Python Object-Oriented
Program with Libraries

Unit 3: Web Programming

CHAPTER 1: NETWORK FUNDAMENTALS
DR. ERIC CHOU IEEE SENIOR MEMBER

Python Networking
Overview

Python Networking

*Network programming is a major use of Python

*Python standard library has wide support for
network protocols, data encoding/decoding, and
other things you need to make it work

*Writing network programs in Python tends to be
substantially easier than in C/C++

This Unit

*This course focuses on the essential details of
network programming that all Python programmers
should probably know

1.Sockets: Low-level programming with sockets
2.Client: High-level client modules

3.Data: How to deal with common data encodings
4.Protocol: Simple web programming (HTTP)
5.Parallelism: Simple distributed computing

Server

Internet

Internet

HTTP Request
HTML JavaScript Response GET Python pata store

AJAX CSS

Templates memcache

socket POST

Standard Library

*We will only cover modules supported by the Python
standard library

*These come with Python by default

*Keep in mind, much more functionality can be found in
third-party modules

*Will give links to notable third-party libraries as appropriate

Prerequisites

*You should already know Python basics

*However, you don't need to be an expert on all of its
advanced features (in fact, none of the code to be written is
highly sophisticated)

*You should have some prior knowledge of systems
programming and network concepts

Network Fundamentals

The Problem

It's just
sending/receiving
bits.

Specifying a remote computer and

Addressing cervice

Two Main

Issues

Data

Moving bits back and forth
transport

Network Addressing

°Machines have a hostname and IP address

*Programs/services have port numbers

foo.bar.com
205,172.13.4

port 4521 www.python.org

82.94.237.218

Web Browser application
Port Number: 1025

Web Server
application Port
Number: 80

Web Server : www.cisco.com Client
IP address : IP address :
200.20.20.1 192.168.1.1

Domain Name, IP Address and Port Number

Network Architecture

Transport Control Protocol (TCP)

*Built on top of IP (Internet Stack Connections
Protocol)

Application @ = === -=s-sccsccacaaananannn » Application
*Assumes IP might lose some data - } o L s T
stores and retransmits data if it == ===
seems to be lost ’ I

*Handles “flow control” using a
transmit window

*Provides a nice reliable pipe

Fiber,
Ethernet Satellite, Ethernet —
etc.

@)

TCP Connections / Sockets

Process to Process Communication

"In computer networking, an Internet socket or network socket is an
endpoint of a bidirectional inter-process communication flow across an
Internet Protocol-based computer network, such as the Internet."

Internet

Socket

http://en.wikipedia.org/wiki/Communication_flow

TCP Port Numbers

*A port is an application-specific or process-specific software
communications endpoint

°|t allows multiple networked applications to coexist on the
same server.

*There is a list of well-known TCP port numbers

Standard Ports

Ports for common services are preassigned:
* 21 FTP

* 22 SSH

* 23 Telnet

* 25 SMTP (Mail)

* 53 DNS (Domain Name)

* 80 HTTP (Web) -443 HTTPS (web, Secure)
* 110 POP3 (Mail) - 119 NNTP (News)

* (143/220/993) IMAP - Mail Retrieval

e Other port numbers may just be randomly assigned to programs by the
operating system

ww.umich.edu

Incoming
E-Mail

blah blah

blah blah

Web Server

Personal
Mail Box

Please connect me to the
web server (port 80) on
http://www.aaa.com

http://en.wikipedia.org/wiki/List of TCP and UDP port numbers

http://www.dr-chuck.com/

Internet Protocol Internet Protocol
version 4 (IPv4) version 6 (IPv6)
IP Address Deployed 1981 1999

Address Size 32-bit number 128-bit number

. X Hexadecimal Notation:
Address Format Dotted Decimal Notation: 5cee . c0 0. 0934:4B00:

192.149.252.76 0123:4567:8901:ABCD
Prefix Notation 192.149.0.0/24 3FFE:F200:0234::/48

2'%# = ~340,282,366,
Number of Addresses 2% = —4,294,967,296 920,938,463,463,374,
607,431,768,211,456

IPv4 Header IPv6 Header

Version fi,|" . Total Length -
. Version fraific Flow Label
Fragment Slass
Identification Offset

Next
Header

Payload Length

Hop Limit

Source Address

Destination Address

T optons | pading Source Address

Field’s Name Kept from IPv4 to IPv6

B Fields Not Kept in IPv6 -
- Destination Address

Name and Position Changed in IPv6

Legend

New Field in IPv6

Domain Name System (DNS)

http://www.example.com
© hame edension

PUTTY (Terminal)

PUutTy

PuTTY is a free implementation of SSH and Telnet for Windows
and Unix platforms, along with an xterm terminal emulator. It is
written and maintained primarily by Simon Tatham.

