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Getting the most from this book

Mathematics is not only a beautiful and exciting subject in its own right but also one that underpins many 
other branches of learning. It is consequently fundamental to our national wellbeing.

This book covers the compulsory core content of   Year 1/AS Further Mathematics. The requirements of 
the compulsory core content for the second year are met in a second book, while the year one and year 
two optional applied content is covered in the Mechanics and Statistics books, and the remaining options 
in the Modelling with Algorithms, Numerical Methods, Further Pure Maths with Technology and Extra 
Pure Maths books. 

Between 2014 and 2016 A Level Mathematics and Further Mathematics were very substantially revised, 
for first teaching in 2017. Major changes included increased emphasis on:

■ Problem solving

■ Mathematical proof

■ Use of ICT

■ Modelling.

This book embraces these ideas. A large number of exercise questions involve elements of problem solving. 
The ideas of mathematical proof, rigorous logical argument and mathematical modelling are also 
included in suitable exercise questions throughout the book. 

The use of technology, including graphing software, spreadsheets and high specification calculators, 
is encouraged wherever possible, for example in the Activities used to introduce some of the topics. In 
particular, readers are expected to have access to a calculator which handles matrices up to order 3x3. 
Places where ICT can be used are highlighted by a   T  icon. Margin boxes highlight situations where 
the use of technology – such as graphical calculators or graphing software – can be used to further 
explore a particular topic.

Throughout the book the emphasis is on understanding and interpretation rather than mere routine 
calculations, but the various exercises do nonetheless provide plenty of scope for practising basic 
techniques. The exercise questions are split into three bands. Band 1 questions are designed to reinforce 
basic understanding; Band 2 questions are broadly typical of what might be expected in an examination; 
Band 3 questions explore around the topic and some of them are rather more demanding. In addition, 
extensive online support, including further questions, is available by subscription to MEI’s Integral website, 
integralmaths.org.

In addition to the exercise questions, there are two sets of Practice questions, covering groups of chapters. 
These include identified questions requiring  problem solving   PS  , mathematical proof   MP , use 
of ICT   T  and modelling  M  .

This book is written on the assumption that readers are studying or have studied AS Mathematics. 
It can be studied alongside the Year 1/AS Mathematics book, or after studying AS or A Level 
Mathematics. There are places where the work depends on knowledge from earlier in the book or in 
the Year 1/AS Mathematics book and this is flagged up in the Prior knowledge boxes. This should 
be seen as an invitation to those who have problems with the particular topic to revisit it. At the 
end of each chapter there is a list of key points covered as well as a summary of the new knowledge 
(learning outcomes) that readers should have gained.

Although in general knowledge of A Level Mathematics beyond AS Level is not required, there are two 
small topics from year 2 of A Level Mathematics that are needed in the study of the material in this 
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book. These are radians (needed in the work on the argument of a complex number) and the compound 
angle formulae, which are helpful in understanding the multiplication and division of complex numbers in 
modulus-argument form. These two topics are introduced briefly at the back of the book, for the benefit of 
readers who have not yet studied year 2 of A Level Mathematics.

Two common features of the book are Activities and Discussion points. These serve rather different purposes. 
The Activities are designed to help readers get into the thought processes of the new work that they are about 
to meet; having done an Activity, what follows will seem much easier. The Discussion points invite readers to 
talk about particular points with their fellow students and their teacher and so enhance their understanding. 
Another feature is a Caution icon  , highlighting points where it is easy to go wrong.

Answers to all exercise questions and practice questions are provided at the back of the book, and also online 
at www.hoddereducation.co.uk/MEIFurtherMathsYear1

This is a 4th edition MEI textbook so much of the material is well tried and tested. However, as a 
consequence of the changes to A Level requirements in Further mathematics, large parts of the book are 
either new material or have been very substantially rewritten.

 Catherine Berry

 Roger Porkes

www.hoddereducation.co.uk/MEIFurtherMathsYear1
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Prior knowledge 

This book is designed so that it can be studied alongside MEI A Level Mathematics Year 1 (AS).  There 
are some links with work in MEI A Level Mathematics Year 2, but it is not necessary to have covered 
this work before studying this book. Some essential background work on radians and compound angle 
formulae is covered in An introduction to radians and The identities sin(θ ± ϕ) and cos(θ ± ϕ) as well as in 
MEI A Level Mathematics Year 2.

■  Chapter 1: Matrices and transformations builds on GCSE work on transformations.

■  Chapter 2: Introduction to complex numbers uses work on solving quadratic equations, 
covered in chapter 3 of MEI A Level Mathematics Year 1 (AS).

■  Chapter 3: Roots of polynomials uses work on solving polynomial equations using the factor 
theorem, covered in chapter 7 of MEI A Level Mathematics Year 1 (AS).

■  Chapter 4: Sequences and series builds on GCSE work on sequences. The notation and 
terminology used is also introduced in chapter 3 in MEI A Level Mathematics Year 2, but it is not 
necessary to have covered this work prior to this chapter.

■  Chapter 5: Complex numbers and geometry develops the work in chapter 2. Knowledge of 
radians is assumed: this is covered in chapter 2 of MEI A Level Mathematics Year 2, but the required 
knowledge is also covered in An introduction to radians. It is also helpful to know the compound 
angle formulae which are introduced in chapter 8 of MEI A Level Mathematics Year 2; there is also a 
brief introduction in The identities sin(θ ± ϕ) and cos(θ ± ϕ).

■  Chapter 6: Matrices and their inverses follows on from the work in chapter 1.

■  Chapter 7: Vectors and 3D space builds on the vectors work covered in chapter 12 of MEI 
A Level Mathematics Year 1 (AS). Knowledge of 3D vectors is assumed, which are introduced 
in chapter 12 of MEI A Level Mathematics Year 2, but it is not necessary to have covered the 
Mathematics Year 2 chapter prior to this chapter. The work on the intersection of planes in 3D space, 
introduced in chapter 6, is also developed further in this chapter.
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1

As for everything else, 
so for a mathematical 
theory – beauty can 
be perceived but not 
explained.

Arthur Cayley 1883

Matrices and transformations1

Preston (P) Burnley (Bu)

Manchester (M)

Bradford (Br) Leeds (L)

Figure 1.1 Illustration of some major roads and motorways joining some 
towns and cities in the north of England. 

Discussion point
� How many direct routes (without going through any other town) are there 

from Preston to Burnley? What about Manchester to Leeds? Preston to 
Manchester? Burnley to Leeds? 
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Matrices

1 Matrices
You can represent the number of direct routes between each pair of towns 
(shown in Figure 1.1) in an array of numbers like this:

Br Bu L M P

Br 0 0 1 0 0

Bu 0 0 0 1 3

L 1 0 0 2 0

M 0 1 2 0 1

P 0 3 0 1 0

This array is called a matrix (the plural is matrices) and is usually written inside 
curved brackets.





















0 0 1 0 0
0 0 0 1 3
1 0 0 2 0
0 1 2 0 1
0 3 0 1 0

It is usual to represent matrices by capital letters, often in bold print. 

A matrix consists of rows and columns, and the entries in the various cells are 
known as elements.

The matrix M = 

0 0 1 0 0
0 0 0 1 3
1 0 0 2 0
0 1 2 0 1
0 3 0 1 0





















 representing the routes between the 

towns and cities has 25 elements, arranged in five rows and five columns. M is  
described as a 5 × 5 matrix, and this is the order of the matrix.  You state the 
number of rows first, then the number of columns. So, for example, the matrix 

A = 3 1 4
2 0 5

−







  is a 2 × 3 matrix and B = 

4 4
3 4
0 2

−

−














 is a 3 × 2 matrix.

Special matrices
Some matrices are described by special names which relate to the number of 
rows and columns or the nature of the elements. 

Matrices such as 4 2
1 0









  and 

3 5 1
2 0 4
1 7 3

−














 which have the same number of 

rows as columns are called square matrices.
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The matrix 1 0
0 1









  is called the 2 × 2 identity matrix or unit matrix, and 

similarly 
1 0 0
0 1 0
0 0 1














 is called the 3 × 3 identity matrix. Identity matrices must 

be square, and are usually denoted by I.

The matrix O = 
0 0
0 0









  is called the 2 × 2 zero matrix. Zero matrices can 

be of any order.

Two matrices are said to be equal if and only if they have the same order and 
each element in one matrix is equal to the corresponding element in the other 
matrix. So, for example, the matrices A and D below are equal, but B and C are 
not equal to any of the other matrices. 

A = 
1 3
2 4









  B = 

1 2
3 4









  C = 

1 3 0
2 4 0









  D = 

1 3
2 4











Working with matrices
Matrices can be added or subtracted if they are of the same order.

2 4 0
1 3 5

1 1 4
2 0 5

3 3 4
1 3 0−









 + −

−








 =










 

2 3
4 1

7 3
1 2

5 0
5 1

−







 − −

−








 = −

−









 

But 
2 4 0
1 3 5

2 3
4 1−









 + −







  cannot be evaluated because the matrices are 

not of the same order. These matrices are non-conformable for addition.

You can also multiply a matrix by a scalar number:

2 3 4
0 6

6 8
0 12

−







 = −









Add the elements 
in corresponding 
positions.

Subtract the elements in 
corresponding positions.

Multiply each of 
the elements by 2.

TECHNOLOGY
You can use a calculator to add and subtract matrices of the same order and 
to multiply a matrix by a number. For your calculator, fi nd out:

• the method for inputting matrices

• how to add and subtract matrices

• how to multiply a matrix by a number for matrices of varying sizes.
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Matrices

Associativity and commutativity
When working with numbers the properties of associativity and 
commutativity are often used. 

Associativity

When you add numbers, it does not matter how the numbers are grouped, the 
answer will be the same.

When you add numbers, the order of the numbers can be reversed and the 
answer will still be the same.

Addition of numbers is associative. 

(3 + 5) + 8 = 3 + (5 + 8)

Addition of numbers is commutative.

4 + 5 = 5 + 4

① Write down the order of these matrices.

(i) 













2 4
6 0

–3 7

 (ii) 













0 8 4
–2 –3 1
5 3 –2

 (iii) ( )7 –3  (iv) 





















1
2
3
4
5

(v) 






2 –6 4 9
5 10 11 –4

 (vi) 













8 5
–2 0
3 –9

② For the matrices

A B C D= 2 –3
0 4

= 7 –3
1 4

= 3 5 –9
2 1 4

= 0 –4 5
2 1 8









































E = 






–3 5
–2 7

 F = 















1
3
5

 

 find, where possible

(i) A – E (ii) C + D    (iii) E + A – B (iv) F + D (v) D – C
(vi) 4F      (vii) 3C + 2D   (viii) B + 2F    (ix) E – (2B – A)

Exercise 1.1

Discussion points
➜	Give examples 

to show that 
subtraction of 
numbers is not 
commutative or 
associative. 

➜	Are matrix 
addition and 
matrix subtraction 
associative and/or 
commutative?

Commutativity



1
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③ The diagram in Figure 1.2 shows the number of direct flights on one day 
offered by an airline between cities P, Q, R and S.

The same information is also given in the partly-completed matrix X.

From

X =

To

P
Q
R
S

P
0
1

Q
2

R
1

S
0( )

P

R
S

Q

1

2
1

1

1

1

2

2

2

Figure 1.2

(i) Copy and complete the matrix X.

 A second airline also offers flights between these four cities. The following 
matrix represents the total number of direct flights offered by the two airlines.



















0 2 3 2
2 0 2 1
2 2 0 3
1 0 3 0

(ii) Find the matrix Y representing the flights offered by the second 
airline.

(iii) Draw a diagram similar to the one in Figure 1.2, showing the flights 
offered by the second airline.

④ Find the values of w, x, y and z such that

 w x
y z

3
1 4

2 1 9 8
11 8−









 + −







 = −

−








 .

⑤ Find the possible values of p and q such that

 p p

q

3

2 9

5 2

7
6 1
9 4

2

2

−







 − −

−











 = −







 .

⑥ Four local football teams took part in a competition in which they each 
played each other twice, once at home and once away. Figure 1.3 shows the 
results matrix after half of the games had been played.

 

City
Rangers
Town
United

Win
2
0
2
1

Draw
1
0
0
1

Lose
0
3
1
1

Goals
for
6
2
4
5

Goals
against

3
8
3
3

( )
Figure 1.3
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Multiplication of matrices

(i) The results of the next three matches are as follows:

 City 2 Rangers 0

 Town 3 United 3

 City 2 Town 4

 Find the results matrix for these three matches and hence find the 
complete results matrix for all the matches so far.

(ii) Here is the complete results matrix for the whole competition.

 



















4 1 1 12 8
1 1 4 5 12
3 1 2 12 10
1 3 2 10 9

 Find the results matrix for the last three matches (City vs United, 
Rangers vs Town and Rangers vs United) and deduce the result of 
each of these three matches.

⑦ A mail-order clothing company stocks a jacket in three different sizes and 
four different colours.

 The matrix P = 
17 8 10 15
6 12 19 3
24 10 11 6














 represents the number of jackets in

 stock at the start of one week.

The matrix Q = 
2 5 3 0
1 3 4 6
5 0 2 3














 represents the number of orders for

jackets received during the week.

(i) Find the matrix P – Q.

 What does this matrix represent? What does the negative element in 
the matrix mean?

A delivery of jackets is received from the manufacturers during the week.

 The matrix R = 
5 10 10 5
10 10 5 15
0 0 5 5














 shows the number of jackets received.

(ii) Find the matrix which represents the number of jackets in stock at the 
end of the week after all the orders have been dispatched.

(iii) Assuming that this week is typical, find the matrix which represents 
sales of jackets over a six-week period. How realistic is this assumption?

2 Multiplication of matrices
When you multiply two matrices you do not just multiply corresponding 
terms. Instead you follow a slightly more complicated procedure. The following 
example will help you to understand the rationale for the way it is done.
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There are four ways of scoring points in rugby: a try (five points), a conversion 
(two points), a penalty (three points) and a drop goal (three points). In a match 
Tonga scored three tries, one conversion, two penalties and one drop goal.

So their score was

3 × 5 + 1 × 2 + 2 × 3 + 1 × 3 = 26.

You can write this information using matrices. The tries, conversions, penalties 
and drop goals that Tonga scored are written as the 1 × 4 row matrix (3 1 2 1) 
and the points for the different methods of scoring as the 4 × 1 column  

matrix 
5
2
3
3



















.

These are combined to give the 1 × 1 matrix 3 5 1 2 2 3 1 3 26( ) ( )× + × + × + × = .

Combining matrices in this way is called matrix multiplication and this 

example is written as 3 1 2 1

5
2
3
3

26



















=( ) ( ).

The use of matrices can be extended to include the points scored by the 
other team, Japan. They scored two tries, two conversions, four penalties 
and one drop goal. This information can be written together with Tonga’s 
scores as a 2 × 4 matrix, with one row for Tonga and the other for Japan. 
The multiplication is then written as:

3 1 2 1
2 2 4 1

5
2
3
3

26
29

























=






.

So Japan scored 29 points and won the match.

This example shows you two important points about matrix multiplication. 
Look at the orders of the matrices involved.

The two 'outside' numbers give you the order of 
the product matrix, in this case 2 x 1.

The two 'middle' numbers, in this case 4, must 
be the same for it to be possible to multiply two 
matrices. If two matrices can be multiplied, 
they are conformable for multiplication.

2 × 4   ×   4 × 1

You can see from the previous example that multiplying matrices involves 
multiplying each element in a row of the left-hand matrix by each element in a 
column of the right-hand matrix and then adding these products.  
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Find 
−









 − −









1 3

2 5
4 3 0
2 3 1

.

Example 1.1

Example 1.2

Solution
The product will have order 2 × 1.

(10 × 5) + (3 × 2) = 56

(−2 × 5) + (7 × 2) = 4

10
−2

3
7

5
2( () ) 56

4( )

Figure 1.4

Solution
The order of this product is 2 × 3. 

−
− −













−2 6 3
18 21 5

So 1 3
2 5

4 3 0
2 3 1

2 6 3
18 21 5−









 − −









 = − −

− −










(1 × 4) + (3 × –2) = −2

(–2 × 4) + (5 × –2) = −18

(1 × 3) + (3 × −3) = −6 (1 × 0) + (3 × 1) = 3

(–2 × 3) + (5 × –3) = −21

Find 
−



















10 3

2 7
5
2

.

(–2 × 0) + (5 × 1) = 5

Discussion point

➜	 If A = 
1 3 5
2 4 1

0 3 7











− , B = 

8 1
2 3

4 0













−
−  and C = 5 0

3 4


 




−
 

which of the products AB, BA, AC, CA, BC and CB exist?

Multiplication of matrices
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In this section you will look at whether matrix multiplication is:

n	 commutative

n	 associative.

On page 4 you saw that for numbers, addition is both associative and 
commutative. Multiplication is also both associative and commutative.  
For example:

(3 × 4) × 5 = 3 × (4 × 5)

and

3 × 4 = 4 × 3

Example 1.3
Find 3 2

1 4
1 0
0 1−



















 .

What do you notice?

Solution
The order of this product is 2 × 2.

3 2
–1 4

1 0
0 1

= 3 2
–1 4





































Multiplying a matrix by the identity matrix has no effect.

ACTIVITY 1.1

Using A = 2 1
3 4







−  and B = 4 0
2 1



 


−

−
 find the products AB and BA and 

hence comment on whether or not matrix multiplication is commutative.
Find a different pair of matrices, C and D, such that CD = DC.

(3 × 1) + (2 × 0) = 3

(3 × 0) + (2 × 1) = 2

(–1 × 0) + (4 × 1) = 4

(–1 × 1) + (4 × 0) = −1
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ACTIVITY 1.2

Using A = 
2 1
3 4



 


−

, B = 4 0
2 1



 


−

−
and C = 1 2

2 3


 


 , fi nd the matrix 

products:

(i)  AB
(ii)  BC
(iii)  (AB)C
(iv)  A(BC)
Does your answer suggest that matrix multiplication is associative?

Is this true for all 2 × 2 matrices? How can you prove your answer?

In this exercise, do not use a calculator unless asked to. A calculator can be used 
for checking answers.

① Write down the orders of these matrices.

(i) (a)  A = 
3 4 1
0 2 3
1 5 0

−













 (b)  B = ( )2 3 6

 (c)  C = 
4 9 2
1 3 0−









  (d)  D = 

0 2 4 2
0 3 8 1− −









  

 (e)  E = 
3
6









  (f )  F = 

2 5 0 4 1
3 9 3 2 2
1 0 0 10 4

−
− −













  

(ii) Which of the following matrix products can be found? For those that 
can state the order of the matrix product.

 (a)  AE      (b)  AF      (c)  FA      (d)  CA      (e)  DC

② Calculate these products.

(i) 
3 0
5 1

7 2
4 3−









 −











(ii) 2 3 5
0 2
5 8
3 1

( )−
−















(iii) 
2 5 1 0
3 6 4 3

1
9

11
2

−
−









 −

−



















Check your answers using the matrix function on a calculator if possible.

③ Using the matrices A = 5 9
2 7−









  and B = 

3 5
2 9

−
−









 , confi rm that 

matrix multiplication is not commutative.

Exercise 1.2

TECHNOLOGY
You could use the 
matrix function on your 
calculator.

T

Multiplication of matrices
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④  For the matrices

A = 
3 1
2 4









    B = 

3 7
2 5

−







  C = 

2 3 4
5 7 1









   

D = 
3 4
7 0
1 2−















 E = 
4 7
3 2
1 5

−













 F = 

3 7 5
2 6 0
1 4 8

−

−














 

calculate, where possible, the following:

(i) AB (ii) BA (iii) CD (iv) DC (v) EF (vi) FE

⑤ Using the matrix function on a calculator, fi nd M4 for the matrix 

M = 
2 0 1
3 1 2
1 4 3

−

−















.

⑥ A = 
x 3
0 1−









  B = 

x2 0
4 3−









 :

(i) Find the matrix product AB in terms of x.

(ii) If AB = 
x10 9
4 3

−
−









 , fi nd the possible values of x.

(iii) Find the possible matrix products BA.

⑦ (i) For the matrix A = 
2 1
0 1









 , fi nd

(a) A2

(b) A3

(c) A4

(ii) Suggest a general form for the matrix An in terms of n.
(iii) Verify your answer by fi nding A10 on your calculator and confi rming 

it gives the same answer as (ii). 

⑧ The map in Figure 1.5 below shows the bus routes in a holiday area. Lines 
represent routes that run each way between the resorts. Arrows indicated 
one-way scenic routes. 

M is the partly completed 4 × 4 matrix which shows the number of direct 
routes between the various resorts. 

T

T

Beesborough

Danehill

Cidmouth

Ayton

From

M =

To

A
B
C
D

A
1

B
1

C
2

D
0( )

Figure 1.5

Note
M4 means M × M × M × M
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(i) Copy and complete the matrix M.

(ii) Calculate M2 and explain what information it contains.

(iii) What information would M3 contain?

⑨ A = 
x4 0

2 3 1−





 B = x

x

2 5
4

7

−












:

(i) Find the product AB in terms of x.

 A symmetric matrix is one in which the entries are symmetrical about the 

leading diagonal, for example 
2 5
5 0









  and 

3 4 6
4 2 5
6 5 1

−

−















.

(ii) Given that the matrix AB is symmetric, find the possible values of x.

(iii) Write down the possible matrices AB.

⑩ The matrix A, in Figure 1.6, shows the number of sales of five flavours of 
ice cream: Vanilla(V), Strawberry(S), Chocolate(C), Toffee(T) and Banana(B), 
from an ice cream shop on each of Wednesday(W), Thursday(Th), Friday(F) 
and Saturday(Sa) during one week. 

 Figure 1.6

A =

W
Th
F
Sa

V
63
58
77
101

S
49
52
41
57

C
55
66
81
68

T
44
29
39
63

B
18
26
25
45

( )
(i) Find a matrix D such that the product DA shows the total number of 

sales of each flavour of ice cream during the four-day period and find 
the product DA.

(ii) Find a matrix F such that the product AF gives the total number of ice 
cream sales each day during the four-day period and find the product AF.

 The Vanilla and Banana ice creams are served with strawberry sauce; the 
other three ice creams are served with chocolate sprinkles.

(iii) Find two matrices, S and C, such that the product DAS gives the total 
number of servings of strawberry sauce needed and the product DAC 
gives the total number of servings of sprinkles needed during the  
four-day period. Find the matrices DAS and DAC.

 The price of  Vanilla and Strawberry ice creams is 95p, Chocolate ice 
creams cost £1.05 and Toffee and Banana ice creams cost £1.15 each. 

(iv) Using only matrix multiplication, 
find a way of calculating the total 
cost of all of the ice creams sold 
during the four-day period.

⑪ Figure 1.7 shows the start of the 
plaiting process for producing a 
leather bracelet from three leather 
strands a, b and c.

The process has only two steps, 
repeated alternately: Figure 1.7

A B C

Multiplication of matrices
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Step 1: cross the top strand over the middle strand

Step 2: cross the middle strand under the bottom strand.

At the start of the plaiting process, Stage 0, the order of the strands is given  

by S
0
 = 

a
b
c














. 

(i) Show that pre-multiplying S
0
 by the matrix A = 

0 1 0
1 0 0
0 0 1














 

 gives S
1
, the matrix which represents the order of the strands at Stage 1.

(ii) Find the 3 × 3 matrix B which represents the transition from Stage 1 
to Stage 2.

(iii) Find matrix M = BA and show that MS
0
 gives S

2
, the matrix which 

represents the order of the strands at Stage 2.

(iv) Find M2 and hence find the order of the strands at Stage 4.

(v) Calculate M3. What does this tell you?

3 Transformations
You are already familiar with several different types of transformation, including 
reflections, rotations and enlargements.

n	 The original point, or shape, is called the object.

n	 The new point, or shape, after the transformation, is called the image.

n	 A transformation is a mapping of an object onto its image.

Some examples of transformations are illustrated in Figures 1.8 to 1.10 (note that 

O x

y

A′

B

A

B′

Figure 1.8 Reflection in the line y = x

O x

y

A′

B

A

B′

Figure 1.9 Rotation through 90° clockwise, 
centre O

O x

y

A′

B

A

B′

Figure 1.10 Enlargement centre O, scale factor 2
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Transformations

the vertices of the image are denoted by the same letters with a dash, e.g. A′, B′).

In this section, you will also meet the idea of

n	 a stretch parallel to the x-axis or y-axis
n	 a shear

and three-dimensional transformations where

n	 a shape is reflected in the planes x = 0, y = 0 or z = 0 
n	 a shape is rotated about one of the three coordinate axes.

A transformation maps an object according to a rule and can be represented by a 
matrix (see next section). The effect of a transformation on an object can be found 

by looking at the effect it has on the position vector of the point 
x
y









 ,  

i.e. the vector from the origin to the point (x, y). So, for example, to find the effect  
of a transformation on the point (2, 3) you would look at the effect that the 

transformation matrix has on the position vector 2
3









 .

Vectors that have length or magnitude of 1 are called unit vectors. 

In two dimensions, two unit vectors that are of particular interest are

i = 1
0









  – a unit vector in the direction of the x-axis

j = 0
1









  – a unit vector in the direction of the y-axis.

The equivalent unit vectors in three dimensions are

i = 
1
0
0














 – a unit vector in the direction of the x-axis

j = 
0
1
0














 – a unit vector in the direction of the y-axis

k = 
0
0
1














 – a unit vector in the direction of the z-axis.

Finding the transformation represented  
by a given matrix
Start by looking at the effect of multiplying the unit vectors i = 1

0









   

and j = 
0
1









  by the matrix 

1 0
0 1
−

−








 .
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Solution

(i) 0 1
1 0

1
0

0
1



















 =









  



















 =









0 1

1 0
0
1

1
0

The matrix 
0 1
1 0









  represents a refl ection in the line y = x.

Example 1.4 Describe the transformations represented by the following matrices.

(i) 
0 1
1 0









  (ii) 

2 0
0 2











Note
The letter I is often used for the point (1, 0).

O x

y

I′

I

Figure 1.13

O x

y

J

J′

Figure 1.14

The image of 1
0









  under this transformation is given by

1 0
0 1

1
0

1
0

−
−



















 = −







 . 

O x

y

I′ I

Figure 1.11

The image of 
0
1









  under the transformation is given by

1 0
0 1

0
1

0
1

−
−













=
−







.

O x

y

J′

J

Figure 1.12

You can see from this that the matrix 1 0
0 1
−

−








  represents a rotation, centre 

the origin, through 180°.

Note
The letter J is often used for the point (0, 1).
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By drawing a diagram to show the image of the unit square, fi nd the matrices 
which represent each of the following transformations:

(i) a refl ection in the x-axis

(ii) an enlargement of scale factor 3, centre the origin. 

Example 1.5

Solution

O x

y

I
I′

P′J′

J

1-1-2 2 3

-1

1

Figure 1.17

Hint
You may fi nd it easier 
to see what the 
transformation is when 
you use a shape, like 
the unit square, rather 
than points or lines.

(ii) 
2 0
0 2

1
0

2
0



















 =









  

2 0
0 2

0
1

0
2



















 =











The matrix 
2 0
0 2









  represents an enlargement, centre the origin, scale 

factor 2.

O x

y

I′I

Figure 1.15

O x

y

J′

J

Figure 1.16

Finding the matrix that represents a given 
transformation
The connection between the images of the unit vectors i and j and the matrix 
representing the transformation provides a quick method for fi nding the matrix 
representing a transformation.

It is common to use the unit square with coordinates O(0, 0), I(1, 0), P(1, 1) 
and J(0, 1).

You can think about the images of the points I and J, and from this you can 
write down the images of the unit vectors i and j.

This is done in the next example.

You can see that the images of i = 
1
0









  and j = 

0
1









  are the two 

columns of the transformation matrix.

Transformations
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(i)  You can see from Figure 1.17 that I (1, 0) is mapped to itself

 and J (0, 1) is mapped to J′ (0, −1). 

 So the matrix which represents a reflection in the x-axis is 1 0
0 1−









 .

(ii) 

O x

y

P

I I′

J′ P′

J

1-1-2 2 3 4 5 6

-1

1

2

3

Figure 1.18

 You can see from Figure 1.18 that I (1, 0) is mapped to I′ (3, 0), 

 and J (0, 1) is mapped to J′ (0, 3). 

 So the matrix which represents an enlargement, centre the origin,

 scale factor 3 is 
3 0
0 3









 .

ACTIVITY 1.3
Using the image of the unit square, find the matrix which represents a rotation of 
45° anticlockwise about the origin.
Use your answer to write down the matrices which represent the following 
transformations:
(i) a rotation of 45° clockwise about the origin
(ii) a rotation of 135° anticlockwise about the origin.

So the image of I is 1
0( )

and the image of J is 0
1 )( −

.

and the image of J is 0
3( ) .

So the image of I is 3
0( )

Discussion points

➜	For a general transformation represented by the matrix 



a b
c d

, what are 

   the images of the unit vectors 



1
0

 and 



0
1

?

➜	What is the image of the origin (0,0)?
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Solution
(i)  Figure 1.19 shows a rotation of angle θ anticlockwise about the origin.

 

O x

y

A

B′
A′

B

θ
θ

Figure 1.19

Call the coordinates of the point A′ (p, q). Since the lines OA and OB 
are perpendicular, the coordinates of B′ will be (−q, p).

From the right-angled triangle with OA′ as the hypotenuse, =θ p
cos 1

 
and so = θp cos .

Similarly, from the right-angled triangle with OB′ as the hypotenuse, 

=θ q
sin 1  so = θq sin .

So, the image point A′ (p, q) has position vector 








θ

θ
cos
sin

 and the  

image point B′ (–q, p) has position vector −







θ

θ
sin

cos
.

Therefore, the matrix that represents a rotation of angle θ anticlockwise 

about the origin is −







θ θ

θ θ
cos sin
sin cos

.

(ii)   The matrix that represents an anticlockwise rotation of 60° about the 

origin is 
cos60 sin60
sin60 cos60

1
2

3
2

3
2

1
2

° − °
° °







=
−

















.

(i)  Find the matrix which represents a rotation through angle θ 
anticlockwise about the origin.

(ii)  Use your answer to find the matrix which represents a rotation  
of 60° anticlockwise about the origin.

Example 1.6

Discussion point
➜	What matrix would represent a rotation through angle θ clockwise about the origin?

Transformations
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Activity 1.4 illustrates two important general results.

n	 The matrix m 0
0 1









  represents a stretch of scale factor m parallel to the 

x-axis.

n	 The matrix 
n

1 0
0









  represents a stretch of scale factor n parallel to the 

y-axis.

Shears
Figure 1.20 shows the unit square and its image under the transformation

represented by the matrix 1 3
0 1









  on the unit square. The matrix 

1 3
0 1











transforms the unit vector i = 
1
0









  to the vector 1

0









  and transforms the

unit vector j = 
0
1









  to the vector 

3
1









 . 

The point with position vector 1
1









  is transformed to the point with

position vector 4
1









 . 

O x

y

1 2 3 4

1

2

3

I I′

P′J′PJ

Figure 1.20

As 1 3
0 1

1
1

4
1( ) ( ) ( )= .

ACTIVITY 1.4
Investigate the effect of the matrices:

(i) 2 0
0 1









   (ii) 1 0

0 5









  

Describe the general transformation represented by the

matrices 
m 0
0 1









  and 

n
1 0
0









 .

TECHNOLOGY
You could use 
geometrical software 
to try different values 
of m and n.
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This transformation is called a shear. Notice that the points on the x-axis 
stay the same, and the points J and P move parallel to the x-axis to the right. 

This shear can be described fully by saying that the x-axis is fi xed, and giving the 
image of one point not on the x-axis, e.g. (0, 1) is mapped to (3, 1).

Generally, a shear with the x-axis fi xed has the form 
k1

0 1









  and a shear with 

the y-axis fi xed has the form 
k
1 0

1









 .

Solution








 − −

− −








 = − −

− −








1 3

0 1
1 1 1 1

2 2 1 1
5 7 2 4
2 2 1 1

O x

y

B A′

D′ C′

B′A

CD

1−1−4 −3 −2 2 3 4 5 76

−2

−1

1

2

3

Figure 1.21

The eff ect of this shear is to transform the 
sides of the rectangle parallel to the y-axis 
into sloping lines. Notice that the

gradient of the side A′ D′ is 1
3

 which

is the reciprocal of the top right-hand 

element of the matrix 1 3
0 1









 .

Note
Notice that under the shear 
transformation, points above 
the x-axis move to the right and 
points below the x-axis move to 
the left.

ACTIVITY 1.5
For each of the points A, B, C and D in Example 1.7, fi nd

x-
distancebetweenthepoint andits image

distanceof originalpoint from axis
.

What do you notice?

Example 1.7 Find the image of the rectangle with vertices A(-1, 2), B(1, 2), C(1,-1) and 

D(-1, -1) under the shear 1 3
0 1









  and show the rectangle and its image on 

a diagram.

Transformations
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In the activity on the previous page, you should have found that dividing the 
distance between the point and its image by the distance of the original point from 
the x-axis (which is fi xed), gives the answer 3 for all points, which is the number 
in the top right of the matrix. This is called the shear factor for the shear.

 There are diff erent conventions about the sign of a shear factor, and 
for this reason shear factors are not used to defi ne a shear in this 
book. It is possible to show the eff ect of matrix transformations using 
some geometrical computer software packages. You might fi nd that 
some packages use diff erent approaches towards shears and defi ne 
them in diff erent ways.

Example 1.8 In a shear, S, the y-axis is fi xed, and the image of the point (1, 0) is the 
point (1, 5).

(i)  Draw a diagram showing the image of the unit square under the 
transformation S.

(ii) Find the matrix that represents the shear S.

Solution
(i) 

O x

y

BA

C′

B′

A′

C

1

2

1 2 3 4

3

4

5

6

Figure 1.22

(ii) Under S 1
0

1
5









 →











 and 0
1

0
1









 →











 So the matrix representing S is 
1 0
5 1









 .

Notice that this matrix is of the form ( )k
1 0

1
 for shears with 

the y-axis fi xed.

Since the y-axis is fi xed.

TECHNOLOGY
If you have access to 
geometrical software, 
investigate how shears 
are defi ned.
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Summary of transformations in two dimensions

Refl ection in the x-axis 1 0
0 1−











Refl ection in the line y = x 0 1
1 0











Rotation 
anticlockwise 
about the origin 
through angle θ

Stretch parallel to the 
x-axis, scale factor k 

k 0
0 1











Shear, x-axis fi xed, 
with (0, 1) mapped to (k, 1) 

k1
0 1











Refl ection in the y-axis 1 0
0 1
−









Refl ection in the line 
y = −x 

Enlargement, centre the  
origin, scale factor k 

Stretch parallel to the 
y-axis, scale factor k 

Shear, y-axis fi xed, 
with (1, 0) mapped to (1, k) 

0 1
1 0

−
−











k
k
0

0











k
1 0
0











k
1 0

1











Transformations in three dimensions
When working with matrices, it is sometimes necessary to refer to a plane – 
this is an infi nite two-dimensional fl at surface with no thickness. Figure 1.23 
below illustrates some common planes in three dimensions – the XY plane, 
the XZ plane and YZ plane. These three planes will be referred to when using 
matrices to represent some transformations in three dimensions. The plane XY 
can also be referred to as z = 0 , since the z-coordinate would be zero for all 
points in the XY plane. Similarly, the XZ plane is referred to as y = 0 and the 
YZ plane as x = 0.

y

z

x

YZ

XY
y

z

x

XZ

XY

Figure 1.23

So far you have looked at transformations of sets of points from a plane (i.e. two 
dimensions) to the same plane. In a similar way, you can transform a set of points 
within three-dimensional space. You will look at refl ections in the planes x = 0, 
y = 0 or z = 0, and rotations about one of the coordinate axes. Again, the matrix 
can be found algebraically or by considering the eff ect of the transformation on 
the three unit vectors

i = 
1
0
0














,  j = 

0
1
0














 and k = 

0
0
1














.

−







θ θ

θ θ
cos sin
sin cos

Note
All these transformations 
are examples of linear 
transformations. In a 
linear transformation, 
straight lines are 
mapped to straight 
lines, and the origin is 
mapped to itself.

Transformations
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Think about refl ecting an object in the plane y = 0.  The plane y = 0 is the 
plane which contains the x- and z-axes. Figure 1.24 shows the eff ect of a 
refl ection in the plane y = 0. 

y

x

z
(0, 0, 1)

(0, 1, 0)
(1, 0, 0)

(0, −1, 0)

Figure 1.24

i = 
1
0
0














 maps to 

1
0
0














, j = 

0
1
0














 maps to 

0
1

0
−














 and k = 

0
0
1














 maps 

to 
0
0
1














.

The images of i, j and k form the columns of the 3 × 3 transformation matrix.

It is 
1 0 0
0 1 0
0 0 1

−













.

Example 1.9
Find the matrix that represents a rotation of 90° anticlockwise about the 
x-axis.

Solution
A rotation of 90° anticlockwise about the x-axis is shown in Figure 1.25.

y

z

x

y

z

x

P′(1, –1, 1)

P(1, 1, 1)

(0, 0, 1) (0, 0, 1)

(1, 0, 0) (1, 0, 0)

(0, 1, 0) (0, –1, 0)

Figure 1.25

Note
Rotations are taken to be anticlockwise about the axis of rotation when 
looking along the axis from the positive end towards the origin.
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Look at the effect of the transformation on the unit vectors i, j and k:

i = 
1
0
0














 maps to 

1
0
0














,  j = 

0
1
0














 maps to 

0
0
1














 and k = 

0
0
1















maps to 
0
1

0
−














.

The images of i, j and k form the columns of the 3 × 3 transformation matrix.

The matrix is 
1 0 0
0 0 1
0 1 0

−













. 

① Figure 1.26 shows a triangle with vertices at O, A(1, 2) and B(0, 2).

O x

y

B A

1−1−3 −2 2 3

1

2

3

Figure 1.26
 For each of the transformations below

(a) draw a diagram to show the effect of the transformation on triangle 
OAB

(b) give the coordinates of A′ and B′, the images of points A and B

(c) find expressions for x′ and y′, the coordinates of P′, the image of a 
general point P(x, y)

(d) find the matrix which represents the transformation.

(i) Enlargement, centre the origin, scale factor 3

(ii) Reflection in the x-axis

(iii) Reflection in the line x + y = 0

(iv) Rotation 90° clockwise about O

(v) Two-way stretch, scale factor 3 horizontally and scale factor 1
2 vertically.

② Describe the geometrical transformations represented by these matrices.

(i) 
1 0
0 1−









    (ii) 0 1

1 0
−

−








    (iii) 2 0

0 3









   

(iv) 
4 0
0 4









       (v)  

0 1
1 0−









  

Exercise 1.3

Transformations
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③ Each of the following matrices represents a rotation about the origin. Find 
the angle and direction of rotation in each case.

(i) 

1
2

3
2

3
2

1
2

−















   (ii) −







0.574 0.819

0.819 0.574
 

(iii) 

1
2

1
2

1
2

1
2

−

− −



















   (iv) 

3
2

1
2

1
2

3
2

− −

−
















 

④ Figure 1.27 shows a square with vertices at the points A(1, 1), B(1, −1),  
C(−1, −1) and D(−1,1).

O x

y

AD

BC

Figure 1.27
(i) Draw a diagram to show the image of this square under the 

transformation matrix M = 
1 4
0 1









 .

(ii) Describe fully the transformation represented by the matrix M. State 
the fixed line and the image of the point A.

⑤ (i)  Find the image of the unit square under the transformations 
represented by the matrices

(a) A = 
1 0
5 1









  (b) B = 

1 0.5
0 1









  

(ii) Use your answers to part (i) to fully describe the transformations 
represented by each of the matrices A and B.

⑥ Find the matrix that represents each of the following transformations in 
three dimensions.

(i) Rotation of 90° anticlockwise about the z-axis 

(ii) Reflection in the plane y = 0

(iii) Rotation of 180° about the x-axis

(iv) Rotation of 270° anticlockwise about the y-axis
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⑦ Figure 1.28 shows a shear that maps the rectangle ABCD to the 
parallelogram A′B′C′D′.

 The angle A′DA is 60°.

O x

y

A(−1, 2) B(2, 2)

D
60°

C
D′ C′

A′ B′

Figure 1.28

(i) Find the coordinates of A′.
(ii) Find the matrix that represents the shear.

⑧ The unit square OABC has its vertices at (0, 0), (1, 0), (1, 1) and (0, 1).

 OABC is mapped to OA'B'C' by the transformation defined by the matrix 

4 3
5 4









 .

 Find the coordinates of A', B' and C' and show that the area of the shape has 
not been changed by the transformation.

⑨ The transformation represented by the matrix M = 
1 2
0 1









  is applied to 

the triangle ABC with vertices A(−1, 1), B(1, −1) and C(−1, −1).

(i) Draw a diagram showing the triangle ABC and its image A′B′C′.
(ii) Find the gradient of the line A′C′ and explain how this relates to the 

matrix M.

⑩ Describe the transformations represented by these matrices.

(i)     

1 0 0
0 0 1
0 1 0−















 (ii) 

3 0 0
0 3 0
0 0 3















 (iii) 

1 0 0
0 1 0
0 0 1−















 (iv) 

2 0 0
0 3 0
0 0 1

2

















⑪ Find the matrices that would represent

(i) a reflection in the plane x = 0

(ii) a rotation of 180° about the y-axis.

⑫ A transformation maps P to P' as follows:

n Each point is mapped on to the line y = x.

n The line joining a point to its image is parallel to the y-axis.

Find the coordinates of the image of the point (x, y) and hence show that 
this transformation can be represented by means of a matrix.

 What is that matrix?

⑬ A square has corners with coordinates A(1, 0), B(1, 1), C(0, 1) and O(0, 0). 
It is to be transformed into another quadrilateral in the first quadrant of the 
coordinate grid.

Transformations
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 Find a matrix which would transform the square into

(i) a rectangle with one vertex at the origin, the sides lie along the axes 
and one side of length is 5 units

(ii) a rhombus with one vertex at the origin, two angles of 45° and side 
lengths of 2  units; one of the sides lies along an axis

(iii) a parallelogram with one vertex at the origin and two angles of 30°; 
one of the longest sides lies along an axis and has length 7 units;  the 
shortest sides have length 3 units.

Is there more than one possibility for any of these matrices? If so, write 
down alternative matrices that satisfy the same description.

4 Successive transformations
Figure 1.29 shows the eff ect of two successive transformations on a triangle. The 
transformation A represents a refl ection in the x-axis. A maps the point P to the 
point A(P). 

The transformation B represents a rotation of 90° anticlockwise about O. When 
you apply B to the image formed by A, the point A(P) is mapped to the point 
B(A(P)). This is abbreviated to BA(P).

Note
Notice that a transformation written as BA means ‘carry out A, then carry out B’.

This process is sometimes called composition of transformations.

Note
A transformation is often denoted by a capital letter. The matrix representing this 
transformation is usually denoted by the same letter, in bold.

O x

y

P(x, y)

O x

y

A(P)

O x

y

BA(P)

A B

Figure 1.29

Discussion point
Look at Figure 1.29 and compare the original triangle with the fi nal image after 
both transformations.

➜	 (i)   Describe the single transformation represented by BA.
➜	 (ii)  Write down the matrices which represent the transformations A and B. 

Calculate the matrix product BA and comment on your answer.
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Successive transformations

In general, the matrix for a composite transformation is found by 
multiplying the matrices of the individual transformations in reverse order. 
So, for two transformations the matrix representing the fi rst transformation 
is on the right and the matrix for the second transformation is on the left. 
For n t ransformations T

1
, T

2
, …., T

n-1
, T

n
, the matrix product would be 

T
n
T

n-1
 … T

2
T

1
.

You will prove this result for two transformations in Activity 1.6.

ACTIVITY 1.6

The transformations T and S are represented by the matrices T = 
a b
c d









  

and S = 
p q

r s









 .

T is applied to the point P with position vector p = 
x
y









 . The image of P is P’.

S is then applied to the point P' . The image of P'  is P'' . This is illustrated 
in Figure 1.30.

O x

y

P

T

U

a
b

c
d( ) p

q
r
s( )

x
y( )

O x

y

x"
y"( )

O x

y
S

x'
y'( )
P'

P''

Figure 1.30

(i) Find the position vector x
y
′
′









  of P'  by calculating the matrix product T 

x
y









 .

(ii) Find the position vector 
′′
′′











x
y

 of P''  by calculating the matrix product S 
x
y
′
′









 .

(iii) Find the matrix product U = ST and show that U 
x
y









  is the same as ′′

′′










x
y

.

Discussion point
➜	How can you use the 

idea of successive 
transformations 
to explain the 
associativity of 
matrix multiplication 
(AB)C = A(BC)?

Proving results in trigonometry
If you carry out a rotation about the origin through angle θ, followed by a 
rotation about the origin through angle ϕ, then this is equivalent to a single 
rotation about the origin through angle θ + ϕ. Using matrices to represent 
these transformations allows you to prove the formulae for sin (θ + ϕ) and 
cos (θ + ϕ) given on page 172. This is done in Activity 1.7.

TECHNOLOGY
If you have access to 
geometrical software, 
you could investigate 
this using several 
different matrices for 
T and S.
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ACTIVITY 1.7
(i) Write down the matrix A representing a rotation about the origin through angle 

θ, and the matrix B representing a rotation about the origin through angle ϕ.
(ii) Find the matrix BA, representing a rotation about the origin through angle 

θ, followed by a rotation about the origin through angle ϕ.
(iii) Write down the matrix C representing a rotation about the origin through 

angle θ + ϕ .
(iv) By equating C to BA, write down expressions for sin (θ + ϕ) and cos (θ + ϕ).
(v) Explain why BA = AB in this case.

(i)  Write down the matrix A which represents an anticlockwise rotation of 
135° about the origin.

(ii)  Write down the matrices B and C which represent rotations of 45° and 90° 
respectively about the origin. Find the matrix BC and verify that A = BC.

(iii) Calculate the matrix B3 and comment on your answer.

