
Python Object-Oriented
Program with Libraries

Unit 3: Web Programming

CHAPTER 1: NETWORK FUNDAMENTALS

DR. ERIC CHOU IEE E SENIOR MEMBER

Python Networking
Overview
LECTURE 1

Python Networking
•Network programming is a major use of Python

•Python standard library has wide support for
network protocols, data encoding/decoding, and
other things you need to make it work

•Writing network programs in Python tends to be
substantially easier than in C/C++

This Unit
•This course focuses on the essential details of
network programming that all Python programmers
should probably know

1.Sockets: Low-level programming with sockets
2.Client: High-level client modules
3.Data: How to deal with common data encodings
4.Protocol: Simple web programming (HTTP)
5.Parallelism: Simple distributed computing

Internet

Client
Server

Internet

HTML

CSS

JavaScript

AJAX

HTTP Request

Response GET

POST

Python

Templates

Data Store

memcache
socket

Standard Library
•We will only cover modules supported by the Python
standard library

•These come with Python by default

•Keep in mind, much more functionality can be found in
third-party modules

•Will give links to notable third-party libraries as appropriate

Prerequisites
•You should already know Python basics

•However, you don't need to be an expert on all of its
advanced features (in fact, none of the code to be written is
highly sophisticated)

•You should have some prior knowledge of systems
programming and network concepts

Network Fundamentals
LECTURE 2

The Problem
It's just
sending/receiving
bits.

Two Main
Issues

Data
transport

Moving bits back and forth

Addressing
Specifying a remote computer and
service

Network Addressing
•Machines have a hostname and IP address

•Programs/services have port numbers

Domain Name, IP Address and Port Number

Network Architecture
LECTURE 3

Transport Control Protocol (TCP)
•Built on top of IP (Internet
Protocol)

•Assumes IP might lose some data -
stores and retransmits data if it
seems to be lost

•Handles “flow control” using a
transmit window

•Provides a nice reliable pipe

Source: http://en.wikipedia.org/wiki/Internet_Protocol_Suite

TCP Connections / Sockets
Process to Process Communication

http://en.wikipedia.org/wiki/Internet_socket

"In computer networking, an Internet socket or network socket is an
endpoint of a bidirectional inter-process communication flow across an
Internet Protocol-based computer network, such as the Internet."

Internet
Process Process

Socket

http://en.wikipedia.org/wiki/Communication_flow

TCP Port Numbers
•A port is an application-specific or process-specific software
communications endpoint

•It allows multiple networked applications to coexist on the
same server.

•There is a list of well-known TCP port numbers

http://en.wikipedia.org/wiki/TCP_and_UDP_port

Standard Ports
Ports for common services are preassigned:
• 21 FTP

• 22 SSH

• 23 Telnet

• 25 SMTP (Mail)

• 53 DNS (Domain Name)

• 80 HTTP (Web) - 443 HTTPS (web, Secure)

• 110 POP3 (Mail) - 119 NNTP (News)

• (143/220/993) IMAP - Mail Retrieval

• Other port numbers may just be randomly assigned to programs by the
operating system

www.umich.edu

Incoming
E-Mail

Login

Web Server

25

Personal
Mail Box

23

80

443

109

110

74.208.28.177

blah blah
blah blah

Please connect me to the
web server (port 80) on

http://www.aaa.com
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

http://www.dr-chuck.com/

IP Address

Domain Name System (DNS)

PuTTY (Terminal)
LECTURE 4

PuTTY
•PuTTY is a free implementation of SSH and Telnet for Windows
and Unix platforms, along with an xterm terminal emulator. It is
written and maintained primarily by Simon Tatham.

•SSH: Secure Shell (SSH) is a cryptographic network protocol for
operating network services securely over an unsecured network
•Telnet:a network protocol that allows a user on one computer to
log onto another computer that is part of the same network.
•TTY: virtual terminal

https://www.chiark.greenend.org.uk/~sgtatham/

Using netstat • Use 'netstat' to view active network connections
• Note: Must execute from the command shell on both Unix and Windows

Connections
•Each endpoint of a network connection is always represented by a
host and port #

•In Python you write it out as a tuple (host,port)
("www.python.org",80)

("205.172.13.4",443)

•In almost all of the network programs you’ll write, you use this
convention to specify a network address

Using ping • Use ‘ping' to check if the connection to a host is love.
• Note: In the example, the connection is not built

Even localhost fails? Why? No local host server.

Using Telnet

App and Features -> Program and Features -> Telnet Client

Watch Video:
https://youtu.be/CJQfR1b43ns

https://youtu.be/CJQfR1b43ns

Local Host
Testing a Web Service Locally

How do you set up a local testing server?
•Local files versus remote files
•The problem with testing local files
•Running a simple local HTTP server
•Running server-side languages locally

Browser (Client)

Desktop Python Client Program

Desktop Server Program

ServerClient

Installing IIS
To install IIS:
1.In Windows, access the Control Panel and click Add or Remove
Programs.
2.In the Add or Remove Programs window, click Add/Remove
Windows Components.
3.Select the Internet Information Services (IIS) check box,
click Next, then click Finish.
To learn how to use IIS, you can view the documentation at
http://localhost/iishelp/iis/misc/default.asp.

