

Lecture 13 Bolted Connections 1

- Types of Joints
- Failure of Joints
- Types of Bolts
- AISC Bolt Strengths
- Truss Joints

Mongkol JIRAVACHARADET

INSTITUTE OF ENGINEERING

SCHOOL OF CIVIL ENGINEERING

S U R A N A R E E UNIVERSITY OF TECHNOLOGY

Riveted Connections

rivet = round ductile steel bar (shank) with a head at one end

Riveting Procedure

(b)

Rivets are heated before driving

- Hand hammer
- Hydraulic pressure
- Pneumatic pressure

On cooling, the rivet shrinks both length and diameter

Connected parts become tighter:

- Tension in rivet
- Compression in plates

Friction between plates called "clamping action"

Forms of riveted joints

Eccentricity in lap joint

Undesired bending causes tension in rivets

Double riveted lap joint

Butt joint v.s. Lap joint:

- แรงเฉือนในสลักเกลียวลดลงครึ่งหนึ่งของการต่อแบบทาบ
- จุดต่อรับแรงตรงแนวไม่เกิดโมเมนต์ดัด
- จุดต่อราคาเพิ่มขึ้น มักใช้ในจุดต่อที่รับแรงมาก

Bolted Connections

Failure of Joints

Case 1: Shear failure of rivets

Single shear in lap joint

Double-shear in butt joint

Shear stress in rivet exceed the limit

Case 2: Shear failure of plates

Insufficient edge distance

Case 3: Tension or Tearing failure of plates

Tensile stress at net cross section exceeds tensile strength

Case 4 : Bearing failure of plate

Plate may be crushed when bearing stress in plate exceeds the limit

Bolted Connections

Beam splice moment connection

BOLT & NUT

Snug-tight bolts Bearing joints

For most connection, bolts are tightened by

full effort of a human using a spud wrench.

Pretensioned joints

Required under seismic load or fatique

For A325 and A490 bolts, min. pretension

equal to 70% min. tensile stress.

Slip-critical Joints

Same as pretensioned joint except treatment of the contact surface.

BOLT SIZES

(1 in. = 25.4 mm)

US Custom			มอก. 2450-2552
		Metric Size	ISO 888 : 1976
Bolt Size, in.	→ 25.4 mm	Bolt Size, mm	12 mm 14 mm
1/2	13 mm		16 mm
⁵ /8	16 mm	M16	18 mm
3/4	19 mm	M20	20 mm
//8	22 mm	IVI22	22 mm
1	25 mm	M27	24 mm
1'/8	29 mm	M27 M30	27 mm
1'/4	32 mm	M36	30 mm
13/8	35 (1)(1)	11100	33 mm
1 1/2	38 mm		36 mm

TABLE J3.3M Nominal Hole Dimensions, mm

	Hole Dimensions						
Bolt Diameter, mm	Standard (Dia.)	Oversize (Dia.)	Short-Slot (Width × Length)	Long-Slot (Width × Length)			
M16	18	20	18 × 22	18 × 40			
M20	22	24	22 × 26	22×50			
M22	24	28	24 imes 30	24 imes 55			
M24	27 ^[a]	30	27 × 32	27 imes 60			
M27	30	35	30 × 37	30 × 67			
M30	33	38	33 imes 40	33 imes 75			
≥ M36	<i>d</i> + 3	<i>d</i> + 8	$(d+3) \times (d+10)$	$(d+3) \times 2.5d$			

^[a] Clearance provided allows the use of a 1-in.-diameter bolt.

Type of Holes

3. Minimum Spacing & Edge Distance AISC J3

TABLE J3.4MMinimum Edge Distance,[a] mm, fromCenter of Standard Hole[b] to Edge ofConnected Part							
Bolt Diameter (mm)	At Sheared Edges	At Rolled Edges of Plates, Shapes or Bars, or Thermally Cut Edges ^[c]					
16	28	22					
20	34	26					
22	38 ^[d]	28					
24	42 ^[d]	30					
27	48	34					
30	52	38					
36	64	46					
Over 36 1.75 <i>d</i> 1.25 <i>d</i>							
^[a] Lesser edge distances are permitted to be used provided provisions of Section J3.10, as appro- priate, are satisfied.							

