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SUMMARY

The brain strengthens memories through consoli-
dation, defined as resistance to interference (sta-
bilization) or performance improvements between
the end of a practice session and the beginning
of the next (offline gains) [1]. Typically, consolida-
tion has been measured hours or days after the
completion of training [2], but the same concept
may apply to periods of rest that occur inter-
spersed in a series of practice bouts within the
same session. Here, we took an unprecedented
close look at the within-seconds time course of
early human procedural learning over alternating
short periods of practice and rest that constitute
a typical online training session. We found that
performance did not markedly change over short
periods of practice. On the other hand, perfor-
mance improvements in between practice pe-
riods, when subjects were at rest, were significant
and accounted for early procedural learning.
These offline improvements were more prominent
in early training trials when the learning curve was
steep and no performance decrements during
preceding practice periods were present. At the
neural level, simultaneous magnetoencephalo-
graphic recordings showed an anatomically
defined signature of this phenomenon. Beta-
band brain oscillatory activity in a predominantly
contralateral frontoparietal network predicted
rest-period performance improvements. Consis-
tent with its role in sensorimotor engagement [3],
modulation of beta activity may reflect replay of
task processes during rest periods. We report a
rapid form of offline consolidation that substan-
tially contributes to early skill learning and may
extend the concept of consolidation to a time
scale in the order of seconds, rather than the
hours or days traditionally accepted.
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RESULTS

Early Online Learning Was Evidenced during Short Rest
Periods
Initial training on a new motor skill consists of short periods of

active practice alternating with short periods of rest, a pattern

that results in significant early learning [4]. Here, we studied

the relative contribution of practice and rest to early learning.

27 healthy humans practiced a well-characterized motor-skill

task comprising a series of sequential key presses [5, 6], which

is widely used in the study of procedural memory formation

[7, 8]. They trained over 36 trials consisting of 10 s practice

(reduced duration [5, 9]) and 10 s rest periods for a total of

12 min (day 1 in Figure 1A). In each practice period, participants

were asked to repetitively tap a 5-item sequence indicated on

the screen as quickly and accurately as possible using their

left, non-dominant hand. Participants returned the following

day for a test session. Performance was measured as the tap-

ping speed (key presses/s) for correctly performed sequences

[10]. We defined early learning as the window of practice trials

required to reach 95% of the total day-1 learning. Modeling the

group average learning curve showed that this performance level

was achieved by trial 11 (Figure 1B).

During early learning, performance improved rapidly within the

first fewminutes of practice (Figure 1B) before reaching a perfor-

mance ceiling [6, 10]. Observation of the learning curve at a high

temporal within-trial resolution unveiled clear performance incre-

ments between practice periods (Figure 2A). We then proceeded

to dissect learning into performance improvements occurring

during the practice and rest periods. Micro-online learning was

defined as the difference in tapping speed (key presses/s)

between the beginning and end of each practice period. Micro-

offline learningwasdefinedas thedifference in tapping speedbe-

tween the end of each practice period and the beginning of the

next one (Figure 2A; STAR Methods). During practice periods,

performance either slightly increased, decreased, or stagnated,

whereas during rest periods, we detected micro-offline gains

that closely tracked total learning at a trial-by-trial basis. Micro-

offline gains were maximal in early trials when performance dur-

ing practice periods neither improved nor worsened (Figure 2B).

Total early learning was calculated as the sum of single-trial

performance changes and amounted to 2.37 ± 0.24 key
evier Ltd.



Figure 1. Motor-Skill Task and Perfor-

mance Curve

(A) Task: participants learned the motor-skill task

[5, 6] over 36 trials (inset shows a single trial)

consisting of alternating practice and rest periods

of 10 s duration for a total of 12 min. In each

practice period, participants were asked to

repetitively tap the sequence indicated on the

screen as quickly and accurately as possible using

their left, non-dominant hand. The next day, per-

formance was tested over 9 trials. Brain oscillatory

activity was recorded with magnetoencephalog-

raphy (MEG) for 5 min before (resting-state base-

line) and during the task on day 1.

