The Basic EV Calculation

The basic EV calculation is very simple and is composed of two parts:

EV = [Part A] - [Part B]

- **Part A**: How often you <u>win</u> **x** How much you <u>win</u>
- **Part B**: How often you lose **x** How much you lose

EV = [Expected Long-Term Winnings] – [Expected Long-Term Loses]

As you can see above, the calculation compares your long-term winnings and long-term losses to determine if a play is profitable or not.

Computing EV in 3 Simple Steps

Step 1: Determine how often you will win and how much you will win:

• 80% of the time you will win \$500 = (.80 x 500) = **\$400**

Step 2: Determine how often you will lose and how much you will lose:

• 20% of the time you will lose \$250 = (.2 x 250) = **\$50**

Step 3: Subtract how much you expect to lose from how much you expect to win:

• \$400 - \$50 = **\$350 + EV**

Pre-flop, we have J A J A and villain open-jams all-in with \$80 effective stack sizes in a \$200 buy-in game. We estimate that we're a 70% favorite to win and will lose 30% of the time, based on our opponent's estimated open-jamming range. If we call and win, we'll win the amount of money that's already in the pot before our call, which is \$83, which includes the blinds. However, if we call and lose, we'll lose the \$80 we risked pre-flop by calling villain's all-in jam.

EV = [Part A] - [Part B]

- **Part A**: How often you <u>win</u> **x** How much you <u>win</u>
 - How much we will win x percentage to win = $($83 \times .70) = 58.10
- **Part B**: How often you lose **x** How much you lose
 - How much we will lose x percentage to lose = $(\$80 \times .30) = \24.00

EV = \$58.10 - \$24.00 **= \$34.10**

This is a **+EV** play. Each time you make this play, you can expect to profit \$34.10 on average, over the long run.

We raise UTG to \$6 with A ♣ A ♠ and get called by one opponent. The flop comes K ♠ 8 ♥ 3 ♠. We bet \$12 into a \$15 pot, our opponent raises to \$30, we re-raise to \$80, and villain goes all-in for his remaining \$175 stack. Having our opponent covered, we make the call for an additional \$113 and villain turns over K ♣ 9 ♠. The turn card is 9 ♥ and the river card is Q ♣, causing us to become unlucky and lose a massive pot.

Determining Win & Loss Information

Using Equilab, we determine that we expect to win and lose:

- Win: 82.40%
- **Lose**: 17.60%

Total Pot Size: \$312

- Win Amount: \$312
- Loss Amount: \$113

EV = (\$312 x .824) - (\$113 x .176) = **\$237.20 EV** = \$257.09 - \$19.89 = **\$237.20**

