

Sylvia Langfield and Dave Duddell

Cambridge International
AS and A level

Computer
Science

Coursebook

..... , CAMBRIDGE
;:: UNIVERSITY PRESS

CAMBRIDGE
UNIVERSITY PRESS

University Printing House, Cambridge CB2 BBS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: education .cambridge.org

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-54673-8 Paperback

Cambridge University Press has no responsibility for t he pers istence or accuracy
of UR Ls for external or third-party internet websites referred to in this publication,
and does riot guarantee that any content on such websites is, or will remain,
accurate or appropriate. Information regarding prices, travel timeta bles, and other
factual information given in this work is correct at the time of fi rst printing but
Cambridge University Press does not guarantee the accuracy of such information
thereafter .
.........................
NOTICE TO TEACHERS IN THE UK
It is illegal to reproduce any part of this work in material form (including
photocopying and electronic storage) except under the following circumstances:
(i) where you are abiding by a licence granted to your school or instituti on by the

Copyright Licensing Agency;
(ii) where no such licence exists, or where you wish to exceed the terms of a licence,

and you have gained the written permission of Cambridge University Press;
(iii) where you are allowed to reproduce without permission under the provisions

of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for
example, the reproduction of short passages within certain types of educational
anthology and reproduction for the purposes of setting examination questions .

..........

The past paper questions on pages 107-108 and 316 are taken from the 9608 Specimen papers 1 and 3 respectively
and are reproduced with the permission of Cambridge International Examinations.

All other examination-style questions and comments that appear in this book were written by t he authors.

·· · Contents

Contents
Introduction V

PART 1 THEORY FUNDAMENTALS
Chapter l Information representation 2

Chapter 2 Communication and Internet technologies 18
Chapter 3 Hardware 36
Chapter 4 Logic gates and logic circuits 49
Chapter 5 Processor fundamentals 59
Chapter 6 Assembly language programming 69
Chapter 7 System software 78

Chapter 8 Data security, privacy and integrity 88
Chapter 9 Ethics and ownership 99
Chapter 10 Database and data modelling 109

PART 2 FUNDAMENTAL PROBLEM- • SOLVING AND PROGRAMMING SKILLS
Chapter 11 Algorithm design and problem solving 125
Chapter 12 Stepwise refinement and structure charts 155

Chapter 13 Programming and data representation 176

Chapter 14 Structured programming 212

Chapter 15 Software development 228

PART 3 ADVANCED THEORY
Chapter 16 Data representation 246 I
Chapter 17 Communication and Internet technologies 258

r
Chapter 18 Boolean algebra and logic circuits 270

Chapter 19 Processor and computer architecture 282

Chapter 20 System software 287

Chapter 21 Security 303

Chapter 22 Monitoring and control systems 310

. .
Cambridge International AS and A level Computer Science

PART 4 FURTHER PROBLEM-SOLVING
AND PROGRAMMING SKILLS
Chapter 23 Computational thinking and problem-solving

Chapter 24 Algorithm design methods

Chapter 25 Recursion

Chapter 26 Further programming

Chapter 27 Object-oriented programming (OOP)

Chapter 28 Low level programming

Chapter 29 Declarative programming

Chapter 30 Software development

Glossary

Index

Acknowledgements

- ------ - - - - - - --- - - - - -

317

337

347

356

368

394

405

420

430

434

442

- - - -

: Introduction ' '·

l
t
l

Introduction
This full-colour, illustrated textbook has been written by experienced authors specifically for
the Cambridge International AS and A Level Computer Science syllabus (9608).

The presentation of the chapters in this book reflects the content of the syllabus:

• The book is divided into four parts, each of which is closely matched to the corresponding
part of the syllabus.

• Each chapter defines a set of learning objectives which closely match the learning
objectives set out in the syllabus.

• The syllabus defines two assessment objectives: AOl Knowledge with understanding and
A02 Skills . Papers 1 and 3 have a m~jor focus on AOl and Papers 2 and 4 have a major
focus on A02. The chapters in Parts land 3 have been written wi th emphasis on the
promotion of knowledge and understanding. The chapters in Parts 2 and 4 have been
written w ith an emphasis on skill development.

The chapters in Parts 1 and 3 have a narrative. We would encourage students to read the
whole chapter first before going back to revisit the individual sections.

The chapters in Parts 2 and 4 contain many more tasks. We would encourage students to
approach these chapters step-by-step. Whenever a task is presented, this should be carried
out before progressing furthe r.

In particular, Chapter 11 (Algorithm design and problem-solving) may be worked through in
parallel with Chapter 13 (Program ming and data representation) . For example, Task 13.03
is based on Worked Example 11.03 . After studying this worked example, students may w ish
to cover the first part of Chapter 13 and write the program for Task 13.03. This will give the
student the opportunity to test their understanding of an algorithm by implementing it in
their chosen programming language. Then further study of Chapter 11 is recommended
before attempting further tasks in Chapter 13.

•

Cambridge International AS and A level Computer Science

How to use this book: a guided tour
Chapter - each chapter begins with
a short list of the learning objectives
and concepts that are exp lained in it.

Chapter 1
Information Representation
Learning objectives
By the f!nd of this chapter you should be able ta:

• show undHStand lngolthe baslsol diffe rentnumber
systems

• st,owunderstanding of, andbeable torepresent,
charKter data ln itslnlernal blnary form

• showunderstandingof howdata forabitmappedor
vector graphlcimageisencoded

TASK 1.01

• show understandingofhow :10und is repn1sentedand
encoded

• Y\Qw understandlng ofthe d1aracterlstitsolvldeosu eams
• showundemanding of howdi1ita\da ta tanbe

compresse,d.

Convert the denary number 374 into a hexadecimal number.
Convert the hexadecimal number 3A2C to a denary number.

Discussion Point - discussion points
intended for class discussion.

Discussion Point
What is the two's complement of the binary value 1000? Are you surprised by this?

Extension Question:

Key Term - clear and
straightforward exp lanati ons of
the most important terms in each
chapter.

Byte: a group of eight bits treated as a single unit

Task - exercises
for the student to
test their skills .

Question:

Question - questions
for the student to test
their knowledge and
understanding.

Construct a parti al drawi ng list fo r the graphic shown in figure 1.06. You can take
measurements from t he image and use the bottom left corner of the box as t he origin of a
coordinate system. You can invent your own format for the drawing list

Graphic files can be stored in a number of formats. For example, JPEG, GIF, PNG and TIFF are
just a few of the possibilities. What compression techniques, if any, do these use?

Extension Question - extended questions for
consideration of more advanced aspects or topics
beyond the immediate scope of the Cambridge
International AS and A Level syllabus.

Tip - quick notes to highlight
key facts and important
points.

TIP
For multiples of bytes, the terminology used has recently changed. Traditionally, computer
scientists have used the terminology kilobyte, megabyte, gigabyte etc. in a way that conflicted
with the defiriition of these prefixe~ established by the International System of Units (SI).
Following the SJ convention, one kilobyte would represent 1000 bytes. Computer scientists
have used a"ne kilobyte to represent 1024 bytes. There have been a number of variations on
how this was written, for example Kbyte, KB or kB but the basic contr~dicticin rerriained. 'in
order to resolve this unsatisfactory situation, the International Electrotechnical Commission
(!EC) in 1998 proposed a new set of definitions for such quantities.1024 bytes is now identified
as one kibibyte where the kibi can be considered as representing kilo binary. This proposal has
been accepted by other international standards bodies.

Worked Example - step-by-step examples
of so lving problems or implementing specific
techniques.

WORKED EXAMPLE 1.01

Converting a negative number expressed in two's complement fo rm to the
corresponding denary number.

Consider the two's complement blnary number 10110001.

Method 1. Convert to the corresponding positive binary number then find the denary
value
Converting to two's complement leaves unchanged the 1 in the least significant bit
position then changes al! of the remaining bi ts to produce 01001111.

• A binary code or a binary number can be documented as a hexadecimal number.

• Internal coding of signed integers is usually based on a two's complement representation.

• BCD is a convenient coding scheme for single denary digits.

• ASCII and Unicode are standardised coding schemes for text characters.

• An image can be stored either in a vector graphic file or in a bitmap file.

• An ADC works by sampling a continuous waveform.

• Lossless compression allows an original file to be recovered by a decoder; lossy compression
irretrievably loses some information.

Summary Checklist - at the end of each chapter
to review what the student has learned.

Exam-style Questions

1 A file co ntains binary cod ing. The fo llowing are two successive bytes in the file:

I 10010101 I 00110011 1

a One poss ibil ity fo r the information stored is that the two bytes together represent one unsigned integer binary
number.

b

Give the denary number corresponding to this . Show you r wo rking.

ii Give the hexadecimal number corresponding to t his. Show your working.

Give one exa mple of when a hexadecima l rep resentation is used .

Exam-style Questions - Exam-style questions
for the student to test their skills, knowledge and
understanding at the end of each chapter

[2]

[2]

[l]

•

. Learning objectives
By the end of this chapter you should be able to:

• show understanding of the basis of different number
systems

• show understanding of, and be able to represent,
character data in its internal binary form

• show understanding of how data for a bitmapped or
vector graphic image is encoded

• show understanding of how sound is represented and
encoded

• show understanding of the characteristics of video streams
• show understanding of how digital data can be

compressed.

-

Chapter 1: Information Representation

1.01 Number systems
As a ch ild we first encounter numbers when learning to count. Specifically we learn to count
using 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. These are natural numbers expressed in what can be described
as the denary, decimal or base-10 system of numbers. Had we learned to count using 0, 1, 2,
3, 4, 5, 6, 7, 8, 9 we would have more clearly understood that the number system was base-10
because there are 10 ind ividua l, distinct symbols or digits avai lable to express a number.

A little later we learn that the representation of a number has the least significant digit at the
right-hand end. For example, writing a denary number as 346 has the meaning:

3 X 102 + 4 X 101 + 6 X 10°

All computer technology is engineered with components that represent or recognise only
two states. For this reason, familiar ity with the binary number system is essential for an
understanding of computing systems. The binary number system is a base-2 system wh ich
uses just two symbols, 0 and 1. These binary digits are usually referred to as 'bit s'.

All data inside a computer system are stored and manipulated using a binary code. However,
if there is ever a need to document some of this binary code outside of the computer system
it is not helpful to use the interna l code.

Instead, it is far better to use a hexadecimal representation for documentation pu rposes.
Whether or not a code represents a binary number, it can be treated as such and converted
to the corresponding hexadecimal number. This makes the representation more compact
and, as a result, more intell igible.

Hexadecimal numbers are in the base-16 system and therefore require 16 individua l symbols
to represent a number. The symbols chosen are 0-9 supplemented with A- F. A few examples
of the hexadecimal representation of binary numbers represented by eight bits are shown in
Table 1.01.

Binary Hexadecimal Denary
00001000 08 8
00001010 DA 10
00001111 OF 15
11111111 FF 255

Table 1.01 Hexadecimal representations of binary numbers and the denary values

Note that each grouping of four bits is represented by one hexadecima l symbol. Also note
that it is common practice to include leading zeros in a hexadecimal number when used in
this way.

Question 1.01
Does a computer ever use hexadecimal numbers?

Converting between binary and denary numbers
To convert a binary number to a denary number the straightforward method is to sum the
individual position va lues knowing that the least significant bit represents 2°, the next one 21

and so on. Th is is illustrated by conversion of the binary number 11001 as shown in Figure 1.01.

•

Pravin

Pravin

Pravin

Cambridge International AS and A level Computer Science · ·. ;_¥'

Position values 24 = 16 23 = 8 22 = 4 21 = 2 2° = 1
Binary digits l~--1--~ -1- ~--o-~-- o-~--1-~

Figure 1.01 Posit ion values for a binary number

Starting from the least significant bit, the denary equ ivalent is 1 + 0 + 0 + 8 + 16 = 25.

An alternat ive method is to use the fact t hat 1 x 16 is equal to 2 x 8 and so on. To carry out
the convers ion you start at the most significant bit and successively multiply by two and add
the resu lt to the next digit:

1 X 2 = 2
add 2 to 1, then 2 x 3 = 6
add 6 to 0, then 2 x 6 = 12
add 12 to 0, then 2 x 12 = 24
add 24 to 1 to give 25.

When converting a de nary number to binary the procedure is success_ive division by two
with the remainder noted at each stage. The converted number is then given as t he set of
rema inders in reverse order.

This is illustrated by the conve rsion of de nary 246 to binary:

246 2 ---+ 123 with remainder 0
123 2 -. 61 with remainder 1

61 2 -. 30 with remainder 1
30 2 ---+ 15 with remainder 0
15 2 ---+ 7 with remainder 1
7 2 -. 3 with remainder 1
3 -'- 2 -. 1 wi t h remainder 1
1 7 2 -. 0 with remainder 1

Thus the binary equ ivalent of denary 246 is 11110110. As a check that the answer is sensible,
you should remember that you are expecting an 8-bit binary number because the largest
denary number that can be represented in seven bits is 27 - 1 which is 127. Eight bits can
represent values fro m Oto 28 - 1 which is 255.

Converting hexadecimal numbers
To convert a hexadecimal number to binary, each digit is t reated separately and converted
into a 4-bit binary equiva lent, remembering that F converts to 1111, E converts to 1110 and
so on. Subsequent conversion of the result ing bina ry to denary ca n then be done if needed.

To convert a bina ry number to hexadecimal you start with the four least significant bits
and convert t hem to one hexadecimal digit. You then proceed upwards towards the most
significant bit, successively tak ing groupings of four bits and convert ing each grouping to the
correspond ing hexadeci mal digit.

It is possible to conve rt a denary number direct ly to hexadecimal but it is easier to convert
first to binary before complet ing the convers ion.

TASKl.01
Convert the denary number 374 info a hexadecimal number.
Convert the hexadecima l number 3A2C to a denary number.

- "

- -
r • • -

F . , , " j [Chapter 1: Information Representation

r

t
I
I
I

I

t

1.02 Internal coding of numbers
The discussion here relates only to the coding of integer values. The coding of non -integer
numeric values (real numbers) is considered in Chapter 16 (Section 16.03).

It is convenient at this point to emphasise that the coding used in a computer system is
almost exclusively based on bits being grouped together with eight bits representing a byte.
A byte, or a group of bytes, might represent a binary value but equally might represent a
code. For either case, the right-hand bit is referred to as the least significant and the left-hand
bit as the most significant or top bit. Furthermore, the bits in a byte are numbered right to left
starting at bit O and ending at bit 7.

Byte: a group of eight bits treated as a single unit

Coding for integers
Computers have to store integer values for a number of purposes. Sometimes the
requirement is only for an unsigned integer to be stored . However, in many cases a signed
integer is needed where the coding has to identify whether the number is positive or
negative.

An unsigned integer can be stored simply as a binary number. The only decision to be made
is how many bytes should be used. If the choice is to use two bytes (16 bits) then the range of
values that can be represented is Oto 216 - 1 which is Oto 65535.

If a signed integer is to be represented, the obvious choice is to use one bit to represent
the+ or - sign . The remaining bits then represent the value. This is referred to as 'sign and
magnitude representation'. However, there are a number of disadvantages in using this
format.

The approach generally used is to store signed integers in two's complement form. Here we
need two definitions. The one's complement of a binary number is defined as the binary
number obtained if each binary digit is individually subtracted from 1 which, in practice,
means that each O is switched to 1 and each 1 switched to 0. The two's complement is
defined as the binary number obtained if 1 is added to the one's complement number.

One's complement: the binary number obtained by subtracting each digit in a binary number from 1

Two's complement: the one's complement of a binary number plus 1

If you need to convert a binary number to its two's complement form you can use the
method indicated by the definition but there is a quicker method. For this you start at the
least significant bit and move left ignoring any zeros up to the first 1 which is also ignored.
Any remaining bits are then changed from Oto 1 or from 1 to 0.

For examp le, expressing the number 10100100 in two's complement form leaves the right-
hand 100 unchanged then the remaining 10100 changes to 01011 so the result is 01011100.

The differences between a sign and magnitude representation and a two's complement
representation are illustrated in Table 1.02. For simplicity we consider only the values that
can be stored in four bits (referred to as a 'nibble').

•

- --- --------- --- ---

Cambridge International AS and A level Computer Science

Signed denary number to Sign and magnitude Two's complement
be represented representation representation
+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+l 0001 0001
+O 0000 0000
-0 1000 Not represented
-1 1001 1111
- 2 1010 1110
- 3 1011 1101
-4 1100 1100
-5 1101 1011
- 6 1110 1010
-7 1111 1001
-8 Not represented 1000

Table 1.02 Representations of signed integers

There are several points to note here. The first is that sign and magnitude representation has
a positive and a negative zero which cou ld cause a problem if compa ring values. The second,
somewhat trivia l, point is that there is an extra negative value represented in two's comp lement.

The third and most important point is that the representations in two's complement are
such that starting from the lowest negative value each successive higher value is obta ined by
adding 1 to t he binary code. In particular, when all digits are 1 the next step is to roll over to
an all-zero code. This is the same as any digital display would do when each digit has reached
its maximum value.

It can be seen t hat the codes for positive va lues in the two's complement fo rm are the same
as the sign and magnitude codes. However, this fact rather hides the truth that the two's
co mplement code is self-comp lementary. If a negative number is in two's comp lement form
then t he binary code for the correspond ing positive number can be obtained by taking the
two's complement of the bina ry code representing the negative number.

TASKl.02
Take the two's complement of the binary code for -5 and show that you get the code for +5.

WORKED EXAMPLE 1.01

Convert ing a negative nu mber expressed in two's complement form to the
corresponding denary number.

Consider the two's complement binary number 10110001.

Method 1. Convert to the corresponding positive binary number then find the denary
value

Converting to two's complement leaves unchanged the 1 in the least significa nt bit
position then changes all of the rema ining bit s to produce 01001111_

' - - -- - - --- ---- - - --

i. Chapter 1: Information Representation
\

'

Now using the 'successive multipl ication by two' method we get (ignoring the O in the
most significant bit position):

2 X 1 2
add 2 to 0, then 2 X 2 = 4
add 4 to 0, then 2 X 4 8
add 8 to 1, then 2 X 9 18
add 18 to 1, then 2 X 19 38
add 38 to 1, then 2 X 39 78
add 78 to 1 to give 79

So t he original number is -79 in denary.

Method 2. Sum the individual position values but treat the most significant bit as a
negative value

From the original binary number 10110001 th is produces the following:

-27 + 0 + 25 + 24 + 0 + 0 + 0 + 1 =

-128 + 0 + 32 + 16 + 0 + 0 + 0 + 1 = - 79.

Discussion Point:
What is the two's complement of the binary value 10007 Are you surprised by this?

One final point to make here is that the reason for using two's complement representations
is to simpl ify the processes for arith metic ca lcu lations. The most important example of t his is
thatthe process used for subt racting one signed integer from anot her is to convert the number
being subtracted to its two's complement form and then to add this to the other number.

TASKl.03
Using a byte to represent each value, carry out the subtraction of denary 35 from denary 67
using binary arithmetic with two's complement representat ions.

Binary coded decimal (BCD)
One exception to grouping bits in bytes to represent integers is the binary coded decimal
(BCD) scheme. If there is an application where single denary digits are requi red to be stored
or transmitted, BCD offers an efficient so lution. The BCD code uses fou r bits (a nibble) to
represent a denary digit. A four-b it code can represent 16 different va lues so there is scope
for a variety of schemes. This discussion only considers t he simplest BCD cod ing which
expresses the va lue directly as a binary number.

If a denary number w ith more than one digit is to be converted to BCD there has to be a
group of four bits for each denary digit. There ar~, however, two options for BCD; the first is
to store one BCD code in one byte leaving four bits unused . The other option is packed BCD
where two 4-bit codes are stored in one byte. Thus, for example, the denary digits 8503 could
be represented by either of the codes shown in Figure 1.02.

One BCD digit per byte I _0_0_0_01_0_0_0__.__00_0_0_0_10_1____,_o_o_oo_o_o_oo_.__0_0_0_00_0_1_1__.

Two BCD digits per byte I _1_0_00_0_1_01_.__0_0_00_0_0_11_.,

Figure 1.02 Alternative BCD representations of the denary digits 8503

i- - -----

•

Cambridge International AS and A level Computer Science

There are a number of applications where BCD can be used. The obvious type of application
is where denary digits are to be displayed, for instance on the screen of a calculator or in a
digital time display. A somewhat unexpected application is for the representation of currency
values. When a currency value is written in a format such as $300.25 it is as a fixed-point
decimal number (ignoring the dollar sign). It might be expected that such values would be
stored as real numbers but this cannot be done accurately (thi;, type of problem is discussed
in more detail in Chapter 16 (Section 16.03). One solution to the problem is to store each
denary digit in a BCD code.

It is instructive to consider how BCD arithmetic
might be performed by a computer if fixed -point
decimal values were stored as BCD values. Let's
consider a simple example of addition to il lustrate
the potential problem . We will assume a two-byte
representation. The first byte represents two
denary digits for the whole part of the number and
the second byte represents two denary digits for
the fractional part. If the two values are $0.26 and
$0.85 t hen the result should be $1.11. Applying
simp le binary addition of the BCD codes will
produce the result shown in Figure 1.03.

0.26 1 0000 0000 I I 0010 OllO
+

o.s5 1 0000 0000 I I 1000 0101

t
0000 0000 I I 1010 lOll

Figure 1.03 Erroneous addition using BCD coding

In the first decimal place posit ion, the 2 has been added to the 8 to get 10 but the BCD
scheme only recognises binary codes for a single-digit de nary number so the addition has
failed . The same problem has occurred in the addition for t he second decimal place values.
The result shown is 'point ten eleven', which is meaningless in denary numbers. The 'carry' of
a digit from one decima l place to the next has been ignored .

To counteract th is in BCD arithmetic,
the processo r needs to recognise that

0.26 I 0000 0000 I I 0010 OllO

an impossible value has been produced
and apply a method to remedy this. We
will not consider the recognit ion method.
The remedy is to add OllO whenever the
problem is detected.

Starting w ith the least significant nibble
(see Figure 1.04), adding OllO to lOll
gives 10001 which is a fou r-bit va lue plus
a carry bit. The carry bit has to be added
to the next nibble as well as add ing the
OllO to correct t he error. Adding 1 to 1010
and then adding OllO gives 10001. Again
the carry bit is added to the next nibble to
give the correct result of $1.ll for the sum
of $0.26 and $0.85.

_ ____ + .. ~----~
o.85 1 0000 0000 1 1 1000 0101

t
Initial sum (giving values over 1001) 0000 0000 r-1 -1-01_0_1_0_1_1---,

Add correction to least significant nibble
The result has a carry bit

Add correction plus carry to next nibble
The result has a carry bit

Add carry to next nibble to get l.ll I 0000 0001 I

Frgure 1.04 Correct representation of the BCD code for l.ll

OllO
1 0001

Olll 0001
1 00010001

0001 0001

In Chapter 5 (Section 5.02) there is a brief discussion of how a processor can recogn ise
prob lems arising from arithmetic operations using numbers coded as binary values.

- Chapter 1: Information Representation
l

t
i r

1.03 Internal coding of text
ASCII code
If text is to be stored in a computer it is necessary to have a coding scheme that provides a
unique binary code for each distinct individual component item of the text. Such a code is
referred to as a character code. There have been three significant coding schemes used in
computing. One of these, which is only mentioned here in passing, is the EBCDIC code used
by IBM in their computer systems.

The scheme wh ich has been used for the longest time is the ASCII (American Standard Code
for Information Interchange) coding scheme. This is an internationally agreed standard.
There are some variations on ASCII cod ing schemes but the major one is the 7-bit code. It is
customary to present the codes in a table for which a number of different designs have been
used.

Table 1.03 shows an edited version with just a few of t he codes. The first column contains
t he binary code which would be stored in one byte, with the most significant bit set to
zero and the remaining bits representing the character code. The second column presents
the hexadecimal equivalen t as an il lustration of when it can be useful to use such a
representation .

Binary code Hexadecimal equivalent Character Description
00000000 00 NUL Null character
00000001 01 SOH Start of heading
00000010 02 STX Sta rt of text
00100000 20 Space
00100001 21 ! Exclamation mark
00100100 24 $ Dollar
00101011 2B + Plus -00101111 2F I Forward slash
00110000 30 0 Zero
00110001 31 1 One
00110010 32 2 Two
01000001 41 A Uppercase A
01000010 42 B Uppercase B
01000011 43 C Uppercase C
01100001 61 a Lowercase a
01100010 62 b Lowercase b
01100011 63 C Lowercase c

Table 1.03 Some examples of ASCII codes

The full table shows the 27 (128) different codes available for a 7-bit code. You should not try
to remember any of the ind ividua l codes but the re are certain aspects of the coding scheme
wh ich you need to understand.

Firstly, you can see that the majority of the codes are for printing or graphic characters.
However, the first few codes represent non-printing or control characters. These were
introduced to assist in data transmission or in entering data at a computer term inal. It is fair
to say that these codes have very lim ited use in the modern computer world so th ey need no
further consideration.

•

----- -- - - - - ---- -- ~-

Cambridge International AS and A level Computer Science ·

Secondly, it can be seen that the obvious types of character that could be expected to be
used in a text based on the English language have been included. Specifica lly there are
upper- and lower-case letters, punctuation symbols, numera ls and arithmetic symbo ls in the
coding tables.

It is worth emphasising here that t hese codes for numbers are exclusively fo r use in the
context of stored, displayed or printed text. All of the other coding schemes for numbers are
for internal use in a computer system and wou ld not be used in a text.

There are some specia l features that make the coding scheme easy to use in certain
circumstances. The first is that the codes for numbers and for letters are in sequence in each
case so that, for example, if 1 is added to the code for seven the code for eight is produced .
The second is that the codes for the upper-case letters differ from the codes fo r the
corresponding lower-case letters on ly in the value of bit 5. This makes conversion of upper
case to lower case, or the reverse, a si mple operation.

Unicode
Despite still being wide ly used, the ASC II codes are far from adequate for many purposes.
For this reason new coding schemes have been developed and continue to be developed
further. The d iscussion here describes the Unicode schemes but it shou ld be noted that
t hese have been deve loped in tandem with the Universa l Character Set (UCS) scheme;
the only differences between these schemes are the identifying names given to them. The
aim of Unicode is to be able to rep resent any possible text in code form. In particular t his
includes all languages in t he world. However, Unicode is designed so that once a coding set
has been defined it is never changed. In particu lar, the fi rst 128 characters in Un icode are
the ASCI I codes.

Unicode has its own specia l terminology. For exa mple, a character code is referred to as
a 'code point'. In any documentation there is a special way of identifying a code point. An
example is U+0041 which is the code point correspond ing to t he alphabetic cha racter A. The
0041 are hexadecimal characters representing two bytes. The interesting point is that in a
text where the coding has been identified as Un icode it is only necessary to use a one-byte
representation for the 128 codes co rresponding to ASCII. To ensure such a code cannot be
misinterpreted, the codes where more than one byte is needed have restrictions appl ied.
Figure L OS shows the format used fo r a two-byte code.

11?????? 10??????
Figure 1.05 Unicode two-byte code format

The most sign ificant bit for an ASCII code is always O so neither of the two-byte
representations here can cause confusion .

1.04 Images
Images can be stored in a com puter system for the eventua l purpose of displaying the image
on a screen or for presenting it on paper, usually as a component of a document. Such an
image ca n be created by using an appropriate drawing package. Alternatively, when an image
already exists independently of the computer system, the image can be captured by using
photography or by scanning.

~-- - - - - - - - ---- ~-- - - - - - - - -

C Chapter 1: Information Representation

Vector graphics
It is normal for an image that is created by a drawing package or a computer-a ided design
(CAD) package to consist of a number of geometric objects. The outcome is then usually for
the image to be stored as a vector graphic file.

Vector graphic: a graphic consisting of components defined by geometric formulae and associated
properties, such as line colour and style

We do not need to consider how an image of this type
would be created. We do need to consider how the data
is stored after the image has been created. A vector
graphic file conta ins a drawing list. The list contains
a command for each object included in the image.
Each command has a list of attributes that define the
properties of the object. The properties include the
basic geometric data such as, for a circle, the position of
the centre and its radius. In addition properties such as
the thickness and style of a line, the colour of a line and
the colour that fills the shape, if that is appropriate, are
defined. An example of what could be created as a vector
graphic file is shown in Figure 1.06.

I\
Figure 1.06 A simple example
of a vector graphic image

The most important property of a vector graphic image is that the dimensions of the objects
are not defined explicitly but instead are defined relative to an imaginary drawing canvas. In
other words, the image is sca lable. Whenever the image is to be displayed the file is read, the
appropriate ca lcu lations are made and the objects are drawn to a suitable scale. If the user
then requests that the image is redrawn at a larger scale the file is read again and another set
of calculations are made before the image is displayed. This process cannot of itself cause
distortion of the image.

TASKl.04
Construct a partia l drawing list for the graphic shown in Figure 1.06. You can take
measurements from the image and use the bottom left corner of the box as the origin of a
C<;)Ordinate system. You can invent your own format for the drawing list.
A vector graphic file ca n only be displayed directly on a graph plotter, which is an expensive
specialised piece of hardware. Otherwise the file has to be converted to a bitmap before
presentation .

Bitmaps
Most images do not consist of geometrical ly defined shapes so a vector graphic
representation is inappropriate. The general purpose approach is to store an image as a
bitmap. Typica l uses are when capturing an existi ng image by scanning or perhaps by taking
a screen-shot. Alternatively, an image can be created by using a simple drawing package.

The fu ndamental concept underlying the creation of a bitmap file is that the picture
element (pixel) is the smal lest identifiable component of a bitmap image. The image is
stored as a two-dimensional matrix of pixels. The pixel itself is a very sim ple construct; it has
a position in the matrix and it has a co lour.

- ----- -- - -- -- -- -- --

•

Cambridge International AS and A level Computer Science

Picture element (pixel) : the smallest identifiable component of a bitmap image, defined by just two
properties: its position in the bitmap matrix and its colour

It is of no consequence as to whether it is considered to be a small rectangle, a small circle
or a dot. However, the scheme used to represent the colour has to be decided and this can
be quite detailed. The simplest option is to use one bit to represen t the colour, so that the
pixel is either black or white. Storage of the colour in four bits would allow simple greyscale
colouring. At least eight bits per pixel are necessary to code a colou red image. The number of
bits per pixel is sometimes referred to as the co lour depth.

The other decision that has to be made concerns the resolution of the image wh ich can be
represented as the product of the number of pixels per row times the number of rows. When
considering resolut ion it is important to distinguish between the reso lution of a stored image
and the resolution of a mon itor screen that might be used to display the image. Both of these
have to be considered if a screen display is being designed.

From the above discussion it can be seen that a bitmap file does not define t he physical
size of a pixel or of the whole image. The image is therefore scalable but when the image
is scaled the number of pixels in it does not change. If a well-designed image is presented
on a suitable screen the human eye cannot distinguish the individual pixels. However, if
the image is magnified too far the qua lity of the display will deteriorate and the individual
pixels will be evident. This is illustrated in Figu re 1.07 which shows an original small image, a
magnified version of t his small image and a larger image created with a more sensible, higher
resolut ion.

(a) (b) (c)

Figure 1.07 (a) a bitmap logo; {b) an over-magnified version of the image; (c) a sensible larger version

Bitmap file size
The above account has considered the two approaches for storing images and when t hey are
appropriate.

File size is always an issue with an image file. A large file occupies more memory space and
takes longer to display or to be transmitted across a network. A vector graphic file w ill have a
smaller size than a corresponding bitmap file. A bitmap file has to store the pixe l data but the
file must also have a header that defines the resolution of the image and the coding scheme
for the pixel colour.

--- ----- --------~-------

l: ": _ Chapter 1: Information Representation

You can calculate the minimum size (the size not including the header) of a bit map fi le
knowing the reso lution and the colour depth . As an example, consider that a bitmap file is
needed to fill a laptop screen where the resolution is 1366 by 768. If the colour depth is to be
24 then the number of bits needed is:

1366 X 768 X 24 = 25178112 b its

The result of th is calculation shows the number of bits but a file size is always quoted as a
number of bytes or multiples of bytes. Thus our file size could be quoted as:

25 178 112 bits = 25178112 -;- 8 = 3147 264 bytes

= 3147264 -;-1024 = 3073.5 kibibytes (3073.5 KiB)
= 3073.5 -;-1024 = approximately 3 MiB

Kibi: a prefix representing the factor 210 (1024) written as the symbol Ki
Mebi: a prefix rep resenting the factor 220 (1048576) written as the symbol Mi
Gibi: a prefix representing the factor 230 written as the symbol Gi

TIP
For multiples of bytes, the terminology used has recently changed. Traditionally, computer
scientists have used the terminology kilobyte, megabyte, gigabyte etc. in a way that conflicted
with the definition of these prefixes established by the International System of Units (SI).
Following the SI convention , one kilobyte wou ld represent 1000 bytes. Computer scientists
have used one kilobyte to represent 1024 bytes. There have been a number of variations on
how this was written , for example Kbyte, KB or kB but the basic contradiction remained. In
orderto resolve this unsatisfactory situation, the International Electrotechnical Commission
(IEC) in 1998 proposed a new set of definitions for such quantities. 1024 bytes is now identified
as one kibibyte where the kibi can be considered as representing kilobinary. This proposal has
been accepted by other international standards bod-ies.

1.05 Sound
Natural sound cons ists of variations in pressure which are detected by the human ear. A typical
sound conta ins a large number of individual waves each with a defined frequency. The resu lt is
a wave form in whi_ch the ampl itude of the sound varies in a continuous but irregu lar pat tern.

If t here is a need to store sound or transmit it electron ica lly the original ana logue sound
signal has to be converted to a bin ary code. A sound encoder has two components. The first
is a band-limiting filter. This is needed to remove high-frequency co mponents. The ear would
not be able to detect t hese and they could ca use problems for the cod ing if not removed. The
other component in the encoder is an analogue-to-digital converter (ADC).

The method of operation of the ADC is described with reference to Figure 1.08. The ampl itude
of the wave (the red line) has to be sampled at regular interva ls. The blue vertica l li nes indicate
the sampli ng times. The amplitude cannot be measured exactly; instead the amplitude is
approximated by the closest of the defined amplitudes represented by the horizontal lines. In
Figu re 1.08, sample values 1 and 4 will be an accurate estimate of the actual ampli tude because
the wave is touching an amplitude li ne. In contrast, samples 5 and 6 will not be accurate because
the actual amplitude is app roximately half way between the two closest defined values.

•

Cambridge International AS and A level Computer Science

Sound
amplitude

1

Figure 1.08 ADC sampling

2 3 4 5 6 7

Time

In practice, for coding sound, two decisions have to be made. The first is the number of
bits to be used to store the amplitude values, which defines the sampling resolution. If only
three bits are used then eight levels can be defined as shown in Figure 1.08. If too few are
used there will be a significant quantisation error. In practice 16 bits wil l provide reasonab le
accu racy for the digitised sound.

The other decision concerns the choice of the sampling rate, which is the number of samples
taken per second. This should be in accordance with Nyquist's theorem which states that
sampling must be done at a frequency at least twice the highest frequency in the sample.

Once again file size can be an issue. Clearly an increased sampling rate and an increased
sampling resolution will both cause an increase in file size.

Simply recording sound and storing a digital representation is not enough for many
appl ications. Once a digital representation of the sound has been sto red in a file, it can be
man ipulated using sound-editing software. This will typically have features for:

• combining sound from different sources

• fading in or fading out the sound
• ed iting the sound to remove noise and other imperfections.

1.06Video
The emphasis here is on the visual aspect of a video recording and, in pa rti cular, how the

_ image is disp layed on a screen. It might be imagined that a video would be stored very
simply as a succession of still images or frames and the on ly concern would be the frame rate
defined as the number of frames displayed per second. In practice the issues are far more
complex. They have not been made any more simple by the recent changes that have taken
place with regards to screen technology.

The basic principle of operation is that the display of an individual frame is created line by
line. One of the issues is the choice of resolution. The resolution can be defined in terms
of the number of lines per frame and the number of pixels per line. There needs to be
compatibi li ty between the resolution of the stored image and the reso lution of the display
screen. However, the technology used has to be chosen with regard to t he sensitivi ty of the
human eye. One constraint is that unless the screen is refreshed at least 50 times per second

r
i t· Chapter 1: Information Representation

the eye will notice the flicker. However, provided that the refresh rate is 25 times per second
the eye cannot see that any motion on the screen is not actua lly continuous.

The tradit ional solution to this problem has been to use interlaced encoding. This was used
in television broadcasting and then adapted for video recordings. The image for each frame
is split into two halves, one containing the odd numbered lines and the other the even. The
first half is displayed completely then the second half fo llows. This produces what appears to
the eye as being a high refresh rate but is halving the transmiss ion bandwidth requirements.
The alternative approach is to use progressive encoding where a full frame is displayed each
time. As improved transmission bandwidths become more generally ava ilable it is likely that
progressive encoding will become the norm.

1.07 Compression techniques and packaging of
multimedia content

For another time the issue of file size will be discussed, this t ime in the context of starting
with a file that needs to have its size reduced to reduce memory storage requirements and
improve transmission rates.

There are two categories of compression. The first is lossless compression where the file
size is reduced but no information is lost and when necessary the process can be reversed to
re-create the original file. The second is lossy compression where the file size is reduced
with some loss of information and the original file can never be recovered. In many
appl ications a combination of lossless and lossy methods may be used.

Lossless compression: coding techniques that allow subsequent decoding to recreate exactly the
origina l file

Lossy compression: coding techniques that cause some information to be lost so that the exact
original file cannot be recovered in subsequent decoding

If a file contains text then compression must be lossless because it is
not sensible to allow any loss of information . One possible compression
method wou ld be Huffma n cod ing. The procedure used to carry out the
compression is quite detailed but the principle is straightforward . Instead
of having each character coded in one byte an ana lysis is carried out to find
the most often used cha racters. These are then given shorter codes. The
original stream of bytes becomes a bit stream. A possible set of codes if a
text contained only eight different letters is shown in Table 1.04.

Code
10
01

111
110

0001
0000
0011
0010

Character
e
t
0

h
I
p
w
z

The important point to note here is the prefix property. None of the codes
begins with the sequence of bits representing a shorter code. Thus there
can be no ambiguity when the transm itted compressed file has to be
converted back to the original text.

Table 1.04 An example of Huffman coding

A different lossless compression technique is run-length encod ing. This can be particularly
effective for compressing a bitmap file. The compression converts sequences of the same bit
pattern into a code that defines the bit pattern and the number of times it is repeated .

Lossy compression can be used in circumstances where a sound file or an image file can have
some of the detailed coding removed or mod ified when it is likely that the human ear or eye
will hardly notice any difference. One example would be to reduce the colour depth for the
coding of a bitmap.

•

.---

Cambridge International AS and A level Computer Science .

Extension Question 1.01
Graphic files can be stored in a number of formats . For example, JPEG, GIF, PNG and TI FF are
just a few of the possibilities. What compression techniques, if any, do these use?

If the image coding for a video is to be compressed, one approach is to tackle the spatial
redundancy in individual frames using techniques applicable to an image file. However, t his
is unlikely to be an efficient technique because, in genera l, one frame is very sim ila r to the
preceding one. It w ill be more effective to tackle this temporal redundancy by changing the
frame by frame coding to one w hich mainly records differences between adjacent frames.

A video conta ins images and sound but these do not go to the same part of any receiving and
displaying system. Clearly the audio and visual parts of a video must be handled independently
but in a way that guarantees synchronisation. The solution to this is to package the audio and
visual components in what is known as a multimedia container format. This concept is currently
being developed by several different organisations or companies. The use is not restricted to
one video file and one sound file. Rather, one multimed ia container file will have many audio
and video streams plus other streams, perhaps for subtitles or chapter headings.

• A binary code or a binary number can be documented as a hexadecimal number.

• Internal coding of signed integers is usually based on a two's complement representation.

• BCD is a convenient coding scheme for single denary digits.

• ASCII and Unicode are standardised coding schemes for text characters.

• An image can be stored either in a vector graphic file or in a bitmap file.

• An ADC works by sampling a continuous waveform.

• Lossless compression allows an original file to be recovered by a decoder; lossy compression
irretrievably loses some information.

Exam-style Questions
1 A file contains binary cod ing. The following are two successive bytes in the file:

1 10010101 I 00110011 I

a One possib ility for the information stored is that the two bytes together represent one unsigned integer binary
number.

Give the denary number corresponding to this. Show you r working.

ii Give the hexadecima l number corresponding to th is. Show yo ur working.

b Give one example of when a hexadecimal representation is used .

[2)

[2)

[l)

----- ------- ----- --

r ' - Chapter 1: Information Representation

c Another possibility for the information stored is that the two bytes individually represent two signed integer
binary numbers in two's complement form.

State which byte represents a negative number and explain the reason for your choice.

ii Give the de nary number corresponding to each byte. Show your work ing.

d Give two advantages from representing signed integers in two's complement fo rm rather than using a sign and
magnitude representation . .

e Give three different examples of other options for the types of information that could be represented by two
bytes. For each example, state whether a representation requires two bytes each t ime, just one byte or only

[3]

[2]

part of a byte each time. [3]

2 A designer wishes to include some multimedia components on a web page.

a If the designer has some images stored in files there are two possible formats for t he files .

Describe the approach used if a graphic is stored in a vector graphic file.

ii Describe the approach used if a graphic is stored in a bitmap file.

iii State which format gives better image quality if t he image has to be magn ified and explain why.

b The designer is concerned about tne size of some bitmap files .

If the resolution is to be 640 x 480 and the co lour depth is to be 16, calculate an approximate size for the
bitmap file. Show your working and express the size using sensible units.

ii Explain why this calculat ion only gives an approximate fi le size.

c The designer decides that the bitmap fi les need compressing.

Explain how a simple form of lossless compression cou ld be used.

ii Explain one possible approach to lossy compression that cou ld be used.

3 An audio encoder is to be used to create a recording of a song. The encoder has two components.

a One of the components is an ana logue-to-d igita l converter (ADC).

Explain why this is needed.

ii Two important factors associated with the use of an ADC are the sampling rate and the sampling
resolution. Explain the two terms. Use a diagram if this will help your explanation .

b The other component of an audio encoder has to be used before the ADC is used.

Ident ify this component.

ii Explain why it is used.

c The recorded song is to be incorporated into a video. Sound-editing software is to be used as part of th is
process. Describe two techniq ues that the sound-editing software could provide.

[2]

[2]

[2]

[2]

[l]

[2]

[2]

[2]

[5]

[l]

[2]

[3]

•

Learning objectives
By the end of this chapter you should be able to:

• explain the client-server model of networked computers
• give examples of applications which use the client-server

model
• describe what is meant by the World Wide Web (WWW)

and the Internet
• explain how hardware and communication systems are

used to support the Internet
• explain the benefits and drawbacks of using copper cable,

fibre-optic cabling, radio waves, microwaves, satellites
• show understanding of bit streaming and the importance

of bit rates/broadband speed on bit streaming
• explain the format of an IP address and how an IP address

is associated with a device on a network

• explain the difference between a public IP address and a
private IP address and the implication for security

• explain how a Uniform Resource Locator (URL) is used to
locate a resource on the WWW and the role of the Domain
Name Service

• describe the sequence of events executed by the client
computer and web server when a web page consisting
only of HTML tags is requested and displayed by a
browser

• recognise and identify the purpose of some simple
JavaScript and PHP code and show understanding of
the typical use of client-side code in the design of an
application.

., - - ~ -- -~ --- - - ------------------- ---~- --~-

~- Chapter 2: Communication and Internet Technologies .

2.01 Transmission media
Cable
The options for a cable are twisted pair, coaxial or fibre-optic. (The first two use copper
for the transmission medium.) In discussing suitabil ity for a given appl ication there are a
number of factors to consider. One is the cost of the cable and connecting devices. Another
is the bandwidth achievable, which governs the possible data transmission rate. There are
then two factors that can cause poor performance: the likelihood of interference affecti ng
transmitted signa ls and the extent of attenuation (deterioration of the signal) when high
frequencies are transmitted. These two facto rs affect the need for repeaters or amplifiers in
t ransmission lines. Table 2.01 shows some comparisons of the different cable types.

Twisted pair Coaxial
Cost Lowest Hi her
Bandwidth or data rate Lowest Hi her

uenc Affected Most affec.ted
Interference Worst affected Less affected
Need for re eaters More often More often

Table 2.01 Comparisons between cable types

It should be understood that for each of the three types of ca bling
there are defined standards for different grades of cable which must

· be cons idered when a fina l decision is made. However, it can be seen
that fibre-optic cable performs best but does cost more than the other
technologies. For a new installation the improved performance of fibre -
optic cable is likely to be the factor that governs the choice. However,
where copper cable is already installed the cost of replacement by
fibre-optic cable may not be justified.

Fibre-optic
Hi hest
Much hi her
Least affected
Least affected
Less often

Currently, twisted pa ir cable is stil l in use almost universally for
con nectin g a telephori e handset to a telephone line. This type of cable
is illustrated in Figure 2.01. It is also the technology of choice for high-
speed local area networks.

Figure 2.01 One cable with four twisted pairs
with differing twist rates to reduce interference

Coaxia l cable has main ly been replaced for use in long-distance
telephone cabling but is sti ll used extensively by cable te levision compan ies and is often
used in metropolitan area networks. Fibre-optic cable is the technology of choice for long-
distance cabling. As shown in Figure 2.02, coaxial cable is not bundled but a fibre-optic cab le
contains many ind ividua l fibres .

(a)

Figure 2.02 (a) Coaxial cable and (b) a bundled fibre-optic cable

(b)

•

,.
Cambridge International AS and A level Computer Science· · w.

Wireless
The alternative to cable is wi reless transmission. The three options here are rad io, microwave
or infrared, which are all examples of electromagnetic radiat ion; the only intrinsic difference
between the three types is the frequency of the waves.

When making a choice of which wireless option to use, all of the factors discussed when
comparing cable media need to be considered again . In addition, the ability fo r the radiation
to transmit through a solid barrier is an important factor. Also the extent to which the
transmission can be focused in a specific direction needs to be considered. Figure 2.03
shows the approximate frequency ranges for the three types of radiation . The factors listed
on the left increase in the direction of the arrow, so the bandwidth increases through rad io
and microwave to infrared but the abili ty of the waves to penetrate solid objects is greatest
for radio waves. Interference is not consistently affected by the frequency.

Frequency range

Bandwidth or data rate

Attenuation (mainly due to rain)

Need for repeaters

Directional focusing capability

Penetration through a wall
Interference

Radio
3KHz-3GHz

Microwave
3-300GHz

There is no systematic trend

Infrared
300GHz-400THz

Figure 2.03 Frequency ranges and frequency dependency of factors affecting wireless
transmission

The increased attenuation for infrared transmission, wh ich has the highest frequency, leads
to it only being suitable for indoor app lications. The fact that it will not penetrate through
a wall is then of benefit because the transm ission cannot escape and cause unwanted
interference elsewhere. For most applications, microwave transm ission is t he option of
choice with the improvement in bandwidth being the determin ing factor.

Comparing cable and wireless transmission
It is worth noting t hat cables are often referred to as 'gu ided media' and wireless as 'unguided
media'. This is slightly mislead ing because only rad io wave transmission fits this description .
It is possible with microwaves or infrared to direct a transmission towards a receiver (as
suggested in Figure 2.03).

There are a number of points to make when considering the relative advantages of
transmission th rough a cable or wireless transmission:

• The use of specifi c wireless transmission frequencies is regulated by government agencies
and so permission has to be obtained before wireless transmission is used.

• Outside these frequencies, no permission is needed to use the air fo r t ransmission but
cables can only be laid in the ground with the perm ission of landowners.
For global communications, the two competing technologies are transmission through
fibre~optic cables laid underground or on the sea bed and satellite transmission
(discussed in Sect ion 2.02); cu rre ntly neither of these technologies is dom inant.
Interference is much more sign ificant for wireless transmission and its extent is
dependent on which frequencies are being used for different applications.

--- ------- ----------- ------ -----.
I 1" a ' . . • Chapter-2: Communica~ion and Internet Technologies a

Repeaters are needed less often for wireless transmission .
Mobile (cell) phones now dominate Internet use and for these only wireless transmission
is possible.
For home or small office use, wired or wireless transmission is equally efficient; the lack
of cabling requirement is the one factor that favours wire less connections for a small
network.

2.02 The Internet
Prior to the existence of the Internet there were two major periods of networking
development. The first occurred in the 1970s when what are now referred to as w ide area
networks (WANs) were created . The ARPANET in the USA is the one usually mentioned first
in this context. The second period of development was triggered by the arrival of the PC in
the 1980s which led to the creation of the first examples of what are now referred to as local
area networks (LANs). These developments continued into the 1990s (with, along the way,
t he add ition of metropolitan networks (MANs)) but most importantly with the increasing aim
of connecting up what were originally designed and created as independent, stand-alone
networks. The era of internetworking had arrived and, in particular, the Internet started to
take shape.

It is important to understand that the Internet is not a WAN; it is the biggest internetwork in
existence. Furthermore, it has never been designed as a coherent entity; it has just evolved
to reach its current form and is still evolving to whatever future form it will take. One of the
consequences of the Internet not having been designed is t hat there is no agreed definition
of its structure. However, there is a hierarchical aspect to the structure particularly with
respect to the role of an Internet Service Provider (ISP). The in itial funct ion of the ISP was
to give Internet access to an individual or company. This function is now performed by
what may be described as an 'access ISP'. Such ISPs might then connect to what might be
called 'middle t ier' or regional ISPs which in turn are connected to tier l lSPs which may
alternatively be termed 'backbone' ISPs. An ISP is a network and connections between ISPs
are handled by Internet Exchange Points (IXPs). The other networks which can be considered
to share the top of the hierarchy with t ier l lSPs are the major content providers.

Discussion Point:
How many ISPs or major Internet providers are you familiar with?

Communication systems not originally designed for computer networking provide significant
infrastructure support for the Internet. The longest standing example is what is often referred
to as POTS (plain old telephone service) but is more formally described as a PSTN (public
switched telephone network). At the time of the early period of networking the telephone
network carried analogue voice data but digital data could be transmitted provided that
a modem was used to convert the digital data to analogue with a further modem used to
reverse the process at the receiving end. A dial -up network connection was ava ilable which
provided modest-speed, shared access when required. However, an organisation could
instead pay for a leased line service which would provide a dedicated link with guaranteed
transmission speed which was permanently connected. Typically, organ isations have made
use of leased lines to establish MANs or WANs.

More recently, the PSTNs have upgraded their main commun ication lines to fibre-optic cable
employing digital technology. This has allowed them to offer improved leased line services to
ISPs but has also given them the opportunity to provide their own ISP services. In this guise

•

- - ------ -- --------

Cambridge International AS and A level Computer Science·

they provide two types of connectivity service. The first is a broadband network connection
fo r traditional network access. The second is WiFi hotspot techno logy, in which a public
place or area is equipped with an access point which has a connection to a wired network
that provides Internet access. Mob ile devices in the vicinity of the access point can connect
to it wirelessly and from this connection gain Internet access.

For users of devices with mobile (cell) phone
capability there is an alternative method for
gaining Internet access. This is provided by mobile
phone companies acting as ISPs. The mobile
phone equipped with the appropriate software
co mmunicates with a standard cell tower to access
the wireless telephone network which in turn can
provide a connection to the Internet.

Satelli tes are important components of modern
communication systems. Three types of satellite are
identified by the altitude at which they orbit. Figure
2.04 shows the positioning with respect to altitude of
the different types of satellite. The Van Allen belts are
no-go areas fu ll of charged particles.

Altitude (km)

35786

Upper Van Allen belt
15000

Lower Van Allen belt
5000

EARTH

Figure 2.04 Satellite altitudes

The highest altitude satellites are in geostationary Earth orbit (GEO) over the equator and these
are used to provide long-distance telephone and computer network communication. Only
t hree GEO satellites are needed for fu ll globa l coverage. Closer to Earth are a group of medium-
Earth-orbit (MEO) satellites some of which provide the global position ing system (GPS). Ten
MEO satellites are needed for global coverage. Finally, low-Earth-orbit (LEO) satellites work in
'constellations' to supplement the mobile phone networks. Fifty LEO satellites are needed for
full global coverage but currently there are several hundreds of them up there.

Because of its height above the ground a satellite has the advantage that it can act as a
component in a network and can connect with other components that are separated by
greater distances than would be possible if only ground-based components were used. The
disadvantage is that the greater transmission distance causes transmission de lays which can
cause problems for the underlying technology supporting network operation .

2.03 The World Wide Web (WWW)
It is common practice to talk about 'using the web' or 'using the Internet' as though these
were just two different ways of saying the same thing. This is not true. The Internet is, as
has been described above, an internetwork. By contrast, the World Wide Web (WWW) is a
distributed application which is available on the Internet.

Specifically, t he web consists of an enormous collection of websites each having one or more
web pages. The special feature of a web page is that it can contain hyperlinks which, when
clicked, give direct and essent ially immediate access to other web pages.

2.04 Internet-supporting hardware
Although the Internet has a structure wh ich is in part hierarchical it is at heart a mesh
structure. The device that acts as a node in this mesh is the router. Routers are found in
what can be described as the backbone fabric of t he Internet as well as in the ISP networks.
The detai ls of how a router works are discussed in Chapter 17 (Sections 17.03 and 17.04).

GEO

MEO

LEO

'
' Chapter 2: Communication and Internet Technologies
'
'

I At the periphery of the Internet there are different types of network. Whenever networks of a
different underlying technology need to communicate, the device needed is a gateway. Part
of the functionality provided by a gateway can be the same as that provided by a router.

One definition of a server is a specialised type of computer hardware designed to provide
functionality when connected to a network. A server does not contribute to the funct ioning
of the network itself but, rather, it is a means of provid ing services via the network. In the
context of the Internet, a server may act as any of t he following:

• an appl ication server (see Section 2.05)
• a web server (see Section 2.05)

• a domain name server (see Section 2.08)
• a file server
• a proxy server.

Router: a device that acts as a node on the Internet

Gateway: a device that connects networks of different underlying technologies

Server: a device that provides services via a network

File server functionality is very often provided by what is cal led a 'server farm', in wh ich a very
large numbers of servers work together in a clustered configuration. Tier 1 content providers
use server farms and they are also used in the provision of cloud storage, which an ISP can
offer as part of its service portfolio.

One example of the use of a proxy server is when a web server could become overwhelmed
by web page requests. When a web page is requested for the first t ime the proxy server saves
a copy in a cache. Then, whenever a subseq uent request arrives, it can provide the web
page without having to search through the filestore of the main server. At the same time a
proxy server can act as a firewa ll and provide some secu ri ty against malicious attacks on the
server. Security is discussed fu rther in Chapter 8 (Section 8.02).

2.05 Client-server architecture
Following the arrival of the PC in the 1980s it was soon rea lised that the use of stand-alone
PCs was not viable in any large organisation . In order to provide sufficient resource to any
individual PC it had to be connected to a network. Initially se rvers were used to provide
extra fac ilities that the PCs shared (such as filestore, software applications or printing). A
further development was t he implementation of what came to be known as the 'client-
server' arch itectu re. At the t ime, the traditional architecture of a ma inframe computer with
connected terminals was still in common use and the client-server approach was seen
as a competitor in which networked PCs (the clients) had access to one or more powerful
minicomputers acting as servers.

The essence of the client-server architecture as it was first conceived is a distributed
computer system where a client carries out part of the processing and a server carries out
another part. In order for the client and server to cooperate, software cal led 'midd leware' has
to be present. This basic concept st ill holds in present-day cl ient- server app lications but the
language used to describe how they operate has changed.

•

Cambridge International AS and A level Computer Science '·

The server is now a 'web server' which is a suite of software t hat can be insta lled on virtu ally
any computer system. A web server provides access to a web application . The cl ient is the
web browser software. The middleware is now the software that supports t he t ransmission of
data across a network together wi t h the provision for script ing (see Sect ion 2.09) .

It is worth emphasising t hat the original uses of the web involved a browser disp laying web
pages wh ich contained information. There was provision fo r download ing of this info rmation
but the web pages were essent ially stat ic. For a client- server applicat ion, the web page is
'dynamic' which means t hat what is disp layed is determined by t he request made by the
client. In this context, there is almost no limit to the variety of applications that can be
supported . The only requirement is that t he application involves user interact ion. The most
obvious examp les of a client-server application can be categorised as 'ecommerce' where
a customer buys products online from a company. Other examples are: e-business, emai l,
search ing library catalogues, on line ba nking or obtaining trave l t imetable informat ion. Most
applicat ions require a 'web-enabled ' database to be installed on the server or accessible
from the server. In contrast, the monthly payroll run typifies the type of appl ication which is
unsu itable for implementation as a dynamic web application and wi ll.continue to be handled
by batch processing.

2.06 Bit streaming
Stream ing med ia are a majo r component of the use of the Internet for leisure activ ities like
listening to music or watching a video. Before discussing such applications the use of the
term bit stream needs an explanation. In general, data prior to transmission is stored in
bytes and it is possible to transm it this as a 'byte stream'. However, st reamed media is always
compressed using techniques discussed in Chapter 1 (Section 1.07). Some compression
techniques involve converting each byte into a representation wi t h fewe r bits. Thus, to allow
the decoding process at the receiver end to work properly, the data must be transferred as a
bit st ream . So, to summarise, any reference to streaming media would norma lly imp ly t hat bit
streaming is used .

For one category of streaming media, the source is a website that has the med ia already
stored . One option in this case is for the user to download a fi le then listen to it or watch it at
some future convenient time. However, when the user does not wish to wait that long t here
is the streaming opt ion. This option is described as viewing or listening on demand . In this
case the de livery of the med ia and t he playing of the media are two separate processes. The
incoming media data are received into a buffer created on the user's computer. The user's
machine has media player software that takes the med ia data from t he buffer and plays it.

The other category of st reaming med ia is rea l-time or live transmiss ion. In th is case t he
content is being generated as it is being de livered such as when viewing a sporting event. At
the rece iver end the technology is the same as before. The major prob lem is at t he delivery
end because a very large number of users may be wa tching simultaneously. The way forward
now is to transmit the media initia lly to a large number of content provider servers which
t hen transm it onwa rds to individual users.

A crucial point with media streaming is whether the technology has su ffic ient power to
provide a satisfacto ry user experience. When the media is created it is the intention that the
media is to be delivered to the user at precisely the same speed as used for the creat ion; a
song that lasted four mi nutes when sung for t he reco rding wi ll sound ve ry pecu liar if, when
it is received by a user, it lasts six minutes. More specifically, the process of delivering t he

admin
Sticky Note
Lose less and lossy compression in chapter 1.07

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

-

~: ,_ Chapter 2: Communication and Internet Technologies

content wi ll be quantified by the bit rate. For example, a relat ively poor-quality video can
be del ivered at a bi t rate of 300 kbps but a reasonably good-qu ality audio file on ly requires
delivery at 128 kbps. Figure 2.05 shows a simple schematic diagram of the components
involved in the st ream ing.

,-·- ·- ·-· - ·-·-·-·-·-·-·-·- ·- ·-·-·-·-·-·-·- ·-·-·~
i ! Control data
i J••••••••

i Media ,c: I Buffer 1 ~t--r---------1

player Data flow · · ' Data flow
High-
water
mark

User's computer

Low-
water
mark

Figure 2.05 Schematic diagram of bit streaming

Media
server

The bit rate for delivery to the user from the buffer must match the defined rate for the
specific media in use but the planned transmission rate to the buffer should be higher to
allow for unexpected delays. These rates are controlled by the med ia player by continuous
monitoring of the extent of filling of the buffer in relation to the defined high- and low-water
marks. It is essential to have a buffer size that is sufficiently large for it never to get fi lled .

The rate of transm ission to the buffer is limited by the bandwidth of the network
connection. For a connection via a PSTN, a broadband link is essential. For good-quality
movie presentation the broadband requirement is about 2.5 Mbps. Because this will not
be available for all users it is often the practi ce that an individual video is made available
at different levels of compression. The most highly compressed version w ill be t he poorest
quality but the bit rate may be sufficiently low for a reasonable presentation with a relatively
low bandwidth Internet connection .

TASK2.01
Consider a bit-streaming scenario for a video where the following va lues apply:

The buffer size is 1 MiB
The low watermark is set at 100 KiB
The high watermark is set at 900 KiB
The incoming data rate is 1 Mbps.
The video display rate is 300 Kbps.

Assume that the video is playing and that the buffer content has dropped to the low-water
mark . The med ia player sets the controls fo r data input to begin again.
Calculate the amount of data that wil l be input in two seconds to the buffer and the amount of
data that will be removed from the buffer in the same time period.
Repeat the ca lculation for 4, 6, 8, 10 and 12 seconds.
From this data, estimate when the buffer wil l have filled up to the high-water mark.
Assuming that the incoming transmission is halted at this time, ca lculate how long it will be
before the buffer content has again fallen to the low-water mark level.

•

admin
Highlight

admin
Highlight

admin
Highlight

admin
Sticky Note
Ask Mr Butt about highlighted text

admin
Highlight

admin
Highlight

',

Cambridge International AS and A level Computer Science· · ·

2.07 IP addressing
The funct ioning of the Internet is based on th e implementation of the TCP/IP protocol suite
as will be explained in Chapter 17 (Section 17.04). One aspect of this is IP addressing wh ich is
used to define from where and to where data is being transmitted.

1Pv4 addressing
Currently the Internet funct ions with IP version 4 (1Pv4) addressing. The reason for the
st range name is of no consequence but the fact that this was devised in the late 1970s
is of considerable consequence. Had the PC and the mobile phone not been invented,
the scheme would be still sufficient for needs. Unfortunately for this scheme, these
developments did take place and have come to dominate Internet usage.

The 1Pv4 addressing scheme is based on 32 bits (four bytes) being used to define an 1Pv4
address. It is worth putting this into context. The 32 bits allow 232 different addresses. For big
numbers like this it is worth remembering that 210 is approximately 1000 in denary so the 32
bits provide for approximately four billion addresses. The population of the world is about
seven billion and it is estimated that approaching half of the world 's population has Internet
access. From th is we can see that if there was a need to supply one IP address per Internet
user the scheme would just about be adequate. However, things are not that simple.

1Pv4 address: a 32-bit long, hierarchical address of a device on the Internet

The origina l addressing scheme was designed on the basis of a hierarchical address with
a group of bits defining a network (a netlD) and another group of bits defining a host on
t hat network (a hostlD). The aim was to assign a un ique uni1;ersally recognised address for
each device on the Internet. The separation into two parts allows the initial transmission
to be routed according to t he netlD. The hostlD only needs to be examined on arrival at
the identified network. Before proceeding, it is important to note that the term 'host' is a
little misleading because some devices, particularly routers, have more than one network
interface and each interface requ ires a different IP address.

The other feature of the original scheme was that allocated addresses were based on the
concept of different classes of networks. There were five classes but only the first three need
concern us here. Th e structures used for the addresses are shown in Table 2.02.

Number of bits Number of bits
Class Class identifier for netlD for hostlD
Class A 0 7 24

Class B 10 14 16
Class C llO 21 8

Table 2.02 Address structure for three classes of 1Pv4 address

It can be seen from Table 2.02 that the most significant bit or bits identify the class. A group of
the next most sign ificant bits define the netlD and the remaining, least sign ificant, bits define
the hostlD. The rat ionale was straightforward. The largest organ isations would be allocated
to Class A. There could only be 27 i.e. 128 of these but there could be 224 dist inct hosts for
each of them. This compared with 221, approximately two million, organ isations t hat could be
allocated to Class C but each of these could only support 28 i.e. 256 hosts.

----- - ------ -

I

f Chapter 2: Communication and Internet Technologies

The problems with this scheme arose once LANs supporting PCs became commonplace.
The number of Class B netlDs available was insufficient but if organisations were allocated to
Class C the number of hostlDs available was too small. There have been a number of different
modifications made available to solve this problem.

Before considering some of these, the representation used for an IP address needs to be
introduced. During transmission, the technology is based on the 32-bit binary code for
the address; for documentation purposes, a dotted decimal notation is used. Each byte is
w ritten as the denary equivalent of the binary number represented by the binary code. For
example, the 32 bit code:

10000000 00001100 00000010 00011110

is written in dotted decima l notation as:

128.12.2.30

Classless inter-domain routing (CIDR}
The first approach developed for improving the addressing scheme is called 'classless inter-
domain rout ing' (CIDR). This retains the concept of a netlD and a hostlD but removes the ri gid
structure and allows the split between the netlD and the hostlD to be varied to suit individual
need. The simp le method used to achieve this is to add an 8-bit suffix to the address t hat
specifies the number of bits for the netlD. If, for instance, we define the suffix as 21, that
means that 21 bits are used for the netlD and there are 11 bits rema ining (of a 32-bit address)
to specify hostlDs allowing 211, i.e. 2048, hosts. One example of an IP address using this
scheme is shown in Figure 2.06. The 21 bits representing the netlD have been highlighted.
The rema ining 11 bits represent the hostlD wh ich would therefore have the binary value
11000001110.

Binary code: 1000001110fiOOO~Gl011

netlD suffix

Dotted decimal notation: 195.12.6.14/21

Figure 2.06 A CIDR 1Pv4 address

It should be noted that w ith this scheme there is no longer any need to use the most
significant bit or bits to define the class. However, it does al low already ex isting Class A, B or C
addresses to be used with suffixes 8, 16 or 24, respective ly.

TASK2.02
Create an example of the binary code for a Class C address expressed in CIDR format. Give the
corresponding dotted decimal representation.

Sub-netting
A quite different approach, sub-net ting, allows further structure in t he addressing.

To illustrate an example of this we can consider a medium-sized organisat ion with about
150 employees each w ith their own computer workstation. Let's assume that t here are
six individual department LANs and one head-office LAN. Figure 2.07 shows a schematic
diagram of how the LANs wou ld be connected to the Internet if the original scheme were

1----

•

C

Cambridge International AS and A level Computer Science· .

used. The organisation would need seven individual Class C netlDs. Each of these would
point to one of the LAN gateways (which have to function as routers). Each net lD would be
associated with 256 hosts so an organisation with just 150 computer workstations wou ld
leave 1642 IP addresses unused and unavailable for use by any other organisation.

The
Internet

Head office

~~,___L_A_N _ __.

\----.! Gateway 1-l --i•~! LAN 1 I

Figure 2.07 Connecting LANs using the original classfu l 1Pv4 scheme

The sub-netting solution for this organisation would require allocat ing just one Class C netlD.
For example, the IP addresses allocated might be 194.10.9.0 to 194.10.9.255 where the netlD
comprises t he first three bytes, represented by the decimal values 194, 10 and 9.

The sub-netting now works by having a defined structure for the 256 codes constituting the
host ID. A sensible solution for t his organisation is to use the top three bits as a code for the
individual LANs and the remaining five bits as codes for the individual workstations. Figure
2.08 shows a schematic diagram of this arrangement.

The Internet Router

Head

..----.....

EJ

Figure 2.08 Connecting LANS using sub-netting

On the Internet, all of the allocated IP addresses have a netlD pointing to the router. The
router then has to interpret the hostlD to direct the transmission to the appropriate host on
one of the LANS. For example:

• hostlD code 00001110 could be the address for workstation 14 on the head office LAN
(LAN 000).

• hostlD code 01110000 would be the address for workstation 16 on LAN 3 (LAN 011).

- - -------- ~-- --- ~-------- ~ ---.
I
l •
1

: Chapter 2: Communication and Internet Technologies
l
I

t

I

With 150 workstations the organisation hasn't used all of the 256 allocated IP addresses.
However, there are only 106 unused which is a reasonable number to have avai lable in case
of future expansion .

Network address translation (NAT)
The final scheme to be considered is different in that it deviates from the principle t hat every
IP address shou ld be unique. In this scheme, provision has been made for large organisations
to have private networks (intra nets) which use the same protocols as those used for the
Internet. One justification for using a private network has always been that th is provides
extra security because of the isolation from the Internet. However, this is no longer normal
practice. Organisations want private networks but they also want Internet connectivity.

The solution for dealing with the addressing is to use network address translation (NAT).
Figure 2.09 shows a schematic diagram of how this can be used. The NAT box has one
IP address which is .visible over the Internet so can be used as a sending address or as a
receiving address. Internally the IP addresses have to be chosen from one of t he three ranges
of IP addresses shown in Table 2.03 that have been allocated for such networks. (You do not
need to remember these numbers!)

