4 Colourless solutions of $\mathbf{X}(\mathrm{aq})$ and $\mathbf{Y}(\mathrm{aq})$ react to form an orange solution of $\mathbf{Z}(\mathrm{aq})$ according to the following equation.

$$
\mathbf{X}(\mathrm{aq})+2 \mathbf{Y}(\mathrm{aq}) \rightleftharpoons \mathbf{Z}(\mathrm{aq}) \quad \Delta H=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A student added a solution containing 0.50 mol of $\mathbf{X}(\mathrm{aq})$ to a solution containing 0.50 mol of $\mathrm{Y}(\mathrm{aq})$ and shook the mixture.

After 30 seconds, there was no further change in colour.
The amount of $\mathbf{Z}(\mathrm{aq})$ at equilibrium was 0.20 mol .

0	4	1	Deduce the amounts of $\mathbf{X}(\mathrm{aq})$ and $\mathbf{Y}(\mathrm{aq})$ at equilibrium.

Amount of $\mathbf{X}(\mathrm{aq})=$ \qquad mol

Amount of $\mathbf{Y}(\mathrm{aq})=$ mol

| 0 | 4 | 2 |
| :--- | :--- | :--- | time of initial mixing until 60 seconds had elapsed.

[3 marks]

| $\mathbf{0}$ | $\mathbf{4}$. |
| :--- | :--- | concentrations of \mathbf{X} and \mathbf{Z} were:

$\mathbf{X}(\mathrm{aq})=0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\mathbf{Z}(\mathrm{aq})=0.35 \mathrm{~mol} \mathrm{dm}^{-3}$.
For this reaction, the equilibrium constant $K_{\mathrm{c}}=2.9 \mathrm{~mol}^{-2} \mathrm{dm}^{6}$.
Calculate a value for the concentration of \mathbf{Y} at equilibrium.
Give your answer to the appropriate number of significant figures.
$[\mathrm{Y}]=$ \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
 $\mathbf{Z}(\mathrm{aq})$ in Question 4.3.

Suggest how the colour of the mixture changed. Give a reason for your answer.

Colour change \qquad
Reason \qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ The student warmed the equilibrium mixture from Question 4.3. |
| :--- | :--- | :--- | :--- |

Predict the colour change, if any, when the equilibrium mixture was warmed.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ |
| :--- | :--- |\quad This question is about equilibrium.

Sulfur trioxide decomposes to form sulfur dioxide and oxygen at temperature $\boldsymbol{T}_{\mathbf{1}}$ according to the equilibrium shown.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H=+196 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The graph in Figure 4 shows the concentrations of sulfur trioxide and of oxygen over a period of 6 minutes at temperature \boldsymbol{T}_{1}

Figure 4

 Explain your answer.

Time \qquad minutes

Explanation \qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | .2 | Sketch on the graph in Figure $\mathbf{4}$ how the concentration of sulfur dioxide changes over |
| :--- | :--- | :--- | :--- | these 6 minutes at temperature \boldsymbol{T}_{1}

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{3}$ The temperature of the mixture was changed to $\boldsymbol{T}_{\mathbf{2}}$ and the mixture left to establish a |
| :--- | :--- | :--- | new equilibrium.

In the new equilibrium mixture the concentration of sulfur trioxide was found to be $0.07 \mathrm{~mol} \mathrm{dm}^{-3}$

Deduce which of \boldsymbol{T}_{1} and \boldsymbol{T}_{2} is the higher temperature.
Explain your deduction.

Higher temperature \qquad
Explanation \qquad
\qquad
\qquad
\qquad

0	8	$M e t h a n o l$

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ State and explain the effect of using a catalyst on the yield of methanol in this |
| :--- | :--- | :--- | :--- | equilibrium.

[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{2}$ Give an expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this reaction.

| $\mathbf{0}$ | $\mathbf{8}$. | 3 |
| :--- | :--- | :--- | A mixture of carbon monoxide and hydrogen was allowed to reach equilibrium in a container of volume $250 \mathrm{~cm}^{3}$ at temperature T.

At equilibrium, the mixture contained 0.340 mol of carbon monoxide, 0.190 mol of hydrogen and 0.0610 mol of methanol.

Calculate the value of the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this reaction at temperature T.

| 0 | $\mathbf{8}$ | $\mathbf{4}$ Methanol decomposes on heating in a reaction that is the reverse of that used in its |
| :--- | :--- | :--- | :--- | manufacture.

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

Use your answer from Question $\mathbf{0 8 . 3}$ to determine the value of K_{c} for this equilibrium at temperature T.
State the units for this value of K_{c}
(If you were unable to complete the calculation in Question 08.3, assume a value of $K_{\mathrm{c}}=0.825 \mathrm{~mol}^{-2} \mathrm{dm}^{6}$. This is not the correct value.)

Value of K_{c} \qquad

Units of K_{c}

Section A

Answer all questions in this section.
1 Ethene reacts with steam in the presence of an acid catalyst to form ethanol.