(B) Skill was measured as the average inter-tap

interval within correct sequences (tapping speed

measured in key presses/s) [10]. The average number of correct sequences per trial is shown as green dots. The performance curve of day 1 (mean + SEM) and

the modeled group average performance (overlaid) showed that 95% of learning occurred within the first 11 trials (vertical line, early learning) before reaching

maximal performance. See also Figure S1 for supplemental behavioral data and Figure S2 for individual data.
presses/s (mean ± SEM, two-tailed one-sample t test, T = 9.76,

p < 0.001). To assess the micro-online and micro-offline contri-

bution to early learning, we summed performance differences

in each participant over all 11 practice or 10 rest periods.

Comparing each contribution to total early learning, we found

that all early learning was accounted for by performance in-

creases during rest periods rather than during practice periods

(Figure 2C). Indeed, on average, micro-online changes were nil

(�0.32 ± 0.75 key presses/s, T = �0.41, p = 0.68), whereas

micro-offline gains were substantial (2.69 ± 0.63 key presses/s,

T = 4.19, p < 0.001, Figures 2B and 2C).

We probed the robustness of these findings by definingmicro-

scale learning in alternative ways: (A) tapping speed of correct

sequences in the first and last 2 s of each practice period, (B) tap-

ping speed of correct sequences of the first and last second of

each practice period, and (C) the difference in the intersection

at the beginning and the end of a least-squares fit line to the per-

formance of each practice period. All measurements rendered

comparable results: early learning was evidenced during rest

periods rather than during practice periods (see also Figures

S1C–S1F). Performance measurements allowing within-prac-

tice-period temporal resolution of errors could conceivably pro-

vide additional information.

Learning over all day-1 trials (2.73 ± 0.22 key presses/s,

mean ± SEM, two-tailed one-sample t test, T = 12.15, p <

0.001) was larger than overnight improvement from the end of

training on day 1 to test on day 2 (0.73 ± 0.10 key presses/s,

T = 6.92, p < 0.001), consistent with previous reports [6]. Over-

night offline learning did not correlate with micro-offline gains

during early learning (linear model, p = 0.83), suggesting different

mechanisms at play. Accuracy was comparably high during

early (trials 1–11; 0.89 ± 0.02, mean ± SEM) and late (trials

12–36; 0.90 ± 0.01) learning trials (Figure S1B).

Micro-Offline Learning Occurs in a State of Low Beta
Power
How could learning manifest itself within 10 s rest periods? To

gain insight into the systems-level possible mechanisms sup-

porting this rapid form of offline learning, we recorded magneto-

encephalographic activity during the task and in a resting-state

baseline (Figure 1A). We spectrally decomposed trial-by-trial
brain activity projected on the entire cortical sheet spanning

rhythms that support cognitive and motor function [11]. At

each location (548 edges on a cortical grid) and frequency

(1–90Hz, Figure 3A), a linearmixed effects (LME)model was esti-

mated using oscillatory activity to predict micro-online and mi-

cro-offline learning. Micro-offline learning was inversely pre-

dicted by beta-band (16–22 Hz) brain oscillatory activity during

rest periods in a predominantly contralateral frontoparietal

network (Figures 3 and 4; Table S1).

This inverse relationship was confirmed by modeling micro-

offline learning within participant (mean ± SEM, model coeffi-

cient, �1.23 ± 2.41, n = 27 model coefficients, T = �2.7, p =

0.01, two-tailed one-sample t test) and within trial (�0.90 ±

0.89, n = 10 model coefficients, T = �3.2, p = 0.01). The correla-

tion between micro-offline learning and beta power during rest

periods was not driven by performance improvements during

early learning. First, including trial-by-trial performance in the

predictive model as an additional factor (LME model with micro-

offline learning as the dependent variable, beta power during rest

periods and performance as fixed effects, participants as

random effect, n = 10 trials 3 27 participants) did not improve

the model fit (likelihood ratio test, p = 0.55). Second, the linear

partial correlation coefficient between micro-offline learning

and beta power during rest periods was virtually identical with

and without partialling out performance (linear partial correlation

coefficient, r = �0.25, n = 10 trials 3 27 participants, p = 3.8 3

10�5; linear correlation coefficient, r = �0.26, n = 10 trials – 27

participants, p = 2.4 3 10�5, respectively). Also, exclusion of

the first second of the rest period (i.e., the beta rhythm amplitude

rebound [12], which may include beta amplitude increase as a

physiologic stop signal) from analysis (Figure S3A) did notmodify

this result.