Figure 2.09 An intra net connected to the Internet using a NAT box

Lower bound Upper bound
10.0.0.0 10.255.255.255
172.16.0.0 172.31.255.255
192.168.0.0 192.168.255.255

Table 2.03 1Pv4 addresses to be used in private networks

The important point is that each address can be simultaneously used by any number of
different private networks. There is no knowledge of such use on the Internet itself or in
any other private network. The interface in the NAT box has software installed to examine
each incoming or outgoing transmission. There can be a security check before an incoming
transmission is directed to the correct interna l address. The diagram shows undefined
arrows from the router connected to the NAT box_ These indicate that the network structure
within the organisation could take many different forms.

Discussion Point:
Can you find out which IP addressing scheme is being used when you are connected to the
Internet?

•

----- --- --- -- ----

Cambridge International AS and A level Computer Science· ·

1Pv6 addressing
Today there are combinations of 1Pv4 approaches in use and these allow the Internet
to continue to function. Respected sources argue that this cannot continue beyond the
current decade. There must soon be a migration to IP version 6 (1Pv6), which uses a 128-bit
addressing scheme allowing 2128 different addresses, a huge number! In practice, this wi ll
allow more complex structuring of addresses. Documenting these addresses is not going to
be fun . The addresses are written in a colon hexadecimal notation. The code is broken into
16-bit parts with each of these represented by four hexadecima l characters. Fortunately,
some abbreviations are allowed. A few examples are given in Table 2.04.

1Pv6 address Comment
68E6:7C48:FFFE:FFFF:3D20:1180:695A:FF01 A fu ll address
72E6::CFFE:3D20:1180:295A:FF01 :0000:0000: has been replaced by::
6C48:23:FFFE:FFFF:3D20:1180:95A:FF01 Leading zeros omitted
::192.31.20.46 An 1Pv4 address used iri 1Pv6

Table 2.04 Some examples of 1Pv6 addresses

Extension question 2.01
If 1Pv6 addressing is used, how many addresses would be available per square metre of the •
Earth's surface? Do you think there will be enough to go round?

2.08 Domain names
In everyday use of the Internet , a user needs to identify a particula r web page or email box.
The user will not wish to have to identify an IP address using its dotted decimal value. To get
round this problem the domain name system (DNS) was invented in 1983. The DNS system
allocates readab le domain names for Internet hosts and provides a system fo r finding the IP
address for an ind ividual domain name.

Domain name system (DNS): a hierarchical distributed database installed on domain name servers
that is responsible for mapping a domain name to an IP address

The system is implemented as a hierarchical distributed database which is installed on
a large number of domain name servers covering the whole of the Internet. The domain
name servers are connected in a hierarchy, with powerful replicated root servers at the top
of the hierarchy supporting the who le Internet. DNS name space is then divided into non -
overlapping zones. Each zone has a primary name server with the database stored on it.
Secondary servers get information from this primary server.

As a result the naming system is hierarchical. There are more than 250 top- level domains
which are either generic (e.g .. com, .edu, and .gov) or represent countries (e.g . . uk and .nl).

The domain name is included in a universa l resource allocator (URL), which identifies a web
page, or an email address. A domain is named by the path upward from it. For example, .eng.
cisco.com. refers to the .eng subdomain in the .cisco domain of the .com top-level domain
(which is the reverse of that used for a pathname of a file).

Looking up a domain name to find an IP address is called 'na me resolution'. For such a query
there are three possible outcomes:

-- --- - ---

; - , - Chapter 2: Communication and ,lnternetTechnologies

If the domain is under the jurisd iction of the server to which the query is sent then an
authoritative and correct IP address is returned.

If the domain is not under the jurisdiction of the server, an IP address can still be returned
if it is stored in a cache of recently requested addresses but it might be out of date.

• If the domain in the query is remote then the query is sent to a root server which can
provide an address for the name server of the appropriate top-level domain which in turn
can provide the address for the name server in the next lower domain . This continues
until the query reaches a name server that can provide an authoritative IP address.

2.09 Scripting and HTML in a client-server application
It is possible for an individual to create a client- server-based web application for personal
use on an individual computer. This would require downloading appropriate server software,
installing the application and using the computer's browser to access the application.
However, a better understanding is gained by considering a scenario where a developer has
crea ted a web application and made it ava ilable for use by remote users.

The application developer has to create the application as one or more web pages. This is
a three-stage process. Firstly, for each web page a file has to be created which is written in
HTML (HyperText Markup Language). Secondly, a domain name has to be obtained from a
web-hosting organisation. Finally, the HTM L fi les have to be uploaded to th e server provided
by the web-hosting organisation.

The following is the simplest sequence of events associated w ith a user accessing the
appl ication:

1 The user opens up a browser on the client computer.

2 The user types in the URL of t he web application or selects it from the bookmark list.
3 The browser asks the DNS system for the IP address.

4 The browser connects to the IP address and sends a request for the web page.
S The page is sent by t he server to the browser.

6 The browser displays the page.
Once the page is displayed the user can activate the applicat ion by clicking on a suitable
feature or by entering data as appropriate.

HTML
We now need to consider the framework for creating a file using HTML. This is a text file
constructed using pairs of what are referred to as 'tags'. The basic overall structure can be
represented as:

<html>
<head>
</head>
<body>

</body>
</html >

In between each pa ir of opening and closing tags there can be any number of li nes of text.
These can be used to display on the browser screen any or all of the following: text, images,
videos, forms, hyperlinks, icons and so on.

•

Cambridge International AS and A level Computer Science ·

The facilities offered by HTML can be supplemented by the inclusion of scripted code, written
in JavaScript or PHP.

JavaScript
JavaScript is written by the appl ication developer into the HTML text but its effect is to al low
the user at the cl ient end to interact with the app lication and to cause processing to take
place on t he client computer. For this to work the browser must have JavaScript enabled. In
the early days of the use of JavaScript it was necessary to ensure this and to include expl icit
reference to the use of JavaScript in the HTML file. However, JavaScript is now the default
scripting language so a script runs automatical ly. The important point is that t his has nothing
to do with what is installed on the server.

One way to incorporate JavaScript is to write the code in a separate file wh ich is then called
from within the HTML. Here we only consider the case when JavaScript code is contained
within the HTML itself. Th is is easily done (and easily recogn ised in an example HTML file) by
containing t he script in script tags:

<Script>

II Lines of JavaScript code

</script>

If the developer wants the script to be accessed immediately when the web page is displayed
the script tags are included in the HTML header section .

JavaScript is a fu ll-blown computer programming language. Below is an example script
wh ich indicates how easy it is to identify some JavaScript within HTML and to see what it is
doing. It uses variables (see Section 13.02 for more information about va ri ab les) to convert
a temperatu re value in put in Celsius to a value output as Fahrenheit. The input uses t he
prompt construct, which provides text to guide the user as to what should be input, and the
alert construct, which displays an explanatory text with the output va lue.

<!DOCTYPE html >
<html>
<body>
<hl>Yo u c an input a va l ue in Celsius and this will be converted to Fahrenheit .</hl >
<script>
var tempC = prompt ("Please enter the Celsius value", '"') ;
var tempF = (tempC * 1.8) + 32;
alert ("The Fahrenheit value is " + tempF)
</script>
</body>
</html>

The question now is when wou ld a developer want to use JavaScript? The answer to this is
'whenever the developer wants the user to have processing carried out on t he client computer
which does not involve the software running on the server'. This might involve running a
program as illustrated by the above sim ple example. More often the JavaScript is used for
collecting data which is to be used by a program running on t he server. In particu lar, data
validation and verification can be handled using JavaScript (see Chapter 8, Section 8.04).

-- .

-
0

, - Chapter 2: Communication and Internet Technologies

PHP
PHP is also a full-blown computer programming language. The difference is that any PHP
script is processed on the server. As for JavaScript, the PHP can be contained in a separate
file accessed by the HTM L. The example considered here will have the script written inside
the file containing the HTML. In this case the HTML file must be named with a .php extension
rather than the usual .html extension. The PHP code is included wi thin special tags:

<?php

// Lines of PHP code

The JavaScript program shown in the previous section could be converted to PHP to run on
the server in the fo llowing way:

< !DOCTYPE html>
<html>
<body>
<?php

$tempC = $ GET["value"];
$tempF = ($tempC * 2) + 30;
Echo ("The Fahrenheit value is ");
Echo $tempF;

?>
</body>
</html>

This particular example has to be run by supplying the value for $tempc as a parameter to
the URL for the file. Th is is done when the URL is entered into the address bar of the browser.
To provide the value 25 the format is to append ?val ue=25 to the URL following the .php file
extension (e.g. index.php?value=25).

As before this simple example shows how to ident ify some PHP code within HTML and see
what it is doing. It is worth noting that va riables start with $and they are case sensitive.
The first character has to be in lower case so$ _ GET, which is the method for getting the
parameter va lue, can be recognised as not being a variab le.

The main question is, again, why would a developer choose to include PHP script in some
HTML? The answer is that an applicat ion wil l not run qu ickly if it is constantly transmitt ing
data back and forward between the client computer and the server. For the particular case
of a database application it is imperative that the database remains on the server (or w ithin
the system of which the server is part) and that only the results of queries are displayed on
a browser screen. Also any SQL associated with the use of the database needs to be runni ng
on the server not on the cl ient. An example of this wi ll be considered after SQL has been
introduced in Chapter 10 (Section 10.6).

•

Cambridge International AS and A level Computer Science . J ·
-- j,e_

• The main transmission media are copper (twisted pair, coaxial) cables, fibre-optic cables and wireless
(radio, microwave, infrared) .

• Factors to consider are bandwidth, attenuation, interference and the need for repeaters.

• The Internet is the largest internetwork in existence.

• The World Wide Web is a distributed application accessible on the Internet.

• ISPs provide access to the Internet.

• Internet infrastructu re is supported by PSTNs and cell phone companies.

• Client- server architecture is establ ished using a web server and a client browser.

• The current add ressing scheme is 1Pv4, with 1Pv6 a future contender.

• The DNS resolves a domain name to an IP address.

• JavaScript is used to provide client-side processing.

• PHP is used to provide server-side processing.

Exam-style Questions
1 A new company has been estab lished . It has bought some new prem ises which consist of a

number of bu ildings on a single site. It has decided t hat al l of t he computer workstati ons in
t he different bui ldings need to be networked . They are conside ring ways in which the network
might be set up.

a One option they are considering is to use ca bling fo r t he network and to install it t hemselves .

Name the three types of cab li ng t hat t hey might consider.

ii Exp lain two facto rs, other than cost , that they need to consider when choosing sui ta ble cabl ing.

b Another option they are considering is to use wireless technology fo r at least pa rt of t he netwo rk.

Explain one option that might be suitable for w ire less netwo rking.

ii Identify one advantage, other t han cost, of using wi reless rather t han cable netwo rking.

iii Identi fy one disadvant age (other than cost) of using wireless rather t han ca ble networking.

c The fi nal option t hey are considering is to use t he services of a PSTN .

Defi ne what a PSTN is or does.

ii Explain how a PSTN could provide a network for t he compa ny.

2 a The Doma in Name System is vitally important for Internet users.

(2)

(4)

(2)

[l]

[l]

[l]

[3]

Name the type of software used by t he system and t he type of ha rdware on whi ch the software is installed. [2]

- ,- , · _ Chapter 2: Communication and Internet Technologies

ii Name two types of application that use the Domain Name System and for each give a brief description of
how it is used.

b In the classful 1Pv4 addressing scheme, the 32-bit binary code for the address has the top (most sign ificant)
bit set to O if it is of class A, the top two bits set to 10 if class B or the top three bits set to llO if class C. In a
document an 1Pv4 address has been written as 205.124.16.152.

Give the name for this notation for an IP address and explain how it relates to the 32-bit binary code.

ii Identify the class of the address and explain your reason.

iii Expla in why an 1Pv4 address defines a netlD and a hostlD.

c If the CIDR scheme for an 1Pv4 address is used the IP address 205.124.16.152 would be written as:

205.124.16.152/ 24

State the binary code for the hostlD in this address with a reason.

3 a A cl ient- server web application has been developed which uses a file containing the following code:

< !DOCTYPE html>
<html>
<body>

<hl>We can give you an estimate of how many you will need if you are tiling a floor
with our tiles.

You need to tell us the length and the width of the room
(in metres) .</hl>
<script>
var length = prompt("enter the room length", "");
var width = prompt("enter the room width", '"');
var tileSize = 0.25;
var numberOfTiles = (length* width)/tileSize;
alert ("The estimate for the number of tiles needed is " + numberOfTiles);
</script>
</body>
</html>

Name the role of the person who would create this file.

ii Identify where this file would be stored.

iii A browser is needed to ru n the application. State where the browser software is installed .

b The fi le uses JavaScript.

Identify two component parts of the file which involve JavaScript and explain their purpose.

ii Explain the sequence of events executed by the client computer and the web server when this
application is used.

[4]

[2]

[2]

[3]

[2]

[l]

[l]

[l]

[4]

[6]

•

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the need for primary storage
• show understanding of the need for secondary (including

removable) storage

• identify hardware devices used for input, output,
secondary storage

• show understanding of the basic internal operation of
specific types of device.

-- - - -- -- - ---
<

'

. ": , ,. Chapter 3: Hardware
,r

' '
I

•
t

t

I

11

11

;.

'

'

I

3.01 The memory system
As a broa
The first i

In the dis

d generalisation it can be said that there are two ma in uses of a computer system.
s to run programs.

cussion of computer system architecture in Chapter 5 (Section 5.01) you wi ll see
that the si mp lest model consists of a processor with access to a stored program. The history

ting is one of increasing performance. In the context of increasing performance of
min runn ing programs, the first requirement is for the speed of the processor to
However, this potential for improvement can only be realised if the time taken for
ssor to access the stored program decreases to match the increased processor

of compu
the syste
increase.
the proce
speed. Th e reality so far has been that access speeds have improved but they haven't kept

with the improvement in processor speeds. pace fully

The seco nd main use of a computer system is to store data. Here the major issues with
o increasing performance are capacity and cost; access speeds are not so regards t

importan t.

The termi no logy used to describe components for storing programs and data is not always
t. One variation is to distinguish between memory as the component which the consisten

processo
to disting

r can access directly and the (fi le-) store used for long-term storage. An alternative is
uish between the primary and the secondary storage.

The mem
in a mem
show the

ory system hierarchy is a useful concept for considering the choice of components
ory system. Figu re 3.01 uses a si mplified version of a memory system hierarchy to
trends in the important factors affecting this choice. The factors increase in the

direction of the arrow.

Com ponent Category Access t ime Capacity Size Cost

Registe Processor component

Cache memory Primary storage

Main m emory

Hard di sk Secondary storage

Auxilia ry storage

Figure 3.0 1 Trends in the factors affecting the choice of memory components

The indivi dual entries in the Component column are discussed in Sections 3.02 and 3.03 .
Compute
and allow

r users would really like to have a large amount of primary storage that costs little
s quick access. Th is is not possible; the fastest components cost more and have
pacity. In practice, the choice made is a compromise. limited ca

It cou ld b e argued that there is a need for secondary storage because the use of only primary
ould be far too expensive. However, it is more sensib le simply to recogn ise that storage w

long-term storage of data requires separate dedicated components.

•

Cambridge International AS and A level Computer Science

3.02 Memory components
The processor has direct access to three types of storage component. The registers, as
discussed in Chapter 5 (Section 5.02), are contained within the processor. External to the
processor there is cache memory and main memory, which together constitute the primary
storage. Cache memory is used to store data that at any time is the most likely to be needed
again by the processor.

There is another way of categorising memory components. The first category is called
random-access memory (RAM). This is a potentially misleading term because a
programmer does not expect a program to make random decisions about wh ich memory
location should be accessed.

Random-access memory (RAM): volatile memory that can be read from or written to any number of
times

Read-only memory (ROM): non-volatile memory that cannot be written to but can be read from any
number of times

The name has been chosen because such memory can be accessed at any location
independently of which previous location was used (it might have been better ca lled 'd irect-
access memory'). A better description is read-write memory because RAM can be repeatedly
read from or written to. Another distingu ishing characteristic of RAM is that it is volatile which
means that when the computer system is switched off the contents of the memory are lost.

There are two general types of RAM technology. Dynamic RAM (DRAM) is constructed
from capacitors which leak electricity and therefore need regularly recharging (every few
milliseconds) to maintain the identity of the data stored . Static RAM (SRAM) is constructed
from flip -flops (discussed in Chapter 18 (Section 18.02)) which continue to store data
indefinitely while the computer system is switched on.

SRAM provides shorter access time but unfortunately it compares unfavourably with DRAM in
al l other aspects. DRAM is less expensive to make, it can store more bits per chip and despite
the need for recharging it requires less power to operate. So, once more, a compromise is
needed. The norm is for cache memory to be provided by SRAM with the main memory
being constructed from DRAM technology.

The second category of memory component is called read-only memory (ROM). Again
th is name does not give a full picture of the characteristics of this type of component. ROM
shares the random-access or direct-access properties of RAM except that it cannot be written
to. The other important characteristic is that the data in ROM is not lost when the computer
system is switched off; the memory is non-volatile.

ROM has specialised uses invo lving the storage of data or programs that are going to be
used unchanged over and over aga in. ROM may be programmable (PROM) or erasable PROM
(EPROM) or even electrically erasable PROM (EEPROM). These terms re late to the manufacture
and installation of the ROM and do not impact on its basic use in a computer system.

Discussion Point:
Can you find out what memory components are in the computer system you are using and
any details about them such as the type and storage capacity?

r - ----~- - -

i
r

r

I
f
r

I

• ._ • ; r • , Chapter 3: Hardware

3.03 Secondary storage devices
Before discussing storage devices it is appropriate to discuss some terminology t hat can
confuse. For any hardware device, whether an integral part of the computer system or a
connected peripheral, its operation requires appropriate software to be installed. This
software is referred to as the 'device driver'. This should not be confused with t he term 'drive'
associated specifically with a storage device. Furthermore, the term 'drive' was in it ially
introduced to refer to the hardware that housed a storage medium item and provided the
physical mechanism for transferring data to it or read ing data from it However, as so often
happens, such distinctions are often ignored. As a result, for example, references to a 'hard
disk', a 'hard disk drive' and to a 'hard drive' have the same mean ing.

Magnetic media
Magnetic media have been t he mainstay of fi lestore technology for a very long time. The
invention of magnetic tape for sound recording pre-dates the inventi_on of the computer by
many yea rs so, not unexpectedly, this technology was the first to be utilised as a storage
device. In contrast the hard disk was invented as a technology specifically for computer
storage, arriving a few years later than the first use of magnetic tape.

For either type of magnetic media the interaction with it is contro lled by a read head and
a write head. A read head uses the basic law of physics that a state of magnetisation will
affect an electrical property; a write head uses the reverse law. Although they are separate
devices the two heads are combined in a read-wr ite head. The two alternative states of
magnetisation are interpreted as a 1 or 0

A schematic diagram of a hard disk is shown in Figure 3.02. Points to note about the physical
construction are that there is more than one platter (d isk) and that each platter has a read-
write head for each side. Th e platters spin in un ison . The read-write heads are attached to
actuator arms wh ich allow the heads to move over the surfaces of the platters. The motion
of each actuator head is synchronised with the motion of the other heads. A cushion of air
ensures that a head does not touch a platter surface.

Spindle~

Read-write
head Arm

l

Track

(a) A hard disc drive (b) A single disk

Sector

Figure 3.02 A schematic drawing of the components of a hard disk drive

The logical construction is that data is stored in concentric tracks. Each track consists of a
sequence of bits but these are formatted into sectors where each sector conta ins a defined

•

Cambridge International AS and A level Computer Science

number of bytes. The sector becomes the smallest unit of storage. To store a file, a sufficient
number of sectors have to be allocated but these may or may not be adjacent to each other.
As files are created and subsequently deleted or edited the use of the sectors becomes
increasingly fragmented which degrades the performance of the disk. A defragmentation
program can reorganise the allocation of sectors to files to restore performance. This is
discussed in Chapter 7 (Section 7.03).

A hard drive is considered to be a di rect-access read-write device because any sector can be
chosen for reading or writing. However, the data in a sector has to be read sequentially.

The above account only gives a simpl ified version of hard drive technology. One particular
omission is consideration of how manufacturers can effectively deal with the fact that the
physical length of a track increases from the innermost track to the outermost track. If this
fact is ignored the data storage capacity must be less than it potentially cou ld be. The other
omission is the simple fact that the storage capacity of disk drives has continued to improve
and sizes have continued to shrink. There is every reason to believe that this performance
improvement is due to continue for some time.

There has always been a need for a storage device that can be removed from the computer
system. For large installations an organisation's requirement is normally driven by security
concerns and the need for suitable back-up procedures. For individuals the need may be the
storage of personal data or personally owned programs or simple transfer of data between
computers or between a computer and, for example, a camera. The first technology to
dominate the use by individuals was the floppy disk but this was superseded by optical storage.

Optical media
As with the magnet ic tape medium, optical storage was developed from existing technology
not associated with computing systems. The compact disc (CD) evolved into CD digital audio
(CD-DA) and this became the technology used in the CD-ROM. This was extensively used for
distributing software but was of no value as a replacement for the floppy disk. The read-write
version (CD-RW) which came later provided the needed write functionality. However, the
CD has now given way to the DVD (originally 'digital video disc' but later renamed as 'digital
versatile disc'). The latest and most powerful technology is the Blu-ray disc (BO).

A schematic diagram of an optical disc drive is shown in Figure 3.03. The disc spins and the laser
beam is reflected from a surface which is sandwiched between a substrate and a protective
outer coating. For a CD-ROM, the reflective surface is
manufactured with indentations, called 'pits', separated by
what are referred to as 'lands'. When the disc is being read,
the travel of the laser beam to a pit causes a difference
in phase compared to reflection from a land. This phase
difference is recognised by the photodiode detector and
attached circuitry and interpreted as a 1 or 0. For CD-RW

Tracking
system

(CD-like)

Focus offset contro l D Dichroic mirror

Read-write
laser
(red)!-- ~~= ~~~~~

variab le
spheri ca l

aberrat ion

Disc and DVD-RW technologies, the reflective surface is a special
al loy material. When data is being written to the disc (the
'burn' process) the heat generated by the absorption of the
laser light changes the material to liqu id form. Depend ing on
the intensity of the laser light the material reverts to either a
crystalline or an amorphous solid form when it cools. When
the disc is read, the laser light is reflected from the crystalline
solid but not from the amorphous so lid allowing the coding
of a 1 or 0.

Read signal detecto r
correction

Figure 3.03 A schematic drawing of an optica l disc drive

-- -------

r
- , Chapter 3: Hardware

Wh ile the disc is spinning the optica l head that directs the laser beam is made to move so
that the point of contact of the laser beam with the disc follows a single spiral path from the
centre of the disc to the periphery. Despite there only being this one path the formatt ing of
t he data into sectors allows the disc to be used as a direct-access device just as is the case for
a magnetic hard disk.

Another similarity with magnetic disk technology is that the storage capacity is dependent on how
close together individual physica l representations of a binary digit can get. There are two aspects
govern ing this for an optical disc. The fi rst is that if the disc is spinning at constant revolutions per
second the outer part of the disc travels faster than the inner part. Early technology counteracted
this by spinning at a constantly changing speed keeping the bit density constant along the spiral
path . The second is that the wavelength of the light controls how well the light ca n be focused; the
shorter the wavelength the better the focus. The original infrared diode laser used in a CD-ROM
has much longer wavelength than the red laser light used in a DVD. The more recent ly used blue
laser light has an even shorter wavelength. This change in wavelength is one of the reasons for the
improvements in the storage capacity of the modern technology.

Solid-state media
Despite the continued improvement in optical technology there is now a powerful
competitor in solid-state storage. The basis for th is is 'flash' memory which is often said to
be a form of EE PROM but where the programmable aspect is part of the normal use. Flash
memory is a sem icond uctor technology with no moving parts. The circui t s consist of arrays
of t ransistors acting as memory cells . The most frequently used technology is called 'NANO'
because the basic circuitry resembles that of a NANO logic gate (see Section 4.03) with the
memory cells connected in series. The special feature is that blocks of memory cells can
have their contents erased all at once 'in a flash'. Fu rthermore, before data can be written to
a block of cells in the memory the data in the block first has to be erased. When data is read,
a whole block of data has to be read in one operation.

The technology can be used for 'solid-state' drives, wh ich can replace hard disk drives. The
more frequent use is either in a memory card or in a USB flash drive. In th e latter case the
flash memory is incorporated in a device with the memory chip connected to a standard USB
connector. This is currently the tech nology of choice for removable data storage but how
long t his wi ll remain so is very uncertain with alternative technologies such as phase-change
random access memory (PRAM) already under development.

Extension Question 3.01
Carry out some research into the technologies currently available for storage.

Consider first the options available for the storage device inside a laptop computer. Create a
table showing cost, storage capacity and access speed for typical examp les. Then consider
the options available for peripheral storage devices. Create a simi lar tab le for these.

Can you identify which technologies remain viable and which ones are becoming
uncompetitive? Are there any new technologies likely to come into common use?

3.04 Computer graphics
The technologies associated wi t h presenting a computer graphic as a screen display or as
a printed page share common li mitations. The nature of these was well understood by the
newspaper printing industry many years before computers were invented . The issue was
how to include pictu res that were originally photographs. A photograph has continuous

•

- -

Cambridge International AS and A level Computer Science . , ·\. ..

tones but a printer at any position on a page could only print black or nothing. The solution
to this was halftoning. This technique approximated a grey tone by printing an array of black
dots; varying the size of the dots changed the tone displayed. The technique, of course, relies
on the limitations of the human eye which does not register the individual dots if they are
suffic iently small.

A variation of this technique is used in computer graphic presentation. Normally, neither
screen nor printer technology can produce varying size dots but the same effect can be
produced by varying the number of dots created in what can be described as a halftone cell.
It is now standard practice for grey-scale images or colour images to be presented using a
halftoning technology. This requires a raster image processor, which can be a combination
of hardware and software, to control the conversion of data stored in a graphics f ile to the
physical screen display or printed page.

3.05 Screens and associated technologies
Screen technology associated with computer systems has a long evoiutiona ry history. For
many years t he on ly example was the visua l display unit (VDU) which was used as a computer
monitor or terminal. The VDU employed the cathode ray tube (CRT) technology used in a
television set but t he functiona lity offered by the device was limited to recording keyboard
input and displaying text output.

Computer mouse
A significant step forward came with the introduction of graphica l user interfaces (GU ls) as
standard features for microcomputer systems in the 1980s. The screen technology remained
the same but the functionality was completely transformed by the arrival of screen w indows
and icons. To use the GUI effectively, the user needed a point ing device. The computer
mouse was introduced for th is purpose. The screen became not just an output device but
also an input device activated by a mouse click.

There are two aspects to co mputer mouse technology. The first is the behaviour instigated
by a button click which needs no further discussion; the second is t he operation of t he
mouse in controll ing a screen cursor. The important point to emphasise here is that a mouse
has no knowledge of an absolute position; all it can do is
al low a relative movement to be recorded so that it can
influence the screen cursor position.

The compute r mouse introduced initially contained
a ru bber ball held in contact w ith two rollers set
perpendicularly to each other. Figu re 3.04 shows a
schematic diagram. As the mouse moves the rubber
ball rotates causing one or both ro llers to rotate. Each
roller is attached to a spindle on which there is a disc
wi th holes arranged around the outer edge. A light

' -- -

beam and detector are arranged so that the intermittent
transmission of the light through t he holes in the disc is
recorded as the disc rotates and the circui t ry attached to
the pair of detectors then sends the appropriate data to
the computer to activate movement of the screen cu rsor.

Figure 3.04 The components of a mechanical mouse

More recently the tracker ball mouse was phased out and the optical mouse was introduced. This
technology dispenses with the mechanical aspects associated w ith the movement of a rubber

l ball. The mouse shines a light beam from a light emitting diode down onto the surface the mouse
is resting on. This light is reflected back on to a sensor fitted to the underside of the mouse. As the
mouse is moved along the surface the sensor acts like a camera taking successive images of the
surface. Image processing software then interprets these images to establish the movement that
has taken place and this data is transmitted to the computer as before.

Screen display
We can now consider the technology associated with the creation of a screen display. Chapter 1
(Section 1.04) described how an image could be stored as a bitmap built up from pixels. Screen
displays are also based on the pixel concept but with one major difference: a screen pixel
consists of three sub-pixe ls typica lly one each for red, green and blue. Varying the level of light
emitted from the individual sub-pixels allows a full range of colours to be displayed.

There have been a number of very different technologies used to create a pixe l. In the original
cathode ray tube (CRT) technology, there is no individual component for a pixel. The inner
surface of the screen is covered with phosphor, which is a material that emits light when
irradiated. An ind ividual pixel is created by cont rolling the direction of the electron beam
irradiating the phosphor. Th is is mod ified for colour disp lays where individual red, green and
blue phosphors are arranged so as to create an array of pixels.

Phosphors are also used in one of the major flat-screen technologies, the plasma screen.
Th ere is now a construction based on individual cells constituting a matrix of pixels. Each
cell contains plasma and a phosphor. When an electri cal cha rge is applied to the plasma
it releases radiation that hits the phosphor and causes light emission. Each pixel or, more
accurate ly, each sub-pixel is a light source. The sub-pixel emi ts one of red, green or blue light.

Liquid-crystal display (LCD): a screen back-lit by light-emitting diodes and with liquid crystal cells
sandwiched between polarisers

In the flat-screen technology that is most used at present, the pixel is not a light source.
The liquid-crystal display (LCD) screen has ind ividua l cells contain ing a liquid crystal to
create the pixel matrix but these do not
emit light. The pixel matrix is illuminated
by back-lighting and each pixe l can affect
the transm ission of this light to cause the
on-screen display. A typical arrangement is
shown in Figure 3.05.

T

/ , I I I I I I I \ \ \ \ \

Backlight

Polarizer

Colour Filter
Colour Filter glass

TFT Glass
Polarizer

The back-lighting is usually provided by
light-emitting diodes (LEDs). The important
feature is the use of polarised light directed
towards the pixel matrix and the use of a
further polariser between the pixel matrix
and the screen. If a voltage is applied to an
individual pixel cel l the alignment of the
liquid crystal molecules is affected and in
turn this can change the polarisation of the
light and therefore affect what is displayed on
the screen. There are a number of different Figure 3.05 The components of a liquid-crystal display screen

•

Cambridge International AS and A level Computer Science

technologies but the principle of their functioning is the same and colour displays use red, green
and blue combinations as before.

More recently, a different technology has been introduced. This is based on the use of an
organic light-emitting diode (OLED) to create the pixel. The OLEO is used direct ly as a light
source so this technology requires no back-lighting.

Touch screens
As well as providing improved display capability, flat-screen technology has allowed a new
mechanism for interaction wi t h t he display. Touch-screen techno logy is now a major fea ture
of a whole range of computer-based products.

Extension Question 3.02
Consider the different possibilities for interacting w ith a screen display. Create a table
showing the advantages and disadvantages for each technique.

The modern version of a touch-sensitive screen has t he layers of technology provid ing the
display wi t h ext ra layers of tech nology added immed iately beneath the surface of t he screen .
There have been two approaches used. The first is t he resistive touch screen. This type
has two layers separated by a thin space beneath the screen su rface. The screen is not rigid
so when a fi nger presses on to the screen the pressu re moves the topmost of t hese two
separa ted layers so th at it makes co ntact wi t h t he lower layer. The po int of contact creates a
vol tage divider in the horizontal and vert ical directions. These allow the position of the po int
of contact to be transm itted to the processor.

The second technology is the capacitive touch screen. This does not requ ire a soft
screen but instead makes use of the fact that a finger touching a glass screen can cause
a capacitance change in a circuit compo nent im mediately below the screen. The most
effect ive technology is projective capacitive touch (PCT) with mutual capacitance. This has
a circu it beneath t he screen which contains an array of capacitors. This enables multi -touch
technology, which al lows more functionali ty t han just po int ing at one location on a screen .

Resistive touch screen: a flexible surface which causes contact between electrically resistive layers
beneath when touched

Capacitive touch screen: a rigid surface above a conductive layer which undergoes a change in
electrical state when a finger touches the screen

Discussion Point:
Investigate which flat-screen technologies are used in any computer, laptop, tablet or mobile/
cell phone that you use. Discuss the benefits and drawbacks associated with their use.

3.06 Keyboards and keypads
The stan dard method of inputti ng significa nt amounts of text data in to a computer system
has always been to use a QW ERTY keyboa rd (named after the top left row of alphabet ic
characters). The cent ral pa rt of t he keyboard layout matches that of a standard typewriter,
al lowing ski lled typists to continue to function effect ively. When numbers only need to be
input a ski lled operator w ill use a nu meric keypad. What might be described as a trad itional
mobile phone has a different type of keypad wh ich can be used to input text data. The

---- - - -- - - -----~ -- - - - --- - - - - --

Chapter 3: Hardware
'

technology underpinning all of these devices is the same assuming that there are actual
physical keys to be used.

When the keyboard is being used to input text it appears as though a key press immediately
transfers the appropriate character to the computer screen but this is an illusion. The key
press has to be converted to a character code which is transmitted to the processor. The
processor, under the control of the operating system, ensures that the text character is
displayed on the screen. The same process takes place if the keyboard is used to initiate
some action, perhaps by using a shortcut key combination, except that the processor has to
respond by taking the requested action.

To achieve this functional ity the keyboard has electrical circuitry together with its own
microprocessor and a ROM chip. The keys are positioned above a key matrix which consists
of a set of rows of wires and another set of columns of wires. Pressing a key causes contact
at a specific intersection. The microprocessor continuously tests to see if any electrical
circuit involving a row wire and a column wire has become closed. When the microprocessor
recognises that a circuit has become closed, it can identify the particular intersection that
is causing this. It then uses data stored in the ROM to create the appropriate character code
relating to the key associated with that intersection and sends this code to the processor.
The same principles apply if two keys are pressed simultaneously.

3.07 Printers, scanners and plotters
Inkjet printer
Two technologies have come to dominate the printing of documents from data stored in a
computer system. The technologies can be used irrespective of whether text or an image is
being printed . The technology that is cheapest to buy is the inkjet printer but t he purchase
price is soon dwarfed by the cost of replacement ink. A genuine advantage of an inkjet printer
is its relatively small size.

The working principle of an inkjet printer is very simply explained: a sheet of paper is fed in;
the printhead moves across the sheet depositing ink on to the paper; the paper is moved
forward a fraction and the printhead carries out another traversa l and so on until the sheet
has been fully printed . The precision of the mechanica l operations involved is one of the
factors governing the quality of the printing. The other factor is the accuracy of the process
of app lying the ink to the paper. The printhead consists of nozzles that spray droplets on to
the paper. The number of nozzles in a printhead is truly amazing, running into the thousands.
This is only possible because the manufacturing process can produce an individual nozzle
with a diameter considerably less than that of a human hair. There are two alternative
technologies for causing the ejection of the ink droplet (thermal bubble or piezoelectric) but
neither has sign ificant advantages or disadvantages.

Ink is supplied to the printhead from one or more ink cartridges. Often the printhead is part
of the cartridge. For black and white printing only one cartridge is required but for colour
printing more are needed . The simplest technology for colour printing uses three colour
cartridges (one for each of the subtractive primaries: cyan, magenta and yellow) in addition
to the black cartridge. Suitable positioning of combinations of overlapping droplets in
principle allows any colour to be created . Good quality printing requires a printing resolution
of several hundred dots per inch which is achievable because of the large number and small
size of the nozzles. The number of dots per inch is defined by the printhead geometry and
cannot be changed but the number of dots per pixel can be dictated by the controlling
software. Increasing the number gives better colour definition for the pixel but the pixel size is

•

Cambridge International AS and A level Computer Science

increased giving poorer resolution for the image. Better resolution can only be achieved with
poorer colour definition .

Laser printer
The alternative technology is the laser printer. Laser printers have always been more
expensive to buy and used to offer much higher-quality printing but the comparison is no
longer so clear cut.

A schematic diagram of the workings of a laser printer is shown in Figure 3.06. The operation
can be summarised as follows:

1 The drum is given an electric charge.

2 The drum starts to revolve step by step.
3 At each step a laser beam is directed by the mirror and

lens assembly to a sequence of positions across the
width of the drum.

4 At each position the laser is either switched off to leave
the charge on the drum or switched on to discharge the
position.

5 This process repeats until a full page electrostatic
image has been created .

PAPER EXIT

(~
Laser Unit • Photoreceptor

~Drum
6 The drum is coated with a charged toner which

only sticks to positions where the drum has been ~i1t"~~~-~- ~-~~-- .A=ssembly

discharged.
7 The drum rolls over a sheet of paper which is initial ly PAPER TRAY

given an electric charge.
8 The sheet of paper is discharged and then is passed

through heated rollers to fuse the toner particles and Figure 3.06 A schematic diagram of a laser printer
seal the image on the paper surface.

9 The drum is discharged before the process starts again for the next page.
The above sequence represents black and white printing. For colour printing, separate toners
are requ ired for the colours and the process has to take place for each colour. Although the
technology is completely different the logical aspect of the printing is the same as that for
inkjet printing. Colours are created from cyan, magenta, yellow and black. The technology
produces dots; quality depends on the number of dots per inch and software can control the
number of dots per pixel.

It is normal nowadays for a laser printer or an inkjet printer to be a multi-functional device.
It will have the capability to act as a flatbed scanner with the option for this also to provide
a photocopying facility. Effectively, a scanner reverses the printing process in that it takes
an image and creates from it a digital representation rather than the digital representation
being used to create an image on paper. The principles of the operation of a typical scanner
are straightforward. The sheet of paper is held in a fixed position and a light source covering
the width of the paper moves from one end of the sheet to the other. The reflected light is
directed by a system of mirrors and lenses on to a charge-coupled device (CCD). The finer
details of how a CCD works are not important but the three aspects to note are:

It consists of an array of photo-sensitive cells .
• It produces for each cell an electrical response proportional to the light intensity.

It needs an analogue-to-digital converter to create a digital value to be stored.

- -
. Chapter 3: Hardware ',

Graphics plotter and 3D printer
In Chapter l (Section 1.04) the diffe rence between a bitmap and a vector graphic was
discussed. If a vector graphic file has been created the image can be displayed on a screen
or printed by first converting the file to a bitmap version. However, specialised technica l
app lications often require a more accurate representation to be created on paper. This
requires the use of a graphics plotter. A plotter uses pens to write, usually, on a large sheet
of paper constra ined by sprockets along one pa ir of sides. The sprockets can move the
paper forwards or backwards and pens can either be parked or in use at any given time. The
controll ing circuitry and software can create the drawing directly from the original vector
graphic file.

Engineers and designers working in manufacturing are potential users of graph plotters. They
are also potential users of the 3D printer. The name could be said to be a little misleading but
its meaning is genera lly understood. It is a device that offers an alternative technology for
computer-a ided manufacture (CAM).

The original concept was that the starting point is a 3D design create·d in a suitable computer-
aided design (CAD) package. The design is split into layers. The data for the first layer is
transmitted to the 3D printer. Rather than using ink to draw the
layer, the 3D printer uses a nozzle to squirt material on to the
printer bed to create a physical layer to match the design. Th is
process is repeated for successive layers. When the whole object
has been formed it has to be cured in some way to ensure that
the layers are, in effect, welded together and the material has
been converted to the form required for the finished product.

The technology is very versatile and still under development.
Figure 3.07 shows a stri king example. This bionic ear was
constructed with three 'inks'. Silicone was used for the basic
structure, a gel conta ining chondrocyte cells and silicone infused
with si lver nano particles were the other two 'inks'. The final
curing step involved incubat ion in a culture medium to allow
the chondrocyte cells to produce cartilage. The only missing
component was sk in.

3.08 Input and output of sound

Figure 3.07 A bionic ear created using a 3D printer

IP telephony and video conferencing are the two obvious technologies requir ing vo ice input
to a computer system and voice output from a computer system. Voice recognition is an
alternative techn ique for data input to a computer.

For input, a microphone is needed. This is a device that has a diaphragm, a flexi ble material
wh ich is caused to vibrate by an incoming sound. If the diaphragm is connected to suitable
circuitry the vibration can cause a change in an electrical signa l. A condenser microphone
uses capacitance change as the mechanism; an alternative is to use a piezoelectric crystal.
The electrical signal has to be converted to a digital signal by an analogue-to-digital
converter before it can be processed by a sound (a udio) card inside the computer.

For output, a loudspeaker or speaker is needed. This is involved in what is effect ively the
reverse process to that for input. The computer sound card produces a digital signal which
is converted to analogue by a digital-to-analogue converter. The analogue signa l is fed to
the speaker. In the traditional technology the current flows through a coil suspended within

•

Cambridge International AS and A level Computer Science

the magnetic field provided by a permanent magnet in the speaker. As the d irection of the
current keeps reversing, the coil moves backwards and forwards. This movement controls
the movement of a diaphragm which causes sound to be created .

• Primary storage is main memory, consisting of RAM (DRAM or SRAM) and ROM.

• Secondary storage includes magnetic, optical and solid-state media.

• Input devices include the mouse, keyboard, scanner and microphone.

• Output devices include screens (CRT, plasma, LCD, OLED), printers (inkjet, laser and 3D), plotters and speakers.

• Touch screens (capacitive or resistive) are used for both input and output.

Exam-style Questions
1 a A typ ica l computer wil l have RAM and ROM.

Describe two differences between RAM and ROM.

ii Name one sim ilarity between RAM and ROM .

iii RAM may be either DRAM or SRAM. Explain the difference between these.

b Secondary storage can be magnetic, optical or solid state.

For each type of storage identify one feature of the basic internal operation wh ich
is different from that of the other two types.

ii For two of the three types of storage identify two similarities in the basic internal operation .

2 a Pressing a key on a computer keyboard can cause a character to be displayed on the computer screen .

Identify four aspects of t he basic internal operation of a keyboard that makes this happen.

ii Describe an alternative method for a user to enter some text into a computer system.

b There are two types of printer commonly used with a PC.

Describe two differences between how an inkjet printe r works and how a laser printer works.

ii Identify two sim ilariti es in the logical approach used in these two types of printer.

[4]

[l]

[2]

[3]

[2]

(4]

[2]

[4]

[2]

-
'

Learning objectives
By the end of this chapter you should be able to:

• use logic gate symbols
• understand and define the functions of NOT, AND, OR,

NAND, NOR and XOR (EOR) gates
• construct the truth table for each of the logic gates above
• construct a logic circuit from:

• a problem statement
• a logic expression

• construct a truth table from:
• a logic circuit
• a logic expression

• show understanding that some circuits can be constructed
from fewer gates to produce the same outputs.

-

Cambridge International AS and A level Computer Science .

4.01 Boolean logic and problem statements
Consider the following question:

Is Colombo further north than Singapore?

In everyday language the answer will be either yes or no. ('Yes', in fact.) However, the question
could be rephrased to make use of the language of Boolean logic:

Colombo is further north than Singapore TRUE or FALSE?

More formally, the statement:

Colombo is further north than Singapore.

can be described as an example of a logic assertion or a logic proposition that can have
only one of the two alternative Boolean logic values TRUE or FALSE.

Logic proposition: a statement that is either TRUE or FALSE

Now consider the following two individual statements:

• You should take an umbrella if it is raining or if the weather forecast is for rain later.
• The air-conditioning system is set to come on in an office only during working hours but

also only if the temperature rises to above 25°C.
Each of these statements contains two logic propositions which are highlighted. In each
statement these logic propositions are combined in some way. Finally, each statement has
the addition of an outcome which is dependent on the combination of the two propositions.
Each of these is, therefore, an individual example of a problem statement.

Problem statement: an informal definition of an outcome which is dependent on one logic
proposition or a combination of two or more logic propositions

4.02 Boolean operators
The problem statements identified above can be more formally expressed in a form that is
suitable for hand ling with Boolean logic. To do this it is necessary to use Boolean operators.
The three basic Boolean operators are AND, OR and NOT.

The definition for AND can be expressed as:

AAND Bis TRUE if A is TRUE and Bis TRUE

Here, both A and B represent any logic proposition or assertion that has a value TRUE or
FALSE.

In a similar way the definition for OR is:

A ORB is TRUE if A is TRUE or Bis TRUE

The two problem statements above might be rephrased as follows:

• Take_umbrella = TRUE IF (raining= TRUE) OR (rain_forecast = TRUE)

• System_on = TRUE IF (office hours= TRUE) AND (temperature> 25°()

}· ," ::: ,·, , Chapter 4: Logic Gates and Logic Circuits -

Each original problem statement has now been rep hrased as a form of logic expression
with a defined outcome. The format of each expression here does not fol low any fo rma lly
defined convention but the structu re does allow the underlying logic to be understood. In
genera l, a logic expression consists of logic propositions combined using Boolean operators
and the expression optionally may be stated with a defined output.

Logic expression: logic propositions combined using Boolean operators, which may be written with a
defined outcome

TASK4.0l
Convert the following problem statement into a simple logic expression:
A document can only be copied if it is not covered by copyright or if there is copyright and
permission has been obtained.

Any logic expression can be constructed using only the Boolean operators AN D, OR and NOT
but it is often conven ient to use other operators. Here are the definitions for the six operators
with which you need to be fa mil iar:

NOT A is TRU E if A is FALSE
• A AND B is TRUE if A is TRU E and B is TRUE
• A ORB is TRUE if A is TRUE or B is TRUE
• A NAND Bis TRU E if A is FALSE or B is FALSE
• A NOR B is TRU E if A is FALSE and B is FALSE
• A XOR Bis TRUE if A is TRUE or B is true but not both of them

4.03 Truth tables
The truth table is a simple but powerfu l technique for represent ing any logic expression or fo r
describing the possible outputs from a logic circu it.

A t ruth table is presented by making use of the convention that TRUE can be
represented as 1 and FALSE can be represented as 0. The simplest use of a t ruth table is
to represent the logic associated with a Boolean operator.

As an example let us consider the AN D operator. The labelli ng of the truth table follows
the convention that the initially defined values are represented by A and Band the va lue
obtained from the simple expression using the AND operator is represented by X. In other
words we write the truth table fo r X = AAND B. Remembering that AND only returns true if
both A and Bare true we expect a truth table with only one instance of X having the value 1.
The truth table is shown in Table 4.01.

The tru th table has four rows corresponding to the four combinations of the t ruth values
for A and B. Three of these lead to a O in the X column as expected.

TASK4.02
Without looking further on in the chapter, construct the truth table fo r the OR operator.

A B X

0 0 0

0 l 0

l 0 0

l 1 1

Table 4.01 The truth table for
the AND operator

•

Cambridge International AS and A level Computer Science ,~

4.04 Logic circuits and logic gates
The d igita I circuits that constitute the inner work ings of a co mputer system a II operate on the
basis that at any one t ime an individual part of the circu it is ei t her in an 'on' state, which can
be represented by a 1, or in an 'off' state, represented by a 0. The physical circui t ry consists of
integrated circui ts constructed from t ransistors. There can be billions of tra nsistors in a single
integrated ci rcu it.

We wil l view a logic circui t as comprising component parts cal led logic gates. Each diffe rent
logic gate has an operation that matches a Boolean operator.

Logic gate: a component of a logic circu it that has an operation match ing that of a Boolean operator

Discussion Point:
There will be no further discussion of integrated circuits in this book but you might wish
to do some research and have a look at the structure of a small-scale integration chip.

When drawing a circuit, standard symbols are used for the logic gates. As an example,
the symbol shown in Figu re 4.01 represents an AND gate.

The fi rst po int to note here is that the shape defines the type of gate. The second point
is that the inputs are on t he left-hand side and the output is on the right- hand side. In
general, the number of inputs is not limited to two but t he discussion in t his book w ill only
consider circuits where the number of inputs does not exceed two.

Figure 4.02 shows t he logic gate symbols and the associated truth tab les for each of the six
Boolean operators introduced in Section 4.02.

NOT

A B X

AND =D-- 0 0 0
0 1 0
1 0 0
1 1 1

A B X

OR -D- 0 0 0
0 1 1
1 0 1
1 1 1

A B X

NAN O ==[y-- 0 0 1
0 1 1
1 0 1
1 1 0

Figure 4.01 The symbol for
the AND logic gate

I I .

·
0 'ii·, ,i Chapter 4: Logic Gates and Logic Circuits

A B X
0 0 1

NOR 0 1 0
1 0 0
1 1 0

A B X
0 0 0

XOR 0 1 1
1 0 1
1 1 0

Figure 4.02 Logic gate symbols and their associated truth tables

There are two other points to note here. The NOT gate is a special case having only one
input. The NAND and NOR gates are each a combination of a gate and the NOT gate so they
produce complementary output to that produced by the AND and OR gates.

TASK4.03

Draw a circuit where A and Bare input to an AND gate from which the output is carried to a
NOT gate from which there is an output X. Show that this has the same outcome as having one
NANO gate.

Extension question 4.01
Could the same outcome be produced by positioning a NOT gate before the AND gate?

You need to remember the symbol for each of these gates. A good start here is to remember
that AN D has the proper D symbo l and OR has the curvy one. You also need to remember the
definitions for the gates so that you can construct the corresponding truth table for each gate.

Question 4.01
Can you recall from memory the symbols and definitions of the six logic gates introduced in
this chapter?

WORKED EXAMPLE 4.01

Constructing a logic circuit from a problem statement or logic expression
You need to be able to construct a logic circuit from either a problem statement or from
a logic expression. If you are given a problem statement the best approach is to first
convert it to a logic expression and then to identify t he individual Boolean operations in
the logic expression. This approach wil l be illustrated here.

Consider the following problem statement: A bank offers a special lending rate to
customers subject to certain conditions. To qualify, a customer must satisfy certain criteria:

• The customer has been with the bank for two yea rs.

• Two of the following conditions must also apply:

• The customer is married.

• The customer is aged 25 years or older.

• The customer's parents are customers of the bank.

- ------

•

...
Cambridge International AS and A level Computer Science ··

To convert this statement to a logic expression you need to represent each condition by
a symbol (in the same way that a prob lem might be tackled in normal algebra):

• Let A represent an account held for two years.
• Let B represent that the customer is married.

• Let C represent that the customer's is age 25 years or more.
• Let D represent that the customer's parents have an account.
The logic expression can then be written as:

AAND (((BAND C) OR (BAND D)) OR (C AND D))

This cou ld alternative ly be presented with an outcome:

Special_rate IF AAND (((BAND C) OR (BAND D)) OR (C AN D D))

Note the use of brackets to ensure that the meaning is clear. You may think t hat not all of
the brackets are needed. In this example, an extra pair has been in~luded to guide the
construction of the circuit where only two inputs are allowed for any of the gates.

It can be seen, therefore, that the logic circuit corresponding to this logic expression
derived from the original problem statement could be constructed using four AND gates
and two OR gates as shown in Figure 4.03.

A---------------

B
X

C

D

Figure 4.03 A logic circuit constructed from a problem statement

WORKED EXAMPLE 4,02

Constructing a truth table from a logic expression or logic circuit
You also need to be able to construct a truth table from either a logic expression or a
logic circuit. We might have continued with the problem in Worked Example 4.01 but
four inputs wi ll lead to 16 rows in the truth table. Instead, we consider a sl ightly simp ler
problem with only three inputs and therefore only eight rows in the truth table. We will
start wi th the circu it shown in Figure 4.04.

X

C ---------'
Figure 4.04 A circuit with three inputs for conversion to a truth table

(- -

· Chapter 4: Logic Gates and Logic Circuits

Table 4.02 shows how the truth table needs to be set up initially. There are several points
to note here. The first is that you must take care to include all of the eight different possible
combinations of the input va lues. Therefore, you present the va lues in increasing binary
number va lue from 000 to 111. The second point is that for such a circuit it is not sensible to
try to work out the outputs directly from the input values. Instead a systemat ic approach
should be used. This involves identifying intermediate points in the circuit and recording
the values at each of them in the columns headed 'Workspace' in Table 4.02.

Inputs Workspace Output
A B C X
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 4.02 The initial empty truth table

Figu re 4.05 shows the same circu it but with four intermed iate points labelled M, N, P and
Q identified. Each one has been inserted on the output side of a logic gate.

p

X
B -------1
C ----------'
Figu re 4.05 The circuit in Figure 4.04 with intermediate points identified

Now you need to work systematica lly through the intermed iate points. You start by
filling in the co lumns for Mand N. Then you fill in the colu mns for P and Q which feed
into the fi nal AND gate. The fina l truth tab le is shown as Table 4.03. The circuit has two
combinations of inputs that lead to a TRUE output from the circu it.

The columns contain ing the intermediate va lues (the workspace) could be deleted at this stage.

Inputs Workspace Output
A B C M N p Q X
0 0 0 0 1 1 0 0
0 0 1 0 1 1 1 1
0 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 0 0 0 1 1 0 0
1 0 1 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0

Table 4.03 The truth table fo r the circu it shown in Figure 4.05

•

Cambridge International AS and A level Computer Science

One fina l point to make here is that you may be able to check part of your fina l solution
by looking at just part of the circuit. For this example, if you look at the circuit you
will see that the path from input C to the output passes through two AND gates. It
follows, therefore, that for all combinations with C having value O the output must be 0.
Therefore, in order to check your final so lution you on ly need to examine the other four
combinations of input values where Chas va lue 1.

TASK4.04
An oven has a number of components which should all be working properly. For each
component there is a signalling mechanism that informs a management system if all is well
or if there is a problem when the oven is being used. Table 4.04 summarises the signa l values
that record the status for each component.

Signal Value Component condition
0 Fan not working

A
1 Fan working properly

0 Internal light not working
B

1 Internal light working properly
0 Thermometer reading too high

C
1 Thermometer reading in range

Table 4.04 Signals from the oven components

If the thermometer reading is in range but either or both the fan and light are not working, the
management system has to output a signal to activate a warning light on the control panel.
Draw a logic circuit for this fault condition .

4.05 Alternative circuits
For any given logic problem there will be different circu its that deliver the same output values
from a given set of inputs. In some cases it will be possible to simplify an initial circuit design
by reducing the number of logic gates. As a trivial example you may have noticed that the
circuit in Figure 4.04 includes an AND gate immediately followed by a NOT gate. Th ese cou ld
have been combined as a NANO gate. For more complex examples, there are techniques
available which will be discussed in Chapter 18 (Sections 18.03 and 18.04).

However, reducing complexity is not just about reduc ing the number
of logic gates. Logic circuit manufacturers can reduce costs by building
circuits that contain only one type of logic gate; one that is itself cheap
to manufacture. The NANO gate is an example of a universal gate wh ich
fits th is requirement (the NOR gate is the other possibil ity). Manufacturers
may find it cheaper to build a circuit with just NANO gates even though the
circuit contains more components than alternatives contain ing diffe rent
gates. To illustrate the concept of the un iversa l NANO gate the circu it in
Figure 4.06 has the same functionality as an OR gate.

Extension question 4.02

Figure 4.06 A circuit containing only NANO
gates which is equivalent to an OR gate

Create the truth table for the circuit shown in Figure 4.06 and show that it is the same as that
for an OR gate.

-

X

I ~1 '" Chapter 4: Logic Gates and Logic Circuits '

• A logic scenario can be described by a problem statement or a logic expression.

• A logic expression comprises logic propositions and Boolean operators.

• Logic circuits are constructed from logic gates.

• The operation of a logic gate matches that of a Boolean operator.

• The outcome of a logic expression or a logic circuit can be expressed as a truth table.

Exam-style Questions
1 a The followi ng are the symbo ls fo r three different logic gates.

Gate 1 Gate 2 Gate 3

-{>-
Identify each of the logic gates .

ii Draw the truth table fo r either Gate 1 or Gate 2.

b Consider the fo llowing circuit:

I Const ruct the trut h tab le fo r the circu it using the fo llowing tem plate:

Inputs Workspace Output
I

(A B C X
0 0 0

t
0 0 l

0 l 0

0 l l

l 0 0

l 0 l

l l 0

l l l

ii There is an element of redundancy in th is diagram. Explain what the problem is.

[3]

[2]

[8]

[2]

•

- - --- -- - - --- -- -

Cambridge International AS and A level Computer Science

2 a The definition of the NAND gate can be expressed as:

ANAND Bis TRUE if A is FALSE or Bis FALSE

Draw the truth tab le fo r a NAND gate

b Consider the following statement:

In a competit ion, two teams play two matches against each other. One of the teams is declared the winner
if one of the follow ing results occurs:

The team wins both matches.

The team wins one match and loses the ot her but has the highest tota l score.

Identify the three logic propositions in this statement.

ii By assigning the symbols A, Band C to these three propositions express the outcome of the competition
as a logic expression.

iii Construct a logic circui t to match this logic expression.

3 A domestic heating system has a hot water tank and a number of radiato rs. There is a computerised management
system which rece ives signals dependent on whether or not the conditions for components are as they should be.
The fo llowing table summarises the signals received :

Signal Value Component condition
0 Wate r flow in the radiators is too low

A
1 Water flow in the rad iators is within limits

0 Hot water tank temperature too high
B

1 Hot water tank temperature w ithi n limits

0 Water level in hot water tank too low
C

1 Water level in hot water tank w ithin limits

a Consider the fo llowing fault condition . The water level in the hot water tank is too low and the temperature
in the hot water tank is too high . The management system must output a signal to switch off the system.

Const ruct a t ru th table for th is fault condi ti on including the A, Band C signals.

ii Construct the circuit diagram forth is fau lt co ndit ion to match this t ruth table.

b Consider the fault co ndit ion where the hot water tank tem perature is with in limits but the water flow in the
radiato rs is too low and the water level in the hot water t ank is too low. Construct the circuit diagram for this fault
condition which requires the management system to output a signal to increase water pressu re.

[4]

[3]

[3]

[4]

[4]

[5]

[5]

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the basic Von Neumann model
• show understanding of the roles carried out by registers
• show understanding of the roles carried out by the

Arithmetic and Logic Unit (ALU), Control Unit and system
clock

• show understanding of how data are transferred between
various components of the computer system using the
address bus, data bus and control bus

• show understanding of ho·w the bus width and clock
speed are factors that contribute to the performance of
the computer system

• show understanding of the need for ports
• describe the stages of the fetch-execute cycle
• show understanding of 'register transfer' notation
• describe how interrupts are handled.

Cambridge International AS and A level Computer Science

5.01 The Von Neumann model of a computer system
The simplest form of what might be described as a computer system model or computer
system architecture is usually attri buted to John von Neumann. This recogn ises t he fact that
he was the first to describe the basic principles in a publ ication .

The model has the following basic features:

• There is a processor, a central processing unit.
• The processor has direct access to a memory.
• The memory conta ins a 'stored program' (wh ich can be replaced by another at any time)

and the data required by the program.
• The stored program consists of individua l instructions.

• The processor executes instructions sequentially.

5.02 Central processing unit (CPU) architecture

(,:'\ Modern processors are extremely complex; some
of t he complexit ies w ill be discussed in Chapter
19 (Sect ions 19.02 and 19.03). In t his chapter the
focus is on the fundamentals of the operation of
an up-to-date version of a simple von Neumann
computer system. r------ ---------------------- $---
Figure 5.01 gives a simplified schematic diagram
of a processor that could be part of this simple
system. The dotted outline shows the boundary
of the processor. The logica l arrangement of some
of the processor components is indicated. The
arrows show possib le directions of flow of data.
As th e fo llowing discussion will show, the data for
some of the arrows is specifica lly an address or an
instruction. However, in general, data might be an
instruction, an add ress or a value.

Components of the CPU

+~

I PC I
t

Control
Unit

t
Arithmetic

and
Logic Unit

I MDR I
,~

,, ~, CIR I ,~
• >

Other

• > registers

The two major components of the CPU are t he
arithmetic and logic un it (ALU) (or Arithmetic
Logic Unit) and the control unit. As its name
implies, the ALU is responsible for any arithmetic
or logic processing that might be needed when a
program is running. The functions of t he control

Figure 5.01 A schematic diagram of the architecture of a simple CPU

unit are more diverse. One aspect is controlling the flow of data throughout the processor
and , indeed, t hroughout the whole co mputer system . Another is ensuring t hat program
instructions are handled correctly. A vital part of the control unit is a clock which is used
by t he unit to synchronise processes. Strictly speaking there are two clocks. The first is an
internal clock which controls the cycles of activity within the processor. The other is the
system clock wh ich controls activities outside the processor. The CPU wil l have a defined
frequency for its clock cycle, which is usually referred to as the clock speed. The frequency
defines the minimum period of time that separates successive activities within t he system.

.- - - - -- - - - - - - ~-,,
r : ; · _ Chapter 5: Processor Fundamentals

I
I

Extension question 5.01
In an advertisement for a laptop computer, the system is described as 4GB, l TB, 1.7 GHz.

1 Which three components are being referred to here?
2 Have the values quoted been presented correctly? To answer this you need to refer back

to the discussion in Chapter l (Section 1.04) about terminology.
3 Calculate the minimum time period that could separate successive activities on this

system .

Registers
The other components of the CPU are the registers. These are storage components wh ich,
because of their proximity to the ALU, allow very short access times. Each register has limited
storage capaci ty, typically 16, 32 or 64 bits. A register is either genera l purpose or special
purpose. If there is only one general-purpose register it is refe rred to as the accumulator.
For the rest of this discussion and for the discussion in Chapter 6, the assumption will be that
t he processor does have just this one general-purpose register. The Accumulator is used to
store a single va lue at any one time. A va lue is stored in t he Accumulator that is to be used
by the ALU for the execution of an instruction . The ALU can then store a different value in the
Accumulator after the execution of the instruction .

Accumulator: a general-purpose register that stores a value before and after the execution of an
instruction by the ALU

Figure 5.01 shows some of the special -purpose registers as individual components. The box
label led 'Other registers' can be considered to comprise the Accumulator plus the special-
purpose registers not identified individually. The full names of the specia l-purpose registers
included in the simple CPU which we are going to discuss are given in Table 5.01 with a brief
description of their funct ion .

Register name Abbreviation Register 's function

Current instruction
CIR

Stores the current instruction while it is being
register decoded and executed
Index registe r IX Stores a value; only used fo r indexed addressing
Memory address

MAR
Stores the address of a memory location wh ich is

register about to have a value read from or written to
Memory data register Stores data that has just been read from memory or
(memory buffer MDR (MBR)

is just about to be written to memory
register)

Program counter PC
Stores the address of where the next instruction is
to be read from

Status register SR Contains ind ividual bits that are either set or cleared

Table 5.01 Registers in a simple CPU

Two points are worth making at this point. The first is that the alternative name for the MOR
emphasises that th is particu lar register must act as a buffer because transfers of data wi thin
the processor take place much more quickly than transfers outside the processor. Th is

f---

;

•

I - -- -~ - - - - -

Cambridge International AS and A level Computer Science

statement has to be slightly qua lified because the transfer could be to or from cache memory
which would be a fast process but it is otherwise generally applicable. The mention of cache
memory brings us to the second point which is that all discussion in this chapter and Chapter
6 ignores the fact that cache memory exists. All references are simply to memory as in
Table 5.01.

A further point to note here is that the index register (IX) can be abbreviated as IR but in some
sources the current instruction register (CIR) is abbreviated as 'IR', which is an unnecessary
potential cause of confusion. In this book, the index register is always IX and the current
instruction register is CIR. Finally, there is also possible confus ion if the abbreviation PC is
used_ This wi ll on ly be used in this book when register transfer notation is being used as you
will see later in the chapter. Everywhere else, a PC is a computer.

The SR is used when an instruction requires arithmetic or logic processing. Each individual
bit in the SR operates as a flag. The bit is set to 1 if a condit ion is detected. As an example, the
use of the following three flags will be il lustrated:

• The carry flag, identified as C, is set to 1 if there is a carry.

• The negative flag, identified as N, is set to 1 if a result is negative.

• The overflow flag, identified as V, is set to 1 if overflow is detected_

WORKED EXAMPLE 5.01

Using the status register during an arithmetic operation
1 Consider the addition of two positive values where the sum of the two produces an

answer that is too large to be correctly identified with the limited number of bits used to
represent the values. For, example if an eight-bit binary integer representation is being
used and an attempt is made to add denary 66 to denary 68 the following happens:

+
0100 0010
0100 0100

i
1000 OllO

Flags: N V C
1 1 0

The value produced as an answer is denary - 122. Two positive numbers have been
added to get a negative number. This impossibility is detected by the combination of
t he negative flag and the overflow flag being set to 1. The processor has identified the
problem and can therefore send out an appropriate message.

2 Consider using the same eight-bit binary integer representation but this time two
negative numbers (- 66 and -68 in denary) are added:

lOll lllO
+ lOll llOO

i Flags: N V C
(1) Olll 1010 0 1 1

This t ime we get the answer +122. This impossibil ity is detected by the combination of
the negative flag not being set and both the overflow and the carry flag being set to 1.

.,
; .~ _c1 r': Chapter 5: Processor Funcl~mental,s ::

'. • ..! }1

I

t

I

t

I

Extension question 5.02
Carry out a comparable calculation for the addition in binary of-66 to +68. What do you
think the processor should do with the carry bit?

5.03 The system bus
A bus is a parallel transmission component with each separate wire carrying a single bit It
is important not to describe a bus as a storage device. A bus does not hold data. Instead it
is a mechanism for data to be t ransferred from one system
component to another. CPU B

' r '

Input and
Output

In the simple computer system described in this chapter
there wi ll be a system bus that comprises three distinct
componen ts: the address bus, the data bus and the control
bus. The schematic diagram of the CPU in Figu re 5.01 l . r· · r .. ·
shows the logica l connection between each bus and a CPU
component The address bus is connected to the MAR; the
data bus to the MOR; and the control bus to the control unit

The system bus allows data flow between the CPU, the
memory, and input or output (1/0) devices as shown in the
schematic diagram in Figure 5.02.

I
I

W'

'

Control bus I
'

Address bus I
't' 11'

Data bus

Figure 5.02 A schematic diagram of the system bus

The address bus
The sole funct ion of the address bus is to carry an address. This address is loaded on to the
bus from the MAR as and when directed by t he control unit The address specifies a location
in memory wh ich is due to receive data or from which data is to be read. The address bus is a
'one-way street '. It can only be used to send an address to a memory control ler. It cannot be
used to carry an address from the memory controller back to the CPU.

Address bus: a component that carries an address to the memory contro ller to identify a location in
memory which is to be read from or written to

Th e crucial aspect of the address bus is th e 'bus width', which is th e number of separate wires
in the bus. The number of w ires defines the number of bits in the address's binary code. In
the simple computer system considered here we wil l assume that the bus width is 16 bits
allowing 65 536 memory locations to be directly addressed. Such a memory size would, of
course, be totally inadequate for a modern computer system. Even doubling t he address bus
width to 32 bits would on ly allow the direct addressing of a little over four billion ad dresses. If
the memory size is too large special techniques have to be used.

The data bus
The fu nction of t he data bus is to carry data. This might be an instruction, an address or a
value. As can be seen from Figure 5.02, the data bus might be carrying the data from CPU to
memory or from memory to CPU.

However, another option is to carry data to or from an 1/0 device. The diagram does not
make clear whether, for instance, data comi ng from an input device is carried first to the CPU
or direct ly to the memory. Th ere is a good reason for t his. Some computer systems will only

V)
::i
.0

E
2
V)
>,

(/)

•

Cambridge International AS and A level Computer Science

allow input to the CPU before the data can be stored in memory. Other systems will allow
direct transfer to memory.

Bus width is again an important factor in considering how the data bus is used. Before
discussing this, it is useful to introduce the concept of a word. A word consists of a number
of bytes and for any system the word length is defined. The significance of the word length is
that it defines a grouping that the system will handle as one unit. The word length might be
stated as a number of bytes or as a number of bits. Typical word lengths are 16, 32 or 64 bits
that is, 2, 4 or 8 bytes respectively. For a given computer system, the bus width is ideal ly the
same as the word length. If this is not possible the bus width can be half the word length so
that a full word can be transmitted by two consecutive data transfers. For our simple system
we assume a data bus width of 16 bits and a word length of two bytes to match this.

Data bus: a component that carries data to and from the processor

Word: a small number of bytes handled as a unit by the computer system

Extension question 5.03
Can you find out the bus widths used in the computer system you are using?

The control bus
The control bus is another bidirectional bus which transmits a signal from the control unit to
any other system component or transmits a signal to the control un it. There is no need for
extended width so the control bus typically has just eight wires. A major use of the control
bus is to carry timing signals. As described in Section 5.02, the system clock in the control
unit defines the clock cycle for the computer system. The control bus carries timing signals
at time intervals dictated by the clock cycle. This ensures that the time that one component
transmits data is synchronised with the time that another component reads it.

The clock speed is the most important factor governing the processing speed of the system.
However, it is not the only factor. The performance wil l be limited if the bus widths are
insufficient for the whole of a data value to be transferred in one clock cycle. For optimum
performance it is also particularly important that memory access is as efficient as possible.