Example 1.10

Solution

(i) A = 

1
2

1
2

1
2

1
2

− −

−



















 

(ii) B = 

1
2

1
2

1
2

1
2

−

















, C = 0 1

1 0
−







  

 BC = 

1
2

1
2

1
2

1
2

0 1
1 0

1
2

1
2

1
2

1
2

−


















−







 =

− −

−



















 = A

(iii) B3 = .

This verifies that three successive anticlockwise rotations of 45° about 
the origin is equivalent to a single anticlockwise rotation of 135° 
about the origin.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

−


















−


















−


















=
− −

−
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① A = 
3 0
0 3









 ,  B = 

0 1
1 0

−







 , C = 

1 0
0 1−









  and D = 

0 1
1 0









 .

(i) Describe the transformations that are represented by matrices  
A, B, C and D.

(ii) Find the following matrix products and describe the single 
transformation represented in each case:

 (a) BC        (b) CB        (c) DC        (d) A2        (e) BCB        (f) DC2D

(iii) Write down two other matrix products, using the matrices A, B, C 
and D, which would produce the same single transformation as DC²D.

② The matrix X represents a reflection in the x-axis.

 The matrix Y represents a reflection in the y-axis.

(i) Write down the matrices X and Y.

(ii) Find the matrix XY and describe the transformation it represents.

(iii) Find the matrix YX. 

(iv) Explain geometrically why XY = YX in this case.

③ The matrix P represents a rotation of 180° about the origin.

 The matrix Q represents a reflection in the line y = x.

(i) Write down the matrices P and Q.

(ii) Find the matrix PQ and describe the transformation it represents.

(iii) Find the matrix QP. 

(iv) Explain geometrically why PQ = QP in this case.

④ In three dimensions, the four matrices J, K, L and M represent 
transformations as follows:

 J represents a reflection in the plane z = 0.

 K represents a rotation of 90° about the x-axis.

 L represents a reflection in the plane x = 0.

 M represents a rotation of 90° about the y-axis.

(i) Write down the matrices J, K, L and M.

(ii) Write down matrix products which would represent the single 
transformations obtained by each of the following combinations of 
transformations.

(a) A reflection in the plane z = 0 followed by a reflection in the plane  
x = 0

(b) A reflection in the plane z = 0 followed by a rotation of 90° about 
the y-axis

(c) A rotation of 90° about the x-axis followed by a second rotation of 
90° about the x-axis

(d) A rotation of 90° about the x-axis followed by a reflection in the 
plane x = 0 followed by a reflection in the plane z = 0

⑤ The transformations R and S are represented by the matrices  

R = 2 1
1 3

−







  and S = 3 0

2 4−








 . 

(i) Find the matrix which represents the transformation RS.

(ii) Find the image of the point (3, -2) under the transformation RS.

Exercise 1.4

Successive transformations
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⑥ The transformation represented by C = 0 3
1 0−









  is equivalent to a single 

transformation B followed by a single transformation A. Give geometrical 
descriptions of a pair of possible transformations B and A and state the 
matrices that represent them.

 Comment on the order in which the transformations are performed.
⑦ Figure 1.31 shows the image of the unit square OABC under the combined 

transformation with matrix PQ. 

O x

y

BA

A′

C′

B′

C

Figure 1.31

(i) Write down the matrix PQ.

 Matrix P represents a reflection. 

(ii) State the matrices P and Q and define fully the two transformations 
represented by these matrices. When describing matrix Q you should 
refer to the image of the point B.

⑧ Find the matrix X which represents a rotation of 135° about the origin 
followed by a reflection in the y-axis.

 Explain why matrix X cannot represent a rotation about the origin.

⑨ Find the matrix Y which represents a reflection in the plane y = 0 followed 
by a rotation of 90° about the z-axis.

⑩ (i)  Write down the matrix P which represents a stretch of scale factor 2 
parallel to the y-axis.

(ii) The matrix Q = 
5 0
0 1−









 . Write down the two single 

transformations which are represented by the matrix Q.

(iii) Find the matrix PQ. Write a list of the three transformations which 
are represented by the matrix PQ. In how many different orders could 
the three transformations occur? 

(iv) Find the matrix R for which the matrix product RPQ would 
transform an object to its original position.
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⑪ There are two basic types of four-terminal electrical networks, as shown in 
Figure 1.32.Figure 1.32.

Figure 1.32

In Type A the output voltage V
2
 and current I

2
 are related to the input 

voltage V
1
 and current I

1
 by the simultaneous equations:

V V I R

I I
2 1 1 1

2 1

= −
=

 

The simultaneous equations can be written as 
V

I

V

I
2

2

1

1









 =









A .

(i) Find the matrix A.

In Type B the corresponding simultaneous equations are:

 

V V

I I
V
R

2 1

2 1
1

2

=

= −

(ii) Write down the matrix B which represents the effect of a Type B network.
(iii) Find the matrix which represents the effect of Type A followed by Type B.
(iv) Is the effect of Type B followed by Type A the same as the effect of 

Type A followed by Type B?
⑫ The matrix B represents a rotation of 45° anticlockwise about the origin.

 B =
−



















1

2

1

2
1

2

1

2

, D = 
a b
b a

−







  where a and b are positive real numbers

 Given that D2 = B,  find exact values for a and b. Write down the transformation 
represented by the matrix D.  What do the exact values a and b represent?

In questions 13 and 14 you will need to use the matrix which represents a  

reflection in the line y = mx.  This can be written as 
m

m m

m m
1

1
1 2

2 1
2

2

2+
−

−









 .

⑬  (i)  Find the matrix P which represents reflection in the line y x1
3

= , 

and the matrix Q which represents reflection in the line y x3= .

(ii) Use matrix multiplication to find the single transformation equivalent to  

reflection in the line y x1
3

= followed by reflection in the line y x3= .

 Describe this transformation fully.

(iii) Use matrix multiplication to find the single transformation equivalent to 

reflection in the line y x3=  followed by reflection in the line y x1
3

= .

 Describe this transformation fully.

⑭ The matrix R represents a reflection in the line y mx= . 

 Show that R2 = 1 0
0 1









  and explain geometrically why this is the case.

Successive transformations
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5 Invariance
Invariant points

Points which map to themselves under a transformation are called invariant 
points. The origin is always an invariant point under a transformation that can 
be represented by a matrix, as the following statement is always true:



















 =









a b

c d
0
0

0
0

More generally, a point (x, y) is invariant if it satisfies the matrix equation:



















 =











a b
c d

x
y

x
y

For example, the point (−2, 2) is invariant under the transformation represented 

by the matrix 6 5
2 3









 :  









 −







 = −







6 5

2 3
2
2

2
2

Solution

(i)  −

















 =









2 1

1 0
5
5

5
5

 so (5, 5) is an invariant point under the 

transformation represented by M.

(ii) Suppose the point 
x
y









  maps to itself.  Then

 −

















 =











x
y

x
y

2 1
1 0

 
x y

x

x
y

2 −







 =











⇔ 2x – y = x and x = y. 
So the invariant points of the transformation are all the points on the line y = x.

Example 1.11

M is the matrix 2 1
1 0

−







 .

(i)  Show that (5, 5) is an invariant point under the transformation 
represented by M.

(ii) What can you say about the invariant points under this transformation?

Both equations simplify to y = x.

Discussion points
➜	 In a reflection, are there any points which map to themselves?

➜	 In a rotation, are there any points which map to themselves?

These points all have the form (λ, λ). The 
point (5,5) is just one of the points on this line.
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Invariance

The simultaneous equations in Example 1.11 were equivalent and so all the 
invariant points were on a straight line. Generally, any matrix equation set up to 
find the invariant points will lead to two equations of the form ax + by = 0,  
which can also be expressed in the form y ax

b
= − . These equations may be 

equivalent, in which case this is a line of invariant points. If the two equations 
are not equivalent, the origin is the only point which satisfies both equations, 
and so this is the only invariant point.

Invariant lines
A line AB is known as an invariant line under a transformation if the image of 
every point on AB is also on AB. It is important to note that it is not necessary 
for each of the points to map to itself; it can map to itself or to some other point 
on the line AB.

Sometimes it is easy to spot which lines are invariant. For example, in 
Figure 1.33 the position of the points A–F and their images A′–F′ show 
that the transformation is a 
reflection in the line l. So every 
point on l maps onto itself and l is 
a line of invariant points.

Look at the lines perpendicular 
to the mirror line in Figure 1.33, 
for example the line ABB′A′. Any 
point on one of these lines maps 
onto another point on the same 
line. Such a line is invariant but it 
is not a line of invariant points. Figure 1.33

Solution
Suppose the invariant line has the form y mx c= +

x
y

x
y

x x y5 1
2 4

5
′
′









 =



















 ⇔ ′ = + ⇔ 

x
y

x
y

x x y5 1
2 4

5
′
′









 =



















 ⇔ ′ = + and ′ = +y x y2 4  

⇔  
 
  
x x mx c m x c

y x mx c m x c

5 (5 )

2 4( ) (2 4 ) 4

′ = + + = + +
′ = + + = + +





 

As the line is invariant, ( )′ ′x y,  also lies on the line, so ′ = ′ +y mx c .

Therefore, 

 m x c m m x c c(2 4 ) 4 [(5 ) ]+ + = + + +  

 ⇔ m m x m c0 ( 2) ( 3)2⇔ = + − + −  

For the left-hand side to equal zero, both m m 2 02 + − =  and m c( 3) 0− = .

 m m m m( 1)( 2) 0 1 or 2− + = ⇔ = = − ⇔ m m m m( 1)( 2) 0 1 or 2− + = ⇔ = = −

Example 1.12

Find the invariant lines of the transformation given by the matrix M = 
5 1
2 4









 .

Let the original point 
be (x, y) and the image 
point be (x′, y′).

Using y mx c= + .
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and

 m c m c( 3) 0 3 or 0− = ⇔ = = ⇔ m c m c( 3) 0 3 or 0− = ⇔ = =

So, there are two possible solutions  
for the invariant line:
 m c y x1, 0= = ⇒ = ⇔ y = x

or

 m c y x2, 0 2= − = ⇒ = − ⇔ y = –2x

Figure 1.34 shows the effect of 
this transformation, together 
with its invariant lines.

m = 3 is not a viable solution 

as + 2 0− ≠m m2 . 

① Find the invariant points under the transformations represented by the 
following matrices.

(i) 
1 1

2 2
− −







  (ii) 

3 4
1 2









   (iii) 

4 1
6 3









   (iv) 

7 4
3 1

−
−









  

② What lines, if any, are invariant under the following transformations?

(i) Enlargement, centre the origin
(ii) Rotation through 180° about the origin
(iii) Rotation through 90° about the origin
(iv) Reflection in the line y = x
(v) Reflection in the line y = –x
(vi) Shear, x-axis fixed

③ Figure 1.35 shows the effect on the unit square of a transformation 

represented by A = 0.6 0.8
0.8 0.6−









 .

O x

y

I

I′

B′

J′

BJ

Figure 1.35

Exercise 1.5

y = −2x

y = x

x

y

C′ B′

D′ A′

C

D
B

A

Figure 1.34
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(i) Find three points which are invariant under this transformation.

(ii) Given that this transformation is a reflection, write down the equation 
of the mirror line.

(iii) Using your answer to part (ii), write down the equation of an invariant 
line, other than the mirror line, under this reflection.

(iv) Justify your answer to part (iii) algebraically.

④ For the matrix M = 
4 11
11 4









  

(i) show that the origin is the only invariant point

(ii) find the invariant lines of the transformation represented by M.

⑤  (i) Find the invariant lines of the transformation given by the matrix  

  
3 4
9 2−









 .

(ii) Draw a diagram to show the effect of the transformation on the unit 
square, and show the invariant lines on your diagram.

⑥ For the matrix M = 
0 1
1 2−









  

(i) find the line of invariant points of the transformation given by M

(ii) find the invariant lines of the transformation

(iii) draw a diagram to show the effect of the transformation on the 
unit square.

⑦ The matrix 

m
m

m
m

m
m

m
m

1
1

2
1

2
1

1
1

2

2 2

2

2

2

−
+ +

+
−

+



















 represents a reflection in the line y mx= .

 Prove that the line y mx=  is a line of invariant points.

⑧ The transformation T maps x
y









  to a b

c d
x
y



















 . 

 Show that invariant points other than the origin exist if ad bc a d 1− = + − .

⑨ T is a translation of the plane by the vector a
b









 .  The point (x, y) is 

mapped to the point ( ′x , ′y  ).

(i) Write down equations for ′x  and ′y  in terms of x and y.

(ii) Verify that 
′
′
′















=




























x
y

z

a
b

x
y

1 0
0 1

0 0 1 1

 produces the same 

equations as those obtained in part (i).

 The point (X, Y) is the image of the point (x, y) under the combined 
transformation TM where

X
Y

a
b

x
y

1

0.6 0.8
0.8 0.6
0 0 1 1















=
−


























 

Invariance
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(iii) (a)  Show that if a = –4 and b = 2 then (0, 5) is an invariant point of 
TM.

  (b) Show that if a = 2 and b = 1 then TM has no invariant point.

(c)  Find a relationship between a and b that must be satisfied if TM is 
to have any invariant points.

KEY POINTS
1 A matrix is a rectangular array of numbers or letters.
2 The shape of a matrix is described by its order. A matrix with r rows and c 

columns has order r × c.
3 A matrix with the same number of rows and columns is called a square matrix.

4 The matrix O = 0 0
0 0



 


  is known as the 2 × 2 zero matrix. Zero matrices can 

be of any order.

5 A matrix of the form I = 1 0
0 1



 


  is known as an identity matrix. All identity 

matrices are square, with 1s on the leading diagonal and zeros elsewhere.
6 Matrices can be added or subtracted if they have the same order. 
7 Two matrices A and B can be multiplied to give matrix AB if their orders are 

of the form p q×  and q r×  respectively. The resulting matrix will have the 
order p r× .

LEARNING OUTCOMES
When you have completed this chapter you should be able to:

➤	 understand what is meant by the terms order of a matrix, square matrix, 
identity matrix, zero matrix and equal matrices

➤	 add and subtract matrices of the same order

➤	 multiply a matrix by a scalar

➤	 know when two matrices are conformable for multiplication, and be able to 
multiply conformable matrices

➤	 use a calculator to carry out matrix calculations

➤	 know that matrix multiplication is associative but not commutative

➤	 find the matrix associated with a linear transformation in two dimensions:

➤	 reflections in the coordinate axes and the lines y = ± x
➤	 rotations about the origin

➤	 enlargements centre the origin

➤	 stretches parallel to the coordinate axes

➤	 shears with the coordinate axes as fixed lines

➤	 find the matrix associated with a linear transformation in three dimensions:

➤	 reflection in x = 0, y = 0 or z = 0
➤	 rotations through multiples of 90° about the x, y or z axes

➤	 understand successive transformations in two dimensions and the 
connection with matrix multiplication

➤	 find the invariant points for a linear transformation

➤	 find the invariant lines for a linear transformation.
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8 Matrix multiplication

p
q

r
s( ) pa + rb

qa + sb
pc + rd
qc + sd( )a

b
c
d( ) =

Row from left matrix with
column from right matrix.

Figure 1.36

 9 Matrix addition and multiplication are associative:
 A B C A B C( ) ( )+ + = + +  

 A BC AB C( ) ( )=  

10 Matrix addition is commutative but matrix multiplication is generally not 
commutative:

 A B B A+ = +  

 AB BA≠

11 The matrix M = a b
c d



 


  represents the transformation which maps the

 point with position vector 
x
y







  to the point with position vector 

ax by
cx dy











+
+

.

12 A list of the matrices representing common transformations, including rotations, 
reflections, enlargements, stretches and shears, is given on page 22.

13 Under the transformation represented by M, the image of i = 1
0



 


  is the 

 first column of M and the image of j = 0
1



 


  is the second column of M.

 Similarly, in three dimensions the images of the unit vectors i = 
1
0
0











 ,

 j = 
0
1
0











  and k = 

0
0
1











  are the first, second and third columns of the 

transformation matrix.

14 The composite of the transformation represented by M followed by that 
represented by N is represented by the matrix product NM.

15 If x y( ,  ) is an invariant point under a transformation represented by the 

matrix M, then M 
x
y

x
y

MM














= .

16 A line AB is known as an invariant line under a transformation if the image of 
every point on AB is also on AB. 

FUTURE USES
n	 Work on matrices is 

developed further in 
Chapter 6 ‘Matrices 
and their inverses’.

Invariance
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... that wonder of 
analysis, that portent 
of the ideal world, that 
amphibian between 
being and not-being, 
which we call the 
imaginary root of 
negative unity.

Leibniz, 1702

Introduction to complex numbers2

Real numbers

Rational numbers

Integers

Natural numbers

Figure 2.1

Discussion points
� What is the meaning of each of the terms shown in Figure 2.1? 

� Suggest two numbers that could be placed in each part of the diagram.



40

Extending the number system

1 Extending the number system
The number system we use today has taken thousands of years to develop. To 
classify the diff erent types of numbers used in mathematics the following letter 
symbols are used:

   N   Natural numbers

 Z   Integers

 Q   Rational numbers

 Q   Irrational numbers

 R     Real numbers

You may have noticed that some of these sets of numbers fi t within the other 
sets. This can be seen in Figure 2.1.

What are complex numbers?

ACTIVITY 2.1

On a copy of Figure 2.1 write the following numbers in the correct positions.

7      5       −13      
227
109      −- 5       3.1415      π      0.33      0.3�   

ACTIVITY 2.2

Solve each of these equations and decide which set of numbers the roots belong 
to in each case. 

(i)  x 7 9+ =   (ii) x7 9=  (iii) x 92 =

(iv) x 10 9+ =  (v) x x7 02 + =

Now think about the equation x 9 02 + = .

You could rewrite it as x 92 = − . However, 
since the square of every real number is 
positive or zero, there is no real number 
with a square of –9. This is an example of a quadratic equation which, up to 
now, you would have classifi ed as having ‘no real roots’.

The existence of such equations was recognised for hundreds of years, in 
the same way that Greek mathematicians had accepted that x 10 9+ =  had 
no solution; the concept of a negative number had yet to be developed. 
The number system has expanded as mathematicians increased the range of 
mathematical problems they wanted to tackle.

Writing this quadratic equation as 
x x+ 0 + 9 = 02  and calculating 
the discriminant for this quadratic 
gives b ac– 4 = –362  which is 
less than zero.

Prior knowledge
You should know how 
to solve quadratic 
equations using the 
quadratic formula.

Discussion point
➜	Why is there 

no set shown 
on the diagram 
for irrational 
numbers?
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 You can solve the equation x 9 02 + =  by extending the number system to 
include a new number, i (sometimes written as j). This has the property that 
i² = −1 and it follows the usual laws of algebra. i is called an imaginary number.  

The square root of any negative number can be expressed in terms of i. For 
example, the solution of the equation x 92 = −  is x = 9± − .  This can be 
written as 9 1± × −  which simplifi es to ±3i.

Solution
z z6 58 02 − + =  

z
6 ( 6) 4 1 58

2 1
6 196

2
6 14i

2
3 7i

2

= ± − − × ×
×

= ± −

= ±

= ±  

Using the quadratic formula with a = 1, b = –6 and c = 58.

-196 = 196 -1 = 14i.×

You will have noticed that the roots 3 + 7i and 3 – 7i 
of the quadratic equation z z6 58 02 − + =  have both 
a real part and an imaginary part. 

Notation
Any number z of the form x yi+ , where x and y are real, is called a complex 
number. 

The letter z is commonly used for complex numbers, and w is also used. In this 
chapter a complex number z is often denoted by x yi+ , but other letters are 
sometimes used, such as a + bi.

x is called the real part of the complex number, denoted by Re(z) and y is called 
the imaginary part, denoted by Im(z).

Working with complex numbers
The general methods for addition, subtraction and multiplication of complex 
numbers are straightforward.

Addition: add the real parts and add the imaginary parts.

For example, 3 4i 2 8i 3 2 4 8 i

5 4i

( ) ( ) ( ) ( )+ + − = + + −
= −

Subtraction: subtract the real parts and subtract the imaginary parts.

For example, 6 9i 1 6i 5 15i( ) ( )− − + = −

3 is called the real part 
of the complex number 
3 + 7i and is denoted 
Re(z).

7 is called the 
imaginary part of the 
complex number and 
is denoted Im(z).

TECHNOLOGY
If your calculator has 
an equation solver, fi nd 
out if it will give you the 
complex roots of this 
quadratic equation.

TECHNOLOGY
Some calculators will 
allow you to calculate 
with complex numbers. 
Find out whether your 
calculator has this 
facility.

Use the quadratic formula to solve the quadratic equation z z6 58 02 − + = , 
simplifying your answer as far as possible.

Example 2.1
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Multiplication: multiply out the brackets in the usual way and simplify.

For example, 7 2i 3 4i 21 28i 6i 8i

21 22i 8 1

29 22i

2( ) ( )
( )

+ − = − + −
= − − −
= −

 

Division of complex numbers follows later in this chapter.

When simplifying 
it is important to 
remember that 
i2 = −1.

Equality of complex numbers
Two complex numbers z x yi= +  and w u vi= +  are equal if both x = u and  
y = v. If x ≠ u or y ≠ v, or both, then z and w are not equal.

You may feel that this is obvious, but it is interesting to compare this situation 
with the equality of rational numbers.

Example 2.2 The complex numbers z
1
 and z

2
 are given by

  z a b3 2 4 i1 ( )( )= − + −  
and

  ( ) ( )= − + −z b a7 4 3 2 i.2

(i)  Given than z
1
 and z

2
 are equal, find the values of a and b.

(ii)  Check your answer by substituting your values for a and b into the 
expressions above.

Discussion point
➜	What answer do 

you think Gerolamo 
Cardano might have 
obtained to the 
calculation 

    
5 + 15 5 15 ?( ) ( )− − −

Discussion points
➜	Are the rational numbers xy  and uv  equal if x = u and y = v?
➜	 Is it possible for the rational numbers xy  and uv  to be equal if x ≠ u and y ≠ v?

Gerolamo Cardano (1501–1576) was an Italian mathematician and physicist 
who was the first known writer to explore calculations involving the square 
roots of negative quantities, in his 1545 publication Ars magna (‘The Great Art’). 
He wanted to calculate: 

  5 + 15 5 15 ?( ) ( )− − −

Some years later, an Italian engineer named Rafael Bombelli introduced the 
words ‘plus of minus’ to indicate –1 and ‘minus of minus’ to indicate – –1.  

However, the general mathematical community was slow to accept these 
‘fictional’ numbers, with the French mathematician and philosopher René 
Descartes rather dismissively describing them as ‘imaginary’. Similarly, 
Isaac Newton described the numbers as ‘impossible’ and the mystification of 
Gottfried Leibniz is evident in the quote at the beginning of the chapter! In the 
end it was Leonhard Euler who eventually began to use the symbol i, the first 
letter of ‘imaginarius’ (imaginary) instead of writing –1.

Historical note

For two complex numbers to be equal the real parts must be equal and the 
imaginary parts must be equal. Using this result is described as equating real 
and imaginary parts, as shown in the following example.

Extending the number system

Discussion points
➜	What are the values 

of i3, i4, i5, i6 and i7?
➜	Explain how you 

could quickly work 
out the value of in for 
any positive integer 
value of n.
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Do not use a calculator in this exercise

① Write down the values of

(i) i9 (ii) i14 (iii) i31 (iv) i100

② Find the following:

(i) 6 4i 3 5i( ) ( )+ + −   (ii) 6 4i 3 5i( ) ( )− + + − +  

(iii) 6 4i 3 5i( ) ( )+ − −    (iv) 6 4i 3 5i( ) ( )− + − − +  

③ Find the following:

(i) 3 6 4i 2 3 5i( ) ( )+ + −  (ii) 3i 6 4i 2i 3 5i( ) ( )+ + −
(iii) 6 4i 2( )+    (iv) ( )( )+ − i6 4i 3 5

④ (i) Find the following:

(a) 6 4i 6 4i( ) ( )+ −
(b) 3 5i 3 5i( ) ( )− +  

(c) 6 4i 6 4i 3 5i 3 5i( ) ( ) ( ) ( )+ − − +  

(ii) What do you notice about the answers in part (i)?

⑤ Find the following:

(i) 3 7i 2 2i 5 i( ) ( ) ( )− + −  (ii) 3 7i 3( )−  

⑥ Solve each of the following equations.  
In each case, check your solutions are correct by substituting the values back 
into the equation.

(i) z z2 2 02 + + =    (ii) z z2 5 02 − + =  

(iii) z z4 13 02 − + =   (iv) z z6 34 02 + + =
(v) z z4 4 17 02 − + =  (vi) z z4 6 02 + + =

⑦ Given that the complex numbers
z a b

z a b

3 2 i

5 4 i

1
2

2
2

( )
( )

= + +

= − +  

 are equal, find the possible values of a and b.

 Hence list the possible values of complex numbers z
1
 and z

2
.

Solution
(i)  − + − = − + −a b b a(3 ) (2 4)i (7 4) (3 2)i  

  Equating real parts: a b3 7 4− = −

  Equating imaginary parts: b a2 4 3 2− = −  

  

b a

b a

7 7

2 3 2

+ =
− =

  Solving simultaneously gives b = 1 and a = 0.

(ii) Substituting a = 0 and b = 1 gives z 3 2i1 = −  and z 3 2i2 = −  
  so z

1
 and z

2
 are indeed equal.

Equating real and imaginary 
parts leads to two equations.

Simplifying the equations.

Exercise 2.1

Chapter 2 Introduction to com
plex num

bers



44

⑧ A complex number z = a + bi, where a and b are real, is squared to give an 
answer of –16 + 30i.  Find the possible values of a and b.

⑨ Find the square roots of the complex number –40 + 42i.

⑩ Figure 2.2 shows the graph of y = x2 – 4x + 3.

 

x

y

y = x2 − 4x + 3

  Figure 2.2

(i) Draw sketches of the curves y x x4 32= − + , y x x4 62= − +  and 
y x x4 82= − +  on the same axes.

(ii) Solve the equations

(a) x x4 3 02 − + =
(b) x x4 6 02 − + =
(c) x x4 8 02 − + =

(iii) Describe the relationship between the roots of the three equation and 
how they relate to the graphs you sketched in part (i).

⑪ Given that z = 2 + 3i is a root of the equation

 z a z bi 16 i 02 ( )+ − + + =

where a and b are real, find a and b.

Explain why you cannot assume that the other root is z 2 3i= − .

Given that the second root has the form c5 i+ , find the other root of the 
equation.

2 Division of complex numbers
Complex conjugates
You have seen that the roots of a quadratic equation are almost the same, but 
have the opposite sign (+ and −) between the real and imaginary terms. For 
example, the roots of x2 – 4x + 13 = 0 are x = 2 + 3i and x = 2 – 3i. The 
pair of complex numbers 2 + 3i and 2 – 3i are called conjugates. Each is 
the conjugate of the other.

In general the complex number x – yi is called the complex conjugate, 
or just the conjugate, of x + yi. The conjugate of a complex number z is 
denoted by z∗. 

Division of complex numbers
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Solution
Multiply the numerator and denominator by 5 − 2i.

1
5 2i

5 2i
(5 2i)(5 2i)
5 2i
25 4
5 2i

29

+ = −
+ −

= −
+

= −
 

The real part is 5
29 and the imaginary part is − 2

29. 

Given that z 3 5i= + , find

(i) z + z∗ (ii) zz∗

Example 2.3

Solution
(i) + = + + −

=

∗z z (3 5i) (3 5i)

6

 

(ii) = + −

= + − −
= +
=

∗zz (3 5i)(3 5i)

9 15i 15i 25i

9 25

34

2

 

You can see from the example above that z + z∗ and zz∗ are both real. This is an 
example of an important general result: that the sum of two complex conjugates 
is real and that their product is also real.

Dividing complex numbers

You probably already know that you can write an expression like 2
3 2−

 as 

a fraction with a rational denominator by multiplying the numerator and 
denominator by 3 2+ .

  
2

3 2
2

3 2
3 2
3 2

6 2 2
9 2

6 2 2
7−

=
−

× +
+

= +
− = +

Because zz∗ is always real, you can use a similar method to write an expression 

like 
2

3 5i−  as a fraction with a real denominator, by multiplying the numerator 
and denominator by 3 + 5i.

This is the basis for dividing one complex number by another.

3 + 5i is the complex conjugate of 3 – 5i.

ACTIVITY 2.3
Prove that z + z∗ and 
zz are both real for all 
complex numbers z.

Example 2.4
Find the real and imaginary parts of 1

5 2i+ .

5 – 2i is the 
conjugate of the 

denominator 5 + 2i.

Chapter 2 Introduction to com
plex num

bers
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① Express these complex numbers in the form x + yi.

(i) 3
7 i− (ii) 3

7 i+  (iii) 3i
7 i−  (iv) 3i

7 i+  

② Express these complex numbers in the form x + yi.

(i) 3 5i
2 3i

+
−    (ii) 2 3i

3 5i
−
+  (iii) 3 5i

2 3i
−
+    (iv) 2 3i

3 5i
+
−  

③ Simplify the following, giving your answers in the form x + yi.

(i) 
12 5i 2 2i

4 3i
( ) ( )− +

−

(ii) 
12 5i

(4 3i)2
−

−

④ z 3 6i= − , w 2 9i= − +  and q 6 3i= + .

 Write down the values of the following:

(i) z + z∗ (ii) ww∗		 (iii) q∗ + q 
(iv) z∗z (v) w + w∗	 (vi) qq∗ 

⑤ Given that z 2 3i= +  and w 6 4i= − , fi nd the following:

(i) Re(z) (ii) Im(z) (iii) z∗ 
(iv) w∗ (v) z∗ + w∗	 (vi) z∗ − w∗

⑥ Given that z = 2 + 3i and w = 6 – 4i, fi nd the following:

(i) Im(z + z∗) (ii) Re(w – w∗) (iii) zz∗ − ww∗ 
(iv) (z3)∗ (v) (z∗)3 (vi) zw∗ − z∗w

⑦ Given that z 2 5i1 = − , z 4 10i2 = +  and z 6 5i3 = − , fi nd the following in 
the form a + bi, where a and b are rational numbers.

(i) 
z z
z
1 2

3

  (ii) 
z
z
3

2

1

( )
  (iii) z z z

z
1 2 3

3

2( )
+ −  

Solution
z(2 3i) 9 4i+ = −  

⇒ = −
+

= − −
+ −

z 9 4i
2 3i
(9 4i)(2 3i)
(2 3i)(2 3i)

18 27i 8i 12i
4 6i 6i 9i

6 35i
13

6
13

35
13 i

2

2= − − +
− + −

= −

= −
 

Example 2.5 Solve the equation z2 3i 9 4i( )+ = − .

Multiply top and 

bottom by 2 − 3i.

Notice how the –6i and 

+6i terms will cancel 
to produce a real 
denominator.

Exercise 2.2

Discussion points
➜	What are the values 

of 1
i
, 1

i2
, 1

i3
 and 1

i4
?

➜	Explain how you 
would work out the 

value of 1
in

  for any 

positive integer 
value n.

Division of complex numbers

TECHNOLOGY
If your calculator 
handles complex 
numbers, you can 
use it to check your 
answers.
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⑧  Solve these equations.

(i) z1 i 3 i( )+ = +  

(ii) z2 i 2 6i 4 7i( ) ( )− + − = −  

(iii) z3 4i 1 10 5i( ) ( )− − = −  

(iv) z3 5i 2 5i 6 3i( ) ( )+ + − = +  

⑨ Find the values of a and b such that a b2 5i
3 2i

i
1 i

−
+ = +

− .

⑩ The complex number w = a + bi, where a and b are real, satisfies the 
equation w5 2i 67 37i( )− = + .
(i) Using the method of equating coefficients, find the values of a and b.
(ii) Using division of complex numbers, find the values of a and b.

⑪  (i) For z 5 8i= −  find z z
1 1+ ∗  in its simplest form.

(ii) Write down the value of z z
1 1+ ∗  for z 5 8i= +

⑫ For z x yi= + , find z z
1 1+ ∗  in terms of x and y.  

⑬ Let z x y i1 1 1= +  and z x y i2 2 2= + .

 Show that + = +∗ ∗ ∗z z z z( )1 2 1 2.

⑭ Find real numbers a and b such that a b
3 i 1 2i 1 i+ + + = − . 

⑮ Find all the numbers z, real or complex, for which = ∗z z22 . 

⑯ The complex numbers z and w satisfy the following simultaneous equations.

 

z w

z w

i 13

3 4 2i

+ =
− =  

 Find z and w, giving your answers in the form a bi+ .

3 Representing complex numbers 
geometrically
A complex number x yi+ can be represented by the point with Cartesian 
coordinates (x, y). 

For example, in Figure 2.3, 
2 + 3i is represented by (2, 3)
–5 – 4i is represented by (–5, –4)
2i is represented by (0, 2)
7 is represented by (7, 0).

Re

Im

O

2i

−5 − 4i

2 + 3i

7

Figure 2.3

Discussion point
➜	Why is it not 

possible to show a 
complex number on 
a number line?

Chapter 2 Introduction to com
plex num

bers
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All real numbers are represented by points on the x-axis, which is therefore called the 
real axis. Purely imaginary numbers which have no real component (of the form 
0 + yi) give points on the y-axis, which is called the imaginary axis. 

These axes are labelled as Re and Im. 

This geometrical illustration of complex numbers is called the complex plane 
or the Argand diagram.

The Argand diagram is named after Jean-Robert 
Argand (1768–1822), a self-taught Swiss book-
keeper who published an account of it in 1806.

ACTIVITY 2.4
(i) Copy Figure 2.3.

For each of the four given points z, mark also the point –z.
Describe the geometrical transformation which maps the point representing
z to the point representing –z.

(ii) For each of the points z, mark the point z∗, the complex conjugate of z.
Describe the geometrical transformation which maps the point representing
z to the point representing z∗.

Representing the sum and difference of complex 
numbers
In Figure 2.4 the complex number z x yi= +  is shown as a vector on an Argand 
diagram.

Im

ReO

z = x + yi

Figure 2.4

The use of vectors can be helpful in illustrating addition and subtraction of 
complex numbers on an Argand diagram.  Figure 2.5 shows that the position 
vectors representing z

1
 and z

2
 form two sides of a parallelogram, the diagonal of 

which is the vector z
1 
+

 
z

2
. 

Representing complex numbers geometrically
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Im

ReO

z1 + z2

z2

z1

Figure 2.5 

The addition can also be shown as a triangle of vectors, as in Figure 2.6.
Im

ReO

z1 + z2
z2

z1

Figure 2.6 

In Figure 2.7 you can see that z w z2 1+ =  and so w z z1 2= − . 
Im

ReO

w

w = z1 − z2

z2

z1

Figure 2.7

This shows that the complex number z
1 
–

 
z

2
 is represented by the vector from 

the point representing z
2
 to the point representing z

1
, as shown in Figure 2.8. 

Im

ReO

z1 + (−z2)

−z2

z2

z1

z1

Figure 2.8

Notice the order of the points: the vector z
1 
–

 
z

2
 starts at the point z

2
 and goes 

to the point z
1
.

Chapter 2 Introduction to com
plex num

bers
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Exercise 2.3
① Represent each of the following complex numbers on a single Argand 

diagram.
(i) 3 + 2i (ii) 4i (iii) –5 + i 

(iv) –2 (v) –6 – 5i (vi) 4 – 3i
② Given that z 2 4i= − , represent the following by points on a single Argand 

diagram.
(i) z (ii) –z (iii) z∗ (iv) –z∗

(v) iz (vi) –iz (vii) iz∗	 (viii) (iz)∗

③ Given that z 10 5i= +  and w 1 2i= + , represent the following complex 
numbers on an Argand diagram.
(i) z (ii) w (iii) z + w 

(iv) z – w  (v) w – z
④ 

1

2

3

2 3 4 5 6
–1

–2

–3

1–2 –1–3

Im

Re0

C1

B1

A1 A2

B2

C2

   Figure 2.9

(i) Find the quadratic equation which has roots A
1
 and A

2
.

(ii) Find the quadratic equation which has roots B
1
 and B

2
.

(iii) Find the quadratic equation which has roots C
1
 and C

2
.

(iv) What do you notice about your answers to (i), (ii) and (iii)?

⑤ Give a geometrical proof that ( )( )− = −∗ ∗z z .

⑥ Let z 1 i= + .
(i) Find zn for n = –1, 0, 1, 2, 3, 4, 5
(ii) Plot each of the points zn from part (i) on a single Argand diagram. 

Join each point to its predecessor and to the origin.
(iii) Find the distance of each point from the origin.
(iv) What do you notice?

Representing complex numbers geometrically



2

51

⑦ Figure 2.10 shows the complex number z a bi= + . The distance of the 
point representing z from the origin is denoted by r.

Im

ReO

z = a + ib

r

Figure 2.10

(i) Find an expression for r, and hence prove that r2 = zz∗. 
 A second complex number, w, is given by w = c + di. The distance of the 

point representing w from the origin is denoted by s. 

(ii) Write down an expression for s.
(iii) Find zw, and prove that the distance of the point representing zw from 

the origin is given by rs.

KEY POINTS
1 Complex numbers are of the form z x yi= +  with i2 = −1. 

x is called the real part, Re(z), and y is called the imaginary part, Im(z).
2 The conjugate of z x yi= +  is = −∗z x yi .
3 To add or subtract complex numbers, add or subtract the real and imaginary 

parts separately. 

 + + + = + + +x y x y x x y y( i) ( i) ( ) (   )i1 1 2 2 1 2 1 2  
4 To multiply complex numbers, expand the brackets then simplify using  

the fact that i = –12

5 To divide complex numbers, write as a fraction, then multiply top and bottom 
by the conjugate of the bottom and simplify the answer.

6 Two complex numbers z x y i1 1 1= +  and z x y i2 2 2= +  are equal only if  
x1 = x2 and y1 = y2.

7 The complex number z x yi= +  can be represented geometrically as the 
point (x, y).

 This is known as an Argand diagram.

FUTURE USES
n	 In Chapter 5 you 

will look at how 
complex numbers 
can be used to 
describe sets 
of points in the 
Argand diagram. 

Chapter 2 Introduction to com
plex num

bers

LEARNING OUTCOMES
When you have completed this chapter you should be able to:

➤	 understand how complex numbers extend the number system

➤	 solve quadratic equations with complex roots

➤	 know what is meant by the terms real part, imaginary part and complex conjugate

➤	 add, subtract, multiply and divide complex numbers

➤	 solve problems involving complex numbers by equating real and imaginary parts

➤	 represent a complex number on an Argand diagram

➤	 represent addition and subtraction of two complex numbers on an Argand diagram.
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In mathematics it is 
new ways of looking at 
old things that seem 
to be the most prolifi c 
sources of far-reaching 
discoveries.

Eric Temple Bell, 1951

Roots of polynomials3

A polynomial is an expression like x x x4 4 13 2+ − − . Its terms are all positive 
integer powers of a variable (in this case x ) like x 2, or multiples of them like 4x 3. 
There are no square roots, reciprocals, etc.

The order (or degree) of a polynomial is the highest power of the variable. So the 
order of x x x4 4 13 2+ − −  is 3; this is why it is called a cubic.

You often need to solve polynomial equations, and it is usually helpful to think 
about the associated graph.

The following diagrams show the graphs of two cubic polynomial functions. The 
� rst example (in Figure 3.1) has three real roots (where the graph of the polynomial 
crosses the x-axis). The second example (in Figure 3.2) has only one real root. In 
this case there are also two complex roots.

Figure 3.1 

O x

y

1−1 2

−2

−1

1

f(x) = 4x3 + x2 − 4x − 1

O x

y

1−1 2

−2

−1

1

f(x) = 4x3 + x2 + 4x + 1Figure 3.2 
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Chapter 3 R
oots of polynom

ials

In general a polynomial equation of order n has n roots. However, some of these 
may be complex rather than real numbers and sometimes they coincide so that 
two or more distinct roots become one repeated root.

1 Polynomials
The following two statements are true for all polynomials:

n A polynomial equation of order n has at most n real roots. 

n	 The graph of a polynomial function of order n has at most n – 1 turning 
points.

Here are some examples that illustrate these results.

Order 1 (a linear equation) 

Example: x2 7 0− =

O x

y

3.5

−7

y = 2x − 7

Figure 3.3 The graph is a straight line with  
no turning points. There is one real root at  
x = 3.5.

Order 2 (a quadratic equation) 

Example: x x4 4 02 − + =

O x

y

2

4 y = x2 − 4x + 4

Figure 3.4 The curve has one turning 
point. There is one repeated root at x = 2. 

Order 3 (a cubic equation)

Example: x 1 03 − =

O
x

y

1−1

y = x3 − 1

Figure 3.5 The two turning points of this 
curve coincide to give a point of inflection at 

(0, −1). There is one real root at x = 1 and two 

complex roots at x
i1 3

2
= − ± .

Order 4 (a quartic equation)

Example: x x3 4 04 2− − =

O x

y

2−2

−4

y = x4 − 3x2 − 4

Figure 3.6 This curve has three turning 

points. There are two real roots at x = −2 
and x = 2 and two complex roots at 
x i= ± .

The same patterns continue for higher order polynomials.

Discussion points
➜	How would 

you solve the 
polynomial equation 
x x x4 + – 4 – 1= 03 2 ?

➜	What about 
x x x4 + + 4 + 1= 03 2 ? 

You will learn how how 
to find the complex 
roots of polynomial 
equations later in this 
chapter.



Polynomials

The rest of this chapter explores some properties of polynomials, and ways to use these 
properties to avoid the diffi  culties of actually fi nding the roots of polynomials directly.

It is important that you recognise that the roots of polynomials may be complex. 
For this reason, in the work that follows, z is used as the variable (or unknown) 
instead of x to emphasise that the results apply regardless of whether the roots 
are complex or real.

Quadratic equations

 Always be careful to distinguish between:
a – the coeffi  cient of z2 and
α – one of the roots of the quadratic.

ACTIVITY 3.1
Solve each of the following quadratic equations (by factorising or otherwise).

Also write down the sum and product of the two roots.

What do you notice?

Equati on Two roots Sum of roots Product of roots

(i)     z z3 2 02 − + =

(ii)   z z 6 02 + − =

(iii) z z6 8 02 − + =

(iv) z z3 10 02 − − =

(v)  z z2 3 1 02 − + =

(vi) z z4 5 02 − + =

Discussion point
➜	What is the 

connection between 
the sums and 
products of the roots, 
and the coeffi cients in 
the original equation?

54

The roots of polynomial equations are usually denoted by Greek letters such as 
α and β. α (alpha) and β (beta) are the fi rst two letters of the Greek alphabet.

If you know the roots are α and β, you can write the equation

az bz c           02 + + =

in factorised form as

a z z –   –     0( ) ( ) =α β .

This gives the identity,

( )( )+ + ≡ α βaz bz c a z z –   – 2 . 

( )
( )

+ + ≡ +

≡ − + +

α β αβ

α β αβ

az bz c a z z z

az a z a

–  –2 2

2
 

Assuming a ≠ 0

Multiplying out

TECHNOLOGY
You could use the 
equation solver on a 
calculator.
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( )= − + ⇒ + = −α β α βb a b
a  Equating coefficients of z 

= ⇒ =αβ αβc a c
a   

So the sum of the roots is

+ = −α β b
a 

and the product of the roots is

.

From these results you can obtain information about the roots without actually 
solving the equation.

Equating constant terms

=αβ c
a

ACTIVITY 3.2
The quadratic formula gives the roots of the quadratic equation 

az bz c           02 + + =  as

2 2b b ac
a

b b ac
a

4
2 ,     4

2= − + − = − − −α β . 

Use these expressions to prove that + = −α β b
a   and =αβ c

a
.

Discussion point
➜	What happens if you 

try to find the values 
of α and β by solving 
the equations

+ = −α β b
a   and 

=αβ c
a  as a pair 

of simultaneous 
equations?

Example 3.1

Solution

The sum of the roots is 5 + (–3) = 2  ⇒ b
a 2− =

The product of the roots is 5 × (–3) = –15  ⇒ c
a 15= −  

Taking a to be 1 gives 

b = –2 and c = –15

A quadratic equation with roots 5 and –3 is z z– 2  –15 02 = .

You could choose any value for a but 
choosing 1 in this case gives the 
simplest form of the equation.

Find a quadratic equation with roots 5 and –3.

Forming new equations
Using these properties of the roots sometimes allows you to form a new 
equation with roots that are related to the roots of the original equation. The 
next example illustrates this.
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Solution
(i) + = −α β   3

2  and 

     =αβ 5
2

(ii) The sum of the new roots 

  
The product of the new roots

 
Let a, b and c be the coefficients in the new quadratic equation, then 

b
a 3− = −  and c

a 10= .

Taking a = 1 gives b = 3 and c = 10. 
So a quadratic equation with the required roots is z z3 10 02 + + = .

( )
= +

= +

= × −

= −

α β

α β

2 2

2

2 3
2

3
= ×
=

= ×

=

α β

αβ

2 2

4

4 5
2

10

Example 3.2
The roots of the equation z z2 3 5 02 + + =  are α and β.

(i)  Find the values of α + β and αβ.

(ii) Find the quadratic equation with roots 2α and 2β.

These lines come from looking at the original 

quadratic, and quoting the facts = α β+ − b
a   

and αβ = c
a

. 

It might be confusing to introduce a, b and c here, 
since you need different values for them later in 
the question.

Solution

+ =α β  43  and 

   
= −αβ 1

3  

The sum of the new roots  = + + +
= + +

= +

=

α β

α β

1 1

2

4
3 2

10
3

Example 3.3 The roots of the equation z z3 4 1 02 − − =  are α and β. 
Find the quadratic equation with roots α + 1 and β + 1.
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The product of the new roots 

So b
a

10
3− =  and c

a 2= . 

Choose a = 3, then b = –10 and c = 6.

So a quadratic equation with the required roots is z z3 10 6 02 − + = .

( )
( )

( )= + +

= + + +

= − + +

=

α β

αβ α β

1 1

1

1
3

4
3 1

2 Choosing a = 1 
would give a value 

for b which is not an 
integer. It is easier 

here to use a = 3. 