SSH: Secure Shell (SSH) is a cryptographic network protocol for
operating network services securely over an unsecured network
Telnet:a network protocol that allows a user on one computer to

log onto another computer that is part of the same network.
TTY: virtual terminal

https://www.chiark.greenend.org.uk/~sgtatham/

BE CAWINDOWS system32iemd.exe — O >

soft Windows [Version 18.8.
2817 Microsoft Corporation. All rights reserved.

C:\Users\ericcrnetstat
Active Connections

Proto L
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

tt ABLISHED
CLOSE_WAIT
CLOSE_WAIT
:https ESTABLISHED
ESTABLISHED
ESTABLISHED
CLOSE_WAIT

CLOSE_WAIT
edge-star-mini-shv-81-sjc ns ESTABLISHED
i .16.157.185: https ESTABLISHED

ESTABLISHED

ESTABLISHED

185:http ESTABLISHED

ESTABLISHED

TIME_WATT

ESTABLISHED

ABLISHED

ESTABLISHED

TIME_WAIT
TCP TIME_WAIT
TCP thttps TIME_WAILIT

CP 17 168 . - 7217 g

U S i n n EtStat * Use 'netstat’ to view active network connections
g * Note: Must execute from the command shell on both Unix and Windows

ERpERERERRERRRRRRR SRR R R SR

Connections

*Each endpoint of a network connection is always represented by a
host and port #

°In Python you write it out as a tuple (host,port)
("www.python.org",80)

("205.172.13.4" 443)

°In almost all of the network programs you’ll write, you use this
convention to specify a network address

BN CAWINDOWS system32iemd.exe

C:\Usersher ping 66 13

138.61 with 32 bytes
out.
out.
out.

C sersi\er
Ping request

try again.
C:\Usersher
ng www.charisma-usa.com [66

timed out.
timed out.

C:\Usersieri

l | " n " n * Use ‘ping' to check if the connection to a host is love.
S I g p I * Note: In the example, the connection is not built

C:\Usersh\ericc»ping localhost

Pinging Sugarcane [::1] with 32 bytes of data:
Reply from ::1: time<lms
Reply from ::1: time<lms
Reply from ::1: time<lms

Reply from ::1: time<lms

Ping statistics for ::1:

Packets: Sent = 4, Received = 4, Lost = @ (8% loss),
Approximate round trip times in milli-seconds:

Minimum = @ms, Maximum = 8ms, Average = Bms

Even localhost fails? Why? No local host server.

Using Telnet

@] C:\Windows\system32\telnet.exe 10| x|
\lelcome to Microsoft Telnet Client

L_1»]

scape Character is ’CTRL+1Y’

How Telnet Works

Microsoft Telnet)> _

Internet Request

_I_I_I_I_

=]
T Execute
)

¢ Learning Channel

App and Features -> Program and Features -> Telnet Client

[Windows Features _— O X

Turn Windows features on or off @

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

[J | Microsoft Message Queue (MSMQ) Server A
M Microsoft Print to PDF
[m] Print and Document Services
f4 | Remote Differential Compression API Support
(] | RIP Listener
[] Simple Network Management Protocol (SNMP)
[] | Simple TCPIP services (i.e. echo, daytime etc)
[SMB 1.0/CIFS File Sharing Support

.~ a Telnet Client
~_TFTP Client
Allows you to connect to other computers remotely.