Watch Video:
https://youtu.be/bJrOASXslwU

https://youtu.be/bJrOASXslwU

XAMPP Server
Bring up Server and
localhost
LECTURE 5

What is XAMPP?
•XAMPP stands for Cross-Platform (X), Apache (A), MySQL (M), PHP (P) and Perl (P).

•It is a simple, lightweight Apache distribution that makes it extremely easy for developers to
create a local web server for testing purposes.

•Everything you need to set up a web server – server application (Apache), database (MySQL),
and scripting language (PHP) – is included in a simple extractable file.

•XAMPP is also cross-platform, which means it works equally well on Linux, Mac and Windows.

•Since most actual web server deployments use the same components as XAMPP, it makes
transitioning from a local test server to a live server is extremely easy as well.

•Web development using XAMPP is especially beginner friendly, as this popular PHP and MySQL
for beginners course will teach you.

XAMPP
https://www.apachefriends.org/index.html

Component On Windows On Linux On macOS

Apache 2.4.28 Yes Yes Yes

MariaDB 10.1.28 Yes Yes Yes

PHP Yes - 7.1.10 Yes - 7.1.10[15] Yes - 7.1.10[15]

phpMyAdmin Yes - 4.7.4 Yes - 4.7.4 Yes - 4.7.4

OpenSSL Yes - 1.0.2l Yes - 1.0.2l Yes - 1.0.2l

XAMPP Control Panel 3.2.2 Yes No No

Webalizer Yes - 2.23-04 Yes - 2.23-05 Yes - 2.23-05

Mercury Mail Yes No No

Transport System 4.63 Yes No No

Tomcat 7.0.56 (with
mod_proxy_ajp as connector)

Yes No No

Strawberry Perl 7.0.56 Portable Yes No No

FileZilla FTP Server 0.9.41 Yes No No

https://www.apachefriends.org/index.html
https://en.wikipedia.org/wiki/XAMPP#cite_note-phpNixNote-15
https://en.wikipedia.org/wiki/XAMPP#cite_note-phpNixNote-15

Installation
Watch video in the Software Installation Video Collection Course:

https://ec.teachable.com/p/software-installation-and-configuration-video-collection-free-mini-
course

Check if the server has been brought up, especially the localhost has been brought up.

https://ec.teachable.com/p/software-installation-and-configuration-video-collection-free-mini-course

Client-Server Concept
LECTURE 6

Client/Server Concept
•Each endpoint is a running program

•Servers wait for incoming connections and provide a service (e.g.,
web, mail, etc.)

•Clients make connections to servers

Request/Response Cycle
•Most network programs use a request/response model based on messages

•Client sends a request message (e.g., HTTP)
GET /index.html HTTP/1.0

•Server sends back a response message
HTTP/1.0 200 OK

Content-type: text/html

Content-length: 48823

<HTML>

...

•The exact format depends on the application

Using Telnet
on Linux/Unix

Data Transport
• There are two basic types of communication

• Streams (TCP): Computers establish a connection
with each other and read/write data in a continuous
stream of bytes---like a file. This is the most common.

• Datagrams (UDP): Computers send discrete packets
(or messages) to each other. Each packet contains a
collection of bytes, but each packet is separate and
self-contained.

Socket (Client)
LECTURE 7

Sockets
• Programming abstraction for network code
• Socket: A communication endpoint

• Supported by socket library module
• Allows connections to be made and data to be transmitted
in either direction

Get the Host Name
Demo Program: getname.py

Socket Basics
•To create a socket

import socket

s = socket.socket(addr_family, type)

•Address Familier

socket.AF_INET Internet protocol (IPv4)

socket.AF_INET6 Internet protocol (IPv6)

•Socket types

socket.SOCK_STREAM Connection based stream (TCP)

socket.SOCK_DGRAM Datagrams (UDP)

•Example:

from socket import *

s = socket(AF_INET,SOCK_STREAM)

Socket Types
•Most common case: TCP connection

from socket import *

s = socket(AF_INET, SOCK_STREAM) # TCP

s = socket(AF_INET, SOCK_DGRAM) # UDP

•Almost all code will use one of following
s = socket(AF_INET, SOCK_STREAM) # TCP

Using a Socket
•Creating a socket is only the first step

s = socket(AF_INET, SOCK_STREAM)

•Further use depends on application

•Server
•Listen for incoming connections

•Client
•Make an outgoing connection

TCP Client
•How to make an outgoing connection

from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.connect(("www.python.org",80)) # Connect

s.send(bytes("GET /index.html HTTP/1.0\n\n“), ‘utf8’) # Send request

data = s.recv(10000) # Get response

s.close()

•s.connect(addr) makes a connection

s.connect(("www.python.org",80))

•Once connected, use sendto(), recvfrom() to transmit and receive data

•close() shuts down the connection

Basic Example (Client Side)
Demo Program: basic0.py (can’t run by itself)

Objectives:
• Low-level network programming with sockets
•How to connect to a TCP server

•This code is fairly typical for TCP client code.

