Question	Marking guidance	Mark	AO	Comments
03.1	$\mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CF}_{4}(\mathrm{~g})$	1	AO1a	State symbols essential
03.2	Around carbon there are 4 bonding pairs of electrons (and no lone pairs) Therefore, these repel equally and spread as far apart as possible	1 1	AO1a AO1a	
03.3	$\Delta H=\Sigma \Delta_{\mathrm{f}} H$ products $-\Sigma \Delta_{\mathrm{f}} H$ reactants or a correct cycle $\begin{aligned} \text { Hence } & =(2 \times-680)+(6 \times-269)-(x)=-2889 \\ x & =2889-1360-1614=-85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	A01b A01b A01b	Score 1 mark only for $+85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
03.4	$\begin{aligned} & \text { Bonds broken }=4(\mathrm{C}-\mathrm{H})+4(\mathrm{~F}-\mathrm{F})=4 \times 412+4 \times \mathrm{F}-\mathrm{F} \\ & \text { Bonds formed }=4(\mathrm{C}-\mathrm{F})+4(\mathrm{H}-\mathrm{F})=4 \times 484+4 \times 562 \\ & -1904=[4 \times 412+4(\mathrm{~F}-\mathrm{F})]-[4 \times 484+4 \times 562] \\ & 4(\mathrm{~F}-\mathrm{F})=-1904-4 \times 412+[4 \times 484+4 \times 562]=632 \\ & \mathrm{~F}-\mathrm{F}=632 / 4=158(\mathrm{~kJ} \mathrm{~mol} \end{aligned}$ The student is correct because the $\mathrm{F}-\mathrm{F}$ bond energy is much less than the $\mathrm{C}-\mathrm{H}$ or other covalent bonds, therefore the $\mathrm{F}-\mathrm{F}$ bond is weak / easily broken	1 1 1	AO3 1a AO3 1a AO3 1a AO3 1b	Both required Relevant comment comparing to other bonds (Low activation energy needed to break the F-F bond)

