Question	Answers	Mark	Additional Comments/Guidance
05.1	$\begin{aligned} & \Delta S=\Sigma S \text { products }-\Sigma S \text { reactants or } \\ & 253+(2 \times 198)-(2 \times 223+2 \times 5.7+50.2)(=649-507.6) \\ & \Delta S=141(.4)\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \Delta G=\Delta H-T \Delta S \\ & \Delta G=-60-\left(\underline{1262} \times 141(.4) \times 10^{-3}\right) \\ & =-238\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { to } 3 \text { sig figs } \end{aligned}$ feasible since ΔG is negative/less than zero	1 1 1 1 1	This expression could also score M1 This scores M1 and M2 Allow ecf for M3, M4 and M5 from incorrect M2 This expression also scores M3. For M4, allow $\Delta G=-60-\left(\underline{1262} \times\right.$ their $\left.\mathrm{M} 2 \times 10^{-3}\right)$ If calculated in joules M4: Allow $\Delta G=-60 \times 10^{3}-(1262 \times 141(.4))$ M5: Allow - $238000 \mathrm{~J} \mathrm{~mol}^{-1}$ providing units shown Allow consequential M6 from their ΔG
Total		6	