@ M Windows PowerShell 2.0 2
OK Cancel

Watch Video:
https://youtu.be/CJQfR1b43ns

https://youtu.be/CJQfR1b43ns

Local Host

Testing a Web Service Locally

How do you set up a local testing server?
*Local files versus remote files

*The problem with testing local files
*Running a simple local HTTP server
*Running server-side languages locally

Browser (Client)

f E SearchBase

x|+

B @ localhost

"C"||Q555'r':h

Client Server

Desktop Pythdn Client Program

Soubor Upravy Formit Zobrazeni Nipovéda L

import socket T

target_ip = "127.0.0.1"
target_port = 80

¢ = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
c.connect((target_ip,target_port))

response = c.recv(1024)

print "Server response: %s" % response

print "Sending HELLO message"

c.sendall("HELLO")

print "Sent"

=venything

Index of /

Hame - Size Date Modified
fac 171612015 9:26 AM
= 171612015 9:26 AM

Desktop Server Program

Last login: n Feb 9 10:04:49 on ttysoee
vishwarajs-MacN\ro:~ vishwaraj$ python

Python 2.6.1 (r281:67515, Jul 7 2009, 23:51:51)

[GCC 4.2.1 (Apple \Inc. build 5646)] on darwin

Type “help”, “copyright", “credits" or “license" for more information.
>>> import socket

»>»> sockssocket.socketNsocket AF_INET, socket,SOCK_STREAM)

»>»> sock.bind(("127.0.0.1",8000))
>>»> sock.listen(2)
>»> (client,(ip,port))=sock.accept()

Installing 11S

To install IS:

1.In Windows, access the Control Panel and click Add or Remove
Programs.

2.In the Add or Remove Programs window, click Add/Remove
Windows Components.

3.Select the Internet Information Services (1IS) check box,

click Next, then click Finish.

To learn how to use IIS, you can view the documentation at
http://localhost/iishelp/iis/misc/default.asp.

Watch Video:
https://youtu.be/bJrOASXslwU

https://youtu.be/bJrOASXslwU

XAMPP Server
Bring up Server ana
localhost

EEEEEEEE

What is XAMPP?

*XAMPP stands for Cross-Platform (X), Apache (A), MySQL (M), PHP (P) and Perl (P).

|t is a simple, lightweight Apache distribution that makes it extremely easy for developers to
create a local web server for testing purposes.

*Everything you need to set up a web server — server application (Apache), database (MySQL),
and scripting language (PHP) — is included in a simple extractable file.

*XAMPP is also cross-platform, which means it works equally well on Linux, Mac and Windows.

*Since most actual web server deployments use the same components as XAMPP, it makes
transitioning from a local test server to a live server is extremely easy as well.

*Web development using XAMPP is especially beginner friendly, as this popular PHP and MySQL
for beginners course will teach you.

XAMPP

https://www.apachefriends.org/index.html

Component On Windows On Linux On macOS
Apache 2.4.28 Yes Yes Yes
MariaDB 10.1.28 Yes Yes Yes
PHP Yes-7.1.10 Yes - 7.1.1015! Yes - 7.1.1012°!
phpMyAdmin Yes -4.7.4 Yes - 4.7.4 Yes -4.7.4
OpenSSL Yes - 1.0.2| Yes - 1.0.2I Yes - 1.0.2|
XAMPP Control Panel 3.2.2 Yes No No
Webalizer Yes - 2.23-04 Yes - 2.23-05 Yes - 2.23-05
Mercury Mail Yes No No
Transport System 4.63 Yes No No
Tomcat 7.0.56. (with Yes No No
mod_proxy_ajp as connector)
Strawberry Perl 7.0.56 Portable | Yes No No
Filezilla FTP Server 0.9.41 Yes No No

https://www.apachefriends.org/index.html
https://en.wikipedia.org/wiki/XAMPP#cite_note-phpNixNote-15
https://en.wikipedia.org/wiki/XAMPP#cite_note-phpNixNote-15

Installation

Watch video in the Software Installation Video Collection Course:

https://ec.teachable.com/p/software-installation-and-configuration-video-collection-free-mini-
course

Check if the server has been brought up, especially the localhost has been brought up.

https://ec.teachable.com/p/software-installation-and-configuration-video-collection-free-mini-course

Client-Server Concept

Client/Server Concept

*Each endpoint is a running program

*Servers wait for incoming connections and provide a service (e.g.,
web, mail, etc.)

*Clients make connections to servers

WWW.bar.com
205.172.13.4

ﬂ Client request M ' Port 80

ﬁ Server response _

Request/Response Cycle

*Most network programs use a request/response model based on messages

*Client sends a request message (e.g., HTTP)
GET /index.htm| HTTP/1.0

*Server sends back a response message
HTTP/1.0 200 OK

Content-type: text/html
Content-length: 48823
<HTML>

*The exact format depends on the application

Using Telnet

on Linux/Unix

® As a debugging aid, telnet can be used to
directly communicate with many services

telnet hostname portnum

® Example:

shell % telnet www.python.org 80
Trying 82.94.237.218...