The schematic diagram in Figure 5.02 slightly misrepresents the situation because it looks as .
if the CPU, the memory and the 1/0 devices have similar access to the data and control buses.
The reality is different. Each 1/0 device is connected to an interface called a port. Each port
is connected to the 1/0 or device controller. This controller handles the interaction between
the CPU and an 1/0 device. A port is described as 'internal' if the connected 1/0 device is an
integral part of the computer system. An external port allows the computer user to connect a
peripheral 1/0 device.

The universal serial bus {USB)
In the early days of the PC, the process of connecting a peripheral was time-consuming and
required technical expertise. The aim of the plug-and -play concept was to remove the need
for technical knowledge so that any computer user could connect a peripheral and start
using it straight away. The plug-and-play concept was only fully real ised by the creation of the
USB (Universal Serial Bus) standard. Nowadays anyone buying a new peripheral device will
expect it to connect to a USB port. There is an alternative technology known as FireWire but
this is not so commonly used in computer systems.

I ,
't ,-, ; · _ Chapter 5: Processor Fundamentals

Some information about the USB standard:

• A hierarchy of connections is supported.

• The computer is at the root of this hierarchy and can handle 127 attached devices.
Devices can be attached while the computer is switched on and are automatically
configured for use.

• The standard has evolved, with USB 3.0 being the latest version.

Discussion Point:
Carry out an investigation into storage devices that could be connected as a peripheral to a
PC using the USB port.

For two representative devices find out which specific USB technology is being used and
what the potential data transfer speed is. How do these speeds compare with the speed of
access of a hard drive installed inside the computer?

5.04 The fetch-execute cycle
The full name for this is the fetch, decode and execute cycle. This is illustrated by the
flowchart in Figure 5.03.

START

NO

NO

YES

Transfer control to
interrupt-handling

program

Figure 5.03 Flowchart for the fetch, decode and execute cycle

•

- ------ -

Cambridge International AS and A level Computer Science ·(

If we assume that a program is already runn ing then the program counter already holds the
address of an instruction. In the fetch stage, the fo llowing steps happen:

1 This address in the program counter is transferred within the CPU to the MAR.
2 During the next clock cycle two things happen simultaneously:

the instruction held in the address pointed to by the MAR is fetched into the MDR
• the address stored in the program counter is incremented .

3 The instruction stored in the MDR is transferred within the CPU to the CI R.
For our simple system the program counter wil l be incremented by 1. However, it shou ld be
noted that the instruction just loaded might be a jump instruction. In this case, the program
counter contents will have to be updated in accordance with the j ump cond ition. This can
only happen after the instruction has been decoded.

In the decode stage, the instruction stored in the CIR is received as input by the ci rcui t ry
within the control un it. Depending on the type of instruction, the contro l unit w ill send
signa ls to the appropriate components so that the execute stage ca n begin. At th is stage, the
ALU wil l be activated if the instruction requires arithmetic or logic processing.

The description of the execute stage is postponed until Chapter 6, in wh ich a simp le
instruction set is introduced and discussed.

5.05 Register transfer notation
Operations involving registers can be described by register transfer notation. The simplest
form of this can be illustrated by the fo llowing representation of the fetch stage of the fetch -
execute cycle:

MAR +- [PC]
PC +- [PC] + 1; MDR +- [[MAR)]
CIR +- [MDR)

The basic format for an individual data t ransfer is simi lar to that for variable assignment. The
first item is the destination of the data. Here the appropriate abbreviation is used to identify
the part icu lar register. To the right of the arrow showing the transmission of data is the
definition of this data. In this definition, the square brackets around a register abbreviation
show that t he content of t he register is being moved possibly with some ari t hmetic operation
being appl ied. When two data operations are placed on the same line separated by a
semi-colon this means that the two transfers take place sim ultaneously. The double pair of
brackets around MAR on the second line needs carefu l interpretation. The content of the MAR
is an address; it is the content of that address which is being t ransferred to the M DR.

5.06 Interrupt handling
There are many different reasons for an interrupt to be generated . Some examp les are:

• a fa tal error in a program
• a hardware fault
• a need for 1/0 processing to begin
• user interaction
• a t imer signal.
There are a number of different approaches possible for the detailed mechanisms used to
hand le interrupts but the overriding principles are clearly defined . Each different interrupt

.-

(' - - ----- --

r .
f >, _ Chapter 5: Processor Fundamentals

needs to be hand led approp riately and different interrupts might possibly have d ifferent
priorities. Therefore, the processor must have a means of identify ing the type of interrupt.
One way is to have an interrupt register in the CPU that works like the status register, with
each individual bit operating as a flag for a specific type of interrupt.

As t he flowchart in Figure 5.03 shows, t he existence of an interrupt is only detected at the
end of a fetch-execute cycle. This allows the current program to be interrupted and left in a
defined state which can be returned to later. The first step in hand ling t he interrupt is to store
the conten ts of the program counter and any other registers somewhere safe in memory.

Following t his, the appropriate interru pt handler or interrupt service routine (ISR) program
is in itiated by load ing its start address into the program coun ter. When t he ISR program
has been executed there needs to be an immediate check to see if further interrupts need
handling. If there are none, the safely stored contents of the registers are restored to t he CPU
and the origina lly runn ing program is resumed.

• The von Neumann architecture for a computer system is based on the stored program concept.

• The CPU contains a control unit, an arithmetic and logic unit, and registers.

• Registers can be special purpose or general purpose.

• The status register has individual bits acting as condition flags.

• The system bus contains the data, address and control buses.

• A universal serial bus (USB) port can be used to attach peripheral devices.

• Instructions are handled by the fetch-execute cycle.

• Register transfer notation is used to describe data transfers.

• If an interrupt is detected, control passes to an interrupt-handling routine.

Exam-style Questions
1 a A processor has just one general-purpose register. Give the name of th is register.

b The memory add ress register (MAR) is a specia l-purpose register. State:

its function

ii the type of data stored in it

iii the register that supplies this data at the sta rt of the fetch stage of the fetch-execute cycle.

[l]

[3]

Cambridge International AS and A level Computer Science

c The current instruction register (CIR) is another special-purpose register. State:

its function

ii the type of data stored in it

iii the register that supplies this data at the end of the fetch stage of the fetch-execute cycle.

d Explain three differences between the memory address register and the memory data register.

2 The system bus comprises three individual buses: the data bus, the address bus and the control bus.

a For each bus give a brief explanation of its use.

b Each bus has a defined bus width.

State what determines the width of a bus.

ii Exp lain which bus will have the least width .

iii Explain the effect of changing the address bus from a 32-bit.bus to a 64-b it bus.

3 The fetch stage of the fetch-decode- execute cycle can be represented by the following statements using registe r
transfer notation:

MAR <-- [PC]
PC <-- [PC] + 1; MDR <-- [[MARJ]
CIR <-- [MDR]

a Explain the meaning of each statement. The explanation must include definitions of the following items:
MAR, PC,[],+-, MDR, [[]], CIR.

b Explain the use of the address bus and the data bus for two of the statements.

[3]

[5]

[6]

[l]

[2]

[3]

(10]

(4]

• , , ,, - ... ,,, .._ '- V c:I J. '"'"' '""', "'H .. . (_ ·. =:.) · a (a); update_;lide~()';: s:
: k(·)· h()• t./tir"~ C - l (".)· r , 1 \; ·:a:l!f ,! · - . .· ,a =

l . i~

~er _shuffle_number") .e()); funct ,
~f d f nct i·on("chec·tr j<P\dlllll;jjl, . .J \ .111i0·!0,.&.·~ \ i = I ·... u i\ I CU U \"' · .. l -' \

f e • if (0 < c . length) { for (
f <' e && .b. splice(e, l);d· ··[.. g}J})·
f .• • . ter" wor . c . , ~tepuje:. "par~me . -1 : e && b.splice(e
~'"' vo1..d 0) ., A " , ~nrzth; c+: ! .: ,;'._,
(I 69 :

Cru~~J~er
f ! Assembly Language Programming
'·

Learning objectives
By the end of this chapter you should be able to:

• show understanding that the set of instructions are
grouped into instructions for:
• data movement
• input and output of data
• arithmetic operations
• unconditional and conditional jump instructions

• compare instructions
• modes of addressing

• show understanding of the relationship between
assembly language and machine code

• trace a given simple assembly language program.

Cambridge International AS and A level Computer Science

6.01 Machine code instructions
The only language that the CPU recognises is machine code. Therefore, when a program is
running and an instruction is fetched from memory this has to be in the format of a binary
code that matches the specific machine code that the CPU uses.

Different processors have different instruction sets associated with them. Even if two
different processors have the same instruction, the machine codes for them will be different
but the structure of the code for an instruction will be similar for different processors.

For a particular processor, the following components are defined for an individual machine
code instruction:

• the total number of bits or bytes for the whole instruction
• the number of bits that define the opcode
• the number of operands that are defined in the remaining bits
• whether the opcode occupies the most significant or the least sigr:iificant bits.
In general, there can be anything up to three operands for an instruction. However, fol lowing
on from the approach in Chapter 5, we consider a simp le system where there is either one or
zero operands.

Machine code instruction: a bina ry code with a defined number of bits that comprises an opcode
and, most often, one operand

The number of bits needed for the opcode depends on the number of different opcodes in
the instruction set for the processor. The opcode is structured with the first few bits defining
the operation and t he remaining bits associated with addressing. A sensible instruction
format for our simp le processor is shown in Figure 6.01.

Operation
I 4 bits 1

. Opcode
Address mode

2 bits
Register addressing

2 bits

Figure 6.01 A simple instruction format

Operand

16 bits

This has an eight-bit opcode consisting of four bits for the operation, two bits for the address
mode (discussed in Section 6.03) and the remaining two bits for addressing registers. This
allows 16 different operations each with one of four addressing modes. This opcode will
occupy the most significant bits in the instruction. Because in some circumstances the
operand will be a memory add ress it is sensible to allocate 16 bits fo r it. This is in keeping
with the 16-bit address bus.

Because an instruction has two components, a slight modification to register transfer
notation (see Section 5.05) is needed. As an example the first step in the decode stage of the
fetch-execute cycle could be written as:

CU <-- [CIR(23:16)]

Indicating that only bits 16 to 23 from the contents of the Cl R have been transferred to the
control unit; bits Oto 15 are not needed in this first step.

- - -

· · , · . . Chapter 6: Assembly Language Programming

6.02 Assembly language
A programmer might wish to write a program where the actions taken by the processor
are directly controlled . It is argued that this can produce optimum efficiency in a program.
However, writing a program as a sequence of machine code instructions would be a very
time-consuming and error-prone process. The solution for this type of programming is to
use assembly language. As well as having a uniquely defined machine code language each
processor has its own assembly language.

The essence of assembly language is that for each machine code instruct ion there is an
equivalent assembly language instruction which comprises:

• a mnemonic (a symbolic abbreviation) for the opcode
• a character representation for the operand.

If a program has been written in assembly language it has to be translated into machine
code before it can be executed by the processor. The translation program is called an
'assembler', of which some details will be discussed in Chapter 7 (Section 7.05). The fact
that an assembler is to be used allows a programmerto include some special features in an
assembly language program. Examples of these are:

• comments

• symbol ic names for constants
labels for addresses
macros

• subroutines
• directives

• system calls .

The first three items on this list are there to directly assist the programmer in writing the
program . Of these, comments are removed by the assembler and symbolic names and labels
require a conversion to binary code by the assembler. A macro or a subroutine contains a
sequence of instructions that is to be used more than once in a program.

Directives and system calls are instructions to the assembler as to how it should construct
the final executable machine code. They can involve directing how memory should be used
or defin ing files or procedures that will be used. They do not have to be converted into binary
code.

Directive: an instruction to the assembler program

6.03 Addressing modes
When an instruction requi res a value to be loaded into a register there are different ways
of identifying the value. These different ways are described as the 'addressing modes'. In
Section 6.01, it was stated that, for our simple processor, two bits of the opcode in a machine
code instruction would be used to define the addressing mode. This allows four different
modes which are described in Table 6.01.

---- - -----

•

- - -- ------~-~--

Cambridge International AS and A level Computer Science

Addressing mode

Immediate

Direct

Indi rect

Indexed

Operand

The value to be used in the instruction

An address which holds the value to be used in the
instruction
An address which holds the address wh ich holds the value
to be used in the instruction
An address to which must be added what is cu rrently in the
index register (IX) to get the address wh ich holds the value
in the instruction

Table 6.01 Ad dressing modes

6.04 Assembly language instructions
The examples described here do not correspond directly to those found in the assembly
language for any specific processor. Individual instructions will have a match in more t han
one real-life set. The important point is that these examples are representative. In particular,
there are examples of the most common categories of instruction.

Data movement
These types of instruction can involve loading data into a reg ister or sto ring data in memory.
Table 6.02 contains a few examples of the format of the instructions with explanations.

It should be understood that an actual instance of an instruction would have an actual
address where <address> is shown, a register abbreviation where <register> is shown
and a dena ry value for n where #n is shown . The explanations use ACC to indicate t he
accumulator.

Instruction opcode Instruction operand Explanation
LDM #n Immediate add ressing loading n to ACC
LDR #n Immediate addressing loading n to IX
LDD <address> Direct addressing, loading to ACC
LDI <address> Indirect addressing, loading to ACC
LDX <address> Indexed addressing, loading to ACC
STO <address> Storing the contents of ACC

Table 6.02 Some instruction formats for data movement

The important point to notice is that the mnemonic defines the instruction type including
wh ich register is involved and, where appropriate, the addressing mode. It is important to
read the mnemonic carefully! The explanations for LDD, LDI and LDX need reference back to
Table 6.01.

It is possible to use register transfer notation to describe the execution of an instruction. For
example, the LDD instruction is described by:

ACC <- [[CIR(lS:O)]]

(~- ------ - - --- - - - -

, r · Chapter 6: Assembly Language Programming

The instruction is in the CIR and only the 16-bit address needs to be examined to identify
the location of the data in memory. The contents of that location are transferred into the
accumulator.

TASKG.01

Use register transfer notation to describe the execution of an LDI instruction.

Arithmetic operations
Table 6.03 conta ins a few examples of instruction formats used for arithmetic operations.

Instruction opcode Instruction operand Explanation
ADD <address> Add the address content to the

content in the ACC
INC <r egister> Add 1 to the value stored in t he

specified register
DEC <register> Subtract 1 from the value stored in

the specified register

Table 6.03 Some instruction formats for arithmetic operations

Question 6.01
What would you need to do if, for example, you wanted to add 5 to the content in the
accumulator?

Comparisons and jumps
A program might requ ire an unconditiona l jump or might only need a jump if a condition
is met. In the latter case, a compare instruction is executed first and the result of the
comparison is recorded by a flag in the status register. The execution of the conditional jump
instruction begins by checking whether or not the flag bit has been set. Table 6.04 shows the
format for these types of instruction.

Instruction
opcode Instruction operand Explanation
JMP <address> Jump to the address specified
CMP <address> Compare the ACC content with the

address content
CMP #n Compare the ACC content with n
JPE <address> Jump to the address if the result of the previous

comparison was TRUE
JPN <address> Jump to t he address if t he result of the previous

compar ison was FALSE

Table 6.04 Some jump and compare instruction formats

•

Cambridge International AS and A level Computer Science

Note that the two compare instructions have the same opcode. For the second one, the
immediate addressing is identified by the# symbol preceding the number. In the absence of
the# the operand is interpreted as an address. Note also that the comparison is restricted to
asking if two values are equal.

The other point to note is that a jump instruction does not cause an actual immediate
jump. Rather, it causes a new value to be suppl ied to the program counter so that the next
instruction is fetched from th is newly specified address. The incrementing of the program
counter that took place automatically when the instruction was fetched is overwritten.

Input and output
The two examples here are instructions for a single character to be input or output. In each
case t he instruction has only an opcode; there is no operand:

• The instruction w ith opcode IN is used to store in the ACC the ASC II value of a character
typed at the keyboard.

• The instruction with opcode OUT is used to display on the screen the character for which
the ASC II code is stored in the ACC.

WORKED EXAMPLE 6.01

Tracing an assembly language program
Consider some program instructions are contained in memory locations from 100 and
some eight-bit binary data va lues are contained in memory locations 200 and onwards.
For illustrative purposes the instructions are shown in assembly language form. At the
start of a part of the program, the memory contents are as shown in Figure 6.02.

Address

100
101

102

103
104

105

106
107

Contents

LDD 201

INC ACC
ADD 203

CMP 20 5

JPE 106

DEC ACC

INC ACC
STO 206

Address

200
201

202

203
204
205

206
207

Contents

0000 0000
0000 0001

0000 0010

0000 0011
0000 0100

0000 0101

0000 0111

0000 0000

Figure 6.02 The contents of memory addresses before execution of the program begins

- - -- - - - --- -------- - --- - ----- - ----- - - - ---- ' -

-=-, , Chapter 6: Assembly Language Programming .

r

Th e values stored in t he program cou nter and in t he accumulato r as the program
inst ructions are executed are shown in Figure 6.03.

Program counter Accumulator
At the start of the execution 100 0000 0000
After the instruction in 100 has been executed 101 0000 0001
After the instruction in 101 has been executed 102 0000 0010
After the instruction in 102 has been executed 103 0000 0101
After the instruction in 103 has been executed 104 0000 0101
After the instruction in 104 has been executed 106 0000 0101
After the instruction in 106 has been executed 107 0000 OllO
After the instruction in 107 has been executed 108 0000 OllO

Figure 6.03 The contents of the program counter and accumu lator
during program execution

Question 6.02
Can you follow through the changes in the values in the two registers in Worked Example
6.01? Are there any changes to the contents of memory locat ions 100 to 107 or 200 to 207
while the program is executing?

• A machine code instruction consists of an opcode and an operand.

• An assembly language program contains assembly language instructions plus directives that
provide information to the assembler.

• Processor addressing modes can be: immediate, direct, ind irect or indexed.

• Assemb ly language instructions can be categorised as: data movement, arithmetic, compare,
jump and input/output.

"'

,
r

J

t

Exam-style Questions

1 Three instructions fo r a processor with an accumulator as the si ngle general purpose register are:

LDD <address> for di rect addressi ng

LDI <address> for indirect addressing

LDX <address> for indexed addressing

Cambridge International AS and A level Computer Science

In the diagrams below, the instruction operands, the register content, memory addresses and the memory contents
are all shown as denary values.

a Consider the instruction LDD 103.

Draw arrows on a copy of the diagram below to explain execution of the instruction .

Memory
address

100
101
102

Accumulator 103
104
105

Index register 106
3 107

Memory
content

116
114
112
110
108
106
104
1D2

ii Show the contents of the accumulator as a denary value after execution of the instruction.

b Consider the instruction LDI 107.

Draw arrows on a copy of the diagram below to explain execution of the instruction.

Memory
address

100
101
102

Accumulator 103
104
105

Index register 106
3 107

Memory
content

116
114
112
110
108
106
104
102

ii Show the contents of the accumulator as a denary value after execution of the instruction.

c Draw arrows on a copy of the diagram below to explain the execution of the instruction LDX 1 03.

Memory Memory
address content

100 116
101 114
102 112

Accumulator 103 110
104 108
105 106

Index register 106 104
3 107 102

ii Show the contents of the accumulator as a denary value after the execution .

--- -- - --

[2)

[l)

(3)

[l)

[3)

[l)

- - -----------
. ' ' . .

· ., _;g,g' : _ Chapter 6: Assembly Language Program~/ng- .. _·, ,,

t
f
r
I

r
l

r

r
ii'
f

r

r

- - '.-J~ 1 • • _ • 'll.

2 Every machine code instruction has an equivalent in assembly language. An assembly language program will
contain assembly language instructions. An assembly language program also conta ins components not directly
transformed into machine code instructions when the program is assembled.

a Name three types of component of an assembly language program that are not intended to be directly
transformed into machine code by the assembler. For one component, state its purpose.

b Trace the following assembly language program using a copy of the trace table provided. Note that the
LDI instruction uses indirect addressing.

Assembly language program
Memory address Memory content

100 LDD 20 1
101 I NC ACC
102 STO 202
103 LDI 203
104 DEC ACC
105 STO 20 1
105 ADD 204
107 STO 20 1
108 END

201 1 0
202 0
203 204
204 5

Accumulator Memory addresses
201 202 203 204

0 10 0 204 5

[4]

[6]

•

Learning objectives
By the end of this chapter you should be able to:

• describe why a computer system requires an operating
system

• explain the key management tasks carried out by the
operating system

• show an understanding of the need for typical utility
software used by a PC computer system

• show an understanding that software under development
is often constructed using existing code from program
libraries

• describe the benefits to the developer of software
constructed using library files, including Dynamic Link
Library (DLL) files

• draw on experience of the writing of programs which
include library routines

• show an understanding of the need for assembler
software, a compiler and an interpreter

• describe the different stages of the assembly process for a
'two-pass' assembler

• explain the benefits and drawbacks of using either a
compiler or an interpreter

• show awareness that high-level language programs may
be partially compiled and partially interpreted, such as
those written in Java.

t- ---- --- - - -------------- ------ --- - -
I

Chapter 7: System Software I

7.01 System software
In the 1960s, the likely scenario for using a computer would be something like this:

1 Enter mach ine room with deck of punched cards and a punched paper tape reel.
2 Switch on computer.
3 Put deck of cards into card reader and press button.
4 Put paper tape into tape reader and press button.
5 Press button to run the program, entered into memory from the punched cards, which

uses the data entered into memory from the paper tape.
6 Press button to get output printed on the line-printer.
7 Switch off computer.

8 Leave machine room with deck of cards, paper tape and line-printer output.
What happened is that the user controlled the computer hardware by pressing buttons. Just
try to imagine how many buttons would be needed if you had to control a computer in the
same way today.

The missing component from the 1960s computer was, of course, an operating system; in
other words some software to control the hardware. An operating system is an example of
a type of software called 'system software'. This distinguishes it from application software
which is created to perform a specific task for a computer user rather than just helping to run
the system.

Operating system: a software platform that provides facilities for programs to be run which are of
benefit to a user

7.02 Operating system activities
Operating systems are extremely complex and it is not possible to give an all-embracing
description of what an operating system is. However, what an operating system does can be
generalised by saying that it provides an environment within which programs can be run that
are of benefit to a user.

The activities of an operating system can be sub-divided into different categories. There is
overlap between many of these but the classification is worthwhile. The following account
provides a very brief explanation of each of the various tasks carried out by the operating
system. Details of how some of them are carried out are discussed in Chapter 20 (Sections
20.01, 20.02 and 20.03).

User- system interface
A user interface is needed to allow the user to get the software and hardware to do
something useful. An operating system shou ld provide at least the following for user input
and output:

• a command-line interface
• a graphical user interface (GUI).

I

•

---- -------- - --- --

Cambridge International AS and A level Computer Science

Discussion Point:
Have you any experience of using a command-line interface?

Program-hardware interface
Programmers write software and users run this software. The software uses the hardware.
The operating system has to ensure that the hardware does what the software wants it to do.
Program development tools associated with a programming language allow a programmer
to write a program without needing to know the details of how the hardware, particularly the
processor, actually works. The operating system then has to provide the mechanism for the
execution of the developed program.

Resource management
When the execution of a program has begun it is described as a process. In a modern
computer system, a process will not be able to run to completion without interruption. At
any time there will be many processes running on the computer system. Each process needs
access to the resources provided by the computer system.

Process: a program that has begun execution

The resource management provided by the operating system aims to achieve optimum
efficiency in computer system use. The two most important aspects of this are:

• scheduling of processes
• resolution of conflicts when two processes require the same resource.

Memory management
There are three important aspects of memory management:

Memory protection ensures that one program does not try to use the same memory
locations as another program.

• The memory organisation scheme is chosen to achieve optimum usage of a limited
memory size, for example, virtual memory involving paging or segmentation .
Memory usage optimisation involves decisions about which processes should be in main
memory at any one time and where they are stored in this memory.

Device management
Every computer system has a variety of components that are categorised as 'devices'.
Examples include the monitor screen, the keyboard, the printer and the webcam. The
management of these requires:

installation of the appropriate device driver software
• control of usage by processes.

- - --------- - ' . . -,

" ; - Chapter 7: System Software -.

File management
Three major features here are the provision of:

• fi le naming conventions

• directory (fo lder) structures

• access control mechanisms.

Security management
Chapters 8 (Section 8.02) and 21 (Section 21.04) discuss details of security issues. There are
several aspects of security management which include:

provision for recovery when data is lost

prevention of intrusion

• ensuring data privacy.

Error detection and recovery
Errors can arise in the execution of a program either because it was badly written or because
it has been supplied with inappropriate data. Other errors are associated with devices not
working correctly. Whatever the cause of an error, the operating system should have the
capability to interrupt a running process and provide error d iagnostics where appropriate.
In extreme cases, the operating system needs to be able to shut down the system in an
organised fashion without loss of data.

TASK7.0l
For each of the above categories of operating system task, the individual points mentioned
could often be mentioned in a different category. Make an abbreviated list of these categories
and add arrows to indicate alternative places where items could be placed.

Question 7.01

It is useful to describe the management tasks carried out by an operating system as being
primarily one of the following types:

• those assisting the user of the system

• those concerned with the running of the system.

Considering the management tasks that have already been categorised, can you identify
them as belonging to one or other of the above types? Are there any problems in doing this?

7.03 Utility programs used by a PC
A util ity program is one that might be provided by the operating system but it might also be
one that is installed as a separate entity. It is a program that is not executed as part of the
normal rout ine of operating system utilisation. Rather it is a program that the user can decide
to run when needed or possib ly a program that the operating system might decide to run in
certain circumstances. Some utility programs are associated with hard disk usage.

I- --- - -- -- --- ---

•

Cambridge International AS and A level Computer Science

Hard disk formatter and checker
A disk formatter will t ypically carry out the following tasks:

• removing existing data from a disk that has been used previously
• setting up the file system on the disk, based on a table of contents that allows a file

recognised by the operating system to be associated with a specific physical part of the
disk

• partitioning the disk into logical drives if this is required.
Another utility program, which might be a component of a disk formatter, performs disk
contents analysis and, if possible, disk repair when needed. The program first checks for
errors on the disk. Some errors arise from a physical defect resu lting in what is called a 'bad
sector'. There are a number of possible causes of bad sectors. However, they usually arise
either during manufacture or from mishandling of the system. An exa mple is moving the
computer without ensuring that the disk heads are secured away from the disk su rface.

Other errors arise from some abnormal event such as a loss of power or an error causing
sudden system shutdown. As a result some of the files stored on the disk might no longer be
in an identifiable state. A disk repai r uti lity program can mark bad sectors as such and ensure
that the file system no longer tries to use them. When the integrity of files has been affected,
the uti lity might be able to recover some of the data but otherwise it has to delete the files
from the file system.

Hard disk defragmenter
A disk defragmenter utility could possibly be part of a disk repair utility program but it is
not primarily concerned with errors. A perfectly functioning disk will, while in use, gradually
become less efficient because the constant creation, editing and deletion of files leaves them in
a fragmented state. The cause of this is the logical arrangement of data in sectors as discussed
in Chapter 3 (Section 3.03), which does not allow a file to be stored as a contiguous entity.

A simple illustration of the problem is shown in Figure 7.01. Initially file A occupies three
sectors fully and part of a fourth one. Fi le Bis sma ll so occupies only part of a sector.
File C occupies two sectors fully and part of a thi rd. When File Bis deleted, the sector
remains unfil led because it would requ ire too much system overhead to rearrange the file
organisation every time there is a change. When File A is extended it comp letely fills the first
four sectors and the remainder of the extended file is stored in all of Sector 8 and part of
Sector 9. Sector 4 will only be used again if a small file is created or if the disk fills up, when it
might store the first part of a longer file.

Sectors 0-3 Sector4 Sectors 5-7 Sectors 8-9
lnitlial position File A File B File C

File Bis deleted File A File(

File A is extended ... I ____ F_il_e_A ___ ~--~---F_ile_C_~~--Fi_le_A_~

Figure 7.01 File fragmentation on a hard disk

A defragmenter utility program reorganises the file storage to return it to a state where
all files are stored in contiguous sectors. For a large disk this wi ll take some time. It wil l be
impossible if the disk is too full because of the lack of working space for the rearrangement.

-- -- ---- ---- ------ --

- ---- - - --------
'
, : Chapter 7: System Software

r TASK7.02
If you have never used a disk defragmenter or disk repair uti lity program can you get access to
a system where you can use one? If so, note the changes that are carried out and recorded by
the utility program.

Backup software
It is quite likely that you perform a manua l backup every now and then using a flash memory
stick. However, a safer and more rel iable approach is to have a backup utility program do
th is for you . You can sti ll use the memory stick to store the backed -up data but t he util ity
program will control the process. In pa rticular it can do two things:

• establish a schedule for backups

• only create a new backup fi le when t here has been a change.

File compression
A file compression utili ty program can be used as a matter of rout ine by an ope rat ing system
to minimise hard disk storage requirement s. If the operating system does not do t his, a user
can still choose to implement a su itable program. However, as was discussed in Chapter 1
(Sect ion 1.07), f ile compression is most important when t ransmitting data. In pa rticu lar, it
makes sense to compress (or 'z ip') a fi le before attaching it to an ema il.

Virus checker
A virus-checking program should be installed as a permanent faci lity to protect a computer
system . In an idea l wor ld, it wou ld only need to be used to scan a file when t he file initia lly
entered t he system. Unfortunately t his ideal state can never be rea lised. When a new virus
comes along there is a delay before it is recognised and a fu rther delay before a virus checker
has been updated to dea l w ith it. As a resu lt it is necessary for a virus checker to be regula rly
updated and for it to scan all files on a computer system as a mat ter of rout ine.

7.04 Library programs
A libra ry program can be defined as a program contained in a program libra ry but both
'library program' and 'program library' are misleading terms. There may be programs in
a program library but more often they are subrout ines t hat p rogrammers can use in their
programs.

There is no advantage to a programmer in 're inventi ng the wheel'. If a rou ti ne exists in a
li brary a programmer wou ld be very unwise to write his or her own ro utine. Existi ng li brary
rout ines will have been extensively tested before release. Even if some residual bugs did
ex ist following testing, the regular use of the rou t ines would almost inevitab ly lead to t heir
detection.

The most obvious examples of lib rary routi nes are the bu ilt-i n fu nct ions ava ilable fo r use
when programming in a particular language. Examples of t hese are discussed in Chapter 13
(Section 13.08). Another example is the col lection of over 1600 procedures fo r mathematical
and statist ics processing avai lable from the Numerica l Algorithms Group (NAG) library. Th is
organisation has been creating rout ines since 1971 and they are universa lly accepted as
being as rel iab le as software ever can be.

•

Cambridge International AS and A level Computer Science

In Section 7.05, the methods avai lable for translat ion of source code are discussed. For
the purpose of the discussion here you just need an overview of what happens. The
source code is written in a programming language of choice. If a compiler is used for the
translation and no errors are found, the compiler produces object code (machine code).
This code cannot be executed by itself. Instead it has to be linked with the code for any
subroutines used by it. It is possible to carry out the linking before loading the composi te
code into memory and runn ing it.

By contrast, dynamic linking has the routines from a dynamic link library (DLL) already in
memory. While the code is running, it links to the DLL routine that it needs. A DLL is created
so that it s routines can be shared . More than one process can dynamical ly link to a DLL file at
any one time.

7.05 Language translators
As with much of this chapter, the discussion wi ll conta in few details o~ how translators work
because they are dealt with in Chapter 20 (Section 20.05). The need for a language transla tor
is easy to exp lain and, indeed, is expla ined in Chapter 6 (Section 6.02). Writi ng a program
directly in machine code would take a very long time and undoubtedly would lead to a
multitude of errors.

Assemblers
If a programmer has decided to write a program, or perhaps a procedure, in assemb ly
language there is a need fo r a program to translate this into machine code. The program
needed is called an assembler. If the program was written in a very simple form the
conversion would requ ire stra ightforward conversion of the instruct ions written in
mnemonic form to t he machine code version . However, in most instances more is required .

A 'two-pass' assembler is not an essential requirement but it does clearly differentiate
between t he two stages that are requ ired in translation. As was discussed in Chapter 6, an
assembly language program will conta in features that are used to help the programmer
and others that are used to info rm the assembler program. In the first pass of a two-pass
assembler all of these features are either removed or acted upon. Typical actions are:

removal of comments
• creation of a symbol table contain ing the binary codes for symbolic names and labels
• creation of a litera l table if the programmer has used const ants in the progra m
• expansion of macros

identification of system cal ls and subroutines used.
If errors are not found, the second pass of the assembler generates the object code. This
involves replacing symbol ic addresses with abso lute addresses.

As noted above, object code is not an executable code. The creation of executable code
requires a linker to be used to ensure that the object code for the program and the object
codes for associated procedures a re t ransferra ble into memo ry with mutual ly consistent
memory locat ions. The actual transfer into memory is carried out by a loader or the loader
element of a link-loader. Th is ca rries out any fi na l adjust ment of memory ad dresses t hat
might be necessa ry.

---~- --

'

-- ----- ------- - ---- - - - - -

I - -, Chapter 7: System Software ·

Compilers and interpreters
The starting point for using either a compiler or an interpreter is a file containing source code,
which is a program written in a high-level language.

For an interpreter the following steps apply:

1 The interpreter program, the source code file and the data to be used by the source code
program are al l made available.

2 The interpreter program begins execution.
3 The first line of the source code is read.
4 The line is analysed.

5 If an error is found this is reported and the interpreter program ha lts execution.
6 If no error is found the line of source code is converted to an intermediate code.

7 The interpreter program uses th is intermediate code to execute the requ ired action.
8 The next line of source code is read and Steps 4-8 are repeated .
For a compiler the following steps apply:

1 The compiler program and the source code file are made available but no data is needed.
2 The compiler program begins execution.
3 The first line of the source code is read.
4 The line is analysed.
5 If an error is found th is is recorded.

6 If no error is found t he line of source code is converted to an intermediate code.
7 The next line of source code is read and Steps 4-7 are repeated .

8 when the who le of the source code has been dealt wi th one of the following happens:
o If no error is found in the whole source code the complete intermediate code is

converted into object code.
o If any errors are found a list of these is output and no object code is produced.

Execution of the program can only begin when the compilation has shown no errors. This
can take place automatically under the control of the compiler program if data for the
program is available. Alternatively the object code is stored and t he program is executed later
with no involvement of the compiler.

Discussion Point:
What type of facility for language translation are you being provided with? Does your
experience of using it match what has been described here7

For a programmer, the following statements can be made about the advantages and
disadvantages of creating interpreted or compiled programs:

• An interpreter has advantages when a program is being developed because errors can be
identified as they occur and corrected immed iately without having to wa it for t he whole
of the source code to be read and analysed.

• An interpreter has a disadvantage in that during a particu lar execution of the program,
parts of the code wh ich contain syntax errors may not be accessed so if errors are still
present they are not discovered until later.

• An interpreter has a disadvantage when a program is error free and is distributed to users
because the source code has to be sent to each user.

------- -- -- -------

•

-

Cambridge International AS and A level Computer Science

• A compiler has the advantage that an executable file can be dist ributed to users so t he
users have no access to the source code.

For a user, the fo llowing statements can be made about the advantages and disadvan tages
of using interpreted or compiled programs:

For an interpreted program, the interpreter and the sou rce code have to be avai lab le each
time that an error-free program is run.

For a compiled program, on ly the object code has to be ava ilable each ti me t hat an error-
free program is ru n.

Compiled object code wil l provide faster execution than is possible fo r an interp reted
program.

Compiled object code is less secure because it cou ld cont ain a virus .
Whet her an interpreter or a compiler is going to be used, a program can on ly be run on a
pa rti cu lar computer with a particular processor if the interpreter or compiler program has
been written for that processor.

Java
When the programming language Java was created, a different philosophy was app lied to
how it should be used. Each different type of computer has to have a Java Virtual Machine
created for it. Then when a programmer writes a Java program this is compiled first of all to
create what is ca lled Java Byte Code. When t he program is run, th is code is interpreted by the
Java Virtual Machine. The Java Byte Code can be transferred to any computer t hat has a Java
Virtua l Machi ne inst alled.

• Operating system tasks can be categorised in more than one way, for example, some are for helping the user,
others are for runn ing the system.

• Utility programs for a PC include hard disk utilities, backup programs, virus checkers and file compression utilities.

• Library programs, including Dynamic Link Library (DLL) files, are avai lable to be incorporated into programs;
they are usually subroutines and are very rel iable.

• For a two-pass assembler, typical activities in the first pass are creation of a symbol table and expansion of
macros; object code is generated in the second pass.

• A high-level language can be translated using an interpreter or a compiler.

• A Java compiler produces Java Byte Code which is interpreted by a Java Virtual Machine.

I

- -

Chapter 7: System Software
I

Exam-style Questions

1 a One of the reasons for having an operating system is to provide a user interface to a
computer system.

Name two different types of interface that an operating system shou ld provide.

ii Identify for each type of interface a device that could be used to enter data.

b Identify and explain briefly three other management tasks carried out by an operating system.

2 a A PC operating system will make available to a user a number of uti lity programs.

Identify two utility programs that might be used to deal with a hard disk problem.

ii For each of these utility programs explain why it might be needed and explain
what it does.

iii Identify two other utility programs for a PC user.

b Library programs are made available for programmers.

Explain why a programmer should use library programs.

ii Identify two examples of a library program.

3 a Assemblers, compilers and interpreters are examp les of translation programs.

State the difference between an assembler and a compiler or interpreter.

ii A 'two-pass' assemb ler is usua lly used. Give two examples of what wil l be done in the first pass.

iii State what will be produced in the second pass.

b A programmer can choose to use an interpreter or a compiler.

State three differences between how an interpreter works and how a compiler works.

ii Discuss the advantages and disadvantages of an interpreter compared to a compiler.

iii If a programmer chooses Java, a specia l approach is used. Identify one feature of
this special approach.

[2]

[2]

[6]

[2]

[SJ

[2]

[3]

[2]

[l]

[2]

[l]

[3]

[4]

[l]

•

Learning objectives
By the end of this chapter you should be able to:

• explain the difference between the terms security, privacy
and integrity of data

• show appreciation of the need for both the security of
data and the security of the computer system

• describe security measures designed to protect computer
systems, ranging from the stand-alone PC to a network
of computers, including user accounts, firewalls and
authentication techniques

• describe security measures designed to protect the
security of data

• show awareness of what kind of data errors can occur and
what can be done about them

• describe error detection and correction measures
designed to protect the integrity of data including: data
validation, data verification for data entry and data
verification during data transfer.

- - --- -- -- ----- -- - --

{ ."~}-r1~ . Chapter,8:.Data Security, Privacy and Integrity

I

I

f

8.01 Definitions of data integrity, privacy and security
It is easy to define integrity of data but far less easy to ensure it. Only accurate and up-to-
date data has data integrity. Any person or organisation that stores data needs it to have
integrity. Methods that can be used to give the best chance of achieving data integrity are
discussed in this chapter and also in Chapter 10 (Section 10.01).

Data integrity: a requirement for data to be accurate and up to date

Data privacy: a requirement for data to be avai lable only to authorised users

Data security: a requirement for data to be recoverable if lost or corrupted

Data privacy is about keeping data private rather than allowing it to be available in the
public domain. The term 'data privacy' may be applied to a person or an organisation. Each
individual has an almost limitless amount of data associated with their existence. Assuming
that an individual is not engaged in criminal or subversive activities, he or she should be in
control of which data about himself or herself is made public and which data remains private.
An organisation can have data that is private to the organisation, such as the minutes of
management meetings, but this will not be discussed further here.

For an individua l there is little chance of data privacy if there is not a legal framework in place
to penalise offenders who breach this privacy. Such laws are referred to as data protection
laws. The major aspects of data protection laws relate to persona l, therefore private, data
that an individual supplies to an organisation . The data is supplied to allow the organisation
to use it but only for purposes understood and agreed by the individual. Data protection laws
oblige organisations to ensure the privacy and the integrity of this data. Unfortunately having
laws does not guarantee adherence to them but they do act as a deterrent if wrong-doers
can be subject to legal proceedings.

Data protection law: a law that relates to data privacy

Discussion Point:
What data protection laws are in place in your country? Are you familiar with any details of
these laws?

Data protection normally app lies to data stored in computer systems with the consent of the
individual. Should these laws be extended to cover storage of data obtained from telephone
ca lls or search engine usage?

Data can be said to be 'secure' if it is available for use when needed and the data made
available is the data that was stored originally. The security of data has been breached if the
data has been lost or corrupted.

It should be clear that data security is a prerequisite for ensuring data integrity and data
privacy. However, by itself it cannot guarantee either.

•

Cambridge International AS and A level Computer Science

8.02 Security measures for protecting computer systems
One of the requirements for protection of data is the security of the system used to store the
data. However, system security is not needed just to protect data. There are two primary
aims of system security measures. The first is to ensure system functionality. The second is to
ensure that only authorised users have access to the system.

The threats to the security of a system can be categorised as being one of the following
types:

internal mismanagement
natural disasters

• unauthorised intrusion into the system by an individual

• malicious software entering the system.
Continuity of operation is vital for large computer installations that are an integral part of the
day-to-day operations of an organisation. Measures are needed to en_sure that the system
remains functional whatever event occurs or, if there has to be a system shut-down, at the
very least to guarantee resumption of service within a very short time. Such measures come
under the general heading of disaster recovery contingency planning. The contingency plan
should be based on a risk assessment. The plan will have provision for an alternative system
to be brought into action. If an organisation has a full system always ready to replace the
normally operational one, it is referred to as a 'hot site'. By definition such a system has to be
remote from the original system to allow recovery from natural disasters such as earthquake
or flood.

A special case of system vulnerability arises when there is a major update of hardware and/
or software. Traditionally, organisations had the luxury of installing and testing a new system
over a weekend when no service was being provided. In the modern era, globally available
systems are the norm: a company is never closed for business. As a result, organisations
may need to have the original system and its replacement running in parallel for a period to
ensure continuity of service.

Discussion Point:
Major failings of large computer systems are well documented. You could carry out research
to find some examples. Find an example of where the crisis was caused by technology failure
and a different example where some natural disaster was the cause.

Even if a PC is used by only one person there should be a user account set up. User accounts
are, of course, essential for a multi-user (timesharing) system. The main security feature
of a user account is the authentication of the user. The normal method is to associate a
password with each account. In order for this to be effective the password needs a large
number of characters including a variety of those provided in the ASCII scheme.

Authentication: verification of a user's identity

- - - --- - ----- - - -- - -

(· ", -, - · Chapter 8: Data Security, Privacy and Integrity

I •- -

TASKS.01

1 Create an example of a secure password using eight characters (but not one you are going
to use).

2 Assuming that each character is taken from the ASCII set of graphic characters how many
different possible passwords could be defined by eight characters?

3 Do you think this is a sufficient number of characters to assume that the password would
not be encountered by someone trying all possible passwords in turn to access the
system?

Alternative methods of authentication include biometric methods and security tokens. A
biometric method might require examination of a fingerprint or the face or the eye. A security
token can be a small item of hardware provided for each individual user that confirms their
identity. Similar protection can be provided by software with the user required to provide
further input after the password has been entered . Normal practice is to combine one of
these alternative methods with the password system.

General good practice that helps to keep a personal computer secure includes not leaving
the computer switched on when unattended, not allowing someone else to observe you
accessing the computer and not writing down details of how you access it.

A computer system is not only accessed by users logging in . One potential problem arises
from users attaching portable storage devices which can conta in a virus. The safest practice
is for an organisation to have a policy banning the use of such devices. Unfortunately this is
not possible if normal business processes require portabi li ty of data.

The threat that is virtually unavoidable arises because of the connection of an organisation's
systems to the Internet. The major potential problem is that transmissions into the system
from the Internet may contain malicious software. However, a further consequence of
Internet connect ion is that sensitive data from the system might be exported out to some
other system.

The primary defence to such problems is to install a firewall. Ideally a firewall will be a
hardware device that acts like a security gate at an international airport. Nothing is allowed
through without it being inspected. Alternatively, a firewall might be implemented as
software. The t ra nsmission must then enter the system but it can be inspected immediately.
The action of a firewall might be to concentrate solely on the addresses identified in any
transmission. However, in addition, a firewal l might examine the data within the transmission
to check for anything inappropriate.

If an incoming transmission is an er:nail, t here can be a concern about authenticati ng the
identity of the sender. The solut ion is to insist on the sender attaching a digital certificate to
the email . Some details of this are discussed in Chapter 21 (Section 21.02).

Security measures restricting access to a system do not guarantee success in removing all
threats. It is therefore necessary to have, in addition, programs running on a system to check
for problems. Options for this are:

• a virus checker which carries out regular system scans to detect any viruses and remove
them or deactivate them

• an intrusion detection system th'at will take as input an audit record of system use and
look for anomalous use.

•

Cambridge International AS and A level Computer Science

It hardly needs saying that individuals intent on causing damage to systems are using
methods that are becoming ever more sophisticated. The defence methods have to be
improved continually to counter these threats.

8.03 Security measures for protecting data
There are a number of scenarios which require security methods for protecting data. The
three discussed here are data loss, access to data and protection of data content.

Recovering from data loss
In addition to problems arising from malicious activity there are a variety of reasons for
accidental loss of data:

• a disk or tape gets corrupted
• a disk or tape is destroyed

• the system crashes
• the fi le is erased or overwritten by mistake
• the location of the file is forgotten.
A system therefore needs a backup procedure to be implemented. The system administrator
has to decide on the details of the procedure. The principles for the procedure t raditionally
followed are straightforward:

• a full backup is made at regular intervals, perhaps weekly
• at least two generations of full backup are kept in storage
• incremental backups are made on a daily basis.

For maximum security the backup disks or tapes are stored away from the system in a fire-
proof and flood-proof location.

This worked well when an incremental backup was done overnight with the full backup
handled at the weekend . With systems running 24/7 and therefore with data potentially
changing at any time, such a simple approach to backup will leave data in an inconsistent
state. One solution is to have a backup program that effectively freezes the file store
while data is being copied but also records elsewhere within the system changes that are
happening due to ongoing system use. The changes can then be made to the system files
when the backup copy has been stored.

An alternative approach is to use a disk-mirroring strategy. In this case, data is simultaneously
stored on two disk systems during the normal operation of the system. The individual disk
systems might be at remote locations as part of a disaster recovery plan.

Restricting access to data
If a user has logged in they have been authorised to use the computer system but not
necessarily all of it. In particular, the system administrator may recognise different categories
of user with different needs with respect to the data they are allowed to see and use. The
typical trivial example usually quoted is that one employee should be able to use the system
to look up another employee's internal phone number. This should not allow the employee at
the same time to check the sa lary paid to the other employee.

The solution is to have an authorisc;1tion policy which in general gives different access
rights to different files for different individuals. For a particular file, a particular ind ividual
might have no access at all or possibly read access but not write access. In another case, an
individual might have read and append access but not unrestricted write access.

-t- - ------ - ------ -.- 1- --.--. -, . l - '· • . .:. .~ . : -.·.. - •

l' I, ,,. • ,<.:1,.i'Ja''? - I

, • · · . :.· 1~[,J}[,:_', : .c~·ap~er,8:1Data i_Se.curity,· Privacy.an<;ldntegrity \·

f r

' .- - --

..... .,, l! .,,._ • - ,.. ~»1 - ··~ " ..

Authorisation: definition of a user's access rights to system components

Protecting data content
Even with appropriate security measures in place it can happen that there is unauthorised
access to a system or interception of data transmission . This can be made a futile activity
for the perpetrator if the data cannot be read. Data can be encrypted to ensure this. Some
details of encryption methods are discussed in Chapter 21 (Section 21.01).

8.04 Data validation and verification
Data integrity can never be absolutely guaranteed but the chances are improved if
appropriate measures are taken when data originally enters a system or when it is
transmitted from one system to another.

Validation and verification of data entry
The term validation is a somewhat misleading one. It seems to imply that data is accurate if
it has been validated . This is far from the truth. If entry of a name is expected but the wrong
name is entered, it will be recognised as a name and therefore accepted as valid. Validation
can only prevent incorrect data if there is an attempt to input data that is of the wrong type,
in the wrong format or out of range.

Data validation is implemented by software associated with a data entry interface. There are
a number of different types of check that can be made. Typical examples are:

• a presence check to ensure that an entry field is not left blank

• a format check, for example a date has to be dd/ mm/ yyyy
• a length check, for example with a telephone number

a range check, for example the month in a date must not exceed 12

• a type check, for example only a numeric value for the month in a date.
Verification of data means confirming what has been entered . The most common example
is when a user is asked to supply a new password. There will always be a request for the
password to be re-entered . Clearly, if the user entered a password but did not enter it as
intended, subsequent attempts at access would fail. Verification is usually an effective
process but in general it does not ensure data accuracy because the wrong data could be
entered initially and in the re-entry.

Validation: a check that data entered is of the correct type and format; it does not guarantee that data
is accurate

Verification: confirmation of data rec_eived by a system

Verification during data transfer
It is possible for data to be corrupted during transmission. Typically this applies at the bit
level with an individual bit being flipped from 1 to O or vice versa. Verification techniques
need to check on some property associated with the bit pattern.

-- -- ---- -- -------

Cambridge International AS and A level Computer Science

The simplest approach is to use a simple one-bit parity check . This is particularly easy to
implement if data is transferred in bytes using a seven-bit code. Either even or odd parity can
be implemented in the eighth bit of the byte. Assu ming even parity, the procedure is:

1 At the transmitting end, the number of ls in t he seven -bit code is counted.
2 If the count gives an even number, the parity bit is set to 0.

3 If the count gives an odd number, the parity bit is set to 1.
4 This is repeated for every byte in the transmission.
5 At the receiving end, the number of ls in the eight-bit code is counted.
6 If the count gives an even number, the byte is accepted.
7 This is repeated for every byte in the transmission.
If no errors are found, the transmission is accepted. However, the transm iss ion cannot be
guaranteed to be error free. It is possible for two bits to be flipped in an individual byte.
Fortunately this is rather unlikely so it is a sensible assumption to assume no error. The
limitation of the method is that it can only detect the presence of an error. It cannot identify
the actual bit that is in error. If an error is detected, re-transm ission has to be requested.

An alternative approach is to use the checksum method. In this case at the transmitting end
a block is defined as a number of bytes. Then, irrespective of what the bytes represent, the
bits in each byte are interpreted as a binary number. The sum of these binary numbers in a
block is calculated and supplied as a checksum value in the transm ission. This is repeated
for each block. The receiver does the same calculation and checks the summation va lue with
the checksum value transm itted for each block in turn. Once again an error can be detected
but its position in the transmission cannot be determined.

For a method to detect the exact position of an error and therefore be able to correct an
error it has to be considerably more complex. A simple approach to this is the parity block
check method. Like the checksum method this is a longitudinal parity check; it is used to
check a serial sequence of binary digits contained in a number of bytes.

WORKED EXAMPLE 8.01

Using a parity block check
At the transmitting end, a program reads a group of seven bytes as illustrated in Figure
8.01. The data is represented by seven bits for each byte. The most significant bit in each
byte, bit 7, is undefined so we have left it blank.

Seven-bit codes
1 0 1 0 0 1 1
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 0 1 1 1 0 0
0 1 1 0 0 1 0
0 1 1 0 0 0 1
0 1 1 0 0 0 1

Figure 8.01 Seven bytes to be transmitted

-----~--~-- -- -- ------ -- --- ---- -----

'
Chapter 8: Data Security, Privacy and Integrity

I

The parity bit is set fo r each of the bytes, as in Figure 8.02. The most sign ifican t bit is set to
achieve even parity.

Parity
bits Seven-bit codes

0 1 0 1 0 0 1 1
1 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0
1 0 0 1 1 1 0 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 1
1 0 1 1 0 0 0 1

Figu re 8.02 Bytes with t he parity bit set

An additiona l byte is then created and each bit is set as a parity bit fo r t he bits at that bit
position. This includes counting the parity bits in t he seven bytes contain ing data. This is
illust ra ted in Figure 8.03.

Parity
bits Seven-bit codes

0 1 0 1 0 0 1 1
1 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0
1 0 0 1 1 1 0 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 1
1 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 .-Parity byte

Figure 8.03 Parity byte added

The program then transmits the eight bytes in sequence.

At the receiving end, a program takes t he eight bytes as input and checks t he parity sums
for t he individual bytes and fo r the bit posit ions.

Note that t he meth od is handling a serial transmission so it includes longitu di nal checking
but t he actual checking algorithm is working on a matrix of bit values. If t here is just one
error in the seven bytes t his method wi ll allow the program at t he receiving end to identify
t he position of t he error. It can therefo re correct the erro r so the t ransmission can be
accepted.

•

- --------- -- ---

Cambridge International AS and A level Computer Science

Question 8.01

1 Assume that the seven bytes shown in Figure 8.04 contain data. The most sign ificant bit
is undefined because a seven-bit ASCII code is being used to represent character data.
Choose a parity and create the appropriate parity bit for each byte, then create the eighth
byte that would be used for transmission in a parity block check method.

01001000 1 1 01000101 1 1 01110010 1 1 01100011

1 00101100 1 1 01010101 1 00110010

Figure 8.04 Seven bytes to be transmitted

2 The eight bytes shown in Figure 8.05 have been received in a transm ission using the parity
block method . The first seven bytes conta in the data and the last byte conta ins the parity
check bits.

.- -----

01001000 11000101 11110001 01100011

01001010 01010101 01110010 01110010

Figure 8.05 Eight bytes received in a transmission

a Identify what has gone wrong during the transmission .

b What would happen after the .transmission is checked?

• Important considerations for the storage of data are: data integrity, data privacy and data security.

• Data protection laws relate to data privacy.

• Secu rity measures for computer systems include authentication of users, prevention of
unauthorised access, protection from malware and methods for recovery following system failure.

• Security methods for data include backup procedures, user authorisation and access control.

• Data entry to a system should be subject to data validation and data verification .

• Verification for data transmission may be carried out using: a parity check, a checksum or a parity
block check method .

1

'

-- - - ------- - - -~~- ---- -------

Chapter 8: Data Security, Privacy and Integrity

Exam-style Questions

1 a It is important that data has integrity.

Identify the missing word in the sentence 'Concerns about the integrity of data are concerns about its ..

ii Validation and verification are techniques that help to ensure data integrity when data is entered into a system.

Explain the difference between validation and verification.

iii Define a type of val idation and give an example.

iv Even after validation has been correctly applied data may lack integrity when it comes to be used. Explain
why that might happen.

b Data should be protected from being read by unauthorised ind ividuals.

Explain two policies that can be used to provide the protection'.

2 a Security of data is an important concern for a system administrator.

Identify three reasons why data might not be ava ilable when a user needs it.

ii Describe what could be features of a policy for ensuring data security.

b It is important for mission-critical systems that there is a disaster recovery contingency plan in place.

Define what type of disaster is under cons ideration here.

ii Define what will be a major feature of t he contingency plan.

c Measures to ensure security of a computer system need to be in place on a daily basis if the system is connected
to the Internet.

Describe two measures that could be taken to ensure security of the system.

3 a When data is transmitted measures need to be appl ied to check whether the data
has been transmitted correctly.

If data consists of seven-bit codes transmitted in bytes, describe how a simple parity check system would
be used. Your account should include a description of what happens at the transmitting end and what
happens at the receiving end.

ii An alternative approach is to use a checksum method. Describe how this works.

b For either of these two methods there are limitations as to what can be achieved by them.

Identify two of these limitations.

[l]

[3]

[2]

[2]

[4]

[3]

[3]

[2]

[2]

[4]

[5]

[3]

[2]

•

-

Cambridge International AS and A level Computer Science

C A different method which does not have all of these limitations is the parity block check method.

The following diagram represents eight bytes received where t he parity block method has been applied at the
transm itting end . The first seven bytes contain the data and t he last byte conta ins parity bits.

Byte 1 0 I 1 0 1 0 0 1 1

Byte 2 1 I 0 1 1 0 0 0 1

Byte 3 1 I 1 0 1 0 0 0 0

Byte4 1 I 0 0 1 1 1 0 0

Bytes 1 I 0 1 1 0 0 1 0

Byte 6 1 I 0 1 1 0 0 0 1

Byte 7 1 I 0 1 1 0 0 0 1

Byte 8 0 I 0 0 1 0 I 1 0 0

Identify the problem with this received data and what wou ld be done with it by the program used by the receiver. [4]

- - - -- --

I

r Learning objectives
r By the end of this chapter you should be able to:

r
'

• show a basic understanding of ethics
• explain how ethics may impact on the job role of the

computing professional
• show understanding of the eight principles listed in the

ACM/ IEEE Software Engineering Code of Ethics
• demonstrate the relevance of these principles to some

typical software developer workplace scenarios

• show understanding of the need for a professional code
of conduct for a computer system developer

• show understanding of the concept of ownership and
copyright

• describe the need for legislation to protect ownership,
usage and copyright

• discuss measures to restrict access to data made
available through the Internet and World Wide Web

• show understanding of the implications of different types
of software licensing.

Cambridge International AS and A level Computer Science

9.01 Ethics
You ca n find a number of definitions of what we might mean when we talk about 'ethics'. The
following three sentences are representative:

• Ethics is the field of moral science.
• Ethics are the moral principles by which any person is gu ided.
• Eth ics are t he rules of conduct recognised in a particu lar profession or area of human life.
For present purposes we can ignore the first of these definitions. Th e third definition is the
focus of this chapter. However, the rules of conduct must inevitably reflect, at least in part,
the moral principles that are the foundat ion of the second definition. The fo llowing are some
observations that come to mind when considering mora l principles.

Moral principles concern ri ght or wrong. The concept of virtue is often linked to what
is considered to be right. What is right and wrong might be considered from one of the
following viewpoints: philosophical, religious, legal or pragmatic.

Philosophical debate has been going on for well over 2000 years. Early th inkers frequently
quoted in this context are Aristotle and Confucius but there are many more. Religions have
sometimes incorporated phi losophies already existing or have introduced the ir own. Laws
should reflect what is right and wrong. Pragmatism could be defined as applying common
sense.

This chapter is not an appropriate place to discuss religious beliefs other than to make
the obvious statement that religious beliefs do have to be considered in the working
environment. Legal issues clearly impact on working practices but they are rarely the primary
focus in rules of conduct. What remains as the foundation fo r rules of conduct are the
philosophical views of ri ght and wrong and the pragmatic views of what is common sense.
These will constitute a frame of reference for what follows in t his chapter.

9.02 The ACM/IEEE Software Engineering Code of Ethics
The Association for Computing Machinery (ACM) and the Institute of Electrical and
Electronics Engineers (IEEE) are both based in the USA but have a global perspective and
globa l influence. It is therefore appropriate to consider the code of ethics that they have
proposed but this does not signify that codes of practice published in other countries are not
important.

In presenting the code, the authors make it clear that it in no way does the code represent
a look-up table that wil l prescribe an action to be taken given a defined circumstance.
They stress that the public interest is the central focus for the code. The code presents a
set of fundamental principles. They advocate that a professional should make an ethical
judgement based on thoughtful consideration of these fundamental principles.

The code defines eight principles. For each principle there is a one-sentence defin ition in the
preamble. In the full version of the code, each principle is expanded into clauses. Each clause
refers to a specific aspect that shou ld be considered in the context of that princip le. This is a
fo rm of check list that gives a framework for an ethical judgement.

-- - - - - --- - - - -- -- - - - -

j

' Chapter 9: Ethics and Ownership

I
I
I
•

The eight principles are presented as follows in the preamble:

1 PUBLIC - Software engineers shall act consistently with the publ ic interest.

2 CLI ENT AND EMPLOYER - Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public interest.

3 PRODUCT - Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

4 JUDGMENT - Software engineers shall maintain integrity and independence in thei r
professional judgment.

5 MANAGEMENT - Software engineering managers and leaders shall subscribe to and
promote an eth ical approach to the management of software development and
maintenance.

6 PROFESSION - Software engineers shall advance the integrity and reputation of the
profession consistent with the publ ic interest.

7 COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.
8 SELF - Software engineers shall participate in lifelong learning regarding the practice of

the ir profession and sha ll promote an ethical approach to the practice of the profession.
In total there are 80 clauses for these eight princip les (numbered from 1.01 through to 8.09).
There is little to be ga ined from including all of them in this book. However, you should have
a copy readily available when you are studying th is chapter (see https://www.acm.org/about/
se-code).

Exam ination of some of the clauses soon makes it clear that many do not conta in specific
reference to software engineering but rather, re late to proper behaviour for any group of
professionals. This can be illustrated by the following examples:

2.03 Use the property of a client or employer on ly in ways properly authorized, and with the
client's or employer's knowledge and consent.

5.04 Assign work only after taking into account appropriate contributions of education and
experience tempered with a desire to further that education and experience.

5.05 Ensure realistic quantitative est imates of cost, schedu ling, personnel, qual ity and
outcomes on any project on which they work or propose to work, and provide an
uncerta inty assessment of these estimates.

6.06 Obey all laws governing their work, unless, in exceptional circumstances, such
compliance is inconsistent with the public interest.

Clauses 5.04 and 6.06 illustrate a general tendency for the clauses to be more wordy than
they might have been because many of them have a qualifier. The same qualifier appears
more than once. Clause 5.05 is somewhat unusual with regard to the amount of detail. You
would expect a mention of realistic quantitative estimates but probably not t he insistence on
an uncertainty assessment.

Discussion Point:
Should clause 5.05 include an insistence on an uncertainty assessment? Are there alternative
suggestions that might have been included?

Clause 6.06 advocates law-breaking to serve the public interest. Can you t hink of
circumstances when you could agree that such action wou ld be eth ical? You might wish to
consider 'whistle-blowing'.

•

•

-

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 9.01

Applying ethics to a software engineering scenario
In a real-life scenario there might be many individual clauses that should be considered
when a judgement is to be made. For example, let's consider the following scenario.

You are working on a software engineering project. One day the project manager states
that the project is running behind schedule. As a result, the time al located for testing of
the software wi ll be limited to one week rather than the one month that was stated in the
project plan .

You could approach your thinking by adopting a step-by-step approach.

1 You would rule out any immediate need to consider public interest.
2 You would identify the primary cause of concern as being directly addressed by

clause 3.10: Ensure adequate testing, debugging, and review of software and related
documents on which they work.

3 You would identify the secondary cause of concern as being one of poor management
with clauses 5.01 and 5.11 being the most relevant: Ensure good management for any
project on wh ich they work, including effective procedures for promotion of quality and
reduction of risk. Not ask a software engineer to do anything inconsistent with this Code.

4 You would now consider what action to take and would refer to clauses 6.11, 6.12 and
6.13: Recognize that violations of this Code are inconsistent with being a professional
software engineer. Express concerns to the people involved when significant violations
of this Code are detected unless this is impossible, counter-productive, or dangerous .
Report significant violations of this Code to appropriate authorities when it is clear that
consultation with people involved in these significant violations is impossible, counter-
productive or dangerous.

Question 9.01
There are severa l other clauses that might be considered as relevant. Have a look at clauses
3.02, 3.05 and 7.01 . Do you consider that any of these offer anything new in helping to judge
what should be done7

Discussion Point:
Search the clauses for all eight principles and identify the ones that mention documentation.
Why is documentation mentioned so many times?

9.03 The public good
What has been considered so far relates directly to professional working practices and
therefore revolves around the third definition of ethics presented in Section 9.01. When the
question of pub lic good arises, consideration has to relate to the second defi nition as well. In
different parts of the code there is reference to:

• the health, safety and welfare of the public

• the public interest

• the public good
• public concern.

- - - ---- - -~--- ~------ ·- --- -

(. 'r~i r:: ::, Chapter 9: Ethics and Ownership .

t
I

r

r
I

l ,
l

I

There is no further indication of how these should be interpreted. It wil l be helpful to consider
some ind ividual cases to illustrate what might be considered.

Fortunately, there are very few examples which have involved loss of life and certa inly
none where large numbers of deaths were caused . However, there have been a number of
incidents where extremely large sums of money were wasted because of rather simplistic
errors.

The first example that could be mentioned is the Ariane 5 rocket wh ich exploded 40 seconds
after blast-off in 1996. To the detriment of the public good, approximately 500 mil lion dollars
were spent for no benefit at all . The problem was caused by a line of code that tried to
convert a 64-bit floating point number into a 16-bit integer. The resu lt ing overflow crashed
the program and as a result also the rocket.

The second example also relates to space exploration. The NASA Mars Cl imate Orbiter
project centred on a space probe that was due to orbit Mars to study the climate. The probe
got to Mars but unfortunately failed to get into orbit. The cause of the problem was t hat all
of the software was supposed to use the SI system of units for all calcu lations. One group of
software engineers used the Imperial system of units. This mismatch only caused a problem
at the stage when t he calculations concerned w ith achieving orbit around Mars were
executed. This t ime the loss to the publ ic purse was a mere 125 mi ll ion dollars.

These examples can be said to il lust rate the public interest in successfu l software
engineering. There is a strong argument that the correct application of the code of ethics
with respect to specification and testing of software could have saved a lot of money.

A different type of disaster is the system that never gets bui lt. In 2011 the UK government
scrapped the National Programme for IT in the NHS (National Health Service), which had
been commissioned in 2002. The project failed to produce a workab le system. The estimated
amount spent on the program was 12 bill ion pounds . The initia l est imated cost was less than
three billion pounds. In exa mples like this the software engineers are not to blame, but if
correctly applied, the part of the code of ethics specifically ta rgeted at project management
would not have allowed this type of fiasco to occu r.

In the three examp les outli ned above the public concern was solely related to the costs
associated w ith a fa iled project. There was no publ ic concern relat ing to the ethics of the
endeavour itsel f. In contrast there are many areas associated with computer-based systems
where there is public concern about the nature of the endeavour or at least about what it has
led to. The following examples can be considered in this context:

powerful commercial companies being ab le to exert pressure on less powerful
companies to ensure that the powerful company's products are used when alternatives
might be more suitable or less costly

• companies providing systems that do not guarantee security against unauthorised access
• organ isations that try to concea l information about a security breach that has occurred in

their systems

private data transmitted by individuals to other individuals being stored and made
available to security services

• social media sites allowing abusive or subversive content to be t ransmitted
• search engines provid ing sea rch resu lts with no concern about the qual ity of the con tent.

•

Cambridge International AS and A level Computer Science

There is by no means a consistent public attitude to concerns like this. This makes it difficult
for an individual software engineer to make a judgement with respect to public good . Even if
the judgement is that a company is not acting in the public good it will always be difficult for
an individual to exert any influence. There are recent examples where individuals have taken
action which has resulted in their life being severely affected.

Discussion Point:
This section has deliberately been presented in generalisations. You should carry out a
search for some individual examples and then consider actions that could be taken and
justified as being for the public good.

9.04 Ownership and copyright
Copyright is a formal recognition of ownership. If an individual creates and publishes
some work that has an element of originality, the individua l becomes the owner and can
therefore claim copyright. An exception is if the individual is working for an organisation.
An organisation can claim copyright for a published work if it is created by one or more
individuals that work for the organisation. Copyright cannot apply to an idea and it cannot
apply to a component of a published work.

Copyright: a formal recognit ion of ownership of a created and publ ished work

Copyright can apply to any of:

• a literary work
• a musical composition
• a film

a music recording
• a radio or TV broadcast
• a work of art

a computer program .
The justification for the existence of copyright has two components. The first is that the
creation takes time and effort and requires original think ing. There should, therefore, be
opportun ity for the copyright holder to be rewarded financially for this endeavour. The
second is that it is unfair for some other individual or organisation to reproduce the work and
to make money from it without any compensation to the original creator.

As with the case of data protection discussed in Chapter 8 (Section 8.01), there is a need
for legislation to try to deter abuses of copyright. The similarity continues in that legislation
cannot ensure that no abuses occur. Different countries have different deta ils in their
legislation but there is an international agreement that copyright laws cannot be evaded by
reproducing the work in a different country from where the work was created.

-~- --- -~- ---- --- --- - -

. Chapter 9: Ethics and Ownership
I

Typical copyright legislation will include:

• a requirement for registration recording the date of creation of the wo rk
• a defined period when copyright will apply
• a policy to be applied if an individual holding copyright dies
• an agreed method for indicating the copyright, for example the use of the© symbol.
When copyright is in place there will be implications for how the work can be used. The
copyright owner can include a statement concerning how the work might be used. For
instance, the ACM has the following statement relating to the code of ethics discussed in
Section 9.02:

This Code may be published without permission as long as it is not changed in any way and it
carries the copyright notice. Copyright© 1999 by the Association for Computing Machinery,
Inc. and the Institute for Electrical and Electronics Engineers, Inc.

This is one of severa l possible variations referring to permissions that are granted when the
work has not been sold. If someone has bought a copy of a copyrighted product there is no
restriction on copies being made provided that these are solely for the use of the individual.
A general regulation relates to books in a library, where a library user can photocopy part of a
book.