In order to test whether beta rhythm amplitude predicted

micro-offline gains during specific segments of the 10-s-long

rest period, we estimated the same model for 5 consecutive

2-s-long segments of the rest period. The inverse prediction

was stable across the entire rest period (Figure 4B). Throughout

early learning, the beta rhythm power during rest periods was

lower than it was during resting-state baseline (�0.1 ± 0.02,

mean ± SEM, two-tailed one-sample t test, T = �4.6, p =

0.001, n = 10 trials).
Current Biology 29, 1346–1351, April 22, 2019 1347



Figure 2. Early Online Learning Was Evi-

denced during Short Rest Periods

(A) Microscale early learning reveals perfor-

mance increments over rest periods. Micro-online

changes were calculated as the difference in tap-

ping speed (key presses/s) of the first and last

correct sequence within a practice period (blue

in inset), and micro-offline changes were calcu-

lated as the difference between the last correct

sequence within a practice period compared to

the first of the next practice period (red in inset).

(B) Trial-wise early learning. Each line depicts

performance changes (micro-offline in red, micro-

online in blue, total in black) per trial (mean + SEM).

Total learning is closely accounted for by micro-

offline gains (black and red lines), whereas

micro-online performance changes fluctuate around 0. Note the presence of large micro-offline gains and total early learning in the initial trials in the absence of

micro-online performance decrements. Subsequently, within-practice performance decrements manifested gradually as learning slowed down.

(C) Data points in the violin plot depict the sum of changes in performance over early learning trials in each participant. Note that total early learning is accounted

for by performance improvements during rest periods but not during practice periods (two-tailed one-sample t test for each learning partition, ***p < 0.001,

FDR-corrected for multiple comparisons). See also Figure S1.
The beta rhythm emerges as transient high-powered events

instead of as a sustained signal [13]. Functionally relevant differ-

ences in time-averaged power can reflect changes in event char-

acteristics like number, amplitude, or duration. We investigated

the predictive value of beta event characteristics onmicro-offline

learning. Beta event characteristics (number, maximum ampli-

tude, duration) all inversely predicted micro-offline learning simi-

larly to trial average beta power (LME, n = 10 trials 3 27 partici-

pants, p < 0.05, Figure S4). Neither theta, alpha, or gamma

rhythms during rest nor any rhythm during practice periods pre-

dicted micro-offline learning (Figures S3C and S3E). No brain

oscillatory activity during practice or rest periods predicted mi-

cro-online learning (Figures S3B and S3D), learning over all

day-1 trials, or overnight improvement from the end of training

on day 1 to test on day 2.

DISCUSSION

The main finding of this study was that performance improve-

ments during online procedural motor learning develop during
model coefficient, n = 10 trials3 27 participants) at the significant frequencies an

Note that only beta oscillatory activity at 16-22 Hz in frontoparietal areas was pr

(B) Inverse relationship between frontoparietal beta oscillatory activity during res

Figure S3 for predictive oscillatory activity for micro-scale learning. See also Tab
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rest instead of during practice periods. Early trials showed stron-

gest micro-offline and total learning in the absence of preceding

within-practice performance decrements. Downregulation of

predominantly contralateral beta oscillatory activity during rest

periods was identified as an intrinsic neural signature that pre-

dicted micro-offline gains.

Consolidation, measured as offline performance gains, has

been tested at different time intervals following the end of a prac-

tice session [14, 15]. Here, we studied early performance im-

provements over periods of rest that occur within a series of

practice bouts within the same session when naive subjects

practice a new motor skill for the first time. Our results docu-

mented a substantial contribution of micro-offline performance

improvements to early learning during these seconds-long rest

periods in the absence of within-practice performance decre-

ments (Figure 2B). The sum of these improvements in perfor-

mance during rest periods was four times larger than it was dur-

ing overnight offline learning (difference in performance between

the end of training in day 1 and test on day 2), accounted for virtu-

ally all early procedural learning (Figure 2C), and represented
Figure 3. Micro-Offline LearningOccurs in a
State of Low Beta Power

