

LAB 05W: EDMA Audio TUTORIAL

Version 2.0

2022.02.11

www.EmbeddedAdvantage.com

http://www.embeddedadvantage.com/

EDMA

8 - 2 EDMA - LAB 8: EDMA Audio

Copyright © 2022 by Mindshare Advantage LLC dba Embedded Advantage. All rights reserved.

All course content, including this document, is for your individual use only and may not be

copied, shared, or redistributed in any way, including selling, forwarding, distributing, or

sharing with any other person(s) or companies. Any reselling or distributing of course access

or course content in any type of format is strictly prohibited and is a violation of copyright law

as well as the terms and conditions of course enrollment.

EDMA - LAB 8: EDMA Audio 8 - 3

LAB 8: EDMA Audio

Lab Project Name: lab_05W_edmaAUDIOFinalSolution

Introduction

In this lab, you will learn how to use the TMDSLCDK6748 board for an audio application. By

the end of this lab you will be able to receive an audio signal (through the input audio jack),

apply a FIR (finite impulse response) filter to the audio signal, and output the audio signal

(through the output audio jack). Throughout this lab you will use the I2C and McASP

peripherals of the C6748 processor to communicate with audio CODEC available on the

TMDSLCDK6748 board to receive and transmit audio packets. Finally, the importance of the

EDMA3 peripheral in transferring the audio packets to and from the McASP peripheral.

Prerequisites

It is very important that you understand the concepts covered in the videos for the EDMA3

peripheral before starting this lab.

Learning Objectives
• Configure and use the I2C peripheral

• Configure and use the AIC3106 low-power stereo CODEC through the I2C peripheral

• Configure and use the McASP peripheral to send and receive audio packets

• Configure and use the EDMA3 peripheral to transfer data to and from the McASP

peripheral

• Implement and use a FIR filter on the audio signal

Lab 8 Goals – Audio Application

AIC3106 Stereo CODEC

Send/Receive
Audio Packets

Lab Goal:
Receive, filter and transmit audio
packets.

C6000

AUDIO IN

AUDIO OUT

McASP

I2C CPU

EDMA3

I2S

I2C

Configure the
AIC3106 CODEC

Table of Contents

8 - 4 EDMA - LAB 8: EDMA Audio

Table of Contents

LAB 9A: TI-RTOS Using Hwi ... 8-1

Introduction ..8-3

Table of Contents ...8-4

Lab 9a Worksheet Error! Bookmark not defined.-Error! Bookmark not defined.

Project Management ...8-5
Copy Earlier Project ..8-8
Modify Task Code ...8-8
Add Timer Files Error! Bookmark not defined.-Error! Bookmark not defined.

Using BIOS Hwi Service Error! Bookmark not defined.-Error! Bookmark not defined.
1. Create the ISR called by the BIOS Hwi .. 8-10
2. Determine the Proper Interrupt Number ... 8-12
3. Create the BIOS Hwi Error! Bookmark not defined.-Error! Bookmark not defined.
Sidebar…Configuring Hwi’s Statically .. Error! Bookmark not defined.-Error! Bookmark not

defined.
Stop. Answer A Few Questions… Error! Bookmark not defined.-Error! Bookmark not

defined.
Build, Load, Run…OBSERVE! .. 8-18

Explore Results ... 8-46
Explore Runtime Object View (ROV) Error! Bookmark not defined.-Error! Bookmark not

defined.

Clean up After Yourself ... 8-70

Appendix – Worksheet Answers Error! Bookmark not defined.-Error! Bookmark not defined.

 Project Overview

EDMA - LAB 8: EDMA Audio 8 - 5

Project Overview

The goal of this project is to show how the show how the EDMA3 peripheral can be used to

transfer data to and from the McASP peripheral in a stereo audio application. Along the way

we will use other peripherals such as I2C, which is used to configure AIC3106 (external

stereo audio CODEC device).

Hardware Overview

On the TMDSLCDK6748, you can find all the hardware required for an audio filtering

application. There are two audio jacks, one for audio input and one for audio output. The

stacked audio jacks are shown below:

Hardware Overview Audio Jacks
Audio Jacks

Top: Audio Input
(Ex: Phone, Tablet, Computer)
Bottom: Audio Output
(Ex: Headphones, Speakers)

The schematic of the board can be found at:

http://www.ti.com/lit/zip/sprcaf4

The pdf file named C6748 LC DEV KIT VER A7E.pdf contains the schematic of the

board.

The audio section of the schematic shows how the audio jacks are connected to A3106

CODEC.

http://www.ti.com/lit/zip/sprcaf4

Project Overview

8 - 6 EDMA - LAB 8: EDMA Audio

At the top left of the STERIO AUDIO CODEC schematic, you can see that the top audio jack is

for audio input and the bottom audio jack is for audio output.

The AIC3106 CODEC and its connections are important when it comes to writing the code

which interfaces with this device. One the most important part of the schematic is the signal

at the bottom left corner of the AIC3106 CODEC.

 Project Overview

EDMA - LAB 8: EDMA Audio 8 - 7

PIN1 and PIN2 of the AIC3106 CODEC are connected to I2C0 peripheral of the C6748 DSP.

The I2C0 peripheral is used to configure the settings of the AIC3106 CODEC. Pin 40 and 41

are the I2S data input (DIN) and data output (DOUT) of the AIC3106 CODEC and they are

connected to AXR13 and AXR14 of the McASP peripheral of the C6748 DSP. AXR13 and

AXR14 correspond to serializers 13 and 14 of the McASP peripheral of the C6748 DSP.

Right below the STEREO AUDIO CODEC section of the schematic, you can view a section

named CLOCK. This section shows how the clock for the I2S communication is generated.

Project Overview

8 - 8 EDMA - LAB 8: EDMA Audio

The AIC3106 CODEC documentation can be found at:

https://www.ti.com/product/TLV320AIC3106

Import the Starter Project

You must now import the author’s starter project which will act as a base for the rest of the

lab.

1. Open CCS and connect your hardware target board to your computer.

2. Import the starter lab.

If you forgot how to do this, please refer back to a previous lab’s PDF.

 Import the lab_08_audio_tirtos_starter

Inspect the Starter Code

The starter project contains the base code we will build on to create our audio application.

Let’s review the files that exist in the starter project and their content.

3. Inspect the files in the Project Explorer.

 Open the project in the starter project in the Project Explorer. It should have the

following content:

https://www.ti.com/product/TLV320AIC3106

 Adding I2C Support (lab_08a_i2cAudio)

EDMA - LAB 8: EDMA Audio 8 - 9

The project already contains some of the necessary files which we will need to modify and

our content to.

The following files are present in the project:

• aic3106.c: This file will contain all of our I2C and AIC3106 CODEC setting

configuration code.

• aic3106.h: This file will contain all of the outward facing content for configuring the

AIC3106 CODEC.

• myGpio.c, myGpio.h, GPIO_board.c and GPIO_board.h: We will not modify

these files. These file contain the GPIO driver code.

• hardwareInitTask.c: In this file we will implement a Task which will initialize the

peripherals used for our audio application.

• hardwareInitTask.h: This file contains the outward facing function prototype for our

peripheral initialization Task.

• main.c: In this file we will create all the Tasks, HWIs and Semaphores and start BIOS.

• myIdleFxn.c: This file contains an empty Idle Task function.

We will implement our audio application in multiple step, adding one feature per step.

• Lab 08a: Add I2C support code.

• Lab 08b: Add code to configure the AIC3106 CODEC through I2C.

• Lab 08c: Add code to configure the McASP peripheral and communicate with the

AIC3106 CODEC to send/receive audio packets to ISR and CPU intervention.

• Lab 08d: Add a Task which will toggle and LED. The audio loopback will fail after a short

time due to McASP underflow/overflow because the CPU cannot service the McASP

buffers in time.

• Lab 08e: Add EDMA3 support to transfer the data to and from the McASP buffers,

reducing the load of the CPU.

• Lab 08f: Add FIR filter code to filter the audio packets.

Adding I2C Support (lab_08a_i2cAudio)

In this part of the lab we must do the following:

1. Create a high priority Task object and assign the function hardwareInitTask to it.

2. Create an Hwi for the I2C ISR.

3. Create I2C initialization and communication code.

4. Create an ISR (interrupt service routine) for the I2C.

5. Initialize the I2C peripheral in the hardwareInitTask.

We have a lot to do so let’s begin…

Adding I2C Support (lab_08a_i2cAudio)

8 - 10 EDMA - LAB 8: EDMA Audio

1. Create the BIOS Hwi and Task Modules

4. Add the Task module for hardwareInitTask.

 Open main.c and scroll down to the main function.

 Create the required Handle and Param variables for our new

hardwareInitTask and the I2C ISR (Don’t forget the Error Block).

 Add the following code in the main function before the BIOS_start function to create

the Hwi and Task objects.

 Adding I2C Support (lab_08a_i2cAudio)

EDMA - LAB 8: EDMA Audio 8 - 11

For the I2C Hwi we set the eventId to be the I2C0 INT event ID, The file

cslr_interrupt.h can shows you the listing of interrupt symbols and their Event Id. We

use INT12 of the C6748 DSP for the I2C interrupt and assign a function name

I2CCodecIsr as the ISR handler. We will later define this function.

For the hardwareInitTask, we create a high priority (8, make sure all other task we

create are lower priority than 8 because we need this task to run and finish first, before

yielding to the other tasks). The stackSize of the task is set to 2048 and the function for

the task is set to hardwareInitTaskFxn. This function is defined in

harwareInitTask.c.

