

Maintainable Code
Test-Driven Development

Traditional development workflow
1. Initial idea

2. Describe some behaviors / requirements

3. Design

4. Implement ← (write code)

• Design problems may surface

5. Maybe write a few tests

Test-driven development workflow
1. Initial idea

2. Describe some behaviors / requirements

3. Write 1 test

• Iterate on design

4. Implement ← (write code for 1 test)

5. GOTO 3 until you’re done

• A good design emerges automatically

• (You were using the code as you built it)

Why TDD?
 Maintenance

▪ Most things are tested
▪ Tests written first → easy to test
▪ Fast feedback when something breaks

 Better APIs
▪ API written before implementation

▸ Converges towards easier-to-use code

Drawbacks
 Learning curve

▪ Going from “code first” to “tests first” can
be challenging

 TDD is a design & coding process, not a testing
process
▪ Not helpful when adding tests to an untested
codebase

▪ Not for full-application (e2e) testing
▸ Use other automation tools

TDD Framework - AAA

TDD Framework - GWT

Properly written tests
 Test a single behavior

▪ Usually 1 assertion
 Consistent

▪ Test does not fail randomly between runs
 Everything tested locally

▪ No communication with other machines
 Self-contained

▪ Setup & teardown all happens within test
▪ No reliance on test order or other tests

Recap
 TDD is a design & coding process

▪ Not for testing untested code
▪ Not for e2e testing

 TDD gives higher confidence in code reliability
▪ Tests are part of the coding process

 TDD code is easier to change
 It will take practice to learn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

