Question	Marking guidance	Mark	AO	Comments
03.1	$C(s) + 2F_2(g) \longrightarrow CF_4(g)$	1	AO1a	State symbols essential
03.2	Around carbon there are 4 bonding pairs of electrons (and no lone pairs)	1	AO1a	
	Therefore, these repel equally and spread as far apart as possible	1	AO1a	
03.3	$\Delta H = \Sigma \Delta_{\rm f} H$ products – $\Sigma \Delta_{\rm f} H$ reactants or a correct cycle	1	AO1b	
	Hence = $(2 \times -680) + (6 \times -269) - (x) = -2889$	1	AO1b	
	x = 2889 – 1360 – 1614 = –85 (kJ mol ⁻¹)	1	AO1b	Score 1 mark only for +85 (kJ mol ⁻¹)
03.4	Bonds broken = $4(C-H) + 4(F-F) = 4 \times 412 + 4 \times F-F$			
	Bonds formed = $4(C-F) + 4(H-F) = 4 \times 484 + 4 \times 562$	1	AO3 1a	Both required
	-1904 = [4 × 412 + 4(F–F)] – [4 × 484 + 4 × 562]			
	4(F–F) = –1904 – 4 × 412 + [4 × 484 + 4 × 562] = 632	1	AO3 1a	
	$F-F = 632 / 4 = 158 (kJ mol^{-1})$	1	AO3 1a	
	The student is correct because the F–F bond energy is much less than the C–H or other covalent bonds, therefore the F–F bond is weak / easily broken	1	AO3 1b	Relevant comment comparing to other bonds (Low activation energy needed to break the F–F bond)