ACTIVITY 3.3
Solve the quadratic equations from the previous two examples (perhaps using 
the equation solver on your calculator, or a computer algebra system):

(i) z z2 + 3 + 5 = 02  z z+ 3 + 10 = 02  

(ii) z z3 – 4 – 1= 02   z z3 – 10 + 6 = 02

Verify that the relationships between the roots are correct.

① Write down the sum and product of the roots of each of these quadratic 
equations.

(i) z z2 7 6 02 + + =   (ii) z z5 1 02 − − =

(iii) z7 2 02 + =  (iv) z z5 24 02 + =

(v) z z z( 8) 4 3+ = −  (vi) z z3 8 6 02 + − =
② Write down quadratic equations (in expanded form, with integer 

coefficients) with the following roots: 
(i) 7, 3 (ii) 4, –1

(iii) –5, –4.5 (iv) 5, 0

(v) 3 (repeated) (vi) 3 − 2i, 3 + 2i

③ The roots of z z2 5 9 02 + − =  are α  and β.

 Find quadratic equations with these roots.
(i) α3  and β3  (ii) −α  and −β

(iii) −α 2  and −β 2  (iv) − α1 2  and − β1 2

④ Using the fact that + = − =α β αβb
a

c
a, and , what can you say about the 

roots, α  and β , of az bz c 02 + + =  in the following cases:

(i) a, b, c are all positive and b ac4 02 − >  

(ii) b = 0

(iii) c = 0

(iv) a and c have opposite signs

⑤ One root of az bz c 02 + + =  is twice the other. Prove that b ac2 92 = . 

Exercise 3.1

Chapter 3 R
oots of polynom

ials
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⑥ The roots of az bz c 02 + + =  are, α  and β . 
Find quadratic equations with the following  
roots:

(i)	  kα and kβ 

(ii)	 k + α and k + β

⑦ (i)  A quadratic equation with real coefficients ax bx c 02 + + =  has  
complex roots z1 and z2. Explain how the relationships between  
roots and coefficients show that z1 and z2 must be complex  
conjugates.

 (ii)  Find a quadratic equation with complex coefficients which has roots  
2 + 3i and 3 – i.

2 Cubic equations
There are corresponding properties for the roots of higher order polynomials. 

To see how to generalise the properties you can begin with the cubics in a 
similar manner to the discussion of the quadratics. As before, it is conventional to 
use Greek letters to represent the three roots: α, β and γ (gamma, the third letter 
of the Greek alphabet). 

You can write the general cubic as
 az bz cz d 03 2+ + + =
or in factorised form as
 γ( )( )( )− − − =α βa z z z 0. 

This gives the identity
 γ( )( )( )+ + + ≡ − − −α βaz bz cz d a z z z3 2 . 

Multiplying out the right-hand side gives
 ( ) ( )+ + + ≡ − + + + + + −α β γ αβ βγ γα αβγaz bz cz d az a z a z a3 2 3 2 . 

Comparing coefficients of z2:

 ( )= − + + ⇒ + + = −α β γ α β γb a b
a   Sum of the roots:      ∑α  

Comparing coefficients of z:

 ( )= + + ⇒ + + =αβ βγ γα αβ βγ γαc a c
a     Sum of products of   ∑αβ  

     pairs of roots:
Comparing constant terms:

 = − ⇒ = −αβγ αβγd a d
a

  Product of the three ∑αβγ  
 roots:  

Check	this	
for	yourself.

You	may	wish	to	introduce	

different	letters	(say p, q	

and	r	instead	of	a, b	and	c)	
for	the	coefficients	of	your	
target	equation.
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Note
Notati on

It often becomes tedious writing out the sums of various combinations of roots, 
so shorthand notation is often used:

α α β γ∑ = + +   the sum of individual roots (however many there are)

αβ αβ βγ γα∑ = + +   the sum of the products of pairs of roots

αβγ αβγ∑ =     the sum of the products of triples of roots (in this case 
only one) 

Provided you know the degree of the equation (e.g. cubic, quartic, etc,) it will be 
quite clear what this means. Functions like these are called symmetric functions 
of the roots, since exchanging any two of α, β, γ will not change the value of the 
function.

Using this notation you can shorten tediously long expressions. For example, for 
a cubic with roots α, β and γ,

 2 2 2 2 2 2 2α β αβ β γ βγ γ α γα α β+ + + + + = ∑ . 

This becomes particularly useful when you deal with quartics in the next section.

Example 3.4 The roots of the equation z z z2 9 27 54 03 2− − + =  form a geometric 

progression (i.e. they may be written as a
r a ar, , ). 

Solve the equation. 

Solution
= − ⇒ × × = −

⇒ = −
⇒ = −

αβγ d
a

a
r a ar

a

a

54
2

27

3

3

Either value of r gives three roots: 3
2 , –3, 6. 

b
a

a
r a ar

r r

r r

r r r

r r

r r

r r

9
2

3 1 1 9
2

2 1 1 3

2 2 2 3

2 5 2 0

(2 1)( 2) 0

2 or 1
2

2

2

( )
( )

∑ = − ⇒ + + =

⇒ − + + =

⇒ + + = −

⇒ + + = −

⇒ + + =
⇒ + + =

⇒ = − = −

α

Chapter 3 R
oots of polynom
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Example 3.5 The roots of the cubic equation z z z2 5 3 2 03 2+ − − =  are α, β, γ.

Find the cubic equation with roots +α2 1, +β2 1, +γ2 1.

Solution 1
∑ = + + = −

∑ = + + = −

∑ = = =

α α β γ

αβ αβ βγ γα

αβγ αβγ

5
2

3
2

2
2 1

For the new equation:

Sum of roots = + + + + +
= + + +
= − + = −

α β γ

α β γ

2 1 2 1 2 1

2( ) 3

5 3 2

Product of the roots in pairs  

α= + + + + + + + +
= + + + + + + + + + + +
= + + + + + +

= × − + × − +
= −

α β β γ γ

αβ α β βγ β γ γα γ α

αβ βγ γα α β γ

(2 1)(2 1) (2 1)(2 1) (2 1)(2 1)

[4 2( ) 1] [4 2( ) 1] [4 2( ) 1]

4( ) 4( ) 3

4 3
2 4 5

2 3

13

Product of roots = + + +
= + + + + + + +

= × + × − + × − +
= −

α β γ

αβγ αβ βγ γα α β γ

(2 1)(2 1))(2 1)

8 4( ) 2( ) 1

8 1 4 3
2 2 5

2 1

2

In the new equation, b
a 2− = − , c

a 13= − , d
a 2− = − .

The new equation is z z z2 13 2 03 2+ − + = .

Solution 2 (substitution method)
This method involves a new variable w z2 1= + .  
You write z in terms of w, and substitute into  
the original equation:

Check this for yourself.

These are all 
integers, so choose  
a = 1 and this gives 
the simplest integer 
coefficients.

Forming new equations: the substitution method
In the next example you are asked to form a new cubic equation with roots 
related to the roots of the original equation. Using the same approach as in the 
quadratic example is possible, but this gets increasingly complicated as the order 
of the equation increases. A substitution method is often a quicker alternative. 
The following example shows both methods for comparison.

 ∑ = −α b
a 

∑ =αβ c
a

∑ = −αβγ d
a

This is a transformation 
of z in the same way 
as the new roots are a 
transformation of the 
original z roots.
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① The roots of the cubic equation z z z2 3 7 03 2+ − + =  are α, β, γ.
 Find the following:

(i) α∑   (ii) αβ∑

(iii) αβγ∑
② Find cubic equations (with integer coeffi  cients) with the following roots:

(i) 1, 2, 4 (ii) 2, –2, 3
(iii) 0, –2, –1.5 (iv) 2 (repeated), 2.5
(v) –2, –3, 5 (vi) 1, 2 + i, 2 − i

③ The roots of each of these equations are in arithmetic progression (i.e. they 
may be written as a d− , a, a d+ ). 

 Solve each equation.
(i) z z z15 66 80 03 2− + − =  (ii) z z z9 18 4 8 03 2− − + =
(iii) z z6 16 03 2− + =  (iv) z z z54 189 207 70 03 2− + − =

④  The roots of the equation z z z2 3 03 2+ + − =  are α, β, γ.
(i) The substitution w z 3= +  is made. Write z in terms of w.

(ii) Substitute your answer to part (i) for z in the equation 
z z z2 3 03 2+ + − =

(iii) Give your answer to part (ii) as a cubic equation in w with integer 
coeffi  cients.

(iv) Write down the roots of your equation in part (iii), in terms of α, β and γ.

⑤ The roots of the equation z z z2 3 03 2− + − =  are α, β, γ. Use the 
substitution w z2=  to fi nd a cubic equation in w with roots 2α, 2β, 2γ.

⑥ The roots of the equation z z z2 4 3 1 03 2+ − + =  are α, β, γ.
Find cubic equations with these roots:
(i) − − −α β γ2 , 2 , 2   (ii) − − −α β γ3 2, 3 2, 3 2

⑦ The roots of the equation − + − =z z kz2 12 15 03 2  are in arithmetic 
progression.

 Solve the equation and fi nd  k.

Exercise 3.2

z w 1
2= −  α, β, γ are the roots of z z z2 5 3 2 03 2+ − − =

⇔  +α2 1, +β2 1 , +γ2 1 are the roots of  

w w w

w w w

w w w w w w

w w w

2
8 ( 1) 5

4 ( 1) 3
2 ( 1) 2 0

( 1) 5( 1) 6( 1) 8 0

3 3 1 5 10 5 6 6 8 0

2 13 2 0

3 2

3 2

3 2 2

3 2

⇔ − + − − − − =

⇔ − + − − − − =

⇔ − + − + − + − + − =

⇔ + − + =

The substitution method can sometimes be much more effi  cient, although 
you need to take care with the expansion of the cubic brackets.

w w w2 1
2 5 1

2 3 1
2 2 0

3 2( ) ( ) ( )− + − − − − = Chapter 3 R
oots of polynom

ials

TECHNOLOGY
Use graphing software 
to draw the graphs of 

y = 2x³ + 5x² − 3x − 2 
and y = x³ + 2x² − 13x + 2. 
How do these graphs 
relate to Example 3.5? 
What transformations 
map the fi rst graph on to 
the second one?
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⑧ Solve z z32 14 3 03 − + =  given that one root is twice another.

⑨ The equation z pz pz q2 03 2+ + + =  has roots α, 2α, 4α.

 Find all possible values of p, q, α.

⑩ The roots of z pz qz r 03 2+ + + =  are −α α β, , , and r 0≠ .

 Show that r pq= , and find all three roots in terms of p and q. 

⑪ The cubic equation x px qx r8 03 2+ + + =  has roots α and 
α
1

2
 and β .

(i) Express p, q and r in terms of α and β.

(ii) Show that r pr q2 4 162 − + = . 

(iii) Given that p = 6 and q = –23, find the two possible values of r and, in 
each case, solve the equation x x x r8 6 23 03 2+ − + = .

⑫ Show that one root of az bz cz d 03 2+ + + =  is the reciprocal of another 
root if and only if a d ac dc2 2− = − .

 Verify that this condition is satisfied for the equation 

− + + =z z z21 16 95 42 03 2  and hence solve the equation.

⑬ Find a formula connecting a, b, c and d which is a necessary and sufficient 

condition for the roots of the equation az bz cz d 03 2+ + + =  to be in 
geometric progression.

 Show that this condition is satisfied for the equation 

z z z8 52 78 27 03 2− + − =  and hence solve the equation.

3 Quartic equations
Quartic equations have four roots, denoted by the first four Greek letters: α, β, γ 
and δ (delta).

Discussion point
➜	By looking back at the two formulae for quadratics and the three 

formulae for cubics, predict the four formulae that relate the roots 
α, β, γ and δ to the coefficients a, b, c and d of the quartic equation 

ax bx cx dx e 04 3 2+ + + + = . 

 You may wish to check/derive these results yourself before looking at the 
derivation on the next page.

The formulae used to relate the coefficients of polynomials with sums and 
products of their roots are called Vieta’s Formulae after François Viète (a 
Frenchman who commonly used a Latin version of his name: Franciscus 
Vieta). He was a lawyer by trade but made important progress (while doing 
mathematics in his spare time) on algebraic notation and helped pave the way 
for the more logical system of notation you use today.

Historical note
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Derivation of formulae 
As before, the quartic equation 

az bz cz dz e 04 3 2+ + + + =  

can be written is factorised form as

z z z z( )( )( )( ) 0a − − − − =α β γ δ .

This gives the identity

az bz cz dz e z z z z( )( )( )( )a4 3 2+ + + + ≡ − − − −α β γ δ .

Multiplying out the right-hand side gives

az bz cz dz e az a z

a z a z a

( )

( ) ( ) .

4 3 2 4 3

2

+ + + + ≡ − + + +

+ + + + + + − + + + +

α β γ δ

αβ αγ αδ βγ βδ γα αβγ βγδ γδα δαβ αβγδ

Equating coefficients shows that

∑ = + + + = −

∑ = + + + + + =

∑ = + + + = −

=

α α β γ δ

αβ αβ αγ αδ βγ βδ γδ

αβγ αβγ βγδ γδα δαβ

αβγδ

b
a

c
a

d
a

e
a

The roots of the quartic equation z pz qz z4 3 04 3 2+ + − + =  are 

− + −α α α λ α λ, , ,  where α  and λ  are real numbers.

(i) Express p and q in terms of α  and λ.

(ii) Show that = −α 1
2

, and find the values of p and q.

(iii) Give the roots of the quartic equation. 

Solution
(i) 

az bz cz dz e az a z

a z a z a

( )

( ) ( ) .

4 3 2 4 3

2

+ + + + ≡ − + + +

+ + + + + + − + + + +

α β γ δ

αβ αγ αδ βγ βδ γα αβγ βγδ γδα δαβ αβγδ
az bz cz dz e az a z

a z a z a

( )

( ) ( ) .

4 3 2 4 3

2

+ + + + ≡ − + + +

+ + + + + + − + + + +

α β γ δ

αβ αγ αδ βγ βδ γα αβγ βγδ γδα δαβ αβγδ

∑ = − + + + − = −

⇒ = −

⇒ = −

α α α α λ α λ

α

α

p

p

p

4

2 4
8

The sum of the 
individual roots.

The sum of the products 
of roots in pairs.

The sum of the products 
of roots in threes.

Check this 
for yourself.

The product of the roots.

Example 3.6

Use the sum of the individual 
roots to find an expression for p.

∑ = − + + + − − + − −
+ + − =

⇒ − =

⇒ = −

αβ α α α λ α α λ α α λ α α λ
α λ α λ

λ

λ

q

q

q

( ) ( ) ( ) ( )
( )( ) 4

4
4

2

2

2
Use the sum of the product of the roots 
in pairs to find an expression for q.

Chapter 3 R
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(ii)

   

( )

= − + − =

⇒ − − =

⇒ − − =

⇒ − = −

⇒ =

= − = − × = −

αβγδ α α λ α λ

α α λ

λ

λ

λ

λq

( )( ) 3
4

( ) 3
4

1
4

1
4

3
4

1
4 3

13
4

4 4 13
4 13

2

2 2 2

2

2

2

2

(iii) The roots of the equation are 1
2 , 1

2 , 1
2

1
2 13, 1

2
1
2 13− − + − − . 

∑ = − + − + − + + − − − =

⇒ − =

⇒ = −

= − = − × − =

αβγ α α λ α α λ α λ α α λ α λ α α λ

α

α

αp

( ) ( )( ) ( )( ) ( ) 1
4

2 1
4

1
2

8 8 1
2 4

2 2

3

① The roots of z z z z2 3 6 5 4 04 3 2+ + − + = are α,β, γ and δ.

 Write down the following:

(i) ∑α  

(ii) ∑αβ  

(iii) ∑αβγ

(iv) ∑αβγδ

② Find quartic equations (with integer coefficients) with the roots.

(i) 1, −1, 2, 4

(ii) 0, 1.5, −2.5, −4

(iii) 1.5 (repeated), −3 (repeated)

(iv) 1, −3, 1 + i, 1 − i.

③ The roots of the quartic equation z z z z2 4 3 6 04 3 2+ − − + =  are α, β, γ 
and δ.

 Find quartic equations with these roots:

(i) α β γ δ2 , 2 , 2 , 2  

(ii) − − − −α β γ δ1, 1, 1, 1.

④ The roots of the quartic equation x x x   4     8     4 04 3+ − + =  are α, β, γ and δ.

(i) By making a suitable substitution, find a quartic equation with roots 
+ + +α β γ1,  1,   1 and +δ 1 . 

(ii) Solve the equation found in part (i), and hence find the values of  
α, β, γ and δ.

Exercise 3.3

Use the sum of the product of the 
roots in threes to find α  (λ  cancels 
out) and hence find p, using your 
answer to part (i).

Use the sum of the product 
of the roots and the value for 
α  to find λ , and hence find q, 
using your answer to part (i).

Substitute the values for α  
and λ  to give the roots.
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⑤ The quartic equation x px x q         12  04 3+ − + = , where p and q are real, has 
roots α, 3α, β, −β.

(i) By considering the coe�  cients of x2 and x, � nd α and β, where β > 0.

(ii) Show that p = 4 and � nd the value of q.

(iii) By making the substitution y x k= − , for a suitable value of k, � nd 
a cubic equation in y, with integer coe�  cients, which has roots 

− − − −α β α β α2 , 3 , 3 .

⑥ (i)  Make conjectures about the � ve properties of the roots α, β, γ,δ and ε 
(epsilon) of the general quintic ax bx cx dx ex f 05 4 3 2+ + + + + = .

(ii) Prove your conjectures.

Note
For question 6, you should try the algebra by hand, thinking about keeping 
good presentation habits for long algebraic expansions. You may want to check 
any long expansions using CAS (computer algebra software). You then might 
also like to consider whether a ‘proof’ is still valid if it relies on a computer 
system to prove it – look up the history of The Four Colour Theorem to explore 
this idea further.

T

4 Solving polynomial equations 
with complex roots
When solving polynomial equations with real coe�  cients, it is important to 
remember that any complex roots occur in conjugate pairs. 

When there is a possibility of complex roots, it is common to express the 
polynomial in terms of z.

The equation z z z7 17 15 03 2+ + + =  has one integer root.

(i) Factorise z z z zf ( ) 7 17 153 2= + + + . 

(ii) Solve z z z7 17 15 03 2+ + + = .

(iii) Sketch the graph of y x x x7 17 153 2= + + + .

Solution
(i) f (1) 1 7 1 17 1 15 403 2= + × + × + =

     f ( 1) ( 1) 7 ( 1) 17 ( 1) 15 43 2− = − + × − + × − + =

    f (3) 3 7 3 17 3 15 1563 2= + × + × + =

    f ( 3) ( 3) 7 ( 3) 17 ( 3) 15 03 2− = − + × − + × − + =

Prior Knowledge
You need to know how to 
use the factor theorem 
to solve polynomial 
equations, covered in 
MEI A Level Mathematics 
Year 1 (AS), Chapter 7.

Example 3.7

If there is an integer 
root, it must be a 

factor of 15. So try 

z = ±1, ±3, etc.

f(–3) = 0 so 
using the factor 

theorem, (z + 3) 
is a factor.

Chapter 3 R
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Solving polynomial equations with complex roots

Example 3.8

So one root is z = −3, and (z + 3) is a factor of zf ( ).
Using algebraic division or by inspection, ( )zf  can be written in the form: 

( )( ) ( )= + + +z z z zf 3 4 52
 

Now solve the quadratic equation z z4 5 02 + + = :

z
4 4 4 1 5

2
4 4

2
4 2i

2 2 i
2 ( )=

− ± − × ×
= − ± − = − ± = − ±  

So, fully factorised z z z zf 3 2 i 2 i( )( )( ) ( ) ( ) ( )= + − − + − − −  

(ii)  The roots are z z3,  2 i= − = − ±  
(iii) Figure 3.7 shows the graph of the curve y xf ( )= .

O x

y

-2-4

-5

5

10

15

2

You can see that the graph
crosses the x-axis just once.

Figure 3.7

Check this for yourself
using the 
quadratic 
formula.

Given that z = 1 + 2i is a root of z z z4 – 11 26 – 15 03 2 + = , find the 
other roots.

Solution 1
As complex roots occur in conjugate pairs, the conjugate z = 1 – 2i is also a 
root. 

The next step is to find a quadratic equation az bz c 02 + + =  with roots 
1 + 2i and 1 – 2i.

b
a (1 2i) (1 2i) 2− = + + − =

  
c
a (1 2i)(1 2i) 1 4 5= + − = + =

  
Taking a 1=  gives b 2= −  and c 5=   
So the quadratic equation is z z2 5 02 − + =  

z z z z z z4 – 11 26 – 15 ( – 2 5)(4 – 3)3 2 2+ = +

The other roots are z = 1 – 2i and z 3
4= .

Note that 
there is one 
conjugate pair 
of complex 
roots and one 
real root.

Sometimes you can use the relationships between roots and coefficients of 
polynomial equations to help you to find the roots. In Example 3.8, two solution 
methods are shown.
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(i) Solve z z3 4 04 2− − = . 

(ii) Sketch the curve y x x3 44 2= − − .

(iii) Show the roots of z z3 4 04 2− − =  on an Argand diagram.

Solution
(i) − − =

− + =
− + + − =

z z
z z
z z z z

3 4 0
( 4)( 1) 0
( 2)( 2)( i)( i) 0

4 2

2 2

    The solution is z = 2, –2, i, –i.

(ii) 

O x

y

2-2

-4

Figure 3.8

(iii) 

Figure 3.9

O−2 2
−i

i

Im

Re

Example 3.9

① 4 − 5i is one root of a quadratic equation with real coefficients. 

  Write down the second root of the equation and hence find the equation.

② Verify that 2 + i is a root of z z z– – 7 15 03 2 + = , and find the other roots.

③ One root of z z z– 15 76 – 140 03 2 + =  is an integer.

 Solve the equation and show all three roots on an Argand diagram.

④ The equation z z z2 6 27 03 2− − + =  has a real integer root in the  
range −6 ≤ z ≤ 0.

(i) Find the real root of the equation.

(ii) Hence solve the equation and find the exact value of all three roots.

− −z z3 44 2  is a 
quadratic in z² and 
can be factorised.

Exercise 3.4

Chapter 3 R
oots of polynom

ials

Solution 2
As complex roots occur in conjugate pairs, the conjugate z = 1 – 2i is also a root. 

The sum of the three roots is 11
4

 

1 2i 1 2i 11
4γ+ + − + =

11
4 2γ = −

 
3
4=

The other roots are z = 1 – 2i and z = 
3
4 .

α β γ+ + = − b
a

Notice that Solution 2 is more efficient than Solution 1 in this case. You 
should look out for situations like this where using the relationships between 
roots and coefficients can be helpful.
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Solving polynomial equations with complex roots

⑤ Given that 4 is a root of the equation z z z k3 03 2− − − = , find the value 
of k and hence find the exact value of the other two roots of the equation.

⑥ Given that 1 – i is a root of z pz qz 12 03 2+ + + = , find the real numbers 
p and q, and state the other roots.

⑦ The three roots of a cubic equation are shown on the Argand diagram in 
Figure 3.10.

√2

−√2

O 1−1 2

−2

−1

1

2

Im

Re

z2

z3

z1

Figure 3.10

Find the equation in polynomial form.

⑧ One root of z z z z– 10 42 – 82 65 04 3 2+ + =  is 3 + 2i.

  Solve the equation and show the four roots on an Argand diagram.

⑨ You are given the complex number w = 1 – i.

(i) Express w2, w3 and w4 in the form a bi+ .

(ii) Given that w w pw qw3 8 04 3 2+ + + + = , where p and q are real 
numbers, find the values of p and q.

(iii) Hence find all four roots of the equation z z pz qz3 8 04 3 2+ + + + = , 
where p and q are the real numbers found in part (ii).

⑩ (i)  Solve the equation z 81 04 − =
(ii) Hence show the four fourth roots of 81 on an Argand diagram.

⑪ (i)  Given that α = –1 + 2i, express α2 and α3 in the form a bi+ .

 Hence show that α is a root of the cubic equation 
z z z7 15 25 03 2+ + + =

(ii) Find the other two roots of this cubic equation.

(iii) Illustrate the three roots of the cubic equation on an Argand  
diagram.

⑫ For each of these statements about polynomial equations with real 
coefficients, say whether the statement is TRUE or FALSE, and give an 
explanation.

(A) A cubic equation can have three complex roots.

(B) Some equations of order 6 have no real roots.

(C) A cubic equation can have a single root repeated three times.

(D) A quartic equation can have a repeated complex root.
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⑬ Given that z = –2 + i is a root of the equation  
z az bz z10 25 04 3 2+ + + + = , find the values of a and b, and solve the 
equation.

⑭ The equation z z z z– 8 20 – 72 99 04 3 2+ + =  has a purely imaginary 
root.

 Solve the equation.

⑮ In this question, α is the complex number –1 + 3i.

(i) Find α2 and α3.

 It is given that λ and μ are real numbers such that

 + + + =λα α α µ8 34 03 2

(ii) Show that λ = 3, and find the value of μ.

(iii) Solve the equation + + + =λ µz z z8 34 03 2 , where λ and μ are as in 
part (ii).

(iv) Illustrate the three roots on an Argand diagram.

⑯ Three of the roots of the quintic equation z bz cz dz ez f 05 4 3 2+ + + + + =  
are 3, –4i and 3 – i.  

 Find the values of the coefficients of the equation.

KEY POINTS
1 If α and β are the roots of the quadratic equation az bz c           02 + + = , then 

b
a

+ = −α β  and c
a

=αβ .

2 If α, β and γ are the roots of the cubic equation az bz cz d 03 2+ + + = , then 

b
a

 ∑ = + + = −α α β γ ,
c
a

∑ = + + =αβ αβ βγ γα
 and,

d
a

= −αβγ .

Chapter 3 R
oots of polynom

ials

LEARNING OUTCOMES
When you have completed this chapter you should be able to:

➤	 know the relationships between the roots and coefficients of quadratic, cubic 
and quartic equations

➤	 form new equations whose roots are related to the roots of a given equation 
by a linear transformation

➤	 understand that complex roots of polynomial equations with real coefficients 
occur in conjugate pairs

➤	 solve cubic and quartic equations with complex roots.
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3 If α, β, γ and δ are the roots of the quartic equation 

az bz cz dz e 04 3 2+ + + + = , then

and

∑ = + + + = −

∑ = + + + + + =

∑ = + + + = −

=

α α β γ δ

αβ αβ αγ αδ βγ βδ γδ

αβγ αβγ βγδ γδα δαβ

αβγδ

b
a

c
a

d
a

e
a

,

,

.

4 All of these formulae may be summarised using the shorthand sigma 
notation for elementary symmetric functions as follows:

 

b
a
c
a

d
a

e
a

 ∑ = −

∑ =

∑ = −

∑ =

α

αβ

αβγ

αβγδ  
 (using the convention that polynomials of degree n are labelled 

az bz 0n n 1+ + … =−  and have roots α, β, γ)
5 A polynomial equation of degree n has n roots, taking into account complex 

roots and repeated roots. In the case of polynomial equations with real 
coefficients, complex roots always occur in conjugate pairs.
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Discussion point
� How would you describe the sequence of pictures of the moon shown in 

Figure 4.1?

Figure 4.1

Great things are not 
done by impulse, but by 
a series of small things 
brought together.

Vincent Van Gogh, 1882

Figure 4.1
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1 Sequences and series
A sequence is an ordered set of objects with an underlying rule.

For example: 

2, 5, 8, 11, 14

A series is the sum of the terms of a numerical sequence:

2 + 5 + 8 + 11 + 14

Notation
There are a number of different notations which are commonly used in writing 
down sequences and series:

n	 The terms of a sequence are often written as a1, a2, a3, … or u1, u2, u3, … 

n		 The general term of a sequence may be written as ar or ur. 
(Sometimes the letters k or i are used instead of r .)

n		 The last term is usually written as an or un.

n		 The sum Sn of the first n terms of a sequence can be written using the 
symbol ∑ (the Greek capital S, sigma).

 
aS a a a an n

r

n

r1 2 3
1

∑= + + + … + =
=  

	 The numbers above and below the ∑ are the limits of the sum. They show 
that the sum includes all the ar from a1 to an. The limits may be omitted if 
they are obvious, so that you would just write ∑ar or you might write ∑ arr

 
(meaning the sum of ar for all values of r).

When discussing sequences you may find the following vocabulary helpful:

n	 In an increasing sequence, each term is greater than the previous term.

n	 In a decreasing sequence, each term is smaller than the previous term.

n	 In an oscillating sequence, the terms lie above and below a middle number.

n	 The terms of a convergent sequence get closer and closer to a limiting value.

Defining sequences
One way to define a sequence is by thinking about the relationship between one 
term and the next.

The sequence 2, 5, 8, 11, 14, … can be written as

u1 = 2 

ur +1 = ur + 3

This is called an inductive definition or term-to-term definition.

You find each term by adding 3 to the previous term.

You need to say where the sequence starts.

Discussion point
➜	How would you 

describe this 
sequence?
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Chapter 4 Sequences and series

An alternative way to defi ne a sequence is to describe the relationship between 
the term and its position.

In this case, 

= −u r3 1r .

You can see that, for example, substituting r = 2 into this defi nition gives 

= × − =u (3 2) 1 52
, which is the second term of the sequence.

This is called a deductive defi nition or position-to-term defi nition.

The series of positive integers
One of the simplest of all sequences is the sequence of the integers:

1, 2, 3, 4, 5, 6, ...

As simple as it is, it may not be immediately obvious how to calculate the sum 
of the fi rst few integers, for example the sum of the fi rst 100 integers.

∑ = + + … +
=

r 1 2 100
r 1

100

 

One way of reaching a total is illustrated below.

S 1 2 3 98 99 100100 = + + + … + + +  

Rewrite S100 in reverse:

S 100 99 98 3 2 1100 = + + + … + + +  

Adding these two lines together, by matching up each term with the one below it, 
produces pairings of 101 each time, while giving you 2S100 on the left-hand side.

S

S

S

1 2 3 ... 98 99 100

100 99 98 ... 3 2 1

2 101 101 101 ... 101 101 101

100

100

100

= + + + + + +
= + + + + + +

= + + + + + +  
There are 100 terms on the right-hand side (since you were originally adding 
100 terms together), so simplify the right-hand side:

S2 100 101100 = ×  

and solve for S100:

=
=

S

S

2 10100

5050
100

100  

The sum of the fi rst 100 integers is 5050.

You can use this method to fi nd a general result for the sum of the fi rst n 
integers (call this Sn).

S n n n

S n n n

S n n n n n n

S n n

S n n

1 2 3 2 1

1 2 3 2 1

2 1 1 1 1 1 1

2 1

1 .1
2

n

n

n

n

n

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

= + + + … + − + − +
= + − + − + … + + +
= + + + + + + … + + + + + +
= +

= +
 

This result is an important one and you will often need to use it.

Call the sum S100

TECHNOLOGY
You could use a 
spreadsheet to verify 
this result for different 
values of n.
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Note
A common confusion occurs with the sigma notation when there is no r term 
present. 

For example, 

3
r 1

5

∑
=

means 

3 + 3 + 3 + 3 + 3 = 15
since there are fi ve terms in the sum (it’s just that there is no r term to change 
anything each time).

In general:

∑
=

1 = 1 + 1 + … + 1 + 1
r

n

1  

with n repetitions of the number 1.

So, 

∑ n1 =
r

n

=1  

This apparently obvious result is important and you will often need to use it.

This means ‘The sum of 3, with r changing from 1 to 5’.

Example 4.1 For the series 2 + 5 + 8 + ... + 500:

(i) Find a formula for the rth term, ur.

(ii) How many terms are in this series?

(iii) Find the sum of the series using the reverse/add method.

(iv)  Express the sum using sigma notation, and use this to confi rm your 
answer to part (iii).

Solution
(i) The terms increase by 3 each time and start at 2. So u r3 1r = − . 

(ii) Let the number of terms be n. The last term (the nth term) is 500.

      un = 3n – 1

 3n – 1 = 500

    3n = 501

   n = 167

There are 167 terms in this series.

(iii) S = 2 + 5 + … + 497 + 500

      S = 500 + 497 + … + 5 + 2

     2S = 167 × 502

        S = 41 917

You can use the results r n n1
2 1

r

n

1
∑ ( )= +

=

 and n1
r

n

1
∑ =

=

 to fi nd the sum of other 
series. 



4

75

Calculate the sum of the integers from 100 to 200 inclusive.

(iv) ∑

∑ ∑

∑ ∑

= −

= −

= −

=

= =

= =

S r

S r

S r

(3 1)

3 1

3 1

r

r r

r r

1

167

1

167

1

167

1

167

1

167

 

 

= × × × −

=

S

S

3 1
2 167 168 167

41917

Using the results r n n1
2 1

r

n

1
∑ ( )= +

=
 

and n1
r

n

1
∑ =

=

Example 4.2

Solution

∑ ∑ ∑= −

= × × − × ×

= −
=

=

r r r

1
2 200 201 1

2 99 100

20100 4950

15150

r 100

200

1

200

1

99 Start with all the integers from 1 to 200, 
and subtract the integers from 1 to 99, 
leaving those from 100 to 200.

① For each of the following definitions, write down the first five terms of the 
sequence and describe the sequence.

(i) = +u r5 1r

(ii) = −v r3 6r

(iii) = +p 2r
r 2

(iv) ( )= + × −q 10 2 1r
r

(v) = + =+a a a2 1, 2r r1 1

(vi) =u
r
5

r

② For the sequence 1, 5, 9, 13, 17, …

(i) write down the next four terms of the sequence

(ii) write down an inductive rule for the sequence, in the form 
u1 = …, ur +1 = … 

(iii) write down a deductive rule for the general term of the sequence, in 
the form ur = … 

③ For each of the following sequences.

(a) write down the next four terms of the sequence

(b) write down an inductive rule for the sequence

(c) write down a deductive rule for the general term of the sequence

(d) find the 20th term of the sequence.

Exercise 4.1

Chapter 4 Sequences and series
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(i) 10, 8, 6, 4, 2, …

(ii) 1, 2, 4, 8, 16, …

(iii) 50, 250, 1250, 6250, …

④ Find the sum of the series ur
1

5

∑  for each of the following:

(i) ur = 2 + r 

(ii) ur = 3 – 11r

(iii) ur = 3r

(iv) ur = 7.5 × (–1)r

⑤ For S = 50 + 44 + 38 + 32 + … + 14

(i) Express S in the form u
r

n

r
1

∑
=

 

 where n is an integer, and ur is an algebraic expression for the r th term 
of the series.

(ii) Hence, or otherwise, calculate the value of S.

⑥ Given ur = 6r + 2, calculate u
r

r
11

30

∑
=

. 

⑦ The general term of a sequence is given by ur = (–1)r × 5. 

(i) Write down the first six terms of the sequence and describe it.

(ii) Find the sum of the series ur
r

n

1
∑

=

: 

 (a) when n is even

 (b) when n is odd.

(iii) Find an algebraic expression for the sum to n terms, whatever the 
value of n.

⑧ A sequence is given by

 br + 2 = br + 2, b1 = 0, b2 = 100

(i) Write down the first six terms of the sequence and describe it.

(ii) Find the smallest odd value of r for which br > 200.

(iii) Find the largest even value of r for which br < 200.

⑨ A sawmill receives an order requesting many logs of various specific lengths, 
that must come from the same particular tree. The log lengths must start at 
5 cm long and increase by 2 cm each time, up to a length of 53 cm. 

 The saw blade destroys 1 cm (in length) of wood (turning it to sawdust) at 
every cut. What is the minimum height of tree required to fulfil this order?

⑩ Find the sum of the integers from n to its square (inclusive). Express your 
answer in a fully factorised form.

⑪ Write down the first five terms of the following sequence:

=
+

=





+c

c c

c
c

c

3 1  if    is odd

2   if   is even
10r

r r

r
r

1 1

 

You can find out more about this sequence by a web search for the Collatz 
conjecture.

 Try some other starting values (e.g. c1 = 6 or 13) and make a conjecture 
about the behaviour of this sequence for any starting value.

Sequences and series
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2 Using standard results
In the previous section you used two important results:

n1
r

n

1

∑ =
=  

∑ ( )= +
=

r n n 11
2

r

n

1

There are similar results for the sum of the fi rst n squares, and the fi rst n cubes.

The sum of the squares:  ∑ = + +
=

r n n n( 1)(2 1)1
6

r

n
2

1
 

The sum of the cubes:    ∑ = +
=

r n n( 1)1
4

r

n
3

1

2 2

These are important results. You will prove they are true later in the chapter.

These results can be used to sum other series, as shown in the following 
examples.

Example 4.3 (i) Write out the fi rst three terms of the sequence u r r2 1r
2= + − . 

(ii) Find ∑
=

u
r

n

r
1

. 

(iii)  Use your answers from part (i) to check that your answer to part (ii) 
works for n 3= .

Solution
(i) 2, 7, 14

(ii) ∑ ∑

∑ ∑ ∑

= + −

= + −

= =

= = =

u r r

r r

( 2 1)

2 1

r

n

r
r

n

r

n

r

n

r

n

1 1

2

1

2

1 1

       

( )
( )

[ ]

( )( ) ( )

( )( ) ( )

= + + + × + −

= + + + + −

= + + + + −

= + +

n n n n n n

n n n n

n n n n

n n n

1 2 1 2 1

1 2 1 6 1 6

2 3 1 6 6 6

2 9 1

1
6

1
2

1
6

1
6

1
6

2

2

The sum of the integers.

Chapter 4 Sequences and series

TECHNOLOGY
You could use a 
spreadsheet to verify 
these results for 
different values of n.
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① (i)  Write out the first three terms of the sequence u r2 1r = − . 

 (ii)  Find an expression for r2 1  
r

n

1

∑( )−
=

.

 (iii)  Use part (i) to check part (ii).

② (i)  Write out the first three terms of the sequence u r r3 1r ( )= + .

 (ii)  Find an expression for ∑ ( )+
=

r r3 1  
r

n

1

.

 (iii)  Use part (i) to check part (ii).

③ (i)  Write out the first three terms of the sequence u r r1r
2( )= + .

 (ii)  Find an expression for r r1
r

n

1

2∑( )+
=

.

 (iii)  Use part (i) to check part (ii).

(i) Write the sum of this series using ∑ notation.

  (1 × 3) + (2 × 4) + (3 × 5) + … + ( )+n n 2

(ii) Hence find an expression for the sum in terms of n.

(iii) n 3=   

 ( ) ( )+ + = × × + +

= ×

=
+ + =

n n n2 9 1 3 18 27 1

46

23

2 7 14 23

1
6

1
6

1
2

2

Example 4.4

It is a good idea to 
check your results like 
this, if you can.

Solution
(i) r r( 2)

r

n

1

∑ +
=

 

(ii) ∑ ∑

∑ ∑

+ = +

= +

= + + + × +

= + + +

= + +

= =

= =

r r r r

r r

n n n n n

n n n

n n n

( 2) ( 2 )

2

( 1)(2 1) 2 ( 1)

( 1)[2 1 6]

( 1)(2 7)

1
6

1
2

1
6
1
6

r

n

r

n

r

n

r

n

1

2

1

2

1 1

Exercise 4.2

( ) ( )+ + = × × + +

= ×

=
+ + =

n n n2 9 1 3 18 27 1

46

23

2 7 14 23

1
6

1
6

1
2

2
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④ Find r r r(4 6 4 1)
r

n
3 2

1

∑ − + −
=

.

⑤ Find (1 × 2) + (2 × 3) + (3 × 4) + ... + n n( 1)+ .

⑥ Find (1 × 2 × 3) + (2 × 3 × 4) + (3 × 4 × 5) + ... + n n n( 1)( 2)+ + . 

⑦  Find the sum of integers above n, up to and including 2n, giving your 
answer in a fully factorised form.

⑧  Find the sum of the cubes of the integers larger than n, up to and including 
n3 , giving your answer in a fully factorised form.

⑨  On a particularly artistic fruit stall, a pile of oranges is arranged to form a 
truncated square pyramid. Each layer is a square, with the lengths of the side 
of successive layers reducing by one orange (as in Figure 4.2).

 The bottom layer measures n n2 2×  oranges, and there are n layers. 

 (i) Prove that the number of oranges used is n n n1
6 2 1 7 1( ) ( )+ + .

(ii)  How many complete layers can the person setting up the stall use for 
this arrangement, given their stock of 1000 oranges? How many oranges 
are left over? 

Figure 4.2

⑩  You have £20 000 to invest for one year. You put it in the following bank 
account:

‘Flexible Saver’: 1.5% interest APR

n Interest calculated monthly (i.e. 1.5
12 % of balance each month).

n Interest paid annually, into a separate account.

n No limits on withdrawals or balance.

Your bank then informs you of a new savings account, which you are allowed to 
open as well as the Flexible Saver.

‘Regular Saver’: 5% interest APR

n Interest calculated monthly (i.e. 5
12

% each month).

n Interest paid annually, into a separate account.

n Maximum £1000 balance increase per month.

Chapter 4 Sequences and series
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The method of differences

(i) Assuming you initially have your money in the Flexible Saver, but transfer 
as much as you can into a Regular Saver each month, calculate how much 
extra money you will earn, compared to what would happen if you just left 
it in the Flexible Saver all year.

(ii) Generalise your result – given an investment of I   (in thousands of pounds), 
and a time of n months – what interest will you earn?

 (Assume n I< , or you’ll run out of funds to transfer.)

3 The method of differences
Sometimes it is possible to find the sum of a series by subtracting it from a 
related series, with most of the terms cancelling out. This is called the method of 
differences and is shown in the following example.

Calculate the value of the series: 5 10 20 40 2560 5120+ + + + … + +Example 4.5

Example 4.6

Solution

Each term is double the previous one. 

Call the sum S.

S 5 10 20 2560 5120= + + + … + +  

Double it:

= + + + … + +S2 10 20 40 5120 10240 

Subtract the first line from the second and notice that most terms cancel. In 
fact, only two remain.

− = −S S2 10240 5 

=S 10235

In fact, the sequence is 
×ur = 5 2r -1  but you won’t 

need that here.

This is the sum you needed.

This example worked because of the doubling of the terms.

Calculating the sums of much more complicated series can also use this 
technique, if each term can be expressed as the difference of two (or more) 
terms. Look at the following examples carefully to see the idea, paying particular 
attention to the way the series are laid out to help find the cancelling terms.

(i) Show that 
r r r r
1 1

1
1

1( )− + = +
.

(ii) Hence find 1
1 2

1
2 3

1
3 4

1
30 31× + × + × + … + × .
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Notice that the result in the example can easily be generalised for a sequence 
of any length. If the sequence has n  terms, then the terms would still cancel in 
pairs, leaving the first term, 1, and the last term, n

1
1− + .

The sum of the terms would therefore be

n
n

n
n

n1 1
1

1 1
1 1− + = + −

+ = +
.

The cancelling of nearly all the terms is similar to the way in which the interior 
sections of a collapsible telescope disappear when it is compressed, so a sum like 
this is sometimes described as a telescoping sum. 

The next example uses a telescoping sum to prove a familiar result.

Solution
(i) LHS = 

( )
( )

( )

− + = + −
+

= +
=

r r
r r
r r

r r

1 1
1

1
1

1
1

RHS as required

 

(ii) r r

r r

1
1 2

1
2 3

1
3 4

1
30 31  1

1

1 1
1

r

r

1

30

1

30

∑

∑( )
( )× + × + × + … + × = +

= − +

=

=

 

= −

+ −

1 1
2
1
2

1
3
1
3

1
4

1
29

1
30

1
30

1
31

+ −

+

+ −

+ −

……

1
3

1
4

1
29

1
30

1
30

1
31

+ −

+

+ −

+ −

……

= −

+ −

1 1
2
1
2

1
3

1 1
31

30
31

= −

=
 

Using the result from part (i)

start writing out the 
sum, but it is helpful 
to lay it out like this to 
see which parts cancel.

The terms in the 
red loops cancel 
out – so all the 
terms in the green 
box vanish.

Discussion point
➜	What happens to 

this series when n 
becomes very large?
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(i) Show that r r r2 1 2 1 82 2( ) ( )+ − − = .

(ii) Hence find r8
r

n

1

∑
=

.

(iii) Deduce that ∑ ( )= +
=

r n n 11
2

r

n

1

.

Example 4.7

Solution
(i) r r r r r r

r

2 1 2 1 4 4 1 4 4 1

8

2 2 2 2( ) ( )( ) ( )+ − − = + + − − +
=

 

  as required.

(ii) ∑ ∑ ( ) ( )= + − − 
= =

r r r8 2 1 2 1
r

n

r

n

1 1

2 2

     

n n

n n

3 1

5 3

7 5

…

(2( 1) 1) 2( 1) 1)

2( 1) (2 1)

2 2

2 2

2 2

2 2

2 2

= −

+ −

+ −
+

+ − + − − −

+ + − −

        

n

n n

n n

2 1 1

4 4 1 1

4 4

2 2

2

2

( )= + −

= + + −

= +   

(iii) Since ∑ = +
=

r n n8 4 4
r

n

1

2  

   so ∑

( )

= +

= +

=

r n n

n n 1

1
2

1
2

1
2

r

n

1

2  

 as required.

The only terms remaining 
are the 2nd and the 2nd 
to last.

This result was also 
proved on page 74 using a 
different method.

The method of differences
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(i) Show that − + + + = +
+ +r r r
r

r r r
2 3

1
1

2
4

( 1)( 2)
.

(ii) Hence fi nd ∑ +
+ +

=

r
r r r

4
( 1)( 2)

r

n

1

.

