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LECTURE 1 Overview
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What is Pre-Calculus?

*Pre-Calculus is also called Algebra 3, or Algebra 4. It is supposed to
be the last high school basic Algebra.

*Algebra: Algebra (from Arabic "al-jabr" literally meaning "reunion of
broken parts") is one of the broad parts of mathematics, together
with number theory, geometry and analysis. In its most general form,
algebra is the study of mathematical symbols and the rules for
manipulating these symbols; it is a unifying thread of almost all of
mathematics.
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Branches of Math

*Arithmetic

*Algebra (use of symbols to replace numbers: variables)
*Number Theory

*Probability and Statistics (use of random variables)
*Geometry (including analytical geometry)

*Calculus (use of lambda-calculus, functions)

Pre-calculus is presumably the aggregation of all the knowledge
before calculus. Yet, the curriculum usually covers only Algebra 3.
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Algebra 3

*Algebra 3 focuses on the continuation of study of Algebra and
Trigonometry.

*Topics studied in this course include
1. linear equations and inequalities,

polynomials, factoring,

rational expressions,

trigonometric identities and

functions: exponential, logarithmic, trigonometric, inverse
trigonometric.
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Analytical Geometry ‘ #ET

Topic:
1.
2.
3.

Scalar, Vector

Complex Number and Complex Plane

Linear, polynomial, exponential, logarithmic,
conic, trigonometric functions and their
graphing on a plane

Stretching/Shrinking, Translation, Rotation,
Transformation

Matrix theory and multi-dimensional data
Complex plane, Cartesian plane, Polar system.
Trigonometry and Complex number
Distance and angle

Tangents and Normals

> Analytical GECIITIEtry_’
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Farabola

Circle

Ellipse




Analytical Geometry for a Line

Slope formula

change iny rise y, —y

slope,m = _
change inx run x, —x,

Parallel lines have equal slopes.
The slopes of perpendicular lines are opposite reciprocals of each other

General Form

Ax+By=C

Slope Intercept
Form

yv=mx+b
where m is the slope and b is the y-intercept

Point Slope Form

(y=n)=m(x-x)

where m is the slope

Midpoint Formula

XX, _J’]"‘yz
2 2

Distance Formula

\/(xz - )2 +(}’2 -—N )2
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Discrete and Continuous Aggregation

1. Sequence,

2. Approximation,
3. Asymptotic Analysis and

4. Limits Theory
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Numbers,

LECTURE 1 Variables and
Expressions




NCZCQCA,CRCC

Counting
Numbers

Integers i, mi, V-2, etc.

4 + 2i, 2 - i, e+1ti, etc.

Y, %, %, 17, 2.25, etc. ¢ Measuring
Numbers

V2, -V3, 1+V3/2, etc. < Estimating )
Numbers _
Irrational
- g | Numbers
e, I, e", In2, sin(n/3), etc. <« '"@nscendenta
— - - ( / )' Numbers -




R VIS Goodies!
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Parentheses Exponents Multiply Divide Add subtract

() a2 Xo+ +o-—




Vector, Matrix,

LECTURE 1

and Tensor




SCALARS AND VECTORS

A scalar quantity can be characterized by a
single real number.

Examples: area, volume, time, mass,
temperature.

A vector 1s a quantity involving both magnitude
and direction and cannot be characterized
completely by a single real number.

Examples: force, velocity, acceleration.




Variables as Arrays

In MATLAB, a variable is stored as an array of
numbers. When appropriate, it is interpreted as a
scalar, vector or matrix.

scalar vector matrix

1x1 nx1 or 1xn nxm

The size of an array is specified by the number of
rows and the number of columns in the array, with
the number of rows indicated first.




1D TENSOR/ 2D TENSOR / 3D TENSORI/
VECTOR MATRIX CUBE

4D TENSOR 5D TENSOR
VECTOR OF CUBES MATRIX OF CUBES




Tensors

Python
# Scalar # Vector
> 3 > ['1, 25 3]
# Matrix # 3-D Tensor
= [E17 2, 31, > [[ [e,0], [0,1], [6,2] ]
[4, 5, 6], 0 G B e R T SR
[7, 8, 9]] [ [2,0], [2,1], [2,2] ]
NumPy

# Matrix as NumPy Array
> np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 911,
dtype=np.int64)




LECTURE 1 Variable




Independent Variable and

Java:
double x;

double y;
y = f(x);

Question: What's a variable?

