2
finite sets 166
finite state machines (FSMs) 145

outputs 148
and regular expressions 156, 157–8
state transition diagrams 146–7
state transition tables 147–8
Turing machine 150–3

firewalls 339–40
first-class objects 396
fixed point binary numbers 197–8

comparison with floating point 201
Flame malware 343
flash drives 295–6
flip-flops 262
floating gate transistors 295
floating point binary numbers 198–201
flowcharts 29–30
fold (reduce) function 402
foreign keys 367–8
For...Next loops 11
Freedom of Information Act 305
frequency analysis 223–4
FTP see File Transfer Protocol
full adders 260, 261
functional abstraction 139
functional languages 241
functional programming 24, 387–8

filter function 401–2
higher order functions 396, 400
list processing 402–3
map function 400–1
reduce (fold) function 402

functional programming paradigm 395
function application 396–7
function composition 398
functions 24, 85, 171, 388, 394
function types 396

G
gateways 332
global variables 22, 25–6
Google Flu Trends (GFT) 384
graphs 67–8

adjacency lists 70
adjacency matrices 71–2
Dijkstra’s shortest path algorithm 101–2
implementation of 92–3
traversal of 93–6
uses of 68–70

graph schema for big data 386
graph theory 67

H
hacking 302, 343

Computer Misuse Act 305–6
half adders 260–1
halting problem 177
halting state, Turing machine 151
handshaking 315
hard disks 292–4, 296

hardware 230–1
barcode readers 289–90
digital cameras 287–9
laser printers 291–2
magnetic hard disks 292–4
optical disks 294
radio frequency identification (RFID)

tags 290–1
solid state disks 295–6

Harvard architecture 271–2
hashing algorithms 77, 78–9

collisions 79–81
and digital signatures 342–3
uses of 78

hash tables 77–8
head of a list 403
heaps 55
heuristic algorithms 176–7
hexadecimal (hex) 189–90
hexadecimal to decimal conversions 192
hierarchy charts 29
higher order functions 396, 400
high-level languages 241

translation of 242–3
human–computer interface (HCI) 413
Hypertext Transfer Protocol (HTTP) 315,

349, 356

I
Idempotence Law, Boolean identities

251, 252
identifiers 402
identity 251, 252
If statements 9–10
immediate address mode 283
imperative languages (procedural

languages) 28, 241, 388
implementation stage, system

development 413–14
indefinite iteration 11–12
index generation, hashing algorithms 77–81
infinite sets 166–7
infix notation 117, 122
information gathering 410
information hiding 140–1
inheritance, object-oriented programs

38–41
immediate access store see RAM
in-order traversal of a binary tree 97–8,

121–2
input/output (I/O) controllers 269, 270–1
input/output devices, management

of 234–5
input size 171
instantiation 41
instruction sets 277, 281–3
instruction table, Turing machine 153
integers (Z) 5, 183
Internet 326–7

domain names 328
domain name servers (DNSs) 334–5
network address translation (NAT) 330–1

packet switching 337–8
port forwarding 331
ports 329–30
routing and gateways 336–7
sockets 332
subnet masking 332–3
Uniform Resource Locators (URLs) 327–8

Internet Protocol (IP) addresses 328–9
Dynamic Host Configuration Protocol

(DHCP) 334
v4 and v6 333

Internet registries 335–6
Internet security

digital certificates and signatures 342–3
firewalls 339–40
malware 343–4
private/public key encryption 341–2
protection against malware 345
proxy servers 340–1

interpreter software 118, 233, 242
interrupt register 276
interrupts 60, 278–80
Interrupt Service Routine (ISR) 279
intersection of sets 167
intractable problems 176–7
Inverse Law, Boolean identities 251, 252
irrational numbers 184
iteration (repetition) 10–12

in bubble sort 124–6

J
JPEG compression 217–18
JSON (JavaScript Online Notation)

