## **DEVOIR MAISON EN ELECTRICITE – RL ET RLC POUR PC**

La présence d'une bobine dans un circuit électrique alimenté par un générateur impose un comportement de celle-ci qui se traduit par une variation de l'intensité du courant. Lorsque la bobine est associée à un condensateur chargé et un conducteur ohmique, ces éléments peuvent constituer un oscillateur libre siège d'un échange énergétique et d'oscillations électriques qui peuvent être entretenues.

Cet exercice vise:

- l'étude de la réponse d'un dipôle RL soumis à un échelon de tension;
- l'étude énergétique d'un circuit RLC série.

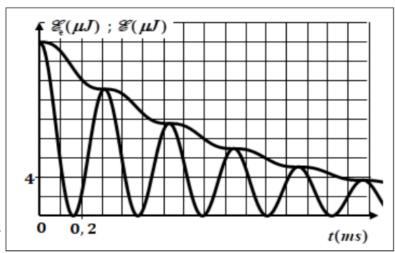
## Partie 1 : Étude d'un dipôle RL

Pour étudier la réponse d'un dipôle RL à un échelon de tension ascendant, on dispose du matériel suivant :

- un générateur idéal de tension de force électromotrice E = 6 V;
- un conducteur ohmique de résistance  $R = 10 \Omega$ ;
- une bobine d'inductance  $L=10 \, mH$  et de résistance négligeable ;
- un interrupteur K.
- 1. Proposer le schéma du montage expérimental permettant de réaliser cette étude.
- **2.** On ferme l'interrupteur K à l'instant  $t_0 = 0$ . On note i l'intensité du courant qui traverse le circuit. Représenter sur le schéma proposé la tension  $u_n$  aux bornes du conducteur ohmique et la tension  $u_n$

Représenter sur le schéma proposé la tension  $u_R$  aux bornes du conducteur ohmique et la tension  $u_L$  aux bornes de la bobine en convention récepteur.

- 3. L'équation différentielle vérifiée par l'intensité i s'écrit  $\frac{di}{dt} + \frac{1}{\tau}i = \frac{E}{A}$ .
- **3.1.** Déterminer les expressions des constantes  $\tau$  et A.
- **3.2.** En utilisant les équations aux dimensions, déterminer la dimension de  $\tau$  et calculer sa valeur.
- **4.** La solution de l'équation différentielle s'écrit  $i(t) = \frac{E}{R} \cdot (1 e^{-\frac{t}{\tau}})$ .
- **4.1.** Recopier, sur votre copie, le numéro de la question et écrire la lettre correspondante à la proposition vraie.
- L'expression de la tension aux bornes de la bobine en volt est :


| A | $u_L(t) = 6.(1 - e^{-10^3.t})$ | В | $u_L(t) = 6.e^{-10^3.t}$ | C | $u_L(t) = 0, 6.e^{-10^{-3}.t}$ | D | $u_L(t) = 6.e^{-10^{-3}.t}$ |
|---|--------------------------------|---|--------------------------|---|--------------------------------|---|-----------------------------|
|---|--------------------------------|---|--------------------------|---|--------------------------------|---|-----------------------------|

- **4.2.** Déterminer, en régime permanent, la valeur de l'intensité  $I_0$  du courant électrique.
- **5.** Quel rôle a joué la bobine durant la phase  $0 < t < 5.\tau$ ?

## Partie 2 : Étude énergétique d'un circuit RLC série

On monte la bobine et le conducteur ohmique précédents en série avec un condensateur de capacité  $C = 1 \mu F$ , initialement chargé. On ferme l'interrupteur K à l'instant  $t_0 = 0$ .

- 1. Établir l'équation différentielle vérifiée par la tension  $u_C$  aux bornes du condensateur.
- 2. Une étude expérimentale a permis de tracer les courbes de l'énergie électrique  $\mathscr{E}_e$  emmagasinée dans le condensateur et de l'énergie totale  $\mathscr{E}$  du circuit (figure ci-contre).



## En exploitant les courbes :

- a. Déterminer la valeur de l'énergie totale  $\mathscr{E}_0$  du circuit à l'instant  $t_0=0$ .
- Déduire la valeur de la charge initiale  $Q_0$  du condensateur à l'instant  $t_0 = 0$ .
- **b.** Déterminer, à l'instant  $t_1 = 0.9 \, ms$ , la valeur de l'énergie électrique  $\mathscr{E}_{e1}$  emmagasinée dans le condensateur et la valeur de l'énergie totale  $\mathscr{E}_{e1}$  du circuit.
- c. Déterminer la valeur absolue de l'intensité  $i_1$  du courant électrique dans le circuit à l'instant  $t_1$ .
- d. Expliquer la diminution de l'énergie totale du circuit.
- 3. Pour entretenir les oscillations électriques dans le circuit, on ajoute à celui-ci un générateur délivrant une tension  $u_G(t) = k i(t)$  avec k constante positive.
- **3.1.** Quelle doit être la valeur de *k*?
- 3.2. Calculer la valeur de la période des oscillations électriques dans ce cas.