Answer: A variable is an object, event, idea, feeling, time period, or any
other type of category you are trying to measure. There are two types of
variables-independent and dependent.

Question: What's an independent variable?

Answer: An independent variable is exactly what it sounds like. It is a
variable that stands alone and isn't changed by the other variables you are
trying to measure. For example, someone's age might be an independent
variable. Other factors (such as what they eat, how much they go to
school, how much television they watch) aren't going to change a person's
age. In fact, when you are looking for some kind of relationship between
variables you are trying to see if the independent variable causes some
kind of change in the other variables, or dependent variables.




Independent Variable and Dependent

Variable

Java:
double x;

double y;
y = f(x);

Question: What's a dependent variable?

Answer: Just like an independent variable, a dependent variable is exactly
what it sounds like. It is something that depends on other factors. For example,
a test score could be a dependent variable because it could change depending
on several factors such as how much you studied, how much sleep you got the
night before you took the test, or even how hungry you were when you took it.
Usually when you are looking for a relationship between two things you are
trying to find out what makes the dependent variable change the way it does.
Many people have trouble remembering which is the independent variable and
which is the dependent variable. An easy way to remember is to insert the
names of the two variables you are using in this sentence in they way that
makes the most sense. Then you can figure out which is the independent
variable and which is the dependent variable:

(Independent variable) causes a change in (Dependent Variable) and it isn't
possible that (Dependent Variable) could cause a change in (Independent
Variable).




l@' Figure 1 - O x

from pylab import *

import numpy as np Polynomial

# definition of a polynomial 4 \ /

def polynomlal(x, C) : \\ //
y = np.ndarray(len (x)) ’ \ /

=0 N

for xt in x:

vt = 0 S
for z in c:
vt = yt * xt + z 4
yl1i]=yt
it+=1 R 3 2 ’

return vy & €[> 4= B




prepare data

Z

c = [1, -2, 1] Independent Variable
X

Y

. | indapensent Vriable
= polynomial (x, c)
it e ) ) f copencentaribe

. dependent Variable
print (type(y), len(y)) :

# drawing graph

figure () # create a figure

xlim(xmin=-5.2, xmax=5.2) # set x—-axis range

ylim(ymin=-5.2, ymax=5.2) # set y-axis range

plot(x, y, 'r') # create x-y plot using red dot Variable -> Single Variable
xlabel ("x") # label x—-axis

ylabel ('y') # label y-axis Vector -> Array (or list)
tlJ.Cle ( rPolynom:Lal' ) , # , Quantized Function ->
grid(linestyle="'-", linewidth='0.5', color='gray')

Array (List) of Undefined

axhline (0, color='black', 1w=1.0) Length in discrete domain.

axvline (0, color='black', 1lw=1.0)
show ()




Core Operation (Multiply-Shift and Add)

def polynomial (x, c):
y = np.ndarray(len(x)) wmwmm
i =0 n bits

for xt in x: L
\M/ =N

for z in c: i Shit right

yt — yt * xt + 7 Wrﬂe' '
3.7 [ j-] Zyt A (Product) —1 Q (Multiplier; Product]l
1+=1 T nbis 7 bit
return y

Figure 3.13. Final version of the multiplier circuit.




Algebraic

LECTURE 1

Expression




Properties of Real Numbers

Commutative
Properties

Changing the order of the terms in addition or
multiplication does not affect the sum or product.

The Commutative Property of Addition states:
atb=b+ta

The Commutative Property of Multiplication states:
ab = ba.

Associative
Properties

Changing the grouping of numbers in addition or
multiplication does not affect the sum or product.

The Associative Property of Addition states:
[.:1+E:')+c =.:1+[E:-+cj :

The Associative Property of Multiplication states:
[.:xf:-)r: =.:z[£:-r:j.

Identity
Properties

The identity for an operation is the value that does not
change the value of an expression for that operation.
Zero 1s the additive 1dentity; adding zero to a number
does not change its value. One 1s the multiplicative
identity; multiplying a number by one does not change
its value.

The Identity Property of Addition states: n+ 0 =n.

The Identity Property of Multiplication states: ».1 = .

Dastributive
Property

Multiply the factor outside a set of parentheses by every

term inside the parentheses when simplifying or
evaluating.

