Introduction to Analysis of Variance

Ismail SA

Participants to be able to:

- 1. Understand when to apply ANOVA
- 2. Run ANOVA using SPSS and interpret the results

Requirement

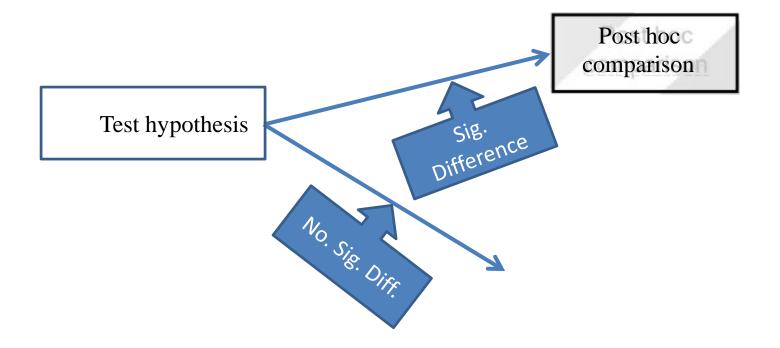
- ► DV Interval or ratio
- IV Nominal or ordinal (k>2)

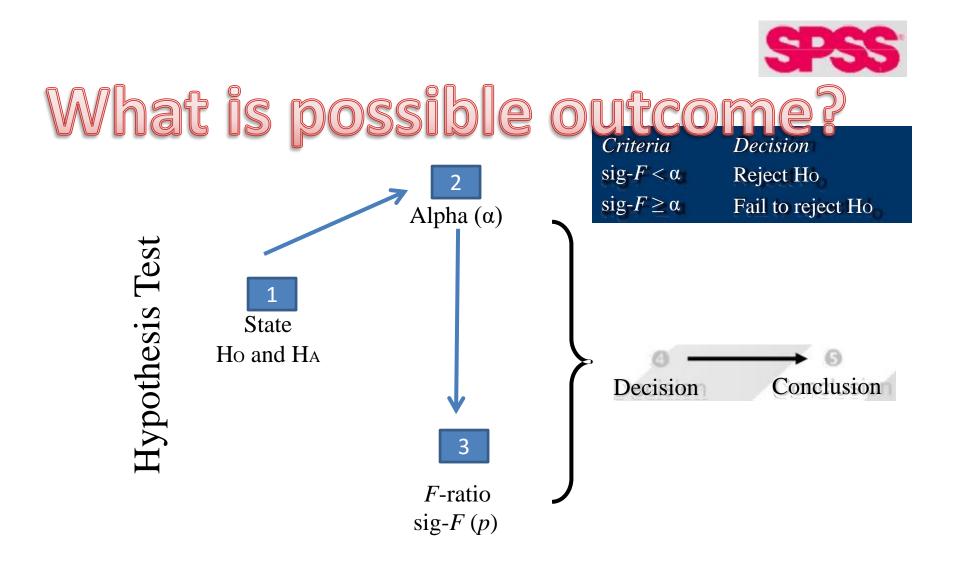
Assumptions

- 1. The dependent variable is normally distributed for each of the populations as defined by the different levels of the factor (independent variable)
- 2. The variances of the dependent variable are the same for all populations (homogeneity of variance)
- 3. The cases represent random samples from the populations and the scores on the test variable are independent of each other

Homogeneity of Variance Test

Ho: $\sigma_{12} = \sigma_{22} = \ldots = \sigma_{k2}$


HA: Not all variances are equal


Use Levene Statistics to test on the assumption:

The assumption is fulfilled if: sig-Levene $(p) > \alpha$

The assumption is violated if: sig-Levene $(p) < \alpha$

What is possible outcome?

Step 1: Hypotheses

Ho: $\mu_1 = \mu_2 = \mu_3$ HA: Not all means are equal

Step 2: Significance level

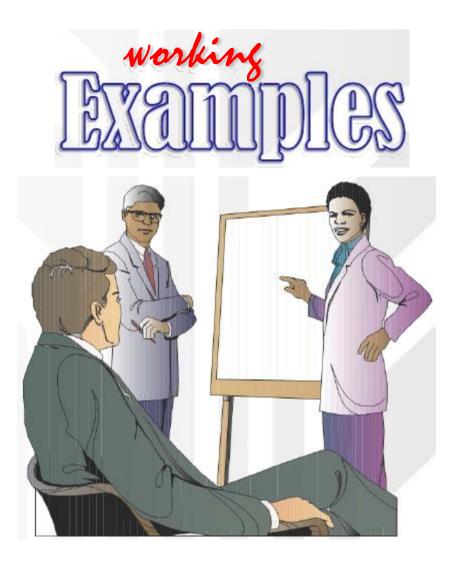
Set the significance level (alpha) Generally in social science α =.05