9.05 The consequences of the development of the
Internet and World Wide Web

Before the Internet came to be a dominant feature of people's lives, breaches of copyright
were routinely happening in two ways. Individuals with a music system that included a tape
cassette recorder could record a radio broadcast. It also allowed a copy to be made of a
friend's vinyl record. Individuals also often had unrestricted access to a photocopier in their
place of work and could copy printed material.

In the modern world, the cinema, broadcast and music industries are attempting to sell their
products as CDs, DVDs or Blu-ray discs. Illegal copying (known as 'piracy') now takes place
through using the Internet to download or stream data that was originally released for sale
on one of these optical med ia. As well as the change in approach, there is the significant
difference that il legal copying is now happening on a major scale and thus seriously affecting
the profitability of the creators.

In order for an individual or an organisation to make an illegal copy of a product available
for downloading or streaming the data has to be 'ripped' from an original product. This is
the process of converting the product into a form that can be stored as a computer file.
The producers of the original product can use digital rights management (DRM) to attempt
to counter such activity. Originally DRM was simply used to make a CD playable on a CD
player but to prevent it being played on a computer system. Now DRM has to be used to
prevent ripping. This might involve encryption or deliberate inclusion of damaged sectors.
Unfortunately these techn iq ues do not guarantee the prevention of piracy.

The major mechanism for piracy of media content is the widespread use of peer-to-peer file
sharing, a technology discussed in Chapter 17 (Section 17.07). As a result, there are moves
afoot to force ISPs to monitor the usage of this technology and to report usage to interested
parties. Natura lly enough there is considerable resistance to such action in that it amounts to
a breach of privacy.

-- - - - --- - - - -

•

Cambridge International AS and A level Computer Science

9.06 Software licensing
Commercial software
Commercial software almost always has to be paid for but there are a number of d ifferent
options t hat might be available:

• A fee is paid for each individual copy of the software.
• A company might have the option of buying a si te licence which allows a defined nu mber

of copies to be running at any one time.
Specia l rates might be available for educational use.
Earlier versions or limited versions might be offered free or at reduced price.

Open or free licensing
For open licensing t here are two major operations under way. Both are globa l non-profit
organisations .

The Open Source Initiative makes open source software, including the sou rce code,
available for free. The aim is for collaborative development of software to take place. The user
of the software is free to use it, modify it, copy it or distribute it according to need.

The Free Software Foundation has similar objectives but has also incorporated what it has
called 'copyleft'. This is the condition that if the software is modified the sou rce code for t he
mod ified version must be made available under the same conditions of usage.

The two organisations are not in competition but there are some subt le differences in their
philosophy. There is a different raft of products made ava ilable by each of them.

Both these organ isations offer free products. Another form of free software is termed
freeware. This is software that is distributed for free but without the source code.

Discussion Point:
How often do you think that open licence software is being used? Should it be used more
often?

TASK9.0l
Ca rry out a search to investigate some of the software available under an open licence.

Open source software: software free with unlimited use allowed and access to source code

Shareware: software free for use for a limited period but no source code provided

Freeware: software free with unlimited use allowed but no source code provided

Shareware licensing
Shareware is commercial software which is made available on a trial basis. It might be a
li mited version of a full package or free to use for a trial period. A beta test version of new
software might be cons idered to come in the shareware category.

I ,
" · --:: , - Chapter 9: Ethics and Owne'rship !

• There are different definitions of ethics.

• The ARM/ IEEE Code of Ethics has a focus on the public good.

• There is a history of software disasters that might have been prevented if sound software
engineering practice had been employed.

• Copyright is formal recognition of ownership.

• Illegal copying using the Internet is a serious concern.

• Commercial software has to be paid for; alternatives are open licence or shareware which are free.

Exam-style Questions

1 The ACM and IEEE set out eight principles for ethics and professional practice. The categories, with a short explanation,
are shown in this diagram.

Public Act consistent! in the ublic interest

Client Act in the best interests of t he cli ent

Employer Act in the best interests of their employer

Product Statement 1/2/3 (Circle the correct number.)
Maintain integrity and independence in

Judgement their professional judgement

Management Statement 1/2/3 (Circle the correct number.)

Profession
Software engineers shall advance the
integrity and reputation of the profession

Software engineers shall be fair to and
Colleagues supportive of their colleagues

Self Statement 1/2/3 (Circle the correct number.)

Statement 1: Team leaders should subscribe to and promote an ethical approach to the management of software
development and maintenance.

Statement 2: Software engineers shall participate in lifelong learning regarding the practice of the profession.

Statement 3: Software and related mod ifications meet the highest possible standards.

a These three statements need to be added to the diagram. Circle the correct numbers on the diagram to indicate
the positions for Statement 1, Statement 2 and Statement 3.

•

[2)

Cambridge International AS and A level Computer Science

b For each of these three workplace scena ri os, unethical behaviour is demonstrated. Expla in t he principle(s) which
are not being met.

Workp lace scenario 1

A la rge project is devolved to project teams, each led by a project leader. One project leader fails to inform his
manager that he has major concerns that:

• t hei r tea m's softwa re contri bution is taking much longer to write and test than anticipated

t hey are consequent ly at risk of spending over the ir allocated budget.

ii Wo rkp lace scenario 2

The software house is about to train a number of programmers in a new programming language. Two
employees are refusing to attend the training.

iii The company is developing some monitoring software which requi res sensors placed in a natu re reserve.
One employee considers th e sensors will be a danger to some of the wildlife, but is told by his manager that
the matter is none of his concern.

[3]

[2]

[2]

Cambridge International AS and A Level Computer Science 9608 Specimen Poper 1 Q6

2 a Copyright is an important consideration when something is created .

State what copyright primarily defines . [l]

ii When copyright is registered, some data will be recorded. Identify two examples of the type of data that
would be recorded. [2]

iii Copyright legislation defin es two condit ions that will apply to the copyrighted work. Identify one of these. [l]

iv When copyright has been establ ished there are options for how usage will be cont rolled . Give two alternatives
for the instructions that could be included in the copyright statement for the created item. [2]

b When software is obta ined t here will be an associated license defi ning how it can be used .

For commercial software, describe two different ways in wh ich the license might be applied and explain the
benefits to the customer of one of these. [4]

ii Define the difference between freeware and shareware. [2]

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the limitations of using a file-
based approach for the storage and retrieval of data

• describe the features of a relational database which
address the limitations of a file-based approach

• show understanding of the features provided by a
DBMS to address the issues of: data management, data
modelling, logical schema, data integrity, data security

• show understanding of how software tools found within a
DBMS are used in practice

• show awareness that high-level languages provide
accessing facilities for data stored in a database

• show understanding of, and use, the terminology
associated with a relational database model

• produce a relational design from a given description of a
system

• use an entity-relationship diagram to document a
database design

• show understanding of the normalisation process
• explain why a given set of database tables are, or are not,

in 3NF and make the changes to a given set oftables to
produce a solution in 3NF

• show understanding that DBMS software carries out:
• all creation/modification of the database structure using

its DDL
• query and maintenance of data using its DML

• show understanding that the industry standard for both
DDL and DML is Structured Query Language {SQL)

• show understanding of a given SQL script
• write simple SQL (DDL) commands for: creating a

database, creating or changing a table definition, adding
a primary or foreign key to a table

• write a SQL script for querying or modifying data (DML)
which are stored in (at most two) database tables

Cambridge International AS and A level Computer Science

10.01 Limitations of a file-based approach
Data integrity and data privacy concerns
Let's consider a simple scenario. A theatrical agency makes bookings for bands and is setting
up a computerised system. Text files are to be used. One of these text files is to store data
about individual band members. Each line of the file is to contain the follow ing data for one
band member:

Name, contact details, banking details, band name, band agent name,
band agent contact details

The intention is that this file could be used if the agency needed to contact the band member
directly or through the band's agent. It could also be used after a gig when the band member
has to be paid. Ignoring what would constitute contact details or banking details, we can
look at a snapshot of some of the data that might be stored for the member's given name,
the member's family name and the band name. The file might have a thousand or more lines
of text. The following is a selection of some of the data that might be conta ined in various
lines in the file:
Xiangfei Jha ComputerKidz
Mahe sh Ravuru ITWizz
Dyl an Stoddart
Graham Vandana ITWizz
Vandana Graham ITWizz
Mahe sh Ravuru ITWizz
Precious Olsen ComputerKidz
Precious Olsen ITWizz

It is clear that there are problems with this data. It would appear that when the data for
Vandana Graham was first entered her names were inserted in the wrong order. A later
correct entry was made without deletion of the original incorrect data. This type of problem
is not unique to a file-based system. There is no validation technique that could detect the
original error. By contrast, validation should have led to the correction of the missing band
name for Dylan Stoddart. The Precious Olsen data are examples of duplication of data and
inconsistent data.

There is also possibly an error that is not evident from looking at the file contents. A band
name could be entered here when that band doesn't exist. This shows how a file-based
approach can lead to data integrity problems in an individual file. The reason is the lack of
in-built control when data is entered. The database approach can prevent such problems or,
at least, minimise the chances of them happening.

A different problem is a lack of data privacy. The file above was designed so that the finance
section could find the banking details and the recruitment section could find contact details.
The problem is that there cannot be any control of access to part of a file so staff in the
recruitment section would be able to access the banking details of band members. Data
privacy would be properly handled by a database system.

Mindful of this privacy problem the agency decides to store data in different files for different
departments of the organ isation. Table 10.01 summarises the main data to be stored in each
department's file.

r

f

r

r r

r

- ----- --------

:' - Chapter 10: Database and Data Modelling

Department Data items in the section's file
Contract Member names Band name Gig details
Finance Member names Bank details Gig details
Publicity Band name Gig details
Recruitment Member names Band name Agent details

Table 10.01 Data to be held in the department files

There is now data duplication across the files. This is commonly referred to as data
redundancy which doesn't mean that the data is no longer of use but rather that once data
has been stored there is no need for it to be stored again. This can lead to data inconsistency
because of errors in the origina l entry or errors in subsequent ed iting. This is a different cause
of data lacking integrity. One of the primary aims of the database approach is the el imination
of data redundancy.

Data redundancy: the same data stored more than once

Data dependency concerns
The above account has focussed on the problems associated with data storage in files. We
now need to consider the problems that might occur when programs access the files.

Traditionally a programmer wrote a program and at the same time defined the data files that
the program would need. For the agency each department would have its own programs
which would access the department's data files. When a programmer creates a program for a
department the programmer has to know how the data is organised in these files, for example,
that the fourth item on a line in the file is a band name. This is an example of 'data dependency'.

It is very likely that the files used by one department might have some data which is the same
as the data in the files of other departments. However, in the scenario presented above there
is no plan for file sharing. A further issue is that the agency might decide that there is a need
for a change in the data stored . For instance, they might see an increasing trend for bands
to perform with additional session musicians. Their data wi ll need to be entered into some
files. This w ill require the existing files to be re-written. In turn, this will require the programs
to be re-written so that the new files are read correctly. In a database scenario the existing
programs could still be run even though additional data was added. The on ly programming
change needed would be the writing of additional programs which used this additiona l data.

The other aspect of data dependency is that when file structures have been defined to suit
specific programs they wi ll not be suited to supporting new applications. The agency might feel
the need for an information system to analyse the success or otherwise of the gigs they have
organised over a number of years. Extracting the data for this from the sort of file-based system
described here would be a complex task which would take considerab le time to complete.

10.02 The database approach
It is vita l to understand that a database is not just a collection of data. A database is an
implementation according to the rules of a theoretical model. The basic concept was
proposed some 40 years ago by ANSI (American National Standards Institute) in its three-
level model. The three leve ls are:

•

---------- - -- - -

Cambridge International AS and A level Computer Science

• the external level

• the conceptual level

• the internal leveL

The architecture is illustrated in Figure 10.01 in the context of a database to be set up for our
theatrical agency.

External level

Conceptual level

Internal level

Physical storage

Figure 10.01 The ANSI three-level architecture for the theatrical agency database

The physical storage of the data is represented here as being on disk. The details of the
storage (the internal schema) are known only at the internal level, the lowest level in the ANSI
architecture. This is contro lled by the database management system (DBMS) software.
The programmers who wrote this software are the only ones who know the structure for
the storage of the data on disk. The software will accommodate any changes that might be
needed in the storage medium.

At the next level, the conceptual level, there is a single universal view of the database. This is
controlled by the database administrator (DBA) who has access to the DBMS. In the ANSI
architecture the conceptua l level has a conceptual schema describing the organisation of the
data as perceived by a user or programmer. However, this is often described as a logical schema.

At the external level there are individual user and programmer views. Each view has an
external schema describing which parts of the database are accessible. A view can support a
number of user programs. The OBA is responsible for setting up these views and for defining
the appropriate, specific access rights. The DBMS provides facilities for a programmer to
develop a user interface for a program. It also provides a query processor. The query is the
mechanism for extracting and manipulating data from the database. A programmer will
incorporate access to queries in a user interface. The other feature provided by the DBMS is
the capability for creating a report to present formatted output.

Data management system (DBMS): software that controls access to data in a database

Database administrator (OBA): a person who uses the DBMS to custom ise the database to suit user
and programmer requirements

--- - - - -- --------

. - 0 - - · Chapter 10: Database and Data Modelling

Discussion Point:
How many of the above concepts are recognisable in your experience of using a database?

10.03 The relational database
In the relational database model each item of data is stored in a relation which is a special
type of table. The strange choice of name has its origin in a mathematical theory. A relational
database is a collection of relat iona l tables.

When a table is created in a relational database it is fi rst given a name and then the attri butes
are named . In a database design, a table would be given a name with the attribute names
listed in brackets after the table name. For example, a database for th e theatrica l agency may
contain the fo llowing tab les:

Member(MemberlD, MemberGivenName, MemberFamilyName, BandName, .. .)

Band(BandName, AgentlD, ...)

The logical view of the data in these tab les is given in Table 10.02 and Table 10.03. Each
attribute is associated with one column in the table and is in effect a column header. The
column itself contains attribute va lues.

MemberlD Member Member Band ...
Given Name FamilyName Name

0005 Xiangfei Jha ComputerKidz ...
0009 Mahesh Ravuru ITWizz ...
0001 Dylan Stoddart ComputerKidz ...

0025 Vandana Graham ITWizz ...

Table 10.02 Logical view of Member table in a relational database

Band Name Agent ID ...
ComputerKidz 01 ...
ITWizz 07 ...

Table 10.03 Logical view of Band table in a relational database

Although some database products do allow a direct view of a table this is not the norm hence
the use of the term 'logica l view' here. If a user w ishes to inspect all of the data in a table a
query shou ld be used.

Relation: the special type of table which is used in a relational database

Attribute: a column in a relation that contains values

A row in a re lation should be referred to as a tup le but this stri ct nomenclature is not
always used . Often a row is called a 'record ' and the attribute values 'fields'. The tuple is t he
collection of data stored for one 'instance' of the relat ion. In Table 10.02, each tuple relates to
one individual band member. A fundamental principle of a relational database is that a tuple
is a set of atomic va lues; each attribute has one va lue or no value.

•

Cambridge International AS and A level Computer Science

The most important feature of the relational database concept is the primary key. A primary
key may be a single attribute or a combination of attributes. Every table must have a primary
key and each tuple in the table must have a value for the primary key and that value must
be unique. Once a table and its attributes have been defined the next task is to choose the
primary key. In some cases there may be more than one attribute for which unique va lues are
guaranteed. In this case, each one is a candidate key and one will be selected as the primary
key. More often there is no candidate key and so a primary key has to be created. Table 10.02
shows an example of this with the introduction of the attribute MemberlD as the primary key
(the primary key is underlined in the logical view).

The primary key ensures 'entity integrity'. The DBMS will not allow an attempt to insert a
value for a primary key when that value already exists. Therefore each tuple must be unique.
This is one of the features of the relational model that helps to ensure data integrity. The
primary key also provides a unique reference to any attribute value that a query is selecting.

Although it is possible for a database to contain stand-alone tables it is usually true that each
table will have some relationship with another table. This relationship. is implemented by
using a foreign key.

Primary key: an attribute or a combination of attributes for which there is a value in each tuple and
that value is unique

Foreign key: an attribute in one table that refers to the primary key in another table

The use of a foreign key can be discussed on the basis of the two database tables
represented in Table 10.02 and Table 10.03. When the database is being created, the Band
table is created first. Band Name is chosen as the primary key because unique names for
bands can be guaranteed. Then the Member table is created. MemberlD is defined as the
primary key and the attribute Band Name is identified as a foreign key referencing the primary
key in the Band table. Once this relationship between primary and foreign keys has been
established, the DBMS will prevent any entry for Band Name in the Member table being made
if the corresponding value does not exist in the Band table. This provides referential integrity
which is another reason why the relational database model helps to ensure data integrity.

Question 10.01
Band Name is a primary key for the Band table. Does this mean that as a foreign key in the
Member table it must have unique values? Explain your reasoning.

10.04 Entity-relationship modelling
The top-down, stepwise refinement (see Chapter 12, Section 12.01) approach to database
design uses an entity-relationship (ER) diagram. This might be initially created and used by
a systems analyst before being passed on to the database designer. Otherwise the designer
has to create it. The term 'relationship' (not to be confused with a relation!) was introduced
earlier in connection with the use of a foreign key. An entity (strictly speaking an entity
type) could be a thing, a type of person, an event, a transaction or an organisation. Most
importantly, there must be a number of 'instances' of the entity. An entity is something that
will become a table in a relational database.

- ----------- - - -

11
. - , - · Chapter 10: Database and Data Modelling

I
I

WORKED EXAMPLE 10.01

Creating an entity-relationship diagram for the theatrical agency
Let's consider a scenario for the theatrica l agency which will be sufficient to model a
part of the final database t hey would need. The starting point for a top-down design is a
statement of the requirement:

The agency needs a database to handle bookings for bands. Each band has a number of
members. Each booking is for a venue. Each booking might be for one or more bands.

Step 1: Choose the entities

You look for the nouns. You ignore 'agency' because there is on ly the one. You choose
Booking, Band, Member and Venue. For each of these there will be more than one
instance. You are aware that each booking is for a gig at a venue but you ignore this
because you think that the Booking entity will be suffic ient to hold the requ ired data
about a gig.

Step 2: Identify the relationships

This requires experience but the aim is not to define too many. You choose the follow ing
three:

Booking with Venue

Booking with Band

Band with Member.

You ignore the fact that there will be, for example, a relationship between Member and
Venue because you think that this will be handled through the other relationships that
ind irectly link them. You can now draw a preliminary ER diagram as shown in Figure 10.02.

I Member lf---------1 Band ! 1-------<I Booking 1-l ------<~V_e_n_ue~

Figure 10.02 A preliminary ent ity- relationship diagram

Step 3: Decide the cardinalities of the relationships

Now comes the crucial stage of deciding on what are known as the 'cardinalities' of the
relat ionships. At present we have a single line connecting each pair of entities. This line
actually defines two relationships which might be described as the 'forward' one and
the 'backward' one on the diagram as drawn. However, this only becomes apparent at
the final stage of drawing the re lationship. First we have to choose one of the fol lowing
descriptions for the cardina lity of each relat ion:

• one-to-one or 1:1

• one-to-many or l:M

many-to-one or M:l

many-to-many or MM.

This can be illustrated by considering the relationship between Member and Band. We
argue that one Member is a member of only one Band. (This needs to be confirmed as a
fact by the agency.) We then argue that one Band has more than one Member so it has

•

Cambridge International AS and A level Computer Science

many. Therefore the relationsh ip between Member and Band is M:l . In its si mplest form,
this re lationship can be drawn as shown in Figure 10.03.

j Member 1-p,,----------1~_B_a_n_d~

Figure 10.03 The M:1 relationship between Member and Band

This can be given more detail by includ ing the fact that a member must belong to a Band
and a Band must have more than one Member. To reflect this, the relationship can be
drawn as shown in Figure 10.04.

j Member ~1--c~~----+I-HI j Band

Figure 10.04 The M:1 relationship with more detail

At each end of the relationship there are two symbols. One of the symbols shows the
minimum cardi nality and the other the maximum cardinali t y. In this-particular case the
minimum and maximum va lues just happen to be the same. However, using the diagram
to document t hat a Member must belong to a Band is important. It ind icates that when
the database is created it must not be possible to create a new entry in t he Member table
unless there is a valid ent ry for Band Name in that tab le.

For the re lationship between Booking and Venue we argue that one Booking is for one
Venue (there must be a venue and there cannot be more than one) and that one Venue
can be used for many Bookings so the relationship between Booking and Venue is M:l .
However, a Venue might exist that has so fa r never had a booking so the relationsh ip can
be drawn as shown in Figure 10.05.

j Booking 1-p,,~o~-----1!+-11 j Venue

Figure 10.05 The M:1 relationship between Booking and Venue

Finally for the relationship between Band and Booking we argue that one Booking can
be for many Bands and t hat one Band has many Bookings (hopefully!) so the relationship
is M:M. However, a new band might not yet have a booking. Also there might be only one
Band for a booking so the relationship can be drawn as shown in Figure 10.06.

j BandP,, '-"',_._I --°"4 Booking j

Figure 10.06 The M:M relationship between Band and Booking

Step 4: Create the full ER diagram

At th is stage we should name each relationsh ip. The full ER diagram for the limi ted
scenario that has been considered is as shown in Figu re 10.07.

I

~ongs to

1

booked for n.-d . ~ade at

1
Memberp: i..::,.:,~----1+11 I· Band P' I Booking r 11 · Venue

has is for is booked for ~--~

Figure 10.07 The ER diagram for the theatrical agency's booking database

To illustrate how the info rmat ion should be read from such a diagram we can look at the
pa rt shown in Figure 10.08. Despite the fact that there is a many-to-many relationship,
a read ing of a relationship always considers just one entity to begin the sentence. So,
reading forwards and then backwards, we say that:

r - - - - . ----- ----- - - - --

{ · · ;"B1 rn '. · Chapter 10: Database and Data Modelling
1

f
r

f

1

r
I

[

One Band is booked for zero or many Bookings

One Booking is for one or many Bands
~ --~ is booked for I Band p I . Booki ng I
· · IS for-· --~·

Figure 10.08 Part of the annotated ER diagram

10.05 A logical entity-relationship model
A fully annotated ER diagram of the type developed in Section 10.04 holds all of the
information about the relationships that exist for the data that is to be stored in a system.
It can be defined as a conceptual model because it does not relate to any specific way of
implementing a system. If the system is to be implemented as a relational database the ER
diagram has to be converted to a logical model. To do this we can start with a simplified ER
diagram that just identi fi es cardinalities.

If a relationship is l:M, no further refinement is needed. The relationsh ip shows that the entity at
the many end needs to have a foreign key referencing the primary key of the entity at the one end .

If there were a 1:1 rela tionsh ip there are options for implementat ion . However, such
relationships are extremely rare and w ill not be considered further.

The problem relationship is the M:M, where a fore ign key cannot be used. A foreign key
attribute can only have a single value so it cannot handle the many references required. The
solution for the M:M relationship is to create a link entity. For Band and Booking, the logical
entity model will contain the link entity shown in Figure 10.09.

'---B_a_nd _ _;----------oe;~-:_ __ Ba_n_d_-_Bo_o_k_in_g_~~p>~------ __ B_o_o_ki_n_g_

Figure 10.09 A link entity inserted to resolve a M:M relationship

Extension Question 10.01
Is it possib le to annotate these re lationships?

With the link ent ity in the model it is now possible to have two foreign keys in the link entity;
one referencing the primary key of Band and one referencing the primary key of Booking.

Each entity in the logical ER diagram wi ll become a tab le in the relationa l database. It is
therefore possible to choose prima ry keys and foreign keys for the tables. These can be
sum marised in a key table. Table 10.04 shows sensible choices for the theatrical agency's
booking database.

Table name Primary key Foreign key
Member MemberlD Band Name
Band Band Name
Band-Booking Band Name & BookinglD BandName, BookinglD
Booking BookinglD VenueName
Venue VenueName

Table 10.04 A key table for t he agency booking database

•

Cambridge International AS and A level Computer Science

The decisions about the primary keys are determined by the uniqueness requirement. The
link ent ity cannot use ei ther Band Name or BookinglD alone but the combinat ion of the two
in a compound primary key will work.

TASKl0.01
Consider the following scenario. An organisation books cruises for passengers. Each cru ise
visits a number of ports. Create a conceptua l ER diagram and convert it to a logical ER
diagram. Create a key tab le for the database that could be implemented from the design.

10.06 Normalisation
Normalisation is a design technique for constructing a set of table designs from a list of data
items. It can also be used to improve on ex ist ing table designs.

·-lf~tl :I;• 'I llf ,..·• •~M • ::1111111•

Normalising data for the theatrical agency
To illustrate the technique let's consider the document shown in Figure 10.10. This is a
booking data sheet t hat the theatrical company might use.

Booking data sheet: 2016/023
Venue:

Cambridge International Theatre
Camside
CAl

Booking data: 23.06.2016

Bands booked Number of band members Headlining
ComputerKidz 5 y

ITWizz 3 N

Figure 10.10 Example booking data sheet

The data items on th is sheet (ignoring head ings) can be listed as a set of attributes:

(BookinglD, VenueName, VenueAddressl , VenueAddress2, Date,
(BandName, NumberOfMembers, Headl ining))

Th e list is put inside brackets because we are starti ng a process of table design. Th e
ext ra set of brackets around Band Na me, NumberOfMembers, Headlining is because t hey
represent a repeating group. If t here is a repeating group, t he attributes cannot sensibly
be put into one relational tab le. A table must have single rows and atomic attribute
values so the only possib ility wou ld be to include tuples such as t hose shown in Table
10.05. There is now data redundancy here with t he dup lication of the bookingl D, venue
data and the date.

Booking Venue Venue Venue Date Band Number
ID Name Address! Address2 Name Of Members
2016/ 023 Cambridge International Theatre Camside CAl 23.06.2016 Computer Kidz 5

2016/023 Cambridge International Theatre Camside CAl 23.06.2016 ITWizz 3

Table 10.05 Data stored in an unnormalised table

Headlining

y

N

----- - ~-- ---------------- -- - ------ -

l - - Chapter 10: Database and Data Modelling

I
r

Step 1: Conversion to first normal form (lNF)

The conversion to first normal form (lNF) requires splitt ing the data into two groups. At this
stage we represent the data as table definitions. Therefore we have to choose table names
and identify a primary key for each table. One table contains the non-repeating group
attributes the other the repeating group attributes. For the first table a sensible design is:

Booking(BookinglD, VenueName, VenueAddressl, VenueAddress2, Date)

The table with the repeating group is not so straightforward. It needs a compound
primary key and a foreign key to give a reference to the first table. The sensib le design is:

Band-Booking(BandName, BookinglD(fk), NumberOfMembers, Head lining)

Again the primary key is underlined but also the fore ign key has been identified , with
(fk). Because the repeating groups have been moved to a second table, these two tables
could be implemented wi th no data redundancy in either. This is one aspect of l NF. Also
it can be said that for each table the attri butes are dependent on the primary key.

Step 2: Conversion to second normal form (2NF)

The Booking table is automatical ly in 2NF; only tables w ith repeating group attributes
have to be converted. For conversion to second normal form (2N F), the process is
to examine each non -key attribute and ask if it is dependent on both parts of the
compound key. Any attributes that are dependent on only one of the attributes in the
compound key must be moved out into a new table. In this case, NumberOfMembers is
only dependent on Band Name. In 2NF there are now three table definitions:

Booking(BookinglD, VenueName, VenueAddressl, VenueAddress2, Date)

Band-Booking(BandName(fk), BookinglD(fk), Headlining)

Band(BandName, NumberOfMembers)

Note that the Booking table is unchanged from lNF. The Band-Booking table now has
two foreign keys to provide reference to data in the other two tables. The characteristics
of a table in 2NF is that it ei ther has a single primary key or it has a compound primary
key with any non -key attribute dependent on both component s.

Step 3: Conversion to third norma l form (3NF)

For conversion to third normal form (3NF) each tab le has to be examined to see if there
are any non-key dependencies; that means we must look for any non-key attribute that is
dependent on another non-key attribute. If there is, a new table must be defined.

In our example, VenueAddressl and VenueAddress2 are dependent on VenueName. With
the addition of the fourth table we have the following 3N F definitions:

Band(BandName, NumberOfMembers)

Band-Booking(BandName(fk), BookinglD(fk), Headlining)

Booking(BookinglD, Date, VenueName(fk))

Venue(VenueName, VenueAddressl , VenueAdd ress2)

Note that once again a new foreign key has been identified to keep a reference to data in the
newly created table. These four table definitions match four of the entities in the logical ER
model for which the keys were identified in Table 10.04. This wi ll not always happen. A logical
ER diagram wil l describe a 2NF set of entities but not necessarily a 3NF set.

-- -- -- - -- - -----

•

I

-~--- -- ---- -- - - - - - --

Cambridge International AS and A level Computer Science

Repeating group: a set of attributes that have more than one set of values when the other attributes
each have a single value

To summarise, if a set of tables are in 3N F it can be said that each non-key attribute is
depend ent on the key, the whole key and noth ing but t he key.

Question 10.02
In Step 2 of Worked Example 10.02, why is the Headlining attribute not placed in the Band table?

TASKl0.02
Norma lise the data shown in Figure 10.11.

Order no: Date:
07845 25-06-2016

Customer no: Customer name: CUP
056 Address: Cambridge square Cambridge

Sales rep no: 2 Sales Rep name: Dylan Stoddart

Product Description Quantity Price I Total no unit
327 Inkjet cartridges 24 $30 $720
563 Laser toner 5 $25 $125

Total Price $835

Figure 10.11 An order form

10.07 Structured Query Language (SQL)
SQL is t he programm ing language provided by a DBMS to support all of the operations
associated with a relational database. Even when a database package offers high-level
faci li t ies for user interaction, t hey use SQL.

Data Definition Language (DDL)
Data Definition Language (DDL) is t he part of SQ L provided fo r creating or altering tables.
These commands only create the st ruct ure. They do not put any data into t he database.

The fo llowing are some examples of DDL that cou ld be used in creating the database for t he
thea t rical agency:

CREATE DATABASE BandBooking;
CREATE TABLE Band (

Ba ndName v archar2 (2 5) ,
NumberOfMembers number (1)) ;

ALTER TABLE Band ADD PRIMARY KEY (BandName) ;
ALTER TABLE Band-Booking ADD FOREIGN KEY (BandName REFERENCES
Band (BandName) ;

These examples show that once the database has been created the tables can be created
and t he att ributes defined. It is possible to define a primary key and a forei gn key within t he
CREATE TABLE command but t he ALTER TA BLE command ca n be used as shown (it ca n
also be used to add ext ra attri bu tes) .

. ----~------ - - - ~ - - - ---- -

;

1 ",i;' r[: ·- . Chapter 10: Database and Data Modelling
,j .

t
TASKl0.03
For the database defined in Worked Example 10.02, complete the DDL fo r creating the four
tables. Use va rchar2(5) for BookinglD, number(l) for NumberOfMembers, date fo r Date,
varchar2(1) for Headlining and varchar2(25) for all other data .

Data Manipulation Language (DML)
Data Man ipula t ion Language (DM L) is used when a database is first created, to popula te t he
tables with data. It can then be used fo r ongoing ma intenance. The fo llowi ng code shows a
selection of the use of the commands:

INSERT INTO Band ('Comput erKidz ' , 5);

INSERT INTO Band-Booking (BandName, BookingID)
VALUES ('ComputerKidz', ' 2016/ 02 3 ') ;

UPDATE Band
SET NumberOf Members = 6;
DELETE FROM BandName
WHERE BandName = 'ITWizz';

The above code shows t he two methods of insert ing data. The firs t, simpler version ca n be
used if t he o rder of the att rib utes is known . The second is t he safer met hod: the attributes
are defined then the values are listed. The next two statements show a cha nge of data and
t he remova l of data.

The mai n use of DML is to obtain data from a database using a query. A query always start s
with t he SELECT command . Some examples are:

SELECT BandName
FROM Band
ORDER BY BandName;

SELECT BandName
FROM Band-Booking
WHERE Headlining= 'Y'
GROUP BY BandName;

Both of t hese examples select data from a single table. The fi rst produces an ordered list of
all the ban ds. The second produces a list of bands t hat have headlined a gig. The GROUP BY
restri ct ion ensures t hat t he band names are not repea ted .

A query can be based on a 'join cond it ion ' between data in t wo tab les. The most frequent ly
used is an inner j oin which is illustrated by:

SELECT VenueName, Date
FROM Booking
WHERE Band-Booking.BookingID = Booking.BookingID
AND Band-Booking . BandName = 'ComputerKidz' ;

Note the use of t he full names of at tr ibutes, which include th e table name. This query will find
t he ven ue and date of bookings for the band ComputerKidz.

•

---- --- - -

Cambridge International AS and A level Computer Science

Accessing SQL commands using a different language
Although a database can be accessed directly using SQL there is often a need to control
access to a database usi ng a different language. This makes sense because a program can
access data in a file so why not in a database? Programming languages therefore have a
mechanism for embedding an SQL command into a program.

A special case arises in a client-server web application as mentioned in Chapter 2 (Section
2.09). Server-side scripting using PHP can access a database associated with the server. The
following is an example of some code t hat could be included in an HTML file:

<?php
// Connect to localhost using root as the username and no password
mysql connect("localhost", "root", "");
II Select the database
mysql _ select _ db ("BandBooking");
//Run a query
$result = mysql _ query("SELECT * FROM Band")
?>

This code assumes that you have created a MYSQL database on a server located on your own
computer.

10.08 DBMS features
There are a few important features of a DBMS which have not been mentioned. The first and
most important is the data dictionary which is part of the database that is hidden from view
from everyone except the OBA. It conta ins metadata about the data. This includes details
of all the definitions of tables, attributes and so on but also of how the physical storage is
organ ised.

There are a number of features to improve performance. Of specia l note is the capability
to create an index for a table. This is needed if the table contai ns a lot of data. An index is a
secondary table which is associated with an attribute that has unique values. The index table
conta ins the attribute values and pointers to the correspond ing tuple in the original table.
The index can be on the primary key or on a secondary key which was a cand idate key when
the choice of primary key was made. Searching an index table is much quicker than searching
the full table.

Final ly, the DBMS contro ls security issues which include:

• setting access rights for users
• implementing backup proced ures

• ensuring that an interrupted database transaction cannot leave the database in an
undefined state.

1, · - -=." , • Chapter 10: Database and·Data1Mo'd~lling . · · !
1 - - - ---~~~-::1.:.i

r

f
t

t
I

• A database offers improved methods for ensuring data integrity compared to a file-based
approach.

• A database architecture provides, for the user, a conceptual level interface to the stored data.

• A relational database comprises tables of a special type; each table has a primary key and may
contain foreign keys.

• Entity-relationship modelling is a top-down approach to database design.

• Normalisation is a database design method which starts with a collection of attributes and
converts them into first normal form then into second normal form and, finally, into third normal
form.

• Structured Query Language (SQL) includes data definition language (DDL) commands for
establishing a database and data manipulation language (DML) commands for creating queries.

• Features provided by a database management system (DBMS) include: a data dictionary, indexing
capability, control of user access rights and backup procedures.

Exam-style Questions
1 a A relational database has been created to store data about subjects that students are studying. The following is a

selection of some data stored in one of the t ables. The data represents t he student's name, the persona l tutor group,
the personal tutor, the subject studied, the level of study and the subject teacher but there is some data missing:

Xiangfei 3 MUB Computing A DER

Xiangfei 3 MUB Maths A BNN
Xiangfei 3 MUB Physics AS DAB
Mahesh 2 BAR History AS IJM

Mahesh 2 BAR Geography AS CAB

Define the terms used to describe the components in a relational database table using examples from
this table.

ii If this represented all of the data, it would have been impossible to create th is table.
What is it that has not been shown here and must have been defined to allow the creation as a relational

[2]

database tab le? Explain your answer and suggest examples of the missing data. (4]

iii Is t his tab le in first normal form (lNF)? Explain your reason. [2]

b It has been suggested t hat the database design could be improved. The design suggested contains the following
two tables:

Student(StudentName, TutorGroup, Tutor)

Student Subject(StudentName, Subj ect,
Level, SubjectTeacher)

•

•

I''<',~·. 1'.('1711 ~1:·;,
Cambridge International AS and A level Computer Science : ,ii~.:; 1\:::.. · · :-·/

•• - '",;·t~~ t~: {

Identify features of this design which are characteristic of a relational database.

ii Explain why the use of StudentName here is a potential problem.

iii Explain why the Student table is not in third normal form (3NF).

2 Consider the following scenario:

A company provides catering services for clients who need special-occasion, celebratory dinners. For
each dinner, a number of dishes are to be offered . The dinner will be held at a venue. The company wi ll
provide staff to serve the meals at the venue.

The company needs a database to store data related to this business activity.

[3]

[2]

[2]

a An entity-relationship model is to be created as the first step in a database design. Identify a list of entities. [4)

b Identify pairs of entities where there is a direct relationship between them. [4)

c For each pair of entities, draw the relationship and justify the chGice of cardinality illustrated by the
representation.

3 Consider the fo llowing booking form used by a trave l agency.

Booking Number 00453

Hotel: Esplanade
Colwyn Bay
North Wales

Date

23/06/2016
23/06/2016
24/ 06/2016

Room type

Front-facing double
Rear-facing double
Front-facing double

Rating: ***

Number of
Room rate rooms

2 $80
1 $65
2 $80

a Create an unnorma lised list of attributes using the data shown in this form. Make sure that you distinguish

[6]

between the repeating and non-repeating attributes. [5]

b Convert the data to first normal form (lNF). Present this as designs for two tables with
keys identified . [3]

c Choose the appropriate table and convert it to two tables in second norma l form (2NF). Explain your choice
of table to modify. Explain your identification of the keys for these two new tables. [5]

d Identify which part of your design is not in Third Normal Form (3NF). [2)

Learning objectives
By the end of this chapter you should be able to:

• show understanding that an algorithm is a solution to a
problem expressed as a sequence of defined steps

• use suitable identifiers for the representation of data
used by a problem and summarise identifiers using an
identifier table

• show understanding that many algorithms are expressed
using the four basic constructs of assignment, sequence,
selection and repetition

• show understanding that simple algorithms consist of
input, process, output at various stages

• document a simple algorithm using: structured English,
pseudocode, program flowchart

• derive pseudocode or a program flowchart from a
structured English description of a problem

• derive pseudocode from a given program flowchart
• show an appreciation of why logic statements are used to

define parts of an algorithm solution
• use logic statements to define parts of an algorithm

solution
• use the technical terms associated with arrays including

upperandlowerbound
• select a suitable data structure (lD or 2D array) to use for

a given task
• write algorithms to process array data including sorting

using a bubble sort and searching using a linear search . .

•

Cambridge International AS and A level Computer Science

11.01 What is an algorithm?

Algorithm: a sequence of steps that can be carried out to perform a task

We use algorithms in everyday life. If you need to change a wheel on a car, you might need to
follow instructions (the algorithm) from a manual:
1 Take a spanner and loosen the wheel nuts.

2 Position a jack in an appropriate place.
3 Raise the car.
4 Take off the wheel nuts and the wheel.

5 Lift replacement wheel into position .
6 Replace wheel nuts and tighten by hand.
7 Lower the car.
8 Fully t ighten wheel nuts.
This might sound all very straightforward. However, if the instructions are not followed in the
correct logical sequence, the process might become much more difficult or even impossible.
For example, if you tried to do Step 1 after Step 3, the wheel may spin and you can't loosen
the whee l nuts. You can't do Step 4 before Step 3.

If you want to bake a cake, you follow a recipe:

1 Measure the fol lowing ingredient s: 200g sugar, 200g butter, 4 eggs, 200g flour, 2 teaspoons
baking powder and 2 tablespoons of milk.

2 Mix the ingredients together in a large bowl, until the consistency of the mixture is
smooth.

3 Pour the mixture into a cake tin.
4 Bake in the oven at 190° C for 20 minutes.

5 Check it is fully cooked.
6 Turn cake out of the tin and cool on a wire rack.
The recipe is an algorithm. The ingredients are the input and the cake is the output. The
process is mixing the ingredients and cooking the mixture in the oven .

Sometimes a step might need breaking down into smaller steps. For example Step 2 can be
more detailed:

2.1 Beat the sugar and butter together until fluffy.

2.2 Add the eggs, one at a time, mixing constant ly.
2.3 Sieve the flour and baking powder and stir slowly into the egg mixture.
2.4 Add milk and mix to give a creamy consistency.

r
I

- - - --- - - ---- - - - -

_ Chapter 11: Algorithm Design and Problem Solving

Sometimes there might be different steps depending on some other conditions. For example,
consider how to get from one place to another using the map of the London Underground
system in Figure 11.01.

Nott\n&
WllGat•

pherd'S
Jush

oueenswaY ""::~~·

-- Piccadilly
-- Victoria
-- Jubilee

Figure 11.01 Underground map of London, UK

To travel from King's Cross St. Pancras to Westminster, we consider two routes:

• Route A: Take the Victoria Line to Green Park (4 stations); then take the Jubilee Line to
Westm inster (1 station).

• Route B: Take the Piccadilly Line to Green Park (6 stations); then take the Jubilee Line to
Westm inster (1 station).

Route A looks li ke the best route. If there are engineering wo rks on the Victoria Line and
trains are de layed, Route B might turn out to be the quicker route.

The directions on how to get from King's Cross St. Pancras to Westm inster can be written as:

IF there are engineering works on the Victoria Line

THEN
Take the Piccadilly Li ne to Green Park (6 stat ions)
Take the Jubilee Line to Westm inster (1 station)

ELSE
Take the Victoria Line to Green Park (4 stations)
Take the Jubilee Line to Westminster (1 station)

TASKll.01
Write the steps to be followed to:

make a sandwich
walk from your school/college to the nearest shop
log on to your computer.

Many problems have more than one solution. Sometimes it is a personal preference which
solution to choose. Sometimes one solution will be better than another.

•

Cambridge International AS and A level Computer Science

11.02 Expressing algorithms

TIP
Computer scientists are interested in finding good solutions. A good solution gives the correct
results, takes up as little computer memory as possible and executes as fast as possib le. The
solution should be concise, elegant and easy to understand.

In computer science, when we design a solution to a problem we express the solution
(the algorithm) using sequences of steps written in structured English or pseudocode.
Structured English is a subset of the English language and consists of command statements.
Pseudocode resembles a programming language w ithout following the syntax of a particular
programming language. A flowchart is an alternative method of representing an algorithm. A
flowchart consists of specific shapes, linked together.
An algorithm consists of a sequence of steps. Under certain condition5 we may wish not to

Structured English: a subset of the English language that consists of command statements used to
describe an algorithm

Pseudocode: a way of using keywords and identifiers to describe an algorithm without following the
syntax of a particular programming language

Flowchart: shapes linked together to represent the sequential steps of an algorith m

perform some steps. We may wish to repeat a number of steps. In computer science, when
writi ng algorithms, we use four basic types of construct:

• Assignment:
a value is given a name (identifier) or the value associated with a given identifier is
changed.

• Sequence:
a number of steps are performed, one after the other.

• Selection:
under certain conditions some steps are performed, otherwise different (or no) steps are
performed.
Repetition:
a sequence of steps is performed a number of times. This is also known as iteration or
looping.

Many problems we try to solve with a computer involve data . The solution involves inputting
data to the computer, processing the data and outputting results (as shown in Figure 11.02) .

.___'_n_pu_t _ _,,___ _ __ , 1 Pcocess 1-----• I Output

Figure 11.02 lnput- process- output

We therefore also need input and output statements.

We need to know the constructs so we know how detailed our design has to be.
These constructs are represented in each of the three notations as shown in Table 11.01.

-- --- -- -- ---

i
(Chapter 11: Algorithm Design and Problem Solving

' , , ,
I
r
•

Assignment and
Sequence

Selection

Structured English
SET A TO 34
INCREMENT B

IF A IS GREATER THAN B
THEN
ELSE

Pseudocode

IF A> B
THEN
ELSE

ENDIF

Repetition REPEAT UNTIL A IS EQUAL TO B REPEAT

UNTIL A= B

Input INPUT A INPUT "Prompt: 11 A

Output OUTPUT "Message " OUTPUT "Message" B

OUTPUT B

Table 11.01 Constructs for computing algorithms

Flowchart

Set A to 34

Increment B

t
INPUT "Prompt : " A

t
OUTPUT "Message" B

I

Cambridge International AS and A level Computer Science

In this book, algorithms and program code are typed using the courier font.

11.03 Variables
When we input data for a process, individual values need to be stored in memory. We need
to be able to refer to a specific memory location so that we can write statements of what to
do with the va lue stored there. We refer to these named memory locations as variables. You
can imagine these variables like boxes w ith name labels on them. When a value is input, it is
stored in the box with the specified name (identifier) on it.

Variable: a storage location for a data value that has an identifier

For example, the variable used to store a count of how many guesses have been made might
be given the identifier NumberOfGuesses and the player's name might be stored in a variable
called Thi sPl ayer, as shown in Figure 11.03.

NumberOfGuesses ThisPlayer

Figure 11.03 Variables

Variab le identifiers shou ld not contai n spaces, on ly letters, digits and_ (the underscore
symbol). To make algorithms easier to understand, the naming of a variab le shou ld reflect
the va riable's use. This means often that more than one word is used as an identifie r. The
formatting convention used here is known as Camel Caps. It makes an identifier easier to read.

11.04 Assignments
Assigning a value
The fo llowing pseudocode stores the value
that is input (for example 15) in a variab le w ith
the identifier Number (see Figure ll.04(a)).

INPUT Number

Number

(a)

Figure 11.04 Va ria bles being assigned a value

The fol lowing pseudocode stores t he
value 1 in the variable with t he identifier
NumberOfGuesses (see Figure ll.04(b)).

NumberOfGuesses 1

(b)

I

-- - -- --- --- ---- ~- -- ---- -

Chapter 11: Algorithm Design and Problem Solving

Updating a value

The following pseudocode takes the value stored in NumberOfGuesses (see Figure 11.05 (a)),
adds 1 to that value and then stores the new value back into the variable NumberOfGuesses
(see Figure 11.05 (b)).

NumberOfGuesses NumberOfGuesses + 1

NumberOfGuesses
NumberOfGuesses

(a) (b)

Figure 11.05 Updating the value of a variable

Copying a value
Values can be copied from one variable to another.

The following pseudocode takes the value stored in valuel and copies it to value2
(see Figure 11.06).
Value2 Valuel

Valuel Value2

(a)

Val uel Value2

(b)

Figure 11.06 Copying the value of a variable

The value in valuel remains the same until it is assigned a different value.

Swapping two values
If we want to swap the contents of two variables, we need to store one of the values in
another variable temporarily. Otherwise the second value to be moved wil l be overwritten by
the first value to be moved.

•

Cambridge International AS and A level Computer Science

In Figu re ll.07(a), we copy the content from value l into a temporary va riable called Temp.
Then we copy the content from value2 into valuel Figure ll.07(b)). Fina lly we can copy the
value from Temp into value2 (Figure ll.07(c)).

Figure ll.07 Swapping the values of two variables

Using pseudocode we write:

Temp ... Valuel

Valuel <- Value2

Value2 <- Temp

WORKED EXAMPLE 11.01

Using input, output, assignment and sequence constructs
The problem to be solved: Convert a distance in mi les and output t he equivalent distance in km.

Step 1: Write t he problem as a series of structured English statements:

INPUT number of miles
Ca l culate number o f km
OUTPUT calculat ed result as k m

Step 2: Analyse the data values that are needed.

We need a variable to store t he original distance in mi les and a variable to store t he resul t
of multiplying the number of mi les by 1.61. It is helpful to construct an identifier table to
list the va riables.

Identifier Explanation
Miles Distance as a whole number of miles
Km The result from using the given

formula : Km= Miles * 1.61
Table ll.02 Identifier table for miles to km conversion

, -
i

Chapter 11: Algorithm Design and Problem Solving
I

Step 3: Provide more detail by drawing a flowchart or writing pseudocode.

The deta il given in a flowchart should be t he same as the detail given in pseudocode. It
should use the basic constructs listed in Table 11.01.

Figure 11.08 represents our algorithm using a flowchart and the equivalent pseudocode.

INPUT "En te r mi l es : "
Mi l e s

Km - Miles* 1 .6 1

OUTPUT "Km: "
Km

End

I NPUT "Enter mi l es :" Mile s
Km -Miles * 1 . 61
OUTPUT "km: " Km

Figure 11.08 Flowchart and pseudocode for miles to km conversion

Identifier table: a table listing the variable identifiers required for the solution, with explanations

TASKll.02
Consider the following algorithm steps:
1 Input a length in inches.
2 Ca lcu late the equiva lent in centimetres.
3 Output the resu lt.
List the variables required in an identifier table.
Write pseudocode or draw a flowchart for the algorithm.

- --- ---- -

•

Cambridge International AS and A level Computer Science

11.05 Logic statements
In Section 11.01, we looked at an algorithm with different steps depending on some other
condition:

IF t here are engineering works on the Victoria Li ne

TH EN
Take t he Piccadilly Li ne to Green Park (6 stations)
Take t he Jubilee Line to Westminster (1 st ation)

ELSE
Take the Victoria Li ne to Green Park (4 stations)
Take t he Jubilee Line to Westm inster (1 station)

The selection const ruct in Table 11.01 uses a condition to fol low either the first grou p of steps
or the second group of steps (see Figure 11.09).

IF A< B
THEN

Simple condition

<statement (s) >
ELSE

<statement (s) >
END IF

Figure 11.09 Structured English fo r the selection construct

A cond ition consists of at least one logic proposition (see Chapter 4, Sect ion 4.01). Logic
proposit ions use th e relational (compariso n) operators shown in Table 11.03.

Operator Comparison
= ls equal to
< ls less than
> ls greater than
<= Is less than or equal to
>= ls greater than or equal to
<> ls not equal to

Table 11.03 Relational operators

Condit ions are either TRUE or FALSE. In pseudocode, we distinguish between the relational
operator= (which tests for equality) and the assignment symbol.-.

A person is classed as a ch ild if t hey are under 13 and as an adu lt if they are over 19. If t hey are
between 13 and 19 inclusive they are classed as teenagers. We ca n write these statem ents as
logic statements:

• If Age< 13 t hen person is a chi ld

• If Age> 19 t hen person is an adult

• If Age >= 13 AN D Age <= 19 t hen person is a teenager

(Chapter 11: Algorithm Design and Problem Solving

I r

I
!
(
t

TASKll.03
A town has a bus service where passengers under the age of 12 and over the age of 60 do not
need to pay a fare. Write the logic statements for free fares.

A number-guessing game fo llows different steps depending on certain cond itions. Here is a
description of the algorithm:

The player inputs a number to guess the secret number stored .

If the guess was correct, output a congratulations message.

If the number in put was larger than the secret number, output message "secret num ber is
smaller".

If the number input was smaller than the secret number, output message "secret number
is greater".

We can re-write the number-guessing game steps as an algorithm in ·structured English:

SET value for secret number
INPUT Guess
IF Guess= SecretNumber

THEN
OUTPUT "Well done. You have guessed the secret number"

ELSE

ENDIF

IF Guess> SecretNumber
THEN

OUTPUT "secret number is smaller"
ELSE

OUTPUT "secret number is greater"
ENDIF

More comp lex conditions can be formed by using the logical operators AND, OR and NOT. For
example, the number-guessing game might allow the player multiple guesses; if the player
has not guessed the secret number after 10 guesses, a different message is output.

IF Guess= SecretNumber
THEN

OUTPUT "Well done. You have guessed the secret number"

ELSE Complex condition

IF Guess <> SecretNumber AND NumberOfGuesses 10

THEN
OUTPUT "You still have not guessed the secret number"

END IF

ELSE

END IF

IF Guess> SecretNumber
THEN

OUTPUT "The secret number is smaller"
ELSE

OUTPUT "The secret number is greater"
END IF

•

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 11.02

Using selection constructs
The problem to be solved : Take three numbers as input and output the largest number.

There are several different methods (algorithms) to solve this problem. Here is one method:

1 Input all three numbers at the beginning.

2 Store each of the input values in a separate variable (the identifiers are shown in Table
11.04).

3 Compare the first number with the second number and then compare the bigger one
of these with the third number.

4 The bigger number of t his second comparison is output.
See Worked Example 11.03 for another solution.

Identifier Explanation
Numberl The first number to be input
Number2 The second number to be input
Number3 The third number to be input

Table 11.04 Identifier table for biggest number problem

The algorithm can be expressed in the following pseudocode:
INPUT Numberl
INPUT Number2
INPUT Number3
IF Numberl > Number2

THEN II Numberl is bigger
IF Numberl > Number3

THEN
OUTPUT Numberl

ELSE
OUTPUT Number3

ENDIF
ELSE II Number2 is bigger

IF Number2 > Number3
THEN

ENDIF

OUTPUT Number2
ELSE

OUTPUT Number3
END IF

When an IF statement contains another IF statement, we refer to these as nested IF
statements.

Nested IF statements: condi tiona l statements within condi ti onal statements

' -- - - ~--

Chapter 11: Algorithm Design and Problem Solving
{

Question: 11.01
What changes do you need to make to output the smallest number?

WORKED EXAMPLE 11.03

Using selection constructs (alternative method)
The problem to be solved: Take three numbers as input and output the largest number.

This is an alternative method to Worked Example 11.02.

1 Input t he first number and store it in BiggestSoFar

2 In put t he second number and compare it with the value in BiggestSoFar.

3 If the second number is bigger, assign its value to BiggestSoFar

4 In put t he third number and compare it with the va lue in BiggestSoFar

5 If the third number is bigger, assign its value to BiggestSoFar

6 The va lue stored in BiggestSoFar is output.
The identifiers required forth is solution are shown in Table 11.05.

Identifier Explanation
BiggestSoFar Stores the biggest number input so far
NextNumber The next number to be input

Table 11.05 Identifier table for the alternative solution to the biggest number problem

The algorithm can be expressed in the following pseudocode:
INPUT BiggestSoFar
INPUT NextNumber
IF NextNumber > BiggestSoFar

THEN
BiggestSoFar (- NextNumber

ENDIF
INPUT NextNumber
IF NextNumber > BiggestSoFar

THEN
BiggestSoFar (- NextNumber

ENDIF
OUTPUT BiggestSoFar

Note t hat when we input the third number in this method the second number gets
overwritten as it is no longer needed.

There are several advantages of using the method in Worked Example 11.03 compared to the
method in Worked Example 11.02:

• Only two variab les are used .
• The cond itional statements are not nested and do not have an ELSE part. This makes

them easier to understand.

• This algorithm can be adapted more easily if further numbers are to be compared (see
Worked Example 11.04).

The disadvantage of the method in Worked Example 11.03 compared to the method in
Worked Example 11.02 is that there is more work involved with t his algorithm. If the second
number is bigger than the first number, the va lue of BiggestSoFar has to be changed . If
the third number is bigger than t he value in BiggestSoFar then the value of BiggestSoFar

-- -- -----

•

Cambridge International AS and A level Computer Science

has to be changed again. Depending on the input values, this could resu lt in two extra
assignment instructions being carried out.

11.06 Loops
Look at the pseudocode algorithm in Worked Example 11.03. The two IF statements are
identical. To compare 10 numbers we would need to write this statement nine times.
Moreover, if the problem changed to having to compare, for example, 100 numbers, our
algorithm would become very tedious. If we use a repetit ion construct (a loop) we can avoid
writing the same lines of pseudocode over and over again .

WORKED EXAMPLE 11.04

Repetition using REPEAT ... UNTIL

The problem to be solved: Take 10 numbers as input and output the largest number.

We need one further variable to store a counter, so that we know when we have
compared 10 numbers.

Identifier Explanation
BiggestSoFar Stores the biggest number input so far
NextNumber The next number to be input
Counter Stores how many numbers have been input so far

Table 11.06 Identifier table for the biggest number problem using REPEAT .. . UNTIL

The algorithm can be expressed in the following pseudocode:

INPUT BiggestSoFar
Counter.,_ 1
REPEAT

INPUT NextNumber
Counter.,_ Counter+ 1
IF NextNumber > BiggestSoFar

THEN
BiggestSoFar .,_ NextNumber

ENDIF
UNTIL Counter= 10
OUTPUT BiggestSoFar

Question: 11.02

What changes do you need to make to t he algorithm in Worked Example ll.04:
• to compare 100 numbers?
• to take as a first input the number of numbers to be compared?
There is another loop construct that does the counting for us: the FOR ... ENDFOR loop.

-

, Chapter 11: Algorithm Design and Problem Solving
(

WORKED EXAMPLE 11.05

Repetition using FOR ... ENDFOR

The problem to be solved: Take 10 numbers as input and output the largest number.

We can use the same identifiers as in Worked Example 11.04. Note that the purpose of
Counter has cha nged.

Identifier Explanation
BiggestSoFar Stores the biggest number input so far
NextNumber The next number to be input
Counter Counts the number of t imes round the loop

Table 11.07 Identifier table for biggest number problem using a FOR loop

The algorithm can be expressed in t he following pseudocode:

INPUT BiggestSoFar
FOR Counter f--- 2 TO 10

INPUT NextNumber
IF NextNumber > BiggestSoFar

THEN

ENDIF
END FOR

BiggestSoFar f--- NextNumber

OUTPUT BiggestSoFar

The first time round the loop, counter is set to 2. The next time round the loop,
counter has automatically increased to 3, and so on. The last time round the loop,
Counter has the value 10.

A rogue value is a value used to terminate a sequence of values. The rogue va lue is of the
sa me data type but outside the range of normal expected vatues.

Rogue value: a value used to terminate a sequence of values

WORKED EXAMPLE 11.06

Repetition using a rogue value
The problem to be so lved: A sequence of non-zero numbers is term inated by 0. Take this
sequence as input and output the largest number.

Note: In this example the rogue value chosen is 0. It is very important to choose a rogue va lue
that is of the same data type but outside the range of normal expected values. For exampte, if
the input might norma tly include O then a negat ive va lue, such as -1, might be chosen.

Look at Worked Example 11.05. Instead of counting the numbers input, we need to check
whether the number input is Oto terminate the loop. The identifiers are shown in Table 11.08.

Identifier Explanation
BiggestSoFar Sto res the bi ut so far
NextNumber

Table 11.08 Identifier table for biggest number problem using a rogue value

•

Cambridge International AS and A level Computer Science

A possible pseudocode algorithm is:

INPUT BiggestSoFar
REPEAT

INPUT NextNumber
IF NextNumber > BiggestSoFar

THEN
BiggestSoFar NextNumber

ENDIF
UNTIL NextNumber = 0
OUTPUT BiggestSoFar

This algorithm works even if the sequence consists of only one non-zero input. However,
it wi ll not work if the only input is 0. In that case, we don't want to perform the statements
withi n the loop at all. We can use an alternative construct, t he WHILE ... ENDWHILE loop.

INPUT NextNumber
BiggestSoFar NextNumber
WHILE NextNumber <> O II sequence terminator not encountered

INPUT NextNumber
IF NextNumber > BiggestSoFar

THEN

ENDIF
ENDWHILE

BiggestSoFar NextNumber

OUTPUT BiggestSoFar

Before we enter the loop we check whether we have a non-zero number. To make this
work for the first number, we store it in NextNumber and also in BiggestSoFar. If this
first number is zero we don't follow the instructions w ith in the loop. For a non-zero first
number th is algorithm has the same effect as the algorithm using REPEAT . .. UNTIL.

WORKED EXAMPLE 11.07

Implementing the number-guessing game with a loop
Consider th e number guessing game aga in, this time allowing repeated guesses:

1 The player repeatedly inputs a number to guess the secret number stored.

2 If the guess is correct, the number of guesses made is output and the game stops.
3 If the number input is larger than the secret number, the player is given the message to

input a smaller number.
4 If the number input is smaller than the secret number, the player is given the message

to input a larger number.
The algorithm is expressed in structu red Engl ish, as a flowchart and in pseudocode.

Algorithm for the number-guessing game in structured English

SET va l ue for secret number
REPEAT the following UNTIL correct guess

INPUT guess
COMPARE guess with secret number
OUTPUT comment

We need variables to store the following values:

the secret number (to be set as a random number)
the number input by the player as a guess
the count of how many guesses the player has made so far.

· Chapter 11: Algorithm Design and Problem Solving 1

I

•

We represent this information in the identifier table shown in Table ll.09.

Identifier Explanation
SecretNumber The number to be guessed
NumberOfGuesses The number of guesses the player has made
Guess The number the player has input as a guess

Table 11.09 Identifier table for number-guessing game

Algorithm for the number-guessing game as a flowchart

SET SecretNumber
to a random number

INPUT "Guess
the secret
number:"

Guess

SET NumberOfGuesses
To 1

No SET NumberOfGuesses
">-------;..i TO NumberOfGuesses

+ 1

Yes

number:"
Guess

"guesses"

(_En-d)

a larger
number:"

Guess

•

'

Cambridge International AS and A level Computer Science

Pseudocode for the number-guessing game with a post-condition loop

SecretNumber Random
NumberOfGuesses 0
REPEAT

INPUT Guess
NumberOfGuesses NumberOfGuesses + 1
IF Guess> SecretNumber

THEN
the player is given the message to input a smaller number

ENDIF
IF Guess< SecretNumber

THEN
the player is given the message to input a larger number

ENDIF
UNTIL Guess= SecretNumber

Pseudocode for the number-guessing game with a pre-condition loop
The above solution uses a post-condition (REPEAT ... UNTIL) loop. An alternative solution
uses a pre-cond ition (WHILE ... ENDWHILE) loop:

SecretNumber Random
INPUT Guess
NumberOfGuesses 1
WHILE Guess<> SecretNumber

IF Guess> SecretNumber
THEN

the player is given the message to input a smaller number
END IF
IF Guess< SecretNumber

THEN
the player is given the message to input a larger number

END IF
INPUT Guess
NumberOfGuesses NumberOfGuesses + 1

ENDWHILE

WORKED EXAMPLE 11.08

· Calculating running totals and averages
The problem to be solved: Take 10 numbers as input and output the sum of these
numbers and the average.

Identifier Explanation
RunningTotal Stores the sum of the numbers input so far
Counter How many numbers have been input
NextNumber The next number input
Average The average of the numbers input

Table 11.10 Identifier table for running total and average algorithm

i Chapter 11: Algorithm Design and Problem Solving

The following pseudocode gives a possible algorithm:

RunningTotal <- O
FOR Counter <- 1 TO 10

INPUT NextNumber
RunningTotal <- RunningTotal + NextNumber

ENDFOR
OUTPUT Running Total
Average<- RunningTotal I 10
OUTPUT Average

It is very important that the value sto red in RunningTota l is initialised to zero before we
start adding the numbers being input.

TASKll.04
Change the algorithm in Worked Example 11.08 so that the sequence 0f numbers is
terminated by a rogue value of 0.

WORKED EXAMPLE 11.09

Using nested loops
The problem to be solved: Take as input two numbers and a symbol. Output a grid made
up entirely of the chosen symbol, with the number of rows matchi ng the first number
input and the number of columns matching the second number input.

For example the three input values 3, 7 and&, result in the output:

&&&&&&&
&&&&&&&
&&&&&&&

We need two variables to store the number of rows and the number of columns. We also need a
variab le to store the symbol. We need a counter for the rows and a counter for the columns.

Identifier Explanation
NumberOfRows Stores the number of rows of the grid
NumberOfColumns Stores the number of columns of the grid
Symbol Stores the chosen character symbol
RowCounter Counts the number of rows
ColumnCounter Counts the number of columns

Table 11.11 Identifier table for the nested loop example

INPUT NumberOfRows
INPUT NumberOfColumns
INPUT Symbol
FOR RowCounter <- 1 TO NumberOfRows

FOR ColumnCounter <- 1 TO NumberOfColumns
OUTPUT Symbol II without moving to next line

END FOR
OUTPUT Newline

END FOR
II move to the next line

•

Cambridge International AS and A level Computer Science

Each time round the outer loop (counting the number of rows) we complete the inner loop,
outputting a symbol for each count of the number of columns. This type of construct is
called a nested loop.

Nested loop: loop containing another loop

11.07 Working with arrays
WORKED EXAMPLE 11.10

Working with a one-dimensional array
The problem to be solved: Take seven numbers as input and store t~em for later use.

We could use seven separate variables. However, if we wanted ou r algorithm to work with
70 numbers, for example, then this would become very tedious. We can make use of a
data structure, known as a 'linear list' or a one-d imensiona l (lD) array.

This array is given an identifier, for example MyList, and each element with in the array
is referred to using this identifier and its position (index) within the array. For example,
MyList[4J refers to the fourth element in the MyList array.

We can use a loop to access each array element in tu rn . If the numbers input to the
pseudocode algorithm below are 25, 34, 98, 7, 41, 19 and 5 then the algorithm will
produce t he result in Fi gure 11.10.

FOR Index~ 1 TO 7
INPUT MyList [Index]

END FOR

Index MYList

[l]
[2]
[3]
[4]
[SJ
[6]
[7]

Figure 11.10 MyList array populated by a loop

25
34
98

7
41
19
5

-- ----- -------

-
1 Chapter 11: Algorithm Design and Problem Solving

TASKll .05
Set up two arrays, one for you r friends' names and one for their ages as shown in Figure ll.ll.

Name

[1] Matt .___ ____ ____.

[2] Fred

(3] Anna

[20] Xenios

Figure 11.11 Arrays for names and ages

WORKED EXAMPLE 11.11

Searching a 1D array

[1]

[2]

[3]

[20]

Age

15

16

14

17

The problem to be solved: Take a number as input. Search for this number in an existing
1D array of seven numbers (see Wo rked Exa mple 11.10).

Start at t he fi rst element of the array and check each elem ent in t urn unt il the search
va lue is found or t he end of the array is reached . This method is ca lled a linear search.

Identifier Explanation
MyList Data structure (lD array) to store seven numbers
Max Index The number of elements in the array
SearchValue The value to be searched for

Found TRUE if t he value has been fou nd

FALSE if the va lue has not been found
Index Index of the array element currently being processed

Table 11.13 Identifier table for linear search algorithm

•

Cambridge International AS and A level Computer Science

Maxindex 7
INPUT SearchValue
Found FALSE
Index <-- 0
REPEAT

Index<-- Index+ 1
IF MyList[Index]= SearchValue

THEN
Found E- TRUE

ENDIF
UNTIL FOUND= TRUE OR Index>= Maxindex
IF Found= TRUE

THEN
OUTPUT "Value found at location:" Index

ELSE
OUTPUT "Value not found"

END IF

The complex condition to the REPEAT ... UNTIL loop allows us to exit the loop when
the search value is found. Using the variable Found makes the algorithm easier to
understand. Found is initialised to FALSE before entering the loop and set to TRUE if the
value is found.

If the value is not in the array, the loop terminates when Index is greater than or equa l to
Maxindex That means we have come to the end of the array. Note that using Maxindex
in the logic statement to terminate the loop makes it much easier to adapt the algorithm
when the array consists of a different number of elements. The algorithm only needs to
be changed in the first line, where Maxindex is given a value.

Linear search: checking each element of an array in turn for a requ ired value

TASKll.06
Use the algorithm in Worked Example 11.11 as a design pattern to search for a friend's name
and output their age.

WORKED EXAMPLE 11.12

Sorting elements in a lD array
The simplest way to sort an unordered list of values is the following method:

1 Compare the first and second values. If the first value is larger than the second value,
swap them .

2 Compare the second and th ird values. If the second value is larger than the third value,
swap them .

3 Compare the third and fourth values. If the third va lue is larger than the fourth value,
swap them.

4 Keep on comparing adjacent values, swapping them if necessary, unti l the last two
values in the list have been processed.

' Chapter 11: Algorithm Design and Problem Solving

Figure 11.12 shows what happens to the values as we work down t he array, fo llowing t his
algorithm .
Compare
1" Pair

25

34

98

7

41

19

5

No
swap

Compare
2"d Pair

25

34

98

7

41

19

5

No
swap

Compare
3'd Pair

Compare
4'' Pair

25 25

34 34

98 [X 7

7 98 swap

41 41 ><
19 19

5 5

Figu re 11.12 Swapping values working down the array

coirpare Compare Sorted
st Pair 6'' Pair list

25 25 25

34 34 34

7 7 7

41 41 41

98 swap 19 19

19 X 98 t>< 5

'""·'"'·"'"' 5 5

When we have completed the first pass through the entire array, the largest va lue is in the
correct position at the end of the array. The other values may or may not be in the correct order.

We need to work t hrough t he array agai n and again . Afte r each pass t hrough t he array t he
next largest value wi ll be in its correct posit ion, as shown in Figure ll.13.