(A) Brain oscillatory activity during rest periods

predictive of micro-offline learning. The horizontal

plane depicts the relative power during rest pe-

riods compared to resting-state baseline across

spectra (x axis, 1–90 Hz) and cortex (y axis, 548

locations clustered at frontal [Fro], parietal [Par],

temporal [Temp], occipital [Occ], and cerebellar

[Post] lobes).Warm yellow colors depict significant

power increases during rest periods compared to

resting-state baseline, cold blue colors significant

power decreases (two-tailed one-sample t tests,

n = 27). The z axis depicts the strength of the in-

verse relationship between oscillatory power and

micro-offline learning (linear mixed effects (LME)

d locations (magenta). All p < 0.05im, FDR-corrected for multiple comparisons.

edictive of micro-offline learning.

t periods and micro-offline learning (n = 10 trials 3 27 participants). See also

le S1.



Figure 4. Topography and Time Course

of Predictive Beta Oscillatory Activity for

Micro-Offline Learning

(A) Topography of the predominantly contralateral

beta oscillatory activity during rest periods pre-

dictive of micro-offline learning, indicated by the

LME model coefficient (Table S1).

(B) Frontoparietal beta activity predicted micro-

offline gains throughout the duration of early-

learning rest periods (averaged in each of 5

consecutive2 s segments, LMEmodel coefficient ±

SEM, n = 10 trials3 27 participants).
approximately 95% of overall day-1 learning for this task (Fig-

ure 1B). Thus, micro-offline gains made a sizable contribution

to early motor-skill learning and to what is often referred to as

initial online learning when acquiring a new motor skill [4].

The findings that micro-offline gains in this period were sub-

stantial and largest at trials with no discernible evidence of

within-practice performance decrements (Figure 2B) are consis-

tent with the interpretation that early-learning micro-offline gains

may represent a rapid form of consolidation. In these early trials,

micro-offline gains could conceivably result from unmasking of

inhibitory effects like low-level fatigue or reactive inhibition [16].

However, previous work on rapid improvements after a few mi-

nutes of rest in the rotor pursuit task [17] have been interpreted

as reflecting ‘‘the need for rest on the part of the organism in or-

der to consolidate the memory trace’’ [18] rather than recovery

from inhibitory effects [19]. After performance maximum was

reached (i.e., following trial 11), within-practice performance

decrements robustly expressed, likely signaling either fatigue

or reactive inhibition (Figure S1G) [9, 20]. Optimal rest- and prac-

tice-period duration for this rapid consolidation remain to be

determined.

Classically studied offline improvements in skill over extended

periods of time that manifest after the end of a training session

contrast with micro-offline improvements that occur early within

a training session. Accordingly, we found no correlation between

micro-online or micro-offline learning and overnight behavioral

gains. Overnight improvements in motor skill have been linked

to a topological shift of task-related neural activity from cortical

to subcortical regions [10, 21] supported by a dynamic interac-

tion between declarative (hippocampus) and procedural (stria-

tum) memory systems [10, 22, 23]. On the other hand, the brief

time window of this rapid form of consolidation points to short-

term plasticity [24] rather than long-term potentiation or struc-

tural reorganization relevant for longer forms of consolidation [2].

Our finding that frontoparietal beta (16–22Hz) oscillatory activ-

ity during rest periods predicted micro-offline learning is consis-

tent with the involvement of the dorsal frontoparietal network in

encoding offline representations of movement kinematics [16].

Recently, the beta rhythm was found to play a role in structuring

short-term activity-dependent plasticity [25], qualifying it as a

possible neural signature for this fast form of consolidation. A

reduction of the beta rhythm amplitude is present during brain

states that mediate movement preparation, execution, and im-

agery as well as somatosensation [3]. Thus, a low-amplitude
beta rhythm reflects a state of sensorimotor engagement. It is

possible that beta-related activity during rest periods may

contribute to micro-offline learning through reactivation of previ-

ous practice-related activity [26, 27] or memory replay [28].