 Add the required #include files which have the prototypes for the Hwi and Task

functions.

Adding I2C Support (lab_08a_i2cAudio)

8 - 12 EDMA - LAB 8: EDMA Audio

We are now done with the main.c file and can move on…

2. The I2C Configuration and Communication Code

Now we have to add our I2C code into the aic3106.c and aic3106.h files. In this step of the

lab we will only create the I2C interface functions to send and receive data, along with the

ISR handler function.

Here is a list of the functions that we need to create:

• I2CCodecIfInit: Initialize the I2C peripheral for communicate with the A3106 CODEC.

• I2CCodecSendBlocking: Send data through I2C and wait for completion.

• I2CCodecRcvBlocking: Receive data through I2C and wait for completion.

• I2CDelay: Delay in blocking mode through a for loop and not signal BIOS, causing a

HALT.

• I2CCodecIsr: ISR Handler for the I2C peripheral.

To use the I2C peripheral to read a slave device’s register, in our case the AIC3106 CODEC,

we need implement the following functions:

• CodecRegWrite: Write to a specific register of a slave device (AIC3106 CODEC) through

I2C.

• CodecRegRead: Reads a specific register of a slave device (AIC3106 CODEC) through I2C

• CodecRegBitSet: Sets a specific bit of a register for a slave device (AIC3106 CODEC).

• CodecRegBitClr: Clears a specific bit of a register for a slave device (AIC3106 CODEC).

We will start with the simplest function to implement and move on from there.

5. Implement the I2C functions.

 Open the aic3106.c file.

 At the top of the file, after your #include section, add the following:

 Adding I2C Support (lab_08a_i2cAudio)

EDMA - LAB 8: EDMA Audio 8 - 13

We will implement the some functions, I2CCodecSendBlocking,

I2CCodecRcvBlocking and others in a few steps.

We also created some global variables which we will use to share data between our

Send/Receive blocking functions and the ISR handler. This is a common way of

handling I2C communication.

 Add the following code for the I2C delay function:

 Add the code for the I2C initialization:

Adding I2C Support (lab_08a_i2cAudio)

8 - 14 EDMA - LAB 8: EDMA Audio

This function disables the I2C peripheral while the initialization is taking place and

enables the I2C peripheral once the initialization is completed.

 Next implement the I2C blocking data transmission/reception code:

 Add the interrupt service routine for the I2C peripheral:

 Adding I2C Support (lab_08a_i2cAudio)

EDMA - LAB 8: EDMA Audio 8 - 15

Now that we are done with the raw I2C communication code, we will move on to implement

another software layer on top our raw I2C code to read/write to the registers of a slave

device (in our case AIC3106 CODEC).

6. Implement the slave device register access code.

 Add the following code to the bottom of the aic3106.c file to implement the full

register read/write access for a slave device using I2C.

Adding I2C Support (lab_08a_i2cAudio)

8 - 16 EDMA - LAB 8: EDMA Audio

To write to a register of a slave device, you must send two bytes of data through I2C.

The first byte includes the address of the register to be written to and the second

byte is the value you wish to write to the register.

To read from a register of a slave device, you must write one byte, the address of the

register you wish to access and then read one byte which will contain the value of the

requested register.

 Add the following code to set/clear a specific bit of a register in the slave device:

 Adding I2C Support (lab_08a_i2cAudio)

EDMA - LAB 8: EDMA Audio 8 - 17

These functions are very similar to the full register read/write functions. The only

difference being that for each function, first, the value of the slave device’s register must

be read, then the bits of the received value are manipulated through software, and finally

written back to the slave device.

That is it for the aic3106.c file, FOR NOW. From the functions we implemented, we

must now add the function prototypes for the outward facing functions to the

aic3106.h file.

7. Add the I2C function prototypes to the aic3106.h file.

 Open the aic3106.h file and add the following code:

Adding I2C Support (lab_08a_i2cAudio)

8 - 18 EDMA - LAB 8: EDMA Audio

3. Update the hardwareInitTask Function

Now that we have our I2C code in place, we should call the I2CCodecIfInit function in

our hardwareInitTaskFxn function.

8. Call the I2CCodecIfInit to the hardwareInitTaskFxn task function.

 Open the hardwareInitTask.c file.

 Update hardwareInitTaskFxn to call the I2CCodecIfInit function.

 Adding I2C Support (lab_08a_i2cAudio)

EDMA - LAB 8: EDMA Audio 8 - 19

Build!

9. Build, to make sure everything compiles successfully.

 Build your application.

 If there are any build errors, fix them.

Adding AIC3106 Support (lab_08b_aic3106Audio)

8 - 20 EDMA - LAB 8: EDMA Audio

Adding AIC3106 Support (lab_08b_aic3106Audio)

In this part of the lab we will add the code for configuring the AIC3106 CODEC on

TMDSLCDK6748 board. We will use the I2C code we wrote in the previous section and build

on top of that to configure the AIC3106 device.

AIC3106 Configuration Code

Let’s begin by updating the aic3106.h file and adding a function prototype for the outward

facing AIC3106 CODEC function.

10. Add the prototype for AIC31I2SConfigure function to the aic3106.h file.

 Open aic3106.h file.

 Add the following AIC31I2SConfigure function prototype to the aic3106.h

function.

Next we move on to implement the AIC31I2SConfigure function and more in the

aic3106.c file.

11. Add the support code for AIC3106 CODEC to the aic3106.h file.

 Open the aic3106.c file.

 Add the following #define statements to the top of the aic3106.h file.

 Adding AIC3106 Support (lab_08b_aic3106Audio)

EDMA - LAB 8: EDMA Audio 8 - 21

/**

** Macro Definitions

**/

/*

** Macros for the dataType variable to pass to AIC31DataConfig function

*/

#define AIC31_DATATYPE_I2S (0u << 6u) /* I2S Mode */

#define AIC31_DATATYPE_DSP (1u << 6u) /* DSP Mode */

#define AIC31_DATATYPE_RIGHTJ (2u << 6u) /* Right Aligned Mode */

#define AIC31_DATATYPE_LEFTJ (3u << 6u) /* Left Aligned Mode */

/*

** Macros for the mode variable for the AIC31SampleRateConfig function

*/

#define AIC31_MODE_ADC (0xF0u)

#define AIC31_MODE_DAC (0x0Fu)

#define AIC31_MODE_BOTH (0xFFu)

/*

** Register Address for AIC31 Codec

*/

#define AIC31_P0_REG0 (0) /* Page Select */

#define AIC31_P0_REG1 (1) /* Software Reset */

#define AIC31_P0_REG2 (2) /* Codec Sample Rate Select */

#define AIC31_P0_REG3 (3) /* PLL Programming A */

#define AIC31_P0_REG4 (4) /* PLL Programming B */

#define AIC31_P0_REG5 (5) /* PLL Programming C */

#define AIC31_P0_REG6 (6) /* PLL Programming D */

#define AIC31_P0_REG7 (7) /* Codec Datapath Setup */

#define AIC31_P0_REG8 (8) /* Audio Serial Data I/f Control A */

#define AIC31_P0_REG9 (9) /* Audio Serial Data I/f Control B */

#define AIC31_P0_REG10 (10) /* Audio Serial Data I/f Control C */

#define AIC31_P0_REG11 (11) /* Audio Codec Overflow Flag */

#define AIC31_P0_REG12 (12) /* Audio Codec Digital Filter Ctrl */

#define AIC31_P0_REG13 (13) /* Headset / Button Press Detect A */

#define AIC31_P0_REG14 (14) /* Headset / Button Press Detect B */

#define AIC31_P0_REG15 (15) /* Left ADC PGA Gain Control */

#define AIC31_P0_REG16 (16) /* Right ADC PGA Gain Control */

#define AIC31_P0_REG17 (17) /* MIC3L/R to Left ADC Control */

#define AIC31_P0_REG18 (18) /* MIC3L/R to Right ADC Control */

#define AIC31_P0_REG19 (19) /* LINE1L to Left ADC Control */

#define AIC31_P0_REG20 (20) /* LINE2L to Left ADC Control */

#define AIC31_P0_REG21 (21) /* LINE1R to Left ADC Control */

#define AIC31_P0_REG22 (22) /* LINE1R to Right ADC Control */

#define AIC31_P0_REG23 (23) /* LINE2R to Right ADC Control */

#define AIC31_P0_REG24 (24) /* LINE1L to Right ADC Control */

#define AIC31_P0_REG25 (25) /* MICBIAS Control */

#define AIC31_P0_REG26 (26) /* Left AGC Control A */

#define AIC31_P0_REG27 (27) /* Left AGC Control B */

#define AIC31_P0_REG28 (28) /* Left AGC Control C */

#define AIC31_P0_REG29 (29) /* Right AGC Control A */

#define AIC31_P0_REG30 (30) /* Right AGC Control B */

#define AIC31_P0_REG31 (31) /* Right AGC Control C */

#define AIC31_P0_REG32 (32) /* Left AGC Gain */

#define AIC31_P0_REG33 (33) /* Right AGC Gain */

#define AIC31_P0_REG34 (34) /* Left AGC Noise Gate Debounce */

#define AIC31_P0_REG35 (35) /* Right AGC Noise Gate Debounce */

#define AIC31_P0_REG36 (36) /* ADC Flag */

#define AIC31_P0_REG37 (37) /* DAC Power and Output Driver Control */

#define AIC31_P0_REG38 (38) /* High Power Output Driver Control*/

#define AIC31_P0_REG40 (40) /* High Power Output Stage Control*/

#define AIC31_P0_REG41 (41) /* DAC Output Switching Control */

#define AIC31_P0_REG42 (42) /* Output Driver Pop Reduction */

#define AIC31_P0_REG43 (43) /* Left DAC Digital Volume Control */

#define AIC31_P0_REG44 (44) /* Right DAC Digital Volume Control */

#define AIC31_P0_REG45 (45) /* LINE2L to HPLOUT Volume Control */

#define AIC31_P0_REG46 (46) /* PGA_L to HPLOUT Volume Control */

#define AIC31_P0_REG47 (47) /* DAC_L1 to HPLOUT Volume Control */

#define AIC31_P0_REG48 (48) /* LINE2R to HPLOUT Volume Control */

#define AIC31_P0_REG49 (49) /* PGA_R to HPLOUT Volume Control */

#define AIC31_P0_REG50 (50) /* DAC_R1 to HPLOUT Volume Control */

Adding AIC3106 Support (lab_08b_aic3106Audio)