Example 4.8

Solution

(i) − + + + = + + − + + +
+ +

= + + − − + +
+ +

= +
+ +

r r r
r r r r r r

r r r

r r r r r r
r r r

r
r r r

2 3
1

1
2

2( 1)( 2) 3 ( 2) ( 1)
( 1)( 2)

2 6 4 3 6
( 1)( 2)

4
( 1)( 2)

2 2 2

(ii) ∑ ∑( )+
+ + = − + + +

= =

r
r r r r r r

4
( 1)( 2)

2 3
1

1
2

r

n

r

n

1 1

 

   

= − +

+ − +

+ − +

+ … − … + …
+ … − … + …

+ − − − +

+ − − + +

+ − + + +

n n n

n n n

n n n

2 3
2

1
3

2
2

3
3

1
4

2
3

3
4

1
5

2
1

3
1

1

2
1

3 1
1

2 3
1

1
2

   Most of the terms cancel, leaving

   

∑ +
+ + = − + + + − + + +

= − + + +

=

r
r r r n n n

n n

4
( 1)( 2) 2 3

2
2
2

1
1

3
1

1
2

3
2

2
1

1
2

r

n

1

The terms in the red 
loops cancel out – so all 
the terms in the green 
box vanish.

Note
The terms which do not cancel form a symmetrical pattern, three at the start 
and three at the end.
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① This question is about the series 1 + 3 + 5 + … + (2n – 1).

 You can write this as r(2 1)
r

n

1
∑ −

=
.

(i) Show that r r r1 2 12 2( )− − = − .

(ii) Write out the first three terms and the last three terms of 

r r( 1)
r

n
2 2

1
∑( )− −

=

.

(iii) Hence find r(2 1)
r

n

1
∑ −

=
.

(iv) Show that using the standard formulae to find r(2 1)
r

n

1
∑ −

=

 gives the 
same result as in (iii).

② This question is about the series 2
1 3

2
3 5

2
5 7

2
19 21× + × + × + … + × .

(i) Show that the general term of the series is 
r r

2
(2 1)(2 1)− + , and find 

the values of r for the first term and the last term of the series.

(ii) Show that 
r r r r
1

2 1
1

2 1
2

2 1 2 1
.( )( )− − + = − +
 

(iii) Hence find 2
1 3

2
3 5

2
5 7

2
19 21× + × + × + … + × .

③  (i) Show that r r r r r r1 2 1 1 3 22 2( ) ( ) ( ) ( )( )+ + − + = + + .

(ii) Hence find n n2 5 3 8 4 11 1 3 2( ) ( ) ( ) ( )( )× + × + × + … + + + .

(iii) Show that you can obtain the same result by using the standard 
formulae to find the sum of this series.

(iv) Using trial and improvement, find the smallest value of n for which the 
sum is greater than one million.

④  (i) Show that 
r r

r
r r

1 1
1

2 1
12 2 2 2( ) ( )

−
+

= +
+

.

(ii) Hence find 
r

r r
2 1

1r

n

1
2 2∑ ( )

+
+=

.

⑤  (i) Show that r r r r
1
2

1
2 2

1
2( ) ( )− + = + .

(ii) Hence find 
r r

1
2

r

n

1
∑ ( )+=

.

(iii) Find the value of this sum for n = 100, n = 1000 and n = 10 000 and 
comment on your answer.

Exercise 4.3

Discussion points
➜	Show that the final expression in the previous example can be simplified to 

give ( )
( )( )

n n
n n

3 + 7
2 + 1 + 2 .

➜	What happens to the series as n becomes very large?

The method of differences
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⑥  (i) Show that 
( )( )( )− + + + − + = + + +r r r

r
r r r

1
2

3
3

2
4 2 3 4

.

(ii) Hence find ∑ ( )( )( )+ + +
=

r
r r r2 3 4

r 1

12

.

⑦  (i) Show that r r r r r r
1
2

1
1

1
2 2

1
1 2( ) ( )( )− + + + = + + .

(ii) Hence find 
r r r

1
1 2

r

n

1
∑ ( )( )+ +=

.

(iii) Find the value of this sum for n = 100 and n = 1000, and comment on 
your answer.

In Questions 8 and 9 you will prove the standard results for ∑r 2 and ∑r 3.

⑧  (i) Show that r r r2 1 2 1 24 23 3 2( ) ( )+ − − = + .

(ii) Hence find r24 2
r

n

1

2∑( )+
=

.

(iii) Deduce that r n n n1
6 1 2 1

r

n

1

2∑ ( )( )= + +
=

.

⑨  (i) Show that r r r r2 1 2 1 64 164 4 3( ) ( )+ − − = + .

(ii) Hence find r r64 16
r

n

1

3∑( )+
=

.

(iii) Deduce that r n n1
4 1

r

n

1

3 2 2∑ ( )= +
=

.

  (You may use the standard result for Σr.)

⑩  (i) Show that 
r

2
12 −
 can be written as 

r r
1

1
1

1− − + .

(ii) Hence find the values of A and B in the identity

 r
A

r
B

r
1

1 1 12 −
= − + +

(iii) Find 
r

1
1r

n

2
2∑ −=

.

(iv) What is the value of this sum as n becomes very large?

4 Proof by induction
The oldest person to have ever lived, with documentary evidence, is believed to 
be a French woman called Jeanne Calment who died aged 122, in 1997.

Emily is an old woman who claims to have broken the record. A reporter asked 
her, ‘How do you know you’re 122 years old?’

She replied, ‘Because I was 121 last year.’

Discussion point
➜	 Is this a valid 

argument?
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Proof by induction

The sort of argument that Emily was trying to use is called inductive reasoning. 
If all the elements are present it can be used in proof by induction. This is the 
subject of the rest of this chapter. It is a very beautiful form of proof but it is also 
very delicate; if you miss out any of the steps in the argument, as Emily did, you 
invalidate your whole proof.

ACTIVITY 4.1
Work out the first four terms of this pattern:

×

× ×

× × ×

× × × ×

1
1 2 =

1
1 2 + 1

2 3 =

1
1 2 + 1

2 3 + 1
3 4 =

1
1 2 + 1

2 3 + 1
3 4 + 1

4 5 =

Activity 4.1 illustrates one common way of solving problems in mathematics. 
Looking at a number of particular cases may show a pattern, which can be used 
to form a conjecture (i.e. a theory about a possible general result). 

The conjecture can then be tested in further particular cases. 

In this case, the sum of the first n terms of the sequence can be written as

n n
1

1 2
1

2 3
1

3 4
1

1( )× + × + × + … + +
.

The activity shows that the conjecture

n n
n

n
1

1 2
1

2 3
1

3 4
1

1 1( )× + × + × + … + + = +

is true for n = 1, 2, 3 and 4. 

Try some more terms, say, the next two.

If you find a counter-example at any point (a case where the conjecture is 
not true) then the conjecture is definitely disproved. If, on the other hand, the 
further cases agree with the conjecture then you may feel that you are on the 
right lines, but you can never be mathematically certain that trying another 
particular case might not reveal a counter-example: the conjecture is supported 
by more evidence but not proved.

The ultimate goal is to prove this conjecture is true for all positive integers. But 
it is not possible to prove this conjecture by deduction from known results. A 
different approach is needed: mathematical induction.

In Activity 4.1 you established that the conjecture is true for particular cases of  
n (n = 1, 2, 3, 4, 5 and 6). 

Now, assume that the conjecture is true for a particular integer, n = k say, so that

  k k
k

k
1

1 2
1

2 3
1

3 4
1

1 1( )× + × + × + … + + = +  

and use this assumption to check what happens for the next integer, n = k + 1.

Conjectures are often 
written algebraically.
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If the conjecture is true then you should get

k k k k
k

k

k
k

1
1 2

1
2 3

1
3 4

1
1

1
1 2

1
1 1

1
2

( ) ( ) ( )
( )

( )× + × + × + … +
+

+
+ +

=
+

+ +

= +
+  

This is your target result. It is what you need to establish.

Look at the left-hand side (LHS). You can see that the first k terms are  
part of the assumption.

( ) ( ) ( )× + × + × + … +
+

+
+ +k k k k

1
1 2

1
2 3

1
3 4

1
1

1
1 2

 (the LHS)

( ) ( )= + +
+ +

k
k k k1

1
1 2

 Using the assumption

k k
k k

2 1
1 2

( )
( )( )= + +

+ +  getting a common denominator

k k
k k

2 1
1 2

2

( )( )= + +
+ +

 expanding the top bracket

k
k k

1
1 2

2( )
( )( )= +

+ +
 factorising the top quadratic

k
k

1
2= +

+   cancelling the (k + 1) factor – since k ≠ –1

 which is the required result.

These steps show that if the conjecture is true for n = k, then it is true  
for n = k + 1.

Since you have already proved it is true for n = 1, you can deduce that  
it is therefore true for n = 2 (by taking k = 2).

You can continue in this way (e.g. take n = 2 and deduce it is true  
for n = 3) as far as you want to go. Since you can reach any positive  
integer n you have now proved the conjecture is true for every  
positive integer.

This method of proof by mathematical induction (often shortened to proof 
by induction) is a bit like the process of climbing a ladder:

If you can
1 get on the ladder (the bottom rung), and
2  get from one rung to the next, 
 then you can climb as far up the ladder as you like.

Figure 4.3

Replacing k by k + 1 in 
the result 

k
k + 1
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The corresponding steps in the previous proof are

1 showing the conjecture is true for n = 1, and 
2  showing that if it is true for a particular value (n = k say), then it is true for the 

next one (n = k + 1).

(Notice the if… then… structure to this step.)

You should conclude any argument by mathematical induction with a statement 
of what you have shown.

Steps in mathematical induction
To prove something by mathematical induction you need to state a conjecture 
to begin with. Then there are fi ve elements needed to try to prove the 
conjecture is true.

n	 Proving that it is true for a starting value (e.g. n = 1).

n	 Finding the target expression:
using the result for n = k to fi nd the equivalent result 
for n = k + 1.

n	 Proving that: 
if it is true for n = k , then it is true for n = k + 1.

n	 Arguing that since it is true for n = 1, it is also true for n = 1 + 1 = 2, and 
so for n = 2 + 1 = 3 and for all subsequent values of n.

n	 Concluding the argument by writing down the result and stating that it has 
been proved.

To fi nd the target 
expression you 
replace k with 
k + 1 in the result 
for n = k.

This can be done before 
or after fi nding the target 
expression, but you may 
fi nd it easier to fi nd the 
target expression fi rst so 
that you know what you 
are working towards.

This ensures the 
argument is properly 
rounded off. You will often 
use the word ‘therefore’.

Example 4.9 (the sum of the squares of the fi rst n integers)

Prove that, for all positive integers n:

+ + + + = + +n n n n1 2 3 ... ( 1)(2 1)1
6

2 2 2 2

Note
You have already had the opportunity to prove this result using the method of 
differences, in Question 8 of Exercise 4.3.

Solution
When n = 1,  LHS = 12 = 1  RHS 1 2 3 11

6
= × × × =  

So it is true for n = 1.

Assume the result is true for n = k, so

( )( )+ + … + = + +k k k k1 2 1 2 11
6

2 2 2
 

Target expression:

k k k k k

k k k

1 2 3 ... ( 1) ( 1)[( 1) 1)][(2( 1) 1]

( 1)( 2)(2 3)

1
6
1
6

2 2 2 2 2+ + + + + + = + + + + +

= + + +

Proof by induction
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①  (i)  Show that the result n n1 3 5 2 1 2( )+ + + … + − =  is true for the  
case n = 1.

(ii)	 Assume that k k1 3 5 2 1 2( )+ + + … + − =  and use this to prove that:  

k k k1 3   2 1 2 1 1 2( ) ( ) ( )+ + … + − + + = + .

(iii)	 Explain how parts (i) and (ii) together prove the sum of the first n odd 
integers is n2.

②  (i)  Show that the result n n n1 5 9 4 3 2 1( ) ( )+ + + … + − = −  is true for 
the case n = 1.

(ii) Assume that k k k1 5 9 4 3 2 1( ) ( )+ + + … + − = −  
and use this to prove that: 

k k k k1 5     4 3 4 1 3 1 2 1 1( ) ( )( ) ( ) ( ) ( )+ + … + − + + − = + + − .

(iii)	 Explain how parts (i) and (ii) together prove that: 

n n n1 5 9 4 3 2 1( ) ( )+ + + … + − = −  

You want to prove that the result is true for n = k + 1
(if the assumption is true).

Look at the LHS of the result you want to prove:
+ + + + + +k k1 2 3 ... ( 1)2 2 2 2 2

Use the assumed result for n = k, to replace the first k terms.
= + + + +k k k k( 1)(2 1) ( 1)1

6
2

[ ]= + + + +k k k k( 1) (2 1) 6( 1)1
6

= + + +k k k( 1)(2 7 6)1
6

2

= + + +k k k( 1)( 2)(2 3)1
6

If the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = k, it is true for all positive integer values of n.

Therefore the result that ( )( )+ + … + = + +n n n n1 2 1 2 11
6

2 2  is true.

ACTIVITY 4.2
Jane	is	investigating	the	sum	of	the	first	n	even	numbers.

She	writes

n n2 + 4 + 6 + … + 2 = + 1
2

2( ) .

(i)	 	Prove	that	if	this	result	is	true	when	n	=	k,	then	it	is	true	when	n	=	k +1.	
Explain	why	Jane’s	conjecture	is	not	true	for	all	positive	integers	n.

(ii)	 	Suggest	a	different	conjecture	for	the	sum	of	the	first	n	even	numbers,	that	is	
true	for	n	= 1	but	not	for	other	values	of	n.	At	what	point	does	an	attempt	to	
use	proof	by	induction	on	this	result	break	down?

Exercise 4.4

The	(k + 1)th.	term.

This	is	the	same	as	the	target	
expression,	as	required.

The	first	k	terms.

Take	out	a	factor	1
6 k( )+ 1 	.	

You	can	see	from	the	
target	expression	that	
this	will	be	helpful.
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Prove the following results by induction.

③ n n n1 2 3 1
2 1( )+ + + … + = +  

(the sum of the first n integers)

④ ∑ ( )= +
=

r n n1
4 1

r

n

1

3 2 2  

(the sum of the first n cubes) 

⑤ 2 2 2 2 2 2 2 1n n1 2 3 4 ( )+ + + + … + = −

⑥ x x
x x1

1   1
r

n
r

n

0

1

∑ ( )= −
− ≠

=

+

⑦ n n n n n n n1 2 3 2 3 4 1 2 1
4 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )× × + × × + … + + + = + + +

⑧ r n n3 1 1
2 3 5

r

n

1

∑( ) ( )+ = +
=

⑨ 
n

n
n

1
3

1
15

1
35

1
4 1 2 12+ + + … +

−
= +

⑩ 
n

n
n1 1

2
1 1

3
1 1

4
1 1 1

22 2 2 2( ) ( ) ( )( )− − − … − = +  for n 2≥

⑪ ( )× + × + × + … + × = + −n n n1 1! 2 2! 3 3! ! 1 ! 1  

⑫  (i) Prove by induction that

r r n n n5 1
2 ( 1) (2 1)

r

n
4 2

1

2 2∑( )+ = + +
=

.

 (ii) Using the result in part (i), and the formula for r
r

n
2

1

∑
=

, show that 

   r n n n n n1
30 ( 1)(2 1)(3 3 1)

r

n
4

1

2∑ = + + + −
=

.

5 Other proofs by induction
So far, you have used induction to prove results involving the sums of series. It 
can also be used in other situations.

You have seen that induction can be used to prove a given result for the sum of 
a series in which the terms have been given using a deductive definition. In the 
next example you will see how induction can be used to prove a given result for 
the general term of a sequence, when the terms of a sequence have been given 
inductively. 

You have already seen two 
proofs of this result, on pages 
73 and 83.

You have already had the 
opportunity to prove this 
result using the method of 
differences, in Question 9 of 
Exercise 4.3.

Proof by induction



4

91

A sequence is defined by u u4 3n n1 = −+ , u 21 = .

Prove that u 4 1n
n 1= +− .

Example 4.10

You can sometimes use induction to prove results involving powers of matrices.

Solution

Assume that the result is true for  
n = k, so that u 4 1k

k 1= +− .

For n = k + 1, 

If the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = 1, it is true for all positive integer values of n. 
Therefore the result un = 4n–1 + 1 is true.

u u4 3

4 4 1 3

4 4 4 3

4 1

k k

k

k

k

1

1

1

( )
= −

= + −

= × + −

= +

+

−

−

u u4 3

4 4 1 3

4 4 4 3

4 1

k k

k

k

k

1

1

1

( )
= −

= + −

= × + −

= +

+

−

−

For n 1= , u 4 1 1 1 21
0= + = + = , so the result is true for n 1= .

Target expression:  
u 4 1k

k
1 = ++ .

Example 4.11
Given A 4 1

3 2
=









 , prove by induction that

A 1
4

3 5 1   5 1 

3 5 3   5 3
n

n n

n n
= × + −

× − +









 .

Solution

Let n = 1 = =








ALHS    4 1

3 2
1  

      

= × + −
× − +







=






=






=

RHS  1
4

3 5 1 5 1
3 5 3 5 3

1
4

16 4
12 8

4 1
3 2

LHS as required
 

Assume true for n = k, i.e. 

A 1
4

3 5 1   5 1 

3 5 3   5 3
k

k k

k k
= × + −

× − +











 

Target expression: 

A 1
4

3 5 1   5 1 

3 5 3   5 3
k

k k

k k

1
1 1

1 1
= × + −

× − +











+
+ +

+ +
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① A sequence is defined by u u3 2n n1 = ++ , u1 = 2. 

 Prove by induction that u 3 1n
n= − .

② A sequence is defined by u u2 1n n1 = −+ , u1 = 2.

 Prove by induction that u 2 1n
n 1= +− .

③ Given that M 2 0
0 3

=








 , prove by induction that M 2 0

0 3
n

n

n
=









.

④ A sequence is defined by u u4 6n n1 = −+ , u1 = 3.

 Prove by induction that u 4 2n
n 1= +− .

⑤  (i) Given that M 1 1
0 1

=








 , prove by induction that nM 1

0 1
n =









.

(ii) Describe the transformations represented by M and by Mn.

You want to prove it is true for n = k + 1.

=

= × + −
× − +





















= × + + × − × + + × −
× − + × + × − + × +











+A A A

1
4

3 5 1   5 1 

3 5 3   5 3
  4 1

3 2

1
4

12 5 4 3 5 3 3 5 1 2 5 2

12 5 12 3 5 9 3 5 3 2 5 6

k k

k k

k k

k k k k

k k k k

1

 

1
4

15 5 1  5 5 1

15 5 3 5 5 3

1
4

3 5 1   5 1 

3 5 3   5 3

k k

k k

k k

k k

1 1

1 1

= × + × −
× − × +











= × + −
× − +











+ +

+ +

as required.

If it is true for n = k, then it is true for n = k + 1

Since it is true for n = 1, it is true for all n > 1.

Therefore the result = × + −
× − +









A 1

4
3 5 1   5 1 

3 5 3   5 3
n

n n

n n
 is true.

Multiplying matrices.

Using 15 = 3 × 5.

This is the target matrix.

Exercise 4.5

Proof by induction
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⑥ A sequence is defined by u
u

u 1n
n

n
1 = ++ , u1 = 1.

(i) Find the values of u2, u3 and u4.

(ii) Suggest a general formula for un, and prove your conjecture by 
induction.

⑦ You are given the matrix A
1 4

1 3
= − −







 .

(i) Calculate A2 and A3.

(ii) Show that the formula n n
n n

A 1 2 4
1 2

n = − −
+









  is consistent with 

the given value of A and your calculations for n = 2 and n = 3.

(iii) Prove by induction that the formula for An is correct when n is a 
positive integer.

⑧ You are given the matrix M 1 2
3 1

= −







 .

(i) Calculate M2, M3 and M4.

(ii) Write down separate conjectures for formulae for Mn, for even n  
(i.e. M2m) and for odd n (i.e. M2m+1)

(iii) Prove each conjecture by induction, and hence write down what Mn is 
for any n > 1.

⑨ Let F 2 1n
(2 )n

= + . 

(i) Calculate F0, F1, F3, and F4.

(ii) Prove, by induction, that F F F F F 2n n0 1 2 1× × × … × = −− .

(iii) Use part (ii) to prove that Fi and Fj are coprime (for i ≠ j ). 

(iv)  Use part (iii) to prove there are infinitely many prime numbers. 

 The Fn numbers are called Fermat Numbers. The first five are prime: the 
Fermat Primes. Nobody (yet) knows if any other Fermat Numbers are 
prime.

Chapter 4 Sequences and series

LEARNING OUTCOMES
When you have completed this chapter you should be able to:

➤	 know what is meant by a sequence and a series

➤	 find the sum of a series using standard formulae for ∑r, ∑r2 and ∑r3 

➤	 find the sum of a series using the method of differences

➤	 use proof by induction to prove given results for the sum of a series

➤	 use proof by induction to prove given results for the nth term of a sequence

➤	 use proof by induction to prove given results for the nth power of a matrix.



94

FUTURE USES
n	 In the A Level Further Mathematics textbook you will see how functions 

such as ex and sin x can be written as infinite series using Maclaurin series.
n	 You will also meet series expansions of other functions using Maclaurin 

series.
n	 You will look at some further types of proof by induction in the A Level 

Further Mathematics textbook.

Proof by induction

KEY POINTS
1 The terms of a sequence are often written as a1, a2, a3, … or u1, u2, u3, … 
 The general term of a sequence may be written as ar or ur (sometimes the 

letters k or i are used instead of r). The last term is usually written as an or un.
2 A series is the sum of the terms of a sequence. The sum Sn of the first n terms of 

a sequence can be written using the symbol Σ (the Greek capital S, sigma).

 =1

S a a a a arn n
r

n

1 2 3= + + + … + = ∑
 

 The numbers above and below the ∑ are the limits of the sum. They show that 
the sum includes all the terms ar from a1 to an. 

3 Some series can be expressed as combinations of these standard results: 

∑ n n1
2

( + 1)r =
r

n

=1  
∑ ( )( )n n n1

6 + 1 2 + 1r =
r

n

=1

2

 

3∑ ( )n n= 1
4

+ 1r 2 2

r

n

=1

4 Some series can be summed by using the method of differences. If the terms 
of the series can be written as the difference of terms of another series, then 
many terms may cancel out. This is called a telescoping sum.

5 To prove by induction that a statement involving an integer n is true for all 
n n0≥ , you need to:

n	 prove that the result is true for an initial value of no, typically n = 1 

n	 find the target expression: 
 use the result for n = k to find the equivalent result for n = k + 1.

n	 prove that: 

 if it is true for n = k, then it is true for n = k + 1.

n	 argue that since it is true for n = 1, it is also true for n = 1 + 1 = 2, and so 
for n = 2 + 1 = 3 and for all subsequent values of n.

n	 conclude the argument with a precise statement about what has been 
proved.
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Practice Q
uestions Further M

athem
atics 1

For questions 1 to 4 you must show non-calculator methods in 
your answer.

① (i)  The complex number w is given by w = 1+ 2i. On a single Argand 
diagram plot the points which represent the four complex numbers  

w, w2, w – w∗ and *+w w
1 1 . [5 marks]

(ii) Which two of the numbers w, w2, w – w∗ and *+w w
1 1  have  

the same imaginary part? [1 mark]

② You are given that one of the roots of the cubic equation  
z3 – 9z2 + 28z – 30 = 0 is an integer and that another is 3 + i.

 Solve the cubic equation. [5 marks]

③ Ezra is investigating whether the formula for solving quadratic  
equations works if the coefficients of the quadratic are not real 
numbers. Here is the beginning of his working for one particular 
quadratic equation.

 (2+i)z2 + 6z + (2–i) = 0

 

= − ± −

=
− ± − +

+
=

z b b ac

i i
i

4
2

6 36 4(2 )(2 – )
2(2 )

...

2

(i) Finish off Ezra’s working. Show that both of the answers  
given by this method are of the form λ(2–i), where λ is real,  
stating the value of λ in each case. [4 marks]

(ii) How should Ezra check that his answers are indeed roots  
of the equation? [1 mark]

④ The cubic equation x3 + 3x2 – 6x – 8 = 0 has roots α, β, γ.

(i) Find a cubic equation with roots α + 1, β + 1, γ + 1. [4 marks]

(ii) Solve the equation you found as your answer to part (i). [3 marks]

(iii) Solve the equation x3 + 3x2 – 6x – 8 = 0. [2 marks]

⑤ (i) What transformation is represented by the matrix = −





B
0 1
1 0

? [2 marks]

(ii) By considering transformations, or otherwise, find a  
matrix A such that A2 = B. [3 marks]

⑥ You are given that the quadratic equation az2 + bz + c = 0  
has roots δ and δ + 1.

 By considering the sum and product of its roots, or otherwise,  
prove that b2 – 4ac = a2. [5 marks]

⑦ A sequence is defined by the relationship uk+1 = 2uk – k+1  
with u1 = 3.

(i) Write down the first five terms of the sequence. [1 mark]

(ii) Prove by induction that un = 2n + n. [6 marks]

⑧ The matrix R is given by =
−















R

3
5

4
5

4
5

3
5

 . The transformation 

PS

PSMP

MP

Practice Questions Further Mathematics 1
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Practice Questions Further Mathematics

corresponding to R is denoted R. The unit square OIPJ has coordinates 
O(0, 0), I(1, 0), P(1, 1), J(0, 1).

(i) Plot, on the same diagram, the unit square and its image  
O’I’P’J under R. [2 marks]

(ii) Find the equation of the line of invariant points for R. [3 marks]

(iii) Verify that the line which is perpendicular to this line of 
invariant points, and which passes through the origin, is  
an invariant line. [3 marks]

(iv)  Mark on your diagram in part (i) two points on the unit  
square which are invariant under R.  [2 marks]

⑨ (i)  Show that 

+ + + + + + = + +r r r r r r r r1
6 ( 3)( 4)( 5) – 1

6 ( 2)( 3)( 4) 1
2 ( 3)( 4). 

 [2 marks]

(ii) Use the result in part (i) to show that 

∑ + + = + + +
=

r r n n n1
2( 3)( 4) 1

6 ( 3)( 4)( 5) – 10
r

n

1

. [4 marks]

(iii) Find the sum of the first 20 terms of the series  
4 × 5 + 5 × 6 + 6 × 7 +...  [2 marks]



97

The power of 
mathematics is often 
to change one thing 
into another, to change 
geometry into language.

Marcus du Sautoy

Complex numbers and geometry5

Discussion point
� Figure 5.1 is an Argand diagram showing the Mandlebrot set. The black area 

shows all the complex numbers that satisfy a particular rule. Find out about 
the rule which defi nes whether or not a particular complex number is in the 
Mandlebrot set.

Figure 5.1 The Mandlebrot set
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The modulus and argument of a complex number

1 The modulus and argument  
of a complex number
Figure 5.2 shows the point representing z x yi= +  on an Argand diagram.

Im

ReO

x + yi

y

x

    Figure 5.2

The distance of this point from the origin is x y2 2+ . 

This distance is called the modulus of z, and is denoted by |z|.

So, for the complex number z x yi= + , |z| = +x y2 2 .

Notice that since = + − = +∗zz x y x y x y( i )( i ) 2 2, then = ∗z zz2 .

Using 
Pythagoras’ 
theorem.

Example 5.1

Solution

Re

Im

O 1 2 3 4 5 6 7–1–2–3–4–5–6
–1

1
2
3
4
5
6
7

–2
–3
–4
–5
–6

z1

z3

z4

z2

Figure 5.3

Represent each of the following complex numbers on an Argand diagram. 
Find the modulus of each complex number, giving exact answers in their 
simplest form.

z 5 i1 = − +          z 62 =           z 5 5i3 = − −         z 4i4 = −
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Chapter 5 Com
plex num

bers and geom
etry

Notice that the modulus of a real number z = a is equal to a and the modulus of 
an imaginary number z = bi is equal to b.

Figure 5.4 shows the complex number z on an Argand diagram. The length r 
represents the modulus of the complex number and the angle θ is called the 
argument of the complex number.

 

Im

ReO

r

θ

z

When describing
complex numbers,
it is usual to give the
angle θ in radians.

     Figure 5.4

The argument is measured anticlockwise from the positive real axis. By 
convention the argument is measured in radians. 

However, this angle is not uniquely de� ned since adding any multiple of 2π to θ 
gives the same direction. To avoid confusion, it is usual to choose that value of θ 
for which π θ π− < ≤ , as shown in Figure 5.5. 

This is called the principal argument of z and is denoted by arg z. Every 
complex number except zero has a unique principal argument. 

z 5 1 261
2( )= − + =  

z 6 0 36 62
2 2= + = =  

z 5 5 50 5 23
2 2( ) ( )= − + − = =  

z 0 4 16 44
2 2( )= + − = =  

The argument 
of zero is 
undefi ned.

Figure 5.5 shows the complex numbers z 2 3i1 = −  and z 2 3i2 = − + . For both 

z
1
 and z

2
, y
x

3
2= −  and a calculator gives arctan 3

2 0.98( )− = −  rad.

Discussion point
� For the complex number z x yi= + , is it true that arg z is given by 

arctan( )y
x

?

Prior Knowledge
You need to be familiar 
with radians, which 
are covered in the A 
Level Mathematics 
book. There is a brief 
introduction on page 
169 of this book.
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20–2

–2

Re

Im
z2

z1

θ2

θ1

Figure 5.5

The argument of z
1
 is the angle θ

1 
and this is indeed −0.98 radians. 

However, the argument of z
2
 is the angle θ

2
 which is in the second quadrant. 

It is given by − =π 0.98 2.16 radians.

Always draw a diagram when finding the argument of a complex number. This 
tells you in which quadrant the complex number lies.

Solution

(i) z 5 i1 = − +

 

ReO–5

Im

1
z1

α θ

 Figure 5.6

 

( )= =

= − =

α

πz

arctan 1
5 0.1973...

so arg 0.1973... 2.94(3s.f.)1
 

(ii) z 2 3 2i2 = −  

 

ReO

Im

–2 z2

2 3√θ

 Figure 5.7

For each of these complex numbers, find the argument of the complex 
number, giving your answers in radians in exact form or to 3 significant 
figures as appropriate.

(i) z 5 i1 = − +      (ii) z 2 3 2i2 = −      (iii) z 5 5i3 = − −      (iv) z 4i4 = −  

Example 5.2

z1 is in the 
second quadrant.

z2 is in the 
fourth quadrant.

The modulus and argument of a complex number
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 =






 =θ πarctan 2

2 3 6

 As it is measured in a clockwise direction,

 = − πzarg 62
.

(iii) z 5 5i3 = − −

 

Re

Im

–5

–5

z3

α
θ

 Figure 5.8

 

( )= =

= − =

α π

θ π π π

arctan 5
5 4

So, 4
3
4

 Since it is measured in a clockwise direction,

 = − πzarg 3
43 .

(iv) z 4i4 = −

 

Re

Im

z4

O

 Figure 5.9

 On the negative imaginary axis, the argument is 
2− π  

 = − πzarg 24 .

z3 is in the third 
quadrant.

z4 lies on the negative 
imaginary axis.
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The modulus-argument form of a complex number
In Figure 5.10, you can see the relationship between the components of a 
complex number and its modulus and argument.

Im

ReO

y

x

r

θ

 Figure 5.10

Using trigonometry, you can see that =θ y
rsin  and so = θy r sin . 

Similarly, =θ x
rcos  so = θx rcos .

Therefore, the complex number z x yi= +  can be written

 = +θ θz r rcos sin i 
or    
 ( )= +θ θz r cos i sin .  

This is called the modulus-argument form of the complex number and is 
sometimes written as (r, θ).

You may have noticed in the earlier calculations that values of sin, cos and tan 
for some angles are exact and can be expressed in surds. You will see these values 
in the following activity – they are worth memorising as this will help make 
some calculations quicker.

The modulus–argument 
form of a complex 
number is sometimes 
called the polar form, as 
the modulus of a complex 
number is its distance 
from the origin, which is 
also called the pole.

ACTIVITY 5.1
Copy and complete this table. Use the diagrams in Figure 5.11 to help you. 

Give your answers as exact values (involving surds where appropriate), rather 
than as decimals. 

π
6

π
4

π
3

sin

cos

tan

Table 5.1

1

2 2

1 1

1

Figure 5.11

The modulus and argument of a complex number
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ACTIVITY 5.2
Most calculators can convert complex numbers given in the form (x, y) to the 
form (r, θ) (called rectangular to polar, and often shown as R → P) and from  
(r, θ) to (x, y) (polar to rectangular, P→ R).

Find out how to use these facilities on your calculator.

Does your calculator always give the correct θ, or do you sometimes have to add 
or subtract 2π?

Solution
Figure 5.12 shows the four complex numbers z

1, 
z

2
, z

3
 and z

4
.
 

For each complex number, the modulus is 3 3 2 3
2 2( ) + =

= 



 =

⇒ =

α π

πz

arctan 3
3 3

arg 3

1

1
 

By symmetry, = − πzarg 33
, so ( )( ) ( )= − + −π πz 2 3 cos 3 i sin 33

= 



 =

⇒ = − =

α π

π π πz

arctan 3
3 6

arg 6
5
6

2

2

( )= +π πz 2 3 cos 6 i sin 6
5 5

2, so

By symmetry, = − πzarg 5
64

, so ( )( ) ( )= − + −π πz 2 3 cos 6 i sin 6
5 5

4

O Re

Im

1−1−3 −2 2 3

−2

−3

−1

1

2

3

α1

z1

z3

z4

z2

α2α4 α3

α4 = α2
by symmetry.

α3 = α1
by symmetry.

Figure 5.12

, so ( )= +π πz 2 3 cos 3 i sin 31

Write the following complex numbers in modulus-argument form.

(i) z 3 3i1 = +     (ii) = −z 3 + 3i2

(iii) z 3 3i3 = −     (iv)  = − −z 3 3i4  

Example 5.3

T
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① The Argand diagram in Figure 5.13 shows three complex numbers.

1

2

3

4

5

2 3 4 5
–1

–2

–3

1–2 –1–3–4

Im

Re0

z
3

z
1

z
2

 Figure 5.13

 Write each of the numbers z
1
,
 
z

2
 and z

3
 in the form:

(i) a bi+  

(ii) ( )+θ θr cos i sin , giving answers exactly or to 3 significant figures where 
appropriate.

② Find the modulus and argument of each of the following complex numbers, 
giving your answer exactly or to 3 significant figures where appropriate.

(i) 3 2i+  (ii) 5 2i− +  (iii) 3 2i− −  (iv) 2 5i−  

③ Find the modulus and argument of each of the complex numbers on this 
Argand diagram.

1

2

3

2 3
–1

–2

–3

1–2 –1–3

Im

Re0

z2

z3

z4

z1

Figure 5.14

 Describe the transformations that map z
1
 onto each of the other points on 

the diagram.

④ Write each of the following complex numbers in the form x yi+ , giving 
surds in your answer where appropriate.

(i) 4 cos 2 i sin 2 )( ) )( (− + −π π  

(ii) 7 cos 3
4 i sin 3

4 )( +π π  

Exercise 5.1

The modulus and argument of a complex number
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(iii) ( )+π π3 cos 5
6 i sin 5

6
 

(iv) ( )( ) ( )− + −π π5 cos 6 i sin 6

⑤ For each complex number, find the modulus and argument, and hence 
write the complex number in modulus-argument form.

 Give the argument in radians, either as a multiple of π or correct to 3 
significant figures.

(i) 1 (ii) –2 (iii) 3i (iv) –4i

⑥ For each of the complex numbers below, find the modulus and argument, 
and hence write the complex number in modulus-argument form.

 Give the argument in radians as a multiple of π.

(i) 1 i+          (ii) 1 i− +         (iii) 1 i− −        (iv) 1 i−  

⑦ For each complex number, find the modulus and principal argument, and 
hence write the complex number in modulus-argument form.

 Give the argument in radians, either as a multiple of π or correct to 3 
significant figures.

(i) 6 3 6i+   (ii) 3 4i−   (iii) 12 5i− +  

(iv) 4 7i+   (v) 58 93i− −
⑧ Express each of these complex numbers in the form ( )+θ θr cos i sin

giving the argument in radians, either as a multiple of π or correct to 3 
significant figures.

(i) 2
3 i−     (ii) 3 2i

3 i
−
−   (iii) 2 5i

3 i
− −

−  

⑨ Represent each of the following complex numbers on a separate Argand 
diagram and write it in the form x yi+ , giving surds in your answer where 
appropriate.

(i) = = πz z2, arg 2
  (ii) = = πz z3, arg 3  

(iii) = = πz z7, arg 5
6  (iv) = = − πz z1, arg 4

(v) = = − πz z5, arg 2
3  (vi) = = −z z6, arg 2

⑩ Given that ( )+ = αarg 5 2i , find the argument of each of the following in 
terms of α.

(i) 5 2i− −  (ii) 5 2i−  (iii)  5 2i− +
(iv) 2 5i+  (v) 2 5i− +
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⑪ The complex numbers z
1
 and z

2
 are shown on the Argand diagram in 

Figure 5.15.

z1

1

2

3

4

5

2 3 4 51–2 –1–3

Im

Re0

z2

z1

Figure 5.15

(i) Find the modulus and argument of each of the two numbers.
(ii) (a) Find z

1
z

2
 and 

z
z

1

2
.

 (b) Find the modulus and argument of each of z
1
z

2
 and 

z
z

1

2
.

(iii) What rules can you deduce about the modulus and argument of the 
two complex numbers and the answers to part (ii)(b)?

2 Multiplying and dividing complex 
numbers in modulus-argument form

You will have seen in Activity 5.3 that 
multiplying one complex number by 
another involves a combination of an 
enlargement and a rotation.

ACTIVITY 5.3
What is the geometrical effect of multiplying one complex number by another? 
To explore this question, start with the numbers z 2 3i1 = +  and z zi2 1= .
(i) Plot the vectors z1 and z2  on the same Argand diagram, and describe the 

geometrical transformation that maps the vector z1 to the vector z2.
(ii) Repeat part (i) with z 2 3i1 = +  and z z2i2 1= .
(iii) Repeat part (i) with z 2 3i1 = +  and z z(1 i)2 1= + .

Prior knowledge
You need to be familiar with the compound angle formulae. These are covered in the 
A Level Mathematics book, and a brief introduction is given on page 172 of this book.

Im

ReO

z1z2

r1r2

r1

θ1

θ2

z1

Figure 5.16

Multiplying and dividing complex numbers in modulus-argument form
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You obtain the vector z
1
z

2
 by enlarging the vector z

1
 by the scale factor |z

2
|, 

and rotate it anticlockwise through an angle of arg  z
2
.

So to multiply complex numbers in modulus-argument form, you multiply their 
moduli and add their arguments.

 z z z z1 2 1 2=  

 ( ) = +z z z zarg arg arg1 2 1 2

You can prove these results using the compound angle formulae.

   

z z r r

r r

r r

(cos i sin ) (cos i sin )

(cos cos i cos sin +i sin cos sin sin )

[(cos cos sin sin ) i( cos sin +sin cos )]

1 2 1 1 1 2 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

= + × +
= + −
= − +

θ θ θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

 

          
r r [(cos( ) i sin( )]1 2 1 2 1 2= + + +θ θ θ θ

So, =z z r r1 2 1 2 and = +θ θz zarg( )1 2 1 2.

Dividing complex numbers works in a similar way. You obtain the vector 
z
z

1

2
 by 

enlarging the vector z
1
 by the scale factor 

z
1

2

, and rotate it clockwise through an 
angle of arg z

2
.

So, to divide complex numbers in modulus-argument form, you divide their 
moduli and subtract their arguments.

   

z
z

z

z
1

2

1

2

=
 

   




 = −z

z z zarg arg arg1

2
1 2

 

You can prove this easily from the multiplication results by letting 
z
z w1

2
= , so 

that z wz1 2= . 

Then =z w z1 2=z w z1 2 , so w
z

z
1

2

=  

and = +z w zarg arg arg1 2 , so = −w z zarg arg arg1 2 .

You may need to add or 
subtract 2π to give the 
principal argument.

The identity 
+θ θcos( )1 2 .

This is equivalent 
to rotating it 
anticlockwise through 

an angle of −arg z
2
.

The identity 
+θ θsin( )1 2 .

Solution
= =

= =

π

π

w w

z w

2 arg 4

5 arg 5
6  

(i) wz w z 2 5 10= = × =  

  
+ = + =π π πw zarg arg 4

5
6

13
12  

The complex numbers w and z are given by w 2 cos 4 i sin 4( )= +π π  and 

z 5 cos 5
6 i sin 5

6( )= +π π .

Find (i) wz and (ii) w
z

 in modulus-argument form. Illustrate each of these on 

a separate Argand diagram.

Example 5.4

This is not in the range 
− < ≤π θ π . 
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so = − = −π π πwzarg( ) 13
12 2 11

12  

( )( ) ( )= − + −π πwz 10 cos 11
12 i sin 11

12

O 2–2–6–8–10 –4 4 6 8

wz

z
w

–4

–6

–2

2

4

Im

Re

Figure 5.17

(ii) = =w
z

w
z

2
5

− = − = −π π πw zarg arg 4
5
6

7
12

( )( ) ( )= − + −π πwz 2
5 cos 7

12 i sin 7
12

O Re

Im

2–2–4 4
–1

1

2

3z

w

wz

Figure 5.18

Subtract 2π to obtain 
the principal argument.

① The complex numbers w and z shown in the Argand diagram are w 1 i= +  
and z 1 3i= −

 

1

2

3

2 3
–1

–2

–3

1–2 –1–3

Im

Re0

z

w

 Figure 5.19

Exercise 5.2

Multiplying and dividing complex numbers in modulus-argument form
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(i) Find the modulus and argument of each of the complex numbers w and z.

(ii) Hence write down the modulus and argument of

 (a) wz 

 (b) w
z

(iii) Show the points w, z, wz  and w
z

 on a copy of the Argand diagram.

② Given that z 2 cos 4 i sin 4 )(= +π π  and w 3 cos 3 i sin 3 )(= +π π , find the

 following complex numbers in modulus-argument form

(i) wz  (ii) w
z  (iii) z

w  (iv) z
1

 

③ The complex numbers z and w are defined as follows:

z 3 3 3i= − +  

= − πw w18, arg  6 = = − πw w18, arg  6
 Write down the values of

(i) zarg  (ii) |z| (iii) zwarg( )  (iv) |zw|.

④  Given that ( )= +π πz 6 cos 6 i sin 6  and ( )( ) ( )= − + −π πw 2 cos 4 i sin 4
, find

 the following complex numbers in modulus-argument form:

(i) w 2  (ii) z5  (iii) w z3 4  

(iv) z5i  (v) w1 i( )+  

⑤ Find the multiplication scale factor and the angle of rotation which maps

(i) the vector 2 3i+  to the vector 5 2i−  

(ii) the vector 4 i− +  to the vector 3i.

⑥ Prove that, in general, ( ) = −z zarg 1 arg . What are the exceptions to this rule?

⑦ (i) Find the real and imaginary parts of 1 i
1 3i
− +
+

.

(ii) Express 1 i− +  and 1 3i+  in modulus-argument form.

(iii) Hence show that = −πcos 5
12

3 1
2 2

, and find an exact expression for 
πsin 5

12
.

⑧ Prove that for three complex numbers = +θ θw r (cos i sin )1 1 1 , 
= +θ θz r  (cos i sin )2 2 2  and = +θ θp r (cos i sin )3 3 3 ,  wzp  = w  z  p   

and = + +wzp w z parg( ) arg arg arg .
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3 Loci in the Argand diagram
A locus is the set of locations that a point can occupy when constrained by a 
given rule. The plural of locus is loci. 

Loci of the form z a r−− ==  
Figure 5.20 shows the positions for two general complex numbers z x y i1 1 1= +  
and z x y i2 2 2= + .

Im

ReO

x2 – x1

x1 + y1i

x2 + y2i

y2 – y1

Figure 5.20

You saw earlier that the complex number z
2
– z

1
 can be represented by the vector 

from the point representing z
1
 to the point representing z

2
 (see Figure 5.20). This 

is the key to solving many questions about sets of points in an Argand diagram, as 
shown in the following example.

Solution
(i)  z 5=  

|z| = 5 means that the
distance of z from the
origin is 5 units. So z
lies on a circle, centre
the origin and radius 5.

Re

Im

O 5

Figure 5.21

Draw Argand diagrams showing the following sets of points z  for which 

(i) z 5=  

(ii) z 3 5− =  

(iii) z 4i 5− =  

(iv) z 3 4i 5− − =

Example 5.5
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(ii) z 3 5− =  

|z − 3| = 5 means that
the distance of z from
the point 3 on the real
axis is 5 units. So z lies
on a circle, centre 3 and
radius 5.

Re83

Im

–2 O

Figure 5.22

(iii) − =z 4i 5

Re

Im

4i

O

|z − 4i| = 5 means that
the distance of z from
the point 4i on the
imaginary axis is 5 units.
So z lies on a circle,
centre 4i and radius 5.

9i

–i

Figure 5.23

(iv) − − =z 3 4i 5

− −z 3 4i  can be written as z 3 4i( )− + .

Re

Im

3 + 4i

O

|z − (3 + 4i)| = 5 means
that the distance of z
from the point 3 + 4i is
5 units. So z lies on a
circle, centre 3 + 4i and
radius 5.

Figure 5.24

Generally, a locus in an Argand diagram of the form z a r− =  is a circle, centre 
a  and radius r.

In the example above, each locus is the set of points on the circumference of the 
circle. It is possible to define a region in the Argand diagram in a similar way.
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Solution
(i) <z 5  

Re5

Im

O

|z| < 5 means that all the
points inside the circle are
included, but not the points
on the circumference of the
circle. The circle is shown
as a dotted line to indicate
that it is not part of the locus.

Figure 5.25

(ii) − >z 3 5

Re3

Im

O 8–2

|z − 3| > 5 means that all
the points outside the circle
are included, but not the
points on the circumference
of the circle.

Figure 5.26

Draw Argand diagrams showing the following sets of points z for which

(i) <z 5 

(ii) − >z 3 5  

(iii) − ≤z 4i 5  

Example 5.6
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In Activity 5.4  you looked at the loci of points of the form z aarg
4

– =( ) π
 where

a is a fixed complex number. On the Argand diagram the locus looks like this.

Re

a

Im

O

θ
The point z = a is not
part of the locus,
because the argument
of zero is not defined.

Figure 5.28

The locus is a half line of points from the point a and with angle measured θ 
from the positive horizontal axis, as shown in Figure 5.28.