The Distributive Property states: a (E:' + cj = ab +ar

Inverse
Properties

The mverse of a number for an operation 1s the value that
combines with the number to give the identity for the
operation as a result.

The Inverse Property of Addition states: »n+(—») =0,
with —# being the additive inverse and zero being the
additive identity.

The Inverse Property of Multiplication states:
M- l =1,n= 0, where l 15 the multiplicative inverse and

# #
one 15 the multiplicative identity.




Simplification of Algebraic Expression

Example
Simplify the following expression: 4(x* +3x) +2(3x* +5x) -

4(x* +3x)+2(3x* +52)
4. x* +4.3x+2.3x* +2.5x Start by using the Distributive Property twice to remove the parentheses.

4x* +12x+6x* +10x  Multiply.
A2 +6x2 +12x+10x Use the Commutative Property to put like terms together.
102% 4+ 22x Add to combine like terms.

Note: Remember that if there is a negative sign outside a set of parentheses, you need to distribute the negative throughout the terms
inside the parentheses. For example, —(2x* +3) = -2x* - 3.




Properties of Exponents and Square Roots

The following are the properties of exponents and square roots where a
and b are real numbers or algebraic expressions and m and » are real

numbers.
Zero Exponent Property a® =1, Where g = 0
Negative Exponent Property at = — , where g = 0
a

Power Rule for Products (ad)" =a™b"

a\' a"
Power Rule for Quotients [3] = 7 where b 0
Power Rule for Powers (@)™ =a™
Product Rule for Powers a® . a® =a"™

Quotient Rule for Powers

aﬂ
—= a®™ ., where g0

Square Root Rule for Products

a
J.::Tb:.ug.,\fg,where@gu and 5> 0

Square Root Rule for
Quotients

a_~a

- = ,Where g>pand 5 >0
PN

Examples

Simplify the following expressions.

L (—4x7)*
Answer:
(-4x*)*
(—-‘il)2 (f)2 Use the Power Rule for Products.
162  Use the Power Rule for Powers.
16x*  Simplify.
152°y°
5%y
Answer:
152°y°
5x° ¥y

2.

3x2°~y* Use the Quotient Rule for Powers.

3x°y*  Simplify.




3. 3x*y*)(=7x%yY)

Answer: 54 y4
3ty I =722y 5
Gxy =12y %
(=7 (x‘:rz ) ( y yj) Group factors with the same base. Answer:
—21x42y72 Use the Product Rule for Powers. 54 y*
-212%" Simplify. 9y
: 54y* .
4 (61{“) ’ 3 }; Use the Square Root Rule for Quotients.
TS hd
hg
Answer: 6y* Use the Quotient Rule for Powers.
2
[@] J6 JF Use the Square Root Rule for Products.
e yE  Simplify
(6 _3 Use the Power Rule for Quotients. _ _ _ _
y Now you try. Simplify the following expressions:
2, 8\-2
6;}# Use the Power Rule for Products. L (=422 (-8xY2%)
-2 16 _3
i J_; Use the Product Rule for Powers. 7. 24x*y
Y ) 1207
¥ .
Use the Negative Exponent Property.
65" ) ? pery 3. oy 5y

X Simplify.




Algebraic Equations

An algebraic equation is a statement that two algebraic
expressions are equal, or that an algebraic expression is
equal to a constant.

The solution(s) of an equation is the value or values that
make(s) the equation true. The goal when solving an
algebraic equation is to simplify and isolate the variable on
one side of the equation using properties of equality and
Inverse operations.




Linear Equations

1. To solve the equation 5(3x—2)+6 = 2—(5x+4). start by simplifving the expressions on both
sides of the equal sign. Then, use inverse operations and properties of equality to get the variable
on one side and the constants on the other.

DZx—=2)+6=2-(3x+4)

15x-4==-2-3x Simplify both sides.
Use properties of equality to move variables on one side and constants
on the other.

18x=2

1
9

Use inverse operations to 1solate the variable.




Linear Equations

x+6 14-x
_I_

2. To solve an equation that involves fractions, such as = 6, find the least common

denominator of the fractions and multiply both sides of the equation by that number. In this
situation, the least common denominator 1s 12, so multiply both sides of the equation by 12. This
will result in an equivalent equation that i1s a multiple of the original equation with no fractions.
Once the equation is rewritten without fractions, use inverse operations and properties of equality
to get the variable on one side and the constants on the other.