Connected to www.python.org.

type this Escape character is '~]'.
and press === GET /index.html HTTP/1.0
return a few
times HTTP/1.1 200 OK
Date: Mon, 31 Mar 2008 13:34:03 GMT
Server: Apache/2.2.3 (Debian) DAV/2 SVN/1.4.2

mod ssl1/2.2.3 OpenSSL/0.9.8c

Data Transport

e There are two basic types of communication

e Streams (TCP): Computers establish a connection
with each other and read/write data in a continuous
stream of bytes---like a file. This is the most common.

e Datagrams (UDP): Computers send discrete packets
(or messages) to each other. Each packet contains a
collection of bytes, but each packet is separate and
self-contained.

Osl
model

Application

TCP/IP
model

Application

user
process

TCP

ICMP

OSI Layers 5-7

OSI Layer 4

RARP

OS]
Layer 3

hardw are
interface

OSI Layers 1-2

Data Transmission over the Internet through TCP/IP

Computer A

Application Layer

J

;B
J

el

Internet Layer

Link/Physical Layer

Ethernet, Fiber, Satellite, wireless etc...

Router

Computer B

Application Layer

Internet Layer

Link/Physical Layer

11

&

HostA
Send

Window size of 1000

eceive
ACK 1 window size=2

Window size of 2000

ACK 2 window size=3

<

Window size of 2500

ACK 3 window size=0

ACK window size=]

Figure 2.2. TCP flow control using windowing

TCP/IP Packet

. 32 bits .
0 4 8 16 19 31
Version | Length | Type of Service Total Length
Identification Flags Fragment Offset
% Time to Live Protocol Header Checksum
f Source Address
i Destination Address
Options
Data
Source Port Destination Port
Sequence Number
Acknowledgment Number
§ Offset | Reserved ﬁiﬂagsa 2 Window
Checksum Urgent Pointer
TCP Options

UDP Request / Response Paradigm

Request s
=
CLIENT SERVER
” Response
b
TCP Handshake Paradigm
Open Connection
~
3 Handshake
s
2
2 Response
.

UbP |

Slower but reliable
transfers

Typical
applications:
e Emaill
e Web browsing

B

e Fast but non-
guaranteed transfers
(“best effort™)

e Typical applications:
o VolP
e Music streaming

._O/O%
® @

unicast

unlcast

® o |

g el s
)

multicast broadcast‘

Socket (Client)

Sockets

e Programming abstraction for network code
e Socket: A communication endpoint

socket socket
—f Afrcssmmzaammse s mrnnnmmn e (—

e Supported by socket library module

e Allows connections to be made and data to be transmitted
in either direction

Get the Host Name

Demo Program: gethname.py

import socket
hostname = 'maps.google.com'

addr = socket.gethostbyname (hostname)

print ('The address of', hostname, 'is’',

Run getname
C:\Python\Python3é\python.exe "C:/Eric Chou/Python
The address of maps.google.com is 172.217.6.78

Process finished with exit code 0

o @ 1 « +

addr)

Socket Basics

*To create a socket

import socket
= socket.socket(addr_family, type)

*Address Familier
socket.AF_INET Internet protocol (IPv4)

socket.AF_INET6 Internet protocol (IPv6)

*Socket types
socket.SOCK_STREAM Connection based stream (TCP)

socket.SOCK_DGRAM Datagrams (UDP)

*Example:
from socket import *

s = socket(AF_INET,SOCK_STREAM)

Socket Types

*Most common case: TCP connection
from socket import *

s = socket(AF _INET, SOCK_STREAM) # TCP
s = socket(AF _INET, SOCK_DGRAM) # UDP

*Almost all code will use one of following
s = socket(AF _INET, SOCK_STREAM) # TCP

Using a Socket

*Creating a socket is only the first step
s = socket(AF _INET, SOCK_STREAM)

*Further use depends on application

*Server
e Listen for incoming connections

*Client
* Make an outgoing connection

client

- socket()

sendtol)

sehver

(

recyfrom()

o recvirom()

sendto()

TCP Client

*How to make an outgoing connection
from socket import *

s = socket(AF_INET,SOCK_STREAM)
s.connect(("www.python.org",80)) # Connect

s.send(bytes("GET /index.html HTTP/1.0\n\n"), ‘utf8’) # Send request
data = s.recv(10000) # Get response
s.close()

*s.connect(addr) makes a connection
s.connect(("www.python.org",80))

*Once connected, use sendto(), recvfrom() to transmit and receive data

°close() shuts down the connection

Basic Example (Client Side)

Demo Program: basicO.py (can’t run by itself)

Objectives:
* Low-level network programming with sockets

* How to connect to a TCP server

*This code is fairly typical for TCP client code.