(iii) − ≤z 4i 5

4

|z − 4i| ≤ 5 means that all
the points inside the circle are
included and also the points
on the circumference of the
circle. The circle is shown as
a solid line to indicate that it
is part of the locus.

O

9

Re

Im

–1

Figure 5.27

Loci of the form arg −−z a)(  = q

ACTIVITY 5.4
(i) Plot some points which have argument 

4
π . 

Use your points to sketch the locus of arg = πz
4

.

Is the point –2 – 2i  on this locus?

How could you describe the locus?

(ii) Which of the following complex numbers satisfy arg π− =z( 2)
4

?
 (a) =z 4      
 (b) =z 3 + i  
 (c) =z 4i  
 (d) =z 8 + 6i  
 (e) =z 1 – i  

 Describe and sketch the locus of points which satisfy arg π− =z( 2)
4

.
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Solution
(i) This is a half line starting from z 3= , at an angle π2

3
.

 

Re3

Im

2π
3

O

 Figure 5.29

(ii)  This can be written in the form ( )( )− − = πzarg 2i 6  so it is a half line 

starting from 2i−  at an angle 6
π .

 

Re

Im

−2

O π
6

 Figure 5.30

(iii)  This can be written ( )( )− − = − πzarg 1 4i 4  so it is a half line starting 

from 1 4i−  at an angle − π
4 .

 

– π4

O Re

Im

–4

1

 Figure 5.31

Sketch the locus of z in an Argand diagram when

(i) ( )− = πzarg 3 2
3

(ii) ( )+ = πzarg 2i 6

(iii) ( )− + = − πzarg 1 4i 4 .

Example 5.7
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Solution
(i)  This is the region between the two half lines starting at z 3i= , at angle 

0 and angle π
3

.

O Re

Im

3
π
3

Figure 5.32

(ii)  zarg 3 4i( )− +  can be written zarg 3 4i( )( )− −  so this is the region 

between two half lines starting at 3 4i−  at angles − π
4

 and π
4

.

–4

3O Re

Im

– π4

π
4 The lines are

not included
in the locus.

Figure 5.33

Sketch diagrams that represent the regions represented by

(i) ( )≤ − ≤ πz0 arg 3i 3  

(ii) ( )− − +π πz4 < arg 3 4i < 4
.

Example 5.8

Loci of the form −− == −−z a z b  

ACTIVITY 5.5
On an Argand diagram, mark the points 3 + 4i  and –1 + 2i . Identify some points 
that are the same distance from both points. 

Use your diagram to describe and sketch the locus i =z z– 3 – 4 + 1 – 2i .
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Generally, the locus − = −z a z b  represents the locus of all points which lie 
on the perpendicular bisector between the points represented by the complex 
numbers a and b.

Solution
(i) The condition can be written as ( ) ( )− + − − +z z| 3 4i |=| 1 2i |.

3 + 4i

O

Im

Re

–1 + 2i

The distance of z from the point
3 + 4i is equal to the distance of
z from the point –1 + 2i, so the
locus is the perpendicular bisector
of these two points.

Figure 5.34

(ii) z z| 3 4i|<| 1 2i|− − + −

3 + 4i

O

Im

Re

–1 + 2i

In this case the locus includes all the points
closer to the point 3 + 4i than to –1 + 2i. So
the locus is the shaded area. The perpendicular
bisector itself is not included in the locus, so
it is shown as a dotted line.

Figure 5.35

Show each of the following sets of points on an Argand diagram.

(i) − − + −z z3 4i = 1 2i

(ii) − − + −z z3 4i < 1 2i

(iii) − − ≥ + −z z3 4i 1 2i

Example 5.9
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(iii) − − ≥ + −z z3 4i 1 2i

3 + 4i

O

Im

Re

–1 + 2i

In this case the locus includes all the points
closer to the point –1 + 2i than to 3 + 4i, and
also all the points which are the same distance
from the two points. So the locus is the shaded
area as well as the perpendicular bisector,
which is shown as a solid line to indicate that
it is part of the locus.

Figure 5.36

Solution
(i)  − −z 3 4i  can be written as ( )− +z 3 4i  so (i) is a circle  

centre 3 4i+  with radius 5.

(ii)    = −z z 4i  represents the perpendicular bisector of the line between 
the points z 0=  and z 4i= .

|z − 3 − 4i| ≤ 5 represents the circumference
and the inside of the circle. |z| ≤ |z − 4i|
represents the side of the perpendicular
bisector that is nearer to the origin including
the perpendicular bisector itself. The shaded
area represents the region for which both
conditions are true.

Re

Im

4

3O

2

Figure 5.37

Example 5.10 Draw, on the same Argand diagram, the loci

(i) − −z 3 4i = 5

(ii) = −z z 4i .

Shade the region that satisfies both − − ≤z 3 4i 5  and ≤ −z z 4i .

 Don’t get confused between loci of the forms − =z a r and 
− = −z a z b .

− =z a r  represents a circle, centred on the complex number a, with 
radius r. 

− = −z a z b  represents the perpendicular bisector of the line 
between the points a and b.
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Exercise 5.3
① For each of parts (i) to (iv), draw an Argand diagram showing the set of 

points z for which the given condition is true.

(i) =z 2  (ii) − =z 2i 2

(iii) − =z 2 2  (iv) + + =z 2 2i 2  

② For each of parts (i) to (iv), draw an Argand diagram showing the set of 
points z for which the given condition is true.

(i) = πzarg   3   (ii) ( )+ + = πzarg 1 3i 3

(iii) ( )− + = πzarg 1 3i 2
3  (iv) ( )− − = − πzarg 1 3i 2

3  

③ For each of parts (i) to (iv), draw an Argand diagram showing the set of 
points z for which the given condition is true.

(i) − = −z z8 4  (ii) − − = − −z z2 4i 6 8i  

(iii) + − = +z z5 2i 3i  (iv) + + = −z z3 5i i  

④ Write down the loci for the sets of points z that are represented in each of 
these Argand diagrams.

(i) 

1

2

3

4

5

2 3 4 5
–1

–2

–3

1–2 –1–3

Im

Re0

Figure 5.38
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(ii) 

1

2

3

4

5

2 3 4
–1

–2

1–2 –1–3–4–5–6–7

Im

Re0

Figure 5.39

(iii) 

1

2

3

4

5

6

2 3 4 5
–1

–2

1–2 –1–3–4

Im

Re0

Figure 5.40
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⑤ Write down, in terms of z, the loci for the regions that are represented in 
each of these Argand diagrams.

(i) 

1

2

3

4

5

6

7

2 3 4 5 6 7
–1

1–1

Im

Re0

Figure 5.41

(ii) 

–5

–4

–3

–2

–6

2

2 3 4 5 6 7 8 9
–1

1–1–2–3

Im

Re0

1

Figure 5.42
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(iii) 

1

2

3

4

5

6

7

1 2 3
–1

–5–6–7 –3 –1–2

Im

ReO–4

Figure 5.43

⑥ Draw an Argand diagram showing the set of points z for which 
− + ≤z 12 5i 7. Use the diagram to prove that, for these z, ≤ ≤z6 20.

⑦ For each of parts (i) to (iii), draw an Argand diagram showing the set of 
points z for which the given condition is true.

(i) ( )− + ≤ − πzarg 3 i 6  

(ii) z0 arg 3i 3
4( )≤ − ≤ π  

(iii) z4
arg 5 3i 3( )− < + − <π π

⑧ On an Argand diagram shade in the regions represented by the following 
inequalities.

(i) − ≤z 3 2  

(ii) − > +z z6i 2i  

(iii) ≤ − − ≤z2 3 4i 4  

(iv) + + ≤ − −z z3 6i 2 7i .

⑨ Shade on an Argand diagram the region satisfied by the inequalities 

− + ≤z 1 i 1 and π− < <z3 arg 0 .
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⑩ 

–2

–3

–1

3

4

1 2 3 4 5

–4

–6

–5–6–7 –3 –1

Im

ReO–4

1

2

–5

–2

Figure 5.44

(i) For this Argand diagram, write down in terms of z

(a) the loci of the set of points on the circle
(b) the loci of the set of points on the straight line.

(ii) Using inequalities, express in terms of z the shaded region on the 
Argand diagram.

⑪ Sketch on the same Argand diagram

(i) the locus of points − + =z 2 2i 3 

(ii) the locus of points ( )− + = − πzarg 2 2i 4  

(iii) the locus of points ( )− + = πzarg 2 2i   2 .

 Shade the region defined by the inequalities − + ≤z 2 2i 3 

( )− + ≤ − πzarg 2 2i 4  and ( )− + ≥ πzarg 2 2i   2 . 

⑫ You are given the complex number w 3 3i= − + .

(i) Find arg  w and |w − 2i|.
(ii) On an Argand diagram, shade the region representing complex 

numbers z which satisfy both of these inequalities:

 |z − 2i|≤ 2 and z2 arg   2
3

π π≤ ≤

 Indicate the point on your diagram which corresponds to w.

⑬ Sketch a diagram that represents the regions represented by

 − − ≤z 2 2i 2  and π≤ − ≤z0 arg( 2i) 4 .

⑭ By using an Argand diagram, determine if it is possible to find values of z 
for which + ≥z – 2 i 10 and + + ≤z 4 2i 2  simultaneously.

⑮ What are the greatest and least values of + −z 3 2i  if − + ≤z 5 4i 3 ?

⑯ You are given that − = − +z z3 2 3 9i .

(i) Show, using algebra with z x yi= + , that the locus of z is a circle and 
state the centre and radius of the circle.

(ii) Sketch the locus of the circle on an Argand diagram.
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KEY POINTS
1 The modulus of = +z x yi  is = +   z x y2 2 . This is the distance of the 

point z from the origin on the Argand diagram.
2 The argument of z is the angle θ, measured in radians, between the line 

connecting the origin and the point z and the positive real axis.
3 The principal argument of z, arg z, is the angle θ, measured in radians, for 

which π θ π− < ≤ , between the line connecting the origin and the point z 
and the positive real axis.

4 For a complex number z, ∗ =zz z
2
. 

5 The modulus–argument form of z is )( θ θ= +z r   cos i sin , where =r z| | 
and θ = zarg . This is often written as (r, θ)

6 For two complex numbers z
1
 and z

2
:

 =z z z z1 2 1 2  ( ) = +z z z zarg arg arg1 2 1 2  

 =z
z

z

z
1

2

1

2

  




 = −

z
z z zarg arg arg1

2
1 2  

7 The distance between the points z
1
 and z

2
 in an Argand diagram is −z z1 2 .

8 − =z a r  represents a circle, centre a and radius r.  
− <z a r  represents the interior of the circle, and − >z a r  represents 

the exterior of the circle.
9 ( ) θ− =z aarg  represents a half line starting at =z a  at an angle of θ from 

the positive real direction.
10 − = −z a z b  represents the perpendicular bisector of the points a and b.

FUTURE USES
n	 Work on complex numbers will be developed further in A Level Further 

Mathematics.
n	 Complex numbers will be needed for work on differential equations in A Level 

Further Mathematics, in particular in modelling oscillations (simple harmonic 
motion).

LEARNING OUTCOMES
 When you have completed this chapter you should be able to:

➤	 find the modulus of a complex number

➤	 find the principal argument of a complex number using radians

➤	 express a complex number in modulus-argument form

➤	 multiply and divide complex numbers in modulus-argument form

➤	 represent multiplication and division of two complex numbers on an Argand 
diagram

➤	 represent and interpret sets of complex numbers as loci on an Argand 
diagram:

➤	 circles of the form | z – a | = r

➤	 half-lines of the form arg(z – a) = θ
➤	 lines of the form | z – a | = | z – b |

➤	 represent and interpret regions defined by inequalities based on the above.



Matrices and their inverses

The grand thing is to be able 
to reason backwards.

Arthur Conan Doyle

6

The diagram in Figure 6.1 is called a Sierpinsky triangle. The pattern can be 
continued with smaller and smaller triangles.

Figure 6.1 Sierpinsky triangle.

Discussion points
� What is the same 

about each of the 
triangles in the 
diagram? 

� How many of the 
yellow triangles are 
needed to cover the 
large purple triangle?

124
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1 The determinant of a matrix
Figure 6.2 shows the unit square, labelled OIPJ, and the parallelogram OIPJ 

formed when OIPJ is transformed using the matrix 






5 4
1 2 .

1

1

2

3

2 3 4 5 6 7 8 9

y

xO

J′

P′

I′
J P

I

6.5 units2

4 units2

2.5 units2

8 units2

Figure 6.2

What eff ect does the transformation have on the area of OIPJ?

The area of OIPJ is 1 unit².

To fi nd the area of OIPJ, a rectangle has been drawn surrounding it. The area 
of the rectangle is 9 × 3 = 27 units². The part of the rectangle that is not inside 
OIPJ has been divided up into two triangles and two trapezia and their areas are 
shown on the diagram.

So, area OIPJ = 27 − 2.5 − 8 − 6.5 − 4 = 6 units².

The interesting question is whether you could predict this answer from the 

numbers in the matrix 






5 4
1 2

.

You can see that 5 × 2 − 4 × 1 = 6. Is this just a coincidence? 

To answer that question you need to transform the unit square by the general 

2 × 2 matrix 






a b
c d  and see whether the area of the transformed fi gure is 

(ad − bc) units². The answer is, ‘Yes’, and the proof is left for you to do in the 
activity below. 

Hint
You are advised to use 
the same method as 
the example above but 
replace the numbers by 
the appropriate letters.

ACTIVITY 6.1

The unit square is transformed by the matrix 






a b
c d .

Prove that the resulting shape is a parallelogram with area (ad − bc) units2.

It is now evident that the quantity (ad − bc) is the area scale factor associated with the 

transformation matrix 






a b
c d . It is called the determinant of the matrix.

Prior knowledge
You need to have covered 
the work on matrices 
and transformations 
from Chapter 1.
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Solution
−





= × − − × = + =det
1 2
3 0

(1 0) ( 2 3) 0 6 6

Area of  T = ×

=

8 6

48cm2

The area scale 
factor of the 
transformation 
is 6 ...

… and so the area of the original 
shape is multiplied by 6.

Note
In Example 6.1, it does 
not matter what shape S 
looks like; for any shape 
S with area 8 cm², the 
area of the image T will 
always be 48 cm².

Example 6.2 (i)  Draw a diagram to show the image of the unit square OIPJ under the 

transformation represented by the matrix M = 






2 3
4 1

.

(ii) Find det M.

(iii) Use your answer to part (ii) to fi nd the area of the transformed shape.

Solution

(i) 












=






2 3
4 1

0 1 1 0
0 0 1 1

0 2 5 3
0 4 5 1

 

Figure 6.4 

O x

y

1 2 3 4 5 6 7 8

1

2

4

5

3

P

I

I ′

J

P ′

J ′

Example 6.1 A shape S has area 8 cm². S is mapped to a shape T under the transformation 

represented by the matrix M = −





1 2
3 0

. 

Find the area of shape T.

x

y

T

S

Figure 6.3
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The sign of the determinant does have significance. If you move anticlockwise 
around the original unit square you come to vertices O, I, P, J in that order. 
However, moving anticlockwise about the image reverses the order of the 
vertices i.e. O, J, P, I. This reversal in the order of the vertices produces the 
negative determinant.

(ii) 






= × − × = − = −det
2 3
4 1

(2 1) (3 4) 2 12 10

(iii) The area of the transformed shape is 10 square units. 

Notice that the determinant is negative. Since area 
cannot be negative, the area of the transformed shape 
is 10 square units.

Discussion point
Which of the following transformations reverse the order of the vertices?

➜	 (i)   rotation

➜	 (ii)  reflection

➜	 (iii) enlargement
Check your answers by finding the determinants of matrices representing these 
transformations.

Example 6.3
Given that =







P
2 1
0 1

 and =






Q
2 1
1 2

, find

(i) det P

(ii) det Q

(iii) det PQ.

What do you notice? 

Solution
(i) det P = − =2 0 2  

(ii) det Q = − =4 1 3  

(iii) PQ 2 1
0 1

2 1
1 2

5 4
1 2

=


















 =









  det (PQ) = − =10 4 6  

The determinant of PQ is given by det P × det Q.

The example above illustrates the general result that = ×MN M Ndet ( ) det det .

Remember that a transformation MN means ‘apply N, then apply M’.
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This result makes sense in terms of transformations. In Example 6.3, applying Q 
involves an area scale factor of 3, and applying P involves an area scale factor of 
2. So applying Q followed by P, represented by the matrix PQ, involves an area 
scale factor of 6.

The work so far has been restricted to 2 × 2 matrices. All square matrices have 
determinants; for a 3 × 3 matrix the determinant represents a volume scale 
factor. However, a non-square matrix does not have a determinant. 

Discussion points
➜	Find out how to calculate the determinant of square matrices using your 

calculator. 

➜	Use your calculator to fi nd the determinant of the matrix 












2 0 0
0 2 0
0 0 2

.

➜	Describe the transformation represented by the matrix 












2 0 0
0 2 0
0 0 2

 and 
explain the signifi cance of the determinant.

Example 6.4

A transformation is represented by the matrix A = 
−











1 0 0
0 1 0
0 0 1

.

(i) Describe the transformation represented by A.

(ii) Using a calculator, fi nd the determinant of A.

(iii)  Decide whether the transformation represented by A preserves or 
reverses the orientation.

 Explain how this is connected to your answer to part (ii).

Solution
(i) Matrix A represents a refl ection in the plane =x 0.

(ii) Using a calculator, det A = –1.

(iii)  Matrix A represents a refl ection, so the 
orientation is reversed. This is confi rmed 
by the negative determinant.

z

y

x

R

P

Q

z

y

x

P′

Q′

R′

Figure 6.5 

The fi rst column of A 
shows that the unit vector 
i is mapped to –i, and 
the other columns show 
that the unit vectors j 
and k are mapped to 
themselves.

TECHNOLOGY
You will learn how to 
fi nd the determinant of a 
3 × 3 matrix in the A Level 
Further Mathematics 
course. For now, you can 
use your calculator to 
fi nd the determinant of 
3 × 3 matrices.

T
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Matrices with determinant zero
Figure 6.6 shows the image of the unit square OIPJ under the transformation 

represented by the matrix =






T
6 4
3 2

.

O x

y

2−2 4 6 8 1 0

2

4

6

I

I′

J P

P′

J′

Notice that the image points
all lie on the line y =   x.1

2

Figure 6.6

The determinant of  T = × − × = − =(6 2) (4 3) 12 12 0.

This means that the area scale factor of the transformation is zero, so any shape is 
transformed into a shape with area zero. 

In this case, the image of a point (p, q) is given by 

p

q

p q

p q

p q

p q
6 4
3 2

6 4

3 2

2(3 2 )

3 2



















 =

+
+









 =

+
+









 .

You can see that for all the possible image points, the y-coordinate is half the 
x-coordinate, showing that all the image points lie on the line x=y 1

2 .

In this transformation, more than one point maps to the same image point. 

For example,  (4, 0) → (24, 12)

   (0, 6) → (24, 12)

   (1, 4.5) → (24, 12). 

Discussion point
➜	What is the effect 

of a transformation 
represented by a 
3 × 3 matrix with 
determinant zero?

① For each of the following matrices:

(a)  draw a diagram to show the image of the unit square under the 
transformation represented by the matrix

(b) find the area of the image in part (a)

(c) find the determinant of the matrix.

(i) 
−





3 2
4 1

 (ii) 
−







4 0
1 4

 (iii) −
−







4 8
1 2

 (iv) −
−







5 7
3 2

 

② The matrix − −
−







x
x

3 3
2 5

 has determinant 9.

 Find the possible values of x.

Exercise 6.1
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The determinant of a matrix 

③ (i) Write down the matrices A, B, C and D which represent:

A – a reflection in the x-axis

B – a reflection in the y-axis

C – a reflection in the line =y x 

D – a reflection in the line = −y x

(ii) Show that each of the matrices A, B, C and D has determinant of –1.

(iii) Draw diagrams for each of the transformations A, B, C and D to 
demonstrate that the images of the vertices labelled anticlockwise on the 
unit square OIPJ are reversed to a clockwise labelling.

④ A triangle has area 6 cm². The triangle is transformed by means of the 

matrix 
−







2 3
3 1

.

 Find the area of the image of the triangle.

⑤ The two-way stretch with matrix 






a
d
0

0
 preserves the area (i.e. the area 

of the image is equal to the area of the original shape).

 What is the relationship connecting a and d?

⑥ Figure 6.7 shows the unit square transformed by a shear.

−1

O x

y

1 2 3 4

1
P

I
I′

J J′ P′

Figure 6.7

(i) Write down the matrix which represents this transformation.

(ii) Show that under this transformation the area of the image is always 
equal to the area of the object.

⑦ A transformation in three dimensions is represented by the matrix 

= −












A
2 3 1
1 1 0

0 4 2

.

 A cuboid has volume 5 cm³. What is the volume of the image of the cuboid 
under the transformation represented by A?

⑧ M = 






5 3
4 2

 and N = −






3 2
2 1

.

(i) Find the determinants of M and N.

(ii) Find the matrix MN and show that det(MN) = det M × det N.

T
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⑨ The plane is transformed by the matrix M = 
−
−







4 6
2 3

.
(i) Draw a diagram to show the image of  

the unit square under the transformation represented by M.

(ii) Describe the effect of the transformation and explain this with reference 
to the determinant of M.

⑩ The plane is transformed by the matrix N = 
−

−






5 10
1 2

.
(i) Find the image of the point (p, q).

(ii) Hence show that the whole plane is mapped to a straight line and find 
the equation of this line.

(iii) Find the determinant of N and explain its significance.

⑪ A matrix T maps all points on the line + =x y2 1  to the point (1, 3).
(i) Find the matrix T and show that it has determinant of zero.

(ii) Show that T maps all points on the plane to the line =y x3 .

(iii) Find the coordinates of the point to which all points on the line 
+ =x y2 3  are mapped.

⑫ The plane is transformed using the matrix 






a b
c d

 where − =ad bc 0 .

 Prove that the general point P(x, y) maps to P on the line − =cx ay 0 .

⑬ The point P is mapped to P on the line =y x3  so that PP is parallel to 
the line =y x3 .
(i) Find the equation of the line parallel to =y x3  passing through the 

point P with coordinates (s, t).
(ii) Find the coordinates of P, the point where this line meets =y x3 .

(iii) Find the matrix of the transformation which maps P to P and show 
that the determinant of this matrix is zero.

2 The inverse of a matrix
The identity matrix
Whenever you multiply a 2 × 2 matrix M by 







1 0
0 1

 the product is M. It 

makes no difference whether you pre-multiply, for example,

1 0
0 1

4 2
6 3

4 2
6 3









 −







 = −







  

or post-multiply

4 2
6 3

1 0
0 1

4 2
6 3

−

















 = −







 .
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The inverse of a matrix

The matrix 






1 0
0 1

 is known as the 2 × 2 identity matrix. 

Identity matrices are often denoted by the 
letter I.

For multiplication of matrices, I behaves in 
the same way as the number 1 when dealing 
with the multiplication of real numbers.

The transformation represented by the 
identity matrix maps every points to itself.

Similarly, the 3 × 3 identity 

matrix is 
1 0 0
0 1 0
0 0 1









 .

ACTIVITY 6.2
(i) Write down the 

matrix P which 
represents a 
reflection in the 
x-axis.

(ii) Find the matrix P².
(iii) Comment on your 

answer.

To undo the effect of a rotation through 90° anticlockwise about the origin, you 
need to carry out a rotation through 90° clockwise about the origin. These two 
transformations are inverses of each other.

Similarly, the matrices which represent these transformations are inverses of each other.

In Example 6.5, =
−







B
0 1
1 0

 is the inverse of = −





A
0 1
1 0

, and vice versa.

Finding the inverse of a matrix
If the product of two square matrices, M and N, is the identity matrix I, then N 
is the inverse of M. You can write this as N = M−1.

Generally, if M = 






a b
c d

 you need to find an inverse matrix 






p q

r s
 such 

that a b
c d

p q

r s
1 0
0 1



















 =









 .

Example 6.5 (i)  Write down the matrix A which represents a rotation of 90° 
anticlockwise about the origin.

(ii)  Write down the matrix B which represents a rotation of 90° 
clockwise about the origin.

(iii) Find the product AB and comment on your answer.

Solution

(i) = −





A
0 1
1 0

 

(ii) =
−







B
0 1
1 0

(iii) AB 0 1
1 0

0 1
1 0

1 0
0 1

= −







 −









 =











AB represents a rotation of 90° clockwise followed by a rotation of 
90° anticlockwise. The result of this is to return to the starting point.
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ACTIVITY 6.3

Multiply 






a b
c d

 by 
−

−






d b
c a

.

What do you notice?

Use your result to write down the inverse of the general matrix M = 






a b
c d

.

How does the determinant |M| relate to the matrix M−1?

You should have found in the activity that the inverse of the matrix 

M = 






a b
c d

 is given by 

M–1 = −
−

−




ad bc

d b
c a

1
.

If the determinant is zero then the inverse matrix does not exist and the matrix 
is said to be singular. If det M ≠ 0 the matrix is said to be non-singular.

If a matrix is singular, then it maps all points on the plane to a straight line. So 
an infinite number of points are mapped to the same point on the straight line. 
It is therefore not possible to find the inverse of the transformation, because an 
inverse matrix would map a point on that straight line to just one other point, 
not to an infinite number of them.

A special case is the zero matrix, which maps all points to the origin.

Example 6.6

A = 






11 3
6 2

 

(i) Find A–1.

(ii)  The point P is mapped to the point Q (5, 2) under the transformation 
represented by A. Find the coordinates of P.

Solution
(i)  det A = (11 × 2) – (3 × 6) = 4 

A–1 = 
−

−






1
4

2 3
6 11

 

(ii) –A 5
2

1
4

2 3
6 11

5
2

1
4

4
8

1
2

1








 = −

−




















=
−











=
−











 

The coordinates of P are (1, –2).

A maps P 

to Q, so A–1 

maps Q to P.
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As matrix multiplication is generally non-commutative, it is interesting to fi nd 
out if MM–1 = M–1M. The next activity investigates this.

ACTIVITY 6.4

(i) In Example 6.6 you found that the inverse of A = 






11 3
6 2

 is 

A–1 = 





1
4

2 –3
–6 11

. 

 Show that AA–1 = A–1A = I.

(ii) If the matrix M = 






a b
c d

, write down M–1 and show that MM–1 = M–1M = I.

The result MM−1 = M−1M = I is important as it means that the inverse of a 
matrix, if it exists, is unique. This is true for all square matrices, not just 2 × 2 
matrices.

Discussion points
➜	How would you reverse the effect of a rotation followed by a refl ection?

➜	How would you write down the inverse of a matrix product MN in terms of 
M−1 and N−1?

The inverse of a product of matrices
Suppose you want to fi nd the inverse of the product MN, where M and N are 
non-singular matrices. This means that you need to fi nd a matrix X such that

X(MN) = I.

X(MN) = I ⇒ XMNN–1 = IN–1 

⇒ XM = IN–1 

⇒ XMM–1 = N–1M–1 

⇒ X = N–1M–1 

So (MN)–1 = N–1M–1 for matrices M and N of the same order. This means that 
when working backwards, you must reverse the second transformation before 
reversing the fi rst transformation.

Post multiply by N–1

Post multiply by M–1

Using MM–1 = I

Using NN–1 = I

The inverse of a matrix

TECHNOLOGY
Investigate how to use 
your calculator to fi nd 
the inverse of 2 × 2 and 
3 × 3 matrices. 

Check using your 
calculator that 
multiplying a matrix 
by its inverse gives the 
identity matrix.
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Exercise 6.2
① For the matrix −

−






5 1
2 0

(i) find the image of the point (3, 5)

(ii) find the inverse matrix

(iii) find the point which maps to the image (3, -2).

② Determine whether the following matrices are singular or non-singular.  
For those that are non-singular, find the inverse.

(i) 
−







6 3
4 2

 (ii) 






6 3
4 2

 (iii) 






11 3
3 11

 (iv) 






11 11
3 3

(v) 
−





2 7
0 0

 (vi) 
−

−






a a
b b
2 4

4 8
 (vii) 

−
−







a
b
2 4

4 8

③ Using a calculator, find whether the following matrices are singular or non-
singular. For those that are non-singular find the inverse.

(i) − −
− −













2 4 9
1 3 0

4 2 7
 (ii) 

−
−

− −













4 0 1
2 3 5
4 6 10

 (iii) − −












1 0 3
8 2 1
3 5 11

 

④ M = 






5 6
2 3

 and N = 
− −







8 5
2 1

.

 Calculate the following:

(i) M−1 (iii) MN (v) (MN)−1 (vii) M−1N−1

(ii) N−1 (iv) NM (vi) (NM)−1 (viii) N−1M−1

⑤ The diagram shows the unit square OIPJ mapped to the image OI′P′J′ 
under a transformation represented by a matrix M.

 

1

2

3

4

5

–1 0 1 2 3–2–3 x

y

I

J P
J′

P′

I′

Figure 6.8

(i) Find the inverse of M.

(ii) Use matrix multiplication to show that M−1 maps OI′P′J′ back to OIPJ.

⑥ The matrix 
−
− −







k
k

1 2
1 4

 is singular.

 Find the possible values of k.

⑦ Given that M = 
−







2 3
1 4

 and MN = 
−

− −






7 2 9
2 1 12

   
10
17

, find the 
matrix N. 

T
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⑧ Triangle T has vertices at (1, 0), (0, 1) and (−2, 0).

 It is transformed to triangle T′ by the matrix M = 






3 1
1 1

.

(i) Find the coordinates of the vertices of T′.
 Show the triangles T and T′ on a single diagram.

(ii) Find the ratio of the area of T′ to the area of  T. 

 Comment on your answer in relation to the matrix M.

(iii) Find M–1 and verify that this matrix maps the vertices of T′ to the 
vertices of  T.

⑨ M = 






a b
c d

  is a singular matrix.

(i) Show that M² = +a d M( ) .

(ii) Find a formula which expresses Mn  in terms of M, where n is a positive 
integer.

  Comment on your results.

⑩ Given that PQR = I, show algebraically that

(i) Q = P–1 R–1

(ii) Q–1 = RP.

 Given that P = 






3 1
1 2

 and R = −
−







12 3
2 1

(iii) use part (i) to find the matrix Q

(iv) calculate the matrix Q–1

(v) verify that your answer to part (ii) is correct by calculating RP and 
comparing it with your answer to part (iv).

⑪ A = 












1 7 4
0 1 2
0 0 1

, B = 
− −













1 0 0
3 1 0
1 4 1

 and C = AB.

(i) Calculate the matrix C.

(ii) Work out the matrix product A














a b
c 

1
0 1
0 0 1

.

(iii) Using the answer to part (ii), find A–1.

(iv) Using a calculator, find B–1.

(v) Using your results from parts (iii) and (iv), find C–1.

⑫ The matrix M = 
− −

+ −
− −















k k
k

k k

1 1 0
1 1 2

1 2 1

 has inverse  

M–1 = 

− −

− − −

−



















k

k k

k

1 2
5
2 2 1

7
2 1

.

 Find the value of k.

T

The inverse of a matrix



6

Chapter 6 M
atrices and their inverses

137

3 Using matrices to solve 
simultaneous equations
There are a number of methods to solve a pair of linear simultaneous equations 
of the form

+ =
− =

x y

x y

3 2 17

2 5 24
 

These include elimination, substitution or graphical methods.

An alternative method involves the use of inverse matrices. This method has the 
advantage that it can more easily be extended to solving a set of n equations in 
n variables.

Example 6.7 Use a matrix method to solve the simultaneous equations

+ =
− =

x y

x y

3 2 17

2 5 24

Solution

−


















 =











x
y

3 2
2 5

17
24

.

− − −
−





 −













= − − −

−












x
y

1
19

5 2
2 3

3 2
2 5

1
19

5 2
2 3

17
24

 

 






= − −





=
−







x
y

1
19

133
38

7
2  

The solution is = = −x y7,  2.

The inverse of the matrix 








3 2

2 –5
 is 









– 1

19
–5 –2
–2 3

.

Write the equations in matrix form.

As M−1Mp = p the left-hand 

side simplifies to 






x
y .

Pre-multiply both sides of the matrix equation by the inverse matrix.

Geometrical interpretation in two dimensions
Two equations in two unknowns can be represented in a plane by two straight 
lines. The number of points of intersection of the lines determines the number 
of solutions to the equations.
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Using matrices to solve simultaneous equations

There are three different possibilities.

Case 1

Example 6.7 shows that two simultaneous equations can have a unique solution. 
Graphically, this is represented by a single point of intersection.

O x

y

5 10

(7, −2)

2x − 5y = 24

3x + 2y = 17

5

5

The simultaneous equations
can be written in matrix form as

3
2

x
y

=         .2
−5

17
24

Figure 6.9

This is the case where ≠Mdet 0  and so the inverse matrix M−1 exists, allowing 
the equations to be solved.

Case 2

If two lines are parallel they do not have a point of intersection. For example, 
the lines

+ =
+ =

x y

x y

2 10

2 4
 

are parallel.

O x

y

104
x + 2y = 10x + 2y = 4

5

2

Figure 6.10

The matrix M = 






  1 2
1 2

 has determinant zero and hence the inverse matrix 
does not exist.

The equations can be written in matrix form as 



















x
y

1 2
1 2

=
10
4 .
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Case 3

More than one solution is possible in cases where the lines are coincident, i.e. 
lie on top of each other. For example, the two lines

+ =
+ =

x y

x y

2 10

3 6 30

are coincident. You can see this because the equations are multiples of each other.

O x

y

10

x + 2y = 10
3x + 6y = 30

5

Figure 6.11

In this case the matrix M is 






1 2
3 6

 and =Mdet 0 . 

There are infinitely many solutions to these equations.

The equations can be written in matrix form as 



















x
y

1 2
3 6

=
10
30

.

ACTIVITY 6.5
(i) Write the three simultaneous equations

− + =

+ − = −

+ − =

x y z

x y z

x y z

2 2 3 4

5 6

3 4 2 1

 as a matrix equation.

 Use a matrix method and your calculator to solve the simultaneous equations. 

(ii) Repeat part (i) for the three simultaneous equations

− + =

+ − = −

+ − =

x y z

x y z

x y z

2 2 3 4

5 6

3 3 4 1

 

 What happens in this case? 

 Try to solve the equations algebraically. Comment on your answer.

T
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④  Use a matrix method to solve these simultaneous equations. (You should 
use a calculator to find the inverse matrix.)

+ + =
− − =
+ − =

x y z

x y z

x y z

5 0

2 3 4 7

3 2 6 4  

⑤  For each of the following pair of equations, describe the intersections of the 
pair of straight lines represented by the simultaneous equations. 

(i) + =
+ =

x y

x y

3 5 18

2 4 11

(ii) + =
+ =

x y

x y

3 6 18

2 4 12

(iii) + =
+ =

x y

x y

3 6 18

2 4 15

⑥ Find the two values of k  for which the equations
+ =
+ =

x ky

kx y

2 3

8 6

do not have a unique solution. 

How many solutions are there in each case?

T

① (i) Find the inverse of the matrix −





3 1
2 3

.

(ii) Hence use a matrix method to solve the simultaneous equations

− =
+ =

x y

x y

3 2

2 3 5

② Use matrices to solve the following pairs of simultaneous equations.

(i) + =
− =

x y

x y

3 2 4

2 4

(ii) − =
− = −

x y

x y

3 2 9

4 2

③ (i) Use a calculator to find the inverse of the matrix − −












3 1 1
5 2 3
1 1 1

.

(ii) Hence use a matrix method to solve the simultaneous equations
+ + = −

− − + = −
+ + =

x y z

x y z

x y z

3 2

5 2 3 1

2

T

Exercise 6.3

Using matrices to solve simultaneous equations
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⑦ (i) Find AB where A = 

−
− −

−















k5 2
3 4 5
2 3 4

 

   and B = 

− + +
− + +

− −















k k
k k

1 3 8 4 10
2 2 20 3 25
1 11 14

.

  Hence write down the inverse matrix A−1, stating the condition on the 
value of k  required for the inverse to exist.

(ii) Using the result from part (i) solve the equation

−
− −

−





























=












k x
y

z m

5 2
3 4 5
2 3 4

28
0

when = =k m8 and 2.

⑧ Find the conditions on a and b for which the simultaneous equations
+ =
+ =

ax by

bx ay b

1

have a unique solution.

Solve the equations when a = −3 giving your answers in terms of b. 

Find the value of b for which the solution will lie on the line y = −x.

LEARNING OUTCOMES
When you have completed this chapter you should be able to:

➤	 find the determinant of a 2 × 2 matrix

➤	 know what is meant by a singular matrix

➤	 understand that the determinant of a 2 × 2 matrix represents the area scale 
factor of the corresponding transformation, and understand the significance 
of the sign of the determinant

➤	 find the inverse of a non-singular 2 × 2 matrix

➤	 use a calculator to find the determinant and inverse of a 3 × 3 matrix

➤	 know that the determinant of a 3 × 3 matrix represents the volume scale 
factor of the corresponding transformation

➤	 understand the significance of a zero determinant in terms of transformations

➤	 use the product rule for inverse matrices

➤	 use matrices to solve a pair of linear simultaneous equations in two unknowns

➤	 use matrices to solve three linear simultaneous equations in three unknowns.
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Using matrices to solve simultaneous equations

KEY POINTS

1 If 





a b
c d

M =  then the determinant of M, written det M or |M| is given 

by ad bcMdet = -
2 The determinant of a 2 × 2 matrix represents the area scale factor of the 

transformation.
 The determinant of a 3 × 3 matrix represents the volume scale factor of the 

transformation.

3 If M = 



a b
c d

M =  then M−1 



= −

−
−ad bc
d b
c a

1

4 (MN)−1 = N−1M−1

5 A matrix is singular if the determinant is zero. If the determinant is non-zero 
the matrix is said to be non-singular.

6 If the determinant of a matrix is zero, all points are mapped to either a 
straight line (in two dimensions) or to a plane (three dimensions).

7 If A is a non-singular matrix, AA−1 = A−1A = I.
8 When solving two simultaneous equations in two unknowns, the equations 

can be written as a matrix equation M 











x
y

a
b

= .

 When solving three simultaneous equations in three unknowns, the equations 

can be written as a matrix equation M 






















x
y
z

a
b
c

= .

 In both cases, if det M≠0 there is a unique solution to the equations which 
can be found by pre-multiplying both sides of the equation by the inverse 
matrix M−1.

 If Mdet = 0 there is no unique solution to the equations. In this case there is 
either no solution or an infinite number of solutions.
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Vectors and 3D space

Discussion point
� Are there any 

right angles in the 
building shown 
above?

1 Finding the angle 
between two vectors
In this section you will learn how to � nd the angle 
between two vectors in two dimensions or three 
dimensions.

Prior knowledge
From MEI A Level Mathematics Year 1 (AS) Chapter 12, you need to be able 
to use the language of vectors, including the terms magnitude, direction and 
position vector. You should also be able to fi nd the distance between two points 
represented by position vectors and be able to add and subtract vectors and 
multiply a vector by a scalar.

7

Why is there space rather 
than no space? Why is space 
three-dimensional? Why 
is space big? We have a lot 
of room to move around in. 
How come it’s not tiny? We 
have no consensus about 
these things. We’re still 
exploring them. 

Leonard Susskind
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Finding the angle between two vectors

Solution

Using the cosine rule: 

� ���� � ���� � ����

� ��� � ����θ =
+ −

× ×
cos

OP OQ PQ

2 OP OQ

2 2 2

 

OP
3
5

� ���
=







 so 
� ���

= + =OP 3 5 342 2  

OQ 7
1

=










� ��������������������������
 so 
� ����

= + =OQ 7 1 502 2

PQ OQ OP
7
1

3
5

4
4

� ��� � ���� � ���
= − =







−






=
−







 so 

so = + −
× ×

= °

θ

θ

cos 34 50 32
2 34 50
50.9

� ����
= + =PQ 4 4 322 2

Example 7.1

θ

P(3, 5)

Q(7, 1)

O

y

x

Figure 7.1

Find the angle POQ.

Remember that 
� ����
OP denotes 

the vector from O to P, and 

OP
� ���

 is the magnitude

(length) of 
� ����
OP.

Using 
Pythagoras’ 
theorem.

More generally, to find the angle between 
a

a
aOA 1

2

� ���
= =









  and 

b

b
bOB 1

2

� ���
= =









  start by applying the cosine rule to the triangle OAB in 

Figure 7.2.

y

xO

θ

a b

(b1, b2)

(a1, a2)
A

B

Figure 7.2

Discussion point
➜	How else could you 

find the angle θ?
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� ���� � ���� � ���

� ���� � ����θ =
+ −

× ×
cos

OA OB AB
2 OA OB

2 2 2

 ①

Also from the diagram:
� ����

= = +a aaOA 1
2

2
2  and 

� ���
= = +b bbOB 1

2
2
2  ②

and

b

b

a

a

b a

b a
b aAB 1

2

1

2

1 1

2 2

� ���
= − =









 −









 =

−
−











so 
� ��� ( ) ( )= − + −b a b a  AB 1 1

2

2 2

2  ③

� ���� � ����
OA , OB  and 

� ���
AB

are the lengths of the vectors � ��� � ���
OA,  OB  and 

� ���
AB .

ACTIVITY 7.1

By substituting ② and ③ into ① show that θ
a b a b+

a b
cos = 1 1 2 2

  where a a a= +1
2

2
2  and b bb = +1

2
2
2 .

The activity above showed that for Figure 7.2 

     
a b a b

a b
cos 1 1 2 2= +

θ .

The expression on the numerator, a b a b1 1 2 2+ , is called the scalar 
product of the vectors a and b, which is written a.b.

So a b
a b

cos   ..=θ .

This result is sometimes written .a b a b cos .= θ

Using the column format, the scalar product can be written as 

  =


















 = +. a

a

b

b
a b a ba b .

1

2

1

2
1 1 2 2.

This is 
sometimes 
called the 
dot product.

Note
1 The scalar product, unlike a vector, has size but no direction.

2  The scalar product of two vectors is commutative. This is because multiplication 
of numbers is commutative. For example:

× × × ×( ) ( ) ( ) ( )












































3
–4

.
1
5

= 3 1 + –4 5 = 1  3 + 5 –4 =
1
5

.
3
–4
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Finding the angle between two vectors

Solution

B(0, 7, 3) C(8, 0, 3)

A(2, 5, −1)

θ

Figure 7.3

b aAB
0
7
3

2
5
1

2
2
4

� ���
= − =













−
−













=
−











b cCB
0
7
3

8
0
3

8
7
0

� ���
= − =













−












=
−











The angle ABC is found using the scalar product of the vectors AB
� ���

 and 
CB
� ���

.

=
−











−











= + + =. .AB CB
2
2
4

8
7
0

16 14 0 30
� ��� � ���

 

( )= − + + =AB 2 2 4 242 2 2
� ���

 and ( )= − + + =CB 8 7 0 1132 2 2
� ���

 

= θ.AB CB AB CB cos
� ��� � ��� � ��� � ���

 

⇒ =

⇒ =

⇒ = °

θ

θ

θ

30 24 113 cos

cos 30
24 113

54.8
 

The position vectors of three points A, B and C are given by

 a b
2
5
1

,  
0
7
3

 =
−















=














 and c
8
0
3

=













. Find the vectors AB

� ���
 and CB

� ���
 

and hence calculate the angle ABC.

Example 7.2

The scalar product is found in a similar way for vectors in three dimensions: 

.
a

a

a

b

b

b

a b a b a b 
1

2

3

1

2

3

1 1 2 2 3 3

































= + +

 

This is used in Example 7.2 to find the angle between two vectors in three dimensions.
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B(0, 7, 3) C(8, 0, 3)

A(2, 5, −1)

θ

Figure 7.4

Notice that AB
� ���

 and CB
� ���

 are both directed towards the point B, and BA
� ���

 and 
BC
� ���

 are both directed away from the point B (as in Figure 7.4). Using either 
pair of vectors gives the angle ABC. This angle could be acute or obtuse.

However, if you use vectors AB
� ���

 (directed towards B) and BC
� ���

 (directed away 
from B), then you will obtain the angle ° − θ180  instead.

180−θ

A

C

B
θ

Figure 7.5

Perpendicular vectors
If two vectors are perpendicular, then the angle between them is 90°.

Since cos90 0° = , it follows that if vectors a and b are perpendicular then a.b = 0.

Conversely, if the scalar product of two non-zero vectors is zero, they are 
perpendicular.

Solution

(i) p
1
3
2

=
−















, q
4
2
5

=












  

=
−

























= × + × + − ×
= + −
=

. .p q
1
3
2

4
2
5

(1 4) (3 2) ( 2 5)

4 6 10

0

Two points, P and Q, have coordinates (1, 3, -2) and (4, 2, 5). 
Show that angle POQ = 90° 
(i) using column vectors 
(ii) using i, j, k notation.

Example 7.3

Discussion point
➜	For the points A, B 

and C in Example 
7.2, find the scalar 
product of the vectors � ����
BA  and 

� ����
BC , 

and comment on 
your answer. 
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Finding the angle between two vectors

So the angle POQ = 90°.

(ii) p i j k3 2= + − , q i j k4 2 5= + +  

 = + − + +
= + − + + −
= + −
=

. .
. . . . . .

p q i j k i j k

i i i j i k j j j k k k

( 3 2 ) (4 2 5 )

4 14 3 6 11 10

4 6 10

0
So the angle POQ = 90°.

Multiply out the brackets.

Since i, j and k are 
all perpendicular, 
i.j = i.k = j.k = 0.

Since i, j and k are 
unit vectors, i.i = 
j.j = k.k = 1.

① Find:

(i) 




 −







.2
3

1
2   (ii) 







−





.2
3

1
2

 

(iii) 











 −













.
1
2
3

4
0
1

  (iv) 












−











.
1
2
3

1
4
0

② Find the angle between the vectors p and q shown in Figure 7.6.

