Solving calculation problems

Question 1 Match the quantity with the unit

Quantity	Unit
a) force	1) ms ⁻²
b) momentum	2) kg
c) distance	3) kgms ⁻¹
d) time	4) m
e) Velocity	5) N
f) mass	6) s
g) acceleration	7) ms ⁻¹

Question 2 Change these numbers into SI units

45 cm

3 minutes

20 g

93 km _____

14 μm -_____

23 km hr⁻¹ _____

Question 3 Rearrange these equations

- a) $E_p = mgh_{\text{rearrange to find height}}$
- b) F = kx rearrange to find spring constant k
- c) $v_f^2 = v_i^2 + 2ad$ rearrange to find distance
- d) $E_K = \frac{1}{2} m v^2$ rearrange to find velocity
- e) $F_g = G \frac{m_1 m_2}{r^2}$ rearrange to find radius
- f) $v_f = v_i + at$ rearrange to find time

Use the equations given in question 3 to answer questions 4 - 8

Question 4

A car travels at 30 ms^{-1} and then decelerates to 8 ms^{-1} in 5 seconds. Calculate the deceleration of the car.

Question 5

How much time does it take an object to change velocity from 20 ms^{-1} to 5 ms^{-1} if the object's acceleration is -3 ms^{-2} ?

Question 6

A 12 kg object gains 3450 J of gravitational potential energy. What height did the object reach? (Assume gravity has a value of 10 ms^{-2})

Question 7

A 16 kg object gains 1250 J of gravitational potential energy. What velocity did the object reach?

Question 8

A spring has a force of 400N placed on it and it extends 8 cm. Find the spring constant of the spring.

Answers

Question 1 Match the quantity with the unit

Quantity	Unit
a) force	5) N
b) momentum	3) kgms ⁻¹
c) distance	4) m
d) time	6) s
e) Velocity	7)ms ⁻¹
f) mass	2) kg
g) acceleration	1)ms ⁻²

Question 2 Change these numbers into SI units

3 minutes
$$\longrightarrow$$
 3 x 60 = 180 s

$$20 \text{ g} \longrightarrow 20 \times 10^{-3} \text{ kg}$$

$$14 \mu m \longrightarrow 14 \times 10^{-6} m$$

23 km hr⁻¹
$$\longrightarrow \frac{23 \times 10^3 m}{60 \times 60} = 6.4 ms^{-1}$$
 or $\frac{kmhr^{-1}}{3.6} = ms^{-1}$

Question 3

Rearrange these equations

- a) $E_p = mgh$ the mg needs to be moved so that the h (height) is alone so it is the subject.

 Divide the E_p by mg to get h $\frac{E_p}{mg} = h$
- b) F = kR the x (extension or change in length) needs to be moved so that the k (spring constant) is alone so it is the subject. Divide the F by x to get k $\frac{F}{x} = k$
- c) $v_f^2 = v_i^2 + 2ad$ The 2a (2 x acceleration) needs to be moved. 2ad means 2xaxd so you need to divide by 2a. And the v_i^2 needs to be subtracted from the v_f^2 $\frac{v_f^2 v_i^2}{2a} = d$
- d) $E_K = \frac{1}{2}mv^2$ The $\frac{1}{2}m\left(\frac{1}{2}x\ mass\right)$ needs to be moved. $\frac{1}{2}mv^2$ means $\frac{1}{2}x\ mass\ x\ velocity^2$ so you need to divide E_K by $\frac{1}{2}m$. And then you need to square root both sides so you get v not v^2 $\sqrt{\frac{E_K}{2}m} = v$
- e) $F_g = G \frac{m_1 m_2}{r^2}$ In this case you can swap the F_g and the r^2 . And then you need to square root both sides so you get r not r^2 $r = \sqrt{G \frac{m_1 m_2}{F_g}}$
- f) $v_f = v_i + at$ The a (acceleration) needs to be moved. at means axt so you need to divide by a. And the v_i needs to be subtracted from the $v_f = \frac{v_f v_i}{a} = t$

Question 4

Information given $v_i = 30 \text{ms}^{-1}$ $v_f = 8 \text{ms}^{-1}$ t = 5 s Quantity required: looking for acceleration

$$v_f = v_i + at$$
 $\frac{v_f - v_i}{t} = a = \frac{30 - 8}{5} = -4.4 \text{ms}^{-2}$

Question 5

Information given $v_i = 20ms^{-1}$ $v_f = 5ms^{-1}$ $a = -3ms^{-2}$ Quantity required : looking for time

$$v_f = v_i + at$$
 $\frac{v_f - v_i}{a} = t = \frac{5 - 20}{-3} = 5 s$

Question 6

Information given m = 12kg E = 3450J $g = 10ms^{-2}$ Quantity required: looking for height

$$E_p = mgh$$
 $\frac{E_p}{mg} = h = \frac{3450}{12x10} = 28.75m$

Question 7

Information given m = 16kg E = 1250J Quantity required: looking for velocity

$$E_K = \frac{1}{2}mv^2 \qquad \sqrt{\frac{1250}{\frac{1}{2}x16}} = 12.5ms^{-1}$$

Question 8

Information given F = 400 N $x = 8x10^{-2} m$ Quantity required: looking for spring constant

$$F = kx$$
 $\frac{F}{x} = k = \frac{400}{8x10^{-2}} = 5000 Nm^{-1}$