Q	Marking Instructions	AO	Marks	Typical solution
8(a)	Uses rules of indices to express $2^{(2x+3)}$ in terms of y or 16^x in terms of y , must see an intermediary step, either $(2^4)^x$ or $(4^2)^x$, not just $16^x = (2^{2x})^2$	1.1a	M1	$2^{(2x+3)} = 2^{2x} \times 2^{3} = 8y$ $16^{x} = (2^{4})^{x} = (2^{2x})^{2} = y^{2}$ $y^{2} - 8y - 9 = 0$
	Completes rigorous solution expressing both terms in terms of y Condone working backwards from quadratic in y to both terms in x . Be convinced	2.1	R1	
	Subtotal		2	
8(b)	Solves the equation in terms of 2^{2x} (PI by seeing either $2^{2x} = 9$ or $2^{2x} = -1$)	1.1a	M1	y = 9 or y = -1 $2^{2x} = 9 \text{ or } 2^{2x} = -1$
	States that $2^{2x} = -1$ has no (real) solutions (PI by negative numbers do not have a square root)	2.4	E1	$2^{2x} = -1$ has no solutions
	Uses logs to solve $2^{2x} = 9 \text{ OE}$ Or Square roots first then correctly takes logs Accept log ₂ 9 or log ₄ 9 seen as evidence for M1	1.1a	M1	$2x = \log_2 9$ $x = \frac{1}{2} \log_2 9$ $= \log_2 9^{\frac{1}{2}}$ $= \log_2 3$
	Completes rigorous solution. Must include justification for 9 becoming 3	2.1	R1	
	Subtotal		4	
	Question Total		6	l