*Once connected to a server, use send() to send request data. To read a
response, you will typically have to read data in chunks with multiple recv()
operations.

°recv() returns an empty string to signal the end of data (i.e., if the server
closed its end of the connection).

*Recall that using the string join() method is significantly faster than using string
concatenation (+) to join string fragments together.

Host domain nhame

Socket Declaration Pva TCP
\\\\‘from.socket impbrt * ///// 80
s = socket (AF_INET,SOCFK_STREAM)‘/
Socket Connection —s.connect (("www.python.org", 80)) _—Message
message = "GET / index.html HTTP/1.0\\r\\n\r\\n"
fmessage = message.encode ('utf-8"')
Sending . s.send (

tes (message, 'uth;LL\\\\
ch []

while True:
chunk = s.recv(16384) Server’s Listening Loop

if not chunk: break‘\\\\\\\

chunks.append (chunk)

Message Encoding

Byte by byte

Receiving 16384 bytes

s.close()

/////'response = "n_jo0in (chunks)
Socket Closed

print (response)

Analogy between File I/0 Stream and Socket I/O Stream

from socket import * _ -y I = open("usdeclar.txt", "r")
s = socket (AF_INET, SOCK_STREAM) - - tokens=f.read() .split ()
s.connect (("www.python.org", 80))« = _- ¥ count = 0
message = "GET / index.html HTTP/1. 0\\r’\\n’<r"\n" for token in tokens:
#fmessage = message.encode ('utf-8 ’)’ - token = token.strip()
s.send (bytes (message, 'utf8')) .~ try:
chunks = [] if len(token) !=0:
while True: count += 1
chunk = s.recv(16384) if count % 20 != 0: print(tocken, end=" ")
if not chunk: break else: print (token)
chunks. append (chunk) except:
s.close() < - _ print {("Error Input Format!!1l")
response = "" .join—(c?hﬁn'ksﬁ ———— o __ print ("usdeclar.txt has ", count, " words.")

print (response) T T = =<, f.close()

Socket (Server)

Server Implementation

* Network servers are a bit more tricky

* Must listen for incoming connections on a well-known port
number

* Typically run forever in a server-loop

* May have to service multiple clients

TCP Server

e A simple server e Send a message back to a client
from socket import * % telnet localhost 9000
s = socket(AF_INET,SOCK_STREAM) Connected to localhost.
s.bind(("",9000)) Escape characteris "],
s.listen(5)- N A Hello 127.0.0.1
while True: . Shouldbeatleastl =~ Connection|closed by foreign host.

c,a = s.accept()

print("Received connection from", a)
c.send("Hello %s\n" % a[0]). Server Message

c.close()

TCP Server

e Address binding

from socket import * | binds to local host |
s = socket(AF_INET,SOCK STREAM) ddressi

b- d((llll 9000))< f binds the socket to °A ressing
s.kIn ’ a specific address S,binc((""IQOOO))

sisten(s) /s bind(("localhost*,3000))
while True:

s.bind(("192.168.2.1",9000))
c, a = s.accept() '

.s.bind(("104.21.4.2",9000))
print("Received connection from", a) f

IP addresses, can bind
to a specific address

c.send("HeIIo %s\n" % a[O]) [If system has multiple }
c.close()

TCP Server

e Start listening for connections e s.listen(backlog)
from socket import *

s = socket(AF INET,SOCK_STREAM)
s.bind(("",9000))

s.listen(5
while True:

e backlog is # of pending connections to allow

e Note: not related to max number of clients
TeIIs operating system to start I|sten|ng
for connections on the socket

c,a = s.accept()
print("Received connection from", a)

c.send("Hello %s\n" % a[0])
c.close()