O x

y

q = −3i + 5j
p = 2i + 3j

Figure 7.6

③ Find the angle between the vectors:

(i) a i j k3 2 4= + −  and b i j k2 3= − + −  

(ii) a i j k3 2 4= − − +  and b i j k2 3= − + −  

(iii) a i j k3 2 4= + −  and b i j k2 3= − +  

④ Find the angle between the following pairs of vectors and comment on 
your answers.

(i) 

3
2
5

−













 and 

6
4

10
−














 (ii) 

3
2
5

−












  and 

9
6
15

−

−















⑤ Find the value of α  for which the vectors 
2
5
1−














 and 

4
5−













α
 are 

perpendicular.

Exercise 7.1
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⑥ Given the vectors =












α
c 5

3
 and d

2
=















α
α  are perpendicular, find the 

possible values of α .

⑦ A triangle has vertices at the points A(2, 1, –3), B(4, 0, 6) and C(–1, 2, 1).

 Using the scalar product, find the three angles of the triangle ABC and 
check that they add up to 180°.

⑧ The point A has position vector a
5
2
3

=














.

 Find the angle that the vector a makes with each of the coordinate axes.

⑨ The room illustrated in Figure 7.7 has rectangular walls, floor and ceiling.

 A string has been stretched in a straight line between the corners A and G.

z

y

(0, 0, 3) D

O (0, 0, 0) A
(5, 0, 0)

B

F

E

(0, 4, 0)
C

G

string

spider

x

Figure 7.7

 The corner O is taken as the origin. A is (5, 0, 0), C is (0, 4, 0) and D is  
(0, 0, 3), where the lengths are in metres.  

 A spider walks up the string, starting from A.

(i) Write down the coordinates of G.

(ii) Find the vector AG
� ���

 and the distance the spider walks along the string 
from A to G.

(iii) Find the angle of elevation of the spider’s journey along the string.
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The equation of a plane

⑩ Figure 7.8 shows the design for a barn. Its base and walls are rectangular.

O

E
(0, 0, 3)

(0, 0, 0)

Q (2, 5, 4)

G (4, 5, 3)

B (4, 5, 0)

(2, 1, 4)

A

H

F
C

P

Figure 7.8

(i) Write down the coordinates of the other vertices of the barn.

(ii Determine whether the section EPF is vertical and hence state the type 
of quadrilateral formed by the roof sections PFGQ and PQHE.

(iii) Find the cosine of angle FPE and hence find the exact area of the 
triangle FPE.

The engineer plans to increase the strength of the barn by installing 
supporting metal bars along OG and AH.  

(iv) Calculate the acute angle between the metal bars.

⑪ If ( ) ( )+ − + = −. . . .a b c a c b a b a c2 3 5 3  show that ( )= −. .b c a b c4 2 .

⑫ Three vectors a, b and c have magnitudes 5, 2 and 3 respectively.  

 Using this information, and the properties of the scalar product, simplify 
( ) ( )+ + − + −. . .a b c a b c c a b. 

⑬ Two vectors are given by a b ca i j k1 1 1= + +  and a b cb i j k2 2 2= + + .

 Using the fact that = = =. . .i j j k k i 0, show algebraically that  
a•  b = a

1
a

2
 + b

1
b

2
 + c

1
c
2
.

2 The equation of a plane
You can write the equation of a plane in either vector or cartesian form. The 
cartesian form is used more often but to see where it comes from it is helpful to 
start with the vector form.
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The discussion above shows you that there is a direction (that of the pencil) which 
is at right angles to every straight line in the plane. A line in that direction is said 
to be perpendicular to the plane and is referred to as a normal to the plane.

It is often denoted by 

n

n

n

n
1

2

3

=
















.  

In Figure 7.10 the point A is on the plane and the vector n is perpendicular to 
the plane. This information allows you to find an expression for the position 
vector r of a general point R on the plane.

The vector AR
is r - a.

AR.n = 0

n

A RThe point A has
position vector a.

The point R has
position vector r.

Figure 7.10

The vector AR
� ���

 is a line in the plane, and so it follows that AR
� ���

 is at right 
angles to the direction n.

=.nAR 0
� ���

 
The vector AR

� ���
 is given by r aAR

� ���
= −  and so

( ) =.r a n– 0.

This is the vector equation of the plane.

Discussion points
➜	Lay a sheet of paper on a flat horizontal table and mark several straight 

lines on it. Now take a pencil and stand it upright on the sheet of paper 
(see Figure 7.9).

Figure 7.9

➜	What angle does the pencil make with any individual line?

➜	Would it make any difference if the table were tilted at an angle (apart from 
the fact that you could no longer balance the pencil)?
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The equation of a plane

Expanding the brackets lets you write this in an alternative form as

− =. .r n a n 0.

Although the vector equation of a plane is very compact, it is more common to 
use the cartesian form. This is derived from the vector form as follows.

Write the normal vector n as 
n

n

n

1

2

3
















 and the position vector of A as

a

a

a

a
1

2

3

=
















. The position vector of the general point R is 

x
y

z

r =














.

So the equation − =. .r n a n 0 

can be written as 

































−

































=
x

y

z

n

n

n

a

a

a

n

n

n

. . 0
1

2

3

1

2

3

1

2

3

.

This is the same as n x n y n z d 01 2 3+ + + =  where d a n a n a n( )1 1 2 2 3 3= − + + .

The following example shows you how to use this.

Notice that d is a 
constant and is 
a scalar.

Solution
(i) The cartesian equation of the plane is
 n x n y n z d 01 2 3+ + + = .

 n
4
2
1

=
−












 so n 41 = − , n 22 =  and n 13 =

 The equation of the plane is x y z d4 2 0− + + + = .

 It remains to fi nd d. There are two ways of doing this.

The point A (2, 3, –5) lies on a plane. The vector n
4
2
1

=
−












 is 

perpendicular to the plane.

(i) Find the cartesian equation of the plane.

(ii) Investigate whether the points P(5, 3, -2) and Q (3, 5, -5) lie in the plane.

Example 7.4

Either:
The point A is (2, 3, −5). 
Substituting for x, y and z in 

x y z d4 2 0− + + + =  gives

d4 2 2 3 5 0− × + × − + =
so d 8 6 5 7= − + = .

Or:
= − .d a n

where a is the position vector of 
A, (2, 3, -5).

So a
2
3
5

=
−














 and n

4
2
1

=
−













This can also be written as r.n = a.n

TECHNOLOGY
If you have access to 
3D graphing software, 
experiment with planes 
in the form 
ax + by + cz + d = 0, 
varying the values of 
a, b, c and d.
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= −
−













−











= − × − + × + − ×
= − − + − =

d .
2
3
5

4
2
1

[(2 4) (3 2) ( 5 1)]

[ 8 6 5] 7

 So the equation of the plane is x y z4 2 7 0− + + + = .

(ii) P is (5, 3, −2).
 Substituting in the left-hand side of the equation of the plane gives 
 ( 4 5) (2 3) 2 7 9− × + × − + = − .
 Since this is not equal to 0, P does not lie in the plane. 
 Q is (3, 5, −5).
 Substituting in the left-hand side of the equation of the plane gives 
 ( 4 3) (2 5) 5 7 0− × + × − + = .
 Since this is equal to 0, Q lies in the plane.

Look carefully at the equation of the plane in this example. You can see at once

that the vector 
4
2
1

−












, formed from the coefficients of x y,   and z, is 

perpendicular to the plane.

In general the vector 

n

n

n

1

2

3
















 is perpendicular to all planes of the form

n x n y n z d 01 2 3+ + + = , whatever the value of d (see Figure 7.11). 

n1
n2
n3

n1x + n2 y + n3z + d1 = 0

n1x + n2 y + n3z + d2 = 0

n1x + n2 y + n3z + d3 = 0

Figure 7.11

Consequently, all planes of that form are parallel; the coefficients of x, y and z 
determine the direction of the plane, the value of d its location.
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The equation of a plane

Notation
So far the cartesian equation of a plane has been written as  
      n x n y n z d 01 2 3+ + + = . 
Another common way of writing it is ax by cz d 0+ + + = .

In this case the vector 
a
b
c














 is normal to the plane.

The angle between planes
The angle between two planes can be found by using the scalar product. As 
Figures 7.12 and 7.13 show, the angle between planes π1  and π 2  is the same as 
the angle between their normals, n1 and n2 .

Solution

The normal to the plane x y z3 2 5 0− + + =  is 
3
1

2
−














.  

Any plane parallel to this plane has the same normal vector, so the required 
plane has equation of the form x y z d3 2 0− + + = . 
The plane contains the point (1, 0, −2), so 

× − + × − + =
⇒ =

d

d

(3 1) 0 (2 2) 0

1

The equation of the plane is x y z3 2 1 0− + + = .

Find the cartesian equation of the plane which is parallel to the plane 
x y z3 2 5 0− + + =  and contains the point (1, 0, −2).

Example 7.5

Discussion point
➜	Given the coordinates 

of three points A, 
B and C in a plane, 
how could you find 
the equation of the 
plane?

ACTIVITY 7.2
A plane + + +ax by cz d = 0 contains the points (1, 1, 1), (1, −1, 0) and (−1, 0, 2).
Use this information to write down three simultaneous equations and use a matrix 
method to solve these. Hence find the equation of the plane.

T

π1 π2

θ

n2n1

Figure 7.12

π2π1

θ

θ

n2

‘Side on’ view

n1

Figure 7.13
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Solution

The planes have normals n
2
3
5

1 =














 and n
5
1
4

2 =
−















 so the angle

between the planes is given by .n n n n cos1 2 1 2= θ  

.
2
3
5

5
1
4

4 9 25 25 1 16 cos

10 3 20 38 42 cos

100.1

⇒












 −















= + + + +

⇒ + − =
⇒ = °

θ

θ

θ  
So the acute angle between the planes is 79.9°.

Find, to 1 decimal place, the acute angle between the planes 
+ + =π x y z: 2 3 5 81  and + − =π x y z: 5 4 12.2

Example 7.6

① A plane has equation − + + =x y z5 3 2 1 0.

(i) Write down the normal vector to this plane.

(ii) Show that the point (1, 4, 3) lies on the plane.

② Find, in vector form, the equation of the planes which contain the point 
with position vector a  and are perpendicular to the vector n.

(i) a i j k3 5 2= + −  n i j k= + +        

(ii) a i j k3 2= − + +  n i j k= + +       

(iii) a i j k3 5 2= + −  n i j k= − − −            

(iv) a i j k2 7= + −   n i j k2 2 2= + +             

③ Find the cartesian equation of the planes in question 2.

 Comment on your answers.

④ Find, to 1 decimal place, the smaller angle between the planes:

(i) 

−













=.r
2
2
3

4  and −
−













=.r
3
3
1

2 

(ii) 

−













=.r
1
2
3

4 and −
−













=.r
3
3
1

2  

(iii) x y z4 4+ − =  and x y z5 2 3 13− + =  

⑤ The plane π1 has equation x y z3 2 13 0− + − − = .

 Find the cartesian and vector equations of the plane π 2  that is parallel to 1π  
and passes through the point (3, 0, −4).

Exercise 7.2
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The equation of a plane

⑥ Find the cartesian equation of the plane which contains the point (0, 1, −4) 
and is parallel to the plane ( )( ) ( )− + − − + =.r i j k i j k4 2 4 5 6 0.

⑦ The planes x y z3 2 5− − =  and k x ky 2 32 + + =  are perpendicular.

 Find the possible values of k.

⑧ Two sloping roof structures must be constructed at an angle of exactly 60°. 
The roof structures can be modelled as planes given by the equations 

x y z

ax y z

2 2 5

2

+ + =
+ + =

 where a  is a positive constant.

 Find the exact value of a.

⑨ Find the equation of the plane π   which is perpendicular to the planes 
x y z

x y z

3 4 0

2 3 0

− − + =
+ + + =

 and which passes through the point P(4, 3, 5).

⑩ The points A, B and C have coordinates (0, –1, 2), (2, 1, 0) and (5, 1, 1).

(i) Write down the vectors AB
� ���

 and AC
� ���

.

(ii) Show that AB.
1
4
3

AC.
1
4
3

0
� ��� � ���

−
−













= −
−













= .

(iii) Find the equation of the plane containing the points A, B and C.

⑪ (i)  Show that the points A(1, 1, 1), B(3, 0, 0) and C(2, 0, 2) all lie in the 
plane x y z2 3 6+ + = .

(ii) Show that 












=












=. .AB
2
3
1

AC
2
3
1

0
� ��� � ��� .

(iii) The point D has coordinates (7, 6, 2) and lies on a line perpendicular to 
the plane through one of the points A, B or C.  

 Through which of these points does the line pass?

⑫ Three planes have equations
+ + =

+ + =
+ + =

π
π
π

ax y z

x ay z

x y az

: 2 3

: 4

: 5

1

2

3

 

 Given that the angle between planes π1 and π 2 is equal to the angle between 
the planes π 2 and π 3, show that a  must satisfy the quartic equation:

a a a a5 2 2 8 3 04 3 2+ − − − =
⑬ A plane π   has cartesian equation x y z2 3 2 10 0− + + = .

(i) Write down the normal vector n and the value of = − .d a n.

(ii) Find a possible position vector a to represent a point A in the plane.

(iii) Use your answers to parts (i) and (ii) to write down a vector equation 
for the plane π  in the form ( )− =.r a n 0.
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⑭ Four planes are given by the equations
− + + =
+ + + =
− + + =
− + + =

π
π
π
π

x y z

x y z

x y z

x y z

:  2 3 5 4 0

:  2 3 4 0

:  4 6 10 4 0

:  2 3 4 0

1

2

3

4

 Determine whether each pair of planes is parallel, perpendicular or neither.

3 Intersection of planes
If you look around you will fi nd objects which can be used to represent planes 
– walls, fl oors, ceilings, doors, roofs and so on. You will see that in general the 
intersection of two planes is a straight line.For example, the wall 

and ceiling of a room 
meet in a straight line.

In this section you will look at the diff erent possibilities for how three planes can 
be arranged in three-dimensional space.  

Geometrical arrangement of three planes
There are fi ve ways in which three distinct planes π1, π 2 and π 3 can intersect in 
three-dimensional space.

If two of the planes are parallel, there are two possibilities for the third:

• It can be parallel to the other two (see Figure 7.14). 

The planes do
not intersect.

Figure 7.14

• It can cut the other two (see Figure 7.15).

The planes
intersect in two
parallel lines.
There are no
intersection
points that are
common to all
three planes.

Figure 7.15

Chapter 7  Vectors and 3D
 space

TECHNOLOGY
If you have access to 
3D graphing software, 
investigate the different 
ways in which three 
distinct planes can 
intersect in three-
dimensional space.
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Intersection of planes

In Chapter 6 you saw how to solve simultaneous equations using matrices. The 
following example shows how this relates to finding the point of intersection of 
three planes in three dimensions.

If none of the planes are parallel, there are three possibilities.

•	 The planes intersect in a single point (see Figure 7.16).

Figure 7.16

•	 The planes forms a sheaf (see Figure 7.17).

The three planes share
a common line so there
are an infinite number
of points of intersection
of the three planes.

Figure 7.17

•	 The planes form a triangular prism (see Figure 7.18).

Each pair of planes
intersects in a straight
line; the three lines are
parallel. There is no
intersection point common
to all three planes.

Figure 7.18

The diagrams above show that three planes intersect either in a unique point, an 
infinite number of points or do not have a common intersection point.

Finding the unique point of intersection of  
three planes
You can use 3 × 3 matrices to find the point of intersection of three planes that 
intersect in a unique point.  

Discussion point
➜	Think of an example 

from everyday life 
of each of these 
arrangements of 
three planes.

ACTIVITY 7.3
Make sure you remember how to find the inverse of a 3 × 3 matrix using your 
calculator.

Check that for the matrix M
2 1 2
1 1 1
1 1 3











=

−

− −
, M–1M =I.

T
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Solution

−

− −



























=
−













x
y

z

2 1 2
1 1 1
1 1 3

5
1
2

 

The inverse of the matrix =
−

− −













M  
2 1 2
1 1 1
1 1 3

 is

M
0.5 1.25 0.75
1 1 1
0.5 0.75 0.25

1 =
−

− −
−















− .

x
y

z

0.5 1.25 0.75
1 1 1
0.5 0.75 0.25

2 1 2
1 1 1
1 1 3

0.5 1.25 0.75
1 1 1
0.5 0.75 0.25

5
1
2

−
− −

−













−

− −



























=
−

− −
−











 −













  

⇒


























 =

−

−















⇒












 =

−

−















x
y

z

x
y

z

1 0 0
0 1 0
0 0 1

2.75
6

2.25

2.75
6

2.25
 

⇒


























 =

−

−















⇒












 =

−

−















x
y

z

x
y

z

1 0 0
0 1 0
0 0 1

2.75
6

2.25

2.75
6

2.25

So the planes intersect in the unique point (–2.75, 6, –2.25).

The three planes can 
be represented by 
this matrix equation.

Find the unique point of intersection of the three planes

x y z

x y z

x y z

2 2 5

1

3 2

+ − =
+ + =
− − = −  

Example 7.7

Solving the matrix equation will 
identify a point that the three planes 
have in common, i.e. the unique point 
of intersection of the three planes.

Using a 
calculator

pre-multiplying both sides of the matrix equation by M-1.

Determining the other arrangements of three 
planes 
In Example 7.7 you saw that the equations of three distinct planes can be 
expressed in the form 

















=

















x

y

z

d

d

d

M
1

2

3

.
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If M is non-singular, the planes intersect in a unique point. If M is singular, the 
planes must be arranged in one of the other four possible arrangements:

n three parallel planes

n two parallel planes that are cut by the third to form two parallel lines

n a sheaf of planes that intersect in a common line

n a prism of planes in which each pair of planes meets in a straight line but 
there are no common points of intersection between the three planes.

One of these cases is covered in the following example.

In Example 7.8, you could see quite easily that two of the planes are parallel, but 
the third is not, by comparing the coeffi  cients of x, y and z. In the same way, you 
would be able to identify three parallel planes.

If none of the planes are parallel, and the determinant of the matrix is zero, then 
the planes form either a sheaf of planes or a triangular prism. If they form a 

Solution
(i) The planes can be arranged in the matrix form

x
y

z

M
2
3
7















=














 where M
2 5 3
1 1 1
4 10 6

=
−
−

−














. 

(ii) det M = 0

(iii)  The third row is a multiple of the fi rst row, therefore the fi rst and third 
planes are parallel.  The second plane is not parallel and so must cut the 
other two to form two parallel straight lines.

Notice that the constant 
terms have been moved 
to the right hand side of 
each equation.

Three planes have equations

x y z

x y z

x y z

2 5 3 2 0

3 0

4 10 6 7 0

− + − =
− + − =

− + − =  

(i) Express the equations of the planes in the matrix form

















=

















x

y

z

d

d

d

M
1

2

3

.

(ii) Using your calculator, fi nd det M and comment on your answer.

(iii)  By comparing the rows of the matrix M, determine the arrangement of 
the three planes.

Example 7.8

Intersection of planes

TECHNOLOGY
Use 3D graphing software 
to draw the three planes 
in Example 7.8.
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Solution

(i) 

x
y

z

3 2 1
1 2 1
1 1 0

1
3
2

−

























=










  

 Using a calculator, det
3 2 1
1 2 1
1 1 0

0
−













=  so there is no unique point of 

 intersection.

(ii)  First check if any of the planes are parallel. 

The normal vectors to the three planes are all different, so none of the 
planes are parallel. This rules out these two cases:

3 parallel planes

Figure 7.19

and 2 parallel planes with one crossing them.

Figure 7.20

Three planes have equations

3x + 2y – z = 1 ①

x + 2y + z = 3 ②

x + y = 2  ③

(i) Show that the three planes do not have a unique point of intersection. 
(ii) Describe the geometrical arrangement of the three planes.

Example 7.9

sheaf of planes, then equations are consistent: there are an infinite number of 
solutions. If they form a triangular prism, then the equations are inconsistent: 
there are no points which satisfy all three equations.

Sometimes you may have additional information which will help you to decide 
which arrangement you have. Otherwise, you can try to solve the equations 
simultaneously to find out whether the equations are consistent or inconsistent. 
The example below shows how this can be done.

Chapter 7  Vectors and 3D
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That leaves the two cases of 

a sheaf of planes where they all meet in the same line 

Figure 7.21

or a triangular prism.

Each pair of planes
intersects in a straight
line; the three lines are
parallel. There is no
intersection point common
to all three planes.

Figure 7.22

Now see if the planes meet in a single line.
Adding equations ① and ② gives  

Equation ③ is x y 2+ = . 

So there are no points which satisfy all three equations.
Therefore the planes form a triangular prism and not a sheaf.

The value of x y+  
cannot be both 1 and 2, 
so the equations are 
inconsistent.

① (i) Find the inverse of the matrix M
2 1 3
3 1 2
1 2 1

= − −
− −














.

(ii) Use your answer to part (i) to fi nd the point of intersection of the 
planes

+ + =
− − =

− − =

x y z

x y z

x y z

2 3 20

3 2 10

2 30

② Using the same method as in question 1, fi nd the unique point of 
intersection of the three planes

− − =
+ + =
− − =

x y z

x y z

x y z

4 3 2 2

2 2 5

3 3 2 3

T

T

Exercise 7.3

Intersection of planes

+ = ⇒ + =x y x y4 4 4 1

+ = ⇒ + =x y x y4 4 4 1
TECHNOLOGY

Use 3D graphing software 
to draw the three planes 
in Example 7.9 and 
verify that they form a 
triangular prism.



7

163

③ Determine whether or not the following sets of three planes intersect in a 
unique point and, where possible, find the point of intersection.

(i) x y z

x y z

x y z

2 5 0

2 6 12 0

2 4 6 3 0

− − − =
+ + + =
+ + + =

 (ii) x y z

x y z

x y z

4 0

2 3 4 3 0

5 8 13 8 0

+ + − =
+ − − =
+ − − =

(iii) x y z

x y z

x y z

2 4 7

3 2 5 21

4 2 14

+ + =
+ + =
+ + =

  (iv) x y z

x y z

x y z

3 4

5 9 5

4 1

+ + =
− + =

− + = −
④ Three planes are given by the equations

x y z

x y z

x y z

1

2 6

4

− + + = −
+ + =

+ + =

(i) Write the equations in the form 

















=

















x

y

z

d

d

d

M
1

2

3

.

 By comparing the rows of the matrix M and calculating Mdet  
determine which arrangements of these planes in three-dimensions are 
possible.

(ii) The point P (2, 3, –1) is known to lie on at least one of the three planes.  
By working out on which planes the point P lies, determine the 
arrangement of the three planes.

(iii) By changing the constant term in one of the plane equations show that 
a different arrangement of the planes can be obtained.

⑤ Three planes are given by the equations

+ − =
+ + =
+ − =

x y z

x y z

x y z

2 6

2 4 5

3 6 3 8

 Write the equations in the form 

















=

















x

y

z

d

d

d

M
1

2

3

.

 Determine the arrangement of the planes in three-dimensions.

⑥ The three planes

x y z k

x y z

x y z m

2

3 0

2

− + =
− − =
− + =

 are known to intersect at the point (−12, −29, −7).  

 Determine the values of k and m.

T

T

T
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⑦ Three planes are given by the equations
+ + =
− − =
+ + =

x y z

x y z

x y z

3 4 5

2 4

5 14 5 7

(i) Write the equations in the form 

x
y

z

d

d

d

M
1

2

3















=
















.

   By comparing the rows of the matrix M and calculating Mdet  determine 
which arrangements of the planes in three dimensions are possible.

(ii) The point P(3,−2, 4) is known to lie on at least one of the three planes.

   By working out on which planes the point P lies, determine the 
arrangement of the three planes.

⑧ The equations of three planes are

  

kx my nz

x y z

x y z

6

2 2 9

3 2

+ + = −
− − = −
+ − = −

(i) Determine the arrangement of the planes in three dimensions when 
k m n1,  1,   1= = − = , providing as much detail in your solution as 
possible.

(ii) State values for k , m  and n which would produce an arrangement of 
two distinct parallel planes cut by the third plane.

(iii) Explain the arrangement of the planes in the case where = =k m9,  3  
and n 3= − . State how this case differs from the arrangement in part (ii).

⑨ Two planes in three dimensions are said to be coincident if one lies on top of the 
other, i.e. they are exactly the same plane. Coincident planes are not distinct.

Given any three planes, list the ways can they be arranged in three dimensions.

How many different possible arrangements are there in total?

T

T

Intersection of planes

LEARNING OUTCOMES
When you have completed this chapter you should be able to:

➤	 find the scalar product of two vectors

➤	 use the scalar product to find the angle between two vectors

➤	 know that two vectors are perpendicular if and only if their scalar product 
is zero

➤	 identify a vector normal to a plane, given the equation of the plane

➤	 find the equation of a plane in vector or Cartesian form

➤	 find the angle between two planes

➤	 know the different ways in which three distinct planes can be arranged in 
3-D space

➤	 understand how solving three linear simultaneous equations in three 
unknowns relates to finding the point of intersection of three planes in three 
dimensions.

T
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KEY POINTS
1 In two dimensions, the scalar product 

1

2

1

2
1 1 2 2=



















 = + = θ.

a

a

b

b
a b a ba b a b. cos .

2 In three dimensions, 

1

2

3

1

2

3

1 1 2 2 3 3=

































= + + = θ.
a

a

a

b

b

b

a b a b a ba.b a b  cos .

3 The angle θ  between two vectors a and b is given by 

   =θ .a b
a b

 cos

 where = +. a b a ba b 1 1 2 2 (in two dimensions) 

    = + +. a b a b a ba b 1 1 2 2 3 3 (in three dimensions).

4 The cartesian equation of the plane perpendicular to the vector 

n

n

n

n
1

2

3

=

















 
and passing through a point with position vector a is given by

 n x n y n z d 01 2 3+ + + =  where = − .d a n.

5 The vector equation of the plane through the point with position vector a, 

and perpendicular to the vector 

n

n

n

n
1

2

3

=

















 is given by ( )− =.r a n 0 or 
=. .r n a n .

6 The angle between two planes π1  and π 2 is the same as the angle between 
their normals, n1 and n2 . This angle can be found using the scalar product.

7 Three distinct planes in three dimensions will be arranged in one of five ways:
• meet in a unique point of intersection
• three parallel planes
• two parallel planes that are cut by the third to form two parallel lines
• a sheaf of planes that intersect in a common line
• a prism of planes in which each pair of planes meets in a straight line but 

there are no common points of intersection between the three planes.

8 Three distinct planes
a x b y c z d

a x b y c z d

a x b y c z d

1 1 1 1

2 2 2 2

3 3 3 3

+ + =
+ + =
+ + =

 can be expressed in the form 

















=

















x

y

z

d

d

d

M
1

2

3
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Vectors and 3D space

where 

















a b c

a b c

a b c

M =
1 1 1

2 2 2

3 3 3

.

 If M is non-singular, the unique point of intersection is given by 

















M-1
d

d

d

1

2

3

.

 Otherwise, the planes meet in one of the other four possible arrangements. 
In the case of a sheaf of planes, the equations have an infinite number 
of possible solutions, and in the other three cases the equations have no 
solutions.

FUTURE USES
n	 Work on vectors 

will be developed 
further in the  
A Level Further 
Mathematics book.



7

167

Practice Q
uestions  Further M

athem
atics 2

① (i)  Describe the transformation represented by the matrix  

=






A
1 0
0 –1

. [1 mark]

(ii) Describe the transformation represented by the matrix  

=






B
–1 0
0 1

.  [1 mark]

(iii) Determine BA and describe the transformation it represents. [2 marks]

(iv) Determine (BA)–1. What do you notice? Explain your answer  
in terms of the transformation represented by BA. [3 marks]

② Let z
1
 = a + bi and z

2
 = c + di.

(i) Find z
1
z

2
. [2 marks]

(ii) Write down |z
1
| and |z

2
|. [1 mark]

(iii) Prove that |z
1
z

2 
| = |z

1
||z

2
|. [4 marks]

③ 
Im z

Re zO

B
A

P

π
3

 On the Argand diagram above, the point P is at 3 + 3i. 
(i) The circle centred on P represents a locus of points on the Argand 

diagram.  Write down its equation as a locus in terms of z. [2 marks]

(ii) Write down the equation of the locus of points represented  
by the half-line from P through A. [2 marks]

(iii) The sector PAB has area π3
8

. Find the equation of the locus of points 
represented by the half line from P through B. [4 marks]

④ A pair of simultaneous equations is represented by 






=






x

y b
R

12
 where 

=






k
R

3
2 4

.

(i) Write down the pair of equations. [1 mark]

(ii) Prove that =




k

k
R 1

12 – 2
4 –
–2 3

–1 . [2 marks]

(iii) For one particular value of k, R–1 does not exist. 
What is this value of k? [2 marks]

(iv) For the value of k found in (iii), 












=






k x

y b
3
2 4

12
 has an infinite 

number of  solutions.  Find b and describe the relationship between 
the lines represented by the pair of simultaneous equations. [3 marks]

MP

PS

Practice Questions Further Mathematics 2
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Practice Questions Further Mathematics 2

⑤ The plane p contains the point (5, 0, 4).  The vector 















5

–1

0

 is perpendicular to p.

(i) Find the equation of p in the form ax + by + cz + d = 0. [2 marks]

(ii) Another plane, q, has equation 4x – 3y + z – 3 = 0.  
Find the angle between p and q. [3 marks]

(iii) Show that the point (5, 0, −17) lies on both planes. [2 marks]

⑥ A new skyscraper is built in the shape of square-based pyramid, standing on 
its square base. In a model of the skyscraper, its four triangular faces are parts 
of four planes and the ground on which is stands is the plane z = 0.

 The summit of the skyscraper, where its four triangular faces meet, is 
directly above the centre of its square base and has coordinates (5, 17, 20).

(i) The faces of the skyscraper are modelled by these four planes:
+ =

− + =
− − =

− =

x z k

x z l

y z m

y z n

20

20

20

20

Find the values of k, l, m and n. [2 marks]

(ii) What angle does each of the skyscraper’s sides make to the  
vertical? [4 marks]

(iii) The triangular sides of another skyscraper built in the form of a square 
based pyramid are modelled as parts of these four planes.

+ =
− + = −

− =
+ =

x z

x z

y z

y z

25 150

25 100

25 250

25 300

What are the coordinates of its summit? [3 marks]

(iv) The length of one unit in this question has not been defined.  
Given that this is an extremely tall skyscraper, suggest and  
justify an actual length for 1 unit. [3 marks]

⑦ The equations of three planes are: 

 

− + =
− − =

+ − = −

x y z

ax by z c

x y z

5 7 80

2

19 17 4 14

(i) State a set of values for a, b and c for which two of the 
planes are coincident. [3 marks]

(ii) State a set of values for a, b and c for which there are two 
distinct parallel planes that are cut by a third plane. [2 marks]

(iii) If a = 1, b = –13 and c = –2 show that the planes must meet  
at a single point and find the coordinates of that point. [6 marks]

M

T
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An introduction to radians

Radians are an alternative way to measure angles. They relate the arc length of 
a sector to its angle. In Figure 1 the arc AB has been drawn so that it is equal to 
the length of the radius, r. The angle subtended at the centre of the circle is one 
radian.

A

B

O

r

r

r
1 radian

Figure 1

Since an angle of 1 radian at the centre of the circle corresponds to an arc length 
r it follows that an angle of 2 radians corresponds to an arc length of 2r and so 
on.  In general, an angle of θ radians corresponds to an arc length of rθ, as shown 
in Figure 2.

θ
r

r

arc length rθ

Figure 2

The circumference of a circle is 2πr, so the angle at the centre of a full circle is 
2πr radians. This is 360°.

r

2�

2�r

Figure 3

So 360° = 2π radians

  180° = π radians

   90° = π
2  radians

   60° = π
3  radians

   45° = π
4

 radians

   30° = π
6   radians 

1 radian is sometimes 
denoted as 1°, where c refers 
to ‘circular measure’.

When working in radians, 
angles are often stated as a 

fraction or multiple of π.



A
n 

in
tr

od
uc

tio
n 

to
 r

ad
ia

ns

170

° = π360 2 c  and so 1 radian is equivalent to ÷ = °π360 2 57.3  to one decimal 
place.

The fact that one radian is just under 60° can be a helpful reference point.  

When a multiple of π is used the ‘c’ symbol is usually omitted, as it is implied 
that the measure is radians.

To convert degrees into radians you multiply by π
180

, and to convert radians into 

degrees you multiply by π
180 .  

(i) Express in radians, giving your answers as a multiple of π:

 (a) 120°      (b) 225°          (c) 390°

(ii) Express in radians, giving your answers to 3 significant figures:

 (a) 34°        (b) 450°         (c) 1°

(iii)  Express in degrees, giving your answers to 3 significant figures where 
appropriate:

 (a) π5
12

        (b) π
24

           (c) 3.4c  

Solution

(i) (a) 60° = π
3  radians so ° = π120 2

3  radians

 (b) 45° = π
4  radians so ° = × ° = π225 5 45 5

4  

 (c) 30° = π
6   radians so ° = ° + ° = + =π π π390   360 30  2 6

13
6

(ii) (a) × =π34 180 0.593  radians

 (b) × =π450 180 7.85  radians

 (c) × =π1 180 0.0175  radians

(iii) (a) × = °π
π

5
12

180 75  

 (b) × = °π
π24

180 7.5  

 (c) × = °π3.4 180 195  

   When working in radians with trigonometric functions on your calculator, 
ensure it is set in ‘RAD’ or ‘R’ mode.

Example
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A
n introduction to radians

① Express the following angles in radians, leaving your answers in terms of π 
or to 3 significant figures as appropriate.

(i) 60° (ii) 45° (iii) 150° (iv) 200° 

(v) 44.4° (vi) 405° (vii) 270° (viii) 99°

(ix) 300° (x) 720° (xi) 15° (xii) 3°

② Express the following angles in degrees, rounding to 3 significant figures 
where appropriate.

(i) 9
π  (ii) 2

15
π  (iii) 4c (iv) 5

3
π

(v) 7
π  (vi) 20

π  (vii) 1.8c (viii) 11
9
π

(ix) 7
2
π  (x) 5π  (xi) 9

4
π  (xii) 17

12
π  

Exercise
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The identities sin(θ ± ϕ) and cos(θ ± ϕ) 

In Chapters 1 and 5 of this book you use the trigonometric identities known as 
the addition formulae or compound angle formulae. The proofs of these 
identities are given in the A Level Mathematics textbook.

These identities are:

+ ≡ +θ φ θ φ θ φsin( )  sin cos  cos sin  

− ≡ −θ φ θ φ θ φsin( )  sin cos cos sin

+ ≡ −θ φ θ φ θ φcos( )  cos cos sin sin

− ≡ +θ φ θ φ θ φcos( )  cos cos sin sin

Note the change of sign in the formulae for the cosine of the sum or difference 
of two angles:

+ ≡ −θ φ θ φ θ φcos( )  cos cos sin sin

− ≡ +θ φ θ φ θ φcos( )  cos cos sin sin

Although these results are often referred to as ‘formulae’, they are in fact 
identities (as indicated by the identity symbol ≡) and they are true for all values 
of θ and ϕ.  However, it is common for the identity symbol to be replaced by an 
equals sign when the formulae are being used.

These identities are used:

n	 in Chapter 1 to look at combinations of two rotations

n	 in Chapter 5 to look at multiplying two complex numbers in modulus-
argument form.

Use the compound angle formulae to find exact values for:

(i) sin15°  (ii) cos75° 

Solution
(i) ( )° = ° − ° = ° ° − ° °sin15 sin 45 30 sin45 cos 30 cos45 sin 30  

 

= × − ×

= −

1
2

3
2

1
2

1
2

3
2 2

1
2 2  

 = 
−3 1

2 2
 or 

−6 2
4

(ii) ( )° = ° + ° = ° ° − ° °cos75 cos 45 30 cos45 cos 30 sin45 sin 30  

 

= × − ×1
2

3
2

1
2

1
2

 

  This is the same as part (i) and so ° = −cos75 6 2
4 .

Example
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The identities sin(θ ± ϕ) and cos(θ ± ϕ)

The exercise below is designed to familiarise you with these identities.

① Use the compound angle formulae to write the following in surd form:

(i)	 ( )° = ° °cos15 cos 45 – 30  

(ii)	 ( )° = ° + °sin105 sin 60 45  

(iii)	 ( )° = ° + °cos105 cos 60 45  

(iv)	 ( )° = ° + °sin165 sin 120 45

② Simplify each of the following expressions, giving answers in surd form 
where possible:

(i)	 ° ° − ° °sin60 cos 30 cos60 sin 30  

(ii)	 ° ° + ° °sin40 cos50 cos40 sin50  

(iii)	 −θ θ θ θcos 3 cos sin 3 sin  

(iv)	 ( ) ( ) ( ) ( )+π π π πcos 3 cos 6 sin 3 sin 6  

(v)	 ( ) ( ) ( ) ( )−π π π π2 sin 4 cos 6 2cos 4 sin 6
 

(vi)	 ° ° − ° °cos47 cos13 sin13 sin47  

③ Expand and simplify the following expressions:

(i)	 ( )+ °θsin 45  

(ii)	 ( )− °θcos 2 30  

(iii)	 ( )−θ πsin 6  

(iv)	 ( )+θ πcos 3 3
 

Exercise
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Answers

Chapter 1 

Discussion point (Page 1)
3, 2, 1, 0

Discussion point (Page 4)
When subtracting numbers, the order in which the 
numbers appear is important – changing the order 
changes the answer, for example: 3 – 6 ≠ 6 – 3.  
So subtraction of numbers is not commutative.

The grouping of the numbers is also important, 
for example (13 – 5) – 2 ≠ 13 – (5 – 2). Therefore 
subtraction of numbers is not associative.

Matrices follow the same rules for commutativity 
and associativity as numbers. Matrix addition is both 
commutative and associative, but matrix subtraction 
is not commutative or associative. This is true because 
addition and subtraction of each of the individual 
elements will determine whether the matrices are 
commutative or associative overall.  

You can use more formal methods to prove these 
properties. For example, to show that matrix 
addition is commutative:

a
c

b
d( ) e

g
f
h( a + e

c + g
b + f
d + h() e

g
f
h( )) + a

c
b
d( ) +  =  = e + a

g + c
f + b
h + d( ) = 

 Addition of numbers is commutative

Exercise 1.1 (Page 4)
1 (i)	 3 × 2		  (ii) 3 × 3   (iii) 1 × 2  				

(iv)	 5 × 1  		(v) 2 × 4   (vi) 3 × 2

2 (i) 5 8
2 3

−
−







             	(ii) 
3 1 4
4 2 12

−





      

 (iii) 8 5
3 7

−
−







     

	 (iv)	 Non-conformable (v) 

 (vi) 
4
12
20











  (vii)	 

 

 (viii)	Non-conformable

 (ix) 15 8
4 3

−
−







3 9 14
0 0 4

− −





9 7 17
10 5 28

−





3 (i) 

0 2 1 0
1 0 2 1
0 2 0 2
1 0 1 0

















 (ii) 

	 (iii) 

P

R
S

Q

2 2

1

2

2

1

4	 = = − = − =w x y z2, 6,  2, 2

5 = − = ±p q1  or  6,   5  

6 (i) 

1 0 1 4 4
0 0 1 0 2
1 1 0 7 5
0 1 0 3 3
















 

  
3 1 1 10 7
0 0 4 2 10
3 1 1 11 8
1 2 1 8 6

















 (ii) 

















1 0 0 2 1
1 1 0 3 2
0 0 1 1 2
0 1 1 2 3

 

City 2 vs United 1
Rangers 2 vs Town 1
Rangers 1 vs United 1

7 (i) 
15 3 7 15
5 9 15 3
19 10 9 3

−












 

The matrix represents the number of 
jackets left in stock after all the orders 
have been dispatched.  The negative 
element indicates there was not enough 
of that type of jacket in stock to fulfil the 
order.

0 0 2 2
1 0 0 0
2 0 0 1
0 0 2 0
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 (ii) 












20 13 17 20
15 19 20 12
19 10 14 8

 (iii) 












12 30 18 0
6 18 24 36
30 0 12 18

The assumption is probably not very realistic, as a 
week is quite a short time.

Discussion point (Page 8)
The dimensions of the matrices are A (3 × 3), B  
(3 × 2) and C (2 × 2).  The conformable products 
are AB and BC.  Both of these products would have 
dimension (3 × 2), even though the original matrices 
are not the same sizes.

Activity 1.1 (Page 9)

AB = −





−
−







= − −
−







2 1
3 4

4 0
2 1

6 1
20 4

 

BA = 4 0
2 1

 
2 1
3 4

8 4
1 6

−
−







−





= −
−







 

These two matrices are not equal and so matrix 
multiplication is not usually commutative. There  
are some exceptions, for example if 

C = 






2 0
0 2

 and D = − −






3 3
1 1

 then 

CD = DC = 
− −







6 6
2 2

. 

Activity 1.2 (Page 10)

(i)	 AB	=	
− −
−







6 1
20 4 	

(ii) BC = − −
−







4 8
0 1

(iii)	 (AB)C	=	
− −
− −







8 15
12 28

(iv)	 A(BC)	=	
− −
− −







8 15
12 28

  (AB)C = A(BC) so matrix multiplication is 
associative in this case

  To produce a general proof, use general 
matrices such as  

A = 
a b
c d







, B = 
e f

g h









  and 

 C = 
i j

k l







.   

a b
c d

e f

g h

ae bg af bh

ce dg cf dh















 =

+ +
+ +









 , 

 
e f

g h
i j

k l

ei fk ej fl

gi hk gj hl

















=

+ +
+ +









  

and so 

   

AB =

BC =

+ +
+ +

















=

+ +
+ +






ae bg af bh

ce dg cf dh
i j

k l

aei bgi afk bhk

cei cfk dgi dhk
 

+ +
+ +

















=

+ + + + + +
+ + + + + +











ae bg af bh

ce dg cf dh
i j

k l

aei bgi afk bhk aej bgj afl bhl

cei cfk dgi dhk cej cfl dgj dhl
 







+ +
+ +









 =

+ +
+ +






a b
c d

ei fk ej fl

gi hk gj hl

aei afk bgi bhk

cei dgi cfk dhk







+ +
+ +









 =

+ + + + + +
+ + + + + +











a b
c d

ei fk ej fl

gi hk gj hl

aei afk bgi bhk aej afl bgj bhl

cei dgi cfk dhk cej dgj cfl dhl

Since (AB)C = A(BC) matrix multiplication is 
associative and the product can be written without 
brackets as ABC.

Exercise 1.2 (Page 10)
1 (i)	 (a)	 3 × 3	 (b)	 1 × 3	 (c)	 2 × 3	 (d)	2 × 4	 	

	 (e)	 2 × 1	 (f)	 3 × 5
	 (ii) (a) non-conformable

(b)	 3 × 5
	 	 (c)	 non-conformable

(d)	 2 × 3
	 	 (e)	 non-conformable

(AB)C =

and

A(BC) =
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2 (i) 
21 6
31 13







 (ii)	 ( )− −30 15( )− −30 15

 (iii) 
54
1

−
−







 

3 AB = 
3 56
20 73

−
−






, BA =	

25 8
28 45

−
−







								

 AB ≠ BA so matrix multiplication is non- 
commutative.

4 (i) 7 26
2 34

−





 (ii) 
5 25
16 22







 (iii) 
31 0
65 18







 (iv) 
26 37 16
14 21 28

8 11 2− −













	 (v) non-conformable (vi) 
28 18
26 2
16 25

−











5 
38 136 135

133 133 100
273 404 369

− − −











6 (i)	
x2 12 9

4 3

2 + −
−







 (ii) x = 2 or 3

(iii) BA = 












8 12
8 15

or
18 18
12 15  

7 (i) (a) 






4 3
0 1

 (b) 






8 7
0 1

  (c) 






 
16 15
0 1  (ii) 

−





2 2 1
0 1

n n

 (iii)	






 
1024 1023

0 0
	=	 −





2 2 1
0 1

10 10

8 (i) 

1 1 2 0
1 0 1 0
1 1 0 2
0 0 1 0

















 

 (ii) 
4 3 3 4
2 2 2 2
2 1 5 0
1 1 0 2

















  M2 represents the 
number of two-stage 
routes between each 
pair of resorts.

(iii)			M3 would represent the number of three-
stage routes between each pair of resorts.

9 (i) 
+ − +

− + − −






x x
x x

8 4 20
8 3 3

2

 (ii) x = −3 or 4

 (iii) − −
−







−
− −







4 11
11 6

  or  
24 4
4 15

10 (i) D = 1 1 1 1( )    

  DA = 299 199 270 175 114( )

 (ii) F = 

1
1
1
1
1





















, AF = 

229
231
263
334

















(iii) S = 

1
0
0
0
1





















,  DAS = (413), 

 C = 

0
1
1
1
0





















,  DAC = (644)

(iv) P = 

0.95
0.95
1.05
1.15
1.15





















, 

 DAP = (1088.95) = £1088.95

11 (i) 
b
a
c













  (ii) 

1 0 0
0 0 1
0 1 0













 (iii) 
0 1 0
0 0 1
1 0 0











 , 

b
c
a















 (iv) 
0 0 1
1 0 0
0 1 0













, 
c
a
b
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(v) 
1 0 0
0 1 0
0 0 1













 The strands are back in the 

original order at the end of Stage 6.

Discussion point (Page 17)

The image of the unit vector 1
0






 is 







a
c

 and

the image of the unit vector 0
1






 is 







b
d

.

The origin maps to itself.

Activity 1.3 (Page 17)
The diagram below shows the unit square with 
two of its sides along the unit vectors i  and j . It is 
rotated by 45° about the origin.  

O x

y

A

B′
A′

1
B

45°

You can use trigonometry to find the images of the 
unit vectors i  and j .

For A′, the x-coordinate satisfies xcos45 1=  so 

x cos45 1
2

= = . 

In a similar way, the y-coordinate of A′ is 1
2

.

For B′, the symmetry of the diagram shows that the 

x-coordinate is 1
2

−  and the y-coordinate is 1
2

.

Hence, the image of 
1
0





  is 

1
2

1
2

















 and the 

image of 
0
1





  is 

1
2

1
2

−















 and so the matrix representing an

anticlockwise rotation of  

45° about the origin is 

1
2

1
2

  

1
2

1
2

 

−















  .

