

Partie 2: Diffraction par une ouverture circulaire

Au cours d'une expérience de diffraction de la lumière monochromatique de longueur d'onde dans l'air λ d'un laser traversant un trou de diamètre d. L'écran est situé à la distance D=4m du trou (Figure 2). On suppose que les angles sont très faibles $(\tan(x) \approx \sin(x) \approx x)$.

- 1) Choisir la proposition juste parmi les affirmations suivantes :
 - A. La figure de diffraction de la lumière blanche présente une tache centrale colorée
 - B. L'onde est diffractée si la dimension de l'obstacle est grande par rapport à la longueur d'onde
 - C. Le phénomène de diffraction ne s'observe que pour les ondes lumineuses
 - D. L'onde diffractée a une direction de propagation modifiée

- 2) On admet que le demi-diamètre θ de la tache centrale pour une ouverture circulaire de diamètre d est de la forme $\theta = \frac{\alpha \cdot \lambda}{d}$ avec α un coefficient de correction lié à la forme circulaire de l'ouverture. Trouver l'expression de D en fonction de r, d, α et λ
- 3) On mesure le rayon r de la frange centrale pour différents trous fins. Les résultats obtenus permettent de tracer la courbe de la (*Figure* 3), qui représente les variations de r en fonction de $\frac{1}{d}$ Par exploitation de cette courbe déterminer la longueur de l'onde utilisée. (*On donne* : $\alpha = \frac{1}{192}$)
- 4) On refait la même expérience mais avec un trou fixe. La mesure du rayon de la tache centrale donne $r_1 = 61,548 \, mm$ après on fait glisser l'écran avec une distance D_2 . La valeur du rayon de la tache centrale devient $r_2 = 93,322 \, mm$. Déterminer la distance D_2