357, 358

K
keys, cryptographic 222

one-time pad techniques 225–6
key/value pairs 77

L
laser printers 291–2
latency 69, 313, 384
leaf nodes 73
legal issues 304–7
library programs 233
licensing of software 306
LIFO (last in first out) structures 57

see also stacks
linear queues 62–3
linear search 111–12
linear time, Big O notation 172
list processing 402
load factor, hash tables 79
Local Area Networks (LANs) 318

wireless 322–3
local variables 22, 25–6
logarithmic time, Big O notation 174–5
logical network topology 321
logical operations 284–5
logical reasoning 134–5
logic circuits 259–60

436

logic gates 256–9
logic programming 241
loops 11

nested 12
see also iteration

lossless compression 216–17
lossy compression 217–18
low-level languages 241

see also assembly languages;
machine code

M
machine code 239

instruction sets 282
machine learning techniques 385
magnitude of a vector 85
main memory 267
majority voting 210
malware 343–5
mantissa, floating point numbers

199–201, 205
map function 400–1
maps 135–6
Mealy machines 148
measuring 186
Media Access Control (MAC) addresses 322
members of a set 165
memory 2, 267–8

caching 278
memory addresses 3
Memory Address Register (MAR) 276
Memory Buffer Register (MBR, Memory Data

Register) 276
memory management 235–6
memory map 268
merge sort 127–30
messages 355
methods 36
MIDI device 213–14
mnemonics 239, 282
modular program design 24, 36, 411
moral issues 301–3
most significant bit (MSB) 191

and two’s complement method 196
multi-core processors 278
mutable variables 388

N
naming conventions 31–2
NAND 249
NAND gates 249, 258
natural numbers (N) 164, 182–3

counting 186
nesting

loops 12
selection statements 10
use of stacks 60–1

network address translation (NAT) 330–1
Network Interface Cards (NICs) 317
networks 317–18

client-server 321
peer-to-peer 322

wireless 322–4
see also Internet

network topology 318
bus networks 320–1
physical and logical 321
star networks 319–20

nodes (vertices) 67, 72, 386
non-exam assessment 417

analysis 419–20
design 420
evaluation 422
general advice 422
selecting a project 417–19
system testing 421–2
technical solution 420–1

NOR 249–50
NOR gates 249, 258
normalisation 203–4

of a database 368–73
normal test data 414
NOT 17, 248, 285
NOT gates 258
Null (Dominance) Law, Boolean

identities 251, 252
number bases 187, 189

conversions between bases 191–2
hexadecimal 189–90
see also binary

numbers
cardinal and ordinal 185
integers 5, 183
irrational 184
natural 164, 182–3
rational 183–4
real 184–5
use in counting and measuring 185–6

O
object code 240
object-oriented programming 35–6,

241, 388
abstract, virtual and static methods 42
aggregation 42–3
class diagrams 40–1
design principles 43–4
encapsulation 36–8
inheritance 38–9
instantiation 41
polymorphism and overriding 41–2

objects 37
one-time pad keys 225–6
opcode (operation code) 282
operands 118, 282
operating systems 233–4

resource management 234–7
operation codes 284–6
operators 117
optical disks 294, 296
OR 17, 247–8, 284

combination with AND 249
ordinal numbers 185
OR gates 258

overflow 197, 202
overriding 42

P
packet filtering 340
packets 336, 355
packet switching 337–8
paging 236
parallel transmission 311
parameters 24
parent nodes 73
parity bits 209–10, 314
partial function application 397
peer-to-peer networks 322
peripherals (external components) 231
physical network topology 321
ping test 313
pixellation 289
pixels 211, 288
plaintext 221
pointers 5–6, 58
Polish notation (prefix notation) 118
polyalphabetic ciphers 223
polymorphism 41
polynomial time, Big O notation

172–3, 175
POP3 protocol 329, 350–1
popping 58
port forwarding 331
ports 329–30
postfix notation 118

see also Reverse Polish Notation
post-order traversal of a binary tree 97,

98–9, 121–2
precision 203
prefix notation (Polish notation) 118
pre-order traversal of a binary tree 97, 98,

