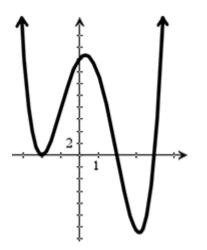
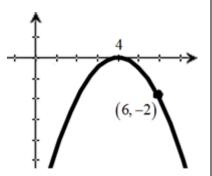
Polynomial Functions & Equations

syllabus content: polynomial functions & their graphs, factor & remainder theorems, fundamental theorem of algebra, solving polynomial equations & inequalities both graphically & algebraically, sum & product of the roots of a polynomial equation

Exercises


Part I – questions 1-11, no calculator allowed


1. Consider a parabola (shown in diagram) that has a vertex at (4, 0) and passes through the point (6, -2). Find the equation of this parabola and write it in the form $y = ax^2 + bx + c$.

2. The graph of a quartic function (shown in diagram) has exactly three *x*-intercepts at x = -2, x = 2 and x = 4, and has a *y*-intercept at y = 16. Express the equation for this function in the form $y = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$.

exercise set EXS 2-5-30v1

- 3. Given that x = 3 and x = -1 are zeros of the polynomial function $g(x) = 3x^3 8x^2 5x + 6$ find the remaining zero of g.
- 4. Given that $x^3 + Ax^2 + x + B$ is exactly divisible by both x 1 and x + 3, find the value of A and the value of B.
- 5. Find a polynomial with integer coefficients of lowest degree having zeros of $x = -\frac{1}{2}$ and x = 2 + i.
- 6. x-1 is a factor of the polynomial $P(x) = x^3 + mx^2 + nx 4$.
 - (a) Show that m+n=3.
 - (b) Show that *P* can be written in factorised form as $P(x) = (x-1)[x^2 + (p+1)x + 4]$.
- 7. The polynomial $ax^3 + 4x^2 + cx 36$ is divisible by $x^2 9$. Find the value of a and the value of c.
- 8. When the function $g(x) = x^3 + bx^2 5x + 2$ is divided by (x-1) it leaves the same remainder as when it is divided by (x+2). Find the value of *b*.

[answers on last page]

IB Mathematics HL

Polynomial Functions & Equations

Part I continued - no calculator allowed

- 9. If α and β are the roots of the quadratic equation $x^2 + 3x 5 = 0$, find a quadratic equation with integer coefficients that has roots of:
 - (a) $\alpha + 2$, $\beta + 2$ (b) $\frac{1}{\alpha}$, $\frac{1}{\beta}$
- **10.** If α , β and γ are the three roots of the cubic equation $x^3 2x^2 4x + 5 = 0$, find the values of: (a) $\alpha\beta\gamma$ (b) $\alpha\beta + \alpha\gamma + \beta\gamma$ (c) $(\alpha + 1)(\beta + 1)(\gamma + 1)$
- 11. If α and β are the roots of $x^2 px + 3 = 0$ and $\alpha \beta = 3$ find the possible value(s) of p.

Part II – questions 12-15, calculator allowed

- 12. Consider the function $f(x) = \frac{1}{2}x^4 + x^3 9x^2 + 8x + 58$.
 - (a) Determine the domain and range of f.
 - (b) Find all real zeros of f.
- 13. Given that the graph of the function $h(x) = 3x^3 + bx^2 + cx + 20$ is tangent to the x-axis at x = 2, find the value of b and the value of c.
- **14.** Solve the inequality $2x^3 9x^2 + 8x + 9 < x + 3$.
- 15. A line with a gradient of 2 intersects the parabola $y = 3x^2 2x 6$ where x = -1. Find the exact coordinates of the point where the line intersects that parabola a second time.

Polynomial Functions & Equations

ANSWERS

- $1. \qquad y = -\frac{1}{2}x^2 + 4x 8$
- 2. $y = \frac{1}{2}x^4 x^3 6x^2 + 4x + 16$
- **3.** $x = \frac{2}{3}$
- **4.** A = 4, B = -6
- 5. $2x^3 7x^2 + 6x + 5$
- 7. a = -2, c = 18
- **8.** *b* = 2
- 9. (a) $x^2 x 7 = 0$ (b) $5x^2 3x 1 = 0$
- **10.** (a) -5 (b) -4 (c) -6
- **11.** $p = \pm \sqrt{21}$
- **12.** (a) domain: $x \in \mathbb{R}$, range: $y \ge -54$ (b) $x \approx -5.22$, $x \approx -2.15$
- **13.** b = -7, c = -8
- **14.** $x < -\frac{1}{2}, 2 < x < 3$
- **15.** $\left(\frac{7}{3}, \frac{17}{3}\right)$