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{~g})
$$

 Deduce the units of K_{c}.

Expression \qquad
\qquad
\qquad
Units \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of |
| :--- | :--- | :--- | :--- | steam and 4.40 mol of ethanol at a temperature \boldsymbol{T}. The volume of the container was $2.00 \mathrm{dm}^{3}$.

Calculate a value of K_{c} for this equilibrium at this temperature.
Give your answer to an appropriate number of significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4} \quad$ Compounds \mathbf{A} and \mathbf{B} react together to form an equilibrium mixture containing |
| :--- | :--- | compounds \mathbf{C} and \mathbf{D} according to the equation

$$
2 \mathbf{A}+\mathbf{B} \rightleftharpoons 3 \mathbf{C}+\mathbf{D}
$$

| 0 | 4 | 1 |
| :--- | :--- | :--- | A beaker contained $40 \mathrm{~cm}^{3}$ of a $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of \mathbf{A}. $9.5 \times 10^{-3} \mathrm{~mol}$ of \mathbf{B} and $2.8 \times 10^{-2} \mathrm{~mol}$ of \mathbf{C} were added to the beaker and the mixture was left to reach equilibrium.

The equilibrium mixture formed contained $3.9 \times 10^{-3} \mathrm{~mol}$ of \mathbf{A}.
Calculate the amounts, in moles, of \mathbf{B}, \mathbf{C} and \mathbf{D} in the equilibrium mixture.

Amount of D mol

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{2}$ Give the expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this equilibrium and its units. |
| :--- | :--- | :--- | [2 marks]

$K_{\text {c }}$

Units \qquad

| $\mathbf{0}$ | $\mathbf{4} .3$ A different equilibrium mixture of these four compounds, at a different temperature, |
| :--- | :--- | :--- | contained 0.21 mol of $\mathbf{B}, 1.05 \mathrm{~mol}$ of \mathbf{C} and 0.076 mol of \mathbf{D} in a total volume of $5.00 \times 10^{2} \mathrm{~cm}^{3}$ of solution.

At this temperature the numerical value of K_{c} was 116
Calculate the concentration of \mathbf{A}, in $\mathrm{mol} \mathrm{dm}^{-3}$, in this equilibrium mixture. Give your answer to the appropriate number of significant figures.

| 0 | $\mathbf{4} .4$ | Justify the statement that adding more water to the equilibrium mixture in |
| :--- | :--- | :--- | Question 04.3 will lower the amount of \mathbf{A} in the mixture.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Marking guidance	Mark	AO	Comments
04.1	amount of $X=0.50-0.20=0.30(\mathrm{~mol})$ amount of $\mathrm{Y}=0.50-2 \times 0.20=0.10(\mathrm{~mol})$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2h } \\ & \text { AO2h } \end{aligned}$	
04.2	Axes labelled with values, units and scales that use over half of each axis Curve starts at origin Then flattens at 30 seconds at 0.20 mol	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \mathrm{~h} \\ & \mathrm{AO} 2 \mathrm{~h} \\ & \mathrm{AO} 2 \mathrm{~h} \end{aligned}$	All three of values, units and scales are required for the mark
04.3	$\begin{aligned} & \text { Expression }=K_{\mathrm{c}}=\frac{[\mathrm{Z}]}{[\mathrm{X}] \mathrm{Y}]^{2}} \\ & {[\mathrm{Y}]^{2}=\frac{[\mathrm{Z}]}{[\mathrm{X}] K_{\mathrm{c}}}} \\ & {[\mathrm{Y}]=(0.35 / 0.40 \times 2.9)^{0.5}=0.5493=0.55\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$	1 1 1	AO1a AO2b AO1b	Answer must be to 2 significant figures
04.4	Darkened / went more orange The equilibrium moved to the right To oppose the increased concentration of Y	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \mathrm{~g} \\ & \mathrm{AO} 2 \mathrm{~g} \\ & \mathrm{AO} 2 \mathrm{~g} \end{aligned}$	
04.5	The orange colour would fade	1	AO3 1a	

Qu	Marking Guidance	Additional Comments	Mark
5.1	3 minutes	M2 dependent on M1 or near miss	1
5.2	(At equilibrium, rate ${ }_{\text {fwd }}=$ rate $_{\text {back }}$ so) concentrations (of O_{2} and SO_{3}) remain constant	Not concentrations are the same/equal Allow (after this point) gradient is zero / curve flattens out	1

Question	Marking Guidance	Mark	Comments
8.1	M1 no effect (on yield) M2 increases rate / speed of both / forward and reverse reactions equally / by the same amount	1	CE $=0$ if yield changes If no reference to effect on yield, could still score M2 Ignore reference to no change in position of equilibrium, and reference to lowering activation energies M2 allow changes rate of both / forward and reverse reactions equally / by the same amount

