

Overview of problems

Example Set: A

1.
$$\cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right)$$

$$2. \qquad \sin\left(\frac{\pi}{6} + \frac{3\pi}{4}\right)$$

3.
$$\tan\left(\frac{4\pi}{3} + \frac{5\pi}{4}\right)$$

6.
$$\sin\left(\frac{\pi}{12}\right)$$

7.
$$\tan{(\frac{5\pi}{12})}$$

Overview of problems

Example Set: B

Find the sum or difference for each question.

- 1. $\sin(A) = \frac{4}{5}$ and $\sin(B) = \frac{5}{13}$ angle A and B are in quadrant I, Find $\cos(A B)$
- 2. $\cos(A) = -\frac{15}{17}$

 $cos(B) = -\frac{3}{5}$ angle A is in quad II, and angle B is quad III, Find sin(A + B)

3.
$$\frac{\tan\left(\frac{5\pi}{16}\right) - \tan\left(\frac{\pi}{16}\right)}{1 + \tan\left(\frac{5\pi}{16}\right)\tan\left(\frac{\pi}{16}\right)}$$

4.
$$\frac{\tan(70^\circ) - \tan(10^\circ)}{1 + \tan(70^\circ)\tan(10^\circ)}$$

Overview of problems

Example Set: C

Use the sum and difference identities to verify the following identities.

$$1. \qquad \sin\left(\frac{\pi}{2} - x\right)\cos(-x) = \cos^2 x$$

$$2. \tan(\pi + 2\pi) = 0$$

Overview of problems

Example Set: A -ANSWER KEY

1.
$$\cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \frac{-\sqrt{6} + \sqrt{2}}{4}$$

$$2. \quad \sin\left(\frac{\pi}{6} + \frac{3\pi}{4}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

3.
$$\tan\left(\frac{4\pi}{3} + \frac{5\pi}{4}\right) = -\sqrt{3} - 2$$

4.
$$\tan(75^\circ) = \sqrt{3} + 2$$

5.
$$\sin(165^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$6. \quad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

7.
$$\tan\left(\frac{5\pi}{12}\right) = \sqrt{3} + 2$$

Overview of problems

Example Set: B -ANSWER KEY

Find the sum or difference for each question.

1.
$$\sin(A) = \frac{4}{5}$$
 and $\sin(B) = \frac{5}{13}$ angle A and B are in quadrant I, Find $\cos(A - B)$

$$\frac{56}{65}$$

2.
$$\cos(A) = -\frac{15}{17}$$

$$cos(B) = -\frac{3}{5}$$
 angle A is in quad II, and angle B is quad III, Find $sin(A + B)$

Overview of problems

3.
$$\frac{\tan\left(\frac{5\pi}{16}\right) - \tan\left(\frac{\pi}{16}\right)}{1 + \tan\left(\frac{5\pi}{16}\right)\tan\left(\frac{\pi}{16}\right)}$$

$$\tan\left(\frac{\pi}{4}\right) = 1$$

4.
$$\frac{\tan(70^{\circ}) - \tan(10^{\circ})}{1 + \tan(70^{\circ})\tan(10^{\circ})}$$

$$\tan(60^\circ) = \sqrt{3}$$

Overview of problems

Example Set: C -ANSWER KEY

Use the sum and difference identities to verify the following identities.

1.
$$\sin\left(\frac{\pi}{2} - x\right)\cos(-x) = \cos^2 x$$

$$\sin\left(\frac{\pi}{2} - x\right)\cos(-x) = \cos^2 x$$

$$\sin\left(A - B\right) = \sin A\cos B - \cos A\sin B$$

$$\sin\left(\frac{\pi}{2} - x\right) = \sin \frac{\pi}{2}\cos x - \cos \frac{\pi}{2}\sin x$$

$$= 1 \cdot \cos x - 0 \cdot \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Sin
$$\left(\frac{\pi}{2} - x\right) \cos(-x) = \cos^2 x$$

 $\cos x \cos(-x) = \cos^2 x$
 $\cos(-x) = \cos x$
 $\cos x \cdot \cos x = \cos^2 x$
 $\cos^2 x = \cos^2 x$

Overview of problems

$$2. \tan(\pi + 2\pi) = 0$$

$$\tan (\pi + 2\pi) = 0$$

$$\tan (\pi + 2\pi) = \frac{\tan \pi + \tan 2\pi}{1 - \tan \pi + \tan 2\pi}$$

$$\tan \pi = 0 = 0 + 0$$

$$\tan 2\pi = 0$$

$$\tan(m+2m)=\frac{0}{1}$$