8 - 22 EDMA - LAB 8: EDMA Audio

#define AIC31_P0_REG51 (51) /* HPLOUT Output Level Control */

#define AIC31_P0_REG52 (52) /* LINE2L to HPLCOM Volume Control */

#define AIC31_P0_REG53 (53) /* PGA_L to HPLCOM Volume Control */

#define AIC31_P0_REG54 (54) /* DAC_L1 to HPLCOM Volume Control */

#define AIC31_P0_REG55 (55) /* LINE2R to HPLCOM Volume Control */

#define AIC31_P0_REG56 (56) /* PGA_R to HPLCOM Volume Control */

#define AIC31_P0_REG57 (57) /* DAC_R1 to HPLCOM Volume Control */

#define AIC31_P0_REG58 (58) /* HPLCOM Output Level Control */

#define AIC31_P0_REG59 (59) /* LINE2L to HPROUT Volume Control */

#define AIC31_P0_REG60 (60) /* PGA_L to HPROUT Volume Control */

#define AIC31_P0_REG61 (61) /* DAC_L1 to HPROUT Volume Control */

#define AIC31_P0_REG62 (62) /* LINE2R to HPROUT Volume Control */

#define AIC31_P0_REG63 (63) /* PGA_R to HPROUT Volume Control */

#define AIC31_P0_REG64 (64) /* DAC_R1 to HPROUT Volume Control */

#define AIC31_P0_REG65 (65) /* HPROUT Output Level Control */

#define AIC31_P0_REG66 (66) /* LINE2L to HPRCOM Volume Control */

#define AIC31_P0_REG67 (67) /* PGA_L to HPRCOM Volume Control */

#define AIC31_P0_REG68 (68) /* DAC_L1 to HPRCOM Volume Control */

#define AIC31_P0_REG69 (69) /* LINE2R to HPRCOM Volume Control */

#define AIC31_P0_REG70 (70) /* PGA_R to HPRCOM Volume Control */

#define AIC31_P0_REG71 (71) /* DAC_R1 to HPRCOM Volume Control */

#define AIC31_P0_REG72 (72) /* HPRCOM Output Level Control */

#define AIC31_P0_REG73 (73) /* LINE2L to MONO_LOP/M Volume Control*/

#define AIC31_P0_REG74 (74) /* PGA_L to MONO_LOP/M Volume Control */

#define AIC31_P0_REG75 (75) /* DAC_L1 to MONO_LOP/M Volume Control */

#define AIC31_P0_REG76 (76) /* LINE2R to MONO_LOP/M Volume Control */

#define AIC31_P0_REG77 (77) /* PGA_R to MONO_LOP/M Volume Control */

#define AIC31_P0_REG78 (78) /* DAC_R1 to MONO_LOP/M Volume Control */

#define AIC31_P0_REG79 (79) /* MONO_LOP/M Output Level Control */

#define AIC31_P0_REG80 (80) /* LINE2L to LEFT_LOP/M Volume Control */

#define AIC31_P0_REG81 (81) /* PGA_L to LEFT_LOP/M Volume Control */

#define AIC31_P0_REG82 (82) /* DAC_L1 to LEFT_LOP/M Volume Control */

#define AIC31_P0_REG83 (83) /* LINE2R to LEFT_LOP/M Volume Control */

#define AIC31_P0_REG84 (84) /* PGA_R to LEFT_LOP/M Volume Control */

#define AIC31_P0_REG85 (85) /* DAC_R1 to LEFT_LOP/M Volume Control */

#define AIC31_P0_REG86 (86) /* LEFT_LOP/M Output Level Control */

#define AIC31_P0_REG87 (87) /* LINE2L to RIGHT_LOP/M Volume Control */

#define AIC31_P0_REG88 (88) /* PGA_L to RIGHT_LOP/M Volume Control */

#define AIC31_P0_REG89 (89) /* DAC_L1 to RIGHT_LOP/M Volume Control */

#define AIC31_P0_REG90 (90) /* LINE2R to RIGHT_LOP/M Volume Control */

#define AIC31_P0_REG91 (91) /* PGA_R to RIGHT_LOP/M Volume Control */

#define AIC31_P0_REG92 (92) /* DAC_R1 to RIGHT_LOP/M Volume Control*/

#define AIC31_P0_REG93 (93) /* RIGHT_LOP/M Output Level Control */

#define AIC31_P0_REG94 (94) /* Module Power Status */

#define AIC31_P0_REG95 (95) /**< O/P Driver Short Circuit Detection Status*/

#define AIC31_P0_REG96 (96) /* Sticky Interrupt Flags */

#define AIC31_P0_REG97 (97) /* Real-time Interrupt Flags */

#define AIC31_P0_REG98 (98) /* GPIO1 Control */

#define AIC31_P0_REG99 (99) /* GPIO2 Control */

#define AIC31_P0_REG100 (100) /* Additional GPIO Control A */

#define AIC31_P0_REG101 (101) /* Additional GPIO Control B */

#define AIC31_P0_REG102 (102) /* Clock Generation Control */

#define AIC31_RESET (0x80)

#define AIC31_SLOT_WIDTH_16 (0u << 4u)

#define AIC31_SLOT_WIDTH_20 (1u << 4u)

#define AIC31_SLOT_WIDTH_24 (2u << 4u)

#define AIC31_SLOT_WIDTH_32 (3u << 4u)

These macros define registers addresses and values for the AIC3106 CODEC. You can

find the description of these register in the AIC3106 datasheet which can be accessed at

the link below:

https://www.ti.com/lit/ds/symlink/tlv320aic3106.pdf

Next will use a subset of these registers to configure the AIC3106 CODEC to the setting

that our application requires.

https://www.ti.com/lit/ds/symlink/tlv320aic3106.pdf

 Adding AIC3106 Support (lab_08b_aic3106Audio)

EDMA - LAB 8: EDMA Audio 8 - 23

 Add the following function prototypes for the AIC3106 CODEC configuration to the top

of the aic3106.h file.

For the AIC3106 CODEC configuration, we need to be able to reset the CODEC, configure

the I2S communication settings, configure the ADC (for audio input) and DAC (for audio

output) settings inside the AIC3106 CODEC, and finally se the sampling rate of the

device.

We will now implement AIC3106 configuration functions.

 Add the definition for the AIC3106 reset function.

 Add the definition for the AIC3106 I2S communication setting function.

Adding AIC3106 Support (lab_08b_aic3106Audio)

8 - 24 EDMA - LAB 8: EDMA Audio

The rest of the AIC3106 configuration functions are similar. Lets continue with adding

their definitions.

 Add the definitions for AIC31SampleRateConfig, AIC31ADCInit, and

AIC31DACInit.

 Adding AIC3106 Support (lab_08b_aic3106Audio)

EDMA - LAB 8: EDMA Audio 8 - 25

/**

** Configures the data format and slot width

**

** mode section of the codec (ADC/DAC) for which the sample

** sampleRate Sample rate in samples per second

**

/

void AIC31SampleRateConfig(unsigned int baseAddr, unsigned int mode,

 unsigned int sampleRate)

{

 unsigned char fs;

 unsigned char ref = 0x0Au;

 unsigned char temp;

 unsigned char pllPval = 4u;

 unsigned char pllRval = 1u;

 unsigned char pllJval = 16u;

 unsigned short pllDval = 0u;

 /* Select the configuration for the given sampling rate */

 switch(sampleRate)

 {

 case 8000:

 fs = 0xAAu;

 break;

 case 11025:

 fs = 0x66u;

 ref = 0x8Au;

 pllJval = 14u;

 pllDval = 7000u;

 break;

 case 16000:

 fs = 0x44u;

 break;

 case 22050:

 fs = 0x22u;

 ref = 0x8Au;

 pllJval = 14u;

 pllDval = 7000u;

 break;

 case 24000:

 fs = 0x22u;

 break;

 case 32000:

 fs = 0x11u;

 break;

 case 44100:

 ref = 0x8Au;

 fs = 0x00u;

 pllJval = 14u;

 pllDval = 7000u;

 break;

 case 48000:

 fs = 0x00u;

 break;

Adding AIC3106 Support (lab_08b_aic3106Audio)

8 - 26 EDMA - LAB 8: EDMA Audio

 case 96000:

 ref = 0x6Au;

 fs = 0x00u;

 break;

 default:

 fs = 0x00u;

 break;

 }

 temp = (mode & fs);

 /* Set the sample Rate */

 CodecRegWrite(baseAddr, AIC31_P0_REG2, temp);

 CodecRegWrite(baseAddr, AIC31_P0_REG3, 0x80 | pllPval);