•Once connected to a server, use send() to send request data. To read a
response, you will typically have to read data in chunks with multiple recv()
operations.

•recv() returns an empty string to signal the end of data (i.e., if the server
closed its end of the connection).

•Recall that using the string join() method is significantly faster than using string
concatenation (+) to join string fragments together.

IPv4
TCP

Host domain name

80

Message

Message Encoding

Byte by byte

Socket Declaration

Socket Connection

Sending

Receiving 16384 bytes

Socket Closed

Server’s Listening Loop

Analogy between File I/O Stream and Socket I/O Stream

Socket (Server)
LECTURE 8

Server Implementation
• Network servers are a bit more tricky

• Must listen for incoming connections on a well-known port
number

• Typically run forever in a server-loop

• May have to service multiple clients

TCP Server
• A simple server

from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c,a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

• Send a message back to a client

% telnet localhost 9000

Connected to localhost.

Escape character is '^]'.

Hello 127.0.0.1

Connection closed by foreign host.

Server Message

maximum number of
queued connections and
should be at least 1

TCP Server
• Address binding
from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c, a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

• Addressing
s.bind(("",9000))

s.bind(("localhost",9000))

s.bind(("192.168.2.1",9000))

s.bind(("104.21.4.2",9000))

binds the socket to
a specific address

binds to local host

If system has multiple
IP addresses, can bind
to a specific address

TCP Server
• Start listening for connections

from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c,a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

Tells operating system to start listening
for connections on the socket

• s.listen(backlog)

• backlog is # of pending connections to allow

• Note: not related to max number of clients

TCP Server
• Accepting a new connection
from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c, a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

• s.accept() blocks until connection
received

• Server sleeps if nothing is
happening

Accept a new client connection

TCP Server
• Client Socket and address pair
from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c, a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

Accept returns a pair
(client_socket, addr)

<socket._socketobject
("104.23.11.4",27743)
object at 0x3be30>
This is a new socket
that's used for data

("104.23.11.4",27743)
This is the network/port
address of the client that
connected

TCP Server
• Client Socket and address pair
from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c, a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

Send data to client

Note: Use the client socket for
transmitting data. The server
socket is only used for
accepting new connections.

TCP Server
• Client Socket and address pair
from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c, a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

• Note: Server can keep client
connection alive as long as it wants
• Can repeatedly receive/send data

Close client connection

TCP Server
• Client Socket and address pair
from socket import *

s = socket(AF_INET,SOCK_STREAM)

s.bind(("",9000))

s.listen(5)

while True:

c, a = s.accept()

print("Received connection from", a)

c.send("Hello %s\n" % a[0])

c.close()

• Original server socket is reused to
listen for more connections
• Server runs forever in a loop like this

Wait for next connection

Simple Client-Server
Sockets Example
LECTURE 9

Simple Client Server Programs
Demo Program: basic1s0.py (Server Program), basic1c0.py (client
program) Watch Video: client_server.wmv

Server (PyCharm) Client (IDLE)

from socket import *
s = socket(AF_INET, SOCK_STREAM)
s.bind(("",15000))
s.listen(5)
c, a = s.accept()

from socket import *
s = socket(AF_INET, SOCK_STREAM)
s.connect(("localhost",15000))

c

a

s.send(bytes("Hello World“, ‘utf8’))

data = c.recv(1024)

data

Simple Client Server Programs
Demo Program: basic1.py (client program)

Server (PyCharm) Client (IDLE)

c.send(bytes("Hello Yourself“, ‘utf8’))

resp = s.recv(1024)

Resp

s.recv(1024)

c.send(bytes("Goodbye“, ‘utf8’))

c.close()

s.recv(1024)

s.recv(1024)

Send a Web-page to a Web-site Connecting to server
Demo Program: browse.py

Connecting to the Website

Server (PyCharm) Client (Chrome Browser)

from socket import *
s = socket(AF_INET, SOCK_STREAM)
s.bind(("",15000))
s.listen(5)
c, a = s.accept()

http://localhost:15000/index.html

request = c.recv(8192)

print(request)

c.send(bytes("HTTP/1.0 200 OK\r\n", ‘utf8’))
c.send(bytes("Content-type: text/html\r\n", ‘utf8’))
c.send(bytes("\r\n", ‘utf8’))
c.send(bytes("<h1>Hello World</h1>", ‘utf8’))
c.close()

http://localhost:15000/index.html

