

AC Voltage

- · AC Voltage Current flows in Both Directions.
- The Voltage that is brought into our home, 120 RMS VAC at 60 Hz
- · Easier to transport over long distance Then DC Voltage

What is RMS Voltage AC?

- Root-Mean-Square Take The Square of each Individual Value (Square).
- Adding the Squares Dividing the Sum by the Number of Values (Mean).
- Take the Square Root of this Value is the RMS Value (Root)

What is RMS Voltage AC?

Root-Mean-Square

Example: Find the RMS Value of 2,3,4

- Take The Square of Each Value 22 = 4, 32 = 9, 42 = 16
- Find the Mean (Average) , 4 + 9 + 16 / 3= 29/3= 9.67
- Root Square Root of 9.67, $\sqrt{9.67}$ = RMS Value 3.11

- 120 VAC RMS at 60 Hz.
- Peak Voltage Equals 1.414 x RMS
- Peak to Peak Voltage equals 2.828 x RMS or 2 x Peak Voltage
- RMS Voltage Equals .707 x Peak Voltage
- 1/T = F & 1/F = T

Questions

- 60 VAC Find p-p Voltage =
- 90 VAC p-p Find Peak Voltage =
- 170 VAC Peak Find RMS =
- Find T for 60 Hz =
- Find F for 8.33 ms =

- 120 VAC RMS at 60 Hz.
- Peak Voltage Equals 1.414 x RMS
- Peak to Peak Voltage equals 2.828 x RMS or 2 x Peak Voltage
- RMS Voltage Equals .707 x Peak Voltage
- 1/T = F & 1/F = T

Answers to Questions

- 60 VAC Find p-p Voltage = 169.68 or 170 Volts p-p AC
- 90 VAC p-p Find Peak Voltage = 45 Volts Peak Ac
- 170 VAC Peak Find RMS = 120.19 Volts AC
- Find T for 60 Hz = 0.01667 s or 16.67 ms
- Find F for 8.33 ms = 120 Hz

Conversions:

1 Volt = 1000 milli Volts or 1000000 u Volts or Micro Volts;

Powers of 10; $1x10^{-3}$ is milli; $1x10^{-6}$ μ or micro

1000 Volts = 1 Kilo Volts; 1 KV Powers of 10: $1x10^{+3}$

1000000 Volts = 1 Mega Volts : Powers of 10 : $1x10^{+6}$