+ 4 -
12 [ : 7 ° + : 3 x) =({12)6 Multiply both sides by the least common denominator.

A x+6)+4(14- x) =72 Distribute to get rid of the fractions.
3x+18 + 56— 4x =72 Distribute.

—x+ 74 = 72 Combine like terms.

-x=-2 Use inverse operations.
x = 2 Multiply both sides by —1.




Quadratic Equations

Many real-world situations are modeled using second-degree equations, or quadratic equations, which
you have studied in previous courses. For example, the equation used to represent projectile motion is a
second-degree equation. The solutions to a quadratic equation can be found algebraically or graphically.

Graphically, the solutions to a quadratic equation will be the points where the graph crosses the x-axis.
The following graph is of the function y = x* + x—12. Since the graph crosses the x-axis at -4 and 3,

the solutions to the equation 5* 4 y—12=( are x= -4 orx =3,




solutions




Demo Program: Quadratic Function §§

quadratic.py

Go PyCharm!!!

@.:' Figure 1

&l €[>+Ql=m




The Quadratic Formula

The solutions to any quadratic equation in the form 422 4 3> 4~ =0 can

—b b —dac
2a

be found using the quadratic formula, »—

Example

Solve the quadratic equation ;% +§x+4 =10.

This quadratic equation cannot be factored. Either technique, completing the square or the quadratic
formula, can be used to solve this equation. Both techniques will be demonstrated here.




Complete the following activities. Be sure to show all work.

. Simplity the following expressions:

a. 2(4x=3)—(Ox+7)
b. (3x%y7")(=4x™)")
J4y
153—x

2. Solve the following equation: xt + =7.

4 >

3. Solve the following equation: 2 4 y_ Q90— _ 4§ .

4. Solve the following equation: »? _gx4+3=10.
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Representing Relations and Functions

A relation is a relationship between the values in two sets of
data—one set provides the input values for the relation, and
the other set is the output values. A function is a specific
type of relation for which each value in the set of inputs is
paired with exactly one value in the set of outputs.

*The domain of a relation or function is the term that refers
to the set of input values. The range is the term that refers to
the set of output values. The domain and range of a relation
or function can be shown in sets, ordered pairs, tables, or
graphs.




Examples

Identify the domain and range of each relation.

The x-values are the inputs. The y-values are the outputs.

domain: {1,2,3,4}
range: {2,4,6,8}

2. {-1.-25,(-11),(2,-2.5). 3,5}

Each ordered pair is in the format (x,y).
The x-values are —-1. -1. 2. 3.
The y-values are -2.5. 1, -=2.5. and 5.

domain: {-1,2, 3}
range: {-2.5,1,5}

The domain and range are generally written in ascending order.
Note that if an x-value or a y-value repeats, it is still only included once in the domain or range.




Scatter + Line Plot (Example 1)
scatter.py

from pylab import *
import numpy as np

X = [1, 2, 4[ 8]
Y = (2, 4, 8, 16]

® Fouer - o «x
figu re ( ) Scatter Chart
scatter(x, V) ’

plot(x, y, color='r', linestyle='-") :

x1lim(xmin=0, xmax=8.5) # set x—-axls range .

ylim (ymin=0, ymax=16.5) # set y-axis range .,

xlabel ('x") # label x-axis ‘

ylabel ('y") # label y-axis s

title ('Scatter Chart') # )

grid(linestyle='-"', linewidth='0.5'"', color='gray') e e s o e S
show () ’

& €9+ Q= E
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Try Example 27
Go Ahead!

Scatter Chart(Not a function)

NI

# € > +Q=m)




scatterd - Excel

Insert Draw Page Layout Farmulas Data Review View Add-ins
alls i - e
D b Calibri 1M ~ A A T == ¥ - %WrapTﬂt General
Egy -

