Solving One-Step Equations 4.1

Overview of problems

F Example Set: A

Solve the equations - show all work:

1. $x+1=7$
2. $z-\frac{1}{2}=3$
3. $y-12=4$
4. $t+15=-15$
5. $9+n=0$
6. $40=x-(-8)$
7. $g+2=-10$
8. $12+h=-\frac{1}{3}$
9. $x+2.9=7.6$
10. $c-1.3=12.5$

p Example Set: B

Solve the equations - show all work:

1. $2 x=14$
2. $-3 x=18$
3. $-4 y=-20$
4. $-x=3 \frac{2}{3}$
5. $6 x=30$
6. $-10 z=-100$
7. $8.1 w=.02$
8. $-.002 t=1.039$

Example Set: C

Solve the equations - show all work:

1. $\frac{1}{3} x=2$
2. $\frac{2}{5} y=3$
3. $\frac{9}{10} t=1$
4. $-\frac{7}{11} w=\frac{1}{2}$
5. $\frac{-6 x}{7}=36$
$7 \cdot \frac{3 t}{20}=-90$
6. $\frac{x}{4}=-5 \frac{1}{2}$
7. $\frac{m}{-4}=-\frac{3}{4}$

Example Set: D

1. In physics the formula for force is $F=m a$. Where F (force) is measured in Newtons, m (mass) in kg and a (acceleration) in meters/second squared. How fast would a 500 kg horse have to accelerate to create a force of 14000 N ?

Solving One-Step Equations 4.1

Overview of problems

Example Set: A -ANSWER KEY

Solve the equations - show all work:

1. $x+1=7 x=6$
2. $y-12=4 \quad y=16$
3. $z-\frac{1}{2}=3 z=3 \frac{1}{2}$
4. $t+15=-15 t=-30$
5. $9+n=0 \quad n=-9$
6. $40=x-(-8) x=32$
7. $g+2=-10 \quad g=-12$
8. $12+h=-\frac{1}{3} \quad h=-12 \frac{1}{3}$
9. $x+2.9=7.6 x=4.7$
10. $c-1.3=12.5 c=13.8$

P Example Set: B- ANSWER KEY

Solve the equations - show all work:

1. $2 x=14 x=7$
2. $-3 x=18 x=-6$
3. $-4 y=-20 \quad y=5$
4. $-x=3 \frac{2}{3} x=-3 \frac{2}{3}$
5. $6 x=30 x=5$
6. $-10 z=-100 z=10$
7. $8.1 w=.02 w=.002469$
8. $-.002 t=1.039 t=-519.5$

Example Set: C-ANSWER KEY

Solve the equations - show all work:

1. $\frac{1}{3} x=2 x=6$
2. $\frac{2}{5} y=3 y=\frac{15}{2}$
3. $\frac{9}{10} t=1 \quad t=10 / 9$
4. $-\frac{7}{11} w=\frac{1}{2} w=-\frac{11}{4}$
5. $\frac{-6 x}{7}=36 x=-42$
$7 \cdot \frac{3 t}{20}=-90 \quad t=-600$
6. $\frac{x}{4}=-5 \frac{1}{2} \quad x=-22$
7. $\frac{m}{-4}=-\frac{3}{4} \quad m=3$

Example Set: D-ANSWER KEY

1. In physics the formula for force is $F=m a$. Where F (force) is measured in Newtons, m (mass) in kg and a (acceleration) in meters/second squared. How fast would a 500 kg horse have to accelerate to create a force of 14000 N ?

$$
28 \mathrm{~m} / \mathrm{s}^{2}
$$

