

Structures and Properties

Structure (結構) of a substance is a description of what its constituent particles are and the way they are arranged.

Classification of substances

1. Simple Molecular Structures (簡單分子結構)

- basic units (constituent particles) :

Hydrogen gas

Helium gas

Forces joining the atoms together within molecules:

Forces between molecules (intermolecular forces):

(范德華力)

- solids:

- liquids :
- gases:

H.K.D.S.E. Chemistry Microscopic World I

Physical properties of Simple Molecular Structures

(a)	Melting point and Boiling point (m.p. & b.p.) High / low m.p. and b.p.								
	Reason:								
	* The larger the molecule, the <u>smaller / larger</u> the van der Waals' forces. This explains why the <i>m.p./b.p.</i> of halogens <u>increases / decreases</u> <i>down</i> the group.								
(b)	Hardness								
	usually soft / hard								
	Reason: Molecules are joined by weak van der Waals' forces,								
	little is required to separate the molecules and break down the crystal								
	the drystal								
(c)	Solubility								
	Water CCl ₄ (a non-aqueous solvent / non-polar solvent) (a non-aqueous solvent / non-polar solvent)								
	The state of the second state of the state o								
	I ₂ (s) dissolves in only one of these solvent, which one is it?								
	. Simple molecular substances are usually in water but very soluble in solvents								
	Reason:								
	Treason :								
	the first the first the first the first than the first t								

Chemistry Microscopic World I

(d) Electrical Conductivity

Conductors / Non-conductors

Reason: Molecules	are	electrically	enillod brit	and	they	contain	neither
		nor	on Allberta				

Exceptions:

Some molecular substances such as acids (HCI) and alkalis (NH3) when dissolved in water, will conduct electricity because they react with water to form mobile ions.

Examp	le	1	
Lxamp		•	

	¥		
are replicati			
ng troops to the	Ougherman are estimated in	As al settle!	

Example 2:

,1000 n Banda		

This process is called ionization	(電離)	:

(e) Density

Low / high density

Reason: Since the intermolecular forces are weak, therefore the molecules are NOT _____

2. Macromolecules (巨大分子)

- examples: starch, proteins and plastics

- Forces between molecules are still _____

3. Giant Ionic Structures (巨型離子結構)

- basic units (constituent particles) :
- ALL ionic substances have **Giant ionic structure**.
- Ionic substance is a _____ (巨型晶格) which consists of a ____ (網絡) of _____ joined together by _____ bonds (directional / non-directional electrostatic force).

Physical Properties of Giant Ionic Structures

(a) Hardness

ALL ionic compounds are generally very <u>hard / soft</u>, crystalline (晶狀的) **solids**.

Reason: - The oppositely charged ions (_____ & ____) are attracted

... In solid ionic substances, a giant lattice of ions are formed

:. a **strong** is needed to break the structure

(b) Melting and boiling point

lonic compounds usually have high / low m.p. and b.p.

Reason: - The oppositely charged ions are tightly joined together by strong ionic bonds

: a large amount of ____ is needed to separate the ions

(c) Solubility

lonic compounds are usually* _____ in aqueous/polar solvents such as water.

Reason: - lons in compounds are attracted by the polar water molecules and become free to move (ions become

* Some ionic compounds (e.g. AgCl, CaCO₃) are insoluble in water.

lonic compounds are usually _____ in non-aqueous/non-polar solvents such as tetrachloromethane, methylbenzene, 1,1,1-trichloroethane.

Reason: - The attraction between the molecules of the non-aqueous solvents (mainly weak van der Waals' forces) is not similar to that between the ions (strong ionic bonds)

(d) Electrical conductivity

ALL ionic compounds are (電解質).

In solid state, they do/do not conduct electricity because ions are not free to move

They conduct electricity ONLY when _____ or in _____ state (dissolved in water) because ions are _____.

(e) Density

Ionic compounds usually have high/low densities.

Reason: Strong electrostatic attraction brings the oppositely charged ions close together.

4. Giant Covalent Structures (巨型共價結構)

 basic units (constituent particles): NEVER use the term "molecules" to describe the structures because there are NO discrete (separate) molecules in the structures. 	C
- Non-metal atoms are joined together by a(網絡) of strong bonds to form a (巨型晶格).	
(a) Silicon (IV) oxide (silicon dioxide)	
- Two forms of silicon (IV) oxide can be found on earth :	
1 (pure form)	
2 (impure form)	

Forces between Si and O atoms : _____ each Si atom is surrounded by __ O atoms each O atom is surrounded by __ Si atoms

empirical formula (NOT molecular formula): ____

7887

Chemistry Microscopic World I

(b) Carbon

(i) Diamond

each carbon atom is bonded to ____ carbon atoms

- Uses of diamond: 1.

2.