Paste o B I U~ . H-A- === =3 EHMergesiCenter - $ - % * 8 4

Clipboard Font P Alignment T Mumber

S ’ Excel

A | B | c D | E | F | G | H | | ] |

1 -1 -2.5

2 | -1 1 Scatter Chart ‘ a tt e r
3 2 -2.5 6

4 3 5

] 5 L

5_

. : Chart
7] 3

g 2

9

—] L 1
10
11 ¢

—] -15 -1 -0.5 0 05 1 1.5 2 2.5 3 3.5
12 -1
13 -2
14 * *

bl -3
15




Ch1_Introduction - [C:\Eric_Chou'\Python Course\PreCalculus with Python Pregramming\PyDevi\U1_Functions\Ch1_Introduction] - ..\Quadratic\scatter3x.py - PyCharm Community Edition 2017.2. — O X
File Edit View MNavigate Code Refactor Run Tools VCS Window Help
[0 Ch1_Introduction ) % Quadratic ) (= scatter3x.py ’. *C ] Q
] [ Project A € & | #- 1 mberpy * | [ Polar.py = | ] Polynomial.py = | ] quadratic.py = | ] Scatter.py = | ] scatterd.py | [ scatter3.py | & scatterdx.py ]
E ~ Chi_Intreduction C:'Eric_Chou\Python Course\PreCalculus with Pytho 1 from pylab import * g
=i v Coordinations - . _ . =
N ) 2 import numpy as np —-=
@ CartesianPlane.py - 2
=]
w @ ComplexNumber.py o
g 4 x=[]
T & Polar.py =
3 [ —
= @ Polynomial.py - y=I[]
Il Quadratic 6 for line in open("scatter3.csv", "r"):
v = quadratic.py 7 t = line.rstrip().split(',")
@ Scatter.py B print(t) |
@ scatter2.py ] x.append (float (£ [0])) H
= scatter3.csv 10 y.append (£flocat{t [1]))
|‘; scatterd.py 11
7 scatterd.xlsx 12 figure ()
& scatterdx.py 0z scatter (x )
=]
> |l External Libraries P Y .
14 plot(x, v, color='r', linestyle='-"')
5 xlim(xmin=-5.2, xmax=5.2) # set x-axis range
16 ylim(ymin=-5.2, ymax=5.Z) # set y-axis range
17 xlabel('x') # label x-axis
18 ylabel('y') # label y—axis |
19 title ('Scatter Chart(Not a function)') #
20 grid(linestyle='-', linewidth='0.5', color='gray')
21 show ()
for line in ope...
Run: | . scatter3 scatter? | Scatter | scatter2 | scatter2 | scatter? | scatter3 | - 2
(] C:\Python\Python3é\python.exe "C:/Eric_ Chou/Python Course/PreCalculus with Python Prog %) Figure 1 _ O %
| [*-1', '-2.5']
mis [r-i, 'i'] Scatter Chart(Not a function)
| L} L} " _ L}
= E a2y, 2.5"] . r
& [ L} 3 L} L} 5 L} ]
< g ' /
X 2
?
l\
= 0 .
5 5 \
g b N
il _4
W
% Python Console Terminal = P4 Run 5% 6 TODO _4 > 0 2 4

[ IDE and Plugin Updates: PyCharm Community Edition is ready to update. (20 minutes ago)




PyLab Scatter Chart

scatter2.py

from pylab import *
import numpy as np

n = 50
X = np.linspace (0, n-1, n) ®) Figure | - 0 X
y = np.ndarray (n)
for i in range (n) : Scatter Chart

y[1] = int(random () *15) 14 o o
figure() 12 ® ® °T ’ =
scatter (X, Y) o o 0 = o
#plot(x, y, color='r', linestyle='-") e .. .
x1lim(xmin=0, xmax=n+1) # set x—-axis range .. 8 ° . .
ylim(ymin=0, ymax=15.5) # set y-axis range A° . — * el
xlabel ('x") # label x—-axis ° o . »
ylabel ('y"') # label y-axis ¢ . . . . .
title ('Scatter Chart') # 2 oo o o
2ii$§?inestyle='—', linewidth='0.5"', color='gray') o — - ” - - -

4 €2+ Q=B
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Number




Complex Number as
ROOtS

QUADRATIC FUNCTIONS




@ Quadratic Equations and Roots Containing "/ "

In relation to quadratic equations. imaginary numbers (and complex numbers) occur when the value under
the radical portion of the quadratic formula is negative. When this occurs, the equation has no roots (zeros)
in the set of real numbers. The roots belong to the set of complex numbers. and will be called "complex
roots" (or "imaginary roots"). These complex roots will be expressed in the form a + bi.

Consider this example:
Find the roots: x> +4x + 5 =0

This quadratic equation is not factorable. so we
apply the quadratic formula. Notice that after
combining the values. we are left with a negative
value under the square root radical. This negative
square root creates an imaginary number.