Rotations of 45° clockwise about the origin 
and 135° anticlockwise about the origin are also 
represented by matrices involving 1

2
± .   

This is due to the symmetry about the origin. 

(i)	  The diagram for a 45° clockwise rotation about 
the origin is shown below.

O x

y

A

A′

B′

B

45°

The image of 
1
0





  is 

1
2
1
2

−
















 and the image 

of 
0
1





  is 

1
2

1
2

















 and so the matrix 

representing an anticlockwise rotation of

45° about the origin is 

1
2

1
2

  

1
2

1
2

 −
















.

(ii)	  The diagram for a 135° anticlockwise rotation 
about the origin is shown below.

O x

y

A

B′

A′

B

135°

1
2

1
2

  

1
2

1
2

 

−
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The image of 
1
0





  is 

1
2

1
2

−















 and the image of 

0
1





  is 

1
2

1
2

−

−

















 and so the matrix representing 

an anticlockwise rotation of 45° about the origin is 

1
2

1
2

  

1
2

1
2

 

− −

−















 .

Discussion point (Page 18)
The matrix for a rotation of θ ° clockwise about the 

origin is −






θ θ
θ θ

cos sin
sin cos

Activity 1.4 (Page 19)

(i)	  The diagram below shows the effect of the matrix 

	
2 0
0 1







 on the unit vectors i and j.

O x

y

A A′

B′

B

i = 1
0( )

j = 0
1( )

You can see that the vector i has image 2
0






 and

the vector j is unchanged. Therefore this matrix 
represents a stretch of scale factor 2 parallel to the 
x-axis.

(ii)		The diagram below shows the effect of the matrix 

 1 0
0 5






 on the unit vectors i  and j .

O xA
A′

y

B′

B

i = 1
0( )

j = 0
1( )

You can see that the vector i is unchanged and

the vector j has image 0
5






. Therefore this 

matrix represents a stretch of scale factor 5 
parallel to the y-axis.

The matrix m 0
0 1







 represents a stretch of scale 

factor m

parallel to the x-axis.

The matrix 




n

1 0
0

 represents a stretch of scale 

factor n 

parallel to the y-axis.

Activity 1.5 (Page 20)
Point A: 6 ÷ 2 = 3

Point B: 6 ÷ 2 = 3

Point C: 3 ÷ 1 = 3

Point D: 3 ÷ 1 = 3

The ratio is equal to 3 for each point.
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Exercise 1.3 (Page 24)
1 (i)	 (a)	

O 1 2 3

1

2

3

y

x

Aʹ
Bʹ

4

5

6

4 5 6

(b)	 A′ = (3, 6), B′ = (0, 6)
	 	 (c)	 x′ = 3x, y′ = 3y 

(d)	






3 0
0 3

	 (ii) (a) 

O 1 2 3

1

2

3

y

x

Aʹ
Bʹ

–1–2–3

–1

–2

–3

(b)	 A′ = (1, –2), B′ = (0, –2)
	 	 (c)	 x′ = x, y′ = –y 

(d)	
1 0
0 1−











	 (iii) (a) 

O 1 2 3

1

2

3

y

x–1–2–3

–1

–2

–3

Aʹ

Bʹ

(b)	 A′ = (–2, –1), B′ = (–2, 0)
	 	 (c)	 x′ – y y′ = –x

(d)	 0 1
1 0

−
−











	 (iv) (a) 

O 1 2 3

1

2

3

y

x–1–2–3

–1

–2

–3

Aʹ

Bʹ

(b)	 A′ = (2, –1), B′ = (2, 0)
	 	 (c)	 x′ = y, y ′ = –x 

(d)	
0 1
1 0−











	 (v) (a) 

O 1 2 3

1

2

3

y

x–1–2–3

–1

–2

–3

Aʹ
Bʹ

(b)	 A′ = (3, 1), B′ = (0, 1)
	 	 (c)	 x′ = 3x, y′ = 1

2
y 

(d)	
3 0

0 1
2















2 (i) Reflection in the x-axis
(ii)	 Reflection in the line y = –x
(iii)	 Stretch of factor 2 parallel to the x-axis and 

stretch factor 3 parallel to the y-axis
(iv)	 Enlargement, scale factor 4, centre the 

origin
(v)	 Rotation of 90° clockwise (or 270° 

anticlockwise) about the origin 
3 (i) Rotation of 60° anticlockwise about the  

 origin
(ii)	 Rotation of 55° anticlockwise about the 

origin
(iii) Rotation of 135° clockwise about the origin
(iv) Rotation of 150° anticlockwise about the 

origin
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4 (i)  

1 4
0 1

1 1 1 1
1 1 1 1

5 3 5 3
1 1 1 1







− −
− −







= − −
− −







 

so the transformed square would look like this:

(ii)	 The transformation is a shear with the x-axis 
fixed and the point A(1, 1) has image A′(5, 1).

5 (i)  (a)  The image of the unit square has vertices 
(0, 0), (1, 5), (0, 1), (1, 6) as shown in the 
diagram below.

O

2

4

6

1 2

y

x

 (b)  The image of the unit square has vertices 
(0, 0), (1, 0), (0.5, 1), (1.5, 1) as shown in 
the diagram below.

0.5

1

2

1 1.5

y

O x

(ii) Matrix A represents a shear with the y-axis 
fixed; the point (1, 1) has image (1, 6). A has 
shear factor 5.

	 Matrix B represents a shear with the x-axis 
fixed; the point (1, 1) has image (1.5, 1).  
B has shear factor 0.5.

6 (i) 
0 1 0
1 0 0
0 0 1

−











 (ii) 
1 0 0
0 1 0
0 0 1

−












 (iii) 
1 0 0
0 1 0
0 0 1

−
−













 (iv) 
0 0 1
0 1 0
1 0 0

−











 

7 (i) A′ (2 3 1,  2)−     (ii) 1 3
0 1







 

8 A′(4, 5), B′(7, 9), C′(3, 4). The original square and 
the image both have an area of one square unit.

9 (i) 

1

1 2

–1

–1–2–3

y

xO

C B

A A′

C′ B′

(ii)	 The gradient of A′C′ is 1
2, which is the 

reciprocal of the top right-hand entry of the 
matrix M.

10 (i) Rotation of 90° clockwise about the x-axis
(ii)	 Enlargement scale factor 3, centre (0, 0)
(iii)	 Reflection in the plane  z = 0
(iv)	 Three-way stretch of factor 2 in the 

x-direction, factor 3 in the y-direction and 
factor 0.5 in the z-direction

11 (i) 
1 0 0
0 1 0
0 0 1−













 (ii) 
1 0 0

0 1 0
0 0 1

−

−













12 x y x x, ,( ) ( )→
 The matrix for the transformation is 

1 0
1 0







.

13 (i)  Any matrix of the form 
k

5 0
0







 or 

  k 0
0 5







.

If k 5=  the rectangle would be a square.

(ii) 






2 1

0 1
, 






1 0

1 2
,

 






1 2
1 0

 or 






0 1

2 1

(iii) 

















7 3 3
2

0 3
2

, 

















0 3
2

7 3 3
2

,

O x

y

D′ A′

B′C′
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3 3
2 7

3
2 0

 or 

















0 3
2

7 3 3
2

Discussion point (Page 27)
(i)	 BA represents a reflection in the line y = x
(ii)	  The transformation A is represented by the matrix 

A = 
1 0
0 1−







 and the transformation 

	 B is represented by the matrix  

 B = 
0 1
1 0

−



 . The matrix product 

 BA = 
0 1
1 0

1 0
0 1

0 1
1 0

−



 −







=






. 

  This is the matrix which represents a reflection in 
the line y = x.

Activity 1.6 (Page 28)

(i)	 ′ =












=

+
+











a b
c d

x
y

ax by

cx dy
P  

(ii)	 ′′ =






+
+









 =

+ + +
+ + +











p q

r s

ax by

cx dy

pax pby qcx qdy

rax rby scx sdy
P  




+
+









 =

+ + +
+ + +











p q

r s

ax by

cx dy

pax pby qcx qdy

rax rby scx sdy

(iii)	

=












=
+ +
+ +







p q

r s
a b
c d

pa qc pb qd

ra sc rb sd
U  

and so

=
+ +
+ +













=

+ + +
+ + +











pa qc pb qd

ra sc rb sd

x
y

pax qcx pby rdy

rax scx rby sdy
UP










=

+ + +
+ + +











qd

sd

x
y

pax qcx pby rdy

rax scx rby sdy .	Therefore UP=P″

Discussion point (Page 28)
AB represents ‘carry out transformation B followed 
by transformation A.

(AB)C represents ‘carry out transformation C 
followed by transformation AB, i.e. ‘carry out C 
followed by B followed by A’.

BC represents ‘carry out transformation C followed 
by transformation B’.

A(BC) represents ‘carry out transformation BC 
followed by transformation A, i.e. carry out C 
followed by B followed by A’.

Activity 1.7 (Page 29)

(i)	 A = 
−







θ θ

θ θ
cos sin
sin cos

, 

	 B = 
cos sin

sin cos

φ φ
φ φ

−









(ii)	

BA	=

(iii)	 C = 
φ φ

φ θ φ
( ) ( )
( ) ( )

+ − +

+ +













θ θ

θ

cos sin

sin cos

(iv)	 ( )+ = +θ φ θ φ θ φsin sin cos cos sin

	
( )+ = −θ φ θ φ θ φcos cos cos sin sin

(v)	 A rotation through angle θ  followed by rotation 
through angle φ has the same effect as a rotation 
through angle φ followed by angle θ .

Exercise 1.4 (Page 30)
1 (i) A: enlargement centre (0,0), scale factor 3
  B: rotation 90° anticlockwise about (0,0)
  C: reflection in the x-axis
  D: reflection in the line y x=

(ii)	 BC = 
0 1
1 0






, reflection in the line

	 y = x

  CB = 
0 1
1 0

−
−





 , reflection in the line 

  y x= −

  DC = 
0 1
1 0

−





, rotation 90° 

  anticlockwise about (0, 0)

  A2 = 
9 0
0 9





 , enlargement centre (0, 0), 

  scale factor 9

  BCB = 
1 0
0 1−






, reflection in the x-axis

φ φ φ φ
φ φ φ φ

− − −
+ − +







θ θ θ θ
θ θ θ θ

cos cos sin sin sin cos cos sin

sin cos cos sin sin sin cos cos
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  DC2D = 
1 0
0 1






 returns the object to 

  its original position

	 (iii)	For example, B4, C2 or D2

2 (i) X = 
1 0
0 1−





      Y = 

1 0
0 1
−





(ii)	 XY = 
1 0

0 1
−

−




 , rotation of 180° 

 about the origin

	 (iii)	YX = 
1 0

0 1
−

−






	 (iv)	 When considering the effect on the unit 
vectors i and j, as each transformation only 
affects one of the unit vectors the order of 
the transformations is not important in this 
case.

3 (i) P = 
1 0

0 1
−

−






     Q = 
0 1
1 0







(ii)	 PQ = 
0 1
1 0

−
−






, reflection in the line 

	 y x= −

(iii)	 QP = 
0 1
1 0

−
−







(iv)	 The matrix P has the effect of making the 
coordinates of any point the negative of 
their original values, 

             i.e. ( ) ( )→ − −x y x y,   ,  

             The matrix Q interchanges the coordinates,  

  i.e. x y y x,   ,( ) ( )→
              It does not matter what order these two 

transformations occur as the result will be 
the same

4 (i) J = 
1 0 0
0 1 0
0 0 1−













 K =  
1 0 0
0 0 1
0 1 0

−












  L = 
1 0 0

0 1 0
0 0 1

−











 M = 
0 0 1
0 1 0
1 0 0−













(ii)	 (a) LJ (b) MJ
	 (c) K2 (d) JLK

5 (i) 8 4
3 12

−
−







 (ii)  (32, −33)

6 Possible transformations are B = 
0 1
1 0

   
−






,

 which is a rotation of 90° clockwise about the 
origin, followed by 

 A = 
3 0
0 1






, which is a stretch of scale factor 

3 parallel to the x-axis.  The order of these is 
important as performing A followed by B leads

 to the matrix 
0 1
3 0−





 . Could also have 

 B = 
1 0
0 3





 . which represents a stretch of 

factor 3 parallel to the y-axis, followed by 

 A = 
0 1
1 0

   
−






, which represents a rotation 

of 90° clockwise about the origin; again the 
order is important.

7 (i) PQ = 
1 0
3 1− −







(ii)	 P = 
1 0
0 1−





  represents a reflection in 

	 the x-axis.

	 Q = 
1 0
3 1







 represents a shear with the 

y-axis fixed; point B(1,1) has image (1,–4).

8 X = 

1
2

1
2

1
2

1
2

−

















 

A matrix representing a rotation about the 

origin has the form 
−











θ θ

θ θ

cos sin

sin cos
 and so 

the entries on the leading diagonal would be 
equal. That is not true for matrix X and so this 
cannot represent a rotation.

9 Y = 

0 1 0
1 0 0
0 0 1
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10 (i) 1 0
0 2







 

(ii)	 A reflection in the x-axis and a stretch of 
scale factor 5 parallel to the x-axis

(iii)	
5 0
0 2−







 

	 Reflection in the x-axis; stretch of scale 
factor 5 parallel to the x-axis; stretch of scale 
factor 2 parallel to the y-axis. The outcome 
of these three transformations would be the 
same regardless of the order in which they are 
applied. There are six different possible orders.

(iv)	

1
5 0

0 1
2−

















 

11 (i) 
R1

0 1
1−




  

(ii)	
R

1 0
1 1

2
−













(iii)	

R

R
R
R

1

1 1

1

2

1

2

−

− +















 

(iv)	

R
R R

R

1

1 1

1

2
1

2

+ −

−

















 

The effect of Type B followed by Type A is 
different to that of Type A followed by Type B.

12 a 2 2
4= +  and b 1

2 2 2( )=
+

 

      D represents an anticlockwise rotation of 22.5°  
      about the origin.

       By comparison to the matrix 

      
−











θ θ

θ θ

cos sin

sin cos
 for an anticlockwise 

       rotation of θ about the origin, a and b are the 
exact values of cos 22.5° and sin 22.5° respectively.

13 (i) P = 
1
2

3
2

3
2

1
2−

















  Q = 
1
2

3
2

3
2

1
2

−
















 

 (ii) QP = 

1
2

3
2

3
2

1
2

−















, which represents 

 a rotation of 60° anticlockwise about the 
origin.

(iii) PQ = 

1
2

3
2

3
2

1
2−

















, which represents a 

rotation of 60° clockwise about the origin.

14 A reflection in a line followed by a second 
reflection in the same line returns a point to its 
original position.

Discussion point (Page 33)
In a reflection, all points on the mirror line map to 
themselves.

In a rotation, only the centre of rotation maps to itself.

Exercise 1.5 (Page 35)

1 (i)  Points of the form λ λ( )−, 2

(ii) (0, 0)

(iii)	 Points of the form λ λ( )−, 3        

(iv)	 Points of the form 2 , 3λ λ( )         
2 (i) x-axis, y-axis, lines of the form y mx=  

(ii) x-axis, y-axis, lines of the form y mx=

(iii) no invariant lines

(iv) y x= , lines of the form y x c= − +

(v) y x= − , lines of the form y x c= +

(vi) x-axis, lines of the form y = c

3 (i)  Any points on the line y x1
2= , for  

example (0, 0), (2, 1) and (3, 1.5)

(ii)	 y x1
2=
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5 (i) y x= , y x9
4= −  

(ii)	

2

2

4

6

8

10

4 8 10 12
–2

–4 –2 6

y

xO
C A

C′

B′

A′ y = x

y = −   x–94
B

6 (i) y x=  (ii) y x=

(iii)	

1

1

2

3

2
–1

–1 3

y

xO

B
C

A

C′

A′

y = x

B′

9 (i) x x a y y b, ′ = + ′ = +  

(iii)	 (c) a b2= −  

(iii)	 Any line of the form y x c2= − +

(iv)	 Using the method of Example 1.12 leads to 
the equations 

 + − = ⇒ = −m m m2 3 2 0 0.5  or 22

 m c m c4 2 0 2  or   0( )+ = ⇒ = − =

  If m 0.5=  then c 0=  so y x1
2=  is 

invariant.

  If m 2= −  then c  can take any value and so 
y x c2= − +  is an invariant line.

4 (i) Solving 











=







x
y

x
y

4 11
11 4

 leads 

  to the equations y x3
11= −  and y x11

3= − . 

  The only point that satisfies both of these is
  (0, 0).

(ii)	 y x=  and y x= −
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Chapter 2

Discussion point (Page 39)
R   Real numbers – any number which is not 

complex 

Q   Rational numbers – numbers which can be 
expressed exactly as a fraction

Z   Integers – positive or negative whole numbers, 
including zero

N   Natural numbers – non-negative whole 
numbers (although there is some debate amongst 
mathematicians as to whether zero should be 
included!)

Discussion point (Page 40)
Any real number is either rational or irrational. This 
means that all real numbers will either lie inside 
the set of rational numbers, or inside the set of real 
numbers but outside the set of rational numbers. 
Therefore no separate set is needed for irrational 
numbers. 

The symbol Q is used for irrational numbers – 
numbers which cannot be expressed exactly as a 
fraction, such as π .

Activity 2.1 (Page 40)

Activity 2.2 (Page 40)
(i)	 x 2=   Natural number (or integer)

(ii)	 x 9
7=  Rational number

(iii)	 x 3= ±   Integers
(iv)	 x 1= −   Integer
(v)	 x 0,  7= −  Integers

Discussion point (Page 42)
You know i 12 = −  

i i i 1 i i3 2= × = − × = −  

i i i 1 1 14 2 2= × = − × − =  

i i i 1 i i5 4= × = × =  

i i i i i 16 5= × = × = −  

i i i 1 i i7 6= × = − × = −  

The powers of i form a cycle:

i

–1 1

–i

All numbers of the form i n4  are equal to 1.

0.33 −13

227
109

7

−   5

3.1415

π
0. 3

√

5√

·

Real

Rational

Integers

Natural numbers
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All numbers of the form i n4 1+  are equal to i.

All numbers of the form i n4 2+  are equal to −1.

All numbers of the form i n4 3+  are equal to i− .

Discussion point (Page 42)

5 15 5 15

25 5 15 5 15 15

25 15

40

( ) ( )
( )

+ − − −

= − − + − − −
= +
=

Discussion point (Page 42)
If the numerators and denominators of two fractions 
are equal then the fractions must also be equal.

However, it is possible for two fractions to be equal if 
the numerators and denominators are not equal, for 

example 3
4

6
8= . 

Exercise 2.1 (Page 43)

1 (i) i (ii) –1

 (iii) –i (iv) 1

2 (i) 9 i−  (ii) 9 9i− +
 (iii) 3 9i+  (iv) 3 i− −  

3 (i) 24 2i+  (ii) 2 24i− +
 (iii) 20 48i+  (iv) 38 18i−  

4 (i) (a) 52 (b) 34 (c) 1768 

	 (ii)  The answers are wholly real.
5 (i) 92 60i−  (ii) 414 154i− +  

6 (i) 1 i− ±  (ii) 1 2i±  (iii) 2 3i±  

(iv) 3 5i− ±  (v) 1
2 2i±  (vi) 2 2i− ±  

7 a 1=  or 4, b 1= −  or 3
The possible complex numbers are 
1 9i,  1 i,  16 9i,  16 i+ + + +  

8 a b3,  5= =  or a b3,  5= − = −  

9 3 7i+  and 3 7i− −  

10	 (i) 

5

10

5 10

y

x0

y = x2 − 4x + 3

y = x2 − 4x + 6

y = x2 − 4x + 8

 (ii) (a) x x1,  3= =  
	 	 (b) x 2 2i= ±  
	 	 (c) 2 2i±  
	 (iii)  The roots all occur in pairs that are of the 

form x k2= ±  where k is either a real 
number or a real multiple of i 

11 a b7,  11= − =  
  The second root is 5 – 3i. The coefficients of 

the equation are not real.

Activity 2.3 (Page 45)

( ) ( )+ = + + − =z z x y x y xi i 2*  which is real

( )( )= + − = − + − = +zz x y x y x xy yx y x yi i i i i* 2 2 2 2 2 
which is real

Discussion point (Page 46)
1
i

1
i

i
i

i
1 i= × = − = −  

1
i

1
i

i
i

1
1 12 2

2

2= × = − = −
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1
i

1
i

i
i

i
1 i3 3

3

3= × = −
− =

1
i

1
i

i
i

1
1 14 4

4

4= × = =

All numbers of the form 1
i n4  are equal to 1.

All numbers for the form 1
i n4 1+  are equal to –i . 

All numbers of the form 1
i n4 2+  are equal to −1.

All numbers of the form 1
i n4 3+  are equal to i.

Exercise 2.2 (Page 46)

 1 (i) 21
50

3
50 i+  (ii) 21

50
3
50 i−

 (iii) 3
50

21
50 i− +  (iv) 3

50
21
50 i+

 2 (i) 9
13

19
13 i− +  (ii) 

9
34

19
34 i− −

 (iii) 9
13

19
13 i− − 	 (iv) 9

34
19
34 i− +

 3 (i) +94
25

158
25 i  (ii) 

204
625

253
625 i+

 4 (i) 6 (ii) 85 

	 (iii) 12 (iv) 45

 (v) −4 (vi) 45

 5 (i) 2 (ii) 3 

	 (iii) 2 3i−  (iv) 6 4i+

 (v) 8 i+  (vi) 4 7i− −

 6 (i) 0 (ii) 0

 (iii) –39 (iv) − −46 9i  

	 (v) 46 9i− −  (vi) 52i

 7 (i) 348
61

290
61 i+  (ii) 322

29
65
29 i−

 (iii) 600
3721

110
3721 i− +

 8 (i) 2 i−  (ii) 1

	 (iii)	 3 i+  (iv) 35
34

149
34 i− +  

	 9 = − = −a b23
13     15

13  

10 a b9,  11= =  

11 (i) 10
89

 (ii) 10
89  

12 x
x y

2
2 2+

14 a b2,  2= =  

15 z z z0,    2,    1 3i= = = − ±  

16 = − = −z w8 6i, 6 5i  

Discussion point (Page 47)
A complex number has a real component and an 
imaginary component. It is not possible to illustrate 
two components using a single number line.

Activity 2.4 (Page 48)
(i) 

   The points representing z and –z have half turn 
rotational symmetry about the origin.

(ii) Im

Re

–4

–3

–2

–1
0

1

2 2i

2 + 3i

2 – 3i

5 – 4i

5 + 4i

–2i

3

4

–1 1 2 3 4 5 6 7
7

8–2–3

   The points representing z and z∗ are reflections 
of each other in the real axis.

Im

Re

–5

–4

–3

–2

–1

1

2 2i

2 + 3i

–2 – 3i

–5 – 4i

5 + 4i

–2i

3

4

5

–1 1 2 3 4 5 6 7 8–2–3–4–5–6–7
7–7

–8
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Exercise 2.3 (Page 50)
1 

Im

Re

–5

–4

–3

–2

–1

1

2
3 + 2i

4 − 3i

−5 + i

−2

−6 − 5i

4i

3

4

–1 0 1 2 3 4 5 6 7–2–3–4–5–6

2 
Im

Re

–5

–4

–3

–2

–1

1

2

−z = −2 + 4i

−z* = −2 − 4i

z* = 2 + 4i

z = 2 − 4i

iz* = −4 + 2i

(iz)* = 4 − 2i−iz = −4 − 2i

iz = 4 + 2i
3

4

–1 0 1 2 3 4 5 6–2–3–4

3 
Im

Re

–8

–6

–4

–2
0

2

4

z + w = 11 + 7i

z = 10 + 5i

z – w = 9 + 3i

w – z = –9 – 3i

6

8

–2 2 4 6 8 10 12 14 16–4–6–8–10

w = 1 + 2i

4 (i) x x4 3 02 − + =  

	 (ii) x x4 5 02 − + =  

	 (iii) x x4 13 02 − + =  

	 (iv)  All of the form x x k4 02 − + =  where 
k �∈R 

5 Im

Re

−(z*) = −x + yi

z* = x − yi−z = −x − yi

z = x + yi

6 (i)	

n –1 0 1 2 3 4 5

z n −1
2

1
2

i 1 1 + i 2i –2 + 2i –4 –4 – 4i

	 (ii) 

Re

Im

 (iii)	

n –1 0 1 2 3 4 5

z n −1
2

1
2

i 1 1 + i 2i –2 + 2i –4 –4 – 4i

Distance 
from 
origin

1
2

1 2 2 2 2 4 4 2

 (iv)	 	The half squares formed are enlarged by a factor 

of 2  and rotated through 45° each time.

7 (i) r a b2 2= +  

	 	 ( )( )= + − = + =zz a b a b a b ri i   2 2 2*  

	 (ii) s c d2 2= +  

 (iii)  

  Distance from origin of zw is 

ac bd bc ad a c b d b c a d

a b c d

a b c d rs

2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )
( ) ( )− + + = + + +

= + +

= + + =

zw a b c d ac bd bc adi i i( ) ( ) ( ) ( )= + + = − + +
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Discussion point (Page 53)
+ − − =x x x4 4 1 03 2  

Looking at the graph you may suspect that x = 1 is 
a root. Setting x = 1 verifies this. The factor theorem 
tells you that (x – 1) must be a factor, so factorise the 
cubic − + + =x x x( 1)(4 5 1) 02 . Now factorise the 
remaining quadratic factor: − + + =x x x( 1)(4 1)( 1) 0, 
so the roots are x = 1, 1–4 , –1.

+ + + =x x x4 4 1 03 2
 

This does not have such an obvious starting 
point, but the graph suggests only one real root. 

Comparing with previous example, you may spot 

that x = 1–4  might work, so you can factorise giving 
+ + =x x(4 1)( 1) 02 . From this you can see that the 

other roots must be complex. x 12 = − , so the three 
roots are x = 1–4 , ±i.

Activity 3.1 (Page 54)

Equation Two 
roots

Sum of 
roots

Product 
of roots

(i)   − + =z z3 2 02 1, 2 3 2

(ii)  + − =z z 6 02 2, –3 –1 –6

(iii) − + =z z6 8 02 2, 4 6 8

(iv) − − =z z3 10 02 –2, 5 3 –10

(v)  − + =z z2 3 1 02 1
2
, 1 3

2
1
2

(vi) − + =z z4 5 02 2 ± i 4 5

Discussion point (Page 54)
If the equation is ax2 + bx + c = 0, the sum appears 

to be – ba and the product appears to be ca.

Discussion point (Page 55)
You get back to the original quadratic equation.

Activity 3.3 (Page 57)

	 (i) i i3 31
4 , 3 31

2
− ± − ±

	 (ii) 2 7
3 , 5 7

3
± ±

Exercise 3.1 (Page 57)

1 (i) + = − =α β αβ7
2 , 3  

(ii)		 + = = −α β αβ1
5 , 1

5

(iii)	 + = =α β αβ0, 2
7

(Iv)		 + = − =α β αβ24
5 , 0

(v)		 + = − = −α β αβ11, 4

(vi)		 + = − = −α β αβ8
3 , 2

2 (i)  − + =z z10 21 02

(ii)		 − − =z z3 4 02

(iii)		 + + =z z2 19 45 02

(iv)		 − =z z5 02

(v)		 − + =z z6 9 02

(vi)		 − + =z z6 13 02

3 (i)  + − =z z2 15 81 02

(ii)		 − − =z z2 5 9 02

(iii)		 + + =z z2 13 9 02

(iv)		 − − =z z7 12 02

4 (i)   Roots are real, distinct and negative (since 
> ⇒αβ 0  same signs and + < ⇒α β 0  

both <0)

(ii)	 = −α β  
(iii)	 One of the roots is zeros and the other is b

a− .

(iv)	 The roots are of opposite signs.
5   Let + + =az bz c 02  have roots a and 2a.

  Sum of roots + = = −α α α b
a2 3  so = −α b

a3
 

  Product of roots × = =α α α c
a2 2 2  so 

( )× − =b
a

c
a2 3

2

 

 Then =b ac2 92  as required.

6 (i) + + =az bkz ck 02 2

(ii)	 + − + − + =az b ka z k a kb c( 2 ) ( ) 02 2

7 (ii) − + + + =z (5 2i) (9 7i) 02

Exercise 3.2 (Page 61)

1 (i) − 3
2

(ii)	 − 1
2

 

(iii)		− 7
2
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(ii)	 3

(iii)	 5
2

(iv)	 2

2 (i) − + + − =z z z z6 7 6 8 04 3 2

(ii)	 + + − =z z z z4 20 60 04 3 2

(iii)	 + − − + =z z z z4 12 27 54 81 04 3 2

(iv)	 − + − =z z z5 10 6 04 2

3 (i) + − + + =z z z z4 6 8 48 04 3 2

(ii)	 + + + + =z z z z2 12 21 13 8 04 3 2

4  (i)  Let = +w x 1 then = −x w 1 

  new quartic: x x 6  94 2− +  
(ii)	 Solutions to new quartic are = ±x 3 

(each one repeated), solutions to original 
quartic are therefore: 3 1= = −α β  and 

3 1= = − −γ δ .

5 (i) 1,  3= − =α β
(ii)	 =p 4 and = −q 9 
(iii)	 Use substitution y x 3= − α  (i.e. 

= +y x 3 then = −x y 3) and 

y y y   8  18 – 12 03 2− + =  

6 (i) + + + + = −

+ + + + + + +
+ + =

+ + + + + +

+ + + = −

+ + + + =

= −

α β γ δ ε

αβ αγ αδ αε βγ βδ βε

γδ γε δε

αβγ αβδ αβε αγδ αγε αδε

βγδ βγε βδε γδε

αβγδ βγδε γδεα δεαβ εαβγ

αβγδε

b
a

c
a

d
a

e
a

f
a

  

2 (i) − + − =z z z7 14 8 03 2

(ii)	 − − + =z z z3 4 12 03 2

(iii)	 + + =z z z2 7 6 03 2

(iv)	 − + − =z z z2 13 28 20 03 2

(v)	 − − =z z19 30 03

(vi)	 − + − =z z z5 9 5 03 2

3 (i) z = 2, 5, 8

(ii)	 z = − 2
3

, 2
3

, 2 

(iii)	 z = −2 2 3, 2, +2 2 3

(iv)	 z = 2
3

, 7
6

, 5
3

4 (i) = −z w 3  

(ii)	 − + − + − − =w w w( 3) ( 3) 2( 3) 3 03 2

(iii)			w w w8 23 27 03 2− + − =
(iv)		 3, 3, 3α β γ+ + +

5 − + − =w w w4 4 24 03 2

6 (i) − + − =w w w2 16 37 27 03 2  

(ii)		 + + + =w w w2 24 45 37 03 2

7  The roots are 3
2

, 2, 5
2

 =k 47
2

8  z = 1
4

, 1
2
, − 3

4

9  α = –1, p = 7, q = 8 or α = p = q = 0

10  Roots are – p and ± −q (note ± −q is not 

 necessarily imaginary, since q is not necessarily >0)

11 (i) 

( )
( )= − + +

= + +

= −

α α β

αβ β
α

β

p

q

r

8 1
2

8 1
2 2

4

 

(iii)	 = = −

= − = − −

r x

r x

9; 1, 1
2 , 9

4

6; 2, 1
4 , 3

2

 

12 z 3
7 , 7

3 , 2= −  

13 =ac b d3 3

 =z 1
2 , 3

2 , 9
2  

Exercise 3.3 (Page 64)
1 (i) − 3

2
 

b
a α∑ = −

c
aαβ∑ =

d
aαβγ∑ = −

e
aαβγδ∑ =

f
aαβγδε∑ = −
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(ii)		 z = –1 – 2i, –5
(iii)	

O−1−5

−2

2

Im

Re

−1 + 2i

−1 − 2i

12  A false, B true, C true, D true
13  a = 2, b = 2, z = –2 ± i, 1 ± 2i

14  z = ±3i, ±4 5

15 (i)  α ² = –8 – 6i, α  ³ = 26 – 18i
(ii)  µ = 20

(iii) z = –1 ± 3i, − 2
3

 

(iv) 

O−1

−3

3

Im

Re

−1 + 3i

−1 − 3i

−–23

16  b = –9, c = 44, d = –174, e = 448, f = –480

Chapter 4

Discussion point (Page 72)
Start at 2 and add 3 each time.

Exercise 4.1 (Page 75)
 1 (i) 6, 11, 16, 21, 26 

 Increasing by 5 for each term
(ii)	 −3, −9, −15, −21, −27 

Decreasing by 6 for each term
(iii)		8, 16, 32, 64, 128 

Doubling for each term
(iv)	 8, 12, 8, 12, 8 

Oscillating
(v)	 2, 5, 11, 23, 47 

Increasing

(vi)	 5, 5
2 , 5

3 , 5
4 , 1 

Decreasing, converging to zero

Exercise 3.4 (Page 67)
1  4 + 5i is the other root.

  The equation is + =z z– 8 41 02 . 
2  2 − i, −3
3  7, 4 ± 2i

4 − 2i

4 + 2i

O 2 4 6 8

7

−2

2

4

Im

Re

4 (i) z = –3

(ii)	 z = –3, ±5
2

11
2 i

5  k = 36, other roots are − ±3
2

3 3
2 i

6  p = 4, q = –10, other roots are 1 + i and –6
7 − =z z – 6 03  
8  z = 3 ± 2i, 2 ± i

2 − i

2 + i
3 + 2i

3 – 2i

O 1 2 3 4

−2

2

4

Im

Re

9 (i)  w² = –2i, w³ = –2 – 2i, w4 = –4
(ii)	 p = –4, q = 2
(iii)	 z = –4, –1, 1 ± i

10 (i)  z = ±3, ±3i
(ii)	

O 2−4

−3 3

−2 4

−2

2

4

Im

Re

−3i

3i

11 (i) a ² = –3 – 4i, a ³ = 11 – 2i
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 2 (i) 21, 25, 29, 33
(ii)		 = = ++u u u1, 4r r1 1  

(iii)	 =u r4 – 3r  

 3 (i)		 (a) 0, –2, –4, −6
  (b) = = −+u u u10, 2r r1 1  

  (c) = −u r12 2r

	 	 (d)	 –28

 (ii) (a) 32, 64, 128, 256

  (b)	 = =+u u u1, 2r r1 1

  (c) = −u 2r
r 1  

  (d) 524 288

 (iii) 	(a) 31 250, 156 250, 781 250, 3 906 250 

  (b) = =+u u u50, 5r r1 1

  (c) = ×u 10 5r
r  

  (d) 9.54 × 1014

 4 (i) 25 (ii)		 –150

 (iii)	 363  (iv)	 –7.5

 5 (i) ∑ −
=

r(56 6 )
r 1

7

 (ii) 224

 6  2500

 7 (i)	 –5, 5, –5, 5, –5, 5 
 Oscillating

	 (ii)  (a) 0 (b) –5

 (iii) − + −5
2

5
2 ( 1)n

 8 (i)  0, 100, 2, 102, 4, 104
   Even terms start from 100 and increase  

by 2, odd terms start from 0 and increase 
by 2.

	 (ii) 201

 (iii)  102

 9  749 cm

10 +n n1
2 ( 1)3

11  10, 5, 16, 8, 4 (This will reach 1 at c
7
 and then 

repeat the cycle 4, 2, 1)

Exercise 4.2 (Page 78)

 1 (i)	 1, 3, 5  (ii) n²

 2 (i)  4, 14, 30  (ii) ( )+n n 1 2  

 3	 (i)	 2, 12, 36  (ii) n n n n1
12 ( 1)(3 7 2)2+ + +

 4   n4

 5 + +n n n1
3 ( 1)( 2)  

 6 + + +n n n n1
4 ( 1)( 2)( 3)

 7 +n n1
2 (3 1)

 8 + +n n n(4 1)(5 2)2

 9 (ii) 7 layers, 125 left over

10	 (i)  £227.50

 (ii)  + +n n I1
24 (35( 1) 30 )

Discussion point (Page 81)
As n becomes very large, the top and bottom of 

+
n

n 1  are very close, so the sum becomes very close to 

1 (it converges to 1).

Discussion point (Page 84)
As n becomes very large, the expression 

+
+ +

n n
n n

(3 7)
2( 1)( 2)  becomes close to n

n
3
2

2

2  (since terms 

in n² are much bigger than terms in n). So the  

sum becomes very close to 3
2  )it converges to 3

2 ).

Exercise 4.3 (Page 84)

 1 (ii)  

n n

n n n n

1 – 0 4 – 1 9 – 4

[ 2 3 ]

[ 1 2 ] [ 1 ]

2 2

2 2 2 2

) ) )
) )
) ) )

( ( (
( (
( ( (

+ + + … +

− − − +

− − − + − −

 

	 (iii)	 n2

 2 (i)	 First term: r = 1, last term: r = 10 

	 (iii)  20
21

 

 3	 (ii)  ( )+ +n n n4 52   (iv) 99

 4 (ii) 
( )

( )
+

+
n n
n

2
1 2   

 5 (ii)  ( )
( ) ( )

+
+ +

n n
n n

3 5
4 1 2
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 (iii)   0.7401, 0.7490, 0.7499. The sum looks as if 
it is approaching 0.75 as n becomes large.

 6 (ii) 13
120

 

 7 (ii) ( )
( ) ( )

+
+ +

n n
n n

3
4 1 2

	 (iii)	   0.249 95..., 0.249 9995… The sum looks as 
if it is approaching 0.25 as n becomes large.

 8	 (ii) + +n n n8 12 63 2  

 9 (ii) + + +n n n n16 32 24 84 3 2  

10 (ii)  = = −A B1
2 , 1

2
 

	 (iii)  ( ) ( )
( )

+ −
+

n n
n n

3 2 1
4 1

   

	 (iv)	 As → ∞n , the sum → 3
4

Discussion point (Page 85)
If she was 121 last year then it would be fine, but we 
don’t know if this is true. If she were able to provide 
any evidence of her age at a particular point then we 
could work from there, but we need a starting point.

Activity 4.1 (Page 86)

× =

× + × =

× + × + × =

× + × + × + × =

1
1 2

1
2

1
1 2

1
2 3

2
3

1
1 2

1
2 3

1
3 4

3
4

1
1 2

1
2 3

1
3 4

1
4 5

4
5

 

Activity 4.2 (Page 89)
 (i)	 Assume true for n = k, so 
  ( )+ + + … + = +k k2 4 6 2 1

2

2
.

For = +n k 1,

k k k k

k k k

k k

k

k

2 4 6

2 2 1 1
2 2 1

1
4 2 2

3 9
4

3
2

1 1
2

2

2

2

2

2

)

)
)

(

(
(

) )( (

+ + + … +

+ + = + + +

= + + + +

= + +

= +

= + +  
  It is not true for n = 1.
	(ii) It breaks down at the inductive step.

Exercise 4.5 (Page 92)
5 (ii)   M is a shear, x-axis fixed, (0, 1) maps to (1, 1). 

Mn is a shear, x-axis fixed, (0, 1) maps to (n, 1).

6	 (i)  = = =u u u1
2 , 1

3 , 1
42 3 4

(ii)  =u n
1

n

7	 (i)  = − −







A 3 8

2 5
2 , = − −







A 5 12

3 7
3

8	 (i)  =








M 7 0

0 7
2 ,

  = −







M 7 14

21 7
3 , =









M 49 0

0 49
4

	 (ii)  =








M 7 1 0

0 1
m m2 , M 7

1 2
3 1

m m2 1 = −





+

9 (i) 3, 5, 17, 257, 65 537

Practice Questions Further 
Mathematics 1 (Page 95)

1 (i) Points plotted at 1 + 2i, −3 + 4i, 4i, 2
5

 

  [1], [1], [1], [2]

	 (ii)	 w2, w − w * [1]

2 Either
Cubic has real coefficients [1]
so 3 – i a root [1]
Sum of 3 + i and 3 – i is 6; sum of all  
3 roots is 9 [1]
so real root is 3 [1]
Or
z = 3 a root by trying factors of 30 [1]
Factor theorem (z – 3) a factor of cubic [1]

z z + z z z z +3 2 29 28 30 =( 3)( 6 10)– – – –  [1]

Roots of quadratic are 3 + i, 3 – i [1]

3 (i) ( )= ±
+

–6 36 – 20
2 2 i

 [1]

  
= + +

–5
2 i or –1

2 i  [1]

  

)
) )

)
) )

(
( (

(
( (= −

+ −
− −
+ −

–5 2 i
2 i 2 i

or
2 i

2 i 2 i  [1]

 )(= − 2 – i  or )(= – 1
5 2 – i : both solutions 
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 are in the form (2 – )λ i  with λ = –1 and
  [1]

 (ii)  By substituting the roots into the  
equation.  [1]

 4 (i) + , + , +1 1 1α β γ  satisfy  

 ( – 1) +3( – 1) – 6( – 1) – 8 = 03 2y y y  [1]

– 3 +3 – 1+3 – 6 +3 – 6

+6 – 8 = 0

3 2 2y y y y y y

 [1], [1]

 – 9 = 03y y  [1]

 (ii) y y( – 9) = 02  [1]

  y y y( 3)( 3) 0− + =  [1]

  y 0, 3, 3= −  [1]

 (iii) = − −x 1, 2, 4  [2]

 5 (i)  Diagram or calculation showing image  
of shape/points

  Rotation 90°… [1]
  … about (0, 0), anticlockwise [1]
 (ii)  Rotation 45° anticlockwise about (0, 0), 

when repeated, gives transformation  
corresponding to B. [1]

  Diagram showing, for example, unit  
 square or unit vectors rotated by 45°. [1]

 

1
2

1
2

1
2

1
2

−


















 

[1]

 6 

 [1]

δ δ

δ δ

δ δ( )
( )

+ = ⇒

= +

= +

c
a ac

a

a

( 1)

( 1)2

2 2  [1]

b acLHS 42= −

a 4 4 1 42 2 2δ δ δ δ )( )(= + + − +
 

a 12 )(=  [1]
a2=  [1]

RHS=  [complete argument, well set out]
 

7 (i) 3, 6, 11, 20, 37 [1]

λ = − 1
5

b
a b a

a

a

( 1) ( 1)

2 ( 1) ( 1)

4 4 1

2 2 2

2 2 2

2 2

δ δ δ δ

δ δ δ δ

δ δ

( )
( )

( )+ + = − ⇒ = + +

= + + + +

= + +

 (ii) To prove = +u n2n
n

  When

  

= = = +
= + =

n 1, LHS 3, RHS 2 1

2 1 3

1

 [1]

  So it is true for n 1=

  Assume it is true for n k= , so

  u k2k
k= +   [1]

  Want to show that u k2 1k
k

1
1= + ++

+ .

  u u k2 1k k1 = − ++

  k k2(2 ) 1k= + − +  [1]

  k k2 2 1k 1= + − ++

  k2 1k 1= + ++
 as required [1]

   So, if the result is true for n k= then it is 
true for n k 1= +  [1]

  Since it is true for n 1= , by induction  
 it is true for all positive integers n.   [1]

 8 (i)  Calculations or image correct for  
three points [1]

   Totally correct plot of (0, 0) (−0.6, 0.8)  
(0.2, 1.4) (0.8, 0.6) [1]

 (ii) 

  x y x

x y y

3
5

4
5

4
5

3
5

− + =

+ =

 [1]

  =
=





y x

y x

2

2
from both equations  [1]

   y x2=  is equation of line of invariant 
points. [1]

 (iii)  Perpendicular line to this, through origin, is
   

 

−















−













=
− −

−

















x

x

x x

x x

3
5

4
5

4
5

3
5

1
2

3
5

2
5

4
5

3
10

−
























 =











x
y

x
y

3
5

4
5

4
5

3
5

y x1
2= −
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=
−











= −
−













x

x

x

x1
2

1
2  

[1]

So y x1
2= −  is an invariant line, and is 

perpendicular to line of invariant points, and  
both go through the origin. [1]

 (iv)  Two points marked, where image of  
unit square intersects unit square, at  
(0, 0) and (0.5, 1). [1],[1]   

 9 (i) 
 LHS

r r r r r r1
6 ( 3)( 4)( 5) 1

6 ( 2)( 3)( 4)= + + + − + + +

 
r r r r1

6 ( 3)( 4)( 5 2)= + + + − −  [1]

 r r1
6 ( 3)( 4)(3)= + +

 r r1
2 ( 3)( 4)= + +

RHS=  [1]

 (ii) ∑ ∑+ + = + +

+ − + + +

= =

{

}

r r r r

r r r r

1
2 ( 3)( 4) 1

6 ( 3)( 4)

( 5) 1
6 ( 2)( 3)( 4)

r

n

r

n

1 1

  
1
6 .4.5.6 1

6 3.4.5= −

1
6 .5.6.7 1

6 4.5.6+ −
 

[1]

1
6 .6.7.8 1

6 .5.6.7+ −

...+

n n n n n n1
6 ( 2)( 3)( 4) 1

6 ( 1)( 2)( 3)+ + + + − + + +

n n n n n n1
6 ( 3)( 4)( 5) 1

6 ( 2)( 3)( 4)+ + + + − + + +

 [1]

 
n n n1

6 ( 3)( 4)( 5) 1
6 .3.4.5= + + + −

  
(Some indication of telescoping) [1]

 
n n n1

6 ( 3)( 4)( 5) 10= + + + −
 

[1]

 (iii) × + × + × +4 5 5 6 6 7 ...  to 20 terms

 r r2 1
2 ( 3)( 4)

r 1

20

∑= + +
=

 [1]

 
{ }2 1

6 (23)(24)(25) 10= × −

 = 4580 [1]

Chapter 5

Discussion point (Page 99)
It is not true that zarg  is given by ( )y

xarctan . For 

example the complex number − +1 i has  

argument 3
4
π  but arctan 1

1 4( )− = − π .  A  

diagram is needed to ensure the correct angle  
is calculated.