Original After After After After After After
list pass 1 pass 2 pass3 pass4 passs pass6

25 25 25 7 7 7 5

34 34 7 25 19

98 7 34 19 5

7 41 19 5

41 19 5

19 5

5

Figu re 11.13 States of the array after each pass

In effect we perform a loop w ithin a loop, a nested loop. This method is known as a
bubble sort . The name comes from t he fac t that sma ller va lues slow ly rise to the top, like
bubb les in a liqu id.
The ident ifiers needed fo r the algorith m are listed in Tab le ll.13.

Identifier Explanation
MyLi s t (1 .. 7] Data structu re (lD array) to store seven numbers
Max Inde x The number of elements in the array
n The number of elements to compare in each pass
i Counter for outer loop
j Counter for inner loop
Te mp Variable for temporary storage while swapping values

Table 11.13 Identifier table for bubble sort algorit hm

•

I •

Cambridge International AS and A level Computer Science

The algorithm in pseudocode is:

n <- Maxlndex - 1
FOR i <- 1 TO Maxlndex - 1

FOR j <- 1 TO n
IF MyList[j] > MyList[j + 1]

THEN

ENDIF
END FOR

Temp <- MyList[j]
MyList[j] <- MyList[j + l]
MyList[j + 1] <- Temp

n <- n - 1 II this means the next time round the inner loop, we don ' t
II look at the values already in the correct positions.

END FOR

The values to be sorted may already be in the correct order before the outer loop has
been through all its iterations. Look at the list of values in Figure 11.14. It is only slightly
different from the fi rst list we sorted.

Original After After After After After After
list pass 1 pass 2 pass3 pass4 pass 5 pass6

5 5 5 5 5 5 5

34 34 7 7 7 7 7

98 7 34 19 19 19 19

7 41 19 25 25 25 25

41 19 25 34 34 34 34

19 25 41 41 41 41 41

25 98 98 98 98 98 98

Figure 11.14 States of the list after each pass

After the third pass the values are all in the correct order but our algorithm will carry on
with three fu rt her passes through the array. This means we are making comparisons when
no further comparisons need to be made.

If we have gone through the whole of the inner loop (one pass) without swapping any
va lues, we know that the array elements must be in the correct order. We can therefore
replace the outer loop with a conditional loop.

We can use a variable NoMoreSwaps to store whether or not a swap has taken place
during the current pass. We in itialise the variable NoMoreSwaps to TRUE When we swap a
pair of va lues we set NoMoreswaps to FALSE. At the end of the pass through the array we
can check whether a swap has taken place.

- -

, Chapter 11: Algorithm Design and Problem Solving

The identifier table for t his improved algorithm is shown in Table 11.14.

Identifier Explanation
MyList (1 .. 7] Data structure (lD array) to store seven numbers
Max Index The number of elements in the array
n The number of elements to compare in each pass
NoMoreSwaps TRUE w hen no swaps have occurred in current pass

FALSE when a swap has occurred
j Counter for inner loop
Temp Variable for temporary storage whi le swapping values

Table 11.14 Identifier table for improved bubble sort algorithm

This improved algorithm in pseudocode is:

n <- Maxindex - 1
REPEAT

NoMoreSwaps <- TRUE
FOR j <- 1 TO n

IF MyList [j] > MyList [j + l]
THEN

ENDIF
END FOR
n <- n - 1

Temp MyList[j)
MyList[j] <- MyList[j + 1]
MyList[j + 1] Temp
NoMoreSwaps <- FALSE

UNTIL NoMoreSwaps TRUE

Bubble sort: a sort method where adjacent pairs of values are compared and swapped

Discussion Point:
What happens if the array elements are already in the correct order?

TASKll.07
Rewrite the algorithm in Worked Example 11.12 to sort the array elements into descending order.

WORKED EXAMPLE 11.13

Working with two-dimensional arrays and nested loops
A 1D array is like a linea r list. The nth element within the array MyList is referred to as
MyList (n].

A two-dimensional (2D) array is like a table or matrix. The element in row x and co lumn y
of ThisTable is referred to as ThisTable [x, yl.

For example to store the va lue 5 in the element in the fourth row and second co lumn, we write:

This Table [4, 2] 5

•

Cambridge International AS and A level Computer Science

When we want to access each element of a 1D array, we use a loop to access each element
in tu rn. When working with a 2D array, we need a loop to access each row. With in each row
we need to access each column. This means we use a loop within a loop (nested loops).

In structured English our algorithm is:

For each row
For each column

Assign the initial v alue to the element at the current position

We need th e identifiers shown in Table 11.15.

Identifier Explanation
ThisTable[l .. 4, 1 .. 6] Table data structure (2D array) to store values
MaxRows The number of rows in the table (4 in this example)
MaxColumns The number of columns in the table (6 in this example)
Row Counter for the row index
Column Counter for the column index

Table 11.15 Identifier table for working with a table

Using pseudocode, the algorith m to set each element of array ThisTable to zero is:

FOR Row~ 1 TO MaxRows

FOR Column~ 1 TO MaxColumns
ThisTable[Row, Column] O

END FOR
END FOR

When we want to output the contents of a 2D array, we aga in need nested loops. We want
to output all t he va lues in one row of the array on the same line. At t he end of the row, we
wa nt to output a new line.

FOR Row~ 1 TO MaxRows

FOR Column~ 1 TO MaxColumns
OUTPUT ThisTable[Row, Column] II stay on same line

END FOR
OUTPUT Newline

END FOR
II move to next line for next row

An algorithm is a sequence of steps that can be carried out to solve a problem.

• Algorithms are expressed using the four basic constructs of assignment, sequence, selection and
repetition.

• Algorithms can be documented using structured English, pseudocode or a program flowchart.

• Logic statements use the relational operators=, <, >, <>, <=and>= and the logic operators AND,
OR and NOT.

Selection constructs and conditional loops use conditions to determine the steps to be followed.

. Chapter 11: Algorithm Design and Problem Solving

Exam-style Questions
1 The Modulo-11 method of calcu lati ng a check digit for a sequence of nine digits is as fo llows:

Each digit in the sequence is given a weight depending on its position in the sequence. The leftmost digit has a weight of 10.
The next digit to the right has a we ight of 9, the next one 8 and so on. Va lues are calculated by multip lying each digit by its
weight. These va lues are added together and the sum is divided by 11. The rema inder from th is division is subtracted from 11
and this va lue is the check digit. If this va lue is 10, then the check digit is X. Note that x MOD y gives the remainder from the
division of x by y.

Comp lete the flowchart using the statements in the table.

Start

Statement Statement
number

1 CheckDigit +- 1 1 - Remainder

2 CheckDigit +- X

3 CheckDi git = 10 ?

4 Count +-1

5 Count +- Count + 1

6 Count = 9 ?

7 INPUT Digit

8 Remainder +- Total MOD 11
No

9 Total +- 0

10 Total +- Tota l + Va l ue

11 Value +- Digit * Weight i ng

12 Weight i ng +- Weigh ting - 1

13 Weighting +-10

(~E-nd___,)
[9]

•

•

Cambridge International AS and A level Computer Science

2 Draw a flowchart for t he following problem given in structured English.

REPEAT the following UNTIL the number i nput is zero
INPUT a number
Check whether number is positive or negative
Increment positive number count if the number is positive

Increment negative number count if the number is negative

3 Wri te pseudocode from the given flowchart. Use a WHILE loop.

(_~start_)

i
RogueValue ... -1

Total<- O

Count <- 0

Input Number

Count ... Count+ 1 Average<- Total I Count

Total ... Total+ Number OUTPUT Av erage

INPUT Number

(__ End~)

[7)

[BJ

- - --- - - - - -~- -

0
_ Chapter 11: Algorithm Design and Problem Solving

4 Ala n uses two lD arrays, UserList and Password List. Fo r twenty users, he stores each user
ID in UserList and the correspond ing password in Password List. For example, the person
wi th user ID Fredl2 has password rzt4 56.

UserList PasswordList

[1] Mattos [1] pqklmn4

[2] Fred12 [2] rzt456

[3] Anna9 [3] j edd321

[20] Xenios4 [2 0] wkl@tmp6

Alan wants to write an algorithm to check whet her a user ID and password, entered by a user,
are correct. He designs the algorithm to search u s erLi s t for the user ID. If t he user ID is
found, t he password stored in PasswordList is to be compa red to t he entered password. If
t he passwords match, t he login is successfu l. In all ot her cases, login is unsuccessfu l.

a Complete the identifier ta ble.

Identifier Explanation
UserList (1 .. 2 0] 1D array to store user IDs
... 1D array to store passwords
Max Ind ex Number of elements in each array
MyUs erID User ID entered to log in
MyPassword
UseridFound FALSE if user ID not found in

Use r Li st
TRUE if

LoginOK FALSE if
TRUE if . . . ' '

Index Pointer to current array element

[4]

•

Cambridge International AS and A level Computer Science

b Complete the pseudocode for Alan 's algorithm:

Maxindex <- 20
INPUT MyUserID
INPUT MyPassword
UseridFound <- FALSE
LoginOK <-

Index<- 0
REPEAT

INDEX <-
IF UserList [............ ...)

THEN
UseridFound <- TRUE

END IF
UNTIL OR
IF UseridFound = TRUE

THEN
IF PasswordList [.)

THEN
LoginOK <- TRUE

END IF
IF

THEN
OUTPUT "Login successful"

ELSE
OUTPUT "User ID and/or password incorrect"

ENDIF

.

[10]

r
t

I
Learning objectives
By the end of this chapter you should be able to:

• use the process of stepwise refinement to express an
algorithm to a level of detail from which the task may be
programmed

• decompose a problem into sub-tasks leading to the
concept of a program module (procedure/function)

• use a structure chart to express the parameters passed
between the various modules/procedures/functions
which are part of the algorithm design

• describe the purpose of a structure chart
• construct a structu re chart for a given problem
• derive equivalent pseudocode from a structure chart.

Cambridge International AS and A level Computer Science

12.01 Stepwise refinement
Many problems that we want to solve are bigger than the ones we met in Chapter 11. To make
it easier to solve a bigger problem, we break the problem down into smaller steps. These
might need breaking down further until the steps are small enough to solve easily.

For a solution to a problem to be programmable, we need to break down the steps of the
solution into the basic constructs of sequence, assignment, selection, repetition, input and
output.

We can use a method called stepwise refinement to break down the steps of our outline
solution into smaller steps until it is detai led enough. In Section 11.01 we looked at a recipe
for a cake. The step of mixing together all the ingredients was broken down into more
detailed steps.

Stepwise refinement: breaking down the steps of an outline solution into smal ler and smaller steps

WORKED EXAMPLE 12.01

Drawing a pyramid using stepwise refinement
The problem to be solved: Take as input a chosen symbol and an odd number. Output a
pyramid shape made up entirely of the chosen symbol, with the number of symbols in the
final row matching the number input.

For example the two input values A and 9 result in the following output:

A
AAA

A AAA A
AA AA AAA

AAAAAAAAA

This problem is similar to Worked Example 11.09 in Chapter 11, but the number of symbols
in each row starts with one and increases by two with each row. Each row starts with a
decreasing number of spaces, to create the slope effect.

Our first attempt at solving this problem using structured English is:

01 Set up initial values
02 REPEAT
03 Output number of spaces
04 Output number of symbols
05 Adjust number of spaces and number of symbols to be output in next row
06 UNTIL the required number of symbols have been output in one row

The steps are numbered to make it easier to refer to them later.

This is not enough detail to write a program in a high-level programming language. Exactly
what values do we need to set?

- - -

Chapter 12: Stepwise Refinement and Structure Charts

We need as input:

• the symbol character from which t he pyramid is to be formed
• t he number of symbols in the final row (for the pyramid to look symmetrical, th is needs

to be an odd number).
We need to ca lculate how many spaces we need in the firs t row. So that the slope of the
pyramid is symmet rica l, t his number should be half of the fi nal row's symbols. We need
to set t he number of symbols to be output in t he first row to 1. We therefore need the
identifiers listed in Tab le 12.01.

Identifier Explanation
Symbol The cha racter symbol to fo rm the pyramid
MaxNumberOfSymbols The number of symbols in t he f ina l row
NumberOfSpaces The number of spaces to be out put in the current row
NumberOfSymbol s The number of symbols to be output in. the cu rrent row

Table 12.01 ldent ifiertable fo r pyramid example

Using pseudocode, we now refine the steps of our first attempt. To show which step
we are refining, a numbering system is used as shown.

Step 01 ca n be bro ken down as fo llows:

01 II Set up initial values expands into:
01.1 I NPUT symbol
01.2 I NPUT MaxNumberOf Symbols
01 .3 NumberOfSpaces +- (MaxNumberOfSymbols - 1) I 2
01.4 NumberOfSymbol s +- 1

Remember we need an odd number for MaxNumberofsymbols. We need to make sure
th e input is an odd nu mber. So we further refi ne Step 01.2:

01 .2 II I NPUT MaxNumberOfSymbols expands into:
01.2 .1 REPEAT
01.2 .2 I NPUT MaxNumberOfSymbol s
01.2.3 UNTI L MaxNumberOfSymbols MOD 2 = 1
01. 2 .4 II MOD 2 gives t he r emainder after int eger div isi on by 2

We can now look to refine Steps 03 and 04:
03 II Output number of spaces expands into:
03 .1 FOR i 1 TO NumberOf Spaces
03.2 OUTPUT Space II wi thout movi ng to next line
03 . 3 ENDFOR

04 II Output number of symbol s expands i nto:
04 .1 FOR i <- 1 TO NumberOfSymbols
04. 2 OUTPUT Symbol II wi t hout mov ing to next line
04 .3 ENDFOR
04.4 OUTPUT Newline II move to the next line

•

Cambridge International AS and A level Computer Science

In Step 05 we need to decrease t he number of spaces by 1 and increase the number of
symbols by 2:
05 I I Adjust v alues for next row ex pands into:
05.1 NumberOfSpaces <- NumberOfSpaces - 1
05 .2 Numbe r Of Symbols <- NumberOfSymbol s + 2

Step 06 essentially checks whether the number of symbols for t he next row is now
greater t han the va lue input at the beginn ing.

06 UNTIL NumberOfSy mbols > MaxNumberOfSy mbols

We can put togeth er all t he steps and end up with a solution.

I I Set Values
INPUT s y mbol

01
01.1
01. 2
01.2.1
01.2 .2
01. 2. 3
01.3
01.4
02

II Input max numbe r of symbols (an odd number)
REPEAT

INPUT MaxNumberOfSymbols
UNTIL MaxNumberOfSymbols MOD 2 = 1
NumberOfSpaces <- (MaxNumberOfSy mbols - 1) I 2
NumberOfSymbols <- 1
REPEAT

03 II Output number of spaces
03 .1 FOR i <- 1 TO NumberOfSpace s
03 . 2 OUTPUT Space I I without moving t o next line
03. 3 ENDFOR
04 II Output number of symbols
04 .1 FOR i <- 1 TO NumberOfSymbols
04 . 2 OUTPUT Sy mbol II wi t hout mov ing to next line
04 .3 ENDFOR
04 .4 OUTPUT Newline II move t o the nex t line
05 II Adj ust Values For Next Row
05 .1 NumberOfSpac e s <- NumberOfSpaces - 1
05 .2 NumberOfSymbols <- NumberOfSymbols + 2
06 UNTIL NumberOfSymbols > MaxNumberOfSy mbols

TASK12.01
Use stepwise refinement to output a hollow t riangle. For example t he two input values A and
9 resul t in the following output:

A
A A

A A
A A

AAAAAAAAA

A firs t attempt at solving this prob lem using st ructured English is:

01 Set up initial values
02 REPEAT
03 Output leading number of spaces
04 Output symbol, middle spaces, s y mbol
05 Adjust number of spaces and number of symbols t o be output in next row
06 UNTIL the required number of s y mbol s have been output in one r ow

--- --- -- --- --- ----- --------

,- - - - - - - - - - - - -- - - - ---- -- - - - - - --

' Chapter 12: Stepwise Refinement and Structure Charts r

I ,
I

r

12.02 Modules
Another method of developing a solution is to decompose t he problem into sub-tasks. Each
sub-task can be considered as a 'modu le' that is refined separately. Modu les are proced ures
and funct ions.

A procedure groups together a number of steps and gives them a name (a n ident ifier). We
can use this ident ifier when we want to refer to t his group of steps. When we wan t to perform
the steps in a procedu re we call t he procedure by its name.

Procedure: a sequence of steps that is given an identifier and can be called to perform a sub-task

CALL Procedu r e XYZ CALL ProcedureXYZ

i
(a) (b)

Figure 12.01 Representation of a procedure in (a) pseudocode and (b) a flowchart

The rules for modu le ident ifie rs are the same as for variab le identifiers (see Section ll.03)

WORKED EXAMPLE 12.02

Drawing a pyramid using modules
The problem is t he same as in Worked Example 12.01.

When we want to set up the ini t ial values, we call a procedu re, using t he fo llowing
statement:

CALL Se tValue s

We can rewrite the top- level solution to our pyramid prob lem using a procedure for each
step, as:

CALL SetValues
REPEAT

CALL OutputSpaces
CALL OutputSymb o ls
CALL AdjustValuesForNex tRow

UNTIL NumberOfSy mbols > Ma x NumberOfSymbols

This top-level solut ion cal ls four proced ures. This means each procedure has to be defined.
The procedure definitions are:

PROCEDURE SetValue s
INPUT s y mbol
CALL InputMaxNumberOfSymbo ls // need t o ensure it is an o dd number
Numbe r OfSpace s (Max NumberOf Symbo ls - 1) / 2
NumberOfSymbo ls 1

END PROCEDURE

1- - - - ---- ----------

I

Cambridge International AS and A level Computer Science

PROCEDURE InputMaxNumberOfSymbols
REPEAT

INPUT MaxNumberOfSymbols
UNTIL MaxNumberOfSy mbols MOD 2 = 1

END PROCEDURE

PROCEDURE OutputSpaces
FOR Count~ 1 TO NumberOfSpaces

OUTPUT Space // without moving to next line
END FOR

END PROCEDURE

PROCEDURE OutputSymbols
FOR Count~ 1 TO NumberOfSymbols

OUTPUT Symbol// without moving to next line
END FOR
OUTPUT Newline // move to the next line

END PROCEDURE

PROCEDURE AdjustValuesForNextRow
NumberOfSpaces NumberOfSpaces - 1
NumberOfSymbols NumberOfSy mbols + 2

END PROCEDURE

TASK12.02
Amend your algorithm for Task 12.01 to use modu les.

WORKED EXAMPLE 12.03

Creating a program to play Connect 4
Connect 4 is a game played by two players. In the com mercia l version shown in Figure
12.01, one player uses red tokens and t he other uses black. Each player has 21 tokens.
The game board is a vertical grid of six rows and seven colu mns.

Figure 12.01 A Connect 4 board

Columns get filled with tokens from t he bottom. Th e players take it in t urns to choose
a column t hat is not full and drop a token into t his colu mn. The token wi ll occupy the

------ ------- - -- -- - - --

Chapter 12: Stepwise Refinement and Structure Charts

lowest empty position in the chosen column. The winner is the player who is the first
to connect four of their own tokens in a horizontal, vertica l or diagonal line. If all tokens
have been used and neither player has connected four tokens, the game ends in a draw.

If we want to write a program to play this game on a computer, we need to work out the
steps required to 'solve the problem', that means to let players take their turn in placing
tokens and checking fo r a winner. We wi ll designate our players (a nd their tokens) by
'O' and 'X'. The game board will be represented by a 20 array. To simplify the problem,
the winner is the player who is the first to connect four of their tokens horizontally or
vertically.

Our first attempt in structured English is:

Initialise board
Set up game
Display board
While game not finished

This Player makes a move
Display board
Check if this player has won
If game not finished, swap player

The top-level pseudocode version using modules is:

01 CALL InitialiseBoard
02 CALL SetUpGame
03 CALL OutputBoard
04 WHILE GameFinished; FALSE
05 CALL ThisPlayerMakesMove
06 CALL OutputBoard
07 CALL CheckifThisPlayerHasWon
08 IF GameFinished; FALSE
09 THEN
10 CALL SwapThisPlayer
11 ENDIF
12 ENDWHILE

Note that Steps 03 and 06 are the same. This means that we can save ourselves some
effort. We only need to define this module once, but can call it from more than one place.
This is one of the advantages of using modules.

The identifier table for the program is shown in Table 12.03.

Identifier Explanation
Board[l. .6 , 1 .. 7] 20 array to represent the board
InitialiseBoard Procedure to initialise the board to all blanks
SetUpGame Procedure to set initial values for GameFinished and

ThisPlayer
GameFinished FALSE if the game is not fin ished

TRUE if the board is full or a player has won
ThisPlayer •o• when it is Player O's turn

•x• when it is Player X's turn
OutputBoard Procedure to output the cu rrent contents of the board

---- --------

•

Cambridge International AS and A level Computer Science

This PlayerMakesMove Procedure to place the current player's token into the
chosen board location

Che ckifThi sPlay erHasWon Procedure to check if the token just placed makes the
current player a winner

Swa p Th i s Player Procedure to change player's turn

Table 12.02 Initial identifier table for Connect 4 game

Now we can refi ne each procedure (modu le). This is likely to add some more identi fiers to
ou r identi fier table. The add it ional en tries required are shown after each procedu re.

PROCEDURE InitialiseBo ard
FOR Row ~ 1 TO 6

FOR Column~ 1 TO 7
Bo a r d[Row, Column] BLANK II use a s uitable v alue f o r blank

END FOR
END FOR

END PROCEDURE

Identifier Explanation
Row Loop counter fo r t he rows
Column Loop counter for the columns
BLANK A va lue that represents an empty board location

Table 12.03 Additional identifiers for the Initia lis eBoard procedure

PROCEDURE SetUpGame
ThisPlayer '0' II Player O a l wa y s starts
GameFinished FALSE

END PROCEDURE

PROCEDURE OutputBoard
FOR Row ~ 1 TO 6

FOR Column~ 1 TO 7
OUTPUT Board[Row, Column] II don't move t o n e xt line

END FOR
OUTPUT Newline II move to next line

END FOR
END PROCEDURE

PROCEDURE ThisPlayerMake sMove
ValidColumn ThisPlayerChoo sesColumn II a module returns column number
ValidRow FindNextFree Positio ninColumn II a mo dule returns row number
Board[ValidRow, ValidColumn] ThisPlayer

END PROCEDURE

Note that t he modules ThisPlay e rCh oosesColumn and
FindNex t FreePositionin Column are not procedu res. These modu les produce
and return a value that is used in t he assignment statement. We ca ll such a module a
function. Like a procedu re, a funct ion groups together a number of steps and gives them

- ---- ----- - - - -- - ----- - - ----- - - -- --- - ~ ---- - -------

Chapter 12: Stepwise Refinement and Structure Charts
I

an identifier. But the steps of a function are to work out a single value that is returned
from the function. This value is used in an expression.

Identifier Explanation
ValidColumn The column number the player has chosen
ThisPlayerChoosesColumn Function to get the current player's va lid choice

of column
ValidRow The row number that represents the fi rst free

location in the chosen column
FindNextFreePositioninColumn Function to find the next free location in the

chosen column

Table 12.04 Additiona l identifiers for the ThisPlayerMakesMove procedure

FUNCTION ThisPlayerChoosesCo lumn // returns a valid column number
OUTPUT "Player " ThisPlayer "' s tur n . "
REPEAT

OUTPUT "Enter a valid column number : "
INPUT ColumnNumber

UNTIL ColumnNumberValid =TRUE // check whether the column number is valid
RETURN ColumnNumber

END FUNCTION

Identifier Explanation
ColumnNumber The column number chosen by the current player
ColumnNumberValid Function to check whether the chosen colum n is va lid

Table 12.05 Additional identifiers for ThisPlayerChoosesColumn function

Note that we need to define the function columnNumberValid. A column is va lid if it is
within the range 1 to 7 inclusive an d there is stil l at least one empty location in that co lumn.

FUNCTION ColumnNumberValid // returns whether o r not the column number is valid
Valid <-- FALSE
IF ColumnNumber >= 1 AND ColumnNumber <= 7

THEN
IF Board[6, ColumnNumber]= BLANK// at least 1 empty space in column

THEN

ENDIF
ENDIF
RETURN Valid

END FUNCTION

Identifier
Valid

Valid<-- TRUE

Explanation
FALSE if column number is not valid

TRUE if column number is valid

Table 12.06 Additional identifier for the ColumnNumbervalid function

•

Cambridge International AS and A level Computer Science

FUNCTION FindNextFreePositioninColumn II returns t he next free position
Thi sRow <- 1
WHILE Board [ThisRow, ValidColumn] <> BLANK II find first empty cell

Thi sRow <-- ThisRow + 1
ENDWHILE
RETURN ThisRow

ENDFUNCTION

Identifier Explanation
ThisRow Points to the next row to be checked

Table 12.07 Additional identifier for t he FindNextFreePosit ioninColumn function

PROCEDURE CheckifThisPlayerHasWon
WinnerFound <- FALSE
CALL CheckHorizontalLineinValidRow
IF WinnerFound = FALSE

THEN
CALL CheckVert icalLineinValidColumn

END IF
IF WinnerFound = TRUE

THEN
GameFinished +- TRUE
OUTPUT Thi s Player" is the winner "

ELSE
CALL CheckForFullBoard

ENDIF
END PROCEDURE

Note that the CheckifThisPlayerHaswon procedure uses three further procedures that
we need to define.

Identifier Explanation
WinnerFound FALSE if no winn ing line

TRUE if a winn ing line is found
CheckHorizontalLineinValidRow Procedure to check if there is a winning horizontal

line in the row the last token was placed in
CheckVerticalLineinValidColumn Procedure to check if there is a winning vertical

tine in the column the last token was placed in
CheckForFullBoard Procedure to check whether the board is full

Table 12.08 Additional identifiers for the CheckifThisPlayerHasWon procedure

-

f
!

' I
r

PROCEDURE CheckHorizontalLineinVal idRow
FOR i +- 1 TO 4

Chapter 12: Stepwise Refinement and Structure Charts

IF Board[ValidRo w, i] = ThisPlayer AND
Board[ValidRow, i + l] ThisPlayer AND
Board[ValidRow, i + 2]
Board[ValidRow, i + 3]
THEN

ThisPlaye r AND
ThisPlayer

ENDIF
ENDFOR

END PROCEDURE

WinnerFound +- TRUE

PROCEDURE CheckVerticalLineinValidColumn
IF ValidRow = 4 OR ValidRow = 5 OR Val i dRow = 6

THEN
IF Board[ValidRow, ValidColumn] = ThisPlayer AND

Board[ValidRow - l, ValidColumn] ThisPlayer AND
Board[ValidRow - 2, ValidColumn]
Board[ValidRow - 3, ValidColumn]
THEN

ENDIF
ENDIF

END PROCEDURE

WinnerFound +- TRUE

PROCEDURE CheckForFullBoard
BlankFound +- FALSE
ThisRow +- 0
REPEAT

ThisColumn <- O
ThisRow <- ThisRow + 1
REPEAT

ThisPlayer AND
ThisPlayer

ThisColumn +- ThisColumn + 1
IF Board[ThisRow, ThisColu mn]

THEN
BLANK

BlankFound +- TRUE
ENDIF

UNTIL ThisColumn = 7 OR BlankFound TRUE
UNTIL ThisRow 6 OR BlankFound = TRUE
IF BlankFound FALSE

THEN
OUTPUT "It is a draw"
GameFinished +- TRUE

ENDIF
ENDPROCEDURE

Identifier
BlankFound

This Row

This Column

Explanation
FALSE if no blank location fo und on the board

TRUE if a blank location found on the boa rd
Loop counter for rows
Loop counter fo r colum ns

Table 12.09 Additional identifiers for the CheckForFullBoard procedure

•

•

Cambridge International AS and A level Computer Science

PROCEDURE SwapThisPlayer
IF ThisPlaye r = '0'

THEN
ThisPlayer +- 'X'

ELSE
ThisPlayer +- '0'

ENDIF

END PROCEDURE

The complete identifier table for the Connect 4 program is shown in Tab le 12.11.

Identifier Explanation
Board[l. .6, 1 .. 7) 2D array to represent the board
InitialiseBoard Procedure to in itialise the board to all blanks
SetUpGame Procedure to set initial values for

GameFinished and ThisPlaye r
GameFinished FALSE if the game is not finished

TRUE if the board is full or a player has won
This Player •o• when it is Player O's turn

'X' when it is Player X's turn
OutputBoard Procedure to output the current contents of

the board
ThisPlayerMakesMove Procedure to place the current player's token

into the chosen board location
CheckifThisPlayerHasWon Procedure to check if the token just placed

makes the current player a winner
SwapThisPlayer Procedure to change player's turn
Row Loop counter for the rows
Column Loop counter for the columns
BLANK A value that represents an empty board

location
ValidColumn The column number the player has chosen
ThisPlayerChoosesColumn Function to get the current player's val id

choice of column
ValidRow The row number that represents the first free

location in the chosen column
FindNextFreePositioninColumn Function to find the next free location in the

chosen co lumn
ColumnNumber The column number chosen by the current

player
ColumnNumberValid Function to check whether the chosen

column is va lid
Valid FALSE if column number is not valid

TRUE if column number is valid

· Chapter 12: Stepwise Refinement and Structure Charts

ThisRow Points to the next row to be checked
WinnerFound FALSE if no winn ing line

TRUE if a winning line is found
CheckHorizontalLineinValidRow Procedure to check if there is a w inning

horizontal line in the row the last token was
placed in

CheckVerticalLineinValidColumn Procedure to check if there is a winning
vertical line in the column the last token was
placed in

CheckForFullBoard Procedure to check whether the board is full
BlankFound FALSE if no blank location is found on the

board
TRUE if a blank location is found on the board

Th i sRow Loop counter for rows
This Column Loop counter for columns

Table 12.10 Complete identifier table for Connect 4 game

Function: a sequence of steps that is given an identifier and returns a single value; function call is part
of an expression

Note that some of the identifiers in Table 12.10 are for variables that are used only within a
single module. We call such a variable a local variable (see Chapter 14, Section 14.03). In Table
12.10, the local variables are highlighted. The other variables in Table 12.10 are used by severa l
sub-tasks. Variables available to all modules are known as global variables (see Chapter 14,
Section 14.03).

Local variable: a variable that is only accessible within the module in which it is declared

Global variable: a variable that is accessible from all modules

12.03 Structure charts
An alternative approach to modular design is to choose the sub-tasks and then construct a
structure chart to show the interrelations between the modules. Each box of the structure
chart represents a module. Each level is a refinement of the level above.

A structure chart also shows the interface between modules, the variables. These variables
are referred to as 'parameters'. A parameter supplying a value to a lower-level module is
shown as a downwards pointing arrow. A parameter supplying a new value to the module at
the next higher level is shown as an upward pointing arrow.

Structure chart: a graphical representation of the modular structure of a solution

Parameter: a value passed between modules

•

--- ------- --- - - --- - - - --- - - - - - ------ ----

Cambridge International AS and A level Computer Science

Figure 12.02 shows a structure chart fo r a module that ca lculates t he average of two
numbers. The top- level box is t he name of t he modu le, wh ich is refined into the th ree sub-
tasks of Level 1. The input numbers (pa rameters Numberl and Nu mber2) are passed into
the 'Ca lculate Average' sub-task and then t he Average parameter is passed into t he 'OUTPUT
Average' sub-task. The arrows show how the parameters are passed between the modu les.
This parameter passing is known as the 'interface'.

Calculate
average

OUTPUT
average

Leveto

interface

Levell

Figure 12.02 St ructu re cha rt fo r a module that ca lcu lates the average of two numbers

TASK12.03
Draw a structure chart for the following module: Input a number of km, output the equivalent
number of miles.

Structure charts ca n also show contro l informat ion: se lection and repeti t ion.

The simp le number-guessing game that was introduced in Chapter 11 (Section 11.05) could
be mod ularised and presented as a structure chart , as shown in Figure 12.03.

Generate
SecretNumber

Number Guessing Game

INPUT Guess OUTPUT message

Tr ue

OU T PUT
congratu l ati o n

Fal se

OUTPUT
con solation

message

Figure 12.03 Structu re chart for number-guessing game wit h only one guess allowed

Chapter 12: ·stepwise Refinement and Structure Charts

The diamond shape shows a co ndition t hat is either True or False. So either o ne branch or
t he ot her w ill be fo llowed.

Figure 12.04 shows t he st ructure chart fo r t he pyram id-d raw ing program from Worked
Exa mple 12.01. The semi -ci rcular arrow represents repetit ion of t he mod ules below th e
arrow. The label shows t he condit ion when repetition occurs.

/~0~"~
Initialise values

J ~

Vl
0
.0
E
>,

!{'.
<2
OJ
.0
E
:::,
z
X ro
::;:

0

Input Max number
of symbols

Output spaces

Pyram id

UNTIL NumberOfSymbols =
MaxN umberOfSymbols

Output symbols Adjust values for
next row

Figure 12.04 Structure chart fo r pyramid-drawing program

TASK12.04
Amend the structure chart for the number-guessing game (Figure 12.03) to include repeated
guesses until the player guesses the secret number. The output should include the number of
guesses made.

TASK12.05
Draw a structure chart for the fo llowing problem: A user attempts to log on with a user ID. User
IDs and passwords are stored in two 1D arrays (l ists). The algorithm searches the list of user
IDs and looks up the password in the password list. The user is given three chances to input
the correct password. if the correct password is entered, a suitable message is output. If the
th ird attempt is incorrect, a warning message is output.

----- --- - --

•

. Cambridge International AS and A level Computer Science

Ill
I

Structu re charts help programmers to visual ise how modules are interrelated and how
they interface with each other. When looking at a larger problem t his becomes even more
important. Figu re 12.05 shows a structure cha rt for the Connect 4 program. It uses the
fo llowing symbols:

• An arrow with a solid round end ••---, shows that the va lue tra nsferred is a flag (a
Boo lean value).

• A dou ble-headed arrow ----o--+ shows that t he varia ble va lue is updated wi thin
the module.

Connect4

In itialise
board

Setup
game

/;~~ c.?
Player chooses

Column

()

JI h
O" ro ...,

Check column
number valid

Player makes
move

Find free
row

Figure 12.05 Structure chart for the Connect 4 program

OUTPUT
board

WHILE game not finished

Check game
finished

!11 I: ...
<U QJ
0 C:

o:i C:

Check if player
has won

Check forfull
board

Check horizontal
line

Check vertical
line

12.04 Deriving pseudocode from a structure chart
Let's look at the pyram id prob lem aga in (Figure 12.04). In Worked Example 12.02, a modular
solution was created without using a structure chart and all variables were global. Now
we are going use local variables and parameters. The reason for using local variables and
parameters is that modules are then self-contained and any changes to variables do not have
accidental effects on a variable value elsewhere.

The top-level modu le, Pyramid, calls fou r modu les. When a module is called, we supply
the parameters in parentheses after the modu le identifier. This gives the following
pseudocode:

Swap
player

" f Chapter 12: Stepwise Refinement and Structure Charts t '·

MODULE Pyramid
CALL SetValues (NumberOfSymbols, NumberOfSpaces, Symbol, MaxNumberOfSymbols)
REPEAT

CALL OutputSpaces(NumberOfSpaces)
CALL OutputSymbols(NumberOfSymbols, Symbol)
CALL AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)

UNTIL NumberOfSymbols > MaxNumberOfSymbols
ENDMODULE

PROCEDURE SetValues(NumberOfSymbols, NumberOfSpaces, Symbol, MaxNumberOfSymbols)
INPUT Symbol
CALL InputMaxNumberOfSymbols
NumberOfSpaces +-- (MaxNumberOfSymbols - 1) I 2
NumberOfSymbols +-- 1

END PROCEDURE

PROCEDURE InputMaxNumberOfSymbols(MaxNumberOfSymbols)
REPEAT

INPUT MaxNumberOfSymbols
UNTIL MaxNumberOfSymbols MOD 2 1

END PROCEDURE

PROCEDURE OutputSpaces(NumberOfSpaces)
FOR Count +-- 1 TO NumberOfSpaces

OUTPUT Space II without moving to next line
END FOR

END PROCEDURE

PROCEDURE OutputSymbols(NumberOfSymbols, Symbol)
FOR Count +-- 1 TO NumberOfSymbols

OUTPUT Symbol II without moving to next line
END FOR
OUTPUT Newline II move to the next line

END PROCEDURE

PROCEDURE AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)
NumberOfSpaces +-- NumberOfSpaces - 1
NumberOfSymbols +-- NumberOfSymbols + 2

END PROCEDURE

Discussion Point:
The full rules of Connect 4 are that a diagonal of four tokens also is a winning line. Where
in Figure 12.05 should the module to check for a diagonal be added? What parameters
are required for this module? Does this additional module require further stepwise
refinement?

•

Cambridge International AS and A level Computer Science

Summary
• Stepwise refinement involves breaking down the steps of an outline solution into smaller and

smaller steps (sub-tasks).

• Stepwise refinement is used to produce a solution t hat can be stated in terms of the four basic
constructs of sequence, assignment, selection and repetition.

• Each sub-task can be written as a module.

• Modules are either procedures or functions.

• A procedure is a sequence of steps that are given an identifier. A procedure can be called
whenever this sequence of steps should be followed.

• A function is a sequence of steps that are given an identifier. This sequence of steps results in a single
value that is returned from the function. A function call is part of an expression or assignment.

• Local variables are variables that are used within a single module.

• Global variables are variables that are used throughout the solution.

• Structure charts are graphical representations of the modular structure of solutions.

• A structure chart shows the interface between modules: parameters passed between the calling
module and the module being called.

• Structure charts show selection, where a module is called only under certain conditions.

• Structure charts show repetition, where modules are called repeatedly.

Exam-style Questions
1 A random number generator is to be tested to see whether all numbers wit hin the ra nge 1 to

20 are generated equa lly freq uent ly. The st ructured English version of the algorithm is

Initialise a tally for the numbers 1 to 20
Repeatedly generate numbers in range 1 to 20
Fo r each n umber g e nera ted, i n c reme nt the r eleva nt count
Calculate how often each number should be generated (expected
frequency)
Output e x pecte d frequency

Output the list o f numbers as a table with act ual frequ ency

The identifi ers requi red are:

Identifier Explanation
Tally[l. . 20) 1D array to store t he count of how many

t imes each number has been generated
RandomNumber The random number generated
NumberOfTe st s The number of ti mes a random number is to

be generated (1000 in t his example)
ExpectedFrequency The number of times any one number would

be generated if all nu mbers are generated
equally frequent ly (1000/20 in t his example)

r - - - - - - - - --- ---- - -- - - - - - - --

• .
: Chapter 12: Stepwise Refinement and Structure Charts

a Complete the structure chart below by naming the labels A to E:

A B Update Tally Output Tally

b Produce pseudocode from the structure chart.

2 A game to test players' memory is played as follows:

• There are 64 square cards with 32 different pictures.

• Each picture is on two different cards.

• The cards are placed face down in random order as an 8 x 8 grid pattern.

• Two players take turns.

• When it is a player's turn, the player chooses two cards and turns them face up so the pictures show.

• If the pictures are the same, the player takes the pair of cards, gains a point and has another go.

• If the pictures are not the same, the cards are turned face down aga in.

• Al l players can see the up-turned pictures and memorise their grid positions.

• The game finishes when al l cards have been pa ired.

• The player with the most points is the winner.

The problem is to design an algorithm that

• puts 64 cards into random positions in to an 8 x 8 table

• after the input of two sets of co -ordinates shows the chosen cards for a sho rt time

• removes the cards if there is a match

• updates the player's points

• outputs t he number of points for both players when there are no more cards (the game has finished).

For the purpose of this algorithm:

, The pictures are to be represented by the numbers 1 to 32.

, A grid pos ition with no card is to be represented by 0.

The identifiers required are:

Identifier Explanation
Grid[l. .8, 1. .8] Ta ble to store the card va lues
Points [l .. 2] List to store the points for player 1 and player 2
ThisPlayer Th e number of the cu rrent player (1 or 2)
Game End FALSE whi le there are cards left in t he grid

TRUE when al l cards have been taken
xl, yl The co-ordinate pa irs of the two cards chosen by the current player

x2, y2

[5]

[12]

I

Cambridge International AS and A level Computer Science

Top-level algorithm:

01
02
03
04
05
06
07
08
09
10
11

a
b

CALL SetUpEmptyGrid
CALL RandomlyDistributeCards
CALL SetUpPlayers
Game End FALSE
REPEAT

CALL GetPlayersCoordinates
CALL DisplayGrid
CALL TestForMatch
CALL TestForEndGame

UNTIL GameEnd = TRUE
CALL OutputResults

What is the name given to the method of breaking the above steps down into smaller steps?
Complete the following procedures:
PROCEDURE SetUpEmptyGrid

FOR i 1 TO 8
FOR j 1 TO 8

END FOR
END FOR

END PROCEDURE

PROCEDURE RandomlyDistributeCards
FOR Number~ 1 TO 32

CALL GetEmptyGridPosition

II assign grid elements

Grid[x, y] Number II place first card with this number
CALL GetEmptyGridPosition
.................... II place second card with this number

END FOR
END PROCEDURE

PROCEDURE GetEmptyGridPosition
REPEAT

x RandomNumber(l,8) II generate a random number between 1 and 8
y RandomNumber(l,8) II generate another random number

UNTIL II find a grid position without a card
END PROCEDURE

PROCEDURE SetUpPlayers
Points[l] O II both players start with O points

ThisPlayer 1
END PROCEDURE

PROCEDURE GetPlayersCoordinates
REPEAT

INPUT xl, yl
UNTIL Grid[xl, yl] > O II check grid position has a card
CALL DisplayGrid
REPEAT

INPUT x2, y2
II check grid position has a card and is not in the same position as first card

UNTIL (....................) AND (....................)
END PROCEDURE

- ------------- -

[l]

-~- -~- - - - - - - -

Chapter 12: Stepwise Refinement and Structure Charts
I

I C

PROCEDURE DisplayGrid
FOR i f- 1 TO 8

FOR j f- 1 TO 8
IF (i = xl) AND (j

THEN
OUTPUT

ELSE

yl)

IF Grid[i, j) = 0
THEN

OUTPUT

II it is the chosen card

II the card in this position has been remov ed

ELSE II back of card to be shown as ' ? '
OUTPUT

ENDIF
END FOR

END FOR
END PROCEDURE

END IF

PROCEDURE TestForMatch
IF Grid[xl, y l) = Grid[x2, y2)

THEN
I I match found,
Grid[xl, yl) f-

Grid[x2, y2) f-

remove cards

II increment points
Points [ThisPlayer) f-

ELSE
CALL SwapPlayers

ENDIF
END PROCEDURE

PROCEDURE SwapPlayers

END PROCEDURE

PROCEDURE TestForEndGame
IF Points [1) + Points [2) 32

THEN
GameEnd f-

END IF
END PROCEDURE

PROCEDURE OutputResults

END PROCEDURE

Draw a structure chart for this problem.

, ____ _

[18]
[15]

I

Learning objectives
By the end of this chapter you should be able to:

• write a program in a high-level language (Python, Visual
Basic console mode, Pascal/Delphi console mode)

• implement and write a program from a given design
presented as either a program flowchart or pseudocode

• write program statements for:
• the declaration of variables and constants
• the assignment of values to variables and constants
• expressions involving any of the arithmetic or logical

operators
• input from the keyboard and output to the console

• select appropriate data types for a problem solution
(integer, real, char, string, Boolean, date)

• show understanding of how character and string data are
represented by software including the ASCII and Unicode
character sets

• use an 'IF' structure including the 'ELSE' clause and
nested IF statements

• use a 'CASE' structure

• use a loop ('count controlled', 'post-condition', 'pre-
condition')

• justify why one loop structure may be better suited to a
problem than the others

• select a suitable data structure (lD or 20 array) to use for
a given task

• write program code to process array data (including
bubble sort and linear search)

• recognise the basic control structures in a high-level
language other than the one chosen to be studied in depth

• use a subset of the built-in functions and library routines
supported by the chosen programming language,
including those used for string/character manipulation,
formatting of numbers, random number generator

• use the information provided in technical documentation
describing functions/procedures

• show understanding of why files are needed and write
pseudocode and program code for simple file handling of
a text file, consisting of several lines of text.

- -- - --- --- -- --- ----

; Chapter 13 Programming and Data Representation

13.01 Programming languages
Chapters 11 and 12 introduced the concept of solving a problem and representing a solution
using a flowchart , pseudocode or a st ructure chart. We expressed our solut ions using the
basic constructs: assignment, sequence, selection, iteration, input and output.

To write a computer program, we need to know t he syntax of these basic constructs in our
chosen programming language. This chapter int roduces syntax for Python , Visua l Basic
console mode and Pascal/Delphi console mode.

You only need learn to program in one of the t hree languages covered in t his book. However,
you should be able to recognise the basic control structures in a high-level language other
than the one chosen to be studied in depth. So do read the sections covering the other two
programming languages.

Python
Python was conceived by Guido van Rossum in the late 1980s. Python 2.0 was re leased in
2000 and Python 3.0 in 2008. Python is a mult i-paradigm programming language. It ful ly
supports both object-oriented programming and structured programming. Many other
paradigms, includ ing logic programm ing, are supported using extensions. These parad igms
are covered in Chapters 26, 27 and 29.

The Python programs in this book have been prepa red using Pyth on 3 (see www.python.org
for a free download) and Python's Integrated Development Environ ment (IDLE).

Key characteristics of Python are:

Every statement must be on a separate li ne.
Indentation is significant. This is known as the 'off-side ru le'.
Keywords are written in lower case.
Python is case sensitive: the identifier Numb e r l is seen as diffe rent from numberl or
NUMBERl .

Everyth ing in Python is an object (see Chapter 27).
• Code makes extensive use of a co ncept cal led 's licing' (see Section 13.08).

Programs are interpreted (see Chapter 7, Section 7.05 for information on interpreted and
compi led programs).

You can type a statement into t he Python Shell and the Python interpreter wil l run it
immediately (see Figure 13.01).

Python Shell .-,.~

File Edit Shell Debug Options Windows Help
Python 3 . 2.3 (default , Apr 11 2012, 07:12:16) [MSC v.1500 64 bit (AMD64)] on win32
Type "copyright", "cre dits"
>>> prin t("Hello World ' ")
He llo World !
»> I

or "lice nse ()" f or more inf ormat ion.

Figure 13.01 Running a statement in the Python Shell

I

Cambridge International AS and A level Computer Science

You can also type program code into a Python editor (such as IDLE), save it with a .py extension and then run the
program code from the Run menu in the editor w indow (see Figure 13.02).

(a) modu let.py - C:
File Edit Format Run Options Windows
my first program

print ("Hello World!")

Help

J
(b)

File Edit Shell Debug Options Windows Help

Python 3.2 . 3 (default, Apr 11 2012, 07 : 12 : 16) [MSC v . 1500 6~ bit (AMD6~)] on .!.I
win32
Type "copyright", "credits" or "license O" f or more inf ormation .
>>> RESTART ===
>>>
He llo World!
>>>

Figure 13.02 (a) A saved program in the Python editor window and (b) running in the Python shell

Visual Basic Console Mode (VB.NET)
VB.NET is a multi-paradigm, high-level programming language, implef'.1ented on the .NET Framework. Microsoft
launched VB.NET in 2002 as the successor to its original Visual Basic language. Microsoft's integrated development
environment (IDE) for developing in VB.N ET is Visual Studio. Visual Studio Express and Visual Studio Community are
freeware.

The Visual Basic progra ms in this book have been prepared using Microsoft Visua l Basic 2010 Express Console
Application. (Free down load available from www.visualstudio.com/ products/visual-studio-express-vs)

Key characteristics of VB.NET are:

• Every statement should be on a separate line. Statements can be typed on the same line
with a colon(:) as a separator. However, this is not recommended .
Indentation is good practice.

• VB.NET is not case sensitive. Modern VB.NET editors wi ll automatica lly copy the case
from the first definition of an identifier.

• The convention is to use CamelCaps (a lso known as Pascal Caps) for identifiers and
keywords.

Programs need to be compiled (see Chapter 7, Section 7.05 for information on interpreted
and compiled programs).

You type your program code into the Integrated Development Environment (IDE) as shown in
Figure 13.03 (a), save the program code and then cl ick on the Run button (,,!]I). Th is invokes
the compi ler. If there are no syntax errors the compiled program will then run. Output wi ll be
shown in a separate conso le window (see Figure 13.03 (b)).

...
Chapter 13 Programming and Data Representation

(a) ConsoleApphcationl (Running) - MICrosoft Visual BaSK: 2010 E

EJ Module Modulel

I
El Sub Main ()

l Console .Writel ine ("Hel l o World!")
Console . Readline ()

End Sub
' -100% .. (<t

Figure 13.03 (a) A saved program in the VB.NET editor and (b) running in the program
execution (console) window

Note that the console window shuts when the program has finished execution . To keep it
open, so you can see the output, the last statement of your program shou ld be
Console .ReadLine () (see Figure 13.03(a)).

Pascal/Delphi Console Mode (Pascal)
Designed by Niklaus Wirth as a small and efficient language, Pascal was intended to
encourage good programming practice using structured programming. Pascal was
published in 1970. A derivative known as Object Pascal for object-oriented programming was
developed in 1985. Delphi was originally developed by Borland and uses Object Pascal. Since
2008, Delphi has been owned by Embarcadero Technologies.

The Pascal programs in this book have been prepared using Borland Delphi 7 Console
Application. Other Pascal/Delphi ID Es will work in a similar way (for example, the free version
from www.lazarus.freepascal.org).

Key characteristics of Pascal are:

Every statement ends with a semicolon(;). More than one statement can go on a single
line, but this is not recommended.

• Indentation is good practice.

• Pascal is not case sensitive.
• The convention is to use Camel Caps (also known as Pascal Caps) for identifiers and lower

case for keywords.

• A compound statement consists of a sequence of statements enclosed between the
keywords begin and end.

• Whenever Pascal syntax requires a statement, a compound statement can be used. For
an example see Table 13.28.

Programs need to be compiled (see Chapter 7, Section 7.05 for information on interpreted
and compiled programs).

You type your program statements into the Integrated Development Environment (IDE) as
shown in Figure 13.04 (a), save the program code and then cl ick on the Run button
(). This invokes the compiler. If there are no syntax errors the compiled program code will
then run. Output will be shown in a separate (console) window (see Figure 13.04 (b).

•

Cambridge International AS and A level Computer Science

(a) ,. - .• .
Project2 I

p rogram Proj e c t 2;

{$APPTYPE CONSOLE}

uses
Sys Utils ;

• b egin
Write Ln (•Hello World ! •) ;
ReadLn ;

• end.

l'_ l [:] IIX I

... -

-

-~ ..ill
1 _ 1 1: 1 [~ln-se-,t--~ M

Figure 13.04 (a) A Pascal program in the Delphi editor and (b) running in t he program
execution (console) window

Note that the console window shuts when the program has finished execution. To keep it
open, so you can see the output , the last st atement of your program shou ld be ReadLn; (see
Figure 13.04(a)).

13.02 Programming basics
Declaration of variables
Most programming languages require you to declare the type of data to be stored in a
variable, so the correct amount of memory space can be reserved by the compiler. A variable
declared to sto re a whole number (integer) cannot then be used to store alphanumeric
characters (strings) or vice versa. Pascal and VB.NET requ ire variables to be declared before
they are used.

Python handles va riables differently to most programming languages. It tags values. This is
why Python does not have varia ble decla rations. However, it is good programmi ng practice
to inclu de a comment about the variables you are planning to use and t he t ype of data you
wi ll store in them.

In pseudocode, variable decla rat ions are wri t ten as:

DECLARE <identifier> : <dataType>

For exa mple, you may decla re the fo llowing va riables:

DECLARE Numberl : INTEGER II this dec lares Numberl to s tore a whole numbe r
DECLARE YourName : STRING II this dec lares YourName to store a sequence of

II alphanumer i c c haracters
DECLARE Nl, N2, N3 INTEGER II declares 3 integer variables
DECLARE Namel, Name2 : STRING II declares 2 string variables

- - -~ - - -

' Chapter.13 Programming and Data Representation
'

I

r

Syntax definitions
The syntax of va riable declarations in language code is as follows:

Python Python does not have variable declarat ions
VB.NET Dim <ident ifier>[, <i dentifie r) As <dataType>

Each line of decla rat ions must start with the keyword Dim.

Pascal var <ide n t ifier> [, <ide ntif i e r >) : <dataType>;
The keyword var starts declarations.

Code examples
Python # Numberl of type Integer There are no declara t ions, but

YourName of type String comments should be made at
Nl, N2, N3 of type integer; the beginning of a module (see
Name 1, Name2 of type string; the section about comments

at the end of Section 13.02).
VB.NET Di m Numberl As Integer You can group more than one

Di m YourName As String variab le of the same type on
Di m Nl , N2 , N3 As I nteger the same line.
Di m Namel , Name2 As Stri ng

Pascal v a r Numberl : integer; The keyword var can be
var YourName : s tring; repea ted on each line or
var Nl , N2, N3 : integer; om itted fo r furthe r lines of

Namel, Name2 : s tring;
declarat ions. You ca n grou p
more than on e variable of the
same type on t he same line.

Declaration and assignment of constants
Sometimes we use a value in a solution that never changes, for example, the va lue of t he
mat hematical co nstant pi (n). Instead of using the actual value in program statements, it is
good pract ice and helps readabil ity, if we give a constant va lue a name and declare it at the
beginn ing of t he program.

In pseudocode, constant declarat ions are written as:

CONSTANT <identifier>= <Value >

For example:

CONSTANT Pi 3 .14

Syntax definitions
Python <identifier> = <value>

VB.NET Const <ident i fier > = <value >
Each line of declarations must start wi th t he keyword Const .

Pascal Const <i den t i fier > = <value >;
The keyword const must be used to start t he declarat ions.

•

Cambridge International AS and A level Computer Science

Code examples

Python PI = 3.14 Python convention is to write constant
identifiers using all capital letters. The values
can be changed , although you should treat
constants as not changeable.

VB.NET Const Pi = 3 . 14 The value of a constant in VB.NET cannot be
altered within the program.

Pascal Const Pi = 3 .14; The value of a constant in Pascal cannot be
alte red w ithin the program.

Assignment of variables
Once we have declared a variable, we can assign a value to it (See Chapter 11, Section 11.04).

In pseudocode, assignment statements are written as:

<identifier>~ <expression>

Syntax definitions and code examples

Python <identifier> = <express i on> A = 34 The assignment operator is=.
B = B + 1

VB.NET <ident ifier> = <express i on> A = 34 The assignment operator
B = B + 1 is=.

Pascal <ident ifier> .- <expression>; A .- 34; The assignment operator
B .- B + 1; is a co mbination of a colon

and an equa ls sign without
a space in between (:=).

VB.NET allows you to initialise a variable as part of the declaration statement, for example:

Dim Numberl As Integer= O

VB.NET and Python al low increment statements such as B B + 1 to be written as B += 1.

Arithmetic operators
Assignments don't just give initial va lues to variab les. We also use an assignment when we
need to store the result of a calculation. The arithmetic operators used for ca lculations are
shown in Tab le 13.01.

Operation Pseudocode Python VB.NET Pascal
Ad dition + + + +

Subtraction - - - -

Multiplication * * * *
Division I I I I
Exponent A ** A Not available

Integer division DIV II \ Div
Modu lus MOD % Mod Mod

Table 13.01 Arithmetic operators

When more than one operator appears in an expression, the order of eva luation depends
on the mathematical rules of precedence: parentheses, exponentiation, multiplication,
division, addition, subtraction.

L
Chapter 13 Programming and Data Representation

Rules of precedence: define the order of the calculations to be performed

Question 13.01
Evaluate each of the following expressions:

4*3-3"2

(4 * 3 - 3) "2

4 * (3 - 3) "2

4 * (3 - 3 "2)

Outputting information to the screen
In pseudocode, output statements are written as:

OUTPUT <String>
OUTPUT <identifier(s)>

When outputting text and data to the console screen, we can list a mixture of output strings
and variable values in the print list.

Syntax definitions
Python print (<printlist>) Print list items are separated

print (<printlist>, end = II) by commas(,). To avoid
moving onto the next line after
the output, use end = ,,

VB.NET Console.WriteLine(<printlist >) Print list items are joined using
Conso le.Write(<printlist>) &. Console.WriteLine will

move onto the next line after
the output; Console. Write
will remain on the same line.

Pascal WriteLn(<printlist>); Print list items are separated
Write (<printlist>); by commas(,) . writeLn

will move onto the next line
after the output; Write will
rema in on the same line.

--- --- -- ---

•

Cambridge International AS and A level Computer Science

Code examples
In the examples below, the print list consists of four separate items:
"Hello" and". Your number is" are strings and
YourName and Numberl are variables, for wh ich we print the value.

OUTPUT "Hello 11 , YourName, " . Your number is ", Numberl // newline
OUTPUT "Hello " // no new line

In pseudocode, we can indicate whether a new line shou ld be output at the end by a
comment at the end of the statement.

Python

VB.NET

Pascal

print ("Hello ", YourName,
11 • You r numbe r i s 11 , Numberl)

pri nt ("Hello ", end= '')
Console. Wri teLine ("Hello " & YourName &

" . Your number is " & Numberl)
Console . Write ("Hello")
WriteLn('Hello ', YourName,

' . Your number is ', Numberl) ;
Write('Hello ');

In the code examples above you can see how output statements can be spread over more than
one line when they are very long. You must break the line between two print list items. You
cannot break in the middle of a string, unless you make the string into two separate strings.

In Python and VB.NET you can also use the placeholder method for output: the variables
to be printed are represented by sequentia l numbers in { } in the message string and the
variables are listed in t he correct order after the string, separated by com mas:

Python

VB.NET

print ("Hello {o}. Your number is {1} 11 .format(YourName,
Numberl))
Console.WriteLine("Hello {o}. Your number is {1}11

,

YourName, Numberl)

Getting input from the user
When coding an input statement , it is good practice to prompt the user as to what they are
meant to enter. For example, consider the pseudocode statement:

INPUT "Prompt: " A

Note the space between the colon and the closing quote. This is significant. It gives a space
before the user types t heir input.

----- ----------

- -~-- -- - --~- --- - -

r. Chapter 13 Programming and Data Representation

l

Python A = input (11 Prompt: ") The prompt is provided as a
parameter to the input function.
Single quotes are also accepted .
All input is taken to be a string;
if you want to use the input as a
number the input string has to
be converted using a function
(see Sect ion 13.03).

VB.NET Console .Write ("Prompt: ") The prompt has to be supplied
A = Console. ReadLine () as an output statement

separately.
Pascal Write ('Prompt: ') ; The prompt has to be supplied as

ReadLn (A) ; an output statement separately.
Note the single quotes around
the message text. Tbe ReadLn
procedure returns as a parameter
the value entered by the user. An
alternative procedure, Read exists
but its use is very specialised as
it does not remove the new line
character from the input string.

Comments
It is good programming practice to add comments to explain code where necessary.

Python # this is a comment
this is another comment

VB.NET II thi s is a comment
II thi s is a not he r comment

Pascal II this is a comment
II this is another comment
{this is a multi -line

comment}

TASK13.0l
Use the IDE of your chosen programming language (in future just referred to as 'your
language'). Type the program statements equivalent to the fo llowing pseudocode (you may
need to declare the va riable YourName first):
INPUT "What is your name? " YourName
OUTPUT "Have a nice day, "YourName

Save your program as Examplel and then run it. Is the output as you expected?

•

Cambridge International AS and A level Computer Science

13.03 Data types
Every program ming language has built-in data types. Table 13.02 gives a subset of those
available. The number of bytes of memory allocated to a varia ble of the given type is given in
brackets for VB.NET and Pascal.

Description of data Pseudocode Python VB.NET

Whole signed numbers INTEGER int Integer (4 bytes)

Signed numbers wi th a REAL float Single (4 bytes)
decimal point Double (8 bytes)

A single alphanumeric CHAR Not available Char (2 bytes -
character Unicode)
A sequence of STRING str (stored as ASCI I String (2 bytes per
alphanumeric

Use single (1) or double
but Un icode strings character)

characters (a string)
(11) quotation marks to

are also available). Use double (11)

delimit a string. Use single (1), doub le quotation marks to
(11) or tr ip le (111 or 111111) delimit a string.
quotation marks to
delimit a string.

Logical values: BOOLEAN bool Boolean (2 bytes)

True (represented as 1)
and

False (represented as 0)

Table 13.02 Simple data types

In Python, a single alphanumeric character is represented as a string of length 1.

See Chapter 1 (Sections 1.02 and 1.03) on how integers and characters are represented
inside the computer. Chapter 16 (Section 16.03) covers the internal representation of real
(single, double, float) numbers.

The string data type is known as a structured type because it is essentially a sequence
of characters. A special case is the empty stri ng: a va lue of data type string, but w ith no
characters stored in it. In VB.N ET, each character in a string requires two bytes of memory
and each character is represented in memory as Unicode (in w hich, the va lues from 1 to
127 correspond to ASCI I).

In Pascal, a string occupies as many bytes as its maximum length plus one. The first byte
contains the current length of the string and the fol lowing bytes conta in the characters of the
string (stored as ASCII). Because the largest unsigned integer that can be stored in a byte is
255, the maximum lengt h of a string is 255 characters.

Date and currency have va rious internal representations but are output in conventional
format (except in Pascal where you have to do a string conversion for dates).

Pascal
Integer (4 bytes)
Real (8 bytes)

char (1 byte -ASCI I)

String (1 byte per
character plus 1)

Use single (1)

quotation marks to
delimit a string.

Boolean (1 byte)

f Chapter 13 Programming and Data Representation
r-

Description of Pseudocode Python VB.NET Pascal
data
Date value DATE Not available Da t e (8 bytes) TDateTime (8 bytes)

as a bu ilt-in
data type

Monetary value CURRENCY Not available Decima l Curr ency (8 bytes)
(16 bytes)

Table 13.03 Further data types

In Python, date and currency are not avai lable as built-i n dat a types. A date is stored as the
number of days after 1/1/0001, using the datet ime class (see Sect ion 13.08). For currency,
use f l oat.

VB.NET stores dates and times from 1.1.0001 (0 hours) to 31.12.9999 (23:59:59 hours) w ith a
reso lution of 100 nanoseco nds (this unit is ca lled a 'ti ck'). Floating-point (decimal) numbers
are stored in binary-coded decimal fo rmat (see Section 1.02). ·

Pasca l stores dates and t imes internally as a rea l nu mber: th e w ho le number pa rt represents
the days since 30/12/1899 and t he fractional pa rt represents the part of the day that has
elapsed (t ime). Cu rrency values are stored internally as a scaled and signed 64-bit integer
w it h the least significa nt fou r digits impl icitly representi ng fo ur decimal places.

There are many more data types. Programmers can also design and declare t heir own data
types (see Chapter 16 (Section 16.01) and Chapter 26 (Section 26 .02).

TASK13.02
1 Look at the identifier tab les in Cha pter 11 (Tables 11.02 and 11.04 to 11.12). Decide which

data type from your language is appropriate for each variable listed .
2 Write program code to implement the pseudocode from Worked Example 11.01 in Chapter 11.

13.04 Boolean expressions
In Chapter 11 (Sect ion 11.05), we covered logic statem ents. These were statements that
included a cond ition. Cond itions are also known as Boo lean exp ressions and evaluate to
either True or False. True and False are known as Boolean va lues.

Simple Boolean exp ressions invo lve comparison operators (Table 13.04). Complex Boolean
expressions also invo lve Boolean operators (Table 13.05).

Operation Pseudocode Python VB.NET Pascal
equa l = -- = =

not equa l <> != <> <>

greater than > > > >

less than < < < <

greaterthan or equa l to >= >= >= >=

less t han or equal to <= <= <= <=

Table 13.04 Comparison operators

•

Cambridge International AS and A level Computer Science

Operation Pseudocode
AN D (logical conjunction) AND

OR (logica l inclusion) OR

NOT (logical negation) NOT

Table 13.05 Boolean operators

13.05 Selection
IF. .. THEN statements

Python
and

or

not

In pseu docode the IF ... THEN construct is wri t ten as:
IF <Boolean expression>

THEN
<statement (s) >

ENDIF

Syntax definitions
Python i f <Boolean expression >:

<s tatement (s) >

VB.NET If <Boolean e xpression >
<statement (s) >

End If

Pascal if <Boolean expression>
then

<Statement>;

Code examples
Pseudocode example:

IF x < 0
THEN

OUTPUT "Negative"
ENDIF

Python if X < 0:

Then

print ("Negative")

VB.NET If X < 0 Then

VB.NET Pascal
And AND

Or OR

Not NOT

Note t hat t he THEN keyword is replaced
by a colon (:) . Indentation is used to
show which statements fo rm part of the
condi t ional statement.
Note the position of Then on the same
line as t he Boolean expression. The
End If keywo rds should line up with
t he If keyword .
If more than one statement is required
as pa rt of the conditional statement,
the statements must be put between
begin and end keywo rds.

Console . WriteLine (" Negative ")
End If

Pascal if X < 0
then

WriteLn ('Negative ') ;

Chapter 13 Programming and Data Representation

TASK13.03
Write program code to implement the pseudocode from Worked Example ll.03 in Chapter ll.

IF ... THEN ... ELSE statements
In pseudocode, the IF .. .THEN .. . ELSE construct is written as:

IF <Boolean expression>
THEN

<statement (s) >
ELSE

<Statement (s) >
END IF

Syntax definitions
Python if <Boolean expression>:

<statement (s) >
else :

<Statement (s) >

VB.NET If <Boolean expression>
<s tatement (s) >

Else
<statement (s) >

End If

Pascal if <Boolean expression>
then

<statement>
else

<Statement >;

Code examples
Pseudocode examp le:

IF x < 0
THEN

OUTPUT "Negative"
ELSE

OUTPUT "Positive"
ENDIF

Indentation· is used to show which
statements form part of the
conditiona l statement the else
keyword must line up with the
corresponding if keyword.

Then The Else keyword is on its own
on a separate line. It is good
programming practice to line it up
with the corresponding If keyword
and indent the statements within
the conditiona l statement.
If more than one statement is
requ ired in the else part of the
statement, the statements must be
placed between begin and end.

Note the convention for indentation.

Do not include a semico lon before
the else.

I

Cambridge International AS and A level Computer Science

Python if X < 0:
print ("Negative")

else :
print ("Positive")

VB.NET If X < 0 Then
Console . WriteLine ("Negat i ve ")

Else
Console . Wr i teLine ("Positive")

End If

Pascal if X < 0
the n

WriteLn('Negative ')
e l s e

WriteLn('Positive');

Nested IF statements
In pseudocode, the nested IF statement is written as:

IF <Bool ean expression>
THEN

<Statement (s) >
ELSE

ENDIF

IF <Bool ean express i on>
THEN

<Statement (s) >
ELSE

<statement (s) >
ENDI F

Syntax definitions
Python

VB.NET

Pascal

if <Boolean expression>:
<statement (s) >

elif <Boolean expression>:
<Statement (s) >

else :
<Statement (s) >

If <Bool ean express i on> Then
<Statement (s) >

Else If
<statement(s)>

Else
<statement (s) >

End If
if <Bool ean expression>

then
<Statement>

e l se
if <Boolean expression>

t hen
<statement>

e lse
<statement>;

Note the keyword elif (an
abbreviation of e l se i f). This
keyword must line up with the
corresponding if.

There can be as many elif parts
to this construct as required.
If Else If is used as one word,
only one End If is required at the
end of this construct.

There can be as many Elseif
parts as requi red.

Repeated indentation can make
nested if statements quite
awkward . However, w ithout
careful indentation, the overview
can be lost. Whenever possible, a
CASE statement is preferable (see
the next section).

- - - - ~ - - - --- - ---- - - ----
)

\ ' Chapter 13 Programming and Data Representation

Code examples
Pseudocode example:

IF x < 0
THEN

OUTPUT "Negative"
ELSE

ENDIF

Python

VB.NET

Pascal

IF x = 0
THEN

OUTPUT "Zero"
ELSE

ENDIF
OUTPUT "Positive"

if X < 0:
print ("Negative")

elif X = 0:
print ("Zero")

else :
print ("Positive"}

If x < 0 Then
Console .WriteLine("Negative ")

Elseif x = O Then
Console . Wri teLine ("Zero ")

Else
Console . WriteLine ("Pos i tive ")

End If
if X < 0

then
Wri teLn ('Negative')

else
if X = 0

then
WriteLn(' Zero')

else
WriteLn('Positive');

TASK13.04
Write program code to implement the pseudocode from Worked Example 11.02 in Chapter 11.

I

- -

Cambridge International AS and A level Computer Science '.