Memory replay has been documented in humans [20] during

awake states [29, 30], at hippocampal [31] as well as neocortical

sites [32, 33], and it may develop at a far faster rate than does the

pattern of activity during memory formation [34] either in forward

or reverse order [30]. This idea is consistent with observations

suggesting that the reactivations involved in reconsolidation ulti-

mately strengthenmemories after an initial period of vulnerability

[4, 5, 8]. GABAergic signaling, a key determinant of plasticity

related to early learning [35, 36] and beta oscillations [37, 38],

could possibly contribute to micro-offline gains as well. Identifi-

cation of this oscillatory signature of micro-offline learning will

allow future experiments to address the question of causality.

In summary, we report a rapid form of offline consolidation that

contributes substantially to early skill learning. These results

support the idea that the brain opportunistically consolidates

previous memories whenever it is not actively learning [39],

and they extend the concept of memory consolidation to a

time scale on the order of seconds, rather than the hours or

days traditionally accepted.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
33 naive right-handed healthy participants with a normal neurological examination gave their written informed consent to participate

in the project, which was approved by the Combined Neuroscience Institutional Review Board of the National Institutes of Health

(NIH). The sample size was estimated based on our prior data using the same task [5, 42]. Five participants didn’t follow instructions

correctly. Technical problems occurred in one recording. Full datasets were analyzed from 27 participants (17 female, mean ± SEM

age 26.3 ± 0.83). Active musicians were excluded from participation [5]. Of those, 25 participants (16 female, mean ± SEM age 26.6 ±

0.87) completed the day-2 session.

METHOD DETAILS

Task
Participants learned a procedural motor-skill task on day 1 [5, 43, 44]. They used the non-dominant, left hand to perform a sequence

of five key presses (4-1-3-2-4) as quickly and accurately as possible in response to instructions displayed on a monitor. Key presses

were applied on a four-key response pad (Cedrus LS-LINE) with the pinky finger corresponding to button # 1, the ring finger to # 2,

middle finger to # 3 and index finger to # 4 (Figure 1A). Themonitor displayed the sequence continuously and provided feedback in the

form of a star appearing immediately after each key press regardless of correctness. Key press timing (ms) was recorded for behav-

ioral data analysis. 36 trials were performed during day-1 training and 9 trials were performed during day-2 testing. Each trial con-

sisted of a 10 s practice period followed by a 10 s rest period [20, 42]. Participants were instructed to focus on the visually presented

five-item sequence (during practice periods) or on five ‘‘X’’ symbols displayed on the monitor (during rest periods). Thus, a single trial

included a practice period followed by a rest period. Each participant was tested at a similar time of day on days 1 and 2 (±2 hours).

Stimuli were programmed, presented and responses recorded with E-Prime 2.

Behavioral Data Analysis
Tapping speed was quantified as the average of the time intervals between adjacent key presses within correct sequences [10]

divided by 1000 (key presses/s). Performance within each trial was calculated as the mean tapping speed of all correctly performed
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sequences (including correct sequences the participant has not completed by the end of the trial [44, 45]. Accuracy was quantified as

1 minus the number of erroneous relative to correct key presses in each trial [6, 45].

Early learning
The end of early learning was reached when 95% of the total day-1 learning was achieved. We chose 95% of maximal performance

because it corresponds to the significance level, alpha, of 5%. It was calculated using a modeling approach in which the group

average performance curve of mean tapping speed per trial, BðtÞ, was fitted using an exponential function LðtÞ:

BðtÞ � LðtÞ= k1 +
k2

1+ e�k3t

where k1 and k2 control the learning plateau, k3 controls the learning steepness, and t˛½1; +NÞ represents trial. Parameters k1�3 were

estimated by gradient descent, with the objective function defined as the root mean square error between B and L functions:

min
k˛R3

X

t

ðBðtÞ � LðtÞÞ2

From this function, we estimated the end of early learning as the trial t after 95% of the total learning had occurred. In practice, this

value can be estimated as:

t = round
�
L�1ð0:95$ðLðNÞ � Lð1ÞÞ+ Lð1ÞÞ �

identifying the end of early learning at the group level by trial 11 (vertical line Figure 1B).

