Topic 12: Perimeter and Area of Plane Figures

Notes:

- 1. The **perimeter** of a two-dimensional figure refers to the length of the outline of the figure.
- 2. The **area** of a two-dimensional figure refers to the amount of surface that covers the figure.
- 3. The following table shows the area and perimeter of some common geometrical figures.

Diagram	Geometrical Figure	Formula for Area (square units)	Formula for Perimeter (units)
$\frac{1}{a}$	Rectangle	ав	2(a + b)
x	Square	x²	4 <i>x</i>

	Triangle	$\frac{bh}{2}$	a + b + c
h da	Parallelogram	вh	2(a + b)
$\frac{a}{d}$	Trapezium	$\frac{(a+b)h}{2}$	a + b + c + d
····	Circle	πr^2	2πr or πD
(ii) r	a. Sector b. Semicircle	a. $\frac{o}{360^{\circ}}(\pi r^2)$ b. $\frac{\pi r^2}{2}$	$\frac{\frac{o}{360^{\circ}}(2\pi r) + \frac{o}{360^{\circ}}(\pi D) + \frac{o}{360^{\circ}}(\pi D) + \frac{\pi r + 2r \text{ or } \frac{\pi D}{2} + D}$

- 4. To calculate the perimeter or area of a composite figure, find the sum or difference in perimeter or area of the various simple geometric figures, such as triangle, parallelogram, trapezium or circle that make up the composite figures.
- 5. Conversion of units:
 - a) $1m^2 = (100cm)^2 = 10\ 000cm^2$
 - b) $1 \text{cm}^2 = (10 \text{mm})^2 = 100 \text{mm}^2$