(ii) Graphite

- each carbon atom is bonded to ____ carbon atoms
- layers of carbon atoms are formed

- Forces within layers : _____

- Forces between a layer : _____

- Uses of graphite : making _____

Physical properties of Giant Covalent Structures

(a)	Hardness			
	very hard (d	iamond and quartz)	exceptv	which is soft
	Reason:			
	Th	covalent b	ond and silicon(IV) ox conds. A great force creak the structure.	ide consist of a of is needed to separate the
	ca			It's forces between / within ers to over each
(b)	Melting point	and Boiling point		
	- ALL of the	em exist as <u>solids / l</u>	<u>iquids / gases</u>	
	-	m.p. and b.p.		
		Contract to	We are to the original or pro-	
			Melting point (°C)	Boiling point (°C)
		Silicon dioxide		
		Diamond	1	
		Graphite	on types Tigan I of White	
	Reason:			
		ucture consists of a	giant network of stro	ng covalent honds
			is needed to separ	
	Larç	ge amount of	is needed to sepai	ate the atoms apart.
(c)	Electrical Co	nductivity		
			are non-conductors o	
	Reason:	they contain no	to applied and	mgg gran s
	- Graphite is	a conductor of elec	ctricity.	
	Reason:	since each C aton atom still has one	n is bonded only to 3 mobile for	carbon atoms, each carbon conducting electricity.
(d)	Solubility			
\/		oluble in any solvent		

5. Giant Metallic Structure (巨型金屬結構)

Example: Potassium (electronic configuration: _____)

Since the only outermost shell electron is loosely attracted by the positively charged nucleus, ... this outermost shell electron* can easily escape.

* mobile electron, delocalized electron, freely moving electron

Result:

Giant Metallic Structure is a giant lattice of __ surrounded by a 'sea' of ______ electrons

	. ATT - 1 - 7 - 1
Ann dan	one of felt domain to the long

H C C H

Physical Properties of Metals

ALL metals have the following properties:

(a) Electrical Conductivity

- Metals are good conductors of electricity.

Explanation:				
				9
				8
	885			a Properties that Meta
		8	040	

- Is there any decomposition during conduction?

(b) Thermal Conductivity

- Metals are good conductors of heat.

Explanation :	*			
		0 m st	r kode markus teh sis 4	ogen en pe las estas in i
	armit are	gi i amiestrial į	yc metalls (p.g.	tota smož
1000				

Chemistry

Microscopic World I

(c) Malleability (展性) and Ductility (延性)

- Metals are malleable and ductile

force	slide over layers	
		All All Control

9		
	and the same of	

Other Properties that Metals generally possess:

((a)	High	Melting	points	and	Boiling	points
١	· ~ /	1 11911	1410111119	P 0	C. . C.		P

- ALL metals are solid EXCEPT ______.
- explanation: metals form a giant lattice of strong metallic bonds
- example: _____
- exception :

(b) High Strength

- cannot be broken down easily when pulled or bent : _____
- exception :

(c) High Density

- explanation : metal atoms are _____
- examples:
- exception :

(d) Lustre

- explanation : ALL metals reflect most of the light incident on it.
- All metals are shiny when freshly cut.
- Some reactive metals (e.g. _____) tarnishes (變黑) when exposed to air for a while.

(e) Sonorous (鏗鏘的)

H C C H

Comparing the Physical Properties of Substances

H.K.D.S.E.

215 X F01	Ionic Substances	Covalent Substances			
	Giant ionic structure	Simple molecular structure	Giant covalent structure	Giant metallic structure	
metals / non-metals					
Typical examples					
Basic Unit		751 1100	19,7 (2000)		
Bonding					
m.p. & b.p.	Usually <u>low / high</u>				
Volatility	Usually <u>low / high</u>	Usually <u>low / high</u>	Usually low / high	Usually low / high	
State at room temperature	Usually <u>s / l / g</u>				
Hardness	Usually Soft / hard	Usually <u>Soft / hard</u>	Usually <u>Soft / hard</u>	Usually <u>Soft / hard</u>	
Electrical conductivity					
Solubility in aqueous solvents	Usually <u>soluble / insoluble</u>	Usually <u>soluble</u> / insoluble	Usually <u>soluble</u> / insoluble	Usually <u>soluble</u> / insoluble	
Solubility in non-aqueous solvents	Usually <u>soluble</u> / insoluble	Usually <u>soluble / insoluble</u>	Usually <u>soluble / insoluble</u>	Usually soluble / insoluble	
3D Structure					

Predicting formula, structure and properties of substances

Examples

1. A compound Z is formed from the reaction between two elements X and Y. Their electronic arrangement are :

Element	Electronic arrangement		
Х	2,8,8,2		
Y	2,8,18,7		

- (a) Draw the electron diagram of Z (showing the outermost electrons only).
- (b) Predict the following properties of Z:
 - (i) melting point and boiling point;
 - (ii) hardness;
 - (iii) solubility in water;
 - (iv) electrical conductivity.

2. Some physical properties of four substances are summarized in the following table:

Substance	Melting point (°C)	Boiling point (°C)	Electrical conductivity	
			Solid	Molten
Α	44	280	Nil	Nil
В	-182	-161	Nil	Nil
С	808	1465	Nil	Good
D	3550		Nil	Nil

- (a) Which of them would
 - (i) have a giant ionic structure?
 - (ii) be a solid with simple molecular structure at room temperature?
 - (iii) be a gas with simple molecular structure at room temperature?
 - (iv) have a giant covalent structure?
- (b) Match A-D to the following substances:

carbon, phosphorus, sodium chloride, methane