CASE statements
An alternative selection construct is t he CASE statement. Each considered CASE condit ion
can be:

• a single value

• single values separated by commas

a ra nge.
In pseudocode, the CASE statement is written as:

CASE OF <expression>

<valuel >
<value2>, <value3>
<value4 > TO <v a lue 5>

<Statement (s) >
<s tatement (s) >
<S t a tement (s) >

OTHERWISE <Stat ement (s) >
END CASE

The value of <expression > determines which statements are executed . There can be as many
separate cases as requ ired. The OTHERWISE clause is optional and useful for error trapping.

Syntax definitions
Python

VB.NET

Pascal

Python does not have a CASE statement. You need to use nested If
statements instead.

Select Case <express i on >
Case value l

<statement (s) >
Case v a l ue2,value 3

<Statement (s) >
Case v a l ue4 To v a l ue5

<statement (s) >

Case Else
<s t ateme nt (s) >

End Select
case <expre ssion> of

v a l ue l : <stat ement >;
v alue2, value3 : <Statement>;
v alue4 . . value5 : <Statement >;

else
<statement >;

end;

I

f_ Chapter 13 Programming and Data Representation
r

r

Code examples
In pseudocode, an example CASE statement is:

CASE OF Grade
"An
11 F 11

, 11 U"
11 B11 •• 11 E 11

OTHERWISE

OUTPUT "Top grade "
OUTPUT "Fail"
OUTPUT "Pas s"

OUTPUT "Inv alid grade"
END CASE

Python

VB.NET

Pascal

if Grad e -- "A":
print ("To p g rade")

elif Gr a d e -- "F " or Grad e -- "U":
print ("Fail")

elif Grade in ("B" , "C", "D" , "E"):
pri nt ("Pa ss")

else :
print (" Invalid grade")

Select Case Grade
Case "A"

Console .WriteLin e ("Top grade")
Case "F 11 , "U"

Console . WriteLine ("Fail")
Case 11 B 11 To "E"

Console . Wri teLine ("Pass 11)

Case Else
Console . Wri teLine (" Invalid grade 11)

End Select
case Grad e of

'A' : WriteLn('Top grade') ;
'F ' ,'U' : Write Ln (' Fail') ;
'B ' . . 'E' : WriteLn ('Pass ') ;

else
Wr iteLn (' I nvalid grade') ;

end;

I

Cambridge International AS and A level Computer Science

TASK13.05
The problem to be solved: the user enters the number of the month and year. The output
is the number of days in that month . The program has to check if the year is a leap year for
February.

The pseudocode solution is:

INPUT MonthNumber
INPUT Year
Days o
CASE OF MonthNumber

CASE 1,3,5,7,8,10,12: Days 31
CASE 4,6,9,11: Days <- 30
CASE 2: Days 28

If Year MOD 400 = 0
THEN II it is a leap year

Days 29
ENDIF
IF (Year MOD 4 = 0) AND (Year MOD 100 > 0)

THEN II it is a leap year
Days 29

ENDIF
OTHERWISE: OUTPUT "Invalid month number"

END CASE
OUTPUT Days
Write program code to implement the pseudocode above.

13.06 Iteration
Count-controlled (for) loops
In pseudocode, a count-controlled loop is written as:

FOR <control variable> s TO e STEP i II STEP is optional
<Statement (s) >

END FOR

The control variable starts with values, increments by value i each time round the loop and
finishes when the control variable reaches the value e.

------ ------ ---

- . -~!;!11:f
Chapter 13 Programming and Data Representation ·

I

Syntax definitions
Python for <Control variable> in range (s, e, i): The values s, e and i must

<Statement (s) > be of type integer.

The loop fin ishes when the
control variable is just below
e. The values for sand i can
be omitted and they default
too and 1, respectively.

VB.NET For <control variable> = s Toe Step i The values s, e and i can be
<statement (s) > of type integer or float.

Next
Pascal f o r <control variable> .- s toe d o The control va riable can

<Statement>; be of type integer or char.
Intervals other than 1 are not
available.

Code examples
Python for x in range (5): The start value of xis O and

print (x, end= ' ') it increases by 1 on each
iteration.
Output: o 1 2 3 4

for x in range (2, 14, 3): Output: 2 5 8 11
print (x, end= ' ')

for x in range (5, 1 , -1): The start value of xis 5 and • print (x, end=' ') it decreases by 1 on each
iteration.

Output: 5 4 3 2
for x in ["ar• , r•b•• , "c"]: The control variable takes

print (x, end= '') the value of each of the
group elements in turn.

Output: abc

VB.NET For x = 1 To 5 Output: 1 2 3 4 5
Console .Write (x)

Next
For x = 2 To 14 Step 3 Output: 2 5 8 11 14

Console .Wri te (x)
Next
For x = 5 To 1 Step -1 Output: 5 4 3 2 1

Console . Write (x)
Next
For x = 1 To 2.5 Step 0.5 Output:

Console .WriteLine(x)
1 Next
1. 5
2
2.5

Cambridge International AS and A level Computer Science

Pascal

TASK13.06

For Each x In {11 a 11 , 11 h 11 , "c" }
Console .Write(x)

Next

for x := 1 to 5 do
write(x);

for x := 5 downto 1 do
write(x);

for x : = 'a' to 'c' do
write (x) ;

The control variable takes
t he value of each of the
group elements in turn .

Output: abc

Output: 1 2 3 4 s

Output: s 4 3 2 1

Output: abc

1 Write program code to implement the pseudocode from Worked Example 11.05 in Chapter 11.
2 Write program code to implement the pseudocode from Worked Example 11.08 in Chapter 11.
3 Write program code to implement the pseudocode from Worked Example 11.09 in Chapter 11.

Post-condition loops
A post-condition loop, as the name suggests, executes the statements within the loop at
least once. When the condition is encountered, it is eva luated. As long as the condition
evaluates to False the statements within the loop are executed again. When the condition
evaluates to True, execution wi ll go to the next statement after the loop.

When coding a post-condition loop, you must ensure that there is a statement within the
loop that w ill at some point change the end condition to True. Otherwise the loop w ill
execute forever.

In pseudocode, the post-condition loop is wri tten as:

REPEAT
<Statement (s) >

UNTIL <Condition>

Syntax definitions
Python

VB.NET

Pascal

Post-cond ition loops are not available in Python. Use a
pre-condition loop instead.
Do

<statement (s) >
Loop Until <condition>
repeat

<statement(s)>;
until <condition>;

Code examples
Pseudocode example:

REPEAT
INPUT "Enter Y or N: "Answer

UNTIL Answer= "Y"

- -- -- - -- --~ -- - -- - -

' ,r

Chapter 13 Programming and Data Representation
r-

I

[

VB.NET Do
Console .Write ("Enter y or N: ")

Answer = Console . ReadLine ()
Loop Until Answer = 11y11

Pascal repeat
Write ('Enter y or N: ');

ReadLn(Answer);
until Answer = 'Y';

TASK13.07
1 Write program code to implement the pseudocode from Worked Example 11.04 in Chapter 11.
2 Write program code to implement the first algorithm from Worked Example 11.06 in

Chapter 11.

Pre-condition loops
Pre-condit ion loops, as the name suggests, eva luate the condition before the statements
within the loop are executed. Pre-condition loops will execute the statements within the loop
as long as the condi t ion evaluates to True. When the condition evaluates to False, execut ion
wil l go to the next statement after the loop. Note that any variable used in the condition must
not be undefined when the loop structure is first encountered.

When cod ing a pre-condition loop, you must ensure that there is a statement within the loop
that wil l at some point change the value of the controlling cond it ion. Otherwise the loop will
execute forever.

In pseudocode the pre-condition loop is written as:

WHI LE <Cond ition>
<statement (s) >

ENDWHILE

Syntax definitions
Python while <condi t i on>:

<Statement (s) >

VB.NET Do While <condition>
<stateme n t (s) >

Loop
Do Until <condition>

<statement (s) >
Loop

Pascal while <Condition> do
<statement>;

Note that statements within the loop
must be indented by a set number of
spaces. The first statement after the loop
must be indented less.
Note the keyword Loop indicates the end
of the loop.

VB.NET also has a pre-condition until
loop. This will execute the statements
within the loop as long as the condition
evaluates to False. If the condition
evaluates to True when the loop is first
encountered, the statements with in the
loop are not executed at all .

•

Cambridge International AS and A level Computer Science

Code examples
Pseudocode example,

Answer ,e- ""

WHILE Answer<> "Y"
INPUT "Enter Y or N: "Answer

ENDWHILE

Python

VB.NET

Pascal

TASK13.08

Answer ; ''
while Answer !; ' Y ':

Answer ; input('Enter Y or N: ')
Dim Answer As String; ""
Do While Answer <> "Y"

Console .Write ("Enter Y or N: ")
Answer ; Console .ReadLine ()

Loop
Answer = 1111

Do Unt i l Answer ; "Y"
Console .Write("Enter Y or N: ")
Answer; Console .ReadLine()

Loop
Answer . - 11 ;

while Answer <> 'Y' do
begin

Write ('Enter Y or N: 1) ;

ReadLn (Answer);
end;

Note t he use of the co mpound
statement, enclosed between
the keywords begin and
end. These keywords are not
required if there is only a single
statement within the loop. For
example:
whi l e x < 10 do

X .- X + 1;

Write program code to implement the second algorithm from Worked Example 11.06 in Chapter 11.

Which loop structure to use?
If you know how many t imes around the loop you need to go when the program execution
gets to the loop statements, use a count-controlled loop. If the termination of the loop
depends on some condi tion determined by what happens within the loop, then use a
cond it ional loop. A pre-condition loop has the added benefit that the loop may not be
entered at all , if the cond ition does not require it.

13.07 Arrays
Traditionally, an array is a static data st ructure. This means the array is declared with a
specified number of elements of one specified data type and this does not change after
compilation . However, many programming languages now allow an array to be dynamic. This
means the array can grow in size if required .

---- -- ----- - ----

,-
f Chapter 13 Programming and Data Representation r

i
'

Creating lD arrays
When we write a list on a piece of paper and number the individual items, we wou ld normally
start the numbering with 1. You can view a 1D array like a numbered list of items. VB.NET
and Python number array elements from O (t he lower bound). Depending on the problem to
be solved, it might make sense to ignore element O. Pascal allows you to choose your lower
bound to be any integer. The upper bound is the largest number used for numbering the
elements of an array.

In pseudocode, a 1D array decla ration is wri tten as:

DECLARE <arrayidentifier> : ARRAY[<lowerBound>:<upperBound>] OF <dataType>

Syntax definitions
Python In Python, there are no arrays. The equ ivalent data structure is

called a list. A list is an ordered sequence of items that do not have
to be of the same data type. Python's lists are dynamic.

VB.NET Dim <arrayidentifier> (< upperBound>) As <dataType>

Pascal var <arrayidentifier> : array [lowerBound .. upperBound]
of <dataTy pe>;

Code examples
Pseudocode example:

DECLARE Listl ARRAY[l:3] OF STRING II 3 elements in this list
DECLARE List2 ARRAY[0:5] OF INTEGER II 6 elements in this list
DECLARE List3 ARRAY[l:100) OF INTEGER II 100 elements in this list
DECLARE List4 ARRAY[0:25] OF STRING II 26 e l ements in this list

Python Listl = [] As t here are no declarations, the
Listl .append ("Fred") only way to generate a list is to
Listl.append("Jack") initial ise one.
Listl. append("Ali")

You can append elements to an
existing list.

List2 = [O, 0, 0, 0, 0, OJ You can enclose the elements
in [].

List3 = [O for i in range (l OO)) You can use a loop.
AList = ["") * 26 You can provide an in it ia l

value, multiplied by number of
elements required.

VB.NET Dim Listl As String () = { II 11
1

II II
1

11 11} You can initialise an array
Dim List2 (5) As Integer at declaration time (as with
Dim List3 (100) As Integer List1). Note that List3 has
Dim ALi st(O To 25) As String 101 elements. You can use a

range as an array dimension (as
with AList) however the lower
bound must be 0.

Pascal var Listl : array[l..3] of string; The dimension ca n be an
var List2 : array [10 .. 15] of integer; integer ra nge or a char range.
var NList : array [l. .100] of integer; Ranges can start with any value.
var AList : array['A' .. ' Z '] of string;

.-- - - - -

•

Cambridge International AS and A level Computer Science

Accessing lD arrays
A specific element in an array is accessed using an index va lue. In pseudocode, this is written as:

<arrayldentifier> [x)

Code examples
Pseudocode example:

NList[25) = O II set 25th element to zero
AList[3) = "D" II set 4th ele ment to letter D

Python NList [24) = 0
ALi st[3) = 11n11

VB.NET NList(25) = 0 We ignore element 0, so the
AList(3) = 11 n 11 25th element is NList (25) .

Pascal NList [24) . - 0
AList['D') . - 'D'

In Python, you can print the whole contents of a list using print(Li st). In VB.NET and
Pascal, you need to use a loop to print one element of an array at a time.

TASK13.09
l Write program code to implement the pseudocode from Worked Example 11.10 in Chapter 11.
2 Write program code to implement the pseudocode from Worked Example 11.11 in Chapter 11.
3 Write program code to implement the improved algorithm from Worked Example 11.12 in

Chapter 11.

Creating 2D arrays
When we write a table of data (a matrix) on a piece of paper and want to refer to individual
elements of the table, the convention is to give the row number first and then the column
number. When declaring a 2D array, the number of rows is given first, then the number of
co lumns. Again we have lower and upper bounds for each dimension. VB .NET and Python
number all elements from 0.

In pseudocode, a 2D array declaration is written as:
DECLARE <identifier> : ARRAY [<lBoundl>: <uBo undl >,
<1Bound2>:<uBound2>) OF <dataType>

Syntax definitions

Python In Python, there are no arrays. The equ ivalent data structure is a
list of lists.

VB.NET Dim <array ldent ifier> (<uBoundl, uBound2 >) As
<dataType>

Pascal var <arrayldentifier> : array [lBoundl.. uBoundl,
1Bound2 .. uBound2) of <dataType>;

Code examples
To declare a 2D array to rep resent a game board of six rows and seven columns, the
pseudocode statement is:

Board[l:6, 1:7) OF INTEGER

---- -

'

• I

r
I r
I .-- -

Chapter 13 Programming and Data Representation

Python Board = [[O, 0, 0, 0, 0, 0, OJ, 20 lists can be initialised
[0, 0, 0, 0, 0, 0, OJ, in a similar way to 10 lists.
[O, 0, 0, 0, 0, 0, O], Remember that elements are
[O, 0, 0, 0, 0, 0, OJ,

numbered from 0.
[O, 0, 0 , 0, 0, 0, OJ,

[O, 0, 0, 0, 0, 0, O]J These are alternative ways of
Board = [[O for i in range(7)] initialising a 6 x 7 list. The rows

for j in range(6)] are numbered Oto 5 and the
Board = [[OJ * 7] * 6 columns Oto 6.

The upper va lue of t he range is
not included.

VB.NET Dim Board(6, 7) As Integer Elements are numbered from
0 to the given number. This
declaration has one row and one
column too many. However, the
algorithm m·ay be such that it
is easier to convert to program
code if row O and column Oare
ignored.

Pascal var Board : array [l . . 6 , 1 .. 7] of Similar to 10 arrays, 20 array
integer; ranges can start with any value

and can be of type integer or
char.

Accessing 2D arrays
A specific element in a table is accessed using an index pair. In pseudocode this is written as:

<arrayidentifier> [x, y]

Code examples
Pseudocode example:

Board[3,4] = 0 II sets the element in row 3 and column 4 to zero

The following code examples demonstrate how to access elements in each of the three
languages.

Python Board [2] [3] = 0 Elements are numbered
from O in Python, so [3) gives
access to the fourth element.

VB.NET Board(3, 4) = 0 We are ignoring row O and
column 0.

Pascal Board[3, 4] : = 0 When the array was
declared, the elements were
numbered from 1.

TASK13.10
Write program code to implement the pseudocode from Worked Example 11.13; first in itialise
the table and then output its contents.

- -- -- -- ----

•

Cambridge International AS and A level Computer Science

13.08 Built-in functions
Program mi ng envi ronments provide many bui lt- in functions. Some of them are always
ava ilab le to use; some need to be imported from specialist module li brari es.

Discussion Point:
Investigate your own programming environment and research other libra1·y routines .

String manipulation functions
Table 13.06 contains some usefu l funct ions for ma nipulati ng st rings.

Description Pseudocode Python VB.NET Pascal
Access a single T h isString [Pl Thi sString [Pl ThisString (P) T h i sSt ring [Pl

character using Counts from 1 Counts from 0 Counts from 0 Count s from 1
its posit ion P in a
string

Return the CHAR(i) c hr (i) Chr(i) Chr (i)

character
associated with
the specified
character code
Return an ASCII (ch) o r d(ch) Asc(ch) Ord (ch)

integer va lue
representing the
character code
of the specified
character
Return an integer LENGTH (S) l e n (S) l e n (S) L e n g th (S)

that contains
the nu mber of
cha racters in
string s
Return a su bstring LEFT (S , L) S[O: Ll Le f t(S, L) Uses the StrUtils library
of length L from See the next LeftStr (S , L)

the left of st ring s section, on
slicing

Return a subst ring RIGHT (S, L) S [-L:l Right (S, L) Uses the StrUtils library
of length L fro m See the next Righ tSt r (S , L)

th e right of stri ng section, on
s sl icing

Retu rn a substring MID (S , P, L) S[P : p + L] mid(S, P, L) Uses t he StrUti ls library
of length L from See the next MidS t r(S , P, L)

position P in sect ion, on
st ring s slic ing

Join stri ngs CONCAT (Sl, S2) s = Sl + S2 s = S l + S2 s . - Con cat (Sl, S2);
Sl & S2 s = S l & S 2 s . - S l + S2 ;

Table 13.06 Some useful string manipulation funct ions

I

• Chapter 13 Programming and Data Representation

t

r
r

Slicing in Python
In Python a subsequence of any sequence type (e.g. lists and strings) can be created using
'slicing'.

A slice is a substring of a string. For example, to get a substring of length L from position Pin
string S we write S[P: P + L].

Figure 13.05 shows a representation of ThisString. If we want to return a slice of length 3
startin g at position 3, we use ThisString[3 : 6] to give 'DEF'. Position is counted from 0
and the position at the upper bound of the slice is not included in the substring.

ThisString
[OJ [l] [2] [3] [4] [5] [6]

A B C D E F G

Figure 13.05 A representation ofThisString

If you imagine the numbering of each element to start at the left-hand end (as shown in
Figure 13.05), t hen it is easier to see how the left element (the lower bound) is included, but
the right element (the upper bound) is excluded. Table 13.07 shows some other usefu l slices
in Python.

Expression Result Explanation
ThisString (2:] CD EFG If you do not state the upper bound, the sli ce

includes al l characters to the end of the string.
ThisString [: 2] AB If you do not state the lower bound, the slice

includes all characters from the beginning of
t he string.

ThisString[-2:] FG A negative lower bound means that it takes the
slice starting from the end of the string.

ThisString (: -2] ABCDE A negative upper bound means that it

Table 13.07 Some useful slices in Python

terminates the string at that position.

Rounding numbers
Sometimes we need to round numbers after a calculation involving real numbers. Rounding is
done away from zero. Th is means that 0.5 is rounded to 1 and - 0.5 is rounded to-1.0.

Python r ound(x[, ndigits]) The float ing-point value x is rounded to
ndigits after the decimal point. If ndigits
is omitted , it defaults to zero. The result is a
floating point number.

VB.NET Math .Round(x) The value of xis rounded to the nearest
whole number.

Pascal Round(x) The value of xis rounded to the nearest
whole number.

•

Cambridge International AS and A level Computer Science

Truncating numbers
Instead of rounding, sometimes we just want the whole number part of a real number.
This is known as 'truncation'.

Python int (x) If xis a floating-point number, the
conversion truncates towards zero.

VB.NET Ma th . Truncate (x) The whole number part of the rea l number x
is returned.

Pascal Trunc(x) The whole number part of the real number x
is returned .

Converting a string to a number
Sometimes a whole number may be held as a string. To use such a number in a calculation,
we first need to convert it to an integer. For exa mple, these funct ions return the integer value
5 from the string 11 511 :

Python int (S)

VB.NET Cint(S)

Pascal StrToint (S)

Sometimes a number with a decimal point may be held as a string. To use such a number in a
calculation, we first need to convert it to a real (float). For example, these fu nctions return the
real number 75.43 from the string "75.43 ":

Python float(x) The returned value is a floating-point
number.

VB.NET CDbl(S) The returned value is of type doub le.
Pascal StrToFloat (S) The returned value is a floating-point

number.

Formatting numbers for output
When we want to present output in a tabulated way, we need to format the output
statement.

Python print (11 Nl: {0:>10} IN2: (1 :AlO } JN3 : {2:<10} I${ When using the placeholder method for a
3:. 2f}" .format (Nl , N2, N3, Price)) print statement in Python, you can format

the output. Within{}, you give the number of
the item in the print list, then a colon(:) and
then these codes:

I\ centres the value
< align the va lue on the left
> aligns the value on the right
w a number giving the overall

character width of the value
xf where xis the number of decimal

places for a floating point number

- - - --- - -

11

• Chapter 13 Programming and Data Representation

t

t
(

t
l

VB.NET Dim Nl As Decimal = 21.457 : c outputs t he va lue as currency: $21.46.
Dim N2 As Double = 3.14159 : F outputs a double as fixed point (with two
Console . WriteLine ("Price: {O:C} ", Nl) decima l places): 3.14.
Console . WriteLine ("Pi : { 0 :F} ", N2)

Pascal Write(<printlistitem>:W:D); Print list items can be formatted using a
WriteLn(Pi:5 :2); field width, W, and the number of decimal

places, D.

Random number generator
Random numbers are often required for simulations. Most programming languages have
various random number generators available. As the random numbers are generated
through a program, they are referred to as 'pseudo-random' numbers.

Python # in the random library: This code produces a random number
randint (l, 6) between 1 and 6 inclusive.

VB.NET Dim RandomNumber As New Random You hav·e to set up a RandomNumber object
Dim x As Integer (see Chapter 27). This code generates
X = RandomNumber .Next(l, 6) an integer between 1 (inclusive) and 6

(exclusive).
Pascal Random(6) The simplest option returns a random

number between O (inclusive) and
6 (exclusive) .

Randomize; This code initialises the random number
generator.

RandSeed .- <i nteger value> It can be useful, particularly during testing,
to produce the same sequence of random
numbers each time the program executes.

RandomRange (1, 6) There is a function in the Math library
that returns a random number between
two values, in this case 1 (inclusive) and 6
(exclusive).

TASK13.ll
l Write program code to generate 20 random numbers in the range l to 10 inclusive.
2 Write program code to implement the pseudocode using a pre-condition loop from

Worked Example 11.07 in Chapter 11.

Date and time functions
Sometimes we want to work with the current time and date. The system clock can provide
this. There are many functions available to manipulate dates and t imes. Most are beyond the
scope of this book. Here are just a few basic functions.

•

Cambridge International AS and A level Computer Science

Python

VB.NET

Pascal

f rom datetime imp ort*
SomeDate = date(2015,3,15)

Today = date.today()

prin t(SomeDate)
prin t(Today)

SomeDate = SomeDate +

t i mede l ta(l)

Dim SomeDate, Today As Date
SomeDate = #3/15/2015#

Today = Now()

Console .WriteLine(SomeDate)
Console .Writ eL i ne(Today)

SomeDate =
SomeDate .AddDays (1)

v a r SomeDate, Today :
TDateTime;
v a r DateString : String ;
DateStri ng . - '15/03/2015';
SomeDate . -
StrToDate (DateString);
Today := Date();

DateStri ng . -
DateToStr (SomeDate);
Wri t e Ln(DateString);
DateString : = DateToStr (Today);
Wri teLn (DateStri ng);
SomeDate : = SomeDate + l;

TASK13.12

Import the library.
Convert the separate integers for year,
month and day into a date.
The system clock can be read .

Date values con be output without
conversion .
Adding timedelta(l) moves the date on by
l day.
Declare date variables.
The format of the string is M M/DD/ YYYY.

The system clock can be read . The value
returned is of type Date.

Date type va lues can be output without
conversion .
Add a value to a date to increment it by a
number of days.
Declare date variables.
A date stored as a string can be converted
to store it in a variable of type TDateTime.

The system clock can be read. The value
returned is of type TDateTime.

A date must be converted to a string for
output.

Adding l to a date produces the next day's
date.

Write program code to get today's date from the system clock and output it with a suitable
message. Also output tomorrow's date with a suitable message. Will your program give the
correct information, regardless of which day it is executed?
Extend your program to output yesterday's date.

Discussion Point:
What other usefu l functions can you find? Which module libraries have you searched?

, Chapter 13 Programming and Data Representation

' ,
r ,

13.09 Text files
Data need to be stored permanently. One approach is to use a file. For example, any data
held in an array whi le your program is executing will be lost whe n the program stops. You
can save the data out to file and read it back in when your program requires it on subsequent
executions.

A text file consists of a sequence of characters fo rmatted into lines. Each line is terminated by
an end-of- line marker. The text file is terminated by an end-of-f ile marker.

Note: you can check the contents of a text f ile (or even create a text file requ ired by a
program) by using a text editor such as NotePad.

Writing to a text file
Writ ing to a text file usually means creating a text f ile.

The fo llowing pseudocode statements provide faci lities for writing t9 a fi le:

OPENFILE <filename> FOR WRITE // open the f i le f or writing
WRITEFILE <filename >, <stringValue> // write a line of text to the file
CLOSEFILE // close file

The fo llowing code examples demonstrate how to open, write to and close a file ca lled
sampleFile .TXT in each of the three languages. If the fi le already exist s, it is overwritten as
soon as the file handle is assigned by t he 'open file' command.

Python FileHandle = ope n ("SampleFile.TXT" , "wn) You speci fy the filename and mode ('w' fo r
FileHandle .wri te (LineOfTex t) write) when you call th e open fu nct ion. The
FileHandle . close () line of text to be written to the file must

contain t he newline cha racter "\ n" to move
to the next li ne of the text file.

VB.NET Di m Fi l eHandl e As IO. StreamWriter The file is accessed th ro ugh an object (see
Di m LineOfTe x t As String Chapter 27) ca lled a StreamWriter.
FileHandle = New
IO. StreamWriter ("SampleFile . TXT")
FileHandl e. WriteLine(LineOf Text)
FileHandle . Cl ose ()

Pascal var LineOf Text : String ; The TextFi le data type enables append
var FileHandle : TextFile ; access to a file. Note that t he AssignFile
AssignFile (FileHandl e, 'SampleFile.TXT'); procedure sim ply connects t he variable
Rewrite (FileHandle); with the filename; t he Rewr i te procedure
WriteLn (FileHandle, LineOfTe x t) ;

opens t he file. CloseFile (FileHandl e);

•

Cambridge International AS and A level Computer Science

Reading from a text file
An existing file can be read by a program. The following pseudocode statements provide
faci liti es for reading from a fi le:

OPENFILE <filename > FOR READ II open file for reading
READFILE <filename>, <stringVariable> II read a line of text from the file
CLOSEFILE II close file

The following code examples demonstrate how to open, read from and close a file called
sampleFile .TXT in each of the three languages.

Python FileHandle = ope n ("SampleFile.TXT" , "r11) You specify the filename and mode ('r' for
LineOfText = FileHandle .readline () read) when you call the open function .
FileHandle. close

VB.NET Dim LineOfText As String The file is accessed through an object (see
Dim FileHandle As System. Chapter 27) called a StreamReader.
IO. StreamReader
FileHandle = New System.
IO. StreamReader ("Sampl eFi l e . TXT")
LineOfText = FileHandle.ReadLine()
FileHandle .Close ()

Pascal var FileHandle : TextFile; The TextFile data type enables read
var LineOfText : String; access to a file. Note that the Reset
AssignFile(FileHandle, 'SampleFile. TXT'); procedu re opens the file fo r reading.
Reset (FileHandle);
ReadLn(FileHandle, LineOfText);
CloseFile (FileHandle);

Appending to a text file
Sometimes we may wish to add data to an existing file rather than creati ng a new file. This
can be done in Append mode. It adds the new data to the end of the existing file.

The following pseudocode statements provide facilities for appending to a file:

OPENFILE <filename > FOR APPEND II open file for append
WRITEFILE <filename> , <StringValue> II write a line of text to the file
CLOSEFILE II close file

The following code examp les demonstrate how to open, append to and close a file called
sampleFile .TXT in each of the three languages.

r Chapter 13 Programming and Data Representation
r

t
!

' r r
~-
I

r

Python FileHandle = open (" Samp l eF i le .TXT" , "a") You specify the filename and mode ('a' for
FileHandle.write(LineOfText) append) when you call the open funct ion.
FileHandle. close ()

VB.NET Dim FileHandle As I O. StreamWriter The file is accessed through a
FileHandle = New StreamWriter. The extra parameter, True,
IO. StreamWriter (" SampleFile . TXT" , True) tells the system to append to the object.
FileHandle.WriteLine(LineOfText)
FileHandle. Close ()

Pascal var LineOfText : String; The TextFile data type enables append
var FileHandle : TextFile; access to a file. Note that the Append
AssignFile(FileHandle, 'SampleFile.TXT'); procedure opens the file for appending.
Append (FileHandle);
WriteLn(Fi leHandle, LineOfText);
CloseFile (FileHandle);

The end-of-file (EoF) marker
If we want to read a file from beginning to end we can use a conditional loop. Text files
contain a special marker at the end of the file that we can test for. Testing for this special end-
of-file marker is a standard function in programming languages. Every time th is function is
called it will test fo r this ma rker. The function will return FALSE if the end of the file is not yet
reached and will return TRUE if the end -of-file marker has been reached.

In pseudocode we call this function EOF(). We can use the construct REPEAT ... UNTIL EOF().

If it is possible that the fi le contains no data, it is better to use the construct WHILE NOT
EOF()

For example, the following pseudocode statements read a text file and output its contents:

OPENFILE "Test . txt" FOR READ
WHILE NOT EOF("Test.txt")

READFILE "Test. txt", TextString
OUTPUT TextString

ENDWHILE
CLOSEFILE "Test. txt"

The following code examples demonstrate how to output the contents of a file in each of the
three languages.

•

Cambridge International AS and A level Computer Science

Python

VB.NET

Pascal

FileHandle = op en ("Test.txt" , "r")
LineOfText = FileHandle.readline()
while len (LineOfText) > 0:

LineOfText = FileHandle.readline()
print (LineOfText)

FileHandle. c l ose
Dim LineOfText As String
Dim FileHandle As System.IO. StreamReader
FileHandle = New
System. I O. StreamReader (" Test. txt")
Do Until File Handle.EndOfStream

LineOfText = FileHandle.ReadLine()
Console .WriteLine (LineOfText)

Loop
FileHandle. Close ()
var FileHandle : TextFile;
var LineOfText : String;
AssignFile (FileHandle, 'Test. txt');
Reset (FileHandle);
while not EoF (Fi lehandle) do

begin
ReadLn (FileHandle, LineOfText);
WriteLn(LineOfText);

end;
CloseFile (FileHandle);

• Programming constructs in Python, VB.NET and Pascal have been introduced:

, declaration and assignment of constants and variables

, the basic constructs of assignment, selection, repetition , input and output

• built-in data types and functions

, declaring arrays and using them in a program.

• Code should be commented where it helps understanding.

• Boolean expressions are needed for conditions.

· • Text files can be written to and read from within a program.

There is no explicit EOF function . However,
when a line of text has been read that on ly
cons ists of the end-of-file marker, the line of
text is of length 0.

When the end -of-file marker is detected,
the EndOfStream method returns the value
True and so the loop will end.

The EoF funct ion returns the value True
when the end-of-file marker is detected.

--- - ----

,-r- - - - - -

' '· Chapter 13 Programming and Data Representation
(' .

Exam-style Questions
1 Matt wants a program to output a conversion table for ounces to grams (1 ounce is 28.35

grams). He writes an algorithm:

OUTPUT "Ounces Grams"
FOR Ounces~ 1 TO 30

Grams~ Rounded(Ounces * 28.35) II whole number of grams only
OUTPUT Ounces, Grams

END FOR

Write program code to implement the algorithm. Include formatting, so that the output is tabulated.
2 Write program code to accept an input string UserID. The program is to test the userID format. A valid format userID

[7]

consists of three upper case letters and four digits. The program is to output a message whether userrn is valid or not. [5]

3 Fred surveys the students at his college to find out their favou rite hobby. He wants to present
the data as a ta lly cha rt.

Fred plans to enter the data into the computer as he surveys the students. After data entry
is complete, he wants to output the total for each hobby.

1 Reading books \ \ \

2 Play computer games \\\\\\\\

3 Sport \\\\\

4 Programming \\

5 Watching TV \\\\\\\\\\\

He starts by writing an algorithm:

Initialise Tally array
REPEAT

INPUT Choice II 1 for Reading, 2 for computer games;
II 3 for Sport, 4 for Programming, 5 for TV
I I O to end input

Increment Tally[Choice]
UNTIL Choice= 0
FOR Index= 1 TO 5

OUTPUT Tally[Index)
END FOR

a Write program code to declare and initialise t he array Tally[l:5) OF INTEGER.

b Write program code to implement the algorithm above.

c Write program code to declare an array to store the hobby titles and rewrite the FOR loop of your program in
part (b) so that the hobby title is output before each tally.

d Write program code to save the array data in a text file.

e Write program code to read the data from the text file back into the initialised array.

[5]

[7]

[4]

[5]

[5]

I

Learning objectives
By the end of this chapter you should be able to:

• use a procedure and explain where in the construction of
an algorithm it is appropriate to use a procedure

• show understanding of passing parameters by reference
and by value

• use a function and explain where in the construction of an
algorithm it is appropriate to use a function

• use the terminology associated with procedures and
functions: procedu re/ function header, procedure/
function interface, pa rameter, argument, return value

• show understanding that a function is used in an
expression

• write programs containing several components and
showing good use of resou rces.

Chapter 14: Structured Programming

14.01 Terminology
Different programming languages use diffe rent terminology for their subrout ines, as listed
in Table 14.01.

Pseudocode PROCEDURE FUNCTION
Python vo id function fruitful function
VB Subroutine Function
Pascal procedure function

Table 14.01 Programming language terminology for subroutines

14.02 Procedures
In Chapter 12 (Section 12.02), we used procedures as a means of giving a group of statements
a name. When we want to program a procedure we need to define it before the main
progra m. We ca ll it in the main program when we want t he statements in the procedure body
to be executed .

In pseudocode, a procedure definition is written as:

PROCEDURE <procedureidentifier> ()
<Statement (s) >

END PROCEDURE

II this is the procedure header
II these statements are the procedure body

This procedure is called using the pseudocode statement:

CALL <procedureidentifier>O

Syntax definitions
Python def <identifier>():

<Statement (s) >

VB.NET Sub <identifier>()

<statement (s) >

End Sub
Pascal procedure <identifier>;

begin

<s tatement (s) >;

end;

When programming a procedure, note where the definition is written and how the procedure
is called from t he main program.

Code examples
Here is an example pseudocode procedure definition:

PROCEDURE InputOddNumber ()
REPEAT

INPUT "Enter an odd number: "Number
UNTIL Number MOD 2 = 1

END PROCEDURE

This procedure is called using the CALL statement:

CALL InputOddNumber ()

I

Cambridge International AS and A level Computer Science

Python

VB.NET

ProcedureE.xample.py - C! e
File Edit Format Run Options Windows Help
def I n pu tOddNumber(}:

Numbe r = 0
w:-_:...:..e Number % 2. = 0:

Numbe r = i n t(inpu t("Enter an odd nurr.1::er: " }}

f 1<1""'*"'*"** main program starts here "'*"'""*"·1<1<1<1<1<1.-1,
InputOddNumber ()

Figure 14.01 The Python editor with a procedure

The Python edi tor colou r-codes the different parts of a statement. This helps
when you are typing your own code. The indentation shows which statements
are pa rt of the loop.

The bui lt-in function input returns a string, which must be converted to an
integer before it can be used as a number.
Ii\! ConwleApphcahool - MICl'o
Ale Edit View Project Debug Data Tools Window Help

r lodu~~/~~~t : ~ As Integer

13 Sub InputOddNumber ()
Do

Console .Write ("Enter an odd number: ")
r</umber = Console . Readl ine

Loop Until Number Mod 2 : 1
End Sub

Sub Main ()
InputOddNumber ()
Console . Readline ()

End Sub

Figure 14.02 The Visual Basic Express editor with a procedure

The Visual Basic Express editor colour-codes differen t parts of the statement ,
so it is easy to see if syntax errors are made. The editor also auto-indents and
capital ises keywords.

Va riables need to be declared before they are used. The editor wil l fo llow the
capitalisation of the variable declaration when you type an identifier without
following your original capi talisation.

The editor is predictive: pop-up lists will show when you type the first part of a
statement.

When you execute t he Main program, Console.ReadLine() keeps the
run-t ime window open .

(Chapter 14: Structured Programming

f

f

t
i

r ,

I

Pascal •=e..l.g.J~
P,oject2 J

program Proj ect2;

{ SAPPTYPE co~sou: i

uses
Sy:,Otils;

var Number : integer;

procedure I nputOdd.Nurnber;
begin

repeat
Write (' Enter a n odd number: ' } ;
ReadLn (Number);

until Number MOD 2 - l;
end;
II ,.,.,.. ... ,..,..,..*,..*main program starts here ••••*"'"'**••••

beqin
Inpu t Odd.Number:
Read.Lo;

• end .

..!1..J r--1 22: 2 r----jlnsert 1'&2/

Figu re 14.03 The Pascal editor with a procedure

-

-

The Pascal editor automatically emboldens keywords.

The procedure body is enclosed withi n begin and end statements.

There is no semicolon after the keywords begin or repeat .

Variab les need to be declared before they are used.

When you execute t he ma in program, ReadLn keeps the run-t ime window
open. Th e ma in program finishes with end. (note the ful l stop).

TASK14.01
Write program code to implement t he pseudocode from Worked Example 12.02 in Chapter 12.

14.03 Functions
In Chapter 13 (Section 13.08), we used built-in functions. These are useful subroutines written
by other progra mmers and made ava ilable in module libraries. The most-used ones are
usually in the system library, so are available without having to exp licitly import them.

You can write your own functions. Any function you have written can be used in another
program if you bu ild up your own module library.

A funct ion is used as part of an expression . When program execution gets to the statement
that includes a funct ion call as part of t he expression, the function is executed. The value
returned from this fu nction cal l is then used in the expression .

When writing your own function, ensure you always return a value as part of the statements
that make up the function (the function body). You ca n have more than one RETURN
statement if there are different paths through the funct ion body.

•

Cambridge International AS and A level Computer Science

In pseudocode, a funct ion definit ion is written as:

FUNCTION <f unctionident if i er>O RETURNS <dataType> I I f u nc t ion header
<Statement (s) > I I function b o d y
RETURN <value>

END PROCEDURE

Syntax definitions
Python def <function i dent ifier> ():

<statement (s) >
return <value >

VB.NET Function <func t i onident i fier > () As <d a taType >
<Statement (s) >
<func t ioni dentifier> = <v alue> 'Return <value>

End Function

Pascal funct i on <funct i onidentifier> () : <dataTy pe>;
begin

<s t atement (s) ;
result . - <va l u e>; I I <functionident i fier> .- <value>;

end;

When programming a funct ion , the defin ition is wri tten in the same place as a procedu re. The
fun ct ion is ca lled from within an exp ression in t he main program, or in a proced ure.

Code example

We can write the examp le procedure from Section 14.02 as a function . In pseudocode, this is:

FUNCTION InputOddNumber () RETURNS INTEGER
REPEAT

INPUT "Enter an odd numbe r : "Number
UNTIL Number MOD 2 = 1
RETURN Number

END FUNCTION

Python * ProcedureE:xam
File Edit Format Run Options Windows Help

def Inpu t OddNumber (),:
Numbe r = Cl
w::--. .:..ie Numb e r % 2 = = O:

Numbe r = int (input ("E:1ter a.n odd nmr:Cer: "> }
:::et·.:::::::-. Niruuib e r

-,· 1<1<*--.,· 1<-1< ·1<1<· main program starts h ere
Ne wNu mber = I n p;ut Cdd.Nmmbe r · (}

Figure 14.04 The Python editor wi th a funct ion and local variable

The variable Number in Figure 14.04 is not accessi ble in t he ma in program. Pyth on's va riables are local
un less decla red to be global.

't
: Chapter 14: Structured Programming
;,-

VB.NET

Pascal

(a)

" ..
File Edit View Project Debug Data Tools Window Help

EJModule '·\odulel
I Dim Numbe r , NewNumber As Integer

2J Funct ion InputOddNumber ()

f

1

Do
Console .Write ("Enter a n odd number: ")
Nurr:be r = Console . Read l ine

Loo p Until Number Mod 2 = 1
InputOdd~lumber = Number

End Function

Sub Main()
NewNumber = InputOddNumber ()
Ccnscle . Readline ()

End Sub

L End ._\odule

l
.. ..
File Edit View Project Debug Data Tools Window Help

I Hodu~~~~ : ~ ~! ber As Integer

El Function InputOddNumber () I :m Number As Integer

Console .Write ("Ente r an odd nun:be r : ")
Number : Ccnsole .Readline

l oop Until Number Mod 2 = 1
InputOddNumber = Number

End Function

El Sub Ma i n()
NewNumber = InputOdd~lumber()
Console . Readline ()

End Sub

Figure 14.05 The VB.NET editor with (a) global variables and (b) a local variable

The va riable Number in Figure 14.0S(a) is declared
as a global variable at the sta rt of the module. This
is not good programming practice.

(a) = . '
Project2 I

program Project.2;

uses
Sy .sOcil .s;

var NUIC.ber, NewN:lll'.ber : integer;

function I n p u t.OddNumber : i n te~er;
ber;iin

repeat
Wri te ('Enter odd :mn:ber : 1) ;

ReadI.n (Nun:ber) ;
until N·am.ber MOD 2 = 1;
Re3Ult := Nt.m:.ber;

end;
II **** ** *""*.tmai n program starts here

be(Jin
Ner,1~btt:ber : - I:1p·.ltOddN..mber;
Read.Ln;

end.

r------1 23: 11 r----~ Code
.21 Build
"

In Figure 14.0S(b), the variab le Number is declared
as a local variable within the function.

= ..
Project2 J

program Proj ect2;

{ SAPFTIPE CCNSC:..E i

uses
Sy~Otils;

var NewNurcber : i nt.eqer;

funct ion InputOddNurr.ber inteQer;
var Nurr.ber : inte:ger;
begin

repeat
Wr i te('En ter a n o dd m m:b er: ');
ReaclLn (Nurcber) ;

until N'ult.ber MOD 2 - 1 ;
R.esul c : = Nun:ber ;

end;
II ***"'**** **main prog ram starts here

beqin
NewNun:ber : "" I npu tOd.dNun:ber;
ReadL:l;

end.

r------1 25: 1 jMod'lfied Code

Figure 14.06 The Pascal editor with (a) global variable and (b) local variable
The variable Number in Figure 14.06(a) is declared In Figure 14.06(b), the variable Number is declared
as a global variable, outside the function. This is as a local variable within the function.
not good programming practice.

A globa l variable is available in any part of the program code. It is good programming
practice to declare a variable that is only used within a subroutine as a local variable.

In Python, every variable is local, unless it is overridden wit h a global declaration. In VB.NET
and Pasca l, you need to write the declaration statement for a local variable wi thin the
subrout ine.

' L_

I

Cambridge International AS and A level Computer Science .

TASK14.02
Write program code to implement the pseudocode from Worked Example 12.03 in Chapter 12.
The global and local variables are listed in Table 12.11.

14.04 Passing parameters to subroutines
When a subroutine requires one or more va lues from the main program, we supp ly these as
arguments to the subroutine at call time. This is how we use built-in functions . We don't need
to know the identifiers used within the function when we call a bui lt-i n function.

When we define a subroutine that requires values to be passed to the subroutine body, we
use a parameter list in the subroutine header. When the subrout ine is cal led, we supply
the arguments in brackets. The arguments supplied are assigned to the corresponding
parameter of the subroutine (note the order of the parameters in t he parameter list must be
the same as the order in the list of arguments) . This is known as the subroutine interface.

14.05 Passing parameters to functions
The function header is written in pseudocode as:

FUNCTION <functionidentifier > (<parameterList>) RETURNS <dataType>

where <parameterList> is a list of identifiers and t heir data types, separated by commas.

Here is an example pseudocode function definition that uses parameters:

FUNCTION SumRange(FirstValue : INTEGER, LastValue : INTEGER)
DECLARE Sum, ThisValue : INTEGER

Sum<- 0
FOR ThisValue <- FirstValue TO LastValue

Sum<- Sum+ ThisValue
END FOR
RETURN Sum

END FUNCTION

ProcedureExample.py - C:/Use~~
File Edit Format Run Options Windows Help
::ief SumRamge(FirstValue, LastValu e):

Sum = 0
fa:::- ThisValue :.r. r ange (FirstValu e, LastValue + 1}:

Sllill = Sum + ThisValue
:::et·..:::::-. Sum

ii= ;,· //</1<· 1<· 1<*· · · 1<* main pro g ram starts h ere ,,,,.;, .. 1,;,1,;,1t//<//<1<1<;,·

NewNmnber = Sl.lI!IRange (1, 5)
pr int (NewNumber)

Figure 14.07 The SumRange() function in Python

INTEGER

- - --- - - - - --

I

; Chapter 14: Structured Programming
..-

.. ..
File Edit View Project Data Tools Window Heb

r 1odu~:,./·~~~!:~, NewNu_mber As Int eger

El Function SumRange (ByVal Fir stValue, ByVal LastValue)
Dim Sum, ThisValue As Integer
Sum =- 0
For ThisValue = Fir stValue To LastValue

Sum = Sum + ThisValue
Next
SumRange = Sum

End Function

B Sub Main()
NewNumber • SumRange (l, 5)
Console . Wri t e l ine (NewNumber)
Console . Readline()

End Sub

Figure 14.08 The sumRange() function in VB.NET

.- ..
Proiect2 I

program Proj e c t 2;

{ SAFPTYP.E CO!.'lSOLE :·

uses
S y.sOtil:,;

var NewNumber : integer ;

function SumRange (Fir.::,tValu e , LaatValu e
var Sum, ThisValu e : integer;
begin

Sum : - O;

i n teqer)

f"or Th isVa1u e := FirscValu e to Last.Valu e do
Sum Sum + Th isVa1u e;

Resu lt := Sum;
end ;
I I *********"'ma.in progrd!fl. starts here ******""*""*** ""

begin
NewNumber := SumRange (l r 5);
WriteLn (NewNumber);
ReadLn ;

end.

10: so 1 jlnsert

Figure 14.09 The SumRange () function in Pascal

TASK14.03

.:

-

Write a function to im plement the following pseudocode:

FUNCTION Factorial
DECLARE Product

Product<- 1

(Number
INTEGER

FOR n <- 2 TO Number
Product.- Product* n

END FOR
RETURN Product

END FUNCTION

INTEGER) INTEGER

•

•

Cambridge International AS and A level Computer Science

14.06 Passing parameters to procedures
If a parameter is passed by value, at call time the argument can be an actual value (as we
showed in Section 14.04). If the argument is a variable, then a copy of the current value of the
variable is passed into the subroutine. The value of the variable in the calling program is not
affected by what happens in the subroutine.

For procedures, a parameter can be passed by reference. At call time, the argument must be
a variable. A pointer to the memory location of that variable is passed into the procedure. Any
changes that are applied to the variable's contents will be effective outside the procedure in
the calling program/modu le.

By value: the actua l value is passed into the procedure
By reference: the address of the variable is passed into the procedu re

Note that neither of these methods of parameter passing applies to Python. In Python, the
method is ca lled pass by object reference. This is basical ly an object-oriented way of passing
paramete rs and is beyond the scope of this chapter (objects are dealt w ith in Chapter 27) .
The important point is to understand how to program in Python to get the desired effect.

The full procedure header is written in pseudocode, in a very similar fashion to that for
function headers, as:

PROCEDURE <Procedureidentifier> (<parameterList>)

The parameter list needs more information for a procedure definition. In pseudocode, a
parameter in the list is represented in one of the following formats :

BYREF <identifierl > <dataType >
BYVAL <identifier2> : <dataType>

Passing parameters by value
The pseudocode for the pyramid example in Chapter 12 (Section 12.04) includes a procedure
definition that uses two parameters passed by value. We can now make that exp lic it:

PROCEDURE OutputSymbols(BYVAL NumberOfSymbols : INTEGER, BYVAL Symbol
DECLARE Count : INTEGER

FOR Count~ 1 TO NumberOfSymbols
OUTPUT Symbol// without moving to next line

END FOR
OUTPUT NewLine

END PROCEDURE

In Python (Figure 14.10), all parameters behave like loca l variab les and their effect is as
though they are passed by value.

File Edit Format Run Options Windows Help
def Outpu tSymbo l s (Number0fS 21•mbo1s, Symbol):

for Count :.:: ran.ge (NmnberOfSymbols):
print (Symbo l , end= '•),

pr i::i.t ()

f *-"''**' ;,o,(k ~ --.· main p :: og::am s t a r ts h e re 10c*-"***li(i,,(;.,· 1,:-;dd(k

Ou tpu t5ymbo1s(5, ' " ')

Figure 14.10 Parameters passed to a Python subroutine

J

CHAR)

Chapter 14: Structured Programming

In VB.NET (Figure 14.11), parameters default to passing by value. The keyword ByVal is
automatically inserted by the editor.

Console.A.pphcationl - Hae

File Edit View Project Debug

;,.£:I

EJ Module ' iodulel

I
El Sub OutputSymbols(ByVal NumberOfSymbols , ByVal Symbol)

Dim Count As Integer
For Count • 1 To NumberOfSymbols

Console . \4ri te (Symbol)
Next
Console .Writeline ()

End Sub

El Sub Main ()
OutputSymbols(S, "*")
Console . Readline ()

End Sub

l
Figure 14.11 Para meters passed by value to a VB.N ET procedure

In Pasca l (Figure 14.12), there is no keyword for passing by value. This is the default method.

Project2)

program Project2;

{ SAPPTYPE CONSOLE }

uses
Sy e:Uti l ~;

procedure OutputSymbols(NumberOfSymbol 3 integer; Symbol char) ;
var Count : integer;
begin

for Count : = 1 to NumberOfSyn:bols do
Wrice (Symbol);

WriteLn ;
end;
I I **********main program starts here*************

begin
OUtputSymbol~(5, ·~·) ;
ReadLn;

end .

..!.L_J r-~I --2,-: -,4-----!lnsert

Figure 14.12 Parameters passed by value to a Pascal procedure

Passing parameters by reference
The pseudocode for the pyramid example generated in Chapter 12 (Section 12.04) includes a
procedure definition that uses two parameters passed by reference. We can now make that
exp licit:

PROCEDURE AdjustValuesForNextRow(BYREF Spaces
BYREF Symbols : INTEGER)

Spaces~ Spaces - 1
Symbols~ Symbols+ 2

END PROCEDURE

INTEGER,

I

Cambridge International AS and A level Computer Science

The pseudocode statement to call the procedure is:

CALL Adj u stValuesForNextRow(NumberOfSpaces, NumberOfSymbols)

Python does not have a facility to pass parameters by reference. Instead the subroutine
behaves as a function and returns multiple values (see Figure 14.13). Note the order of the
variables as they receive these values in the main part of the program.

procedure3.py - C:/Users/Sylvia/Mv Programming/GE Book/Chl3/pyth1foJ _
File Edit Format Run Options Windows Help

def Adj u stVal uesForNextRow(Spaces, Symbols):
Spaces = Spaces - 1
Symbols = Symbols+ 2
::et.i.: :::: Spaces, Symbols

#k*k******ma in p r ogram starts h e r e *******~**** *******k*K*****
NumberOf Spaces = i n t(i n p u t())
NumberOf Symbols = i n t(inp u t())
NumberOf Spaces, NumberOfSymbols = AdjustValu esForNextRow(NumberOfSpaces, NumberOf Symbols)
print(NumberOf Space s)
pri n t(Numbe rOf Symbols)

Figure 14.13 Multiple va lues returned from a Python subrou t ine

This way of treating a multiple of values as a uni t is called a 'tuple'. This concept is beyond the
scope of this book. You can f ind out more by read ing the Python help files.

In VB.NET (Figure 14.14), the ByRe f keyword is placed in front of each parameter to be passed
by reference.

.. • dQ.11g
Fje E<lt V,ew Project Dobug Data Tools - I-lei>
JJ'.J ::::J a · Q-' " , ~ • -.;:;; "'.I · .i '-:1 1;.:1 •:i

Modulo!.vb X

~ Modulel .. AdjustValuesforffextRow
ElModule Module!

B

i

f

Dim NumberOfSpll:ces, Nuinber OfSy1nbols As Integer

Sub AdjustValuesForNextRow(ByRef Spaces , By Ref Syinbols)
Spaces = Spaces - 1
Sya,bols • Syltbols + 2

End Sub

Sub Main()
NuriberOfSpaces ... Console .Readline()
Nu1nbr:rOfSy1nbols "' Console . RearlLine ()
Adj ustl/eluesFcrNextRc\~(Nuir,berOfSpeces,. NuinberOfSyinbcls)
Co nsole . Wri teLine(NuinberOfSpaces)
Co nsole . Wri teLine(NumberOfSymbols)
Console . Read Line()

End Sub

._ End Module

Figure 14.14 Pa rameters passed by refe rence to a VB.N ET procedure

'
. Chapter 14: Structured Programming

f

1
I

r

In Pascal (Figure 14.15), The keyword var is placed in front of the declaration of parameters
to be passed by reference.

, :-. f ..
Project2 I

program Project2;

{SAPPTYPE CONSOLE }

uses
SysUtils;

var NumberOfSpaces, NumberOfSymbo l s : integer;

procedure AdjustValu esForNextRow (var Spaces, Symbols integer) ;
begin

Spaces := Spaces - 1 ;
Symbols :=Symbols+ 2;

end;

I I **********main program starts here
begin

Readt.n (NumberOfSpaces);
ReadL:n(NumberOfSymbols);
Adj ustValu esForNextRow(NumberOfSpaces, NumberOfSymbols);
Writet.n(NumberOfSpaces);
WriteL:n (NUIO.berOfSymbo l s);
ReadL:n;

end .

..!.L..J r---1.-----1 J 17: 3 M edified !Insert

Figure 14.15 Parameters passed by reference to a Pascal procedure

TASK14.04

... -

-

1 Write program code to implement the structure chart from Figure 12.02 in Chapter 12
(for the average of two numbers).

2 Write program code to implement the structure chart from Figure 12.03 in Chapter 12
(for the number-guessing game).

3 Amend your program code from Task 14.02 to implement the interface shown in the
structure chart from Figure 12.05 in Chapter 12.

14.07 Putting it all together
The programs in this section are full solutions to the pyramid -drawing program deve loped in
Chapter 12 (Section 12.04).

The parameters of the subroutines have different identifiers from t he variables in the main
program. This is done del iberately, so that it is quite clear that the parameters and loca l
variab les with in a subroutine are separate from those in the calli ng program or module.
If a pa rameter is passed by reference to a procedure, the parameter identifier w ith in the
procedure references the same memory location as the variable identifier passed to the
procedure as argument.

.-- - ----

•

Cambridge International AS and A level Computer Science

The pyramid-drawing program in Python VB.NET and Pascal

Python SPACE= ' ' # constant to give a space a name
def InputMaxNumberOfSymbols () :

Number= O
while Number% 2 -- 0:

print ("How many symbols make the base?")
Number = int (input ("Input an odd number: "))

return Number

def SetValues ():
Symbol = input ("What symbol do you want to use? ")
MaxSymbo ls = InputMaxNumberOfSy mbols ()
Spaces= (MaxSy mbols + 1) // 2
Symbols= 1
return Symbo l, MaxSy mbols, Spac es, Sy mbols

def OutputChars (Number, Symbol):
for Count in range (Number):

print (Symbol, end='')

def AdjustValuesForNextRow(Spac es, Symbols) :
Spaces= Spaces - 1
Symbols= Symbols+ 2
return Spaces, Sy mbols

def main() :
ThisSymbol , Max NumberOfSymbols, NumberOfSpaces, NumberOfSymbo ls = SetValues ()
whi l e NumberOfSymbols <= MaxNumberOfSymbols :

Outpu t Chars (NumberOfSpac es, SPACE)
OutputChars (NumberOfSymbols, ThisSymbol)
print () # move to new line
NumberOfSpac es, NumberOfSymbols = AdjustValuesForNextRow (NumberOfSpaces, NumberOfSymbols)

main()

VB.NET Module Modulel
Const Spac e = " " 'constant to give a spac e a name
Dim NumberOfSpaces, NumberOfSymbols As Integer
Dim Max NumberOfSymbols As Integer
Dim ThisSymbol As Char

Sub InputMaxNumberOfSy mbols (ByRef Number As Integer)
Do

Console .WriteLine ("How many symbols make the base?")
Console .Write ("I nput an odd number: ")
Number = Console .ReadLine ()

Loop Until (Number Mod 2 = 1)
End Sub

Sub SetValues (By Ref Symbol, ByRef Max Sy mbols, ByRef Spaces, ByRef Symbols)
Console .Write("What symbol do you want to use? ")
Sy mbol = Console . ReadLine ()
InputMaxNumberOfSymbols (MaxSymbols)
Sp aces= (MaxSymbols + 1) \ 2
Symbols= 1

End Sub

------ -

I
Sub OutputChars (ByVal Nu mber, ByVal Sy mbo l)

Dim Count As I nteger
For Count= 1 To Number

CoLsole . Write (Symbol)
Next

End Sub

Sub AdjustValuesForNextRow(ByRef Spaces, ByRef Symbols)
Spaces= Spac es - 1
Symbols= Symbols+ 2

End Sub

Su b Main ()

Chapter 14: Structured Programming

SetValues (ThisSymbol, MaxNumberOfSy mbols, NumberOfSpaces, NumberOfSymbols)
Do

OutputChars (NumberOfSpaces , Space)
OutputChars (NumberOfSy mbols, ThisSy mbo l)
Console .WriteLine () 'move to new line
AdjustValue sForNextRow(NumberOf Spaces, NumberOfSymbols)

Loop Until NumberOfSy mbols > MaxNumberOfSy mbols
Console . ReadLine ()

End Sub

End Module

Pascal program Project2;

{$APPTYPE CONSOLE}

uses
SysUtils;
const Space = ' '; I I constant to give a space a name
var NumberOfSpac es, NumberOfSymb ols : integer;
var MaxNumberOfSymbols : integer;
var SymbolsThisSymbol : char;

procedure InputMaxNumberOfSymb ols (var Number : integer);
begin

repeat
WriteLn ('How many symbol s make the base?') ;
Write('Input an odd number: ');
ReadLn(Number);

until Number MOD 2 = 1;
end;

procedure SetValues (var Symbol : char; var MaxSymbols , Spaces, Symbols : i nteger);
begin

Write ('Wh a t symbol do you want to use? ');
ReadLn(Symbol);
InputMaxNumb erOfSymbols (Max Symbols);
Spaces .- (MaxSymbols + 1) DIV 2 ;
Symbo ls .- l;

end;

I

•

Cambridge International AS and A level Computer Science

procedure OutputChars (Number
var Count : i nteger;
begin

for Count : = 1 to Number do
Write (Symbol);

end;

integer; Symbol char) ;

procedure AdjustValuesForNextRow (var Spaces, Symbols
begin

Spaces := Spaces - 1;
Symbols .- Symbols+ 2;

end;

II ********** main program starts h ere *************
begin

integer) ;

SetValues (ThisSymbol, MaxNumberOfSymbols, NumberOfSpaces, NumberOfSymbols) ;
repeat

OutputChars (NumberOfSpaces, Space) ;
OutputChars (NumberOfSymbols, ThisSymbol) ;
WriteLn; II move to new line
AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols);

until NumberOfSymbols > MaxNumberOfSymbols;
ReadLn; I I to keep the window open

end.

Discussion Point:
Can you see how the two procedures outputspaces and outputsymbols have been
replaced by a single procedure outputChars without changing the effect of the program?

• Declaration of subroutines (functions and procedures) is done before the main program body.

• Calling a procedure is a program statement.

• Calling a function is done within an expression, for example an assignment.

• VB.NET and Pascal functions return exactly one value.

• Parameters can be passed to a subroutine. This is known as the interface.

• VB.NET and Pascal pass parameters by value, as a default, but can return one or more values via parameters if they are
declared as reference parameters.

• In Python, parameters can only pass values into a subroutine. The only way to update a value of a variable in the calling
program is to return one or more values from a function .

• When a subroutine is defined, parameters are the 'placeholders' for values passed into a subroutine.

Arguments are the values passed to the subroutine when it is called.

· Chapter 14: Structured Programming
.,-
'

Exam-style Questions
1 Write program code for a procedure outputTimesTable that takes one integer parameter, n , and outputs the t imes

table for n. For example the procedure call outputTimesTable (5) shou ld produce:

1 X 5 5
2 X 5 10
3 X 5 15
4 X 5 20
5 X 5 25
6 X 5 30
7 X 5 35
8 X 5 40
9 X 5 45

10 X 5 5 0

2 Write program code for a function isDivisible () that takes two integer parameters, x and y. The funct ion is to
return the value True or False to indicate whether xis exactly divisible by y. For example, isDivisible (24, 6)

[6]

should return True and isDivisible(24, 7) should return False. [6]

3 A poultry farm packs eggs into egg boxes. Each box takes six eggs. Boxes must not contai n fewer than six eggs.

Write program code for a procedure EggsintoBoxes that takes an integer parameter, NumberOfEggs. The procedure
is to calculate how many egg boxes can be filled with the given number of eggs and how many eggs wil l be left over. The
procedure is to return two va lues as parameters, NumberOfBoxes and EggsLeftOver. [9]

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the design, coding and testing
stages in the program development cycle

• show understanding of how to write, translate, test and
run a high-level language program

• describe features found in a typical Integrated
Development Environment (IDE):
• for coding, including context-sensitive prompts
• for initial error detection, including dynamic syntax

checks
• for presentation, including prettyprint, expand and

collapse code blocks
• for debugging, including: single stepping, breakpoints,

variables/expressions report window
• show understanding of ways of exposing faults in

programs and ways of avoiding faults

• locate and identify the different types of errors (syntax
errors, logic errors and run-time errors)

• correct identified errors
• choose suitable data for black-box testing
• understand the need for stub testing
• perform white-box testing by selecting suitable data and

using a trace table
• identify any error(s) in the algorithm by using the

completed trace table and amend the algorithm if
required

• make amendments to an algorithm and data structure in
response to specification changes

• analyse an existing program and make amendments to

enhance functionality.

-
. Chapter 15: Software Development

1~,

15.01 Stages in the program development cycle
Problem solving
The fi rst step in solving a prob lem is to define it clearly. This is usual ly done in structured
Engl ish (See Chapter 11, Section 11.02) and is known as a 'specification'.

The next step is planning a solution. Sometimes there is more than one so lution . You need to
decide wh ich is the most appropriate.

The third step is to decide how to solve the problem:

• bottom-up: start wi t h a small sub-problem and then bu ild on th is

• top-down: stepwise refinement using pseudocode, flowcharts or structure charts.

Design
You have a so lution in mind. How do you design t he solution in deta il? Chapter 11 (Section
11.04) showed that an ident ifier table is a good starting point. This leads you to thinking
about data structures: do you need a 1D array or a 2D array to store data whi le it is
processed? Do you need a f ile to store data long-term?

Pla n your algorithm by drawing a flowchart or writing pseudocode.

Coding
When you have designed your solution you may need to choose a su itab le high- level
programming language. If you know more than one programming language, you have to
weigh up the pros and cons of each one. Looking at Chapter 13, you need to decide which
progra mming language would best suit the problem you are trying to solve and wh ich
language you are most familiar with .

You implement your algorithm by converting your pseudocode into program code.
Depend ing on you r editor you may have some helpful faci lities (fo r features to expect see
Section 15.02).

Some syntax erro rs may be flagged up by your ed itor, so you can correct these as you go
along. A syntax error is a 'grammatical' error, in wh ich a program statement does not follow
t he rules of the high-level language constructs.

Syntax error: an erro r in which a program statement does not fol low t he rules of the language

Translation
Some syntax errors may only become apparent when you a re using an interpreter or
compiler to t ranslate your program. Interpreters and compi lers work different ly (see Chapter
7, Section 7.05, and Chapter 20, Section 20.05). When a program compiles successfully, you
know t here w ill be no syntax errors remain ing.

This is not t he case with interpreted programs. Only statements that are about to be
executed will be syntax checked . So, if your program has not been thorough ly tested , it may
even have syntax errors rema ining.

Figure 15.01 gives an examp le of how a compiler flags a syntax error. The compiler stops
when it first noti ces a syntax error. The error is often on t he previous line. The compiler can't
tel l unti l it gets to the next line of code and finds an unexpected keyword .

I

Cambridge International AS and A level Computer Science

Iii!! Project2.dpr ._
Project2 l

p r ogram Proj e c t 2 ;

{SAPPTYPE CONSOLE }

u ses
SysUtils ;
const Space=
var Numbe rOf Spa ce s, Numbe rOf Symbol s

va r symbol : cha r;

inte ge r

2 The ; is missing
on the line above

p r ocedur e Input Ha.xNumbe rOf S:,>mbol:, (va r Numbe r : intege r) ;
begin

r epeat
Wr i teLn('How many symbols make the base ?') ;
Wri te ('Input an odd number: ');
Rea dLn (Number) ;

u ntil Numbe r MOD 2 = 1;
e nd;

9: 6 !insert f [Error I Project2. dpr(9): ';' e~pected but VAR' found

. n Build

Figure 15.01 Syntax error in a Pascal program

Execution

1 The compiler gives an error
message with a suggestion
of what might be wrong

When you start writing programs you may find it takes severa l attempts befo re the program
compi les. When it fi nally does, you can execute it. It may 'crash', mean ing that it stops
working. In t his case, you need to debug the code. The program may run and give you some
output. This is t he Eureka moment: ' it wo rks!!! !'. But does t he progra m do what it was meant
to do?

Testing
Only t horough test ing can ensure the program really works under all circumstances (see
Sections 15.03 to 15.05).

Discussion Point:
Do you think that all programs can be totally error-free?

15.02 Features found in a typical Integrated Development
Environment (IDE)

Prettyprinting
Prettyp rint refers to t he presentation of t he program code typed into an editor. It includes
indentat ion, colou r-cod ing of keywords and comment s.

Chapter 15: Software Development

Python
IDLE (see Figure 15.02) automatica lly colour-codes keywords, built-in funct ion ca lls,
comments, strings and the identifier in a function header. Indentation is automatic. When
you need to unindent after a block of statements, delete the spaces provided.

ProcedureExample.py - C . ,
File Edit Format Run Options Windows Help
de f Outpu tSymbol s(Numbe rOfS ymbols, Symbol):

for Count ~~ range(Numbe rOfS ymbol s):
prin t(Symbol, e nd= '')

prin t(}

f ********* main program starts here**************
Outp tSymbols (S, 1 ~ 1)

Figure 15.02 Prettyprint in IDLE

VB.NET
The editor provided by Visual Stud io (see Figure 15.03) automatically colour-codes keywords,
object references (such as console), comments and strings. The editor automatically indents
blocks of code correctly.

11':l consoleApplcationl - Microso
Fie Edt V'ew Project Debug Data Tools Wndo.v Hep

EJ Module Modulel
I 8 Sub OutputSymbols(ByVal NumberOfSymbols, ByVal Symbol)

Dim Count As Integer
For Count= 1 To NumberOfSymbols

Console .Write(Symbol) ' stay on the same line
Next
Console .l~r iteline() ' move to a new line

End Sub

Sub Main()
OutputSymbols(S, " *")
Console .Readline() ' keep the Run Window open

End Sub

LEnd Module
100 % • -~:..,_--------------~

Erro, List T \I X •
Ready Ln 6 Col 58 Ch 58 INS /7,

Figu re 15.03 Prettyprint in Visual Studio

I

Cambridge International AS and A level Computer Science

Pascal
This Delphi ed itor (see Figure 15.04) emboldens keywords and colou r-codes strin gs,
com ments and system direct ives (such as {APPTYPE CONSOLE }) . When t he programmer
indents a line of code, t he next line is automatically indented by the same amount.

ell ProJect2.dpr .

Project2 I
p r ogr am Proj ect2;

{SAPPTYPE CONSOL:':}

uses
Sys Ut ils;

p r ocedure OUt putSymbols (Numbe rOfS ymbol s
var Count : integer;

b egin
fo r Count : = 1 t o Numbe rOfS ymbols do,

Write (Symbol) ;
Wr ite Ln;

end;

integ e r ; Symbo l c har) ;

I I **********ma in program starts here*************
b egin

OUt putS ymbo l s (5 , • ... ,) ;
ReadLn ;

e n d .