Step 3: Test statistic

Report the test statistic (*F*-ratio) Decision based on sig-*F*

Step 4: Decision

Whether to Reject OR Fail to reject Ho


Criteria	Decision
sig- $F < \alpha$	Reject Ho
sig- $F \ge \alpha$	Fail to reject Ho

Step 5: Conclusion

Reject Ho: Significant difference between the groups Fail to reject Ho: No significant difference between the groups

Post-hoc comparison

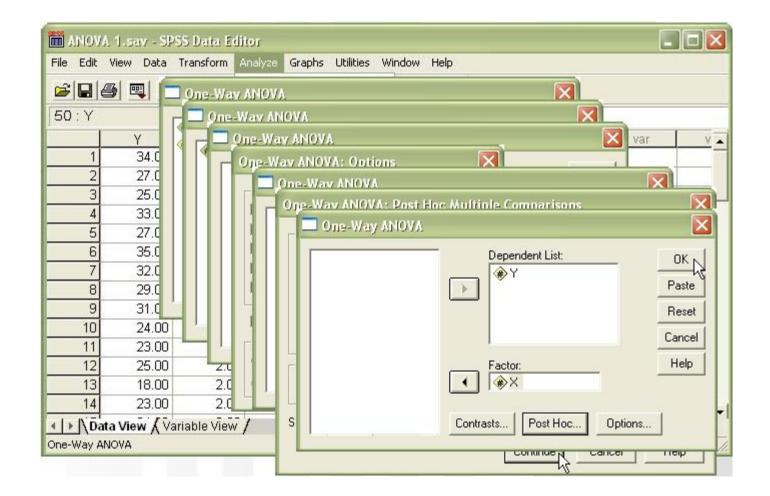
- To determine pair of groups that are significantly different
- Tukey's HSD (Honestly Significant Difference)

Data on perception toward management was gathered from a randomly selected sample comprising of three employee groups (supervisory, line and support). Test the difference in perception among the three groups at .05 level of significance.

_			Groi	ıp
1.	State the appropriate null and	<u>Sup</u>	Lin	Spt
	alternative hypotheses	34	24	14
\mathbf{c}		27	23	23
Ζ.	Report the value of the test	25	25	16
	statistic	33	18	21
3.	State your decision and	27	23	20
5.	•	35	24	17
	conclusion; and justify your	32	21	16
	answer	29	18	24
		31	17	22

23

18


Define Variables

	10 a 🔚 🗗	一個雪		<u> </u>			
Name	Туре	Width	Decimals	Label	Values	Missing	T
1 Y	Numeric	8	2	Perception towar	None	None	
2 X	Numeric	8	2	Employee groups	{1.00, Supervis	None	
3							
4							
5							
6							
7							
8							
9							-
0							
1							
2							
3							
4							
5						1	

Enter Data

					/indow Help				
≠ ■ ⊜ 50:Y	<u>s</u> <u>s</u>		990 1		5 30				
1	Y	X	var	var	var	var	var	var	v
1	34.00	1.00							
2	27.00	1.00							
3	25.00	1.00							
4	33.00	1.00							
5	27.00	1.00							
6	35.00	1.00							_
7	32.00	1.00							-
8	29.00	1.00							-
9	31.00	1.00							
10	24.00	2.00							
11	23.00	2.00							
12	25.00	2.00							
13	18.00	2.00							
14	23.00	2.00							

Oneway ANOVA Procedure

Descriptives

X							
					95% Confidence Interval for Mean		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	
1.00	9	30.3333	3.50000	1.16667	27.6430	33.0237	
2.00	10	21.1000	3.07137	.97125	18.9029	23.2971	
3.00	10	19.6000	3.56526	1.12744	17.0496	22.1504	
Total	29	23.4483	5.75442	1.06857	21.2594	25.6371	

Test of Homogeneity of Variances

X			
Levene Statistic	df1	df2	Sig.
.194	2	26	.825

-

ANOVA

X								
	Sum of							
	Squares	df	Mean Square	F	Sig.			
Between Groups	629.872	2	314.936	27.542	.000			
Within Groups	297.300	26	11.435					
Total	927.172	28						

Multiple Comparisons

Dependent Variable: X

Tukey HSD

		Mean Difference			95% Confidence Interval	
(I) GRP	(J) GRP	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	9.2333*	1.55370	.000	5.3726	13.0941
	3.00	10.7333*	1.55370	.000	6.8726	14.5941
2.00	1.00	-9.2333*	1.55370	.000	-13.0941	-5.3726
	3.00	1.5000	1.51226	.588	-2.2578	5.2578
3.00	1.00	-10.7333*	1.55370	.000	-14.5941	-6.8726
	2.00	-1.5000	1.51226	.588	-5.2578	2.2578

*- The mean difference is significant at the .05 level.