^[b] For oversized or slotted holes, see Table J3.5M.

^[c] All edge distances in this column are permitted to be reduced 3 mm when the hole is at a point where required strength does not exceed 25 percent of the maximum strength in the element. ^[d] These are permitted to be 32 mm at the ends of beam connection angles and shear end plates.

TABLE J3.5M Values of Edge Distance Increment <i>C</i> ₂ , mm							
	Slotted Holes						
Nominal Diameter of	ominal Long A		Perpendicular Edge	Long Axis Parallel to			
Fastener (mm)	Holes	Short Slots	Long Slots ^[a]	Edge			
<u>≤</u> 22	2	3					
24	3	<u> </u>					
≥27 3 5							
^[a] When length of slot is less than maximum allowable (see Table J3.3M), C ₂ is permitted to be reduced by one-half the difference between the maximum and actual slot lengths.							

Minimum Clearance

สลักเกลียว เส้นผ่าศูนย์กลาง	แป้นเกลียว ความสูง	ระยะช่องว่าง น้อยที่สุด, A
12	12	22
16	16	25
19	19	32
22	22	35
25	25	38
28	28	40
32	32	43

6. Bolt Tensile & Shear Strength AISC J3

The nominal tensile and shear strength :

$$R_n = F_n A_b$$

 $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$

d

where $A_b = bolt area = \frac{\pi}{4}d^2$

 $F_n = F_{nt} = nominal tensile stress or$

$$= F_{nv} = nominal shear stress$$

(J3-1)

A307 : Unfinished bolts or Ordinary or Common bolts A307 bolts are mode from carbon steel similar to A36.

A325 : High-strength bolts made from a heat-treated medium carbon steel

A490 : High-strength bolts made from a heat-treated alloy steel

Single & Double Shear

AISC TABLE J3.2 Nominal strength of Fasteners and Threaded Parts								
Fasteners	Non St	ninal Ter rength,	nsile F _{nt}	Nominal Shear Strength in Bearing- Type Connections, F _{nv}				
	ksi	MPa	ksc	ksi	MPa	ksc		
A307 bolts	45	310	3,100	27	186	1,900		
A325 threads are included in shear plane (A325-N)	90	620	6,300	54	372	3,800		
A325 threads are excluded from shear plane (A325-X)	90	620	6,300	68	469	4,700		
A490 threads are included in shear plane (A490-N)	113	780	7,900	68	469	4,700		
A490 threads are excluded from shear plane (A490-X)	113	780	7,900	84	579	5,900		

Table D-1 Nominal Tensile Strength of Bolt, Fnt Ab (tons)

				Bolt Di	ameter,	d (mm)		
ASTM	ASTM F _{nt}	16	19	20	22	24	25	27
Desig.	(ksc)		Bolt Area (cm ²)					
		2.01	2.84	3.14	3.80	4.52	4.91	5.73
A307	3,100	6.23	8.79	9.74	11.78	14.02	15.22	17.75
A325	6,300	12.67	17.86	19.79	23.95	28.50	30.93	36.07
A490	7,900	15.88	22.40	24.82	30.03	35.74	38.78	45.23

Threads Excluded from Shear Plane or not ?

						Bolt Di	ameter,	d (mm)			
ASTM	Thread	F _{nv}	Load-	16	19	20	22	24	25	27	
Desig.	Cond.	(ksc)	ing			Bol	t Area (c	m²)			
				2.01	2.84	3.14	3.80	4.52	4.91	5.73	
A 307		1 000	S	3.82	5.39	5.97	7.22	8.60	9.33	10.88	
A307	-	1,900	D	7.64	10.77	11.94	14.45	17.19	18.65	21.76	
	NI	3 800	S	7.64	10.77	11.94	14.45	17.19	18.65	21.76	
A 3 2 5	IN	3,800	5,000	D	15.28	21.55	23.88	28.89	34.38	37.31	43.51
A325	×	4 700	S	9.45	13.33	14.77	17.87	21.26	23.07	26.91	
	^	4,700	D	18.90	26.65	29.53	35.73	42.52	46.14	53.82	
	NI	4 700	S	9.45	13.33	14.77	17.87	21.26	23.07	26.91	
A 400	IN	4,700	D	18.90	26.65	29.53	35.73	42.52	46.14	53.82	
A490	v	5 000	S	11.86	16.73	18.54	22.43	26.69	28.96	33.78	
	~	5,900	D	23.73	33.46	37.07	44.86	53.38	57.92	67.56	
N : Bearing-Type connection with threads <i>include</i> in shear plane X : Bearing-Type connection with threads <i>exclude</i> in shear plane											