I l
Ir----21: 14 ilnsert

Figure 15.04 Prettyprint in the Delphi editor

Context-sensitive prompts
This feature displays hints or a cho ice of keywords and ava ilable identifiers appropriate at the
current insert ion point of t he program code.

Fi gure 15.05 shows an example of t he Visua l Studio editor respondi ng to text t yped in by the
programmer.

11 ConsoleApphcatton1 - Microsoft V1Sual Basic 20

Rte Edit View Project Debug Data Toots Window Help

:;i Sub SetValues (ByRef Symbol, ByRef MaxSymbols, ByRef Spaces, ByRef Symbols)
.,,...-----~-'------..ole .Write { "l~hat symbol do you want to use? ")

1 When you type 'f', a pop-up
list appears, displaying all
possible keywords and
identifiers starting with 'F'

= Console . Read line ()
axNumberOfSymbols (MaxSymbols)
= (MaxSymbols + 1) \ 2

s = 1

OutputChar (ByVal Number> ByVal Symbol)
Di m Count As Integer
f

sub '1: ForelgnKeyConstraint
,> Fomiat

Formatcurrency 1
. _!J_ ~o~~";;~t ,-;Tim_. 100%

2 Choose the
required keyword

For statement
I ntroduces a loop ttu1t ls Iterated a specified number of times.
Note: Tab twice to insert the 'For' snippet.

lrOfSpaces > NumberOfS s)

.:.I 3 An explanation of the chosen
construct appears. Pressing
the TAB key twice will put the
FOR loop construct into the code

Figure 15.05 Context-sensitive prompts in the Visual Studio editor

I
: Chapter 15: Software Development

I

In Figure 15.06, the Python editor, IDLE, shows t he requ ired parameters after a function
identifier has been typed in by the programmer.

*procedure3.py - C:./Users/Sylvia/My Programming/GE 8ook/Ch13/python/p
File Edit Format Run Options Windows Help
SPACE= • ' f constant to give a space a n ame
def InputMa.xNurnberOfSymbols() :

Numbe r = 0
w:-. :.:.e Number % 2 = 0 :

prin t(":iow rr.any syrr:bols rr.ake the l::ase?")
Number= i n t(in p u t(":nput an odd nurr.ber: "))

:::et·.:=,. Number

d e f SetValues() :
Symbol = inp u t("What symbol do you want to use?")
HaxSymbols = Inp tMaxNumberOfSymbols()
Spaces = (HaxSymbol s + 1) // 2
Symbols= 1
=et·.:::::: Symbol, HaxSymbols, Spaces, Symbols

def Output Char(Number, Symbol):
to= Count ~:: range (NUI!llbe r):

Pop-up text shows t hat print list elements
are separated by commas and the
parameters that you can specify (the
separator (sep) and how a line should end)

prin t r(_____________ --.'e::::..._---------~

print(value, ... , sep=' ' end='\n', f iJ.e=s ys.stdou t)

Figure 15.06 Context-sensitive prompts in IDLE

Dynamic syntax checks
When a line has been typed, some editors perform syntax checks and alert the programmer to errors.

Figure 15.07 shows an example of the Visua l Studio edito r responding to a syntax error.

!l! ConsoleAppficationl - Microsoft Visual Basic 2010 Express ~, ,,
Fie Edit V>e11 Project Debug Dat.a Tools Window Help

'=' Module iodulel

1
Const S2ace :; " " ' constant to ive a s ace a name
Dim NumberO End of statement expected. As Integer
Dim MaxNumbe.~~----~-
Dim Symbol As Char

Figure 15.07 Dynamic syntax check in the Visual Studio editor

Expanding and collapsing code blocks

The blue underline shows that
there is a syntax error.

As you move the mouse
pointer over different parts of
the line of code, the edito r wi ll
display explanations.

Here the mouse pointer
hovered under the := symbol.

When working on program code consist ing of many lines of code, it saves excessive scrolling
if you can collapse blocks of statements.

Figure 15.08 shows the Visual Stud io editor window with the procedures co llapsed, so the
progra mmer ca n see the global variable declarations and the ma in program body. The procedure
headin gs are still visib le to help the programmer supply the correct arguments when calling one of
these procedures from the main program.

•

Cambridge International AS and A level Computer Science

I I • •t - 0 125..)
Fie Edit V'eN Project Debug Data Tools Window Help

~ Module!
EJ Module Modulel

Const Space = constant to give a space a name
Dim NumberOfSpaces, NumberOfSymbols As Integer
Dim MaxNumberOfSymbols As I nt eger
Di m Symbol As Char

!±I lsub InputMaxNumberOfSymbol s (ByRef Number As Integer) ... I
I

1±1 !sub Set Values (ByRef Symbol, ByRef MaxSymbols, ByRef Spaces, ByRef Symbols) ... j
I

1±1 jsub OutputChars(ByVal Number, ByVal Symbol) . . . \

I
!±l !sub AdjustValuesForNextRm-i(ByRef Spaces , ByRef Symbols) . . . I
I El Sub Ma i n()

SetValues (Symbol, MaxNumberOfSymbols, NumberOfSpaces , NumberOfSymbols)
Do

Output Cha r s(NumberOfSpaces, Space)
Output Chars(NumberOfSymbols, Symbol)
Console .Wr itel ine() ' move to new line
AdjustValues ForNextRow(NumberOfSpaces, NumberOfSymbols)

loop Unt il NumberOfSymbols > MaxNumberOfSymbols
Con sole . Read l ine()

End Sub

End Module

Figure 15.08 Collapsed code blocks in the Visual St udio editor

TASKlS.01
Invest igate the facilities in the editors you have available. If you have a choice of editors, you
may like to use the editor with the most helpful faci li ties.

15.03 Testing strategies
Find ing syntax erro rs is easy. The compi ler/ interpreter wil l f ind t hem fo r you and usually gives
you a hint as to what is wrong.

Much more d ifficult to find are logic errors and run-time errors. A run -t ime error occurs when
program execution comes to an unexpected ha lt or 'crash' or it goes into an infinite loop and 'freezes'.

Logic error: an error in the logic of the solution that causes it not to behave as intended
Run-t ime error: an error that causes program execution to crash or freeze

Both of these types of erro r can only be found by careful testing. The danger of such errors is that
they may only man ifest t hemselves under cert ain circumstances. If a program crashes every time it
is execu ted, it is obvious there is an error. If the program is used frequently and appears to work until

f - --- -- --- - Chapter 15: Software Development
,,..

a certa in set of data causes a malfunction, that is much more difficult to discover without perhaps
se~ousconsequences.

Stub testing
When you develop a user interface, you may wish to test it before you have implemented all the faci lities. You can write
a 'stub' for each procedure (see Figure 15.09). The procedure body only contains an output statement to acknowledge
that the call was made. Each option the user chooses in the main program will call the relevant procedure.

'l"B J ••••

File Edit ~'te•111 Project Debug Data Tools \lli'indow Help

Ell Modu~:_i~ :~~~~oilce As String
Dim Pr o~As Boolean= f alse

lsub Sho1~·lenu () . . , I
El Sub Enter-r•le1,'5tudent ()

L Cons ole .!.r-itel ine'(" EnterNewSt udent routine called")
E~d Sub __ __ _

El Sub kr,endDetails ()

l Console .!.r ite l ine (" 11:mend Det ails routine called")
End Sub

El--Sub Pr intlist () -- --

l Console . l,Jrit e i ne ("Pr intlist r o utine ca lled ")
End Sub

El --Sub Sea r chByr•lame () -- -
Console ,, i.r itel ine ("Sear chByName routine called ")

End Sub ---- - - - -----
El Sub Ma i n()

Do
Sho"!Menu()
MenuCho ice = Ccnsole .Readl ine (),
Select Case MenuChoice

Case " 1 "
Ente rr~ewStudent ()

Case "2"
Amend Details ()

Cas e "3"
PrinUist(l

Case "4"
Sear chByName ()

Case " 5"
Pr ogr amEnd = Tr ue

Case El se
Ccnsole . \,Jriteline ("Invalid choi ce . Try again")

End Sel ect
Loop Until Pr ogr amEnd

End Sub

End Modu l e

Ready Ln 22 Col 23 Ch 23 INS ,,i

Figure 15.09 VB.NET stub testing

Black-box testing
As the programmer, you can see you r program code and your test ing wi ll involve knowledge
of the code (see the next section, about white-box testing).

As part of tho rough testing, a program should also be tested by other people, who do not see
the program code and don't know how the solution was coded .

•

•

Cambridge International AS and A level Computer Science

Such program testers w il l look at t he program specification to see what t he program is
meant to do, devise test data and work out expected results. Test data usua lly consists of
normal data values, boundary data values and erroneous data values.

The tester then runs th e program with the test data and records their results . This method of
testing is ca lled black-box testing because the tester can't see inside t he program code: the
program is a 'black box'.

Where the actua l results don 't match t he expected resu lts, a prob lem exists. This needs
further investigation by the programmer to find the reason for this discrepancy and correct
th e program (see Section 15.06). Once black-box test ing has establ ished that t here is an
error, other methods (see Sect ions 15.04 and 15.05) have to be employed to fi nd the lines of
code t hat need co rrect ing.

Test data: carefully chosen values that will test a program
Black-box testing: comparing expected results with actual results when a program is run

White-box testing
How ca n we check t hat code works correct ly? We choose su itab le test data that checks eve ry
path through the code .

White-box testing: testing every path through the program code

WORKED EXAMPLE 15.01

White-box testing of pseudocode

Th is is t he pseudocode from Wo rked Example 11.02 in Chapter 11:

INPUT Numberl
INPUT Number2
INPUT Number3
I F Numberl > Number2

THEN II Numberl is bigger
IF Numberl > Number3

THEN
OUTPUT Numberl

ELSE
OUTPUT Number3

END IF
ELSE II Number2 is bigger

ENDIF

IF Number2 > Number3
THEN

OUTPUT Nu mber2
ELSE

OUTPUT Number3
ENDIF

-------- --

'----

i

Chapter 15: Software Development
r

To test it, we need four sets of numbers with the following characteristics:

• The first number is the largest.

• Th e first number larger than the second number; the third number is the largest.

• The second number is the largest.

• The second number is larger than the first number; the third number is the largest.

Note that it does not matter what exact va lues are chosen as test data. The important point
is that the values differ in such a way that each part of the nested IF statement is checked .
Table 15.01 lists four sets of test data and the results from them. The parts of the algorithm
not entered for a particular set of data are greyed out. This makes it easier to see that each
part has been checked after all four tests have been done.

Line of algorithm Test 1 Test 2 Test 3 Test4
INPUT Numberl 15 12 12 8
INPUT Number2 12 8 15 12
I NPUT Number3 8 15 8 15
IF Numberl > Number2 TRUE TRUE FALSE FALSE

THEN TRUE FALSE
IF Numberl > Number3

THEN Output 15
OUTPUT Numberl

ELSE Output 15
OUTPUT Number3

ENDIF
ELSE TRUE FALSE

IF Number2 > Number3
THEN Output 15

OUTPUT Number2
ELSE Output 15

OUTPUT Number3
ENDIF

ENDIF

Table 15.01 Testing the validity of the nested IF statement

For more white-box testing methods see Sections 15.04 and 15.05.

15.04 Program testing using the IDE
Debugging is the action of fi nding and correcting errors ('bugs') in a program. An IDE often
conta ins features to help with debugging.

Debugging: find ing and correcting errors in a program

Python
To debug using IDLE, from the Python Shell (see Figure 15.10), choose Debugger from the
Debug menu.

I

Cambridge International AS and A level Computer Science

Open the source program from the File menu. To set a breakpoint, right-click on the line you
want to set the breakpoint on.

Start runn ing the program by clicking the Go button in the Debug Control window. The
program stops at the breakpoint (Figu re 15.ll(a)). Then click the Step button to execute one
instruction at a t ime.

The Debug Control window (Figure 15.ll(b)) shows which line number is about to be
executed {line 4 in the example) . The contents of all variab les are also displayed in the Debug
Control window.

Ftle Edit Shell Debug Options w,ndows Help

Python 3.2.3 (default, Apr 11 2012, 07:12:16) [MSC v.1500 64 bit (AMD64)] on win..!J
32
Type "copyright", "credits" or "license ()" f or more information.
>>>
[DEBUG ON]
>>> RESTART =============
[DEBUG ON]
>>>
7
8

Figure 15.10 Python Shell with Debugger switched on

File Edit Format Run Options Windows Help

Total= O
Numbe rs = O
NewNumbe r = int(input ())
while NewN-..mcer ! = - 1:

NewNumber = int(input()}
NUIIl!b,ers = Numbers + 1
Total = Total+ NewNumber

Average = Total I Numbers
print(Total, Average)

n: 4jco1f't

Debug Control)

Go I Step I Ove~ Out huit I r Stack r Source
-.L.-__.;...1. ____ .__,_,_;;__._ P' Locals r Globals

debugging.py :4: <module>O

Locals

NewNumber 8
Numbers 1
Total 8
_ builtins_ <module 'builtins' (built-in)>

doc None
_ name_ '_main_ '
package None

Figure 15.11 (a) Python program showing a breakpoint and (b) the Debug Cont rol window

VB.NET
In Visual Studio (see Figure 15.12(a)), you can set breakpoints by cl icking in t he left margin of
the editor.

Click on Run to run the program and enter data (see Figure 15.12(b)). When your program
reaches the breakpoint, use the 'Step Into' button (, to single-step through your
program.

To set up a variable watch window, select Windows from the Debug menu and choose Watch.
A table is displayed at the bottom of t he ed itor (see Figure 15.12(a)) and you can type in the
va riable names you want to inspect.

-- -- --- =--------

-- --- -~
.

!

• I

ConsoleApphcationl (Debugging) - Microsoft\ftsua

File Edit View Project Debug Data Toels Window Help

Sub Main ()
Dim Total, Numbers, NewNumber As Inte
Dim Average As Single
Total= 0
Numbers = 0
NewNumber = Console . Readlin
Do While NewNumber <> -1

Loop

NewNumber = Console .Read
Numbers = Number s+ 1
Tota l = Total+ NewNumber

Average= Total I Numbers
Console . l~ri teline (Total, Average)
Console .Readline()

End Sub

End Module~
Watch

window

(a)

Figure 15.12 VB.NET (a) program with breakpoint and (b) run window with input

Pascal

Chapter 15: Software Development

(b)

In the Delphi editor, you need to switch the debugger on before compiling your program:
in the Tools menu, select Debugger Options and ensure the Integrated Debugger option is
ticked.

You can now set breakpoints by cl icking in the left margin of the editor (see Figure 15.13(a)) .

Click on Run . When your program reaches the breakpoint, use the 'Trace into' button (j j)
to single-step through your program, entering data (see Figure 15.13(b)).

To set up a variable watch wi ndow, from the Run menu, choose 'Add Watch ... '. Type one
variable name at a time into t he Expression box and click Ok. To see the watch window, from
t he View menu, choose 'Debug win dows' and 'Watches' (see Figure 15.13(c)).

•

-

Cambridge International AS and A level Computer Science

Is ProJect2.dpr " ,

Proiect2 I
program Project2;

{SAPP!YPE CONS ~El
{SOP!IMIZATION FF)
uses

Sy.!!!Ut i ls ;
val' t otal, Numbers, NewNurr.ber integer:

• begin
Total := O;
Numbera :- O;
ReadLn (NewNumber) ; l•EIDEJEDDE••••llil••• Current

instruction

Total := Total + NewNumber;
end;

Average := Total I Nurr.bers;
Write(Total, Average);
Rea..dl.n ;

end.

(a)

(b)

(c)

Figure 15.13 Pascal (a) program with breakpoint, (b) run window with input and (c) watch window

15.05 Dry-running an algorithm
A good way of check ing that an algorithm works as intended is to dry-run the algorithm
using a trace table and different test data.

The idea is to wri te down the current contents of all variables and conditional values at each
step of the algorithm.

Dry-run: the process of checking the execution of an algorithm or program by recording variable
va lues in a trace table

Trace table: a table wi t h a column for each variable that records thei r changing values

I

r Chapter 15: Software Development
" '

WORKED EXAMPLE 15.02

Tracing an algorithm
Here is the algorithm of the number-guessing game:

SecretNumber 34
INPUT "Guess a number : "Guess
NumberOfGuesses 1
REPEAT

IF Guess = SecretNumber
THEN

OUTPUT "You took" NumberOfGuesses "guesses"
ELSE

I F Guess > SecretNumber
THEN

INPUT "Guess a smaller number: "Guess
ELSE

INPUT "Guess a larger number: "Guess
ENDIF
NumberOfGuesses NumberOfGuesses + 1

ENDIF
UNTIL Guess = SecretNumber

To test the algorithm, co nstruct a trace table (Table 15.02) with one column for each
va riable used in the algorithm and also for the condition Guess > secretNumber

Now carefu lly look at each step of the algorithm and record what happens. Note that
we do not tend to write down va lues that don't change. Here secretNumber does not
change after the initial assignment, so the colu mn is left blank in subsequent rows.

SecretNumber Guess NumberOfGuesses Guess >
SecretNumber Message

34 5 1 FALSE ... l arger ...
55 2 TRUE . . . smal l er ...
30 3 FALSE ... larger ...
42 4 TRUE .. . smaller ...
36 5 TRUE . .. sma l ler ...
33 6 FALSE .. . larger ...
34 7 ... 7 guesses

Table 15.02 Trace table for number-guessing game

We only make an ent ry in a cell when an assignment occurs. Values remain in variables
until they are overwritten. So a blank cell means that the value from the previous entry
remains.
It is important to start filling in a new row in the trace table for each iteration (each time
round the loop).

•

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 15.03

Tracing an algorithm
To test the improved algorithm of Worked Exa mple 11.12 (bu bble sort), dry-run the
algorithm by complet ing t he trace table (Table 15.03).

Maxindex 7
n Maxindex - 1
REPEAT

NoMoreSwaps TRUE
FOR j 1 TO n

IF MyList[j] > MyList[j + l]
THEN

Temp MyList[j]
MyList[j] MyList[j + l]
MyList[j + 1) Temp
NoMoreSwaps FALSE

ENDIF
END FOR
n n - 1

UNTIL NoMoreSwaps TRUE

Max MyList[j] > n NoMoreSwaps j Index MyList[j + l]

7 6

TRUE 1 FALSE
2 FALSE

FALSE 3 TRUE
4 TRUE
5 TRUE
6 TRUE

5 TRUE 1 FALSE
FALSE 2 TRUE

3 FALSE
4 TRUE
5 TRUE

4 TRUE 1 FALSE
2 FALSE

FALSE 3 TRUE
4 TRUE

3 TRUE 1 FALSE
2 FALSE
3 FALSE

2

Temp
[l]

5

98
98
98
98

34

41
41

34
34

Table 15.03 Trace table for improved bubble sort algorithm

MyList
[2] [3] [4] [5] [6]

34 98 7 41 19

7 98
41 98

19 98
25

7 34

19 41
25 41

19 34
25 34

[7]

25

98

!
. Chapter 15: Software Development
j'

I
r

TASKlS.02
Design a trace table for the following algorithm:

FUNCTION ConvertFromHex(HexString : STRING) RETURNS INTEGER
DECLARE ValueSoFar, HexValue, HexLength, i : I NTEGER
DECLARE HexDigit : CHAR
ValueSoFar 0
HexLength Length(HexString)
FOR i .,_ 1 TO HexLength

HexDigit HexString [i]
CASE OF HexDigit

'A': HexValue 10
'B': HexValue 11
'C': HexValue 12
'D': HexValue 13
'E1: HexValue 14
'F': HexValue 15
OTHERWISE HexValue .,_ StringToint(HexDigit)

END CASE
ValueSoFar ValueSoFar * 16 + HexValue

END FOR
RETURN ValueSoFar

END FUNCTION

Dry-run the function call ConvertFromHex('AS') by completing the trace table.

15.06 Corrective maintenance
Maintaining programs is not like maintaining a mechanical device. It doesn't need lubricating
and parts don't wear out. Corrective maintenance of a program refers to the work required
when a program is not working correctly due to a logic error or because of a run-time error.
Sometimes program errors don't become apparent for a long time because it is only under
very rare circumstances that there is an unexpected result or the program crashes. These
circumstances might arise because part of the program is not used often or because the data
on an occasion includes extreme values.

Corrective maintenance: correcting identified errors

When a problem is reported, the programmer needs to find out what is causing the bug. To
find a bug, a programmer either uses the features found in an IDE (see Section 15.04) or a
trace table (see Section 15.05).

I

Cambridge International AS and A level Computer Science

TASKlS.03
Design a trace tab le for the following algorithm:

INPUT BinaryString
StringLength Length (BinaryString)
FOR i 1 TO StringLength

Bit BinaryString[i]
BitValue IntegerVal ue(Bit) // convert string to integer
DenaryValue DenaryValue + 2 + BitValue

END FOR

1 Dry-run the algorithm using '101 1 as the input. Complete the t race table.
2 The result should be 5. Can you find the error in the code and correct it?

15.07 Adaptive maintenance
Programs often get changed to make them perform functions they were not originally
designed to do.

For example, the Connect 4 game introduced in Chapter 12 (Worked Example 12.03) allows
two players, 0 and X, to play against each other. An amended version would be for one player
to be the compute r. This wou ld mean a single player could try and win against the computer.

Adaptive maintenance is the action of making amendments to a program to enhance
functionality or in response to specification changes.

Adaptive maintenance: amending a program to enhance functiona li ty or in response to
specification changes

TASKlS.04
Design the algorithm to simulate the computer playing the part of Player X in Connect 4.

• The stages of the program development cycle include design, coding and testing.

• Features of a typical integrated development environment (IDE) include context-sensitive
prompts, dynamic syntax checks, prettyprint formatting and collapsible code blocks.

• Testing strategies include stub testing, black-box testing and white-box testing.

• Locating and correcting logic errors and run-time errors can be done by dry-running an algorithm
using a trace table or using a debugger.

• Corrective maintenance means fixing bugs that have come to light during use of the program.

• Adaptive maintenance involves altering an algorithm and data structure in response to required
changes.

-- - - - - -- - -~ -

t Chapter 15: Software Development
r

,-.

, '

I .
'

Exam-style Questions
1 Consider this code for a function:

FUNCTION Binary(Number : INTEGER)
DECLARE BinaryString : STRING
DECLARE PlaceValue : INTEGER

STRING

BinaryString
PlaceValue 8
REPEAT

'' I I empty string

IF Number>= PlaceValue
THEN

BinaryString BinaryString & 11 1 II concatenates two strings
Number Number - PlaceValue

ELSE
BinaryString <- BinaryString & 1 0 1

PlaceValue PlaceValue DIV 2
UNTIL Number= 0
RETURN BinaryString

END FUNCTION

a Dry-run the function call Binary(lll by completing the given trace table.

Number BinaryString PlaceValue Number>= PlaceValue

11 8

What is the return value?

b i Now dry-run the function call Binary(lO) by completing the given trace table.

Number BinaryString PlaceValue Number>= PlaceValue
10 II 8

What is the return value?

ii The algorithm is supposed to convert a denary integer into the equivalent binary number, stored as a
string of Os and ls. Explain the result of each dry-run and what needs changi ng in the given algorithm.

[5]

[3]

[3]

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of why user-defined types are
necessary

• define composite and non-composite types
• show understanding of methods of file organisation and

of file access
• select an appropriate method of file organisation and file

access for a given problem
• describe the format of binary floating-point real numbers
• normalise floating-point numbers and show

understanding of the reasons for normalisation

• show understanding of the effects of changing the
allocation of bits to mantissa and exponent in a floating-
point representation

• convert binary floating-point real numbers into denary
and vice versa

• show understanding of the consequences of a binary
representation only being an approximation to the real
number it represents and that binary representations can
give rise to rounding errors

• show understanding of how underflow and overflow can
occur.

' r
r

- - - - - - --- -- --- - -

Chapter 16: Data Representation

16.01 User-defined data types
This chapter must start wi t h a clarification . It is generally accepted that a programmer wri tes
a program which is to be used by a 'use r' in the same way that an operating system provides
a 'user' interface. However, in the act ivity of programming the programmer now becomes the
'user' of the programming language. The term 'user-defined data type' applies to t his latter
type of user.

Non-composite user-defined data types
A non-composite data type has a definition which does not involve a reference to anothe r
type. The simple built-in types such as integer or rea l are obvious exam ples. When a
programmer uses a simple bui lt-i n type t he only requi rement is for an ident ifier to be named
with a defined type. A user-defined type has to be expl ici tly defined before an identifier can
be created. Two examples are discussed here.

Enumerated data type
An enumerated data type defines a list of possib le va lues. The follow ing pseudocode
shows two examp les of type defini tions:

TYPE
TDirections = (North , Ea s t , South, Wes t)
TDay s = (Monday, Tuesday, Wednesday, Thurs day, Friday, Saturday, Sunday)

Variables ca n then be declared and assigned values, for example:

DECLARE Directionl : TDirections
DECLARE StartDay : TDays
Directionl North
StartDay Wednesday

It is important to note t hat the values of the enumerated type look like st ring values but they
are not. They must not be enclosed in quote marks.

The values defined in an enumerated data type are ordina l. This means that they have an
implied order of values. This makes the second example much more usefu l because t he
ordering can be put to many uses in a program. For example, a compa rison statement can be
used wit h t he values and va riables of t he enumerated dat a type:

DECLARE Weekend : Boolea n
DECLARE Day : TDays
Weekend= TRUE IF Day> Frid a y

Enumerated data type: a list of possible data values

Pointer data type
A pointer data type is used to reference a memory location. It may be used to const ruct
dynamically varyi ng data structures.

I

Cambridge International AS and A level Computer Science

The pointer definition has to re late to t he type of t he variable t hat is being poin ted to. The
pseudocode for the defini t ion of a pointe r is illustrated by:

TYPE
TMyPointer = A<Type name >

Decla rat ion of a variab le of pointer type does not requi re t he ca ret symbol {1'1) to be used:

DECLARE MyPointer : TMyPointer

A special use of a poin ter variable is to access the value stored at t he address poi nted to. The
pointer variable is sa id to be 'dereferenced':

ValuePointe dTo MyPointerA

Composite user-defined data types
A composi te user-defined data type has a defin ition with reference to at least one other type.
Three exa mples are co nsidered here.

Record data type
A record data type is t he most useful and therefore most widely used. It al lows the
programmer to collect together values with different data types when these fo rm a coherent
whole.

Record data type: a data type that conta ins a fixed number of components, which can be of different
types

As an example, a record could be used for a program using employee data. Pseudocode for
defi ning the type could be:

TYPE
TEmployeeRecord

DECLARE EmployeeFirstName : STRING
DECLARE EmployeeFamilyName : STRING
DECLARE DateEmployed : DATE
DECLARE Salary : CURRENCY

ENDTYPE

An individual data item can th en be accessed using a dot notation:

Employ eel.DateEmployed #16/05/ 2017#

A part icular use of a record is fo r the im plementat ion of a data structure where one or
possi bly two of the variables defined are poi nter va riab les.

Set data type
A set data type allows a program to create sets and to apply the mathematica l operat ions
defined in set t heory. The fol lowing is a representative list of the operations to be expected :

un ion
• difference

intersect ion

'
Chapter 16: Data Representation

• include an element in the set
• exclude an element from the set
• check whether an element is in a set.

Objects and classes
In object-oriented programming, a program defines the classes to be used - they are all
user-defined data types. Then for each class the objects must be defined. Chapter 27
(Section 27.03) has a full discussion of this subject.

Why are user-defined data types necessary?
When object-oriented programming is not being used a programmer may choose not to use
any user-defined data types. However, for any reasonably large program it is like ly that their
use wi ll make a program more understandable and less error-prone. Once the programmer
has decided because of this advantage to use a data type that is not one of the built-in types
then user-definition is inevitable. The use of, for instance, an intege~ va riab le is the same
fo r any program. However, there cannot be a bu ilt-in record type because each different
problem wi ll need an individual definition of a record .

16.02 File organisation
In everyday computer usage, a wide variety of f ile types is encountered . Examples are graphic
files, word -processing files, spreadsheet files and so on . Whatever the file type, the content is
stored using a defined binary code that allows the file to be used in the way intended.

For the very specific task of storing data to be used by a computer program, there are only
two defined file types. A file is either a text file or a binary file. A text file, as discussed in
Chapter 13 (Section 13.09), contai ns data stored according to a defined character code as
defined in Chapter l (Section 1.03). It is possible, by using a text editor, to create a text file.
A binary file stores data in its internal representation, for examp le an integer value might be
stored in two bytes in two's complement representat ion. This type of file wi ll be created using
a specific program.

The organisation of a binary file is based on the concept of a record. A file contains records
and each record contains fields . Each field consists of a value.

Binary file: a file designed for storing data to be used by a computer program

Record: a col lection of fields containing data values

Discussion Point:
A record is a user-defined data type. It is also a component of a file. Can there be or should
there be any re lationship between these two concepts?

Serial files
A seria l file contains records which have no defined order. A typical use of a seria l file would
be for a bank to record transactions invo lving customer accounts. A program would be
running. Each time there was a withdrawa l or a deposit the program would receive the

----- -- --- - - - - -----

I

Cambridge International AS and A level Computer Science

details as data input and would record these in a transaction file. The records would enter
the file in chronological order but otherwise the file would have no ordering of the records.

A text file can be considered to be a type of serial file but it is different because the file has
repeating lines which are defined by an end-of-line character or characters. There is no end-
of-record character. A record in a serial file must have a defined format to allow data to be
input and output correctly.

Sequential files
A sequential file has records that are ordered. It is the type of file suited to long-term
storage of data. As such it should be the type of file that is considered as an alternative to a
database. The discussion in Chapter 10 (Section 10.01) compared a text f ile wi th a database
but the arguments for using a database remain the same if a sequential file is used for the
comparison. In the banking scenario, a sequential file could be used as a master file for an
individual customer account. Periodica lly, the transaction file would be read and all affected
customer account master files wou ld be updated.

In order to allow the sequential file to be ordered there has to be a key field for which the
values are unique and sequential bu t not necessarily consecutive. It is worth emphasising
the difference between key fields and primary keys in a database table, where the values
are req ui red to be unique but not to be sequential. In a sequentia l fi le, a particular record is
found by sequentially read ing the va lue of the key fie ld until the required value is found.

Direct-access files
Direct-access files are sometimes referred to as 'random-access' files but, as with random-
access memory, the randomness is on ly that the access is not defined by a sequential
reading of the file. For large files, direct access is attractive because of the time that would
be taken to search through a sequentia l file. In an ideal scenario, data in a direct-access file
would be stored in an identifiable record which could be located immediately when required.
Unfortunately, this is not possible. Instead, data is stored in an identifiable record but finding
it may involve an initial direct access to a nearby record fo llowed by a limited seria l search.

The choice of the position chosen for a record must be calculated using data in the record
so that the same calcu lation can be carried out when subsequently there is a search for
the data . The normal method is to use a hashing algorithm. This takes as input the value
for the key field and outputs a va lue for the position of the record relative to the start of the
file. The hashing algorithm must take into account the potential maxi mum length of the file,
that is, the number of records the fi le wil l store. A simple example of a hash ing algorithm, if
the key field has a numeric va lue, is to divide the value by a suitably large number and use
the remainder from the division to define the position. This method will not create unique
positions. If a hash position is calculated that dup licates one already ca lculated by a different
key, the next position in the file is used. This is why a search wi ll involve a direct access
possibly followed by a limited serial search .

File access
Once a file organisation has been chosen and the data has been entered into a file, the
question now to be considered is how this data is to be used. If an individual data item is to
be read then the access method fo r a serial file is to successively read reco rd by record until
the required data is found. If the data is stored in a sequential file the process is similar but
only t he value in the key field has to be read . For a direct-access file, the value in the key field

--- ----- --- -- -- --------------- -------

. Chapter 16: Data Representation
'

is submitted to the hashing algorithm which t hen provides t he same value for the posit ion in
the file that was provided when the algorithm was used at the t ime of data input.

File access might also be needed to delete or edit data. The normal approach with a
sequential file is to create a new version of the file. Data is copied from the old f ile to the new
file unt il the record is reached wh ich needs de leting or edit ing. If deletion is needed, readi ng
and copying of the old file continues from t he next record. If a reco rd has changed, an edited
vers ion of the record is written to the new file and then the rema ining records are cop ied to
t he new file. For a direct-access file t here is no need to create a new file (un less the file has
become full) . A deleted record can have a flag set so that in a subsequent reading process the
record is skipped over.

Seria l fil e organisation is well suited to batch processing or for backing up data on magnetic
tape. However, if a program needs a file in which individual data items might be read,
updated or deleted then direct-access file organisation is the most suitable and serial fi le
organ isat ion the least suitable.

16.03 Real numbers
A real number is one with a fract ional part. Whe n we write down a va lue for a real number in
t he de nary system we have a cho ice. We can use a simple representation or we can use an
exponential notation (sometimes referred to as scientific not ation). In this latter case we have
options. For example, t he number 25.3 might alternatively be written as:

.253 x 102 or 2.53 x 101 or 25.3 x 10° or 253 x 10-1

For this number, t he simple expression is best but if a number is ve ry la rge or very sma ll the
exponentia l notation is the only sensible choice.

Floating-point and fixed-point representations
A bina ry code must be used for storing a real nu mber in a computer system . One possibili ty is
to use a fixed-po int representation . In this option, an overall number of bit s is chosen with a
defined number of bits for the who le number part and t he remainder fo r t he fractional pa rt.
The alternative is a floating-point representation. The format for a float ing-point number
can be generalised as:

In this option a defined number of bits are used for what is ca lled the significand or mantissa,
±M. The remain ing bits are used for t he exponent or exrad, E. The radix, R is not stored in the
representation; it has an implied value of 2.

Floating-point representation: a representation of rea l numbers that stores a value fo r the mantissa
and a value for the exponent

To il lustrate the differences between the two representations a very simple example can be
used . Let's consider that a rea l number is to be stored in eight bi t s.

For the fixed-point option, a possible choice would be to use the most significant bit as a sign
bi t and the next f ive bits fo r the whole number part leaving two bits for the fract ional part.

•

Cambridge International AS and A level Computer Science

Some important non-zero values in this representation are shown in Table 16.01. (The bits are
shown with a gap to indicate the implied position of the binary point.)

Description Binary code Denary equivalent
Largest positive value 01111111 31.75
Smallest positive value 000000 01 0.25
Smallest magnitude negative value 100000 01 -0.25
Largest magn itude negative value 11111111 -31.75

Table 16.01 Example fixed-point representations (using sign and magnitude)

For a floating-point representation, a possible choice would be four bits for the mantissa and
four bits for the exponent wi t h each using two's complement representation . The exponent
is stored as a signed integer. The mantissa has to be stored as a fixed-point real value. The
question now is where the binary point should be.

Two of the opt ions for the mantissa being expressed in four bits are shown in Table 16.02(a)
and Table 16.02(b). In each case, the de nary equivalent is shown and the position of the
implied binary point is shown by a gap. Table 16.02(c) shows the three la rgest magnitude
positive and negative values for integer cod ing that will be used for the exponent.

a) b) c)
First bit pattern Real value Second bit Real Integer bit Integer value
for a real value in denary pattern for a va lue in pattern in denary
0111 3.5 real value denary 0111 7
0110 3.0 0111 .875 0110 6
010 l 2.5 0110 .75 0101 5
1010 -3.0 0101 .625 1010 -6
100 l -3.5 l 010 -.75 1001 - 7
100 0 -4.0 l 001 -.875 1000 - 8

l 000 - 1.0

Table 16.02 Coding a fixed-point real va lue in eight bits (four for the mantissa and
four for the exponent)

It can be seen that having the mantissa with t he implied binary point immediately following
the sign bit produces smaller spacing between the values that can be represented. This is the
preferred option for a floating-point representation. Using t his option, the most important
non-zero values for the float ing-point representation are shown in Tab le 16.03. (The impl ied
binary point and the mantissa exponent separation are shown by a gap.)

Description Binary code Denary equivalent
Largest posit ive value 0 1110111 .875 X 27 = 112
Smallest positive value 0 0011000 .125 X 2-s = 1/2048
Smallest magnitude negative value 11111000 - .125 X 2-a = - 1/2048

Largest magn itude negative value l 000 0111 -1 X 27 = - 128

Table 16.03 Example floating-point representations

The comparison between the values in Tables 16.01 and 16.03 illustrate the greater range of
posit ive and negative values ava ilable if float ing-point representation is used.

-

Chapter 16: Data Representation

Extension question 16.01
1 Using the methods suggested in Chapter 1 (Section 1.01) can you confirm for yourself that

the denary equivalents of the binary codes shown in Tables 16.02 and Table 16 03 are as
indicated?

2 Can you also confirm that conversion from positive to negative or vice versa for a fixed -
format real value still follows the rules defined in Chapter 1 (Section 1.02) for two's
complement representation .

Precision and normalisation
In principle a decision has to be made about the format of a floating-point representation
both with regard to the total number of bits to be used and the split between those
represent ing the mantissa and those representing the exponent. In practice, a choice for
the total number of bits to be used will be ava ilable as an option when the program is
written. However, the split between the two parts of the representation will have been
determined by the float ing-point processor. If you did have a choice you would base a
decision on the fact that increasing the number of bits for the mantissa would give better
precision for a value stored but would leave fewer bits for the exponent so reducing the
ra nge of possible values .

In order to achieve maximum precision, it is necessary to normalise a floating-point number.
(This normalisation is totally unrelated to the process associated with designing a database.)
Since precision increases with an increasing number of bits for the mantissa it follows that
optimum precision will only be achieved if fu ll use is made of these bits. In practice, that
means using the largest possible magn itude for the value represented by the mantissa.

To illustrate this we can consider the eight-bit representation used in Table 16.03. Table 16.04
shows possible representations for denary 2 using this representation.

Denary representation Floating-point binary representation
0.125 X 24 0 0010100
0.25 X 23 0 010 OOll
0.5 X 22 0100 0010

Table 16.04 Alternative representations of denary 2 using four bits each for mantissa and exponent.

For a negative number we can consider representations for -4 as shown in Table 16.05.

Denary representation Floating-point binary representation

- 0.25 X 24 l llO 0100
- 0.5 X 23 1100 OOll
-1.0 X 22 1000 0010

Table 16.05 Alternative representations of denary-4 using four bits each for mantissa and exponent.

It can be seen that when the number is represented with the highest magnitude fo r the
mantissa, the two most significant bits are different. This fact can be used to recogn ise that
a number is in a normalised representation. The values in these tables also show how a
number could be normal ised. For a positive number, the bits in the mantissa are shifted left
until the most significant bits are O followed by 1. For each shift left the va lue of the exponent
is reduced by 1.

I

Cambridge International AS and A level Computer Science

The same process of shifting is used for a negative number until the most significant bits are
1 followed by 0. In this case, no attention is paid to the fact that bits are falling off the most
significant end of the mantissa.

Conversion of representations
In Chapter 1 (Section 1.01), a number of methods for converting numbers into different
representations were discussed . The ideas presented there now need a little expansion.

Let's start by considering the conversion of a simple real number, such as 4.75, into a simple
f ixed-point binary representation. This looks easy because 4 converts to 100 in binary and .75
converts to .11 in binary so the binary version of 4.75 should be:

100.11

However, we now remember that a positive number should start with 0. Can we just add a
sign bit? For a positive number we can . Denary 4.75 can be represented as 0100.11 in binary.

For negative numbers we still want to use two's complement form. So; to f ind the
representation of-4.75 we can start with the representation for 4.75 then convert it to two's
complement as follows:

0100.11 converts to 1011.00 in one's complement

then to 1011.01 in two's complement

To check the result, we can apply Method 2 from Worked Example 1.01 in Chapter 1. 1011 is
the code for - 8 + 3 and .oi is the code for .25; - 8 + 3 + .25 = - 4.75.

We can now consider the conversion of a denary value expressed as a real number into a
floating-point binary representation. The first thing to real ise is that most fractional parts do
not convert to a precise representation. This is because the binary fractiona l parts represent
a half, a quarter, an eighth, a sixteenth and so on. Unless a denary fraction is a sum of a
collection of these values, there cannot be an accurate conversion. In particular, of the values
from .1 through to .9 only .5 converts accurately. This was mentioned in Chapter 1 (Section
1.02) in the discussion about storing currency values.

The method for tonversion of a positive value is as follows:

1 Convert the whole-number part using the method described in Chapter 1 (Section 1.01).

2 Add the O sign bit.
3 Convert the fractional part using the method described in Worked Example 16.01.
4 Combine the two, with the exponent expressed as zero.

5 Adjust the position of the binary point and change the exponent accordingly to achieve a
normalised form.

WORKED EXAMPLE 16.01

Converting a denary value to a floating-point representation
Example 1
Let's consider the conversion of 8.75:

1 The 8 converts to 1000, adding the sign bit gives 01000.

2 The .75 can be recognised as being .11 in binary.
3 The combination gives 01000.11 which has exponent va lue zero.

~ ----------- --- -- --- --

Chapter 16: Data Representation

4 Shifting the binary point gives 0.100011 which has exponent value de nary 4.

5 The next stage depends on the number of bits defined for the mantissa and the
exponent; if ten bits are allocated for the mantissa and four bits are allocated for the
exponent the final representation becomes 0100011000 for the mantissa and 0100 for
the exponent.

Example 2
Let's consider the conversion of 8.63 . The first step is the same but now the .63 has to be
converted by the 'multip ly by two and record whole number parts' method. This works as
follows:

.63 x 2 = 1.26 so 1 is stored to give the fraction .1

.26 x 2 = .52 so O is stored to give the fract ion .10

.52 x 2 = 1.04 so 1 is stored to give the fraction .101

.04 x 2 = .08 so O is stored to give the fraction .1010

At this stage it can be seen that multiplying .08 by 2 successively is going to give a lot of
zeros in the binary fraction before another 1 is added so the process can be stopped.
What has happened is that .63 has been approximated as .625. So, following Steps 3-5 in
Example 1, the final representation becomes 0100010100 for the mantissa and 0100 for the
exponent.

TASKlG.01

Convert the denary value -7.75 to a floating-point binary representation with ten bits for the
mantissa and four bits for the exponent. Start by converting 7.75 to binary (make sure you add
the sign bit!). Then convert to two's complement form . Finally, choose the correct value for
the exponent to leave the implied position of the binary point after the sign bit. Convert back
to den a ry to check the resu It.

Problems with using floating-point numbers
As il lustrated above, the conversion of a real value in de nary to a binary representation
almost guarantees a degree of approximation. This is then added to by the restr iction of the
number of bits used to store the mantissa.

Many uses of floating-point numbers are in extended mathematical procedures involving
repeated calculations. Examples of such use would be in weather forecasting using a
mathematica l model of the atmosphere or in economic forecast ing. In such programming
there is a slight approximation in recording the result of each calculation . These so-called
rounding errors can become significant if calculations are repeated enough times. The
only way of preventing this becoming a serious problem is to increase the precision of the
float ing-point representation by using more bits for the mant issa. Programming languages
therefore offer options to work in 'double precision' or 'quadruple precision'.

The other potential problem relates to the range of numbers that can be stored. Referring
back to the simple eight-bit representation illustrated in Table 16.03, t he highest value
represented is denary 112. A calculation can easily produce a value higher than this. As
Chapter 5 (Sect ion 5.02) illustrated, this produces an overflow error condition. However, for

------ ---

I

Cambridge International AS and A level Computer Science

floa t ing-point values there is also a possibil ity that if a very small number is divided by a
number greater than 1 the result is a value smaller than the sma llest that can be stored. This
is an underflow error condition . Depending on the circumstances, it may be possible for a
program to continue running by converting this very small number to zero but clearly this
must involve risk.

• Examples of non-composite user-defined data types include enumerated and pointer data types.

• Record, set and class are examples of composite user-defined data types.

• File organisation allows for serial, sequential or direct access.

• Floating-point representation for a real number allows a wider range ofvalues to be represented.

• A normalised floating-point representation achieves optimum precision for the value stored.

• Stored floating-point values rarely give an accurate representation of the denary equivalent.

Exam-style Questions
1 A programmer may choose to use a user-defined data type when writing a program.

a Give an example of a non-composite user-defined data type and expla in why its use by a programmer is
different to the use of an in-built data type.

b A program is to be written to handle data relat ing to the animals kept in a zoo. The programmer chooses to
use a record user-defined data type.

Explain what a record user-defined data type is.

ii Explain the advantage of using a record user-defined data type.

iii Write pseudocode for the defin ition of a record type which is to be used to store: animal name, an imal age,
number in zoo and location in the zoo.

2 a A binary file is to be used to store data for a program.

What are the terms used to describe the components of such a file.

ii Explain the difference between a binary file and a text file .

b A binary file might be organised for serial, sequential or direct access.

Explain the difference between the three types of file organisat ion .

ii Give an example of file use for wh ich a seria l file organisation would be su itable. Justify you r choice.

iii Give an examp le of file use when direct access would be advantageous. Justify your choice.

[3]

[2]

[2]

[5]

[2]

[3]

[4]

[3]

[3]

. Chapter 16: Data Representation
:,.

3 A file contains binary coding. The following are four successive bytes in the file:

10010101 1 00110011 1 I 11001000 1 1 00010001 1

a The four bytes represent two numbers in floating-point representation. The first byte in each case represents
the mantissa. Each byte is stored in two's complement representation.

Give the name for what the second byte represents in each case. [l]

ii State whether the representations are for two posit ive numbers or two negative numbers and explain why. [2]

iii One of the numbers is in a normalised representation. State which one it is and give the reason why. [2]

iv State where the implied binary point is in a normalised representat ion and explain why a normalised
representation gives better precis ion for the value represented .

v If two bytes were still to be used but the number of bits for each component was going to be changed by
allocating more to the mantissa, what effect would this have on the numbers that could be represented?
Explain your answer.

b Using the representation described in part (a), Show the representation of denary 12.43 as a floating-point
binary number.

[3]

[2]

[5]

•

Learning objectives
By the end of this chapter you should be able to:

• show understanding of a bus or star topology network
• show understanding of circuit switching and where it is

applicable
• show understanding of packet switching and explain how

it is used to pass messages across a network
• explain how hardware is used to support a LAN
• show understanding of why a protocol is essential for

communication between computers
• show understanding of how protocol implementation can

be viewed as a stack
• show understanding of the function of each layer of the

TCP/IP protocol suite and the application of the suite
when a message is sent from one host to another on the
internet

• show understanding of the function of a router in packet
switching

• show awareness of other protocols (HTTP, FTP, POP3,
SMTP) and their purposes

• show understanding of Ethernet and how collision
detection and avoidance works

• show understanding of how the BitTorrent protocol
provides peer-to-peer file sharing

• show understanding of a wireless network.

: Chapter 17: Communication and Internet Technologies ·,,

17.01 Isolated network topologies
There are five requ irements for a data communications system: a sender, a receiver, a
transmission medium, a message and a protocol. Here, a 'message' is a general term to
describe any type of tra nsmitted data. A message can only be t ransmi t ted if t here is an
agreed protocol. Protoco ls are discussed in later sect ions of t his chapter.

A data comm unications system may consist of an isolated network. There are severa l
possib le topologies for an isolated network. The simplest possible network is where two
end-systems are connected by a network li nk as shown in Figu re 17.01. This is an example of
a point-to-point connection for wh ich there is a dedicated link.

Figure 17.01 A point-to-point network

A bus topo logy also has only one link but it is shared by a number of end -systems and is
therefore described as a mu lt i-point connection . The configuration is shown in Figu re 17.02.
This configuration has a major difference in that t here is no direct connect ion between any
pa ir of end-systems.

• •
Figure 17.02 A bus network

A ring topo logy is shown in Figure 17.03(a). In this con figu rat ion, each end-system has a point-
to -point connect ion to the two adjacent end-systems.

An example of a fully-connected mesh topology is shown in Figure 17.03(b). In th is
configuration, each end-system has a point-to-point connection to each of the other end -
systems.

- •~
(a) (b)

Figure 17.03 (a) A ring network and (b) a mesh network

I

Cambridge International AS and A level Computer Science

The final possibility is a star topology
which is shown in Figure 17.04. This
could have been drawn so that it
looked like a star but it is better
drawn to represent the physica l
configuration that is used in an actual
installation. In a star topology, each
end-system has a point-to -po int
connection to the 'central ' device.

The ring and bus topologies were Figure 17.04 A star topology
used in early networks. Most of the
end-systems would have been user workstations; the others would have been servers . With
regard to the end-systems the same applies to a fully-connected mesh network but this was
never a realistic configuration because of the amount of cabling required .

In the star topology, the end-systems may again be user workstations or servers but the
central device is different. The star topo logy is nowadays the dominant configuration for an
ind ividual network. There are severa l reasons for this. The most important is that the central
device can be used to connect the network to other networks and, in particular, to the
Internet. A special ised application is to use the star topology to function logically as a ring.
With the appropriate software insta lled, each end-system can function as though it has just
two directly connected neighbours.

Discussion Point:
Which network topologies have you used? You may wish to defer this discussion until you
have read about network devices later in this chapter.

17.02 Communication and transmission concepts
There are several concepts relating to the use of a network for communication and data
transm ission .

Data flow modes
The data flow along an individual link is simplex, half duplex or ful l duplex. In simplex mode
the flow is one-way. In a duplex mode flow is both ways but only occurs simultaneously in
full-duplex mode.

Message types
When a message is sent it can be as a broadcast, a multicast or a unicast. Broadcasting is a
one-to-all commun ication (as used t raditionally for radio and television). Mu lticasting is from
one source to many destinations. Unicasting is a one-to-one communication .

Transmission modes
For communication over an internetwork there are two possib le approaches: circu it
switching or packet switching. Circuit switching is the method used in the traditional
telephone system. Because the Public Switched Te lephone Networks (PTSNs) have now
largely converted to digital technology, the same method can be provided for data transfer

' Chapter 17: Communication and Internet Technologies
,.l

t
I
r

ra t her t han voice communication. Typically this is provided in a leased line service. The
concept is illustrated in Figu re 17.05, which shows end-systems connected to local exchanges
which have a switching function and which are connected via a number of intermediate
nodes with a switching function.

Figure 17.05 Circuit-switched data transmission

For data transfer to take place, the fo llowing has to happen:

1 Th e sender provides the identity of t he intended receiver.

2 The system checks whether or not the rece iver is ready to accept data.
3 If the receiver is available, a sequence of links is established across the network.
4 The data is transferred.
5 The li nks are removed .

It is not necessary for th is discussion to define what could const itute a node in a circuit-
swi tched network. The li nks that are provided between the nodes are ded ica ted channels in
shared t ransmission med ia that guarantee unimpeded transmission. When a telephone call
is made t here is a definite end of th e call with removal of the links. However, for a leased-line
data con nection t here might be a pe rmanent circuit established .

The packet-switching method al lows data t ransmission wit hout a circuit being established.
Data ca nnot be sent in a continuous st ream. Instead data is packaged in port ions inside
packets. A packet consists of a header wh ich contains instruct ions for del ivery plus the data
body. The method is similar to that used by the postal service but rather more complex! The
network schematic shown in Figure 17.05 is still appropriate to describe packet switch ing
except that the links used are not defined at the t ime a packet is transmitted by the sender.

Packet-switching services
When packet switch ing is used there are two ways that t he network can provide a service:
connectionless se rvice or connection-oriented service.

If a co nnect ionless service is provided, a packet is dispatched with no knowledge of whether
or not the rece iver is ready to accept it. In a connection-oriented service the first packet sent
includes a request for an acknowledgement. If this is received, the sender transm its further
packets. If no acknowledgement is rece ived the sender tries again wi th the first packet.

17.03 Hardware connection devices
An end -system on an Ethernet LAN needs a network interface card (NIC). Each NIC has a
un ique 'physica l' address. This is sometimes referred to as t he MAC address as expla ined
in Section 17.06. The end-system itself has no identification on the network. If the NIC is
removed and inserted into a di fferent end -system, it ta kes the add ress wi t h it.

----- -- -- - - ---

I

Cambridge International AS and A level Computer Science

The simplest device that can be used at the 'centre' of a star topology LAN is a hub. A hub
ensures that any incoming communication is broadcast to all con nected end-systems.
However, t he use of a hub is not restri cted to supporting an isolated network. One possibility
is to have a hierarchical configuration with one hub connected to other hubs, which support
individual LANs. Another possib ility is for a hub to have a bui lt-in broadband modem. This
al lows all of the end -user systems on the LAN to have an Internet connection when this
modem is connected to a te lephone line.

A switch can functi on as a hub but it is a more intelligent device an d, in particular, can keep
track of the addresses of connected devices. This al lows a switch to send an incoming
transmission to a specific end -system as a unicast. This facil ity obviously reduces the amount
of network traffic compared to that generated by a hub.

A router is the most intelligent of the connecting devices. It is in effect a smal l computer.
It can function as a switch but the router can make a decision about wh ich device it wi ll
transmit a rece ived transmission to. As was mentioned in Chapter 2 (Sect ion 2.04), t he ma in
use of rou ters is in the backbone fabr ic of t he Internet. Nearer to the er-id-systems, a router
may functi on as a gateway, as a network address translation box (described in Chapter 2
(Section 2.07)) or be co mbined with a firewall. There is further d iscussion of routers in Section
17.04.

17.04 The TCP/IP protocol suite
Protocols are essential for successful transmission of data over a network. Each protocol
defines a set of rules that must be agreed between sender and receiver. At the simplest level,
a protocol cou ld define t hat a positive voltage represents a bit with value 1. At the other
extreme, a protocol could define the format of the first 40 bytes in a packet.

Protocol: a set of rules for data transm ission which are agreed by sender and receiver

The complexi t y of networking requ ires a very large number of protocols. A protocol su ite is a
collection of related protocols. TCP/IP is the dominant protocol su ite for Internet usage. TCP/
IP can be explained on the basis of the network model shown in Figure 17.06.

Figure 17.06 shows a stack of layers for the protocols where:

Each layer except the physical layer represents software installed on an end-system or on
a rou ter.

• Th e software for each layer must provide t he capabi li ty to receive and to transmit data in
full-dup lex mode to an adjacent layer.

• A protocol in an upper layer is serviced by the protocols in lower layers.
As a result, an application run on one end-system can behave as t hough there was a direct
connection with an application runn ing on a different end -system. To ach ieve this, t he
application layer protocol on the sender end-system sends a 'message' to th e transport layer
protocol on the same system . The transport layer protoco l t hen initiates a process which
results in the identical 'message' being delivered to the receiver end-system. Finally, on the
receiver end-system, the t ransport layer protocol delive rs the 'message' to t he app lication
layer protocol.

, Chapter 17: Communication and Internet Technologies

IApplication l.------ Logical peer-to-peer relationship ---~ IApplication l t < ------------------------------ ldeotkal messages ----------- -------------------------> l
I Transport I~ -- - --· Logical peer-to-peer relationship -----~I Transport I ! < ------------------------------ ldeotlcal packet, ------------------------------------> !

Network I ~ - -- -- -- - ----1 Network 1- - - ---- -- -- ~ I Network I

I Datt Datat I J link i

PhyL J ical ~ ,---1-P_J~ys-ic_a_l -,

Protocol stack for
one end-system

Protocol stack
for a router

Protoco l stack for
another end-system

Figure 17.06 A network model relating to the TCP/IP protocol suite

TCP/ IP
protocol
suite

The TCP/IP protocol su ite on ly operates at the top t hree layers. The lower layers operate wi t h
a different protocol su ite, such as Ethernet. A router has no awareness of the two highest
layers.

The TCP/I P su ite comprises a number of protocols, including t he followi ng:

• Application layer: HTTP, SMTP, DNS, FTP, POP3

• Transport layer: TCP, UDP, SCTP

Netwo rk layer: IP, IGMP, ICMP, ARP

The selection has been chosen to illustrate that the TCP/IP su ite encompasses a very wide
range of protocols which is still evolving_ Some of the listed protocols wil l not be cons idered
furt her.

TCP (Transmission Control Protocol)
If an appl ication is running on an end-system where a 'message' is to be sent to a d ifferent
end -system the application wil l be contro lled by an app lication laye r protocol (see Sect ion
17.05). The protocol wi ll transmit t he user data to the transport layer. The TCP protocol
operat ing in the transport layer now has to take respons ibil ity for ensu ring t he safe delive ry
of the 'message' to the rece iver. To do t his it creates sufficien t packets to hold all of the data .
Each packet cons ists of a header plus t he user data .

As well as needing to ensure safe del ivery, TCP also has to ensure that any response is
directed back to t he appl ication protocol. Thus one item in the header is t he port number
wh ich identifies the applicat ion layer protocol . For examp le, for HTTP t he port number is
80. The packet must also include t he port number fo r the appl icat ion layer protocol at the
receiving end-system _ However, TCP is not co ncerned w ith the add ress of the rece iving end -
system. If the packet is one of a sequence, a sequence number is included to ensure eventual
correct reassembly of the user data .

I

Cambridge International AS and A level Computer Science

The TCP protocol is connection -oriented . As described in Section 17.02, initially just one
packet of a sequence is sent to the network layer. Once the connect ion has been established,
TCP sends the other packets and receives response packets contain ing acknowledgements.
This al lows missing packets to be ident ified and re-sent.

IP (Internet Protocol)
The function of the network layer, and in particular of the IP protocol, is to ensure correct
routing over the Internet. To do t his it takes the packet received from the tra nspo rt layer and
adds a further header. This header contains t he IP addresses of both the sender and the
receiver. To find t he IP address of the receiver, it is very likely to use the DNS system to find
the add ress corresponding to the URL supp lied in the user data. This aspect was discussed in
some detail in Chapter 2 (Section 2.08).

The IP packet, which is usually ca lled a 'datagram', is sent to the data -link layer and t herefore
to a diffe rent protocol suite. The data-link layer assembles datagrams into 'frames'. At this
stage, t ransmission can begin. Once the IP packet has been sent to t he data -li nk layer, IP
has no further duty. IP functions as a connect ionless service. If IP receives a packet which
contains an acknowledgement of a previously sent packet, it wil l simp ly pass the packet on
to TCP with no awareness of the content.

The router
As Figure 17.06 shows, the fra me sent by the data-link layer wil l arrive at a router during
transmission (more likely at several routersl) . At this stage, the datagram content of the frame
is given back to IP. It is now the function of the router softwa re to choose t he next target host
in the transmission. The software has access to a routing table appropriate to that router. The
size and complexity of t he Internet proh ibits a router from having a global rout ing table. IP
then passes t he datagram back to the data-link layer at t he router.

The disti nction between a switch and a router was discussed earlier. A fu rther point to
note here is that when a frame arrives at a switch, it is transm itted on without any routing
decision . A switch operates in the data -link laye r, not in the network layer.

17.05 Application-layer protocols associated with TCP/IP
There are ve ry many application-layer protocols. This discussion w ill consider on ly a few of
t he protocols that were introduced early in t he use of TCP/IP.

HTTP (HyperText Transfer Protocol)
Because HTTP (HyperText Transfer Protoco l) underpins the World Wide Web it has to be
considered to be the most important app lication-layer protocol. Every time a user accesses a
website using a browser, HTTP is used but its functionality is hidden from view.

HTTP is a t ransaction-oriented , client-server protocol. The transaction invo lves the cl ient
sending a 'request' message and the server sending back a 'response' message. The HTTP
protocol defines the forma t of the message. The first line of a request message is th e 'request
line'. Optional ly th is can be followed by header lines. Al l of this uses ASC II coding. The fo rmat
of the request li ne is:

<Metho d > <URL > <Vers ion >CRLF

where CR and LF are the ASC II carriage return and line feed characte rs. The request line
usua lly has GET as the method. However, there are seve ral alternatives to the GET method

,--

,.
I ,
r
I ,
J ,

Chapter 17: Communication and Internet Technologies

which makes HTTP potentially a more w idely applicable protocol than just being used for
webpage access. The version has to be specified because HTTP has evolved so there is more
than one vers ion in use.

In Chapter 2 (Section 2.09), a sequence of events was described for when a browser accesses
a web page. This can now be presented as a sequence of protocol actions. The following is an
abbreviated version :

1 HTTP transm its a request message to TCP.

2 TCP creates one or more packets and sends the first one to IP using port 80 fo r the
destination port and a temporary port number for the sending port.

3 IP uses the URL in the message to get an IP address using DNS and sends a datagram.
4 At the server, IP forwards the datagram to TCP.

5 The server TCP sends an acknowledgement.

6 When a connection has been established, TCP sends the rema ining packets, if any, to IP
which then forwards them through the server IP and TCP to the server application layer.

7 HTTP transm its a response message which is transmitted via TCP, IP, IP and TCP to the
cl ient browser application.

All of this can happen with just one click on a bookmark item in a browser!

Email protocols
The traditional method of sending and receiving emails is schematically illustrated in Figure
17.07. It can be seen that three ind ividual client-server interactions are involved. The client
has a connection to a mail server wh ich then has to funct ion as a client in the transmission to
the ma il server used by the receiver.

Server Server

Email Mail Mail Email
sender SMTP SMTP POP3 receiver
client

server server
client

Figure 17.07 An email message being transmitted from a sender to a receiver

SMTP (Si mple Mail Transfe r Protocol) is a 'push' protocol. POP3 (Post Office Protocol ve rsion
3) is a 'pull' protocol . There is a more recent alternative to POP3, wh ich is IMAP (Internet
Message Access Protocol) . IMAP offers the same facilities as POP3 but also a lot more.

This approach has been largely superseded by the use of web-based mail. A browser is used
to access the email application, so HTTP is now the protocol used. However, SMTP remains in
use for transfer between the mail servers.

FTP (File Transfer Protocol)
For routine transfers of f iles from one user to another the most likely method is to attach the
file to an email . However, this is not always a suitab le met hod. FTP (File Transfer Protocol) is

.- -- ----- ---------- --- - -- ---------

I

•

Cambridge International AS and A level Computer Science

the application-layer protocol that can handle any file transfer between two end-systems.
Fi le transfer can be less than straightforward if the end-systems have different operati ng
systems with different file systems. FTP handles this by separating the cont rol process from
t he data-t ransfer process .

17.06 Ethernet protocol
Ethernet is the ot her dominant protocol in the modern networked world. It is primarily
focused on LANs. Although Ethernet was first devised in the 1970s independently of any
organisation, it was later adopted for standardisation by the Institute of Electrical and
Elect ron ics Engineers (IEEE). In particular it was their 802 comm ittee (obviously one of
many!) that took respons ibility for the development of the protocol. The standard fo r a wired
network is denoted as IEEE 802.3 wh ich can be considered to be a synonym for Ethernet.
The standard has evolved th rough five generat ions: standard or traditional, fast, gigabit, 10
gigabit and 100 gigabit. The gigabit part of the name indicates the t ransfer speed capability.

Ethernet t ransmits data in frames. Each frame contains a source address and a destination
address. The address is the physical or MAC address, which uniquely defines one NIC, as
described in Section 17.03. The reason that a unique address can be guaranteed is that 48 bits
are used for the definition. The address is usually written in hexadecimal notation, for example:

4A:30:12:24:1A:10

Standard Ethernet was implemented on a LAN configured either as a bus or as a star
with a hub as the central device. In either topology, a tra nsmission was broadcast in a
connecti on less service.

Extension Question 17.01
In a star topology LAN with a hub as t he central device, why must a transm ission be
broadcast?

Because of the broadcast t ransmission, there was a need for t he access to the shared
mediu m by end-systems to be controlled . If there were no control, two messages sent at
the same t ime wou ld 'collide' and each message would be corrupted. The method adopted
was CSMA/CD (carrier sense multip le access with coll ision detection). This rel ied on the fact
that if a frame was being transmitted there was a vo ltage level on t he Ethernet cable which
could be detected by an end-system. If this was the case, the protocol defined a time that the
end-system had to wai t before it t ried again . However, because two end-systems cou ld have
wa ited t hen both decided to transmit at the same time collisions could still happen. Thus
there was also a need to incorporate a mea ns for an end-system to detect a co llision and to
discontinue transmission if a coll ision occurred.

Alt hough t here might be some legacy standard Ethernet LANs still operating, the modern
implementat ion of Ethernet is switched. The star co nfigu ration has a switch as the centra l
device. The switch cont ro ls transmission to specific end-systems. Each end-system is
con nected to the switch by a full -duplex link so no collision is possible along that link. Since
col lisions are now impossible, CSMA/CD is no longer needed.

Ethernet is the most li kely protocol to be operating in the data-l ink layer defined in the
TCP/IP protocol stack. Referring back to Figure 17.06, the diagram shows IP in the network
layer sending a datagram to the data-l ink layer. When the data- li nk layer uses Ethernet, t he
protocol defines two sub-layers. The upper of t hese is t he logical link-cont rol layer, which
handles fl ow cont rol , error control and part of the fra mi ng process . The lower is the media
access control (MAC) sublayer which completes the framing process and defines the access

". Chapter 17: Communication and Internet Technologies

i
l
'

method. The MAC layer transmits the frames that contain the physical addresses for sender
and receiver. This is the reason that these addresses are often referred to as MAC add resses.

17.07 Peer-to-peer (P2P) file sharing
The network traffic generated by peer-to-peer (P2P) file sharing has come to be a dominant
feature of Internet usage. It is an architecture that has no structure and no controlling
mechanism. Peers act as both clients and servers and each peer is just one end-system.

The BitTorrent protocol is the most used protocol because it allows fast sharing of files. There
are three basic problems to solve if end-systems are to be confident in using BitTorrent:

• How does a peer fi nd others that have the wanted content?
• How do peers replicate content to provide high-speed downloads for everyone7

• How do peers encourage other peers to provide content rather just using the protocol to
download for themselves?

The answer provided by BitTorrent to the first question is to get every content provider to
provide a content description, called a torrent, which is a file that contains the name of the
tracker (a server that leads peers to the content) and a list of the chunks that make up the
content. The torrent file is at least three orders of magn itude sma ller than the content so can
be transferred quickly. The tracker is a server that maintains a list of all the other peers (the
'swarm') actively downloading and upload ing the content.

The answer to the second question invo lves peers simultaneously downloading and uploading
chunks but peers have to exchange lists of chunks and aim to download rare chunks for
preference. Each time a ra re chunk is downloaded it automatically becomes less rare!

The answer to the third question requires dealing with t he free-riders or 'leechers' who
on ly download. The solution is for a peer to initially randomly t ry other peers but then to
only continue to upload to those peers that provide regular downloads. If a peer is not
downloading or only downloading slowly, it will eventually be isolated or 'choked'.

It is worth noting that the language of BitTorrent is somewhat esoteric and there are other
terms used which have not been mentioned. Fortunately the principles are straightforward .

17.08 Wireless networks
All of the previous discussion in th is chapter has related to transmission using a cable
medium. In today's world, th is is no longer the dominant technology. The following brief
discussion considers four important examples of wireless technology discussed in order of
increasing scale of operation.

Bluetooth
Bluetooth has been standardised as IEEE 802.15. Communication is by short-range radio
transmission in a co nfined area. A Bluetooth LAN is an ad hoc network. This means that there
is no defined infrastructure and network connections are created spontaneously. There is an
almost limitless range of applications that use Bluetooth; some are very simple, such as using
a wireless keyboard or mouse.

WiFi
WiFi (WLAN in some countries) is a term used by the public to describe what is sometimes
called wireless Ethernet but is formally IEEE 802.11. This is a wireless LAN protocol wh ich

•

Cambridge International AS and A level Computer Science

uses radio frequency transmission. Most often a WiFi LAN is centred on a wireless access
point in an 'infrastructure' network (i.e. not an ad hoc network). The wireless access point
communicates wire lessly with any end-systems that have connected to the device. It also has
a wired connection to the Internet.

WiMAX
WiMAX (Worldwide Interoperabil ity for Microwave Access) or IEEE 802.16 is a protocol for a
MAN or WAN. It is designed for use by PSTNs to provide broadband access to the Internet
wi t hout having to lay underground cables. Local subscribers connect to the antenna of a
local base station using a microwave signal .

Cellular networks
A mobile phone is often called a 'cell phone' because
of the fundamental infrastructure provided for mobile
phone users. This is illustrated in Figure 17.08.

Each cell has at its centre a base station. The system
works because each cell has a defined frequency for
transmission which is different from the frequencies
used in adjacent cells. Figure 17.08 A collection of mobile phone cells

The technology avai lable in a mob ile phone has progressed dramatical ly th rough what are
described as generations:

• lG was designed for voice communication using ana logue technology.
2G went digital.

3G introduced multimedia and serious Internet connection capability.
• 4G introduced smartphones with high -bandwidth broadband con nect ivity.

• Possible topologies for an isolated network are: single link, bus, ring, star or mesh.