99, 121–2
primary keys 366–7
primitives, vector graphics 213
priorities 279
priority queues 62, 65–6
private/public key encryption 341–2
probing, hashing algorithms 80
problem abstraction 140
problems

tractable and intractable 176–7
unsolvable 177

problem solving 134, 135–7
procedural abstraction 139
procedural programming 28–34, 241, 395
procedures see subroutines
processors 234, 266–7

architecture 275–6
factors influencing performance of

277–8
fetch-execute cycle 277
key components 271–2

Program Counter (PC) 276
programming 2

arithmetic operations 15–16
assignment 9

IN
D

E
X

Index

437

Boolean operations 16–17
common operations in Python

and C# 19–20

constants and variables 3–4
data types 4–7
exception handling 26–7
functions 24
iteration (repetition) 10–12
local and global variables 25–6
naming and storing data 3
object-oriented 35–44
parameters and arguments 24
procedural 29–34
protection against malware 345
relational operations 16
selection 9–10
sequencing 8–9
string-handling functions 17–19
subroutines 23–4
variables 14–15
see also functional programming

programming languages 2, 28, 122,
238–9

assembly languages 239–40, 281–6
bytecode 243
context-free 159–62
high-level 241
machine code 239, 282
regular expressions 156–8
representing sets 166
searching strings 158–9
translation of high-level languages

242–3
see also structured query language (SQL)

programs see software
proper subsets 168
properties 36

in database modelling 386
protocols 315, 347

File Transfer Protocol (FTP) 349
Hypertext Transfer Protocol (HTTP) 349
Secure Shell Protocol 349–50
SMTP and POP3 350–1
wireless networks 323
see also Transmission Control Protocol/

Internet Protocol

prototypes 414
proxy servers 340–1
pseudo-code 31, 138
pseudo-random numbers 16
public keys 341
pushing 58
Python, common operations 20

Q
QR codes 290
querying data 377–9
queues 55, 61

circular 62, 63–4
linear 62–3
priority 62, 65–6

R
radio frequency identification (RFID)

290–1
railfence ciphers 224
RAM (Random Access Memory) 267–8

management of 235–6
random number generation 15–16
rational numbers (Q) 183–4
read/write head, Turing machine 151
real numbers 5, 184–5, 186
record locks 380
records 6, 52
recursion 60, 61, 99

in merge sort 129–30
reduce (fold) function 402
reference data type 5–6
Regional Internet Registries (RIR) 335
registers 276
regular expressions 156–9
regular language 156
Regulation of Investigatory Powers (RIP)

Act 306
rehashing 80–1
relational databases 364–5

entities and attributes 365
entity relationship diagrams 365–6
foreign keys 367–8
normalisation 368–73
primary keys and entity identifiers

366–7
relational operations 16
relative error 205
Repeat...Until loops 11–12
repetition see iteration
representational abstraction 138–9
Request to Send/Clear to Send (RTS/CTS)

protocol 324
resolution 211
resource management 234

file management 236–7
input/output devices 234–5
memory management 235–6
virtual memory and paging 236

REST (Representational State Transfer)
model 356–7

Reverse Polish Notation (RPN, postfix
notation) 99, 117, 118

applications of 122
evaluation of expressions 119–22

RGB filters 288
ROM (Read Only Memory) 268
root node 73
rounding 15
rounding errors 204
round-robin scheduling 234
route ciphers 224
routers 318
routines (subroutines, subprograms)

22, 23–4
routing 337
run-length encoding 216

S
sampling 214
satnavs 136–7
scalar-vector multiplication 87
scheduling 234
search algorithms 110

binary search 112–14
binary tree search 115–16
linear search 111–12

searching strings 158–9
secure HTTP (HTTPS) 349
Secure Shell Protocol (SSH) 330, 349–50
security

wireless networks 324
see also Internet security

selection 9
nested 10

sequencing 8–9, 12
serialisation, database transactions 380
serial transmission 311
server types 354
Service Set Identifiers (SSIDs) 324
set comprehension (set building) 164–5
set operations 167
sets 160, 164

empty set 166
finite and infinite 166–7
representation in programming

languages 166
subsets 168
well-ordered 185

shift ciphers 148
shift instructions 284
shortest path 103

see also Dijkstra’s shortest path algorithm
side effects 388
signed binary

two’s complement method 196–7
underflow and overflow 202

single source, Dijkstra’s shortest
path algorithm 102

SMTP 350
sockets 332
software 230, 232

application software 232
licensing 306
system software 233–4

software development 408
analysis 409–10
design 411–13
evaluation 416
implementation 413–14
testing 414–15

solid state disks 295–6
sorting algorithms 124

bubble sort 124–6
merge sort 127–30

sound sampling and synthesis 214–15
source code 240
space complexity of an algorithm 171
SSH see Secure Shell Protocol