¥’ +4x+5=0

—b+~Jb* —dac
B 2a
2(1)
C4+416-20 444
2 2

4420
2

X

—2+i

2
| IS [ N NN S SN I E— — IIIIK
0 68 6 4 -2 2 [ 4
-2
y=x2+4x+5
4

The graph of this quadratic function shows that there
are no real roots (zeros) because the graph does not
cross the x-axis. Such a graph tells us that the roots

of the equation are complex numbers, and will
appear in the form a + bi.




The Need for Imaginary Numbers

You have learned that the product of two numbers with the same sign is always positive. You have also
learned that the square root of a number is the quantity whose square is equal to that number. Within the
constraints of these two principles, how can a negative number have a square root?

If you were to solve the equation x2 4 9x4+ 5= with the quadratic formula, the solution would include
the square root of a negative number. The need for imaginary numbers arose from situations like this.

The imaginary unit, 7, 1s the number whose square equals -1. It was defined in order to have a standard
way to write imaginary numbers. For any real positive number 7, \Jon =jn .

Imaginary numbers can be simplified using the definition of i and the properties of operations.




The Complex Number Plane

&

imaginary axis

3+ 2i

real axis
>

5 -4 -3 -2 -1

-2i
-3i
-4i

-5i'+

i

0 1 2 3 4 5




Absolute Value of Complex Numbers

The absolute value of a complex number is its distance from the origin on the complex plane. The absolute value
of @ + bi is written as |a + i .

You can find a distance on the complex plane the same way you would find a distance on the Cartesian plane: using
the distance formula, 4 - V[( n-nl+(-n)- Since the coordinates of the origin are (0,0), the distance from

the origin to the point (z,y) 1s g = \fx* + y* -

On the complex plane, the complex number a + bi is represented by the point (a,&). Since the absolute value of a

a+bi‘=d=df+31’ —Jat bR

complex number is its distance from the origin,

You can also think of the distance from any point on the complex plane to the origin as the length of the
hypotenuse of a right triangle whose legs are the lengths of the real part and the coefficient of the imaginary part. In
other words, for the complex number a + bi, the distance from (0, 0) to the point is the length of the hypotenuse of a

right triangle with legs of length @ units and b units.




iImaginary axis
10i

real axis
—_—p

6 9 10

&

+—
-10 -




Complex Number as a
Vector

2D POINTS




Complex Addition and Subtraction

Im
e 2+3;
e —4+2i
i
0l y Re
=1
—2—2i e ®3-—2;
FIGURE |
Complex numbers as points in
the Argand plane

COMPLEX NUMBERS

A complex number can be represented by an expression of the form a + bi, where a and
b are real numbers and i is a symbol with the property that i* = —1. The complex num-
ber a + bi can also be represented by the ordered pair (a, ) and plotted as a point in a
plane (called the Argand plane) as in Figure 1. Thus, the complex numberi =0+ 1 - fis
identified with the point (0, 1).

The real part of the complex number @ + bi is the real number @ and the imaginary
part is the real number b. Thus, the real part of 4 — 3i is 4 and the imaginary part is —3.
Two complex numbers a + bi and ¢ + di are equal if a = ¢ and b = d, that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting
their real parts and their imaginary parts:

(a+bi)+(c+di)=(a+c)+ (b+d)i

(a+bi)—(c+di)=la—c)+ (b—d)




Conjugate

Im 4
c=a+ bi
i4
0 Re
- 4
T=a—bi

FIGURE 2

The geometric interpretation of the complex conjugate is shown in Figure 2: = is the
reflection of z in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.

Properties of Conjugates

ral
2|
I
ral
2|
"M
Il
ral

ztw=z+w




Absolute Value of Complex Numbers

Im
cY t=a+ b
e Pk
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FIGURE 3

The modulus, or absolute value, |z | of a complex number z = a + bi is its distance
from the onigin. From Figure 3 we see that if = = a + bi, then
|2| — \"az + b2
Notice that

2z = (a + bi)la — bi) = a* + abi — abi — b** = a* + b*

and so zz = |z|

z Iw zw
w ww |w]
Since i* = —1, we can think of i as a square root of —1. But notice that we also have
(—i)*=1i*= —1 and so —i is also a square root of —1. We say that i is the principal

square root of —1 and write \/—1 = i. In general, if ¢ is any positive number, we write