 /* use PLL_CLK_IN as MCLK */

 CodecRegWrite(baseAddr, AIC31_P0_REG102, 0x08);

 /* Use PLL DIV OUT as codec CLK IN */

 CodecRegBitClr(baseAddr, AIC31_P0_REG101, 0x01);

 /* Select GPIO to output the divided PLL IN */

 CodecRegWrite(baseAddr, AIC31_P0_REG98, 0x20);

 temp = (pllJval << 2);

 CodecRegWrite(baseAddr, AIC31_P0_REG4, temp);

 /* Configure the PLL divide registers */

 CodecRegWrite(baseAddr, AIC31_P0_REG5, (pllDval >> 6) & 0xFF);

 CodecRegWrite(baseAddr, AIC31_P0_REG6, (pllDval & 0x3F) << 2);

 temp = pllRval;

 CodecRegWrite(baseAddr, AIC31_P0_REG11, temp);

 /* Enable the codec to be master for fs and bclk */

 CodecRegWrite(baseAddr, AIC31_P0_REG8, 0xD0);

 CodecRegWrite(baseAddr, AIC31_P0_REG7, ref);

}

/**

** Initializes the ADC section of the AIC31 Codec

/

void AIC31ADCInit(unsigned int baseAddr)

{

 /* enable the programmable PGA for left and right ADC */

 CodecRegWrite(baseAddr, AIC31_P0_REG15, 0x00);

 CodecRegWrite(baseAddr, AIC31_P0_REG16, 0x00);

 /* Connect MIC3L is to the left ADC PGA */

 CodecRegWrite(baseAddr, AIC31_P0_REG17, 0x00);

 /* Connect MIC3R is to the right ADC PGA */

 CodecRegWrite(baseAddr, AIC31_P0_REG18, 0x00);

 /* Power MICBIAS output to 2.5V */

 CodecRegWrite(baseAddr, AIC31_P0_REG25, 0x80);

 /* power on the Line L1R */

 CodecRegWrite(baseAddr, AIC31_P0_REG19, 0x04);

 Adding AIC3106 Support (lab_08b_aic3106Audio)

EDMA - LAB 8: EDMA Audio 8 - 27

 /* power on the Line LIL */

 CodecRegWrite(baseAddr, AIC31_P0_REG22, 0x04);

}

/**

** Initializes the DAC section of the AIC31 Codec

/

void AIC31DACInit(unsigned int baseAddr)

{

 /* power up the left and right DACs */

 CodecRegWrite(baseAddr, AIC31_P0_REG37, 0xE0);

 /* select the DAC L1 R1 Paths */

 CodecRegWrite(baseAddr, AIC31_P0_REG41, 0x02);

 CodecRegWrite(baseAddr, AIC31_P0_REG42, 0x6C);

 /* DAC L to HPLOUT Is connected */

 CodecRegWrite(baseAddr, AIC31_P0_REG47, 0x80);

 CodecRegWrite(baseAddr, AIC31_P0_REG51, 0x09);

 /* DAC R to HPROUT is connected */

 CodecRegWrite(baseAddr, AIC31_P0_REG64, 0x80);

 CodecRegWrite(baseAddr, AIC31_P0_REG65, 0x09);

 /* DACL1 connected to LINE1 LOUT */

 CodecRegWrite(baseAddr, AIC31_P0_REG82, 0x80);

 CodecRegWrite(baseAddr, AIC31_P0_REG86, 0x09);

 /* DACR1 connected to LINE1 ROUT */

 CodecRegWrite(baseAddr, AIC31_P0_REG92, 0x80);

 CodecRegWrite(baseAddr, AIC31_P0_REG93, 0x09);

 /* unmute the DAC */

 CodecRegWrite(baseAddr, AIC31_P0_REG43, 0x00);

 CodecRegWrite(baseAddr, AIC31_P0_REG44, 0x00);

}

Inspect the functions we just created and review the AIC3106 datasheet for the register

definitions if you want to further investigate the purpose of the code.

The only thing left now is defining the AIC31I2SConfigure function.

 Implement the AIC3106 initialization function.

Adding AIC3106 Support (lab_08b_aic3106Audio)

8 - 28 EDMA - LAB 8: EDMA Audio

This function resets the AIC3106 CODEC, waits for the reset to take effect, configures the

I2S communication settings, sets the device ADC and DAC samples rates, and finally

initializes the ADC and the DAC modules.

We are now done with the aic3106.c and aic3106.h files. We can now call the

AIC31I2SConfigure function in the hardwareInitTask.

12. Add the AIC3106 CODEC initialization function to the hardwareInitTask.

 Open the hardwareInitTask.c file and update the hardwareInitTaskFxn

function to call the AIC3106 initialization function.

The initializing of the AIC3106 CODEC device is completed.

 Adding AIC3106 Support (lab_08b_aic3106Audio)

EDMA - LAB 8: EDMA Audio 8 - 29

Build, Load, Run…OBSERVE!

13. Build, load and run…

 Build your application and load your .out file into a new Debug session.

 If there are any build errors, fix them.

 Press “Resume” (Play) and make sure the AIC31I2SConfigure function executed.

If not, go resolve the problem. If it did, move on…

Adding McASP Support (lab_08c_loopbackAudio)

8 - 30 EDMA - LAB 8: EDMA Audio

Adding McASP Support (lab_08c_loopbackAudio)

In this part of the lab we will add the code for sending/receiving data to/from the AIC3106

CODEC on TMDSLCDK6748 board, through I2S communication protocol supported by the

McASP peripheral.

McASP Configuration Code

In order to configure the McASP peripheral to send/receive audio packets, we must examine

the TMDSLCDK6748 board’s schematic, so have the file open.

14. Create the header and source file which we will use for our McASP configuration code.

 Create a new file named myMcasp.h.

 Create a new file named myMcsp.c.

15. Add the McASP function prototypes to the myMcsp.h file.

 Open the myMcasp.h file and add the following function prototypes to the file.

We will create three functions. The McASPI2SConfigure function will be used to setup

the peripheral settings for I2S communication with the CODEC. The

I2SDataTxRxActivate function will be used to enable the serializers used for I2S

communication. The McASPIsr is the interrupt service routine handler for the McASP.

We will add the necessary code to the ISR handler to service the receive and transmit

buffers of the McASP peripheral.

16. Add the McASP function definitions to the myMcsp.c file.

 Open the myMcasp.c file.

 Add the necessary #includes shown below.

 Adding McASP Support (lab_08c_loopbackAudio)

EDMA - LAB 8: EDMA Audio 8 - 31

Next, we have to add the code to configure the McASP I2S communication settings.

 Implement the McASPI2SConfigure function by adding the code below.

Inside the function we have to add our McASP initialization code.

The first thing needed is to put the McASP peripheral in RESET while we initialize the

communication settings.

 McASPRxReset(CSL_MCASP_0_CFG_REGS);

 McASPTxReset(CSL_MCASP_0_CFG_REGS);

After placing the McASP transmitter and receiver in reset, we have to disable the McASP

read and write FIFOs since for this section of the lab we will be using the CPU to service

the McASP buffers. The read/write McASP FIFOs are only supported when the DMA is

servicing the McASP buffers.

 McASPReadFifoDisable(CSL_MCASP_0_FIFO_CFG_REGS);

 McASPWriteFifoDisable(CSL_MCASP_0_FIFO_CFG_REGS);

Adding McASP Support (lab_08c_loopbackAudio)

8 - 32 EDMA - LAB 8: EDMA Audio

The McASP I2S frame format must match the settings in the AIC3106 CODEC. The I2S frame

WORD SIZE and SLOT SIZE are set to match the ones used to when we configured the

AIC3106 CODEC in the previous section.

 McASPRxFmtI2SSet(CSL_MCASP_0_CFG_REGS, WORD_SIZE, SLOT_SIZE,

 MCASP_TX_MODE_NON_DMA);

 McASPTxFmtI2SSet(CSL_MCASP_0_CFG_REGS, WORD_SIZE, SLOT_SIZE,

 MCASP_TX_MODE_NON_DMA);

The last parameter in the functions above decide whether the CPU or the DMA is going to

service the receive/transmit buffers of the McASP. For this section, we choose the CPU

(NON_DMA). We will change in the future sections when we use the EDMA3 to service the

McASP buffers.

We set the McASP frame sync options to TDM mode with TWO SLOTs. The frame sync is set

to external mode and the width of the frame sync signal is set to the width of a WORD. The

receive frame sync will begin on the falling edge, while the transmit frame sync signal will

begin on the rising edge.

 McASPRxFrameSyncCfg(CSL_MCASP_0_CFG_REGS, 2,

 MCASP_RX_FS_WIDTH_WORD,

 MCASP_RX_FS_EXT_BEGIN_ON_FALL_EDGE);

 McASPTxFrameSyncCfg(CSL_MCASP_0_CFG_REGS, 2,

 MCASP_TX_FS_WIDTH_WORD,

 MCASP_TX_FS_EXT_BEGIN_ON_RIS_EDGE);

We must also configure the McASP clock settings. Checking the board schematic, we see

that the McASP clock is generated external and brought into the C6748 McASP peripheral

through the AHCLKX pin. Look for AIC_MCLK, AIC_WCLK and AIC_BCLK in the schematic of

the board.