Activity 5.1 (Page 102)

6
π

4
π

3
π

sin 1
2  

1
2  

3
2  

cos 3
2

1
2

1
2

tan
1
3  

1 3  

Exercise 5.1 (Page 104)
1    =z  41  or + 4(cos0 i sin0)  

  = − +z 2 4i2  or +2 5(cos 2.03 i sin 2.03)  

  = −z 1 3i3  or 

 ( )( ) ( )− + −10 cos 1.25 i sin 1.25  

2 (i)  |z| 13=   arg z = 0.588

(ii)	 |z| 29=   arg z = 2.76

(iii)	 |z| 13=   arg z = –2.55

(iv)	 |z| 29=   arg z = –1.19

3 =z| | 131   arg z
1
 = 0.588

 =z| | 132   arg z
2
 = –0.588

 =z| | 133   arg z
3
 = –2.16

 =z| | 134   arg z
4
 = 2.16
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 →z z  1 2  Reflection in real axis

 z z1 3→  Reflection in the line = −y x  

  z z1 4→  Rotation of 90° anticlockwise 
about the origin

4 (i) −4i

 (ii) − +7
2

7
2

i

 (iii) − +3 3
2

3
2 i   

(iv) −5 3
2

5
2 i  

5 (i) 1(cos0 i sin 0)+

 (ii) 2(cos i sin  )      +π π  

(iii)	 3 cos 2 i sin  2( )( ) ( )+π π

(iv)	 4 cos 2 i sin 2( )( ) ( )− + −π π

6 (i) 2 cos 4 i sin  4( )+π π

 (ii) 2 cos 3
4 i sin  3

4( )+π π         

(iii)	 2 cos 3
4 i sin 3

4( )( ) ( )− + −π π

(iv)	 2 cos 4 i sin  4( )( ) ( )− + −π π  

7 (i) 12 cos 6 isin  6( )+π π

 (ii) 5 cos 0.927 i sin 0.927( )( ) ( )− + −

(iii)	 13 cos2.75 i sin 2.75( )+

(iv)	 65 cos1.05 i sin1.05( )+

(v)	 12013 cos 2.13 i sin 2.13( )( ) ( )− + −  

8 (i) 1
5 10 cos0.322 i sin0.322( )+  

(ii)	 ( )( ) ( )− + −130
10 cos 0.266 i sin 0.266  

(iii)	 ( )( ) ( )− + −290
10 cos 1.63 i sin 1.63  

9 (i) =z 2i   or +0 2i  

Im

Re
–1

1

2

3

4

–1 0 1 2 3 4–2–3–4

(ii)	 = +z 3
2

3 3
2 i 	

Im

Re
–1

–2

1

2

3

4

–1 0 1 2 3 4 5 6–2

(iii)	 = − +z 7 3
2

7
2 i 	

Im

Re
–1

1

2

3

4

5

6

–1 10–2–3–4–5–6–7

(iv)	 = −z 1
2

1
2

i 	

Im

Re
–1

0

–2

1

2

3

–1 1 2 3 4–2
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(v)	 = − −z 5
2

5 3
2 i

Im

Re
–1

–2

–3

–4

–5

0

1

–1 1 2 3–2–3–4

(vi)	 z 2.50 5.46i= − −
Im

Re

–5

–6

–7

–4

–3

–2

–1

1

–1 0 1 2–2–3–4

10 (i) ( )− −π α  or −α π  (ii) –α

(iii)	 −π α  (iv) 2 −π α

(v)	
2 +π α

11 (i) 

π
= =

= =

z z

z z

5 arg 0.927

2 arg 3
4

1 1

2 2

 

(ii)	 (a) = − −z z 7 i1 2   = −z
z

1
2

7
2 i1

2

 

	 (b) =z z 5 21 2   ( ) = −z zarg   3.001 2

 =z
z

5 2
2  1

2

   

 


 = −z

zarg 1.431

2

(iii)	 =z z z z1 2 1 2  and =z
z

z
z

1

2

1

2

 

+ =z zarg arg 3.281 2 	which is greater than π, 
but is equivalent to –3.00

i.e. + =z z z zarg arg arg1 2 1 2 	

− =z zarg arg arg1 2

z
1

z
2

( (

Activity 5.3 (Page 106)
(i)	 Rotation of 90° anticlockwise about the 

origin

	

Im

Re

–2

–1

1

2
−3 + 2i

2 + 3i
3

4

–1 0 1 2 3 4–2–3–4

(ii)	 Rotation of 90° anticlockwise about the 
origin and enlargement of scale factor 2

Im

Re
–1

1

2

2 + 3i
−6 + 4i

3

4

5

–1 0 1 2 3 4 5–2–3–4–5–6–7–8

(iii)	  Rotation of 4
π  anticlockwise and 

enlargement of scale factor 2

	

Im

Re
–1

1

2

2 + 3i

−1 + 5i

3

4

5

6

–1 0 1 2 3 4–2–3

 

Exercise 5.2 (Page 108)

1 (i) = =

= = −

π

π

w w

z z

2 arg   4

2 arg 3

 

(ii)	 (a)	 π( )= = −wz wz2 2 arg 12  

	 (b) π( )= =w
z

w
z

1
2

arg 7
12 

= =

= = −

π

π

w w

z z

2 arg   4

2 arg 3

π( )= =w
z

w
z

1
2

arg 7
12
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(iii)	 Im

Re

z
wz

w

–2

–1
0

1

2

–1 1 2 3 4–2

–w3

2 (i) 6 cos 7
12 i sin 712( )+π π  

 (ii) 3
2 cos 12 i sin  12( )( ) ( )+π π

(iii)	 2
3 cos 12 i sin  12( )( ) ( )− + −π π  

(iv)	 1
2 cos 4 i sin  4  ( )( ) ( )− + −π π

3 (i) 2
3
π  (ii) 6 

 (iii) 
2
π  (iv) 108

4 (i) 4 cos 2 i sin 2 )( ) )( (− + −π π  

(ii)	 7776 cos 5
6 i sin 5

6 )( ) )( (+π π  

(iii)	 10368 cos 12 i sin 12 )( ) )( (− + −π π  

(iv)	 30 cos 2
3 isin 2

3 )( ) )( (+π π
 

(v)	 ( )+2 2 cos0 isin 0  

5 (i)  Multiplication scale factor 377
13

, angle 

of rotation −1.36 radians (i.e.1.36 radians 
clockwise)

(ii)	 Multiplication scale factor 3
17

, angle of 

rotation −1.33 radians (i.e. 1.33 radians 
clockwise)

6 

The exceptions are complex numbers for which 
both =zIm( ) 0  and ≤zRe( ) 0   

since –180° < arg z ≤ 180°

( ) ( )= − ⇒

= − = − = −

w
z w z z

z z z

arg arg arg arg 1

arg1 arg 0 arg   arg

7 (i) Real part = − +1 3
4         

  Imaginary part = +1 3
4

 

(ii)	 2 cos 3
4 i sin 3

4( )( ) ( )+π π

	 	 2 cos 3 i sin 3( )( ) ( )+π π

(iii)	

8 For the complex numbers 
w r cos i  sin1 1 1( )= +θ θ  and 

z r cos i sin2 2 2 )(= +θ θ  we have proven that

 = + + + θ θ θ θwz r r (cos( ) i sin( )1 2 1 2 1 2

 So, 

 Therefore, |wzp| = |w||z||p| and

 = + +wzp z w parg( ) arg arg arg .

Activity 5.4 (Page 113)

(i)	

Re

Im

�
4

  = πzarg 4
 represents a half line. The locus is a 

half line of points, with the origin as the starting 
point.

1 i
1 3i

2 cos 3
4 i sin 3

4           

2 cos 3 i sin 3

1
2

cos 5
12 i sin 5

12

1 3
4

1 3
4 i

cos 5
12

3 1
2 2

sin 5
12

3 1
2 2

( )

( )
( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

− +
+

=
+

+

= +

= − + + +

⇒ = − = +

π π

π π

π π

π π

{ }

{
}

( )

[ ]
[ ]

[ ]( )

= + + + × +
= + + + +

+ + +

= + − +

+ + + +

= + +  + + +

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

wzp r r r

r r r

r r r

r r r

[(cos( ) i sin( )] cos i sin

[cos( )cos i sin( )sin

i sin( )cos i sin( )sin ]

cos( )cos sin( )sin

i cos( )sin sin( )cos

cos i sin ( )

1 2 1 2 1 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3
2

1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3
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  − −2 2i has argument 3
4− π  and so it is not on this 

half line.

(ii)	  Calculating −z 2 for each point and finding 
the argument of ( )−z 2  gives:

(a)	 =z 4 										 − =z 2 2 										 ( )− =zarg 2 0

(b)	 = +z 3 i 			 − = +z 2 1 i 				arg(1 i) 4+ = π

(c)	 =z 4i 									 − = −z 2 4i 2 	

(d)	 = +z 8 6i 	 − = +z 2 6 6i 			

(e)	 = −z 1 i 				 − = − −z 2 1 i 	

	  So zarg 2 4( )− = π
 is satisfied by = +z 3 i  

and = +z 8 6i.

(iii)	  −z 2 represents a line between the point z 
and the point with coordinates (2, 0).  

   So π( )− =zarg 2 4  represents a line of points 

from (2, 0) with an argument of π
4 . This is a 

half line of points as shown.

Re

Im

�
4

2

 The line is a half line because points on the 
other half of the line would have an argument 

of 
4− π  as was the case in part (ii)(e).

Activity 5.5 (Page 115)
 The condition can be written as 
 z z3 4i = 1 2i( ) ( )− + − − + .
 z 3 4i( )− +  is the distance of point z from the point 
3 + 4i (point A) and z 1 2i( )− − +  is the distance of 
point z from the point − +1 2i  (point B). 

 
Re

Im

3 + 4i

–1 + 2i
B

A

 These distances are equal if z is on the 
perpendicular bisector of AB.

( )− + =arg 2 4i 2.03

arg 6 6i 4( )+ = π

arg 1 i 4( )− − = − π

Exercise 5.3 (Page 118)

1 (i) Im

2

2 ReO

(ii)	 Im

Re

2

0

(iii)	 Im

Re

–2

–3

–1

1

2

3

–1 0 1 2 3 4 5

(iv)	 Im

Re

–4

–3

–2

–1

1

1

–1 0 1 2–2–3–4

−√2 −√2i

2 (i) 

Re

Im

�
3
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(ii)	 Im

Re

–2

–1

1

2

3

4

–1 0 1 2 3 4–2

(iii)	 Im

Re

–2

–1

1

2

–1 0 1 2 3 4–2

(iv)	

1

2

2 3
–1

–2

1–2 –1 0

Im

Re

3 (i) 

O 4 8

Im

Re

(ii)	

O 2 6

Im

Re

4

8

(iii)	

O−5

Im

Re

−3

2

(iv)	

O−3

Im

Re

−5

1

4 (i) z 1 i 3( )− + =  

(ii)	 zarg 2i 3
4( )+ = π  

(iii)	 z z1 3 2i( )+ = − +  

5 (i) z z4 i 1 6i( ) ( )− + ≤ − +

(ii)	 z4 arg 2 i 0( )− ≤ + − <π

(iii)	 z 2 3i 4( )− − + <

6 

O 12

Im

Re

−5
A

C

B

 |z| is least at A and greatest at B. Using 
Pythagoras’ theorem, the distance OC is 

( )− + =5 12 132 2 . We know AC = 7 and so 

OA = 13 − 7 = 6.
 So, minimum value of |z| is OA = 6 and 

 maximum value of |z| is OB = 6 + 14 = 20.
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7 (i) 

O 3

Im

Re

−1
−�6

(ii)	

O

Im

Re

3

3�
4

(iii)	

O

Im

Re

3

−5

−�4

�
3

8 (i) 

O 3

Im

Re

(ii)	

O

Im

Re

−2

6

2

(iii)	

O 3

Im

Re

4

(iv)	

O−3 2

Im

Re

−6

7

 9 

O 1

Im

Re

−1

�
3

10 (i) (a) z 1 2i 3+ + =    

  (b) z z6 4i+ = +  

(ii)	 z 1 2i 3+ + ≤  and z z6 4i+ ≥ +  

11 

O

Im

Re

−2
−

2

�
4
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12 (i) 2
3
π , 2

(ii)	

O

Im

Re

2

w

13 

1

2

3

4

5

2 3 4 5 6
–1

–2

1–2 –1

Im

ReO

14 

5

10

10 15 20
–5

–10

–15

5–10–15 –5

Im

ReO

 There are no values of z which satisfy both 
regions simultaneously.

15 The diagram shows z 5 4i 3− + = .  The 
minimum value is 7 and the maximum  
value is 13.

 

O−3 5

Im

Re

−4

2

16 (i) Centre is (3, −12), radius 6
(ii)	

O 3

Im

Re

−12

Chapter 6
Discussion point (Page 124)
The triangles are all congruent to each other.
256 yellow triangles make up the purple triangle.

Activity 6.1 (Page 125)
The diagram shows the image of the unit square 
OIPJ under the transformation with matrix 

a b
c d






. 

1

1

2

3

2 3 4 5 6 7 8 9

y

xO

J′

P′

I′
J P

I

6.5 units2

4 units2

2.5 units2

8 units2

The point A(1, 0) is transformed to the point I′ (a, c); 
the point C(0, 1) is transformed to the point J′ (b, d).  
P′ has coordinates (a + b, c + d).

The area of the parallelogram is given by the area of 
the whole rectangle minus the area of the rectangles 
and triangles.  

Area of rectangle = b c×  

Area of first triangle = b d1
2 × ×  

Area of second triangle = a c1
2 × ×

Area of whole rectangle  = a b c d( ) ( )+ × +  

Therefore the area of the parallelogram is 

a b c d bc bd ac ad bc( ) ( ) 2 1
2

1
2( )+ × + − + + = − .
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Discussion point (Page 127)
 (i)  A rotation does not reverse the order of the 

vertices, e.g. for A  
0 1
1 0

= −





,  

det A = 1 which is positive.
	(ii)  A reflection reverses the order of the vertices, 

e.g. for B
1 0
0 1

=
−






, 

det B = −1 which is negative.

	(iii)  An enlargement does not reverse the order of 

the vertices, e.g. for C
2 0
0 2

=





,  

det C = 4 which is positive

Discussion point (Page 128)
The matrix has determinant 8.

8 represents the volume scale factor of the 
transformation in three dimensions. If you think 
about the effect of the transformation represented 

by the matrix 
2 0 0
0 2 0
0 0 2













 on each of the unit 

vectors =














=














ji
1
0
0

, 
0
1
0

 and =














k
0
0
1

, 

the three edges of the unit cube have each 
increased by a length scale factor of 2. The overall 
effect would be that the volume would increase by 
a scale factor of 2 × 2 × 2 = 8.

Discussion point (Page 129)
A 3 × 3  matrix with zero determinant will 
produce an image which has no volume, i.e. the 
points are all mapped to the same plane.  

Exercise 6.1 (Page 129)
1 (i) (a) 

–1

1

2

3

4

5

6

–1 1 2 3 4–2–3–4
A

BC

B′

A′

C′

x

y

O

  (b) Area of parallelogram = 11
	 	 (c)	 11

	 (ii)	 (a) 

–1

–2

1

2

3

4

5

6

321 4 5 6–1
A

BC

A′

B′

C′

x

y

O

	 	 (b) Area of parallelogram = 16
	 	 (c)	 16

	 (iii)	 (a)

–1

–2

–3

–4

1

2

3

321 4 5 6–1–2–3–4–5–6–7–8–9
A

BC
A′

0 x

y

B′

C′

	 	 (b) area of parallelogram = 0
	 	 (c)	 0

	 (iv)	 (a)

–1

–2

–3

–4

1

2

3

321 4 5 6–1–2–3–4–5–6–7–8
A

BC

A′

B′

0 x

y

C′

	 	 (b) area of parallelogram = 11
	 	 (c) –11

2 x x2, 6= =  
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3	 (i) A C

B D

1 0
0 1

   0 1
1 0

 

1 0
0 1

0 1
1 0

=
−









 =











= −







 = −

−










 

	 (ii) no solution required

	 (iii) 	A 

O x

y

PJ

I
I′

P′J′

	 	 B 

O x

y
PJ

II′

P′ J′

	 	 C 

O x

y y = x

P
J

I J′

P′
I′

	 	 D 

O x

y

PJ

I

I′P′

J′

y = – x

4 66 cm2

5 ad 1=

6 (i) 1 3
0 1







 (ii) determinant = 1 so area is preserved

7 determinant = 6 so volume of image  
6 × 5 = 30 cm3

8 (i) det M = –2, det N = 7

	 (ii) MN = 
9 13
8 10






, det(MN) = –14  

 and –14 = –2 × 7

9 (i)

–1

–2

–3

–4

1

2

3

321 4 5 6–1–2–3–4–5–6–7
A

BC A′

B′

C′

0 x

y

	 (ii)  The image of all points lie on the line. 
The determinant of the matrix is zero which 
shows that the image will have zero area.

10 (i) 
p q

p q

5 10

2

−
− +









  

 (ii) y x1
5= −

 (iii) det N = 0 and so the image has zero area

11 (i) T = 1 2
3 6

 





,

  ( ) ( )= × − × =Tdet 1 6 3 2 0  

 (ii) 
x
y

x
y

x x y

y x y
y x

1 2
3 6

 

2

3 6
3

′
′









 =




















⇒
′ = +

′ = +
⇒ ′ = ′

	 (iii) (3, 9)

12 
x
y

a b
c d

x
y

x
y

ax by

cx dy

x ax by

y cx dy

′
′









 =













⇒

′
′











=
+
+









 ⇒

′ = +
′ = +

 

Solving simultaneously and using the fact ad bc 0− =  
gives the result.

13 (i) y x s t3 3= − +  

 (ii) P’ s t s t9
8

3
8 ,  3

8
1
8( )− −  

 (iii) 
9
8

3
8

3
8

1
8

−

−

















 which has determinant  

 9
8

1
8

3
8

3
8 0( ) ( )× − − × − =

y x1
2=
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Activity 6.2 (Page 132)

	 (i) P = 
1 0
0 1−






 

	 (ii) P2 = 
1 0
0 1






 

	 (iii)  Reflecting an object in the x-axis twice 
takes it back to the starting position 
and so the final image is the same as the 
original object. Hence the matrix for the 
combined transformation is I.

Activity 6.3 (Page 133)
a b
c d

d b
c a

ad bc
ad bc

0
0







−
−







= −
−





  

To turn this into the identity matrix it would need 
to be divided by ad bc−  which is the value |M|.

Therefore 
ad bc

d b
c a

M 11 = −
−

−






−  

Activity 6.4 (Page 134)

	 (i) AA

I

1
4

11 3
6 2

2 3
6 11

1
4

4 0
0 4

1 =








 −

−










=








 =

−  

	 	

A A

I

1
4

2 3
6 11

11 3
6 2

1
4

4 0
0 4

1 = −
−




















=








 =

−

	

	 (ii)	 ad bc
d b
c a

M 11 = −
−

−






−

	 	

a b
c d ad bc

d b
c a

ad bc
a b
c d

d b
c a

ad bc
ad bc ab ab
cd dc cb ad

ad bc
ad bc

ad bc

MM

I

1

1

1

1 0
0

1 0
0 1

1 =








 −

−
−











= −








 −

−










= −
− − +
− − +











= −
−

−








 =









 =

−

=
−

−
−




















=
−

− −
− + − +











=
−

−
−











=








 =

−

ad bc
d b
c a

a b
c d

ad bc
da bc db bd
ca ac cb ad

ad bc
ad bc

ad bc

M M

I

1

1

1 0
0

1 0
0 1

1

	

Discussion point (Page 134)
First reverse the reflection by using the transformation 
with the inverse matrix of the reflection.  Secondly, 
reverse the rotation by using the transformation with 
the inverse matrix of the rotation.

MN N M1 1 1( ) =− − −  

Exercise 6.2 (Page 135)
1 (i) (10, −6)

 (ii) 
1
2

0 1
2 5

−






 

	 (iii) (1, 2)

2 (i) non-singular,  1
24

2 3
4 6

−





 

 (ii) singular

 (iii)	 non-singular, 1
112

11 3
3 11

−
−







 
 (iv) singular
 (v) singular
 (vi) singular

 (vii) non-singular, 
ab

a
b

1
16 1

8 4
4 2( )−

− −
− −







  

  provided ab ≠ 1

3 (i) non-singular, 1
140

 − − −
−













21 10 27
7 50 9

14 20 2

   

 (ii) singular

	 (iii) non-singular, 1
121

17 15 6
91 2 25

46 5 2

−
−

− −
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4 (i) 1
3

3 6
2 5

−
−







 (ii) 1
2

1 5
2 8
− −





 

 (iii) 
28 19
10 7







 (iv) 50 63
12 15− −







 

	 (v) 1
6

7 19
10 28

−
−







  (vi) 1
6

15 63
12 50
− −





 

	 (vii) 1
6

15 63
12 50
− −





 (viii) 1
6

7 19
10 28

−
−







5 (i) 1
8

2 2
3 1−







 

 (ii) M M I1
8

2 2
3 1

1 2
3 2

1 =
−







−





=−  

6 	k = 2 or k = 3

7 2 1
1 0

   
0 1
3 4

−
−







 

8 (i)	 (3, 1), (1, 1) and (–6, –2)

 

–1

–2

–3

1

2

3

321 4 5–1–2–3–4–5–6
C

A

B

0 x

y

B′ A′

C′

 (ii) ratio of area T’ to T is 3 : 1.5 or 2 : 1

The determinant of the matrix M = 2 so the area 
is doubled.

	 (iii) M 1
2

1 1
1 3

1 = −
−







−  

9	 (ii) M M= + −a d( )n n 1

10 (iii) 
0 1

5
1
6

11
10−

















   (iv) 33 6
5 0







 

11 (i) 
18 9 4
1 7 2
1 4 1

−
−

− −













 

	 (ii) 
a b c

c
1 7 7 4
0 1 2
0 0 1

+ + +
+















 

	 (iii) 
1 7 10
0 1 2
0 0 1

−
−













 

	 (iv) 
1 0 0
3 1 0
11 4 1

−
−













 

	 (v) 
1 7 10
3 22 32
11 81 117

−
− −
− −













 

12 k 3=  

Activity 6.5 (Page 139)

	(i) 
−

−
−





























= −














x
y

z

2 2 3
5 1 1
3 4 2

4
6
1

 

 	 















=
−

−
−













−












⇒ = − = =

−
x
y

z

x y z

1
41

2 8 1
7 13 17
17 14 12

4
6
1

1,  3,   4

1

 

	(ii) 
−

−
−





























= −














x
y

z

2 2 3
5 1 1
3 3 4

4
6
1

 

   















=
−

−
−















−














−
x
y

z

2 2 3
5 1 1
3 3 4

4
6
1

1

 

The equations cannot be solved as the determinant of 
the matrix is zero, so the inverse matrix does not exist.  
Using an algebraic method results in inconsistent 
equations, which have no solutions.

Exercise 6.3 (Page 140)

1 (i) 
−







1
11

3 1
2 3

 (ii) x y1,  1= =  



207

A
nsw

ers

2 (i) x y2,   1= = −
 (ii) x y4,  1.5= =  

3 (i) 
0.5 0 0.5
0.8 0.2 1.4
0.3 0.2 0.1

−
− −













 

(ii)	 x y z2,  4.6,  0.6= − = = −  

4 x y z4,  1,   1= = − =
5 (i) Single point of intersection at (8.5, −1.5)

(ii)	 Lines are coincident. There are an 
infinite number of solutions of the form 

( )− λ λ6 2 ,  . 
(iii)	 Lines are parallel and therefore there are 

no solutions.

6 k 4= , infinite number of solutions
k 4= − , no solutions

7 (i) 
k

k
k

1 0 0
0 1 0
0 0 1

−
−

−














 so 

	
k

k k
k kA 1

1

1 3 8 4 10
2 2 20 3 25
1 11 14

1 = −

− + +
− + +

− −















−   

where k 1≠  

(ii)	 x y z8,  6,   0= = = 	

8 a b≠ ± 	

	 x b
b

y b
b

3
9

,  4
9

2

2 2= +
−

=
−

	

 b 1= −  or −3 but since a b≠ ± , b 1= −

Chapter 7

Discussion point (Page 145)
Could also draw lines perpendicular to the x-axis 
to the points P and Q as shown.

θ

P(3, 5)

Q(7, 1)

O A B

y

x

Using trigonometry on the two right-angled 
triangles, find POA∠  and QOB∠  and calculate 
the difference between these values, which equals θ.

Activity 7.1 (Page 145)

=
+ −

× ×
θcos

OA OB AB

2 OA OB

2 2 2� ��� � ��� � ���

� ��� � ���

( ) ( )
( ) ( )

⇒ =
+ + + − − + − 

+ +
θ

a a b b b a b a

a a b b
cos

( ) ( )

2

1
2

2
2

1
2

2
2

1 1
2

2 2
2

1
2

2
2

1
2

2
2

( ) ( )
( )

⇒ =
+

+ +
= +

θ
a b

a b a b

a a b b

a b a b
cos

2

2

1 1 2 2

1
2

2
2

1
2

2
2

1 1 2 2

Discussion point (Page 147)

= −
−















BA
2
2
4

� ���
     = −















BC
8
7
0

� ���

−
−













 −















=
2
2
4

8
7
0

30i   which is the same 
answer as in Example 
7.2

Exercise 7.1 (Page 148)
 1 (i) −4 (ii) 4
 (iii) 1 (iv) 7
 2 64.7°
 3 (i) 66.6°  (ii) 113.4°
 (iii) 113.4°
 4 (i) 0° The vectors are parallel.
 (ii)  180°  The vectors are in opposite direc-

tions (one is a negative multiple of the 
other).

 5 −17
 6 −2, −3
 7 52.2°, 33.2°, 94.6°
 8 35.8°, 71.1°, 60.9°

 9 (i) (0, 4, 3)

 (ii) 
−













5
4
3

, 5 2  

 (iii) 25.1°

10 (i)  A(4, 0, 0)     C(0, 5, 0)       
F(4, 0, 3)      H(0, 5, 3)
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 (ii)  EPF not vertical as the points do not have 
the same y-coordinate. The roof sections 
form trapezia.

 (iii) = −θcos 1
3

 Area = 2 2  

 (iv) 68.9°

12 a b c16 ( )+ − .  

Discussion point (Page 151)
The pencil is at right angles to any line in the plane. 
It would not alter.

Discussion point (Page 154)
One method would start by calculating the vectors 
AB
� ���

 and AC
� ���

. Use the scalar product to find a vector 
perpendicular to these two vectors, which can be 

used as the normal 

n

n

n

1

2

3

















 to the 

plane. Substitute one of the points A, B or C into the 
equation n x n y n z d 01 2 3+ + + =  to find the value of d.

Alternatively, substitute the three points into the 
equation ax by cz d 0+ + + =  to form three 
simultaneous equations and use a matrix method to 
solve these equations and hence find the equation of 
the plane.

Activity 7.2 (Page 154)

a b c d+ + = −
a b d − = −

a c d  2− + = −

a
b
c

d
d
d

d
d
d

d
d
d

1 1 1
1

1 2

0.4 0.4 0.2
0.4 0.6 0.2
0.2 0.2 0.4

0.6
0.4
0.8

−
−





























=
−
−
−















⇒















=
−

− −














−
−
−















=
−

−















a
b
c

1 0
0

The plane has equation 
x y z0.6 0.4 0.8 1 0− + − + = .

Exercise 7.2 (Page 155)

1 (i) 
5
3

2
−













 

 (ii) (5 1) (3 4) (2 3) 1 0× − × + × + =  

2 (i) r.
1
1
1

6












=         (ii) r.
1
1
1

0












=    

 (iii) r.
1
1
1

6
−
−
−













= −      (iv) r.
2
2
2

16












=

3 (i)  x y z 6+ + =          (ii)  x y z 0+ + =       

 (iii)  x y z 6− − − = −

 (iv)  x y z2 2 2 16+ + =  

The planes are parallel to each other; parts 
(i) and (iii) represent the same plane.

4 (i) 80.4°   (ii) 90°   (iii) 69.9°

5 ( )− + − =r. i j k3 2 5  x y z3 2 5− + − =

6  4x – 5y + 6z + 29 = 0

7 −1,  4

8 16 9 6
5

+  

9 x y z4 7 27− + =

10 (i) AB
2
2
2

       AC
5
2
1

� ��� � ���
=

−













=
−













 (iii) x y z4 3 2− − = −  

11 (iii) B

13 (i) 
2
3
2

−













, 10

 (ii) e.g. 
1
2

1

−

−















 (iii) e.g. 
r i j k . i j k2 2 3 2 0( )( ) ( )− − + − − + =

14 1π  and 3π  are parallel.

 Pairs 1π  and 2π  and 2π  and 3π  are  
perpendicular.
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7 (i) 
x
y

z

3 4 1
2 1 1
5 14 5

5
4
7

− −


























=












 =Mdet 0  and none of the planes are par-
allel to each other, so they form a prism or 
a sheaf.

 (ii)  P lies on all three planes, so the planes form 
a sheaf.

8 (i)  The planes intersect in the unique point 

2,  4 1
3 , 1

3 ( )− .

 (ii)  k m n2,  1,   2= = − = −  or any multiple 
of these would make planes 1 and 2 parallel 
and cut by the third plane.

 (iii)  The first plane is coincident (the same 
as) the third plane, the second plane 
cuts through this plane. In part (ii) there 
were two parallel planes but they would 
not be coincident unless the values 

k m n4
3 ,  2

3 ,   4
3= = − = −  were chosen.

9 There are 8 possible arrangements:

n	 The planes intersect in a unique point.

n	  Two planes are parallel and are cut by the 
third plane to form two parallel lines.

n	 All three planes are parallel.

n	  The planes form a prism where each pair  
of planes meets in a straight line.

n	  The planes form a sheaf with all three 
intersecting in one straight line.

n	  Two planes are coincident and the third  
cuts through them.

n	 All three planes are coincident.

n	  Two planes are coincident and the third is 
parallel to these.

Practice Questions Further 
Mathematics 2 (Page 167)

1 (i) Reflection in the line y 0= . [1]

 (ii) Reflection in the line x 0= . [1]

Discussion point (Page 158)
Some examples are:
n	 three parallel planes – bookshelves

n	  intersection at a unique point – three walls 
meeting in the corner of a room

n	 sheaf of planes – pages of a book

n	  triangular prism – the two sloping walls and the 
floor of a loft located within a roof space, or the 
sides and base of a triangular-shaped tent.

Exercise 7.3 (Page 162)

1 (i) 
0.15 0.25 0.05
0.05 0.25 0.65
0.25 0.25 0.25

−
− −

−












 

 (ii) (4, −18, 10)

2 (i) 
1 0 1
4 1 5
4.5 1.5 5.5

−
− −

−













      (−1, −12, 15)

3 (i) Intersect at (1.8, 3, −3.1)
 (ii) Do not intersect at a unique point
 (iii) Intersect at (3, −14, 8)
 (iv) Do not intersect at a unique point

4 (i) 
x
y
z

1 1 1
2 1 1
1 1 1

1
6
4

−

























=
−











 

 None of the planes are parallel and 
=Mdet 0 so the planes form either a sheaf 

or a prism of planes.

 (ii)  P lies on the second and third planes but 
not on the first; the planes form a prism.

 (iii)  Changing the first plane to be 
x y z 0− + + =  means P lies on this plane 

too and so they now form a sheaf.

5 
x
y

z

1 2 1
2 4 1
3 6 3

6
5
8

−

−



























=












 The third row of the matrix is a multiple of the 
first row, but not a multiple of the second row; 
the first and third planes are parallel and the 
second plane cuts through them to form two 
parallel straight lines.

6 k m3,  2= = −
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 (ii)  

 [1], [1]

 (iii) − = ⇒ =k k12 2 0 6  [1], [1]

 (iv) x y

x y b

3 6 12

2 4

+ =
+ =

   [1]

For an infinite number of solutions, b = 8  
and the two lines are coincident. [1], [1] 

 5 (i) x y5 25 0− − =  [1], [1]

(ii) θ−












−












= −












−












.
5
1

0

4
3
1

5
1

0

4
3
1

cos

 [1]

 [1], [1]
(iii) 

  [1], [1]

 6 (i) 

−
− −

−

































=



















= −
−



















k
l
m
n

20 0 1
20 0 1
0 20 1
0 20 1

5
17
20

120
80

360
320

k l m n120, 80, 360, 320⇒ = = − = − =  [1], [1]

There is no need to use matrices, you could 
simply substitute the coordinates of the vertex, 
which must be in all four planes, into the  
equation of each plane to find k, l, m and n.

 (i)  Because the summit is directly above the 
centre of the square base, each face makes 
the same angle to the vertical. 

θ
























=
























20
0
1

.
0
0
1

20
0
1

0
0
1

cos  [1]

=






= I
1 0
0 1

k
k

k
RR

3
2 4

1
12 2

4
2 3

1 =




 −

−
−







−

= −






−
−





k

k k1
12 2

3
2 4

4
2 3

= −
−

−




k

k
k

1
12 2

12 2 0
0 12 2

23 26 26 cos 23
26 cos

27.8o

θ θ

θ

⇒ = ⇒ =

⇒ =
5 5 0 25 0 and

4 5 3 0 ( 17) 3 0

× − − =
× − × + − − =

 (iii) BA
1 0

0 1
= −

−






.  [1]

   It represents rotation of 180° about  
the origin.  [1]

 (iv) BA
1 0

0 1
1( ) = −

−






−
 = BA.  [1], [1]

 A rotation of 180° about the origin followed 
by another rotation of 180° about the origin. Is  
equivalent to one full turn about the origin, which 
has no effect.  This means, the inverse of a rotation 
of 180° about the origin is another rotation of 180° 
about the origin. [1]

2 (i) z z a bi c di

ac bd ad bc i
1 2 ( )( )

( )
= + +
= − + +  [1], [1]

 (ii) z a b z c d,1

2 2

1

2 2= + = +  [1]

 (iii) z z ac bd ad bc1 2
2 2) )( (= − + +  [1]

a c abcd b d a d abcd b c2 22 2 2 2 2 2 2 2= − + + + +  

a c b d a d b c2 2 2 2 2 2 2 2= + + +  [1]

z z a b c d

a b c d

a c b d a d b c

1 2
2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

( ) ( )
= + +

= + +

= + + +  [1]

z z z z1 2 1 2⇒ =  [1] 

3 (i) z 3 3i 3− − =    [1], [1]

 (ii) π− − =zarg( 3 3i) 3  [1], [1]

 (iii) θ π

θ π

π π π

=

= ⇒ =

⇒ − − = + =

r

r

z

1
2

3
8

3 12

arg( 3 3i) 3 12
5
12

2

  So the half-line has equation 

  ( )
π− − =zarg 3 3i

5
12

.  [1] 

4 (i) x ky

x y b

3 12

2 4

+ =
+ =

 [1]
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−
− −

−















=
−

− −
− −















−
5 7 1
1 13 2

19 17 4

1
932

86 11 27
34 39 11

264 218 58

1

.

Since this inverse matrix exists, the  
planes must meet at a single point. [1]

x
y

z

1
932

86 11 27
34 39 11

264 218 58

80
2
14















=
−

− −
− −













−
−











  [1]

 

 
1

932

6524
2796

22368

7
3

24
= −













= −










  [1]

So the planes meet at 7, 3, 24)( −  [1]

An introduction to radians 
Exercise (Page 171)

1 (i) 3
π  (ii) 4

π  (iii) 
5
6
π

 (iv) 10
9
π

 
(v) 0.775C (3 s.f.)π (vi) 

9
4
π

 
(vii) 3

2
π

  (viii) 1.73C (3 s.f.) or 11
20

π

 (ix) 5
3
π   (x) 4π

 (xi) 12
π

 (xii)	 π
60

 or 0.0524C (3 s.f.)

2 (i) 20° (ii) 24°

 (iii) 229° (3 s.f.) (iv) 300°

 (v) 25.7° (3 s.f.) (vi) 9°

 (vii) 103° (3 s.f.) (viii) 220°

 (ix) 630° (x) 900°

 (xi) 405° (xii) 255°

The identities sin (θ ± ϕ) and cos (θ ± ϕ)
Exercise (Page 173)

1 (i) 1 3
2 2
+   (ii) +1 3

2 2

	 (iii) – +1 3
2 2  

(iv)	 3 1
2 2

−

1 401cos cos 1
401

87.11θ θ⇒ = ⇒ = 



 = °−

[1], [1]

 So each face makes an angle of 2.9° to the  
vertical. [1]

 (iii)  The summit of the skyscraper is where any 
three of the four triangular faces intersect.  
 [1]

 

x z

x z

25 150

25 100

+ =
− + = −  

Adding gives z = 25 [1]

 

y z

y z

25 250

25 300

− =
+ =

 Adding gives y = 11

   Substituting in y = 11 
 and adding gives x = 5

So the coordinates of the summit are 5, 11, 25)(
 [2]

 (iv)  A very tall skyscraper might be 300 m high.  
 [1]

The z coordinate of the summit is 25,  

suggesting each unit might be 300
25

 = 12 m.  
 [1], [1]

Other answers, suitably justified, are acceptable.

 7 (i) a b c10, 14, 160= − = = − , or  

 a b c19
2 , 17

2 , 7= − = − =  [1], [1], [1]

 (ii) a b10, 14= − = ,  c is any number other 
  than -160

  or a b19
2 , 17

2= − = − , c is any number

  other than 7 [2]

 (iii)  If the planes meet at a single point, the 
point (x, y, z) where the three planes meet 
can be represented by the matrix equation

  

x
y

z

x
y

z

5 7 1
1 13 2

19 17 4

80
2
14

5 7 1
1 13 2

19 17 4

80
2
14

1
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− −

−
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 [1], [1]

 Using a calculator,

x z

y z

25 150

25 250

+ =
− =
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3 (i) 
1
2

(sin +cos )θ θ  

	 (ii) θ θ3
2 cos 2 + 1

2 sin2

	 (iii) −θ θ3
2 sin 1

2 cos

	 (iv) −θ θ1
2 cos3 3

2 sin3

2 (i) 1
2

  (ii) 1

	 (iii) cos 4θ (iv) 3
2

 (v) −3 1
2

  (vi) 1
2
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A
angle between planes 154–5, 165
angle between two vectors 144–5, 146, 147, 165
answers 174–211
area of a parallelogram 125
area scale factor 125, 126–7, 128
Argand diagrams 48, 51, 97, 98, 99

loci in 110–13
argument of complex numbers  

99–101, 123 
associativity 4, 9, 28, 37, 174

B
Bombelli, Rafael 42

C
calculators, use of 3, 10, 103
Cardano, Gerolamo 42
cartesian coordinates 47
cartesian equation of a plane 152–4, 165
circumference of a circle 169
coincident lines 139, 142
commutative 37, 145, 174
complex conjugates 44–5, 48
complex numbers (z and w) 40–3   

adding 41, 51
arguments 99–101
conversion 103
division 44–6, 51, 102, 103, 106–7, 123
equality of 42–3
geometrical representation 47–8, 51
modulus of 98–9
modulus–argument form 102, 103, 106–7, 123
multiplying 42, 51, 102, 103, 106–7, 123
notation 41
real and imaginary parts, Im(z) and Re(z) 41, 42–3, 

45, 51
representing sum and difference 48–9
subtracting 41, 51 

complex plane 48, 51, 67, 97, 98, 99
complex roots 52, 53, 65–7, 70
composite transformation 27–9, 38 
compound angle formulae 106, 172
conjecture 86–7, 88

counter–example 86
conjugates 44–5
convergence 191

cosine 18, 102, 144
cubic equations 58, 59, 60–1 

graphs 52, 53
roots (γ) 58, 60–1, 69–70

D
degrees to radians 170
Descartes, René 42
determinant of a matrix 125, 126–7, 128, 141

negative 127, 128
square 128
zero 129, 133, 138, 141, 142

direct routes 1, 5
division of complex numbers 44–6, 51, 106–7
dot product 145

E
electrical networks 32
elements of matrices 2
enlargement 13, 16, 17, 22
equal matrices 3
equation of a plane 150–4, 165

three planes 159, 160
equations, cubic 52, 53, 58, 59, 69–70 

forming new 60–1
equations, equivalent 33–4
equations, forming new 55–7, 60–1 
equations, graphic representation  52–3
equations, quadratic 40, 41, 55

forming new 55–7
roots 54–5, 69–70

equations, quartic 62–4
graphs 53
roots 63–4, 67, 69–70

equations, simultaneous 33–4
solving with matrices 137–9, 142
in three unknowns 160, 161

equivalent equations 33–4
Euler, Leonard 42

G
geometrical interpretation in two dimensions 137–9
geometrical representations 

complex numbers 47–8, 51
to solve simultaneous equations 137–9

gradient 20
graphs, equations 52–3
graphs, turning points on 53
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I
I (position) 15, 16
identities 58, 63, 172
identity matrices (I) 3, 37, 131–4
image 13
imaginary axis (Im) 48 
imaginary numbers (i, j) 41
induction, mathematical 86–9
induction, proof by 85–92, 94
inductive definition 72
integers (Z) 40
 series of positive 73, 75
intersection of planes 157–62, 165
invariance 33–5
invariant lines 34–5, 38
invariant points 33–4, 38
inverse of a matrix 131–4

solving equations 137–9 
irrational numbers 40

J
j (imaginary number) 41
J (position) 15, 16

L
lines, coincident 139, 142
lines of invariant points 34
loci in Argand diagrams 110–13
loci, circles 110–13, 123
loci, half–line 114–15
loci, perpendicular bisector 115–16, 117, 123
loci |z–a|= |z|115–17, 123
loci |z–a|= θ 113–15, 123

M
Mandlebot set 97
mapping 13, 17, 23, 37

to self 33, 34 
mathematical induction 86–9
mathematicians 42, 62
matrices 2–4

adding 3, 37
determinant of 125, 126–7, 128
with determinant zero 129, 133, 138, 141, 142
identity (I) 3, 37, 131–4
inverse of 131–4, 137–9
multiplying 3, 6–9, 37
order of 2, 37

solving simultaneous equations 137–9, 142
singular and non–singular 133, 141
special 2–3
square 2, 37, 128, 134
subtracting 3, 37
representing transformations 14–18, 38
zero 3, 37, 133 

modulus–argument form, complex numbers 102, 103, 
106–7, 123

N
natural numbers (N) 40
negative determinant 127, 128
negative numbers 41

square roots of 41, 43 
non–conformable matrices 3
normal to a plane (n) 151, 152, 154–5
notation

complex numbers 41
equation of planes 154
roots 59
sequences and series 72
sigma 70, 72, 73–4, 75 

nth term in a series 74
number system, extending 40–3
numbers, irrational 40 
numbers, natural 40
numbers, rational (Q) 40, 42
numbers, real 40, 45

O
object 13
order of matrices 2, 37
order of polynomials 52

P
P (position) 16
parallel lines 138
parallel planes 153, 157, 160, 161
parallelogram, area 125
perpendicular vectors 147–8
planes 22–3

angle between 154–5, 165
arrangements of three 157–61, 165
equation of 150–4
equation of three 159, 160
intersection of 157–62, 165
normal to (n) 151, 152, 154–5
parallel 153, 157, 160, 161
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sheaf of 158, 160–1, 162
three, point of intersection 158–9, 161
in triangular prisms 158, 161, 162
vector equation of 151–2, 154, 165 

polar form of complex numbers 102, 103, 123
polynomial equations

complex roots 52, 65–7, 70
graphs 52–3
roots (α, β) 52–3, 54–5 

polynomial expressions 52–4
position vectors 14, 18, 19, 37, 151
principle argument 99–101, 123
proof by induction 85–92, 94
proof, trigonometrical 28–9
properties of roots 55–6, 58

of higher order polynomials 58

Q
quadratic equations 40, 41, 55

forming new 55–7
roots 54–5, 69–70 

quadratic formula 41, 55, 66
quartic equations 62–4

graphs 53 
roots 63–4, 67, 69–70 

R
radians 99, 169–70

converting to degrees 170 
rational numbers (Q) 40, 42
real axis (Re) 48 
real numbers (R) 40, 45
real part of a complex number Re(z) 41
real roots 53
reflection 13, 15, 16, 17, 22, 128

in three dimensions 22–3 
roots, complex 52, 53, 65–7, 70
roots, properties of 55–6, 58
roots, real 53
roots, symmetric function of 59
rotation 13, 15, 22, 132

represented by matrices 18
in three dimensions 23–4 

rugby scores 7

S
scalar product 145–6, 164
scale factor 13, 16, 17, 141

area 125, 126–7, 128
stretch of 19, 22
volume 128, 141, 142 

sequences 72–3, 86
notation of 72
sum of (Σ) 72, 73–4
terms of 93 

series 72, 73–4, 93–4
method of differences 80–3
nth term in 74
of positive integers 73, 75
sum of 74–5, 77, 78
terms in 74 

sheaf of planes 158, 160–1, 162
shear factor 21
shears 14, 19–21
Sierpinsky triangle 124
sigma notation 70, 72, 73–4, 75
simultaneous equations 33–4

solving with matrices 137–9, 142
in three unknowns 160, 161 

sine 18, 102
singular and non–singular matrices 133, 141
square matrices 2, 37, 128, 134
square roots of negative numbers 41, 43
stretch 14, 19, 22
sum of roots (Σ) 59
sum of squares 88–9
sum, telescoping 81–3, 94
surds 102
symmetric function 59, 70
symmetric matrices 12

T
telescoping sum 81–3, 94
terms in series 74
term–to–term definition 72
transformations 13–18

composite 27–9, 38 
in two dimensions 22
in three dimensions 22–3
represented by matrices 14–18, 38
successive 27–9 

triangles, right–angled 18
triangular prisms of planes 158, 161, 162
trigonometrical proof 28–9
turning points on graphs 53
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U
unit matrices 3, 37, 131–4
unit vectors 19

in three dimensions 14 

V
variable (w) 60–1
vector equation of a plane 151–2, 165
vectors 14

angle between two 144–5, 146, 147, 165
perpendicular 147–8

position 14, 18, 19, 37, 151
magnitude of 14, 144
unit 14, 19 

Vieta’s Formulae 62
volume scale factor 128, 141, 142

Z
z–coordinate 22 
zero matrices 3, 37, 133
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