PHYSICS PROBLEM-SOLVING METHOD

1 Read the problem carefully, twice

- It's easy to miss something or read it the wrong way of 8 m . Ignoring air resistance, how fast will it be travelling when it hits the ground?

2 Draw a picture

- Include the objects, geometry, forces and other information that are relevant to solving the problem
- Choose the origin and the positive direction

3 Write what you are given, your assumptions, and what the problem is asking you to find

- Keep in mind that the problem may give you more information than you need to solve it

$$
\begin{array}{ll}
m=5 \mathrm{~kg} & v_{i}=0 \mathrm{~m} / \mathrm{s} \\
y_{i}=8 \mathrm{~m} & g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
y_{f}=0 \mathrm{~m} & \underline{v_{f}}=?
\end{array}
$$

4 Figure out which physics concept(s) you can use, and think through how you could solve the problem conceptually before starting

- There may be more than one concept you can use
- Have at least some idea of how you will solve the problem before you start using equations and plugging in numbers

kinematics

\rightarrow conservation of energy consenvation of momentum
"All of the ball's initial potential energy will be converted into kinetic energy, which includes velocity, so if I..."

5 Check the equations from that concept(s) and decide which ones you can use

- Look for equations that have the variables you know and the variables you want to find

$$
\begin{aligned}
E_{i} & =E_{f} \\
K_{i}+U_{i} & =K_{f}+v_{f} \\
m g h_{i} & =\frac{1}{2} m v_{f}^{2} \\
\sqrt{2 g h_{i}} & =v_{f} \\
\sqrt{2(9.8)(8)} & =v_{f} \\
12.5 \mathrm{~m} / \mathrm{s} & =v_{f}
\end{aligned}
$$

7 Check your answer

- Did you actually find what the problem asked for?
- Do your units make sense?
- Do the magnitude and sign (+/-) make sense?

A 5 kg ball is dropped from rest at a height of 8 m . Ignoring air resistance, how fast will it be travelling when it hits the ground?

$$
\checkmark v_{f}=12.5 \mathrm{~m} / \mathrm{s}
$$