 Adding McASP Support (lab_08c_loopbackAudio)

EDMA - LAB 8: EDMA Audio 8 - 33

 McASPRxClkCfg(CSL_MCASP_0_CFG_REGS,

MCASP_RX_CLK_EXTERNAL, 0, 0);

 McASPRxClkPolaritySet(CSL_MCASP_0_CFG_REGS,

MCASP_RX_CLK_POL_RIS_EDGE);

 McASPRxClkCheckConfig(CSL_MCASP_0_CFG_REGS,

MCASP_RX_CLKCHCK_DIV32,

 0x00, 0xFF);

 McASPTxClkCfg(CSL_MCASP_0_CFG_REGS,

MCASP_TX_CLK_EXTERNAL, 0, 0);

 McASPTxClkPolaritySet(CSL_MCASP_0_CFG_REGS,

MCASP_TX_CLK_POL_FALL_EDGE);

 McASPTxClkCheckConfig(CSL_MCASP_0_CFG_REGS,

MCASP_TX_CLKCHCK_DIV32,

 0x00, 0xFF);

Then we must enable the frame sync for the McASP transmitter and receiver.

Adding McASP Support (lab_08c_loopbackAudio)

8 - 34 EDMA - LAB 8: EDMA Audio

 McASPTxRxClkSyncEnable(CSL_MCASP_0_CFG_REGS);

Next, we set the number of slots for both the McASP transmitter and receiver, which in our

case is TWO.

 McASPRxTimeSlotSet(CSL_MCASP_0_CFG_REGS, I2S_SLOTS);

 McASPTxTimeSlotSet(CSL_MCASP_0_CFG_REGS, I2S_SLOTS);

Now it’s time to find the McASP transmitter/receiver serializer numbers used. Open the

schematic file again and you will see that the receiver serializer is #14 while the transmitter

serializer is #13.

 McASPSerializerRxSet(CSL_MCASP_0_CFG_REGS, MCASP_XSER_RX);

 McASPSerializerTxSet(CSL_MCASP_0_CFG_REGS, MCASP_XSER_TX);

Each McASP pin must also be configured. The direction of the frame sync, clock and receiver

serializer are set to INPUT. The direction of the transmitter serializer is set to OUTPUT.

 McASPPinMcASPSet(CSL_MCASP_0_CFG_REGS, 0xFFFFFFFF);

 McASPPinDirOutputSet(CSL_MCASP_0_CFG_REGS,

 MCASP_PIN_AXR(MCASP_XSER_TX));

 McASPPinDirInputSet(CSL_MCASP_0_CFG_REGS, MCASP_PIN_AFSX

 | MCASP_PIN_ACLKX

 | MCASP_PIN_AFSR

 | MCASP_PIN_ACLKR

 | MCASP_PIN_AXR(MCASP_XSER_RX));

Finally, we must enable the transmitter and receiver interrupts for the McASP peripheral. In

this section of the lab we will enable all McASP EVENTs to generate interrupts, but we will

only use the DATAREADY events for servicing the buffers. In the later labs we will only use the

ERROR EVENTs to generate interrupts and use the McASP interrupt as a McASP ERROR

interrupt.

 Adding McASP Support (lab_08c_loopbackAudio)

EDMA - LAB 8: EDMA Audio 8 - 35

 McASPTxIntEnable(CSL_MCASP_0_CFG_REGS, MCASP_TX_DMAERROR

 | MCASP_TX_CLKFAIL

 | MCASP_TX_SYNCERROR

 | MCASP_TX_UNDERRUN

 | MCASP_TX_DATAREADY);

 McASPRxIntEnable(CSL_MCASP_0_CFG_REGS, MCASP_RX_DMAERROR

 | MCASP_RX_CLKFAIL

 | MCASP_RX_SYNCERROR

 | MCASP_RX_OVERRUN

 | MCASP_RX_DATAREADY);

This concludes the McASP peripheral setting initialization..

 Ensure the McASPI2SConfigure function looks the same as the code below.

Adding McASP Support (lab_08c_loopbackAudio)

8 - 36 EDMA - LAB 8: EDMA Audio

void McASPI2SConfigure(void)

{

 McASPRxReset(CSL_MCASP_0_CFG_REGS);

 McASPTxReset(CSL_MCASP_0_CFG_REGS);

 /* Disable the FIFOs for Non-DMA transfer */

 McASPReadFifoDisable(CSL_MCASP_0_FIFO_CFG_REGS);

 McASPWriteFifoDisable(CSL_MCASP_0_FIFO_CFG_REGS);

 /* Set I2S format in the transmitter/receiver format units */

 McASPRxFmtI2SSet(CSL_MCASP_0_CFG_REGS, WORD_SIZE, SLOT_SIZE,

 MCASP_TX_MODE_NON_DMA);

 McASPTxFmtI2SSet(CSL_MCASP_0_CFG_REGS, WORD_SIZE, SLOT_SIZE,

 MCASP_TX_MODE_NON_DMA);

 /* Configure the frame sync. I2S shall work in TDM format with 2 slots */

 McASPRxFrameSyncCfg(CSL_MCASP_0_CFG_REGS, 2, MCASP_RX_FS_WIDTH_WORD,

 MCASP_RX_FS_EXT_BEGIN_ON_FALL_EDGE);

 McASPTxFrameSyncCfg(CSL_MCASP_0_CFG_REGS, 2, MCASP_TX_FS_WIDTH_WORD,

 MCASP_TX_FS_EXT_BEGIN_ON_RIS_EDGE);

 /* configure the clock for receiver */

 McASPRxClkCfg(CSL_MCASP_0_CFG_REGS, MCASP_RX_CLK_EXTERNAL, 0, 0);

 McASPRxClkPolaritySet(CSL_MCASP_0_CFG_REGS, MCASP_RX_CLK_POL_RIS_EDGE);

 McASPRxClkCheckConfig(CSL_MCASP_0_CFG_REGS, MCASP_RX_CLKCHCK_DIV32,

 0x00, 0xFF);

 /* configure the clock for transmitter */

 McASPTxClkCfg(CSL_MCASP_0_CFG_REGS, MCASP_TX_CLK_EXTERNAL, 0, 0);

 McASPTxClkPolaritySet(CSL_MCASP_0_CFG_REGS, MCASP_TX_CLK_POL_FALL_EDGE);

 McASPTxClkCheckConfig(CSL_MCASP_0_CFG_REGS, MCASP_TX_CLKCHCK_DIV32,

 0x00, 0xFF);

 /* Enable synchronization of RX and TX sections */

 McASPTxRxClkSyncEnable(CSL_MCASP_0_CFG_REGS);

 /* Enable the transmitter/receiver slots. I2S uses 2 slots */

 McASPRxTimeSlotSet(CSL_MCASP_0_CFG_REGS, I2S_SLOTS);

 McASPTxTimeSlotSet(CSL_MCASP_0_CFG_REGS, I2S_SLOTS);

 /*

 ** Set the serializers, Currently only one serializer is set as

 ** transmitter and one serializer as receiver.

 */

 McASPSerializerRxSet(CSL_MCASP_0_CFG_REGS, MCASP_XSER_RX);

 McASPSerializerTxSet(CSL_MCASP_0_CFG_REGS, MCASP_XSER_TX);

 /*

 ** Configure the McASP pins

 ** Input - Frame Sync, Clock and Serializer Rx

 ** Output - Serializer Tx is connected to the input of the codec

 */

 McASPPinMcASPSet(CSL_MCASP_0_CFG_REGS, 0xFFFFFFFF);

 McASPPinDirOutputSet(CSL_MCASP_0_CFG_REGS, MCASP_PIN_AXR(MCASP_XSER_TX));

 McASPPinDirInputSet(CSL_MCASP_0_CFG_REGS, MCASP_PIN_AFSX

 | MCASP_PIN_ACLKX

 | MCASP_PIN_AFSR

 | MCASP_PIN_ACLKR

 | MCASP_PIN_AXR(MCASP_XSER_RX));

 /* Enable error interrupts for McASP */

 McASPTxIntEnable(CSL_MCASP_0_CFG_REGS, MCASP_TX_DMAERROR

 | MCASP_TX_CLKFAIL

 Adding McASP Support (lab_08c_loopbackAudio)

EDMA - LAB 8: EDMA Audio 8 - 37

 | MCASP_TX_SYNCERROR

 | MCASP_TX_UNDERRUN

 | MCASP_TX_DATAREADY);

 McASPRxIntEnable(CSL_MCASP_0_CFG_REGS, MCASP_RX_DMAERROR

 | MCASP_RX_CLKFAIL

 | MCASP_RX_SYNCERROR

 | MCASP_RX_OVERRUN

 | MCASP_RX_DATAREADY);

 Implement the I2SDataTxRxActivate function by adding the code below.

void I2SDataTxRxActivate(void)

{

 /* Start the clocks */

 McASPRxClkStart(CSL_MCASP_0_CFG_REGS, MCASP_RX_CLK_EXTERNAL);

 McASPTxClkStart(CSL_MCASP_0_CFG_REGS, MCASP_TX_CLK_EXTERNAL);

 /* Activate the serializers */

 McASPRxSerActivate(CSL_MCASP_0_CFG_REGS);

 McASPTxSerActivate(CSL_MCASP_0_CFG_REGS);

 /* make sure that the XDATA bit is cleared to zero */

 while(McASPTxStatusGet(CSL_MCASP_0_CFG_REGS) & MCASP_TX_STAT_DATAREADY);

 /* Activate the state machines */

 McASPRxEnable(CSL_MCASP_0_CFG_REGS);

 McASPTxEnable(CSL_MCASP_0_CFG_REGS);

}

This function will start the serializer clocks, and activate the McASP receiver and

transmitter. Before we continue to enable the McASP receiver and transmitter, we put a

while loop which will ensure that the transmitter data buffers are serviced before the

McASP receiver/transmitter are enabled, avoiding an UNDERFLOW scenario.

