4	Colourless solutions of X (aq) and Y (aq) react to form an orange solution according to the following equation. X (aq) + 2 X (aq) \longrightarrow Z (aq) $\wedge H = -20$ k l mol ⁻¹	n of Z (aq)		
04.1	$X(aq) + 2Y(aq) \rightleftharpoons Z(aq) \qquad \Delta H = -20 \text{ kJ mol}^{-1}$ A student added a solution containing 0.50 mol of X(aq) to a solution containing 0.50 mol of Y(aq) and shook the mixture. After 30 seconds, there was no further change in colour. The amount of Z(aq) at equilibrium was 0.20 mol. 0 4 1 Deduce the amounts of X(aq) and Y(aq) at equilibrium. [2 marks]			
04.2	Amount of X (aq) = ^{mol} Amount of Y (aq) = On the grid below, draw a graph to show how the amount of Z (aq) chang time of initial mixing until 60 seconds had elapsed.			

Typesetter code

04.3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $X(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } Z(aq) = 0.35 \text{ mol dm}^{-3}$. For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^{6}$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	_ mol dm ⁻³
04.4	The student added a few drops of Y (aq) to the equilibrium mixture of X (aq), Y (aq) in Question 4.3 .	((aq) and
	Suggest how the colour of the mixture changed. Give a reason for your answ	ver. [3 marks]
	Colour change	
	Reason	
04.5	The student warmed the equilibrium mixture from Question 4.3 . Predict the colour change, if any, when the equilibrium mixture was warmed.	[1 mark]

6

0 5.2	Sketch on the graph in Figure 4 how the concentration of sulfur dioxide changes over these 6 minutes at temperature T_1 [2 marks]
05.3	The temperature of the mixture was changed to <i>T</i> ₂ and the mixture left to establish a new equilibrium. In the new equilibrium mixture the concentration of sulfur trioxide was found to be 0.07 mol dm ⁻³ Deduce which of <i>T</i> ₁ and <i>T</i> ₂ is the higher temperature. Explain your deduction. [2 marks] Higher temperature Explanation
	Turn over for the next question

Turn over ►

0 8	Methanol can be manufactured in a reversible reaction as shown by the equation.
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
0 8 . 1	State and explain the effect of using a catalyst on the yield of methanol in this equilibrium.
	[2 marks]
0 8 2	Give an expression for the equilibrium constant (K_c) for this reaction.
	[1 mark]

21

8

	Section A	
	Answer all questions in this section.	
1	Ethene reacts with steam in the presence of an acid catalyst to form ethanol.	
	$CH_2=CH_2(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$	
01.1	Write an expression for the equilibrium constant K_c for this equilibrium. Deduce the units of K_c . [2 marks	s]
	Expression	
	Units	
01.2	An equilibrium mixture was found to contain 0.700 mol of ethene, 1.20 mol of steam and 4.40 mol of ethanol at a temperature T . The volume of the container was 2.00 dm ³ . Calculate a value of K_c for this equilibrium at this temperature.	
	Give your answer to an appropriate number of significant figures. [2 marks	s]

04	Compounds A and B react together to form an equilibrium mixture containing compounds C and D according to the equation	ng
	$2\mathbf{A} + \mathbf{B} \rightleftharpoons 3\mathbf{C} + \mathbf{D}$	
04.1	A beaker contained 40 cm ³ of a 0.16 mol dm ⁻³ aqueous solution of A . 9.5 × 10 ⁻³ mol of B and 2.8 × 10 ⁻² mol of C were added to the beaker and t was left to reach equilibrium. The equilibrium mixture formed contained 3.9 × 10 ⁻³ mol of A .	he mixture
	Calculate the amounts, in moles, of B , C and D in the equilibrium mixture.	[5 marks]
	Amount of B	mol
	Amount of C	mol
	Amount of D	mol
04.2	Give the expression for the equilibrium constant (K_c) for this equilibrium and	d its units. [2 marks]
	K _c	
	Units	

13

Question	Marking guidance	Mark	AO	Comments
04.1	amount of X = 0.50 – 0.20 = 0.30 (mol)	1	AO2h	
	amount of Y = 0.50 – 2 × 0.20 = 0.10 (mol)	1	AO2h	
04.2	Axes labelled with values, units and scales that use over half of each axis	1	AO2h	All three of values, units and scales are required for the mark
	Curve starts at origin	1	AO2h	
	Then flattens at 30 seconds at 0.20 mol	1	AO2h	
04.3	Expression = $K_c = \underline{[Z]}$ [X][Y] ²	1	AO1a	
	$[Y]^2 = \frac{[Z]}{[X] K_c}$	1	AO2b	
	$[Y] = (0.35 / 0.40 \times 2.9)^{0.5} = 0.5493 = 0.55 \text{ (mol dm}^{-3}\text{)}$	1	AO1b	Answer must be to 2 significant figures
04.4	Darkened / went more orange	1	AO2g	
	The equilibrium moved to the right	1	AO2g	
	To oppose the increased concentration of Y	1	AO2g	
04.5	The orange colour would fade	1	AO3 1a	