438

IN
D

E
X

stack frames 60
stacks 55

evaluation of RPN expressions 119
how they work 57–8
implementation of 59
uses of 59–61

star networks 319–20
start bits 314
start state, Turing machine 151
stateful inspection 340
state of a variable 388
state transition diagrams 146–7

for regular expressions 157–8
Turing machine 151

state transition tables 147–8
static data structures 55–6
status register 276
stop bits 314
storage devices

comparison of 296
magnetic hard disks 292–4
optical disks 294
solid state disks 295–6

stored program concept 275
string (text) variables 5
string-handling functions 17–19
structure charts 29
structured data 384
structured query language (SQL) 356, 375

defining a table 375–6
deleting data 377
entering and updating data 376
querying data 377–9
supported data types 376

subnet masking 332–3
subroutines (subprograms) 22, 23–4
subsets 168
substitution ciphers 222–3
symmetric encryption 341
synchronous data transmission 314–15
syntax 2, 9
syntax diagrams 161–2
system development see software

development
system flowcharts 30
system software 232–4
system testing 415

T
tables 364–5

definition in SQL 375–6
tail of a list 403
TCP/IP see Transmission Control Protocol/

Internet Protocol
technological change 300–1

cultural issues 307

impact on banking 302
legal issues 304–7
moral and ethical issues 301–3

terminal, Backus–Naur Form 160
terminals 358
test data 414
testing stage, system development

414–15, 421–2
text files 52–4
text (string) variables 5
thick-client computing 358–9
thin-client computing 358–9
time complexity of an algorithm 171
time slicing 234
timestamp ordering, database

transactions 380
top-down approach 29, 139, 411
trace tables 33–4
tractable problems 176
transition functions, Turing

machine 151
translators 233, 242
Transmission Control Protocol/Internet

Protocol (TCP/IP) 315, 347
layers of 348

transposition ciphers 222, 224
traversal 92

of binary trees 97–9, 121–2
of graphs 93–6

trees 72–4
binary tree search 115–16
traversal of 97–9, 121–2

Trojans 343
truncating 15
truth tables 246

simplification of Boolean
expressions 250–1

Turing machine 150–4
two’s complement method 196–7

U
unauthorised access (hacking)

302, 343
Computer Misuse Act 305–6

underflow 202
undirected graphs 68, 70, 71
Unicode 18, 209
Uniform Resource Locators (URLs)

327–8
union of sets 167
units 188–9
unit testing 415
universal machine 153–4
unsigned binary 194

adding and multiplying
194–5

unsolvable problems 177
unstructured data 385
user-defined data types 6–7
utility programs 232–3

V
variables 3, 4, 14

data types 4–6
local and global 22, 25–6
naming conventions 31–2

variables tables 412
vectored interrupt

mechanism 280
vector graphics 122, 212–13
vectors 84–6

addition of 86
convex combinations of 87–8
dot product of 87, 88
scalar multiplication of 87

vector space 87
Vernam cipher 222, 225–6
vertices (nodes) 67, 72
virtual machines 233

bytecode 243
virtual memory 236
viruses 344
volumetrics 413
Von Neumann architecture

271, 272, 275

W
web browsers 351–2
web servers 351
websocket protocol 355
weighted graphs 67, 70, 71

see also Dijkstra’s shortest path algorithm
well-ordered sets 185
While loops 12
white box testing 415
Wide Area Networks (WANs) 318

wireless 322–3
WiFi 322–3
WiFi Protected Access (WPA/WPA2)

protocol 324
wireless networks 322–4

protocols 323
security 324
Service Set Identifiers (SSIDs) 324

word length 269, 278
World Wide Web 327
worms 344

X
XML (Extensible markup language) 357–8
XOR 17, 250, 285
XOR gates 259, 261