The only function left to implement is the McASP ISR handler function.

 Add a global variable named val to the top of the myMcasp.c file.

This variable will be used to pass the received value from the receive serializer buffer to

the transmit serializer buffer.

 Implement the McASPIsr function by adding the code below.

Adding McASP Support (lab_08c_loopbackAudio)

8 - 38 EDMA - LAB 8: EDMA Audio

void McASPIsr(void)

{

 while (McASPRxStatusGet(CSL_MCASP_0_CFG_REGS) & MCASP_RX_STAT_DATAREADY){

 val = McASPRxBufRead(CSL_MCASP_0_CFG_REGS, MCASP_XSER_RX);

 }

 while (McASPTxStatusGet(CSL_MCASP_0_CFG_REGS) & MCASP_TX_STAT_DATAREADY){

 McASPTxBufWrite(CSL_MCASP_0_CFG_REGS, MCASP_XSER_TX, val);

 }

 IntEventClear(CSL_INTC_EVENTID_MCASP0INT);

}

We will service the McASP receive buffer by reading the buffer using the CPU and writing

to the val variable. Then when the transmitter is requesting new data, we will write val

to the McASP transmit buffer. Finally the interrupt event is cleared.

This concludes the changes that must be made the myMcasp.c file. Now we have to call

these newly added functions in the hardwareInitTaskFxn function.

17. Add the McASP initalization functions to the hardwareInitTask.c file.

 Open the hardwareInitTask.c file and add the myMcsap.h #include to the

file.

 Update the hardwareInitTaskFxn function to call the McASP initialization

functions.

The only thing left at this point is to add the HWI support for the McASP ISR handler. So

let’s do it!

18. Add the McASP ISR HWI to the main.c file.

 Open the main.c file and add the myMcsap.h #include to the file.

 Add the Hwi handle and params global variables.

 Adding McASP Support (lab_08c_loopbackAudio)

EDMA - LAB 8: EDMA Audio 8 - 39

 In the main() function, add the Hwi initialization code.

Adding McASP Support (lab_08c_loopbackAudio)

8 - 40 EDMA - LAB 8: EDMA Audio

The McASP Hwi is set to use INT4 with McASPIsr set as the handler. The eventid is

set to the McASP EVENT ID.

That is it, now the McASP module is setup for audio LOOPBACK mode. You should now

be able to build and run the code and hear the Audio Input as the Audio Output.

Build, Load, Run…OBSERVE!

19. Build, load and run…

 Build your application and load your .out file into a new Debug session.

 If there are any build errors, fix them.

 Press “Resume” (Play).

 Adding McASP Support (lab_08c_loopbackAudio)

EDMA - LAB 8: EDMA Audio 8 - 41

 Connect your phone (or any other device with an auxiliary audio output) to the Audio

Input Jack connection on the board.

 Connect your headphones (or any device with an auxiliary audio input such as

speakers) to the Audio Output Jack connection on the board,

 Play the music on your phone.

Do you hear the music in your headphones? If not, go resolve the problem. If you did,

move on…

Audio Buffer Overflow/Underflow
(lab_08d_overflowErrorAudio)

8 - 42 EDMA - LAB 8: EDMA Audio

Audio Buffer Overflow/Underflow

(lab_08d_overflowErrorAudio)

In this part of the lab we will add the code to toggle an LED. The McASP will still be serviced

by the CPU. Adding a new Task to toggle an LED will actually cause a McASP buffer

underflow/overflow error because the CPU will not be able to service the buffers in time.

LED (GPIO) Configuration Code

The purpose of this lab is not to teach a user how to the setup a GPIO peripheral. Therefore,

we have existing GPIO configuration code in our project and will use this GPIO code to toggle

an LED.

20. Add the LED toggle Task to the main() function.

 Open the main.c file.

 Add the global variable for the ledTask.

 Add the Task implementation code in the main() function above the

hardwareInitTask implementation code.

 Audio Buffer Overflow/Underflow
(lab_08d_overflowErrorAudio)

EDMA - LAB 8: EDMA Audio 8 - 43

The function which the task will use will be called ledToggleTaskFxn and we will

implement it shortly. we will implement this function in a file set called ledTask.c

and ledTask.h. Let’s go ahead and #include the header file in the main.c file.

 Add the following #define to the top of the main.c file.

#include "ledTask.h"

21. Implement the LED toggle task function.

 Create two new files in your project named ledTask.c and ledTask.h.

 Open the ledTask.h file and update it to match the content below.

 Open the ledTask.c file and update it to match the content below.

Audio Buffer Overflow/Underflow
(lab_08d_overflowErrorAudio)

8 - 44 EDMA - LAB 8: EDMA Audio

The task will toggle the GPIO connected to the board LED every 5s. The faster you

request to blink the LED, the faster the audio application will fail.

Build, Load, Run…OBSERVE!

22. Build, load and run…

 Build your application and load your .out file into a new Debug session.

 If there are any build errors, fix them.

 Connect your phone (or any other device with an auxiliary audio output) to the Audio

Input Jack connection on the board.

 Connect your headphones (or any device with an auxiliary audio input such as

speakers) to the Audio Output Jack connection on the board,

 Play the music on your phone.

 Press “Resume” (Play).

Do you hear the music in your headphones? If not, go resolve the problem. If you did,

move on…

 Audio Buffer Overflow/Underflow
(lab_08d_overflowErrorAudio)

EDMA - LAB 8: EDMA Audio 8 - 45

 The music will eventually stop due to the McASP buffer error.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 46 EDMA - LAB 8: EDMA Audio

Adding EDMA Support (lab_08e_edmaAudio)

Examining the previous section, it is obvious that having the CPU service the McASP buffers

is not feasible. Therefore, we need to ass EDMA3 support to service the McASP receive and

transmit buffers.

We will have to use PING-PONG buffers for both McASP receiver and transmitter.

23. Create memory data sections for the audio buffers accessed by EDMA3.

 Create a new linker command file (CMD) named RxTxBuf.cmd.

 Add the following data sections to the CMD file:

24. Update McASP configuration code to enable EDMA access.

We no longer wish to use the CPU to service the buffers, therefore the McASP

configuration code must change. Also, the McASP ISR will only be used for McASP

ERROR events.

 Open the myMcasp.h file.

 Rename the McASPIsr to McASPErrorIsr.

 Open the myMcasp.c file.

 Delete the uint32_t val global variable.

This variable is no longer needed since EDMA3 will have the audio data.

 Update the McASP ISR handler function to match the one below:

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 47

 Enable the McASP read/write buffer FIFOs.

 Select DMA as the McASP buffers owner.

 Remove the DATA_READY event from the interrupt events.

There is one final item we need to take care of in this file, and that is enabling the EDMA

transfers in the I2SDataTxRxActivate before enabling the McASP transmit and receive

serializers. We will take care of this later in the chapter.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 48 EDMA - LAB 8: EDMA Audio

25. Add the audio application code using EDMA3.

We will add two new files named audioTask.c and audioTask.h to the project. This

will include the EDMA configuration code along with any audio application specific code.

In this section, we will only copy our received audio buffer to the transmit audio buffer. In

the later sections we will add audio filtering code to these files.

 Create a new file in the project named audioTask.h.

 Update the audioTask.h file to contain the code below:

We will implement three outward facing functions in the audioTask.h file. A Task

function named CopyBufRxToTxTaskFxn, an EDMA initialization function named

I2SDMAParamInit, and an interrupt service routine handler named

EDMA3CCComplIsr for when the EDMA3 transfers have completed.

 Create a new file in the project named audioTask.c.

 Add the necessary #include files:

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 49

 Add the function prototypes for the new functions we will be writing.

We will write three new functions. ParamTxLoopJobSet, BufferTxDMAActivate, and

BufferTxDMAActivate.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 50 EDMA - LAB 8: EDMA Audio

The first function ParamTxLoopJobSet is used to setup the audio transmit EDMA PaRAM

for the given PaRAM ID and setting the Link Address of the EDMA PaRAM to itself, so it

continues to loop back to use the same settings.

The second and third functions BufferTxDMAActivate, and BufferTxDMAActivate

are used to reactivate the transmit and receive EDMA channels. The transmit EDMA channel

is activated when a transmit is required (send data out to the McASP) while the receive

EDMA channel is activated every time a reception is completed, and we need to start

kickstart a new reception (from the McASP).

Next, we need to declare the global variables.

 Declare an extern global variable (Semaphore) for the receive EDMA interrupt.

We will define and initialize this in main.c but we will use it in audioTask.c.

Now, let’s define the arrays we need for receive and transmit buffers. We have to make sure

to place them in the memory sections we created in the linker command file RxTxBuf.cmd.

 Create a variable named loopBuf which will be used by EDMA to transmit data to

the McASP on the VERY FIRST transmission.

The loopBuf array will hold dummy data to kick start the audio communication.

 Create the ping-pong buffers for EDMA transmit and receive operations.

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 51

Three buffers are created for the transmit EDMA channel and three buffers were

created for the receive EDMA channel. The loopBuf buffer is only used for the first

dummy transmit transfer. Starting from the second transfer, the txBufs are used.

 Create an array to be able to access the txBuf0 – txBuf1 and rxBuf0 –

rxBuf1 through indexing.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 52 EDMA - LAB 8: EDMA Audio

Now we can access the address of the buffers by indexing though the txBufPtr

and rxBufPtr.

 Declare global variables to keep track of the state of the application.

