Conjugate acid-base pairs Acid-base reactions all involve the transfer of a proton from the acid (proton donor) to the base (proton acceptor). During this reaction the acid itself becomes the 'conjugate base' of the acid and the base becomes its 'conjugate acid'. E.g. adding ethanoic acid to water CH_3COO^- is the conjugate base of ethanoic acid H_3O^+ is the conjugate acid of water CH_3COOH (aq) + H_2O (I) CH_3COO^- (aq) + H_3O^+ (I) CH_3COOH is the acid because during the reaction it donates a proton (H^+) to water CH_3COO^- is the conjugate acid of water CH_3COOH is the acid because Since this is an equilibrium, the conjugate acid, H_3O^+ , could donate a proton to the conjugate base, CH_3COO^- , and we would be back where we started. There are essentially two conjugate acid-base pairs in this reaction - CH_3COOH/CH_3COO^- and H_3O^+/H_2O . ## Questions 1. Identify the conjugate pairs in each of these reactions (a) $$NH_{3 (aq)} + H_{2}O_{(1)} \rightleftharpoons NH_{4}^{+}{}_{(aq)} + OH^{-}{}_{(aq)}$$ (b) $$HNO_{3\,(\alpha q)}$$ + $OH^{-}_{(\alpha q)}$ \rightleftharpoons $NO_{3}^{-}_{(\alpha q)}$ + $H_{2}O_{(I)}$ (d) $$HSO_3^-$$ (aq) + H_2O (I) \rightleftharpoons $SO_3^{2^-}$ (aq) + H_3O^+ (aq) ## Conjugate acid-base pairs 2. Write an equation to show each of the following behaving as a base in solution - the product of the reaction will be the conjugate acid. $OH^{-}(qq)$ (a) (b) $HSO_3^-(aq)$ (c) $CO_3^2(aq)$ (d) $HCO_3^-(aq)$ 3. Write an equation to show the following behaving as an acid in solution - the product of the reaction will be the conjugate base. (a) HCO₂H (qq) (b) $H_2O_{(1)}$ (c) HCO_3^- (ag) (d) $H_2S_{(ag)}$ ## **Answers** (a) Base $NH_{3(aq)}$ / Conjugate acid NH_{4}^{+} (aq); Acid $H_{2}O$ (I) / Conjugate base OH^{-} (aq) 1. (b) Base $OH^{-}_{(aa)}$ / Conjugate acid $H_2O_{(l)}$; Acid $HNO_{3(aa)}$ / Conjugate base $NO_{3}^{-}_{(aa)}$ (c) Base $H_2O_{(I)}$ / Conjugate acid $H_3O^+_{(aq)}$; Acid $H_2O_{(I)}$ / Conjugate base $OH^-_{(aq)}$ (d) Base $H_2O_{(I)}$ / Conjugate acid $H_3O^+_{(aa)}$; Acid $HSO_3^-_{(aa)}$ / Conjugate base $SO_3^{2^-}_{(aa)}$ (a) $OH^{-}_{(aq)} + H^{+}_{(aq)} \rightleftharpoons H_{2}O_{(I)}$ 2. (b) HCO_3^- (aq) + H^+ (aq) \rightleftharpoons H_2SO_4 (aq) (c) $CO_3^{2^-}(aq) + H^+(aq) \rightleftharpoons HCO_3^-(aq)$ (d) HCO_3^- (aq) + H^+ (aq) \rightleftharpoons H_2CO_3 (aq) (a) $HCO_2H_{(aq)} \rightleftharpoons H^+_{(aq)} + HCO_2^-_{(aq)}$ 3. (b) $H_2O_{(l)} \rightleftharpoons H^+_{(aa)} + OH^-_{(aa)}$ (c) $HCO_3^{-}_{(aq)} \rightleftharpoons H^{+}_{(aq)} + CO_3^{2-}_{(aq)}$ (d) $H_2S_{(\alpha q)} \rightleftharpoons H^+_{(\alpha q)} + HS^-_{(\alpha q)}$