S : Single shear D : Double shear

10. Bearing and Tearout Strength at Bolt Holes AISC J3

The available bearing strength ϕR_n and R_n/Ω for bearing at bolt holes:

 $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$

The nominal bearing strength R_n is determined as follows :

a) For standard, oversized and short-slotted holes or long slot hole with slot parallel to the direction of force

When deformation at bolt hole at service load is a design consideration

$$R_{n} = 1.2L_{c}tF_{u} \leq 2.4dtF_{u} \qquad (J3-6a,c)$$

When deformation at bolt hole at service load is not a design consideration

$$R_n = 1.5L_c tF_u \le 3.0 dtF_u$$
 (J3-6b,d)

b) For long slot hole with slot perpendicular to the direction of force

$$R_n = 1.0L_c tF_u \le 2.0 dtF_u$$
 (J3-6e,f)

where F_u = specified minimum tensile strength of connected material

- d = nominal fastener diameter
- t = thickness of connected material
- L_c = clear distance in the direction of force, between the edge of the hole and adjacent hole or edge of the material

			Bolt Diameter, d (mm)					
TIS	Fu	16	19	20	22	24	25	27
Desig.	(ksc)		Bolt Area (cm ²)					
		2.01	2.84	3.14	3.80	4.52	4.91	5.73
SM400	4,000	15.36	18.24	19.20	21.12	23.04	24.00	25.92
SM490	5,000	19.20	22.80	24.00	26.40	28.80	30.00	32.40
SM520	5,300	20.35	24.17	25.44	27.98	30.53	31.80	34.34
SM570	5,800	22.27	26.45	27.84	30.62	33.41	34.80	37.58

Table D-3 Nominal Bearing Strength for $L_c > 2d$, **2.4dF**_u (tons/cm thickness)

Example 13-1 : Determine the design strength and allowable strength for the bearing-type connection shown. The steel is A36 ($F_y = 2,500$ ksc and $F_u = 4,000$ ksc), the bolts are 22-mm A325, the holes are standard sizes, and the treads are excluded from the shear plane.

Solution

(a) Gross section yielding

$$P_{n} = F_{y} A_{g} = (2.5)(1 \times 30) = 75 \text{ tons}$$

$$\frac{LRFD \ \phi_{t} = 0.9}{\phi_{t} P_{n}} = 0.9(75) = 67.5 \text{ tons} \qquad \frac{P_{n}}{\Omega_{t}} = \frac{75}{1.67} = 44.9 \text{ tons}$$

(b) Tensile rupture strength

LRFD $\phi_t = 0.75$	ASD $\Omega_t = 2.00$
$\phi_t P_n = 0.75(101) = 75.8 \text{ tons}$	$\frac{P_n}{\Omega_t} = \frac{101}{2.00} = 50.5 \text{ tons}$

(c) Bolt shear strength A325-X : $F_{nv} = 4,700$ ksc

 $R_n = F_{nv} A_b$ (No. of bolts) = (4.7) $(\pi \times 2.2^2/4)(4) = 71.5$ tons

or from Table D-2 : $R_n = 17.87(4) = 71.5$ tons

$LRFD \ \varphi = 0.75$	ASD $\Omega = 2.00$
$\phi R_n = 0.75(71.5) = 53.6 \text{ tons}$	$\frac{P_n}{\Omega} = \frac{71.5}{2.00} = 35.8 \text{ tons}$