Variable Description

nxtBufToRcv The index for the next receive buffer to be used in rxBufPtr to be

used by the EDMA.

lastFullRxBuf The index of the last receive buffer which was filled by the EDMA.

parOffRcvd The PaRAM ID for the last received buffer’s EDMA setting.

parOffSent The PaRAM ID for the last send buffer’s EDMA setting.

parOffTxToSend The PaRAM ID for the next transmit buffer to send EDMA setting.

lastSentTxBuf The index for the last transit buffer with was send in the txBufPtr.

We will use these variables in the application’s state machine to send and receive

from the correct buffer and PaRAM setting.

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 53

 Create “template” EDMA3 PaRAM Entry objects to use as the default setting for the

EDMA transfers.

We created a default PaRAM Entry for each transmit and receive channels. In our application

code we will always begin with copying these settings over and the modifying only the fields

that need to be updated.

The EDMA3CCPaRAMEntry structure is defined as follows for the template transmit

channel. The first item defines the option fields. You can review the available settings for the

OPTION field by reviewing the C6748 TRM.

https://www.ti.com/lit/ug/spruh79c/spruh79c.pdf?&ts=1590025658396

Adding EDMA Support (lab_08e_edmaAudio)

8 - 54 EDMA - LAB 8: EDMA Audio

In the options field, we have enabled the CONSTANT address mode for the destination

address since the destination is a hardware FIFO. Finally, the FIFO width is set to 32-bit mode

by writing a 0x2 to the FWID bit range of the options register.

The source address for the template PaRAM entry is set to the address for the loopBuf

buffer. The ACNT is set to the number of BYTES_PER_SAMPLE. BCNT is set to the number

of SAMPLES. CCNT is set to 1 to ensure the transfer occurs. The BCNT reload value is set to

0 since no reload is required (CCNT = 1).

The destination address for the EDMA transfer is set to the McASP FIFO register address.

The SOURCE BIDX is set to the same value as the ACNT to ensure that the source address is

incremented the same as ACNT. The DESTINATION BIDX is set to 0 since the McASP FIFO

register address does not change. The SOURCE and DESTINATION CIDX are set to 0.

Finally, the LINK ADDRESS is set to point to the next PaRAM. In the template, it actually is

pointing to itself which is the PAR_TX_START x SIZE OF EACH PaRAM.

For the template receive PaRAM Entry, the source address is CONSTANT address mode with

the FIFO width set to 32-bit mode.

The source address for the template receive PaRAM is set to the McASP buffer address. The

destination is set to the rxBuf0 buffer. The ACNT, BIDX, CCNT, CIDX are setup, while the

BCNT is taken care of later when the template is being used. The LINK ADDRESS is setup to

point to the same PaRAM set.

That’s it for our global variables. Next, we move on to implement the new functions.

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 55

 Define the ParamTxLoopJobSet function as shown below.

This function copies the template transmit PaRAM Entry. The number of bytes copied

is SIZE_PARAMSET – 2 because the last 2 bytes of the PaRAM Entry is actually

RESERVED.

The link address of the PaRAM Entry is to ITSELF.

 Define the I2SDMAParamInit function as shown below.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 56 EDMA - LAB 8: EDMA Audio

void I2SDMAParamInit(void)

{

 EDMA3CCPaRAMEntry paramSet;

 int idx;

 /* Initialize the 0th paRAM set for receive */

 memcpy(¶mSet, &rxDefaultPar, SIZE_PARAMSET - 2);

 EDMA3SetPaRAM(CSL_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX, ¶mSet);

 /* further paramsets, enable interrupt */

 paramSet.opt |= RX_DMA_INT_ENABLE;

 for(idx = 0 ; idx < NUM_PAR; idx++)

 {

 paramSet.destAddr = rxBufPtr[idx];

 paramSet.linkAddr = (PAR_RX_START + ((idx + 1) % NUM_PAR))

 * (SIZE_PARAMSET);

 paramSet.bCnt = NUM_SAMPLES_PER_AUDIO_BUF;

 /*

 ** for the first linked paRAM set, start receiving the second

 ** sample only since the first sample is already received in

 ** rx buffer 0 itself.

 */

 if(0 == idx)

 {

 paramSet.destAddr += BYTES_PER_SAMPLE;

 paramSet.bCnt -= BYTES_PER_SAMPLE;

 }

 EDMA3SetPaRAM(CSL_EDMA30CC_0_REGS, (PAR_RX_START + idx), ¶mSet);

 }

 /* Initialize the required variables for reception */

 nxtBufToRcv = idx % NUM_BUF;

 lastFullRxBuf = NUM_BUF - 1;

 parOffRcvd = 0;

 /* Initialize the 1st paRAM set for transmit */

 memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET);

 EDMA3SetPaRAM(CSL_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX, ¶mSet);

 /* rest of the params, enable loop job */

 for(idx = 0 ; idx < NUM_PAR; idx++)

 {

 ParamTxLoopJobSet(PAR_TX_START + idx);

 }

 /* Initialize the variables for transmit */

 parOffSent = 0;

 lastSentTxBuf = NUM_BUF - 1;

}

This function will initialize all the EDMA3 parameters for I2S communication. We begin by

copying the template receive EDMA PaRAM Entry. We copy SIZE_PARAMSET – 2 because

the last of the reserved bytes at the end. For the receive EDMA transfers, we enable the

EDMA interrupt. For each of the two PaRAM sets (NUM_PAR = 2 for ping-pong buffers), we

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 57

set the destAddr and linkAddr of the PaRAM setting. We set the destAddr to the

corresponding rxBuf, by indexing the rxBufPtr array. We set the linkAddr to the next

PaRAM set for the ping-pong buffer. If you remember, we said that we will set the BCNT for

the receive EDMA transfers later. Well now is the time! We set the BCNT to be the number of

samples per audio buffer. Before, we initialize the PaRAM settings for the receive ping-pong

buffers, it is important to take care of the unique scenario of the first reception. For the first

reception, the first sample will already be in rxBuf0 so the EDMA PaRAM setting needs to

start filling the buffer at rxBuf0 + BYTES_PER_SAMPLE address. Also the number of

bytes for this transfer is 1 sample shorter.

Next, we can initialize some of the variables we use to keep track of the state of our audio

application. First, we set the nxtBufToRcv to zero since we want to receive into rxBuf0.

We set the lastFullRxBuff to two indicating rxBuf2. This makes sense since

lastFullRxBuff will always be the one before nxtBufToRcv. The parOffRcvd is set

to zero. Think of rxBuf0, rxBuf1 and rxBuf2 as a circular buffer.

For the transmit EDMA transfers, we set up the ping-pong transfers using the

ParamTxLoopJobSet function we previously wrote. Finally we initialize the state variables

for the transmit transfers.

 Define the BufferTxDMAActivate function as shown below.

This function will be used to trigger a transfer from the txBuf0, txBuf1 and txBuf2 to the

McASP through the EDMA. We start as we always do by copying the default template PaRAM

Entry as our starting point. We then enable the transmit complete interrupt for the EDMA. We

pick the txBuf from the txBufPtr array as the srcAddr, link the next PaRAM set, and

update the BCNT.

 Define the BufferRxDMAActivate function as show below.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 58 EDMA - LAB 8: EDMA Audio

This function is almost identical to its transmit counterpart. We enable the receive EDMA

interrupt, set the destination address to the corresponding rxBuf, update the BCNT,

and set the link PaRAM setting.

Next, we need to add the interrupt handler for the EDMA3 interrupts named

EDMA3CCComplIsr. We will also need to add the Hwi definition for the interrupt in

main.c. We also need to be able to signal our audio task when the EDMA3 interrupt occurs.

This Semaphore must also be defined in main.c. We previously declared an extern

reference to this semaphore in audioTask.c.

 Add the definition for EDMA3CCComplIsr to audioTask.c

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 59

The EDMA transmit/receive interrupt handler will first clear the interrupt event. If the

interrupt is generated due to a McASP receive event, we clear the EDMA McASP RX channel

interrupt flag. We then update the state variables for our audio application. The

lastFullRxBuf is incremented to point to the correct buffer currently full. The

nxtParToUpdate is set to the currently received/completed EDMA parameter set. The

received EDMA parameter set is also updated to point to the current parameter set. In order

to activate the next EDMA McASP receive transfer, we call the BufferRxDMAActivate

function. Last, we update the nxtBufToRcv and post the RxDmaReady semaphore to

signal any task pending for an EDMA receive interrupt.

If the interrupt is generated due to a McASP transmit event, we clear the EDMA McASP TX

channel interrupt flag. We then call the ParamTxLoopJobSet function and update the

parOffSent.

That concludes what the EDMA3 ISR must accomplish.

Now, let’s update the main.c file to define the Hwi and Semaphore required by the EDMA3

module.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 60 EDMA - LAB 8: EDMA Audio

Create the EDMA3 BIOS Modules

We need to create the Hwi and Semaphore required by the EDMA3 module.

26. Add the BIOS modules for EDMA3 module.

 Open the main.c file.

 Add the following #include to the include section.

#include "audioTask.h"

 Declare the Task handle and Task parameter objects for the audioTask.

The audioTask which we have not defined the function for yet, will do the task of

transferring the received audio frames to the audio transmit buffers.

 Declare the Hwi handle and parameter for the EDMA interrupt.

 Rename the McASP Hwi handle and parameter to show that is it an ERROR

interrupt.

 Declare the EDMA3 ISR signaling Semaphore.

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 61

 Define the EDMA Hwi in the main() function.

We set the function for the Hwi to be EDMA3CCComplIsr. The eventId is set to

the EDMA3 Channel Controller 0 Interrupt 1.