J=c =i




Complex Number as a
Phasor

POLAR FORM

https://www.electronics-tutorials.ws/accircuits/phasors.html



https://www.electronics-tutorials.ws/accircuits/phasors.html

POLAR FORM

Im / We know that any complex number z = a + bi can be considered as a point (a, b) and that
any such point can be represented by polar coordinates (r, #) with r = 0. In fact,

b a=rcosf b=rsinf

0 a Re as in Figure 4. Therefore. we have

Thus, we can write any complex number z in the form

z=rlcosf + isinf)

b
where r=|z| =va*+b* and tan f = —
The angle # is called the argument of z and we write # = arg(z). Note that arg(z) is not
unique; any two arguments of z differ by an integer multiple of 27r.




Complex Multiplication
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Re

The polar form of complex numbers gives insight into multiplication and division. Let
2y =nrlcos @, + isinf,) Zy = rslcos B + 1sin6,)
be two complex numbers written in polar form. Then

7123 = nira{cos By + i sin 6;)(cos #; + isin )

= ryrs[(cos 8, cos @, — sin @, sin 8,) + i(sin #, cos #, + cos 6, sin f,)]

Therefore, using the addition formulas for cosine and sine, we have

1] 7122 = nira[cos(B: + 62) + isin(6; + 62)]

This formula says that to multiply two complex numbers we multiply the moduli and add
the arguments. (See Figure 6.)




Complex Division

A similar argument using the subtraction formulas for sine and cosine shows that ro
divide two complex numbers we divide the moduli and subtract the arguments.

21 r

— = —[cos(f, — 6,) + isin(f, — ;)] zF#0

Za r

In particular, taking z; = | and z: = z, (and therefore 6, = 0 and #: = ), we have the fol-
lowing, which is illustrated in Figure 7.

1 1
If z=r(cos#® + isin#@), then T=7(c050—isin a).

FIGURE 7




COMPLEX EXPONENTIALS

We also need to give a meaning to the expression ¢* when z = x + iy is a complex num-
ber. The theory of infinite series as developed in Chapter 8 can be extended to the case
where the terms are complex numbers. Using the Taylor series for ¢ (8.7.12) as our guide,
we define

(@]

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

m t,:.‘:. e ¢,.’|¢,."|
If we put z = iy, where y is a real number, in Equation 4, and use the facts that

.3 a2
i o~
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1 +iy +

b

cosy +isiny




Euler’s Formula

Here we have used the Taylor series for cos y and sin y (Equations 8.7.17 and 8.7.16).
The result is a famous formula called Euler’s formula:

b e =cosy +isiny

Combining Euler’'s formula with Equation 5, we get

(7] e = ¢'e¢" = ¢*(cosy + isiny)
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Cartesian Plane

(=3,1)

1 1 1
-3 =2 -1

(=1.5,—2.5)1

A Cartesian coordinate system is a coordinate

system that specifies each point uniquely in a plane by a
pair of numerical coordinates, which are

the signed distances to the point from two

fixed perpendicular directed lines, measured in the
same unit of length.

Each reference line is called a coordinate axis or

just axis (plural axes) of the system, and the point where
they meet is its origin, at ordered pair (0, 0). The
coordinates can also be defined as the positions of

the perpendicular projections of the point onto the two

axes, expressed as signed distances from the origin.



https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Plane_(geometry)
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Positive_and_negative_numbers
https://en.wikipedia.org/wiki/Perpendicular
https://en.wikipedia.org/wiki/Unit_length
https://en.wikipedia.org/wiki/Origin_(mathematics)
https://en.wikipedia.org/wiki/Orthogonal_projection
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from pylab import *

import numpy as np

def cartesian(a): # scatter chart

figure ()

size=len (a)

for x in range(len(a)) :
plot([a[x][0], al(xtl)%size] [0]]

limit=np.max (np.ceil (np.absolute(a))

xlim((-1limit, limit))

ylim((-1limit, limit))

ylabel ('Imaginary')

xlabel ('Real')

grid(linestyle="'-"', linewidth='0.5",

)

[alx][1],

a
# set limits for axis

color="gray')

al(x+l)%size] [1]],"

r-',label="python')

axhline (0, color='black', 1lw=1.0)

axvline (0, color='black', 1lw=1.0)

show ()

#close ()

a = [(1, 0), (sqgrt(3)/2, 1/2), (sqgrt(2)/2, sqgrt(2)/2), (1/2, sqgrt(3)/2), (0, 1),