8.2

$$
\left(K_{c}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}}
$$

Must be square brackets Ignore state symbols Ignore units

M1 divides moles by volume (0.250 or $\frac{250}{1000}$)
M2 $\quad K_{C}=\frac{\frac{0.0610}{0.250}}{\left[\frac{0.340}{0.250}\right]\left[\frac{0.190}{0.250}\right]^{2}}\left(=\frac{0.244}{1.36 \times 0.76^{2}}\right)$
M3 $\quad 0.311$

Correct answer scores 3; M3 to at least 2sf (0.3106159 ...) ; ignore units
Allow ECF from M1 to M2 if an attempt to calculate concentration has been made by dividing by some factor of $250 \mathrm{~cm}^{3}$
Allow ECF from M2 to M3 for use of an expression containing each reagent in a correctly substituted K_{c} expression
If volume not used, then allow M3 only for 4.97 (4.96985 ... to at least 2sf)

8.4	$\mathbf{M 1} \frac{1}{\text { Answer to } 8.3}=3.22$	1	$\mathbf{M 1}$ to at least $2 \mathrm{sf}(0.31$ gives $3.2(258)$)
$\mathbf{M 2} \mathrm{mol}^{2} \mathrm{dm}^{-6}$	1	$\mathbf{M 1}=1.21$ if alternative answer to 8.3 used	
If an error was made in 8.3, but the candidate produced an			
answer in 8.4 that did fit the inverted calculation from 8.3,			
then candidate could score $\mathbf{M 1}$			
(if volumes are not used, then candidate would get $0.20(12)$.			

Question	Marking Guidance	Mark	Comments
01.1	M1 $\quad\left(\mathrm{K}_{\mathrm{c}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]}{\left[\mathrm{CH}_{2}=\mathrm{CH}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$ M2 $\mathrm{mol}^{-1} \mathrm{dm}^{3}$	1 1	M1 penalise missing brackets or use of (); allow correct molecular formulae in correct expression (and allow $\mathrm{CH}_{2} \mathrm{CH}_{2}$); ignore powers shown as 1 M2 units must be in simplest form on one line (or $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$) M2 units are consequential on expression in M1 ($\mathrm{mol}^{-1} \mathrm{dm}^{3}$ only scores if it is the units for the expression in M1)

01.2	M1 $\frac{\left[\frac{4.40}{2.00}\right]}{\left[\frac{0.70}{2.00}\right] \times\left[\frac{1.20}{2.00}\right]}$ or M2 10.5 (must be 3sf)	$\frac{2.20}{0.35 \times 0.60}$		$\frac{4.40}{0.70 \times 1.20}$	$\times 2.00$	1	10.5 (3sf) scores both marks; correct value to 2 sf (10) or 4sf or more (10.476...) scores 1 mark Volume not used is $C E=0$ If use incorrect expression for K_{c} in 1.2 then no marks in 1.2 If a value from the question is copied incorrectly into the expression, could still score M2 if then used correctly in calculation (AE -1) Ignore units

Question	Answers	Mark	Additional Comments/Guidance
04.1	$\begin{aligned} & \text { Initial amount of } A=6.4 \times 10^{-3} \\ & \text { Equ } A=6.4 \times 10^{-3}-2 x \quad \therefore x=1.25 \times 10^{-3} \\ & B=9.5 \times 10^{-3}-x=8.25 \times 10^{-3} \\ & C=2.8 \times 10^{-2}+3 x=0.0318 \\ & D=x=1.25 \times 10^{-3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \\ & \text { M4 } \\ & \text { M5 } \end{aligned}$	If M1 wrong can score max 3 If incorrect x can score max 3 Allow 2 or more sig figs
04.2	$\begin{aligned} & K_{\mathrm{c}}=\frac{[C]^{3}[D]}{[A]^{2}[B]} \\ & \text { Units }=\mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$	1 1	Penalise () but mark on in $4.2 \& 4.3$ If K_{c} wrong no mark for units
$\begin{gathered} 04.3 \\ \text { Can see } \\ 4.2 \end{gathered}$	M1 for correct rearrangement $[A]^{2}=\frac{[C]^{3}[D]}{K_{c}[B]}$ or $[A]=\sqrt{ } \frac{[C]^{3}[D]}{K_{c}[B]}$ M2 for division of mol of B, C and D by correct volume $[A]^{2}=\frac{\left.\left.\left[^{1.05}\right] / 0.5^{3}\right]^{0.076} / 0.5\right]}{116 \times\left[^{0.21 / 0.5}\right]} \text { or } 0.0289 \text { or } 0.0290$ M3 for final answer: $[\mathrm{A}]=\underline{0.17}$ (must be 2 sfs)	M1 M2 M3	If K_{c} wrong in 4.2 can score 1 for dividing by correct volume If K_{c} correct but incorrect rearrangement can score 1 for dividing by correct volume
04.4	(All) conc fall: (ignore dilution) Equm moves to side with more moles To oppose the decrease in conc	1	OR $K_{\mathrm{c}}=$ mole ratio $\times 1 / \mathrm{V}$ If vol increases, mole ratio must increase To keep K_{c} constant If only conc of A falls CE=0 If pressure falls $\mathrm{CE}=0$
Total		13	