Hypotheses Ho: $\mu_1 = \mu_2 = \mu_3$ HA: Not all means are equal

Table 1:Results of Analysis of Variance between
perception and employee groups

Groups	n	Mean	SD	F	p
Supervisory	9	30.33	3.50	27.542	.000
Line	10	21.1	3.07		
Support	10	19.6	3.57		

<u>F</u> (2, 26) = 27.542, <u>p</u> = .000 Since sig-*F* (.000) < α (.05)

Criteria	Decision
sig- $F < \alpha$	Reject Ho
sig- $F \ge \alpha$	Fail to reject Ho

∴Reject the null hypothesis
Conclude that there is a significant difference
in perception towards management between
the three employee groups at .05 level of
significance.

In addition, results of post-hoc comparisons reveal a significant difference between:

- 1. Supervisory and line worker
- 2. Supervisory and support

Dr Irwan is interested to test the differences in public speaking skill among three student groups (Engineering, Education and Communication). Data collected from a randomly selected sample follow. Test the hypothesis at .01 level of Data set: significance Groups

- 1. State the appropriate null and alternative hypotheses
- 2. Report the value of the test statistic
- 3. State your decision and conclusion; and justify your answer

		1
Eng	Edu	Com
23	24	30
26	25	28
22	23	29
22	26	26
25	31	24
26	27	25
23	24	27
27	25	28
23	22	
	21	
	24	

Descriptives

Public speaking scores										
					95% Confidence Interval for					
					Mean					
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum		
Engineering	9	24.1111	1.90029	.63343	22.6504	25.5718	22.00	27.00		
Education	11	24.7273	2.68667	.81006	22.9223	26.5322	21.00	31.00		
Communication	8	27.1250	2.03101	.71807	25.4270	28.8230	24.00	30.00		
Total	28	25.2143	2.52919	.47797	24.2336	26.1950	21.00	31.00		

Test of Homogeneity of Variances

Public speaking scores

Data Karana a Lina a sa a

Levene Statistic	df1	d f 2	Sig.
.104	2	25	.902

ANOVA

Public speaking scores

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	42.769	2	21.384	4.114	.029
Within Groups	129.946	25	5.198		
Total	172.714	27			

Hypotheses Ho: $\mu_1 = \mu_2 = \mu_3$ HA: Not all means are equal

Table 2:Results of Analysis of Variance betweenPublic Speaking Scores and student groups

Groups	n	Mean	SD	F	р
Engineering	9	24.11	1.90	4.114	.029
Education	11	24.73	2.69		
Communication	8	27.13	2.03		

<u>F</u> (2, 25) = 4.114, p = .029Since sig-*F* (.029) > α (.01)

Criteria	Decision
sig- $F < \alpha$	Reject Ho
sig- $F \ge \alpha$	Fail to reject Ho

∴Fail to reject the null hypothesis
Conclude that there is no significant difference
in public speaking scores between the three
student groups at .01 level of significance.

Application Exercise

Data Set 3:

Based on the above data set, identify the appropriate variables to run for Analysis of Variance

For test:

- 1. State the appropriate null and alternative hypotheses
- 2. Report the value of the test statistic
- 3. State your decision and conclusion; and justify your answer

Hypothesis Ho: HA:

Table 3:Results of ANOVA between Marital Status and
Job Performance

Groups	n	Mean	SD	F	p
Bachelor					
Married					
Widowed					

Decision and justification

Conclusion

Criteria	Decision
sig- $t < F$	Reject Ho
sig- $t \ge F$	Fail to reject Ho

Data Set: Hatco

Based on the above data set, identify the appropriate variables to run for Analysis of Variance

For the test:

- 1. State the appropriate null and alternative hypotheses
- 2. Report the value of the test statistic
- 3. State your decision and conclusion; and justify your answer

Hypothesis Ho: HA:

Table 3:Results of ANOVA between Type of Buying Situation andSatisfaction

Groups	п	Mean	SD	F	р
New task					
Modified rebuy					
Straight rebuy					

Decision and justification

Conclusion

Criteria	Decision
sig- $t < F$	Reject Ho
sig- $t \ge F$	Fail to reject Ho