

Complex Numbers – three different forms

Notes: In IB mathematics a complex number z can be written in three different forms.

z = a + ib	Cartesian form
$z = r(\cos\theta + i\sin\theta) = r\mathrm{cis}\theta$	modulus-argument form* (also known as polar form, or trigonometric form)
$z = re^{i\theta}$	Euler's form* (also known as exponential form)

* the argument θ can have multiple values, but best to give the principle value such that $-\pi < \theta \le \pi$

 \bullet do **not** use a calculator \bullet

Problem Set 2

1. For each complex number represented by the letters A, B & C plotted in the complex plane, write it in each of the three forms: Cartesian form, modulus-argument form and Euler's form.

- 2. Write each of the following complex numbers in modulus-argument form.
 - (a) $w = -\sqrt{3} + i$ (b) $w = 2 + 2i\sqrt{3}$ (c) $w = -\frac{1}{2} \frac{i}{2}$
- **3.** Write each of the following complex numbers in Cartesian form.

(a)
$$z = 5e^{\frac{\pi}{2}i}$$
 (b) $z = 8e^{-\frac{5\pi}{6}i}$ (c) $z = 2e^{\frac{2\pi}{3}i}$

- 4. For each of the two expressions below, first write it as a complex number in the form a+ib and then write it in the form $r \operatorname{cis} \theta$.
 - (a) $\frac{4}{1+i}$ (b) $\frac{2i}{1-i}$
- 5. Consider the complex numbers $z_1 = 1 + i$ and $z_2 = \frac{\sqrt{6}}{2} i\frac{\sqrt{2}}{2}$. (a) Show that, in Cartesian form, $z_2 = \sqrt{2} \operatorname{cis}\left(-\frac{\pi}{6}\right)$.
 - (b) For two complex numbers in modulus-argument form, $w_1 = r_1 \operatorname{cis} \theta_1$ and $w_2 = r_2 \operatorname{cis} \theta_2$, it can be shown that $\frac{w_1}{w_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 \theta_2)$. Use this to express $\frac{z_1}{z_2}$ in modulus-argument form.
 - (c) Express $\frac{z_1}{z_2}$ in Cartesian form.
 - (d) Use the results from (b) and (c) to write down the exact values of $\sin \frac{5\pi}{12}$ and $\cos \frac{5\pi}{12}$.