(-1/2, sqrt(3)/2), (-sqrt(2)/2, sqrt(2)/2), (-sqrt(3)/2, 1/2), (-1, 0),
(-sqrt (3)/2, -1/2), (-sqrt(2)/2, -sqgrt(2)/2), (-1/2, -sqrt(3)/2), (0, -1),
(1/2, -sqrt(3)/2), (sqgrt(2)/2, -sqrt(2)/2), (sqrt(3)/2, -1/2), (1, 0)

cartesian (a)
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Argand Diagram (Complex Plane)

y * An Argand diagram is a plot of complex numbers as points
H,x*‘l"“urtr‘y Z:x+iy
J g * inthe complex plane using the x-axis as the real axis and y-axis as
’ the imaginary axis. In the plot above, the dashed circle represents
: : Lr the complex modulus |z| of z and the angle © represents

its complex argument.

I  While Argand (1806) is generally credited with the discovery, the
Argand diagram (also known as the Argand plane) was actually
described by C. Wessel prior to Argand. Historically, the geometric
representation of a complex number as a point in the plane was

important because it made the whole idea of a complex number
more acceptable.



http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/ComplexPlane.html
http://mathworld.wolfram.com/x-Axis.html
http://mathworld.wolfram.com/RealAxis.html
http://mathworld.wolfram.com/y-Axis.html
http://mathworld.wolfram.com/ImaginaryAxis.html
http://mathworld.wolfram.com/ComplexModulus.html
http://mathworld.wolfram.com/ComplexArgument.html
http://mathworld.wolfram.com/ComplexNumber.html

ComplexNumber.py:
[0.46.9, 1.47.9, 2.+8.3, 3.49.3, 4.+10.5]

%) Figure 1 - O *

from pylab import *
10.0 import numpy as np
» ;/’ def argand(a): # scatter chart
7.5 / figure ()
i f// for x in range(len(a)):
5.0 plot ([0, al[x].reall, [0, a[x].imag],'ro-',label="python')
/ limit=np.max (np.ceil (np.absolute(a))) # set limits for axis
2.5 xlim((-1limit, limit))
- ylim((-limit, limit))
£ 00 ylabel ('Imaginary')
g xlabel ('Real')
T =25 grid(linestyle='-', linewidth='0.5', color='gray')
axhline (0, color='black', 1lw=1.0)
—5.0 axvline (0, color='black', 1lw=1.0)
show ()
-7.5
a = [0.46.9, 1.+7.3, 2.+8.3, 3.49.3, 4.+10.5]
-10.0 argand (a)

=100 -=7.5 =5.0 —2.5 0.0 2.5 5.0 1.5 10.0
Real

#l €/>/+Ql=m




Polar Plane
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Polar System

&

°In mathematics, the polar coordinate system is a two-dimensional
coordinate system in which each point on a plane is determined by a
distance from a reference point and an angle from a reference
direction.

*The reference point (analogous to the origin of a Cartesian
coordinate system) is called the pole, and the ray from the pole in
the reference direction is the polar axis. The distance from the pole
is called the radial coordinate or radius, and the angle is called the
angular coordinate, polar angle, or azimuth.




Polar System

(3, 60°)

(4, 210°)
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A line plot on a polar axis
90°
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Polar.py

import numpy as np
from pylab import *

t = np.arange (0, 2, 0.01)
theta = 2 * np.pi * t # np.pl 1is the pi value

ax = subplot(lll, projection='polar')

ax.plot (theta, t)

ax.set rmax(2)

ax.set rticks([0.5, 1, 1.5, 2]) # less radial ticks

ax.set rlabel position(-22.5) # get radial labels away from
plotted line

ax.grid (True)

ax.set title("A line plot on a polar axis", va='bottom')
show ()
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Summary

*Algebra study the use of symbols in mathematics.

*It includes the study of variable (independent/dependent), their domain field
(including number set).

*The functions for the construction of dependent variables. The oddity, evenness,
symmetry of functions. Algebra also study the translation of functions.

*Functions to be studied in algebra 3: polynomials, rational function,
exponential/logarithmic, and trigonometric.

*Analytical geometry is used to visualize the functional data. It is also used to study the
pole/zero for a function. Pole and Limits are used to study the asymptotic behavior of
functions. Zeros are used to study the cross-over points for a function on an axis.