Microscale learning
We developed a novel approach to study trial by trial early learning, dissecting performance improvements occurring during practice

(micro-online) and during rest (micro-offline) periods. Micro-online learning was defined as the difference in tapping speed between

the first and the last correct sequence of a practice period. Micro-offline learning was the difference in tapping speed of the last

correct sequence of a practice period and the first correct sequence of the next practice period (Figure 2A). The tapping speed of

incomplete sequences was averaged with the previous complete sequence (excluding incomplete sequences from analysis elicited

a comparable result, Figure S1F). In the case of only one correctly performed sequence, the speed of that sequence served as the first

and last tapping speed of each trial. To derive the micro-online and micro-offline contribution to early learning we calculated the sum

over all early learning trials at the participant level. The performance curve of day 1 and the modeled group average performance

showed that 95% of learning occurred within the first 11 trials (Figure 1B). Thus, 11 values (practice periods) were summed for

micro-online, and 10 values (rest periods) were summed for micro-offline learning. Early learning was derived as the sum of all

micro-online and micro-offline values (Figure 2B). Total learning during day 1 over all 36 trials (online learning) was calculated as

the difference between the mean tapping speed of the last and the first trial. Overnight improvement from the end of training

on day 1 to test on day 2 was calculated as the difference between the average tapping speed of the last 9 trials of day 1 (trials

28-36) and the 9 test trials of day 2, as previously done [5, 43].

Magnetic Resonance Imaging
Structural MRI scanning was performed on a 3T MRI scanner (GE Excite HDxt and Siemens Skyra) with a standard head coil.

T1-weighted high-resolution (1x1x1 mm, MPRAGE sequence) anatomical images were acquired for each participant to allow for

spatial coregistration with the MEG sensors and individual head model computation.

Magnetoencephalography
MEGwas recorded simultaneously with early learning during day 1, starting 5 min before the task (resting-state baseline) and for the

duration of the 12 min training. MEG data were recorded using a CTF 275 MEG system composed of a whole head array of 271 (four

broken sensors) radial 1st order gradiometer/SQUID channels housed in a magnetically shielded room (Vacuumschmelze, Germany)

at a sampling frequency of 600 Hz. Synthetic 3rd gradient balancing was used to remove background noise online. To measure head

position, three electromagnetic head coils were attached to the participant’s head at the nasion, left and right pre-auricular point. The

head coil positions relative to the MEG dewar were recorded at the beginning and the end of the MEG recording [46]. The task script

sent synchronizing triggers via a parallel port to the MEG data acquisition computer, which were written to the MEG data file for sub-

sequent analysis. The fiducial positions (nasion, left and right pre-auricular) of the headcoils were coregistered with the individual MRI

after the MEG recording using the Brainsight Neuronavigation System (BrainSight, Rogue Research).

MEG Data Analysis
MEG data was analyzed using the FieldTrip package [40] and the MEG&EEG toolbox of Hamburg [41] on MATLAB 2017b.

Preprocessing
The continuousMEG data were band-pass filtered from 1 to 150 Hz and band-stop filtered at 60 ± 1 Hz to remove line noise using the

default filter settings in the FieldTrip preprocessing functions. The artifact removal processwas twofold: Fist, eyeblink, eyemovement
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and heart beat artifacts were removed by rejection of independent components, obtained via logisitic infomax independent compo-

nent analysis [47]. Second, the entire recording was visually inspected and segments containing other artifacts like movements were

visually identified and marked for rejection.

Source space time frequency reconstruction
Individual forward models consisting of 548 cortical locations and the corresponding lead field matrices were derived as follows:

Based on a template anatomical brain image provided by the FieldTrip package, a regularly spaced (14 mm) three-dimensional

grid of locations within the brain volume and constrained to the cortex, as defined by the AAL atlas [48], was created. This template

grid was warped onto each individual MRI to give a three-dimensional grid of the same 548 cortical locations in the individual head

space (source model). The choice of the spacing was a trade-off betweenminimizing computational load while spatially sampling the

entire cortical sheet and corresponds to the reported spatial resolution ofMEG [11]. Individual volume conductionmodels, describing

how currents that are generated in the brain are propagated through the tissue to externally measurable magnetic fields, were con-

structed based on single-shell headmodels [49] derived from brain volume segmentation of individual MRI. Sensor positions in the

MEG helmet were aligned to the individual head space by warping the MEG head coil positions (mean of pre and post recording) to

the fiducials of the MRI and applying the same transformation matrix to all 271 MEG sensors. Based on the individual source and

volume conduction models and the sensor positions, the lead field matrix describing the propagation of source activity from each

cortical location on the grid to each MEG sensor was calculated.

