Question Number	Answer	Additional Guidance	Mark
3(a)	An explanation which includes reference to two of the following:		
	• description of water as a \{polar / dipole / dipolar\} molecule	(1)	ALLOW correct description of uneven charges
	- water surrounds (polar) molecules allowing them to dissolve		
		(1)	

Question Number	Answer	Additional Guidance	Mark	
3(b)	A description that makes reference to the following:			
	• carrier proteins (located in membrane)	(1)	ALLOW channel proteins	
	• (glucose enters by) facilitated diffusion	(1)		(2)

Question Number	Answer	Additional Guidance	Mark
3 (c)	An explanation which makes reference to three of the following: - the percentage change in cell mass decreases as glucose decreases (1) - glucose is soluble / comparison between solubility (1) - higher ratio of glucose molecules has an osmotic effect (on the cell) / glycogen molecules does not have an osmotic effect (on the cell) (1) - water enters by osmosis (and increases cell mass) (1)	ALLOW converse ALLOW converse for glycogen ALLOW converse for glycogen ALLOW water molecules are not attracted to glycogen molecules ALLOW correct references to \{water / osmotic / solute\} potential	
			(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{3 (d) (i)}$	A description which includes reference to the following:		
	• joining together in condensation reactions (1)		(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{3 (d) (i i)}$	A description which includes reference to the following:	ALLOW broken down	
	• branched molecule for more rapid hydrolysis (1)	ALLOW 'doesn't take up much space'	(2)