 Define the EDMA completion interrupt signaling Semaphore in the main() function.

RxDmaReady = Semaphore_create(0, NULL, Error_IGNORE);

 Define the audioTask Task.

We set the Task priority to be 3 and the function which will be used for our audio task

will be named CopyRxToTxTaskFxn.

All that is left now is implementing the CopyRxToTxTaskFxn function.

Create the Audio Task Function

Now we will implement the CopyRxToTxTaskFxn function. This task will transfer the

received audio frames to the audio transmit buffers.

27. Add the CopyRxToTxTaskFxn to audioTask.c.

 Open the audioTask.c file.

 Implement the function as shown below.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 62 EDMA - LAB 8: EDMA Audio

This is our audio Task function. It will wait for an EDMA3 ISR to post the RxDmaReady. If at

any point you see the Log_info0 statement posted in the log results, a timeout has

occurred while waiting for the Semaphore.

When the EDMA3 receive operation is completed and the Semaphore pend returns

successfully, we begin updating some state variable for our audio application. We prepare

the buffers for sending the audio data by copy the rxBuf which was last filled, into the

txBuf which is going to be sent. We execute the copy action by using the CPU to do a

memcpy.

Finally, with the txBuf setup, we activate the EDMA3 transfer for the audio data to be sent

through the McASP.

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 63

One last thing we need to take care of is enabling the EDMA3 transfers for McASP RX and TX

channels in EVENT mode.

28. Enable EDMA3 transfers for McASP RX and TX in event mode.

We need to enable the EDMA3 transfers for McASP RX and TX channels before activating

the McASP TX and RX serializers.

 Open myMcasp.c file.

 Update the I2SDataTxRxActivate as show below.

Last, we need to update our high priority hardwareInitTaskFxn to include the EDMA3

initialization code.

29. Add the EDMA3 initialization code to the hardwareInitTaskFxn.

 Open the hardwareInitiTask.c file.

 Add the audioTask.h as a #include to the hardwareInitTask.c file.

#include “audioTask.h”

 Update the hardwareInitTaskFxn function to include the EDMA3 initialization

code.

Adding EDMA Support (lab_08e_edmaAudio)

8 - 64 EDMA - LAB 8: EDMA Audio

 Save and close all files.

That’s it easy right? You should now have a fully functional EDMA3 based audio loopback

application!

Build, Load, Run…OBSERVE!

30. Build, load and run…

 Build your application and load your .out file into a new Debug session.

 If there are any build errors, fix them.

 Connect your phone (or any other device with an auxiliary audio output) to the Audio

Input Jack connection on the board.

 Connect your headphones (or any device with an auxiliary audio input such as

speakers) to the Audio Output Jack connection on the board,

 Play the music on your phone.

 Press “Resume” (Play).

Do you hear the music in your headphones? If not, go resolve the problem. If you did,

move on…

 This time, the music will NOT stop due to the McASP buffer being controlled by the

EDMA and the system will not face an overflow/underflow issue. You can go ahead

 Adding EDMA Support (lab_08e_edmaAudio)

EDMA - LAB 8: EDMA Audio 8 - 65

and increase the blinking rate of the LED to see that the audio is not affected by the

frequency of the led toggle.

Adding Audio Filters Support (lab_08f_filterAudio)

8 - 66 EDMA - LAB 8: EDMA Audio

Adding Audio Filters Support (lab_08f_filterAudio)

With the EDMA3 controlling our audio buffer transfers, we can use the CPU bandwidth to

apply audio filter to our audio data. Next, we will add the code to filter the audio packets we

receive, before sending them back to the McASP.

Audio Filter Code

We will add our audio filter code and audio filter coefficients into two new files named

coeffs.c and coeffs.h.

 Create a new file named coeffs.h.

 Update the coeffs.h file to match the content below.

The variable COEFFS is an array of filter coefficients for our audio filter. The cfir

function is a finite impulse response filter application function.

 Create a new file named coeffs.c.

 Update the coeffs.c file to match the content below.

 Adding Audio Filters Support (lab_08f_filterAudio)

EDMA - LAB 8: EDMA Audio 8 - 67

/**

** coeffs.c

**/

#include "myGlobalOptions.h"

int16_t COEFFS[ORDER] = {

 // Allpass Filter Coeff's - simple pass-thru effect...

 32767, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0

};

/**

** coeffs.c

** cfir() - FIR algo

**

** Parms: x = delayBuffer (input Rcv buffer)

** h = COEFFS

** r = output Buffer (Xmt)

** nh = ORDER of filter

** nr = BUFFSIZE

**

** Brief: This is 64-order xyz-pass (depends on COEFFS) FIR filter written in

C.

**

** Note: Can use pragma to place this code in a user_defined section. This

** requires the addition of a user linker.cmd file. Can also incoporate

** other optimizations as the lab instructions describe.

**/

void cfir(int16_t * x, int16_t * h, int16_t * r, uint16_t nh, int16_t nr)

{

 int16_t i, j;

 int32_t sum;

 for (j = 0; j < nr; j++)

 {

 sum = 0;

 for (i = 0; i < nh; i++)

 sum += (int32_t)x[i + j] * h[i];

 r[j] = (int16_t)(sum >> 15);

 }

}

// ************************* END OF FILE **********************************

The variable COEFFS is defined in this file as the filter coefficients for our audio filter.

The coefficients are for an ALL PASS filter. Meaning all frequencies are passed

through and nothing is actually filtered out.

Adding Audio Filters Support (lab_08f_filterAudio)

8 - 68 EDMA - LAB 8: EDMA Audio

If you would like to try some other filters, try the Low Pass Filter:

int16_t COEFFS[ORDER] =

{

 // Lowpass Filter Coeff's stopband= 1500 Hz, passband= 500 Hz

 -782, -100, -100, -95, -84, -68, -46, -17, 18,

 59, 107, 162, 222, 288, 358, 433, 511, 592,

 675, 756, 839, 919, 996, 1070, 1138, 1200, 1256,

 1303, 1342, 1372, 1392, 1402, 1402, 1392, 1372, 1342,

 1303, 1256, 1200, 1138, 1070, 996, 919, 839, 756,

 675, 592, 511, 433, 358, 288, 222, 162, 107,

 59, 18, -17, -46, -68, -84, -95, -100, -100,

 -782

};

And for High Pass Filter try:

int16_t COEFFS[ORDER] = {

 // Highpass Filter Coeff's stopband= 500 Hz, passband= 1500 Hz

 -296, 377, 271, 235, 233, 245, 265, 286, 305,

 322, 335, 341, 341, 333, 315, 287, 247, 194,

 126, 41, -63, -188, -341, -525, -752, -1036, -1404,

 -1907, -2656, -3938, -6812, -20814, 20814, 6812, 3938, 2656,

 1907, 1404, 1036, 752, 525, 341, 188, 63, -41,

 -126, -194, -247, -287, -315, -333, -341, -341, -335,

 -322, -305, -286, -265, -245, -233, -235, -271, -377,

 296

};

Now that we have the filter code in place, let’s actually update our audioTask function to

use the audio filter.

31. Update the audioTask.c file to include the audio filter code.

 Open audioTask.c file.

 Add the #include for coeff.h.

#include "coeffs.h"

We need to create a new structure to keep track of the previous audio packet to be able

to do the audio filtering. We keep a history of the audio samples from the previously

received audio packet with the size of HIST_SIZE.

 Create a structure to keep track of each audio channel (Left/Right) along with the

history of the same channel.

 Adding Audio Filters Support (lab_08f_filterAudio)

EDMA - LAB 8: EDMA Audio 8 - 69

To get the Left/Right channel data from the audio packets, we need to DEINTELEAVE

the received data. We also need buffers to store the DEINTERLEAVED data so we can

apply our audio filter to them.

If the complete INTERLEAVED audio data received is AUDIO_BUF_SIZE long, each

Left/Right channel will be AUDIO_BUF_SIZE/2 long.

 Create the left and right audio buffers.

history

Explore Results

8 - 70 EDMA - LAB 8: EDMA Audio

Explore Results

We can view our Hwis in the Runtime Object View tool to see the current status.

Clean up After Yourself

32. That’s it, You’re Done!

 Save and close all open files.

 Close CCS and power cycle your board…

Congratulations – you have now created and built an application using audio.

Congrats, you are done with this lab.

 Clean up After Yourself

EDMA - LAB 8: EDMA Audio 8 - 71

	LAB 05W: EDMA Audio TUTORIAL
	Introduction
	Table of Contents
	Project Overview
	Hardware Overview
	Import the Starter Project
	Inspect the Starter Code

	Adding I2C Support (lab_08a_i2cAudio)
	1. Create the BIOS Hwi and Task Modules
	2. The I2C Configuration and Communication Code
	3. Update the hardwareInitTask Function
	Build!

	Adding AIC3106 Support (lab_08b_aic3106Audio)
	AIC3106 Configuration Code
	Build, Load, Run…OBSERVE!

	Adding McASP Support (lab_08c_loopbackAudio)
	McASP Configuration Code
	Build, Load, Run…OBSERVE!

	Audio Buffer Overflow/Underflow (lab_08d_overflowErrorAudio)
	LED (GPIO) Configuration Code
	Build, Load, Run…OBSERVE!

	Adding EDMA Support (lab_08e_edmaAudio)
	Create the EDMA3 BIOS Modules
	Create the Audio Task Function
	Build, Load, Run…OBSERVE!

	Adding Audio Filters Support (lab_08f_filterAudio)
	Audio Filter Code

	Explore Results
	Clean up After Yourself