Inverse solution: We reconstructed source activity using low-resolution brain electromagnetic tomography (ELORETA) which sol-

ves the inverse solution by spatial smoothness constraints [50]. For each of the 548 cortical locations two orthogonal (assuming the

radial dimension is silent), real-valued spatial filters were computed that filter activity fromeachMEGsensor to the location of interest.

The two filters were then linearly combined to a single filter in the direction ofmaximal variance after multiplication with the covariance

matrix of the artifact free data. Using this filter, MEG time series were projected into source space to give a source space time series

at each cortical location.

Spectro-temporal representations of the projected data were obtained by transforming the source space time series using Morlet

wavelets at frequencies 1-90 Hz with a cycle number of 5. This procedure was done separately for the 5 min resting-state baseline

and the 12 min task-related MEG recordings. To reduce inter-participant variability, each task-related time series was normalized

with the corresponding average resting-state baseline power by subtraction and division following typical event-related desynchro-

nization analysis [51]. Spectral power during practice and rest periods where averaged over the 10 s duration.

Beta event identification and characterization (Figure S4) was performed in analogy to the methodology described in [52]. Periods

of high beta activity were identified in the normalized beta band (16-22 Hz) time series during rest periods by thresholding the times-

eries at the 90th percentile of individual average beta power. This threshold was empirically derived as the peak correlation coefficient

(Pearson’s) between average rest period beta power and the percent area above threshold in the non-averaged beta time series,

across various thresholds (percentiles). Each suprathreshold periodwith a local maximawas defined as a beta event and themaximal

amplitude, duration (full-width-at-half-maximum) and number of events per rest period were quantified for each participant, rest

period and voxel within the cluster of predictive beta oscillatory activity for micro-offline learning (Figure 3A) and then averaged within

the frontal and parietal cortex (Table S1).

Visualization
Performance curve: The within-trials time-resolved representation of tapping speed for illustration of the performance curve in Fig-

ure 1Bwas derived as follows: For each participant, the tapping speed at each of the 10,000ms constituting one practice period was

defined as the average inter-tap interval of the sequence the participant was executing at that moment. The duration of the execution

of each sequence was defined as the time between the first key press of that sequence (or the beginning of the practice period) and

the first key press of the next (or the end of the practice period). The participants’ timeseries were averaged at each millisecond to

give the performance curve in Figure 1B.

Topographic plots: For the topographic display of brain regions with predictive oscillatory activity (Figure 4A), the cortical grid con-

sisting of 548 locations was interpolated onto a finer grained cortical surface of 8196 locations (provided by the FieldTrip toolbox) and

spatially smoothed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data
Early learning including micro-online, micro-offline and total early learning, as well as online learning on day 1 and overnight improve-

ment from the end of training on day 1 to test on day 2 were tested for significance using two-tailed one-sample t test. P values were

corrected across all behavioral data statistical tests using the Benjamini & Hochberg procedure for controlling the false discovery rate

(FDR) [53].

Predictive model for microscale learning
To study the relationship between early learning and brain oscillatory activity patterns we used a linear mixed-effects modeling

approach. At each cortical location and oscillatory frequency, microscale learning values were modeled as the response variable
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by the average spectral power as the predictor variable. Thereby, micro-online and micro-offline, as well as spectral power during

practice and rest periods were modeled separately. Spectral power was modeled as a fixed effect and individual participants ID

as a random effect and the fitting method used was maximum likelihood. The number of observations were 11 (micro-online) or

10 (micro-offline) trials (early learning) for each of the 27 participants (n = 297 or 270). We additionally modeled micro-offline a) within

each participant, with spectral power of 10 resting periods as the predictor variable, and b) within each trial, with spectral power of 27

participants as the predictor variable. In both approaches, a linear model was used and the 27 (a) and 10 (b) model coefficients were

tested for significance using two-tailed one-sample t tests. To correct for multiple comparisons across the large number of locations

(548), we applied the Benjamini & Hochberg procedure [53].

DATA AND SOFTWARE AVAILABILITY

MEGandbehavioraldataareavailableupon requestbycontracting theLeadContact,MarleneBönstrup (marlene.boenstrup@nih.gov).
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