TCP Server

e Accepting a hew connection e s.accept() blocks until connection
from socket import * received

s = socket(AF INET,SOCK_STREAM) e Server sleeps if nothing is
s.bind(("",9000)) happening

s.listen(5)

while True: g

— Accept a new client connection

c, a = s.accept() —

print("Received connection from", a)
c.send("Hello %s\n" % a[0])
c.close()

TCP Server

e Client Socket and address pair
from socket import *

s = socket(AF_INET,SOCK_STREAM)
s.bind(("",9000))

s.listen(5)
while True:
¢, a k s.accept()
print("Recei
c.send("Hello %s\n" % a[C

Accept returns a pair
. (client_socket, addr)

P ket._socketobject
("104.23.11.4",27743)
object at Ox3be30>

OnneCtiOn fromn’ a) e, .
("104.23.11.4",27743)

This is the network/port

This is a new socket c.close() address of the client that
. that's used for data . connected

TCP Server

e Client Socket and address pair
from socket import *

s = socket(AF_INET,SOCK_STREAM)
s.bind(("",9000))

s.listen(5)

while True:
c, a = s.accept()
“Note: Use the client socket for § Print("Received connection from®,2)
- transmitting data. The server s c.send("Hello %s\n" % a[0]) - . Send data to client |
- socket is only used for f " "
c.close()

accepting new connections.

TCP Server

e Client Socket and address pair
from socket import *
s = socket(AF_INET,SOCK_STREAM)
s.bind(("",9000))
s.listen(5)
while True:
c, a = s.accept()
print("Received connection from", a)
c.send("Hello %s\n" % a[0])

..

e Note: Server can keep client
connection alive as long as it wants
e Can repeatedly receive/send data

c.close() - - Close client connection

A
TCP Server

* Client Socket and address pair e Original server socket is reused to
from socket import * listen for more connections
s = socket(AF_INET,SOCK_STREAM) e Server runs forever in a loop like this
s.bind(("",9000))
s.listen(5)
while True:

¢, a = s.accept() « Wait for next connection

print("Received connection from", a)
c.send("Hello %s\n" % a[0])
c.close()

Simple Client-Server
Sockets Example

LECTURE 9

Simple Client Server Programs

Demo Program: basic1s0.py (Server Program), basic1cO.py (client
program) Watch Video: client_serverwmv

Server (PyCharm) Client (IDLE)

from socket import * from socket import *

s = socket(AF_INET, SOCK_STREAM) s = socket(AF_INET, SOCK_STREAM)
s.bind(("",15000)) s.connect(("localhost",15000))
s.listen(5)

c, a = s.accept()
C
a
s.send(bytes("Hello World*“, ‘utf8’))

data = c.recv(1024)
data

Simple Client Server Programs

Demo Program: basicl.py (client program)

Server (PyCharm) Client (IDLE)

c.send(bytes("Hello Yourself”, ‘utf8’))

resp = s.recv(1024)

Resp

s.recv(1024)
c.send(bytes("Goodbye”, ‘utf8’))

c.close()

s.recv(1024)
s.recv(1024)

A

Send a Web-page to a Web-site Connecting to server

Demo Program: browse.py

from socket import *

print ("Server side starts ...") wo @i\ wx Ex S0 g0 @r @y
- |® localhost:15000/index.html

step 1 make a connection app: W G R ESs Becive 1 O O

5 = socket (AF INET, SOCE STEREAM)

s.bind (("",15000)) - Hello World!

s.listen (%)
c,a = s.accept()
request = c.recv(0192)

print (request)

c.send (bytes ("HTTP/1.0 200 oK\r\n", 'utfs'))

c.send (bytes ("Content-type: text/html\r\n", 'utfg'))
c.send(bytes ("\r\n", '"utf8'))
c.send (bytes ("<hl>Hello World!</hl>", 'utfg'))
c.close ()

s.close()

Connecting to the Website

from socket import *

s = socket(AF_INET, SOCK_STREAM)
s.bind(("",15000))

s.listen(5)

c, a = s.accept()

http://localhost:15000/index.html

request = c.recv(8192)

print(request)

c.send(bytes("HTTP/1.0 200 OK\r\n", ‘utf8’))
c.send(bytes("Content-type: text/htmI\r\n", ‘utfg8’))
c.send(bytes("\r\n", ‘utfg8’))
c.send(bytes("<h1>Hello World</h1>", ‘utf8’))
c.close()

http://localhost:15000/index.html