Qu	Marking Guidance	Additional Comments	Mark
5.1	3 minutes	M2 dependent on M1 or near miss	1
	(At equilibrium, rate _{fwd} = rate _{back} so) concentrations (of O_2 and SO_3) remain constant	Not concentrations are the same/equal Allow (after this point) gradient is zero / curve flattens out	1
5.2	Sketch begins at origin and goes up until 3 mins		1
	Levels off at 0.3 mol dm ⁻³	Mark Independently	1
5.3	T ₂ (Not worth a mark alone)	T ₁ , CE=0	
	Equilibrium has moved / shifted to RHS/forward in endothermic direction	Both RHS / forward and endothermic needed	1
	Equilibrium has opposed the increase in T / Equilibrium moves to decrease the T	Not just to oppose the change	1

Question	Marking Guidance	Mark	Comments
8.1	M1 no effect (on yield)	1	CE = 0 if yield changes
			If no reference to effect on yield, could still score M2
	M2 increases rate / speed of both / forward and reverse reactions <u>equally / by the same amount</u>	1	Ignore reference to no change in position of equilibrium, and reference to lowering activation energies
			M2 allow changes rate of both / forward and reverse reactions equally / by the same amount
8.2	[<i>CH</i> ₃ <i>OH</i>]	1	Must be square brackets
	$(K_c =) \frac{[CH_3OH]}{[CO][H_2]^2}$		Ignore state symbols Ignore units
8.3	M1 divides moles by volume (0.250 or $\frac{250}{1000}$) 0.0610	1	Correct answer scores 3; M3 to at least 2sf (0.3106159); ignore units
	M2 $K_c = \frac{\frac{0.0810}{0.250}}{\left[\frac{0.340}{0.250}\right]\left[\frac{0.190}{0.250}\right]^2} \left(=\frac{0.244}{1.36 \times 0.76^2}\right)$	1	Allow ECF from M1 to M2 if an attempt to calculate concentration has been made by dividing by some factor of 250 cm ³
	M3 0.311	1	Allow ECF from M2 to M3 for use of an expression containing each reagent in a correctly substituted K_c expression
			If volume not used, then allow M3 only for 4.97 (4.96985 to at least 2sf)

8.4	M1 $\frac{1}{1}$ = 3.22	1	M1 to at least 2sf (0.31 gives 3.2(258))
	Answer to 8.3	1	M1 = 1.21 if alternative answer to 8.3 used
	M2 mol ² dm ⁻⁶		If an error was made in 8.3, but the candidate produced an answer in 8.4 that did fit the inverted calculation from 8.3, then candidate could score M1
			(if volumes are not used, then candidate would get 0.20(12.)

Question	Marking Guidance	Mark	Comments
01.1	M1 $(K_c =) \frac{[CH_3CH_2OH]}{[CH_2 = CH_2][H_2O]}$	1	M1 penalise missing brackets or use of (); allow correct molecular formulae in correct expression (and allow CH ₂ CH ₂); ignore powers shown as 1
	M2 mol ⁻¹ dm ³	1	 M2 units must be in simplest form on one line (or dm³ mol⁻¹) M2 units are consequential on expression in M1 (mol⁻¹ dm³ only scores if it is the units for the expression in M1)
01.2	M1 $\frac{\left[\frac{4.40}{2.00}\right]}{\left[\frac{0.70}{2.00}\right] \times \left[\frac{1.20}{2.00}\right]}$ or $\frac{2.20}{0.35 \times 0.60}$ or $\frac{4.40}{0.70 \times 1.20} \times 2.00$ M2 10.5 (must be 3sf)	1	10.5 (3sf) scores both marks;correct value to 2sf (10) or 4sf or more (10.476)scores 1 markVolume not used is CE=0If use incorrect expression for K_c in 1.2 then no marks in 1.2If a value from the question is copied incorrectly into the expression, could still score M2 if then used correctly in calculation (AE -1)Ignore units

Question	Answers	Mark	Additional Comments/Guidance
	Initial amount of A = 6.4×10^{-3}	M1	If M1 wrong can score max 3
	Equ A = $6.4 \times 10^{-3} - 2x$ \therefore x = 1.25×10^{-3}	M2	If incorrect x can score max 3
04.1	$B = 9.5 \times 10^{-3} - x = 8.25 \times 10^{-3}$	M3	Allow 2 or more sig figs
	$C = 2.8 \times 10^{-2} + 3x = 0.0318$	M4	
	$D = x = 1.25 \times 10^{-3}$	M5	
04.2	$\mathcal{K}_{\rm c} = \frac{[C]^3[D]}{[A]^2[B]}$	1	Penalise () but mark on in 4.2 & 4.3
	Units = mol dm ^{-3}	1	If K_{c} wrong no mark for units
04.3 Can see 4.2	M1 for correct rearrangement $[A]^2 = \frac{[C]^3[D]}{K_c[B]}$ or $[A] = \sqrt{\frac{[C]^3[D]}{K_c[B]}}$ M2 for division of mol of B, C and D by correct volume $[A]^2 = \frac{[\frac{1.05}{0.5}]^3[\frac{0.076}{0.5}]}{116 \times [\frac{0.21}{0.5}]}$ or 0.0289 or 0.0290	M1 M2 M3	If K_c wrong in 4.2 can score 1 for dividing by correct volume If K_c correct but incorrect rearrangement can score 1 for dividing by correct volume
	M3 for final answer: $[A] = 0.17$ (must be 2 sfs)		
	(All) conc fall: (ignore dilution)	1	OR K_c = mole ratio × 1/V
	Equm moves to side with more moles	1	If vol increases, mole ratio must increase
04.4	To oppose the decrease in conc	1	To keep $K_{\rm c}$ constant
			If only conc of A falls CE=0 If pressure falls CE=0
Total		13	