(d) Bolt bearing strength

 $\begin{array}{l} \mathsf{L}_{\mathsf{c}} = \text{lesser of } 7.5 - \frac{2.4}{2} \text{ or } 8 - 2.4 = 5.6 \text{ cm} > [2d = 2(2.2) = 4.4 \text{ cm}] \\ \mathsf{R}_{\mathsf{n}} = 1.2\mathsf{L}_{\mathsf{c}}\mathsf{t}\mathsf{F}_{\mathsf{u}}(\mathsf{No. of bolts}) \leq 2.4 d\mathsf{t}\mathsf{F}_{\mathsf{u}}(\mathsf{No. of bolts}) \\ = 1.2(5.6)(1.0)(4.0)(4) = 108 \text{ tons} \\ > 2.4(2.2)(1.0)(4.0)(4) = 84.5 \text{ tons} \end{array} \right\} \quad \therefore \ \mathsf{R}_{\mathsf{n}} = 84.5 \text{ tons} \\ \text{or from Table D-3 : } \mathsf{R}_{\mathsf{n}} = 21.12(1.0)(4) = 84.5 \text{ tons} \end{array}$

LRFD $\phi = 0.75$	ASD $\Omega = 2.00$
$\phi P_n = 0.75(84.5) = 63.4 \text{ tons}$	$\frac{P_n}{\Omega} = \frac{84.5}{2.00} = 42.3 \text{ tons}$

Ans. LRFD = 53.6 tons (Bolt shearing) ASD = 35.8 tons (Bolt shearing) **Example 13-2 :** How many 20-mm A325 bolts in standard holes with threads excluded from the shear plane are required for the bearing-type connection shown. Use $F_u = 4,000$ ksc and assume edge distances to be 5 cm and the distance center-to-center of holes to be 7.5 cm. $P_u = 150$ tons (LRFD), $P_a = 100$ tons (ASD).

Solution. Bolts in double shear and bearing on 2 cm

Bearing strength of 1 bolt

$$L_c = \text{lesser of } 5 - 2.2/2 = 3.9 \text{ cm or } 7.5 - 2.2 = 3.9 \text{ cm}$$

 $\begin{aligned} \mathsf{R}_{\mathsf{n}} &= 1.2 \mathsf{L}_{\mathsf{c}} \mathsf{t} \mathsf{F}_{\mathsf{u}} &\leq 2.4 \, \mathsf{d} \mathsf{t} \mathsf{F}_{\mathsf{u}} \\ &= 1.2 (3.9) (2.0) (4.0) \, = \, 37.4 \ \mathsf{tons} \, < \, 2.4 (2.0) (2.0) (4.0) \, = \, 38.4 \ \mathsf{tons} \end{aligned}$

Shearing strength of 1 bolt A325-X : $F_{nv} = 4,700$ ksc

$$R_n = (2A_b)F_{nv} = 2(\pi \times 2.0^2/4)(4.7) = 29.5 \text{ tons}$$
 - Control

$LRFD \ \varphi = 0.75$	ASD $\Omega = 2.00$
$\phi_t P_n = 0.75(29.5) = 22.1 \text{ tons}$	$\frac{P_n}{\Omega_t} = \frac{29.5}{2.00} = 14.8 \text{ tons}$
No. bolts reqd. = $\frac{P_u}{\phi R_n}$	No. bolts reqd. = $\frac{P_a}{R_n / \Omega}$
$= \frac{150}{22.1} = 6.79$	$= \frac{100}{14.8} = 6.75$

Use eight 20-mm bearing type A325 bolts.

จุดต่อสลักเกลียวในโครงลัก

- แรงในองค์อาการจะต้องมาตัดกันที่จุดต่อโดยไม่มีการเยื้องศูนย์
- พื้นที่ในการต่ออาจไม่เพียงพอจะใช้ Gusset plate ช่วย

Truss Joint

Double member with a single connector piece, called a gusset plate.

Members must have sufficient "bite" into the plate for bolts or weld contact. Converging centerlines enable equilibrium without member moments.

