Topic 2: Integers, Rational Numbers and Real Numbers

Notes:

Number System:

- 2. Real numbers consist of both rational and irrational numbers.
- 3. **Irrational numbers** are numbers that cannot be expressed as exact fractions.

For an example: $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, π , etc...

4. **Rational numbers** are numbers that can be expressed in an exact fraction, where the numerator and denominator are integers, and the denominator is not 0. Rational numbers include all integers and fractions.

For an example: -1, -0.5, 0, 1, 2, 2.5, 4.973, etc...

- 5. The set of **integers** consists of ..., -3, -2, -1, 0, 1, 2, ...
- 6. The set of **whole numbers** consists of 0, 1, 2, 3, 4, 5, ...
- 7. The set of **natural numbers** consists of 1, 2, 3, 4, 5, 6, ...
- 8. The set of **negative integers** consists of ..., -3, -2, and -1.

Ordering of Positive Rational Numbers:

9. To compare two positive rational numbers, express them in fractions and check if the following conditions are met or not.

Both fractions are of	Conclusion	Example
same denominator	Fraction with the larger numerator	$\frac{7}{8} > \frac{3}{8}$
	is the larger fraction	
same numerator	Fraction with the	$\frac{5}{7} > \frac{5}{12}$
	smaller numerator	/ 12
	is the larger	
	fraction	
different	Convert to like	$\frac{2}{-} = \frac{14}{-}$ and $\frac{3}{-} = \frac{15}{-}$
denominator and	fractions with the	5 35 7 35
numerator	same	Thus $3 > 2$
	denominator	1 nus, - 2 - 5 = 5

Mathematical Symbols for Comparison:

10.

Symbol	Meaning	Example
=	is equal to	$0.1 = \frac{1}{10}$
≠	is not equal to	$0.11 \neq \frac{1}{10}$
>	is greater than	0.1 > 0.01
<	is less than	0.005 < 0.05
2	is greater or equal than	a ≥ 6
≤	is lower or equal than	b ≤ 5

Decimal Numbers:

11. There are three types of decimal numbers, and they are listed accordingly in the table below.

Type of Decimal	Meaning	Example(s)
Terminating	A decimal	1.23, 1.425,
Decimals	number that has	5.7354
	finite decimal	
	digits. (A definite	
	/ fixed number of	
	decimals)	
Recurring (or	A decimal	
easier;	number that has	0.6, 7.12, 0.375
Repeating)	several decimal	
Decimals	digits that repeat	(You are
	infinitely	recommended to
	(forever)	use dots instead
		of bar notation)

Non-Terminating and Non-	A decimal number that has	√ 2 = 1.414 213 562
Recurring Decimals	decimals which do not repeat in	π = 3.141 592 653
	any particular order / pattern.	589 79

12. To obtain a recurring decimal from a fraction, use long division or evaluate using a calculator. The table below lists examples of fractions computed and represented as recurring decimals (bar notation.)

Fractions		Recurring Decimals
$\frac{2}{3}$	=	0.6
$\frac{5}{12}$	=	0.416
$\frac{13}{6}$	=	2.16
5 99	=	0.05
$\frac{4}{33}$	=	0.12
$\frac{3}{7}$	=	0.428571

13. To express a recurring decimal into a fraction, use a calculator or do the following steps:

Example: 0.126

Step 1: Take the strip of pattern and put it on the numerator of a fraction.

Step 2: The denominator of the fraction should be "9" but should have the corresponding number of digits as the strip of pattern.

Step 3: Simplify the fraction.

 $0.126 = \frac{126}{999}$ (since 126 is 3 digits, 999 should be the denominator) = $\frac{14}{111}$

$$0.\overline{126} = \frac{14}{111}$$

Representation on a Number Line:

- 14. A number line is a straight line with at least one **arrowhead** pointing to the right indicating that the numbers continue in the same way / pattern **indefinitely**.
- 15. Regular number intervals are represented by markings of equal spacing and the value of the numbers is written below the line.
- 16. Coloured dots are used to represent the numbers on the number line.
- 17. The number on the right of the number line always must be greater than the number on the left beside and more.

Addition and Subtraction of Integers:

No.	Case	Example	Explanation	Multiplication of Signs
1	Adding a negative integer.	+ (-3) = -3	Overall value is negative.	(+) x (-) = (-)
2	Subtracting a positive integer.	- (5) = -5	Overall value is negative.	(-) x (+) = (-)
3	Subtracting a negative integer.	- (-4) = 4	Overall value is positive.	(-) x (-) = (+)
4	Adding 2 positive integers.	3 + 5 = 8	Just take the sum of the digits; overall value is positive.	
5	Adding 2 negative integers.	-3 + (-4) = - (3+4) = -7	Just take the sum of the digits; overall value is negative.	
6	Adding a positive and a negative integer.	-6 + 7 = 7 - 6 = 1 OR 6 + (-7)	Take the difference between the values of the digits and the result will follow the sign	···· ···· OR (+) x (-) = (-)
		= 6 – 7	of the digit	

		= -1	which is numerically greater.	
7	Subtracting a positive integer from a positive integer.	8 – 3 = 5 OR 3 – 8 = -5	 Take the difference between the two positive numbers, - if the first positive number is larger (in value), the result is positive. - If not, the result is negative. 	
8	Subtracting a negative integer from a positive integer.	8 - (-3) = 8 + 3 = 11	Follow Case 3; the result is the same as adding a positive integer to the first positive integer.	(-) x (-) = (+)
9	Subtracting a negative integer from a	-2 - (-3) = -2 + 3 = 1	Follow Case 3; the result is the same as above.	(-) x (-) = (+)

negative integer.	OR	
	-4 - (-3) = -4 + 3	
	= -1	

Multiplication and Division of Numbers:

(Division) (+) no. / (+) no. = (+) no. (+) no. / (-) no. = (-) no. (-) no. / (+) no. = (-) no. (-) no. / (-) no. = (+) no.

Order of Operations:

20. The arithmetic operation of numbers follows the **BODMAS Rule** shown below. There are also **BIDMAS** and **PEMDAS rules**, but we will only show you BODMAS since it is recommended you use this.

(B) rackets – Simplify equations in the brackets first before going to something else. If there is more than one set of brackets intertwined with each other, start with the innermost set of brackets, and then make your way doing the outer ones.

Example: {3 x [4+2 / (3+2) x 12] + 3}

(O) f – Evaluate the Of, (power, roots) if they exist next.

(D) ivision, **(M)** ultiplication – These two come together as a set, but then perform Multiplication and Division from left to right of the equation.

(A)ddition, (S) ubtraction – These two also come as a set together, but perform Addition and Subtraction after Brackets, Of, Division and Multiplication, from the left to the right of the equation.