• Circuit switching requires a dedicated circuit to be established between sender and receiver
before transmission can start.

• In packet switching, packets can be transmitted without any circuit being created.

• Hardware network-connecting devices include network interface cards, hubs, switches and
routers.

• The TCP/IP protocol suite is implemented as a layered stack.

• Examples of app lication-layer protocols are HTTP, SMTP, POP3 and FTP.

• The dominant LAN protocol is Ethernet.

• Peer-to-peer file sharing on the Internet uses the BitTorrent protocol.

• The four major wireless technologies are Bluetooth, WiFi, WiMAX and cellular networks.

-- -

, Chapter 17: Communication and Internet Technologies

Exam-style Questions

1 a There are five requirements for a data commu nication system. State the five requirements . [3]

b An isolated w ired network is to be used as a data communication system.

Draw two possible topologies. [2]

ii For each topology, expla in why there is or is not direct point-to-po int connections between the end-systems. [4]

c Each end-system is fitted with a network interface card (NIC).

Explain why the NIC is needed.

ii Explain what would happen if the NIC in an end-system was replaced by a newer version.

2 One end-system with an Internet connection has a file. A user on another end-system connected to the Internet
needs a copy of the file. There are different methods that might be used to enab le the user to obtain a copy of the file.

a Identify t hree possible methods with a brief explanation for each.

b Identify the application-layer protocols that each method will use with a brief explanation for each one.

3 a Standard Ethernet is a term used to describe the original version of Ethernet.
CS MA/CD was a feature of standard Ethernet.

Describe, with the aid of a diagram, a network topology that could be used with standard Ethernet.

ii Describe the CS MA/ CD method and explain its use.

b Ethernet can be used in conjunction with the TCP/ IP protocol suite.

Draw a diagram to illustrate how the combination of Ethernet and the TCP/IP suite provides support for data
communication .

ii Explain the mean ing of the te rm 'MAC address'.

[3]

[2]

[6]

[8]

[3]

[4]

[5]

[3]

•

Learning objectives
By the end of this chapter you should be able to:

• show understanding of Boolean algebra
• show understanding of De Morgan's Laws
• perform Boolean algebra using De Morgan's Laws
• simplify a logic circuit/expression using Boolean algebra
• produce truth tables for common logic circuits

• show understanding of how to construct a flip-flop
• describe the role of flip-flops as data storage elements
• show understanding of Karna ugh Maps and the benefits

of using them
• solve logic problems using Karnaugh Maps.

'If-~ -

· Chapter 18: Boolean Algebra and Logic Circuits

18.01 Boolean algebra basics
Chapter 4 (Section 4 01) introduced logic expressions consisting of logic propositions
combined using Boo lean operators. Boolean algebra provides a simplified way of writing a
logic expression and a set of rules for manipulating an expression.

Whenever a form of algebra is used it is vi tal that there is an understanding of its meaning. As
a simple example we can consider the following four interpretations of the meaning of 1 + 1:

1 + 1 = 2
1 + 1 = 10
1 + 1 = 0
1 + 1 = 1

The first shows denary arithmetic, the second binary arithmetic and the t hird bi t arithmetic.
The last one applies if Boolean algebra is being used. This is because in Boolean algebra 1
represents TRUE, 0 represents FALSE, and+ represents OR. Therefore the fourth statement
represents the logic statement:

TRUE OR TRUE is TRUE

There are options for the representation of Boolean algebra . For example, the symbols for
AND and OR are sometimes represented as I\ and v. There is the option of writing A.B or AB
for AND. The dot notation is used in t his book. Fina lly, there are options for how NOT A (the
inverse of A) can be represented. A is used here.

Having established the notation for Boolean algebra we have to consider the rules that apply.
These can formally be described as 'laws' or 'ident ities'. Table 18.01 contains a full listing.

Identity/Law AND form OR form

Identity LA=A O+A=A

Null O.A=O l+A= l

Idempotent A.A=A A+A=A

Inverse A.A=O A+A= l

Commutative A. B= B.A A+B = B+A

Associative (A. B).C = A.(B.C) (A+B)+C = A+(B+C)

Distributive A+B.C = (A+B).(A+C) A.(B+C) = A.B+A.C

Absorpt ion A(A+B) =A A+A.B=A

De Morgan's (i\.8) =A + 8 (A+ B) =A. 8

Double Complement A=A

Table 18.01 Boolean algebra identities (laws)

Some of the names used for the identities may be unfamiliar to you. Th is is not a concern.
You should note that for all but one of the identities there is an AND form and an OR form.
Furthermore, it is important to note that an identity wri tten in one form can be t ransformed into

- - --- --

•

•

Cambridge International AS and A level Computer Science

the other by interchanging each O or 1 and each AND and OR. For example, O.A = 0 which reads
FALSE AND A is FALSE transforms into TRUE OR A is TRUE, written in the algebra as l+A = 1.

It can also be seen that some of the identities look like those applying in normal algebra w ith
AND functioning as mu ltiplication and OR functioning as addition. Thus it is allowed for the
terms 'product ' and 'sum' to be used in the context of Boolean algebra.

TASKlS.01
It is vital that you can interpret a Boolean expression correctly. Go through Table 18.01 item by
item and in each case read out the full meaning. For example:

l+A = 1 can be read as 'one plus A equals l'
but must be understood as 'TRUE OR A is TRUE'

Although De Morgan's laws look complicated at first glance, they can be rationa lised easily.
The inverse of a Boolean product becomes the sum of the inverses of the individual values in
the product. The inverse of a Boolean sum is the product of the individ ual inverses.

Unfortunately, using the algebra to simplify expressions is not someth ing which can be learnt as a
routine. It almost inevitably requires a little lateral thinking as Worked Example 18.01 will show.

WORKED EXAMPLE 18.01

Using Boolean algebra to simplify an expression
Let's consider a simple example:

A+A.B can be simplified to A+B

In order to simplify the expression we have to first make it more compl icated! This is
where the la teral thinking comes in. The OR form of the absorption ident ity is A+A.B = A.
This can be used in reverse to replace A by A+A.B to produce the following:

A+A.B+A.B

Applying the AND form of the commutative law and t he OR form of the distributive law in
reverse we can see that:

A.B+A.B is the same as B.A+B.A which converts to B.(A+A)

This allows us to use t he OR form of the inverse identity which converts A+A to 1. As a
result the expression has become:

A+B.l

When the OR form of the commutative law and t he AND form of t he ident it y law are
app lied to the B.l term, it then becomes A+B.

18.02 Logic circuits
Chapter 4 introduced the symbols for logic gates that are used in logic circuits and discussed
the relationships between logic circuits, truth tables and logic exp ressions. This chapter
introduces some specific circu its that are used to construct components that provide
functionality in computer ha rdware.

'
; Chapter 18: Boolean Algebra and Logic Circuits
,,

The half adder
A fundamenta l operation in computing is bi nary add ition. The result of adding two bits is
either 1 or 0. However, when 1 is ad ded to 1 the result is O but there is a ca rry bit equal to 1.
This cannot be ignored if two numbers with severa l bits in each
are being ad ded. A 1 bit

B
half adder
circuitry

s
C The simplest circuit that can be used for binary add it ion is the

half adder. This can be represented by the diagram in Figure
18.01. The circuit takes two input bits and outputs a sum bit (S)
and a carry bit (C) .

Figure 18.01 A half adder

The circu it required can be considered in the context of the
t rut h table which is shown as Table 18.02.

One possib le circu it can be defined directly by examination
of the truth table. It can be seen that the only combination of
inputs that produces a 1 for the carry bit is when two 1 bit s are
input. The truth table for the C output is in fact the AND t rut h
table. The t ruth table for the S output can be seen to match that
for the XOR operator which is shown in Figure 4.02 in Chapter
4 (Section 4.04). Therefore, one circuit that would prod uce the
ha lf adder functi onality would contain an AND gate and an XOR
gate wi t h each gate receiving input from A and B.

Input Output

A B s C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 18.02 The truth table
for a half adder

This is only one of several circuits t hat would provide the fu nctional ity. As was explained in
Chapter 4 (Section 4.05), circu it manufacturers prefer to use either NAND or NOR gates. The
circuit shown in Figure 18.02 consisting only of NAND gates has t he correct logic to produce
the C and S outputs and is a likely choice for implementat ion .

A ----4....._---r-----..

B -~-..,___.,
s

C

Figure 18.02 A half adder circuit constructed from NANO gates

Question 18.01
In Fi gure 18.02, can you identify the ind ividual circu its that rep resent the AND operator and
the XOR operator?

TASK18.02
Use the intermediate points labelled W, X and Y to construct a truth table for the circuit shown
in Figure 18.02. Check that this reproduces the truth table shown as Table 18.02.

•

Cambridge International AS and A level Computer Science

The full adder
If two numbers expressed in binary with several bits are to be added, the
addition must start w ith the two least significant bits and then proceed to the
most significant bits. At each stage the carry from the previous add ition has
to be incorporated into the current addit ion. If a ha lf adder is used each t ime,
there has to be separate circu itry to ha ndle the carry bit because the half adder
only takes two inputs.

The full adder is a circuit that has three inputs including the previous carry bit.
The truth table is shown as Table 18.03.

One possible circuit for implementation contains two half adder circu its and an
OR gate as shown in Figure 18.03.

Input

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

l l

Output

Cin s Cout

0 0 0

1 1 0

0 1 0

1 0 1

0 1 0

1 0 1

0 0 1

l l l

A ->- Half
B adder

Half
adder

s Table 18.03 The truth table
for a full adder ->- ,.._

Cin OR Cout
gate

Figure 18.03 A possible implementation of a full adder

As before, it is possible to construct the circuit entirely from NANO gates as shown in Figure 18.04.

s

Cout

Figure 18.04 A full adder circuit constructed from NANO gates

Discussion Point:
Can you see how full adders could be combined to handle addition of, for example, four-bit
binary numbers? What happens to the carry input for the first addition?

The SR flip-flop
Al l of the circu its so fa r encountered in this book have been combinational circuits. For
such a circuit the output is dependent only on the input values. An alternative type of circu it
is a sequential circuit where the output depends on the input an d on the previous output.

Combinational circuit: a circuit in which the output is dependent on ly on the input values

Sequential circuit: a circuit in which the output depends on the input values and the previous output

- - - - -- -- - -

· Chapter 18: Boolean Algebra and Logic Circuits

The SR flip-flop or 'latch' is a simple example of a sequential circuit.
It can be constructed with two NAND gates or two NOR gates. Figure
18.05 shows the version with two NOR gates. The flip-flop is a two-
state device. Either it has Q set to 1 and Q' set to O or it has the reverse.

The truth table for the circui t can be presented as shown in Table
18.04. The two lines of the truth table where both Sand Rare
input as O produce no change in the values set fo r Q or Q'. This is
the condit ion when no signal is input to the flip -flop. Input of S = 1
and R = 0 always produces Q = 1 and Q' = 0. Input of S = 0 and R = 1
always produces the reverse.

Th is explains why the SR flip-flop can be used as a storage device
for 1 bit and the refore could be used as a component in RAM
because a value is stored but can be altered . The circuit must
be protected from receiving input on Rand S simultaneously
because this leads to an invalid state with both Q and Q' set to 0.

The JK flip-flop
In add ition to the possibi lity of entering an invalid state there
is also the potential for a circuit to arrive in an uncertain state if
inputs do not arrive quite at the same time. In order to prevent
this, a circuit may include a clock pulse input to give a better
chance of synchronising inputs. The JK flip-flop is an example.

The JK flip-flop can be illustra ted by the symbol shown in Figure
18.06(a). A possible ci rcu it is shown in Figure 18.06(b).

(a) (b)

Figure 18.06 (a) A symbol for a JK flip-flop and (b) a possible circuit

The wo rkings of the circuit are viewed in terms of the value of
the Q output immediately after the circui t detects a clock pu lse.
The J input acts as a set input and the Kasa clear so t here is
some sim ilarity to the functioning of the SR fl ip-flop. However, if
both J and Kare input as a 1 then Q always switches value. The
significant part of the truth table is shown as Table 18.05.

18.03 Boolean algebra applications
The Boolean algebra representation of a truth table

Figure 18.05 A circuit for an SR flip-flop using
NOR gates

Input signals Initial state Final state

s R Q Q' Q Q'
0 0 1 0 1 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 0 1

1 0 0 1 1 0

0 1 0 1 0 1

Table 18.04 A representation of a truth table for an
SR flip-flop

J K Clock Q

0 0 t Q unchanged

1 0 t 1

0 1 t 0

1 1 t Q toggles

Table 18.05 Part of the truth table for a JK
flip-flop

One approach to creating a Boolean algebra expression for a particular problem is to start
with the t ru th table and app ly the sum of products method. This establishes a minterm for
each row of the table that results in a 1 for the ou t put.

I

Cambridge International AS and A level Computer Science

This can be illustrated using the truth table for the half adder circuit shown in Figure 18.02.
The only row of the table creating a 1 output for Chas a 1 input for A and for B. The product
becomes A.Band the sum has only this one term so we have:

C=A.B

For the S output, there are two rows that produce a 1 output so there is a sum of two
minterms:

S =A.B + A.B

Note that the O in a row is represented by the inverse of the input symbol.

The Boolean algebra representation of a logic circuit
This approach can also be used as pa rt of the process of creat ing a Boolean algebra logic
expression from a circuit diagram. The truth tables for t he ind ividual logic gates are used and
then some algebraic simplification is applied.

WORKED EXAMPLE 18.02

Creating a Boolean algebra logic expression from a half adder circuit

For convenience Figure 18.02 is reproduced here as Figure 18.07. Examination of the figure
shows inputs A and B to a NANO gate with output W.

A ____. __ __.-...__ W

B -.----;_ _ _,.

Figure 18.07 A half adder circuit

s

C

The first t hree rows of the NANO truth table produce a 1 output so t he sum of products
has t hree minterms:

W = A.B+ A.B + A.B

We can now co nsider the input of W to a NANO gate with A as t he other input to produce
t he X output. The NANO gate operates as an AND gate followed by a NOT gate. The resu lt
of t he AND operation is the product of the inputs so:

X = A.(A.B+ A.B + A.BJ

App lying the distributive and inverse laws now gives:

X = 0 + 0 + A.A.B which is simply A.B

We have to take the inverse of th is to complete the NANO operat ion. This is where we need
the AND version of De Morgan's law, wh ich t ransforms the A.El into A+B.

The same laws applied to t he output Y from the other intermediate NANO gate to give

Y= A+B.

t Chapter 18: Boolean Algebra and Logic Circuits
:.·

Finally, we need to consider A+B and A+B being input to the final NAND gate. Again we can
consider the AND operation first as the product of the inputs:

S= (A+B).(A+B)

If we pause to think we will not multiply this out but instead we will apply De Morgan's law
directly to this to perform the inverse operation to complete the NAND operation. This
gives:

S=A.B+A.B

This is the value obta ined directly from the truth table so the algebra has been used
correctly.

Extension question 18.01
Worked Example 18.02 did not show that the circuit produced t he correct ou tput for C. Also a
shortcut was used to reach the fina l form of S. Can you use Boo lean algebra to find the form
of C from the circuit and can you convert the expression for S if you start by using the
distribut ive law before applying De Morgan's law?

18.04 Karnaugh maps (K-maps)
A Ka rna ugh map is a method of creating a Boolean algebra
expression from a truth table. It ca n make the process much easier
than if you use sum-of-products to create minterms. The truth table
for an OR gate, shown as Table 18.06, can be used to illustrate the
method.

A

0

0

1

1

B

0

1

0

1

X

0

1

1

1

Using t he sum-of-products approach gives the following expression
for X:

Table 18.06 The truth table
for the OR operand

X = A.B + A. B + A.B

This is not instant ly recognisable as A+B but, w it h a little effort, using
Boolean algebra laws it could be shown to be the same.

The Karna ugh map approach is simpler. The corresponding K-map is
shown in Figure 18.08. Each cell in a Karna ugh map shows the value
of the output X for a combinat ion of input values for A and B.

The interpretation of a Karna ugh map follows these ru les:

• Only cells containing a 1 are considered.

• Groups of cells conta ining l s are identified where possible, with a
group being a row, a column or a rectangle.

• Groups must contain 2, 4, 8 and so on ce lls.
• Each group should be as large as possible.
• Groups can overlap.

B

Figure 18.08 AK-map of
the truth table in Table 18.06

• If an individual cel l cannot be contained in any group it is treated as being a group.
• Within each group, the only in put values retained are t hose wh ich retain a constant value

th roughout the group.

-------- - -- - -

I

•

Cambridge International AS and A level Computer Science

These rules define a column and a row group as indicated by the blue outl ines. In the co lumn
group, B remains unchanged but A changes so Bis retained. In the row group, it is A that
rema ins unchanged . The Boolean algebra expression is then just the sum of these retained
values:

X= A+B

Thus the Karna ugh map has found t he OR expression without using any algebra .

WORKED EXAMPLE 18.03

Using a K-map to interpret a three-input problem
Let's consider the truth tab le shown in Table 18.07.

A B C X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 18.07 A sample truth table with three inputs

Before starting any application of a method it is always worth looking to see if there are
any trends . In this case you can see that whenever B = 1 the output for Xis 1. This means
that the final algebra shou ld have B + someth ing.
Applying sum of products gives the following five-minterm expression:

A. B .C + A.B . C + A.B.C + A.B. C + A.B.C

There are options for how the K-map is presented. We will choose to combine input values
in the columns. Figure 18.09 shows the result. This fol lows the convention of having the
rows corresponding to values of A and the columns to combinations of values for Band C.

BC 00 01 11 10
A

--, r - -
I I

0 1 1 0 1 11
I I

- - .J L--

1 0 0 1 1

Figure 18.09 AK-map representation of the truth table shown in Table 18.07

It is important to note that the labe lling of the co lumns does not follow a binary va lue
pattern. Instead it follows the Gray cod ing sequence, where only one bit changes value
each time.

i

I

- -- - - - - - - - -

Chapter 18: Boolean Algebra and Logic Circuits

Following the rules stated above, the first group to identify is the square of four cells with
a value 1 as identified by the blue rectangle in the diagram. For these it can be seen that
A has different values, B has a constant value but C changes values. So, only B is retained.
Note th is was anticipated from the initial inspection of the truth table.

This apparently only leaves the top left cell. It looks like an isolated cell but it is not
because K-maps wrap round . The cell is defined by BC= 00. This has two adjacent cells
under Gray coding ru les. One is immediately obvious - BC = 01 but th is contains O so
ca n be ignored. The other adjacent cell is the BC= 10 comb inat ion. Thus, there is a row
group containing BC= 00 and BC= 10, indicated by the dotted line partia l group outlines.
Note that we cannot include the 11 cell in the same row because a group cannot conta in
three members. For this row, the value A remains unchanged, B changes but C remains
unchanged so the product A. C results. So by add ing this to the B for the other group the
final expression becomes:

A.C+ B

This is much simpler tha n the expression with five minterms derived directly from the t ruth
table.

Extension question 18.02
Consider the Karna ugh map shown in Figure 18.10. This corresponds to a problem with four
inputs. It wraps round horizontal ly and vertically. Use the map to create a Boolean algebra
expression .

CD 00 01 11 10
AB

00 1 0 1 1

01 0 0 1 1

11 0 0 1 1

10 1 0 0 0

Figure 18.10 A K- map for a four input problem

---- - - - - - - - -- - --

•

Cambridge International AS and A level Computer Science

• There are Boolean algebra laws that can be used to simplify logic expressions.

• Binary addition can be carried out using a half adder or a full adder circuit.

• SR or JK flip-flop circuits can be used to store a bit value.

• The sum-of-products method can be used to create an equivalent logic expression containing
minterms from a truth table.

• A Karnaugh map is a representation of a truth table that allows a simplified logic expression to be
derived from a truth tab le.

Exam-style Questions
1 a Consider the following circuit:

A ------<1>---1

s

Identify t he t hree different logic gates used.

ii Complete the fo llowing truth table for the circuit for t he inputs shown fo r A and B:

Inputs Working space Outputs

A B s R

0 0

0 1

1 0

1 1

b For the circu it shown in pa rt (a), identi fy the type of circuit and what the outputs represent

2 a Consider the fol lowing truth tab le:

A B X

0 0 1

0 1 0

1 0 1

1 1 1

[2]

[5]

[3]

Using the sum-of-products approach, create a Boolean expression that matches the logic. [3]

- ---- - - --- ---- ---

\ Chapter 18: Boolean Algebra and Logic Circuits

ii For the rows that have A= 1, the outpu t for Xis 1. Explain how th is wou ld be reflected in a simplified form
of Boolean express ion matching the truth table.

b Consider t he following circuit:

X

Using your knowledge of the truth table for an AND gate, create a Boolean algebra
expression for the out put from the first AND gate.

ii Carry out t he same exercise for t he OR gate in the ci rcuit.

iii Using De Morgan's law, create the logic exp ression for the output from the NOT gate.

3 a Consider the following truth table:

A B X
0 0 1
0 1 0
1- 0 1
1 1 1

Create a Karna ugh map to match this truth table.

ii Use the Ka rna ugh map to create a Boolean algebra expression fo r th is logic.

b Consider the truth table shown in 3 a.

Use the sum-of-products method to create a Boolean algebra expression from the truth tab le.

ii Use Boo lean algebra to show that this expression can be simpl ified to give the same expression created

[2]

[2]

[3]

[4]

[4]

[3]

[3]

from the Karna ugh map. {Hint: you might w ish to use the fact that A.B = A.B + A.B). [4]

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the differences between RISC and
CISC processors

• show understanding of the importance/use of pipelining
and registers in RISC processors

• show understanding of interrupt handling on CISC and
RISC processors

• show awareness of the four basic computer architectures:
SISD, SIMD, MISD, MIMD

• show awareness of the characteristics of massively
parallel computers.

r

I-

Chapter 19: Processor and Computer Architecture

19.01 The control unit
While a program is being executed, the CPU is receivi ng a sequence of machine-code
instructions. It is the respons ibil ity of the control un it within the CPU to ensure that each
machine instruction is hand led correct ly. There are two ways that a cont ro l uni t can be
designed to allow it to perform its funct ion.

One method is for t he control unit to be constructed as a logic circui t. This is called t he hard-
wired solution . The mach ine-code instruct ions are handled di rect ly by ha rdware.

The alternative is for the cont rol unit to use microprogramming. In t his approach, the control
unit conta ins a ROM component in which is stored the microinst ruct ions or microcode fo r
microprogramming. This is often referred to as firmware. The choice of which method is used
is largely dependent on the type of processor.

19.02 CISC and RISC processors
The 'architecture' of a processor can be defi ned in a number of ways. From the point of view
of a sophisticated programmer, t he architecture involves the following:

• the instruction set
• the inst ruct ion format
• the addressing modes
• t he registers accessible by instructions.

The choice of the instruction set is the main factor in decid ing on a suitable architecture.
One view is t hat the instruction set should be chosen so that it ca n be clea rly applied to
importa nt problems, t hat only simp le equ ipment is requi red and that important problems
are handled speedi ly. An opposing view is that it shou ld be chosen to suit the needs of high-
level languages.

Early developments in computing led
to the latter view becoming dominant.
Computer systems contained what
would now be referred to as CISC
(Complex Instruct ion Set Computers)
processors wi t h the complexi ty
increasing with t he advent of new
systems. However, the philosophy
began to be cha llenged in the late
1970s. It was argued that RISC (Reduced
Inst ruct ion Set Computers) wou ld be a
better approach. Table 19.01 contains a
number of featu res t hat distinguish RISC
from CISC.

It can be seen that 'reduced' affects
more than just the number of

RISC CISC

Fewer instructions More instructions

Simpler inst ruct ions More complex instructions

Small number of instruction fo rmats Many inst ruction forma ts
Single-cycle instruct ions whenever

Multi -cycle instruct ions
possible
Fixed-length instructions Variable-length instructions
Only load an d store instructions to Many types of instruct ions to address
address memory memory
Fewer addressing modes More addressing modes

Mult iple registe r sets Fewer registers

Hard-wired contro l unit Microprogrammed cont rol un it

Pipel ining easier Pipelining more difficu lt

Table 19.01 Compa ri son of RISC with CISC

instruct ions. The simp licity of the instructions allows data to be stored in registers and
manipulated in them with no resource to memory access other than that necessary for initia l
loading and possible final storing. The simplicity also allows hard-wiring inside the contro l
unit wi th lim ited complexity requ ired .

•

Cambridge International AS and A level Computer Science

In contrast, the specialised instructions that can be part of a CISC architecture often require
repeated memory access. The complexity of some of the instructions makes hard-wiring
extremely difficult so microprogramming is the norm. However, the increased complexity
of instructions for CISC is often because they more closely match high-level language
constructs. This means that compi ler writing becomes much easier for a CISC processor.

Extension question 19.01
Can you find out whether the processors in any systems you are using are described as RISC
or CISC7

One of the major driving forces for creating RISC processors was the opportunity they would
provide for efficient pipelining. Pipelining is a form of parallelism applied specifically to
instruction execution. Other forms of parallelism are discussed in Section 19.03.

Pipelining: instruction-level parallelism

The underlying principle of pipelining is that the fetch -decode-execute cycle described in
Chapter 5 (Section 5.04) can be separated into a number of stages. One possibil ity is a
five-stage model cons isting of:

instruction fetch (IF) Clock cycles

• instruction decode (ID)
• operand fetch (OF)

instruction execute (IE)

result write back (WB). Ill ...
'i:
:I ...
0
Ill
Ill
CII u
0 ...
n.

1

IF 1.1

ID

OF

IE

WB

2 3 4

2.1 3.1 4.1

1.2 2.2 3.2

1.3 2.3

1.4

5 6

5.1 6.1

4.2 5.2

3.3 4.3

2.4 3.4

1.5 2.5

Figure 19.01 shows how pipelining would work with
this five-stage breakdown of instruction handling. For
pipelining to be implemented, the construction of the
processor must have five independent units, with each
handling one of the fi ve stages identified. Th is explains
the need for a RISC processor to have many register
sets; each processor unit must have access to its own
set of registers. Figure 19.01 uses the representation
1.1, 1.2 and so on to define the instruction and the
stage of the instruction. Initially only the fi rst stage of

Figure 19.01 Pipelining for five-stage instruction handling

the first instruction has entered the pipeline. At clock cycle 6 the first instruction has left the
pipeline, the last stage of instruction 2 is being handled and instruction 6 has just entered.

It can be seen that once under way the pipeline is handling five stages of five individual
instructions. In particular, at each clock cycle the complete processing of one instruction has
finished . Without the pipeline the processing time would be five times longer.

One issue that has to be dealt with regarding a pipelined processor is interrupt handling.
The discussion in Chapter 5 (Section 5.06) referred to a processor with instructions handled
sequentia lly. In the pipelined system described above there wil l be five instructions in the
pipeline when an interrupt occurs. One option for handling the interrupt is to erase the pipeline
contents fo r the latest four instructions to have entered. Then the normal interrupt-handling
routine can be appl ied to the remain ing instruction. The other option is to construct the
individual units in the processor with individual program counter registers. This allows current
data to be stored for all of the instructions in the pipeline while the interrupt is handled.

7

7.1

6.2

5.3

4.4

3.5

- - -- ------ - ---

\
1 Chapter 19: Processor and Computer Architecture

r
I
I

'

r

Discussion Point:
Consider the two consecutive instructions:

ADD Rl, R2, R3
ADD RS, Rl, R4

These are typical three-register instructions favoured for RISC. The first adds the contents
of registers R2 and R3 and stores the result in Rl. The next instruction is similar but uses
the value stored in Rl . In a pipelined structure, the second instruction will be reading the
contents of Rl before the previous instruction has placed the value there. How could this
potential problem be overcome?

19.03 Parallel processing
Parallel processor systems
One computer can have multiple processors running in parallel.

In principle, there are four categories of system:

• SISD (Single Instruction Single Data stream)
• SIMD (Single Instruction Multiple Data stream)
• MISD (Mu lt iple Instruction Single Data stream)

MIMD (Mu ltiple Instruction Mult iple Data stream) .
SISD (Single Instruction Single Data stream) is the typical arrangement found in early
personal computers. There is a single processor so no processor parallelism. The single data
stream just means one memory.

SIMD (Single Instruction Multiple Data stream) describes how an array or vector processor
works. The multiple processors each have their own memory. One instruction is input and
each processor executes this instruction using data available in its dedicated memory.

MISD (Multiple Instruction Single Dat a stream) isn't implemented in commercial products.

MIMD (Mu lt iple Instruction Multiple Data stream) has examples in modern personal
comp uters which are of the symmetric multiprocessor type using identical processors. In this
case, each processor executes a different individual instruction. The mu lt iple data stream
can be provided by a single memory suitably partitioned. Each processor might have a
dedicated cache memory.

Parallel computer systems
Examples of one type of multicomputer system are cal led massively parallel computers.
These are the systems used by large organ isations for computations involving highly complex
mathematica l processing. They are the latest in an evolution of what have traditionally
been called 'supercomputers'. The major difference in architecture is that instead of
having a bus structu re to support multiple processors there is a network infrastructu re to
support mult iple computer units. The programs runn ing on the different com puters can
communicate by passing messages using t he network.

An alternative type of multicomputer system is cluster computing, where a very large number
of PCs are networked.

I

I • I

Cambridge International AS and A level Computer Science

• A control unit can be hard-wired or microprogrammed.

• RISC (Reduced Instruction Set Computers) processors have a number of advantages compared
to CISC (Complex Instruction Set Computers).

• Pipelining is one of the reasons for choosing a RISC architecture.

• Parallelism can be based at the instruction level, processor level or computer level.

Exam-style Questions
1 a Computer systems are now often constructed wit h RISC processors.

State what the acronym RISC stands for.

ii State four characteristics to be expected of a RISC system.

b A RISC processor is likely to be 'hard-wired'.

Explain what this term means and which specific part of the processor will be hard-wired .

ii State what the alternative to hard-wiring is and what hardware component is needed to be part of the
processor to allow this alternative to be implemented.

2 a Parallelism ca n be achieved in a number of ways.

Identify three different types of pa rallel ism.

ii Identify which type pipe lining belongs to.

iii Using a diagram, explain how pipeli ning works.

b Interrupt handling is not so straightforward in a pipel ined system. Explain why this is so and give a brief
account of how problems can be avoided.

[l]

[4]

[3]

[2]

[3]

[l]

[5]

[3]

Learning objectives
By the end of this chapter you should be able to:

• show understanding of how an operating system can
maximise the use of resources

• describe the ways in which the user interface hides the
complexities of the hardware from the user

• show understanding of processor management including:
the concepts of a process, multitasking and an interrupt
and the need for scheduling

• show understanding of paging for memory management
including: the concepts of paging and virtual memory, the
need for paging, how pages can be replaced and how disk
thrashing can occur

• show understanding of the concept of a virtual machine
and give examples of the role of virtual machines and
their benefits and limitations

/

/
/

• show understanding of how an interpreter can execute
programs without producing a translated version

• show understanding of the various stages in the
compilation of a program

• show understanding of how the grammar of a language
can be expressed using syntax diagrams or Backus-Naur
Form (BNF) notation

• show understanding of how Reverse Polish Notation
(RPN) can be used to carry out the evaluation of
expressions.

• .

Cambridge International AS and A level Computer Science

20.01 The purposes of an operating system (OS)
Before considering the purposes of an operating system (OS), we need to present the context
in which it runs. A computer system needs a program that begins to run when the system is
first switched on. At this stage, the operating system programs are stored on disk so there
is no operat ing system. However, the computer has stored in ROM a basic input output
system (BIOS) which starts a bootstrap program. It is this bootstrap program that loads the
operating system into memory and sets it running.

An operating system can provide facilities to have more than one program stored in memory.
On ly one program can access the CPU at any given time but others are ready when the
opportun ity arises. This is described as multi-programming. This will happen for one single
user. Some systems are designed to have many users simultaneously logged in . This is a
time-sharing system.

The pu rposes of an operating system ca n usefully be considered from two viewpoints:
an internal viewpoint and an external viewpoint. The internal viewpoint concerns how
the activities of the operating system are organised to best use the resou rces ava ilable.
The externa l viewpo int concerns the facilities made ava ilable for system usage. Chapter 7
(Section 7.02) contained a categorised summary of the various activities that an operat ing
system engages in. This chapter discusses some of them in more detail.

Resource management
The three fundamental resources in a computer system are:

• the CPU

• the memory

• the 1/0 (i nput/output) system.
Resource management relating to the CPU concerns scheduling to ensure efficient usage.
The methods used are described in Section 20.03. These methods consider the CPU as a
single unit; specific issues re lating to a multi processor system are not considered. Resource
management relating to the memory concerns optimum usage of main memory.

The 1/0 system does not just re late to input and output that directly involves a computer
user. It also includes input and output to storage devices while a program is running. Figure
20.01 shows a schemat ic diagram that illustrates the structure of the 1/0 system.

Disk Screen Keyboard Printer

Disk Screen Keyboard Printer
device device device device
driver driver driver driver

CPU Memory

Figure 20.01 Main components associated with the 1/0 system

The bus stru cture in Figure 20.01 shows that there can be an option for t he transfer of data
between an 1/0 device and memory. The operati ng system can ensure that 1/0 passes via the

- - - -

I

f

Chapter 20: System Software

CPU but for large quantities of data the operating system can ensure direct transfer between
memory and an 1/0 device.

Device Data rate Time for transfer of 1 byte To understand the issues associated with 1/0 management,
some discussion of timescales is required . It must be
understood that one second is a very long time for

Keyboard 10 Bps 0.1 S

Screen so MBps 2 X 10-B S

Disk s MBps 2 X 10-7 S
a computer system. A CPU typically operates at GHz
frequencies. One second sees more than one trillion clock
cycles. Some typical speeds for 1/0 are given in Table 20.01. Table 20.01 Typical rates and times for data tra nsfer
The slow speed of 1/0 compared to a typ ical CPU clock
cycle shows that management of CPU usage is vital to ensure that the CPU does not remain
idle whi le 1/0 is taking place.

Operating system facilities provided for the user
The user interface may be made available as a command line, a graphical display or a voice
recognition system but the function is always to allow the user to interact with running
programs. When a program invo lves use of a device, the operating system provides the
device driver: the user just expects the device to work. (You might, however, wish to argue
that printers do not always quite fit this description.)

The operating system will provide a file system for a user to store data and programs. The
user has to choose filenames and organise a directory (folder) structure but the user does not
have to organise the physical data storage on a disk. If the user is a programmer, the operating
system supports the provision of a programming environment. This allows a program to be
created and run without the programmer being famil iar with how the processor functions.

When a program is runn ing it can be considered to be a type of user. The operating system
provides a set of system calls that provide an interface to the services it offers. For instance, if
a program specifies that it needs to read data from a fi le, the request for the file is converted
into a system call that causes the operating system to take cha rge, find the file and make it
available to the program. An extension of this concept is when an operating system provides
an application programming interface (API). Each API call fulfils a specific function such as
creating a screen icon. The API might use one or more system ca lls. The API concept aims to
provide portability for a program.

Operating system structure
An operating system has to be structured in order to provide
a platform for both resource management and the provision
offacil it ies for users. The logical structure of the operating
system provides two modes of operat ion. User mode is the
one available for the user or an application program. The
alternative has a number of different names of which the
most often used are 'privileged mode' or 'kernel mode'. The
difference between the two is that kernel mode has sole
access to part of the memory and to certain system functions
that user mode cannot access.

It is now norma l for the operating system to be separated
into a kernel which runs all of the t ime and the remainder
which runs in user mode. One possibility then is to use a
layered structure as illustrated in Figure 20.02.

User interface

Application programs

Utilities

Kernel

Hardware interface

Figure 20.02 Layered structure fo r an operating system

I

Cambridge International AS and A level Computer Science

In this model, application programs or utility programs could make system calls to the
kernel. However, to work properly each higher layer needs to be fully serviced by a lower
layer (as in a network protocol stack).

This is hard to ach ieve in practice. A more flexible approach uses a modular structure,
illustrated in Figure 20.03. The structure works by the kernel calling on the individual services
when requ ired . It could possibly be associated with a micro-kernel structure where the
functionality in the kernel is reduced to the absolu te min imum.

Kernel

Figure 20.03 Modular structure for an operating system

20.02 Process scheduling
Programs that are available to be run on a computer system are ini tially stored on disk. In
a time-sharing system a user cou ld submit a program as a 'job' which would include the
program and some instructions about how it should be run. Figure 20.04 shows an overview
of the components involved when a program is run.

A long-term or high-level scheduler program controls the selection of a program stored on disk
to be moved into main memory. Occasionally a program has to be taken back to disk due to the
memory getting overcrowded. This is controlled by a medium-term scheduler. When the program
is installed in memory, a short-term or low-level scheduler controls when it has access to the CPU.

EJ-• ·1._____________. Memo,y ~I• ·1._____________. CPU

Figure 20.04 Components involved in running a program

Process states
In Chapter 7 (Section 7.02), it was stated that a process can be defined as 'a program being
executed'. This definition is perhaps better slightly modified to include the state when the
program first arrives in memory. At this stage a process control block (PCB) can be created
in memory ready to receive data when the process is executed. Once in memory the state of
the process can change.

The transitions between the states shown in Figure 20.05 can be described as follows:

• A new process arrives in memory and a PCB is created; it changes to the ready state.

• A process in the ready state is given access to the CPU by the dispatcher; it changes to the
runn ing state.

• A process in the running sta te is halted by an interrupt; it returns to the ready state.

• A process in the running state cannot progress until some event has occu rred (1/0 perhaps);
it changes to the wa iting state (sometimes called the 'suspended' or 'blocked' state).

,---- -- - ---

1
, Chapter 20: System Software

• A process in the waiting state is notified that an event is completed; it returns to the ready
state.

• A process in the running state completes execution; it changes to the term inated state.

Figure 20.05 The five states defined for a process being executed

It is possible for a process to be separated into different parts for execution. The separate parts
are called threads. If this has happened, each thread is handled as though it were a process.

Process: a program in memory that has an associated process control block

Process control block (PCB): a complex data structure containing all data relevant to the running of
a process

Thread: part of a process being executed

Interrupts
Some interrupts are caused by errors that prematurely terminate a running process.
Otherwise there are two reasons for interrupts:

Processes consist of alternating periods of CPU usage and 1/0 usage. 1/0 takes far too long
for the CPU to remain idle waiting for it to complete. The interrupt mechanism is used
when a process in the running state makes a system call requir ing an 1/0 operation and
has to change to the wa iting state.

• The scheduler decides to halt the process for one of severa l reasons, discussed in the next
section ('Scheduling algorithms').

Whatever the reason for an interrupt, the OS kernel must invoke an interrupt-handling
routine. This may have to decide on the priority of an interrupt. One required action is
that the current values stored in registers must be recorded in the process control block.
This allows the process to continue execut ion when it eventually returns to the running
state.

Discussion Point:
What would happen if an interrupt was received while the interrupt-handling routine was
being executed by the CPU? Does this require a priority being set for each interrupt?

•

Cambridge International AS and A level Computer Science

Scheduling algorithms
Although the long-term or high-level scheduler will have decisions to make when choosing
which program should be loaded into memory, we concentrate here on the options for the
short-term or low- level scheduler.

A schedu ling algorithm ca n be preemptive or non-preemptive. A preemptive algorit hm
can halt a process that wou ld otherwise continue runn ing undisturbed. If an algorithm is
preemptive it may involve prioritising processes.

The simplest possible algorithm is first come first served (FCFS). This is a non-preemptive
algorithm and can be implemented by placing the processes in a first-in first-out (FI FO)
queue. It will be very inefficient if it is the only algorithm employed but it can be used as part
of a more complex algorithm.

A round-rob in algorithm allocates a t ime slice to each process and is therefore preemptive,
because a process will be halted when its time slice has run out. It can be implemented as a
FIFO queue. It normal ly does not invo lve prioritising processes . Howev_er, if sepa rate queues
are created for processes of different priorities then each queue could be schedu led using a
round-robin algorithm.

A priority-based scheduling algorithm is more complicated. One reason for this is that every
ti me a new process enters t he ready queue or when a running process is halted, the priorities
for the processes may have to be re -evaluated . The other reason is that whatever scheme is
used to judge priority level it will require some computation . Possible cri teria are:

• est imated time of process execution
• est imated remaining t ime for execution

length of t ime already spent in the ready queue
• whether t he process is 1/0 bound or CPU bound.

More than one of these criteria might be considered. Clearly, estimating a t ime for execution
may not be easy. Some processes require extensive 1/0, for instance printing wage slips for
employees. There is very little CPU usage for such a process so it makes sense to al locate it
a high priority so t hat the small amount of CPU usage can take place. The process wil l t hen
change to the wait ing state wh ile the printing takes place.

20.03 Memory management
The term memory management embraces a number of aspect s. One aspect concerns the
provision of protected memory space for t he OS kernel. Another is that the loading of a
program into memory requ ires defining the memory addresses for the program itself, for
associated procedures and for the data requi red by the program. In a mult iprogramming
system, this might not be straight fo rward. The storage of processes in main memory can get
fragmented in the same way as happens for files stored on a hard disk. There may be a need
for the med ium-term scheduler to move a process out of main memory to ease the problem.

One memory management technique is to parti tion memory w ith the aim of loading the
whole of a process into one pa rtition. Dynamic part itioning allows the partition size to match
the process size. An extension of this idea is to divide larger processes into segments, with
each segment loaded into a dynamic part ition. Alternatively, a paging method can be used.
The process is divided into equal-s ized pages and memory is divided into frames of the same
size. All of t he pages are loaded into memory at t he same ti me.

The most flexible approach to memory management is to use virtual memory based on
paging but wi t h no requirement for all pages to be in memory at the same time. In a virtual

---------- ------ --

J - -

j Chapter 20: System Software

memory system, the address space that the CPU uses is larger than the physical main
memory space. This requires the CPU to transfer address values to a memory management
unit that allocates a corresponding address on a page.

Virtual memory: a paging mechanism that al lows a program to use more memory addresses than are
available in main memory

The start ing situation is that the set of pages comprising the process are stored on disk. One
or more of these pages is loaded into memory when the process is changing to the ready
state. When the process is dispatched to the running state, t he process starts executing. At
some stage, it will need access to pages st ill stored on disk which means that a page needs to
be taken out of memory first. This is when a page rep lacement algori thm is needed . A simple
algorithm wou ld use a fi rst-in first-out method. A more sensible method would be the least-
recently-used page but this requires statistics of page use to be recorded .

One of the advantages ofthe virtual memory approach is that a very la rge program can be run
when an equa lly large amount of memory is unavailab le. Another advantage is that only part of
a program needs to be in memory at any one time. For example, the index tab les for a database
cou ld be permanently in memory but the full tables could be brought in on ly when required .

The system ove rhead in running vi rtual memory can be a disadvantage. The worst problem
is 'disk thrashing', when part of a process on one page requires another page wh ich is on disk.
When that page is loaded it almost immediately requires the original page again . This can
lead to almost perpetual loading and unload ing of pages. Algorithms have been developed
to guard against this but the problem can still occur, fortunately only rarely.

20.04 Virtual machine
Although virtua l memory could be used in a system runn ing a virtua l mach ine, the two are
completely different concepts that must not be confused . Also note t hat the Java virtua l
machine discussed in Chapter 7 (Sect ion 7.05) is based on a different underlying concept.

The principle of a vi rtual machine is that a process interacts directly with a software interface
provided by the operating system. The kernel of the operat ing system handles all of the
interactions wi th the actual ha rdware of the host system. The software interface provided for
t he virtua l machine provides an exact copy of the hardware. The logical structure is shown in
Figu re 20.06.

Application programs for
virtual machine VMl

OS kernel forVMl

Virtual machine VMl

Application programs for
virtual machine VM2

OS kernel for VM2

Virtual machine VM2

Virtual-machine implementation software

Hardware

Figure 20.06 Logical structure for a vi rtual machine implementation

I

Cambridge International AS and A level Computer Science

The advantage of the virtual machine approach is that more than one different operat ing
system can be made ava ilable on one computer system. This is particularly valuab le if an
organ isation has legacy systems and wishes to cont inue to use the software but does not
wish to keep the aged hardware. Alternat ively, the same operating system can be made
available many t imes. This is done by companies wi t h large mainframe computers that offer
server consolidation facilit ies. Different companies can be offered their own virtua l machine
running as a server.

One drawback to using a virtual machine is t he time and effort requ ired for implementation .
Anoth er is the fact that the imp lementation wi ll not offer the same level of performance that
would be obtained on a normal system.

20.05 Translation software
An overview of how a compiler or an interpreter is used was presented in Chapter 7 (Section
7.05) . This section wil l consider some details of how a compi ler wo rks w ith a brief reference to
the workings of an interpreter. ·

A co mpi ler ca n be described as having a 'front end' and a 'back end'. The front-end program
performs ana lysis of t he source code and produces an intermediate code that expresses
completely the semantics (the mea ning) of the source code. The back-end program then
takes th is intermediate code as input and performs synthesis of object code. This analysis-
synthesis model is represented in Figure 20.07.

Source
code Analyse

Intermediate
code

Interpret
and

execute

Figure 20.07 Analysis-synthesis model for a compiler

Synthesise Object
code

For si mpl icity, Figure 20.07 assumes no error in the sou rce code. The re is a repetit ive process
in which the source code is read li ne-by-line. For each line, the comp iler creates matching
intermed iate code. Fi gure 20.07 also shows how an interpreter program would have the same
ana lysis fron t-en d: In this case, however, once a line of source code has been converted to
intermediate code, it is executed .

Front-end analysis stages
The four stages of front-end analysis, shown in Figure 20.08, are:

lexica l ana lysis

• syntax ana lysis
• semantic analysis

intermediate code generation .

-- - -- -

· Chapter 20: System Software

Source Symbol
code table~

t Syntax
ana lysis

Lexical fokens/~ analysis

Figure 20.08 Front-end analysis

Parse
tree

Annotated
abstract
syntax '---+

tree

t
Semantic
ana lys is

Intermediate
code

generation

Intermediate
code

In lexica l analysis each line of source code is separated into tokens. This is a pattern-
matching exercise. It requires the ana lyser to have knowledge of the components that can be
fou nd in a program written in t he part icular programming language.

For example, the declarat ion sta tement:

Va r Count : i n tege r ;

would be recognised as containing five tokens:

Var Count : integ er

The assignment statement:

PercentMark [Count) . - Score * 10

would be recogn ised as containing eight tokens:

Perc entMark [Count J : = Sc o re * 10

The analyser must categorise each token . For instance, in the first example, va r and integer
must be recognised as keywords. The non -alphanu meric ch aracte rs such as [or * must be
categorised. The : = is a special case; the analyser must recognise that this is one operator
with two characters that must not be separated .

Fi nally, all identifiers such as count and Percen t Mark must be recognised as such and
an entry for each must be made in the symbol table (which cou ld have been called t he
identifier table) . The symbol table co ntains identifier attribu tes such as the data type,
where it is declared and whe re it is assigned a value. The symbo l tab le is an important
data structure for a compiler. Although Figure 20.08 shows it only being used by the syntax
analysis program, it is also used by la ter stages of comp ilat ion.

Symbol table: a data structu re in which each record contains the name and attributes of an identifier

Syntax ana lys is, wh ich is also known as parsing, involves ana lysis of t he
program const ruct s. The resu lts of the analysis are recorded as a syntax or parse t ree.
Figure 20. 09 shows the pa rse tree for the foll owing assignment statement:

y := 2 * X + 4

Note t hat the hierarchical st ructure of the tree, if correctly in terpreted, ensures t hat the
mult iplicat ion of 2 by xis carried out before t he addition of 4. ·

Semantic analysis is about estab lish ing the full meaning of t he code. An annotated
abstract syntax tree is constructed to record this informat ion. For the ident if iers in this

/~
y +

/~
4

/~
2 X

Figure 20.09 Parse tree for an
assignment statement

I

•

Cambridge International AS and A level Computer Science

tree an associated set of attributes is established including, for example, the data type. These
attributes are also recorded in the symbol table.

An often -used intermed iate code created by the last stage of front-end analysis is a three-
add ress code. As an example the following assignment statement has five identifiers
requir ing five addresses:

y :=a+ (b * c - d) I e

This could be converted into the following four statements, each requiring at most three
addresses:
temp .- b * C

temp . - temp - d

temp .- temp I e

y .- a + temp

Representation of the grammar of a language
Fo r each programming language, there is a
defined grammar. This grammar must be
understood by a programmer and also by a
compiler writer.

One method of presenting the grammar rules
is a syntax diagram. Figure 20.10 rep resents the
grammar rule that an identifier must start wi th a
letter which can be fo llowed by any combination
of none or more letters or digits. The convention
used here is that options are drawn above the
main flow line and repetitions are drawn below it.

ldentif ier
Letter

H

,------+

,------+

Letter

Digit

An alternative approach is to use Backus- Naur
Form (BNF). A possible format for a BNF defin ition
of an identifier is:

Figure 20.10 Syntax diagram defining an identifier

<Identifier> ::= <Letter>l<ldentifier><Letter> l<ldent ifier><Digit>

<Digit>: := Ol l l2l3l4ISl6l718l9

<Letter> ::= <UpperCaseLetter>l<LowerCaseLetter>

<Uppercase Letter> ::= AIBICI DI EIFIGI HII IJIKILI Ml NIOI PIQIRISITIUIVIWIXIYIZ

<LowerCaseLetter> ::= alblcldle lfl glhliljlklllmlnlolplqlrlslt lulvlwlxlylz

The use of I is to separate individual options. The ::= characters can be read as 'is defined
as'. Note the recu rsive defin ition of <Identifier> in this particular version of BNF. Without the
use of recursion the definition wou ld need to be more compl icated to include all possible
combinations following the initial <Letter>.

A syntax diagram is only used in the context of a language. It has lim ited use because it
cannot be incorporated into a comp iler program as an algorithm. By contrast, BNF is a
genera l approach which can be used to describe any assembly of data. Furthermore, it can
be used as the basis for an algorithm .

-

-

'

'· ' Chapter 20: System Software

Back-end synthesis stages
If the front-end analysis has established that there are syntax errors, the only back-
end process is the presentation of a list of these errors. For each error, there will be an
explanation and the location within the program source code.

In the absence of errors, the main back-end stage is machine code generation from the
intermediate code. This may involve optimisation of the code. The aim of optimisation
is to create an efficient program; the methods that can be used are diverse. One type of
opt imisation focuses on features that were inherent in the original source code and have
been propagated into the intermediate code. As a simple example, consider these successive
assignment statements:

x .- (a+ b) * (a - b)

y := (a+ 2 * b) * (a - b)

The most efficient code would be:

temp .- (a - b)

x .- (a+ b) * temp

y := x +temp * b

Question 20.01
Check the maths for the efficient code defined above.

Another example is when a statement inside a loop, wh ich is therefore executed for each
repetition of the loop, does the same thing each time. Optimisation wou ld place the
statement immediately before the loop.

The other type of optimisation is instigated when the machine code has been created . This
type of optimisation may involve efficient use of registers or of memory.

Evaluation of expressions
An assignment statement often has an algebraic expression defining a new value for an
identifier. The expression can be evaluated by first ly converting the infix representation in the
code to Reverse Polish Notation (RPN). RPN is a postfix representation which never requires
brackets and has no rules of precedence.

WORKED EXAMPLE 20.01

Manually converting an expression between RPN and infix
Converting an expression to RPN

We consider a very simple expression :

a + b * C

The conversion to RPN has to take into account ope rator precedence so the first step is to
convert b * c to get the intermediate form:

a + b C *

We then convert the two terms to give the final RPN form:

a b C * +

- ----------- --- --- --

•

Cambridge International AS and A level Computer Science

If the original expression had been (a + b) * c (where the brackets were essentia l) then
the conversion to RPN would have given:

a b + C *

Converting an expression from RPN

Consider this more complicated examp le of an RPN expression :

x 2 * y 3 * + 6 /

The process is as fo llows. The RPN is scanned until two identifiers are fo llowed by an
operato r. This combination is converted to give an intermediate form (brackets are used for
clarification):

(x * 2) y 3 * + 6 I

This process is repeated to give the fol lowing successive versions:

(x * 2) (y * 3) + 6 I

(x * 2) + (y * 3) 6 I

((x * 2) + (y * 3) l I 6

Because of the precedence rules, some of the brackets are unnecessary; the fina l version
could be written as:

(x * 2 + y * 3 l I 6

WORKED EXAMPLE 20.02

Using a syntax tree to convert an expression to RPN
In the syntax analysis stage, an expression is represented as a syntax tree. The expression
a + b * c wou ld be presented as shown in Figure 20.11.

+

a
/~

*

/~
b C

Figure 20.11 Syntax tree for an infix expression

To create this tree, the lowest precedence operator(+) is positioned at the root. If there are
several with the same precedence, the first one is used. The RPN form of t he expression
can now be extracted by a post-order traversal . This sta rts at the lowest leaf to the left of
t he root and then uses left-right- root ordering which ensures, in this case, that the RPN
representation is:

a b C * +

-

r

WORKED EXAMPLE 20.03

Using a stack with an RPN expression

RPN
expression

line

Stack
line

Figu re 20.12 Shunting-ya rd algorithm

Infix
expression

line

Chapter 20: System Software

To convert an infix expression to RPN using a stack, the shunting-yard algorithm is used
(F igu re 20.12).

Converting an expression to RPN

The rules of the algorithm are to cons ider the string of tokens representing the inf ix
expression. These represen t the rai lroad waggons tha t are to be shunted from the infix li ne
to the RPN line. The tokens are examined one by one. For each one, the rules are:

If it is an identifier, it passes straight t hrough to the RPN expression line.
If it is an operator, there are two options:

o If the stack li ne is empty or conta ins a lower precedence operator, the operator is
diverted into the stack line.

o If the stack line contains an equal or higher preference operator, then t hat operator
is popped from the stack into the RPN expression line and the new operator takes
its place on the stack line.

• When all tokens have left the infix line, the operato rs remain ing on the stack line are
popped one by one from the stack line onto the RPN exp ression line.

Consider the infix expression a + b * c. Table 20.02 traces t he conversion process. The
f irst operato r to enter the stack line is the + so when the higher precedence* comes later
it too enters t he stack line. At the end the* is popped followed by the +.

Infix line Stack line RPN line
a+b * c
+b' c a
b 'c + a
, C + ab
C +' ab

+' a b c
+ ab C'

ab C' +

Table 20.02 Trace of the conversion process

Had t he infix exp ression been a * b + c t hen* would have been first to enter the stack
line but it would have been popped from the stack before+ could enter.

•

Cambridge International AS and A level Computer Science

Evaluating an RPN expression

A stack can be used to evaluate an RPN expression . Let's consider the execution of the
following RPN expression when x has the value 3 and y has the va lue 4:

x 2 * y 3 * + 6 /

The rules followed here are that the values are added to the stack in turn. The process is
interrupted if the next item in the RPN expression is an operator. This causes the top two
items to be popped from t he stack. Then t he operator is used to create a new value from
t hese two and the new va lue is added to the stack. The process then continues. Figure.
20.13 shows the successive contents of ttle stack with an indication of when an operator
has been used. The intermediate states of the stack when two va lues have been popped
are not shown .

* * + I

Figure 20.13 Evaluating a Reverse Polish expression using a stack

TASK20.0l
Practise your understanding of RPN .
1 Convert the fo llowing infix expressions into RPN using the methods described in

Worked Examples 20.01, 20.02 and 20.03:
(x - yl I 4

3 * (2 + x / 7)

2 Convert the following RPN expressions into the corresponding infix expressions:
4 a b + c + d + e + *

y 2 z 3 + I

Note that the caret(") symbol represents 'to the power of'.

3 Using simple values for each variable in part 2, use the infix version to evaluate the
exp ression . Then use the stack method to evaluate the RPN exp ression and check
that you get the same result.

It needs to be understood that the use of RPN would be of little value if t he simple processor
with a limited instruction set discussed in Chapter 6 (Section 6.04) was being used. Modern
processors will have instructions in the instruction set that hand le stack operations, so a
compiler can convert expressions into RPN knowing that conversion to machine code can
utili se these and allow stack processing in program execution.

(Chapter 20: System Software

• The operating system provides resource management including scheduling of processes,
memory management and control of the 1/0 system.

• For the user, the operating system provides an interface, a file system and application
programming interfaces.

• A modular approach provides a flexible structure for the operating system.

• There are five states for a process: new, ready, running, waiting and terminated .

• A process may be interrupted by an error, a need for an 1/0 activity or the scheduling algorithm.

• In a virtual machine, a process interacts with a software interface provided by the operating system.

• Compiler operation has a front-end program providing ana lysis and a back-end program
providing synthesis.

• Backus-Naur form is used to represent the rules of a grammar.

• Reverse Polish Notation is used for the evaluation of expressions.

Exam-style Questions
1 a In a multiprogram ming environment, the concept of a process has been found to be very

useful in controlling the execution of programs.

Exp lai n the concept of a process.

ii In one model for the execution of a program, there are five defined process states. Identify three of them
and explain the meaning of each .

b The transit ion of processes between states is contro lled by a scheduler.

Identify t wo scheduling algorithms and for each classify its type.

ii A scheduling algorithm might be chosen to use priorit isation. Identify two criteria that could be used to
assign a priority to a process.

2 a Three memory management techn iques are partition ing, schedul ing and paging.

Give defin iti ons of them.

ii Identify two ways in wh ich they might be combined.

b Some systems use virtual memory.

Identify which of the techn iques in part (a) is used to create virtua l memory.

ii Explain two advantages of using vi rtual memory.

iii Explain one prob lem that can occur in a virtual memory system.

[2]

[6]

[4]

[2]

[3]

[2]

[l]

(4]

[2]

I

Cambridge International AS and A level Computer Science

3 a A compi ler is used to translate a program into machine code.

A compiler is model led as conta ining a front end and a back end . State the overa ll aim of the front end
and of the back end.

ii Identify two processes wh ich are part of the front end.

iii Identify two processes wh ich are pa rt of the back end .

b Complete the following Backus-Naur definition of a signed integer:

<Digit> ::=

<Sign> ::=

<Unsigned integer>::=

<Signed integer>::=

c Convert the expression (a + 6) + b I c into Reverse Polish Notat ion.

d Convert the Reverse Pol ish Notation expression 2 a 3 b * 6 c * - + into infix notation.

[2]

[2]

[2]

[4]

[2]

[2]

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the terms: public key, private key,
plain text, cipher text, encryption and asymmetric key
cryptography

• show understanding of how the keys can be used to send:
• a private message from the public to an individual/

organisation
• a verified message to the public

• show understanding of how a digital certificate is
acquired and used to produce digital signatures

• show awareness of the purpose of Secure Socket Layer
{SSL)/Transport Layer Security (TLS); its use in client-
server communication and situations where its use would
be appropriate

• show understanding of malware: viruses, worms,
phishing and pharming

• describe vulnerabilities that the various types of malware
can exploit

• describe methods that can be used to restrict the effect of
malware.

Cambridge International AS and A level Computer Science

21.01 Encryption fundamentals
Encryption can be used as a routine procedure when storing data within a computing
system. However, the focus in this chapter is on the use of encryption when transmitting data
over a network.

The use of encryption is illustrated in Figure 21.01.The process starts with origina l data
referred to as plaintext, whatever form it takes. This is encrypted by an encryption algorithm
wh ich makes use of a key. The product of the encryption is ciphertext, which is transmitted
to the recipient. When the transmission is rece ived it is decrypted using a decryption
algorithm and a key to produce the original plaintext.

/ Plainte,tf-1 Enoyption fi c;pherte,t) • Decryption

B 8
Plaintext

Figure 21.01 Overview of encryption and decryption

Plaintext: data before encryption

Ciphertext: the result of applying an encryption algorithm to data

Security concerns
There are a number of security concerns relating to a transmission :

• Confidentiality: Only the intended recipient should be able to decrypt the ciphertext.
• Authenticity: The receiver must be certa in who sent the ciphertext.

Integrity: The ciphertext must not be modified during transmission.
Non-repud iation: Neither sender nor receiver should be ab le to deny involvement in the
transmission.

• Availability: Nothing should happen to prevent the receiver from receiving the transmiss ion.
This chapter will consider only confidentiality, authentic ity and integrity.

The confident ial ity concern arises because a message could be intercepted during
transmission and the contents read by an unauthori sed person. The concern about integrity
reflects the fact that the transmission might be interfered with deliberately but also that
there might be accidental corruption of the data during transmission.

Encryption methods
The fundamental principle of encryption is that the encryption algorithm must not be
a secret: it must be in the public domain. In contrast, an encryption key must be secret.
However, th is is not quite the full story. There are two alternative approaches. One is
symmetric key encryption; the other is asymmetric key encryption .

In symmetric key encryption t here is just one key which is used to encrypt and then
to decrypt. This key is a secret shared by the sender and the receiver of a message. In
asym metric key encryption two different keys are used, one for encryption and a different
one for decryption. On ly one of these is a secret.

- -

' I

Chapter 21: Security

So, how does this work? What happens at the sending end is straightforward. Th e sender has
a key which is used to encrypt some plaintext and the ciphertext produced is transmitted
to the receiver. The question is, how does t he receiver get to have t he key needed for
decryption? If symmetric key encrypt ion is used, there needs to be a secure method for the
sender and receiver to be provided with the secret key.

Using asymmetric key encryption, the process actual ly start s with the receiver. The receiver
must be in possession of two keys. One is a public key which is not secret. The other is a
private key wh ich is secret and known only to the rece iver. The receiver can send the public
key to a sender, who uses the public key fo r encryption and sends the ciphertext to the
receiver. The receiver is the only person who can decrypt the message because the private
and public keys are a matched pair. The public key can be provided to any number of
d ifferent people allowing the receiver to rece ive a private message from any of them. Note,
however, that if two individuals require two-way communicat ion, both com mun icators need
a private key and must send the matching public key to the other person.

There are two requirements to ensure confidentiality shou ld the t ransmission be intercepted
and the message extracted: t he encryption algorithm must be complex and the number of
bits used to define the key must be large.

Extension Question 21.01
The detai ls of encryption algorithms are beyond the scope of this book. However, you
might wish to investigate the type of approach used in established examples, such as DES
or RSA. Also, you might wish to consider the number of different combinations for a 64-bit
or 128-bit key.

The above account does not com pletely answer the question of how encryption works. The
missing factor is an organisation to provide keys and to ensure their safe delivery to
ind ividuals using them.

21.02 Digital signatures and digital certificates
Using asymm et ri c encrypt ion, the decryption- encryption wo rks if the keys are used the
ot her way round. An individual can encrypt a message with a private key and send this to
many recip ients who have the correspondi ng pu blic key and can therefore decrypt the
message. This approach would not be used if the content of a message was confidential.
However, it could be used if it was important to verify who t he sender was. Only the
sender has t he private key and the public keys only work with that one specific private key.
Therefore, used this way, the message has a digita l signatu re identifying th e sender.

There is a disadvantage in using this method
of applying a digital signature in that it is
associated with an encryption of the whole

Message
Cryptographic

hash
function

Sender's
private key

Encryption

Digest

Digital
signature

of a message. An alternative is to use a
cryptographic one-way hash function which
creates from the message a number, uniquely
defined for the particular message, cal led a
'digest'. The private key is used as a signature
for this digest. Th is speeds up the process of
confirming the sender's identity. The process at
the sender's end of the transm ission is outlined
in Figure 21.02. A public one-way hash function

Figure 21.02 Sender using a one-way hash function to send a digital signature

is used.

I

Cambridge International AS and A level Computer Science

We wi ll assume that the message is transmitted as plaintext
together with the digital signature as a separate file. The
processes that take place at the receiver end are outlined in
Figure 21.03. The same public hash key function is used that
was used by the sender so the same digest is produced if the
message has been transmitted without alteration .

The decryption of the digital signature produces an identical
digest if the message was genuinely sent by the origina l owner
of the public key that the receiver has used. This approach has
allowed the receiver to be confident that the message is both
authentic and unaltered .

I h Cryptographic
Message hash

,__ ___ ___, function

Digital
signature Decryption

Sender's
public key

Digest

Digest

This sounds good but unfortunately it does not consider the
fact that someone might forge a public key and pretend to be
someone else. Therefore, there is a need for a more rigo rous
means of ensuring authentication. This can be provided by a

Figure 21.03 Checking received transmissions

Certi fication Authority (CA) provided as part of a Public Key .
Infrastructure (PKI).

Let's consider a would-be receiver who has a public- private key pair. This individual wishes
to be able to receive secure messages from other individuals. The public key must be made
avai lable in a way that ensures authentication. The steps taken by the would-be receiver to
obtain a digital certificate to allow safe public key delivery are il lustrated in Figure 21.04. The
process can be summarised as fol lows:

• An individual (person A) who is a would-be
Certification receiver and has a public-private key pair

contacts a local CA.
Person A Person A's public key Authority

• The CA confirms the identity of pe rson A.
(the receiver) 1,--------------.______,_{C_A--'-) _ _,

Person A's publ ic key is given to the CA.

• The CA creates a public-key certificate (a digital
certificate) and writes person A's public key into
this document.

• The CA uses encryption with the CA's private key
to add a digital signature to th is document.

• The digita l certificate is given to person A.

Person A's
digital

certificate

Person A's
website

Person A's
digital certificate

Person A's
public key

CA's
private

key

Digital
certificate
creation
process

Person A posts the digital cert ificate on a
website.

Figure 21.04 Processes involved in obtaining a digital certificate

Figure 21.04 has person A placing the digital certificate on that person's website but another
option is to post it on a websi te designed specifically for keeping digital cert ificate data.
Al ternat ively, a digi tal certificate might be used solely for authenticating emails as was
suggested in Chapter 8 (Section 8.02).

Once a signed digital certi ficate has been posted on a website, any other person w ishi ng to
use pe rson A's public key down loads the signed digital certificate from the website and uses
the CA's publ ic key to extract person A's public key from the digital certificate.

For this overa ll process to work there is a need for standards to be defined. As ever, the name
for the standard, X.509, is not very memorable.

- -

t •
Chapter 21: Security

21.03 SSL and TLS
Secure Socket Layer (SSL) and Transport Layer Security (TLS) are two closely related protocols
providing security in using the Internet. TLS is a slightly modified version of SSL. We concentrate
on SSL here. The main context for the use of SSL is a client-server application. As described in
Chapter 17 (Section 17.04), the interface between an application and TCP uses a port number.
In the absence of a security protocol, TCP services an application using the port number. The
combination of an IP address and a port number is called a 'socket'. When the Secure Socket
Layer protocol is implemented it functions as an additional layer between TCP in the transport
layer and the application layer. When the SSL protocol is in place, the application protocol HTTP
becomes HTTPS. Note that although SSL is referred to as a protocol, it is in fact a protocol suite.

The starting point for SSL implementation is a connection between the client and the server
being established by TCP. The Handshake Protocol from the SSP suite is used to create
a session to allow the client and t he server to communicate. Once the session has been
established, the client and server can agree which encryption algorithms are to be used and
can define the values for the session keys that are to be used. This interchange may involve
checking digital certificates. For the transmission, SSL provides encryption, compression of
the data and integrity checking. When the transmission is complete the session is closed and
all records of the encryption disappear.

An application running HTTPS can guarantee secure communication allowing users to send
confidential information such as credit card details in an ecommerce transaction. The user
is completely unaware of the processes involved in ensuring confidential transmission with
data integrity assured.

Discussion Point:
Chapter 8 (Section 8 01) discussed security and privacy issues. The use of encryption has
always been a controversial subject. There are two important aspects to this. The first is
whether powerful, unbreakable encryption algorithms should be made available to the
public The second relates to the key escrow scheme, which allows governments access to all
secret keys. You may wish to revisit your Chapter 8 discussions.

21.04 Malware
Types of malware
Malware is t he colloquial name for malicious software. Malicious software is software that is
introduced into a system for a harmfu l purpose. One category of malware is where program
code is introduced to a system. The various types of malware-containing program code are:

• virus: tries to replicate itself inside other executable code

• worm: runs independently and propagates to other network hosts

logic bomb: lies dormant until some condition is met

• Trojan horse: rep laces all or part of a previously usefu l program
• spyware: collects information and transmits it to another system

bot: takes control of another computer and uses it to launch attacks.

The differences between the different types are not large and what is always called an 'anti-
vi rus' package will detect ail of the different types. The virus category is often subdivided
according to the software that the virus attaches itself to . Examples are boot sector viruses
and macro viruses .

I

•

Cambridge International AS and A level Computer Science

Malware can also be classified in terms of the activity involved:

ph ishing: sending an email or electronic message from an apparently legitimate source
requesting confidential information
pharm ing: setting up a bogus websi te which appears to be a legitimate site

keylogger: recording keyboard usage by the legit imate user of the system.

System vulnerabilities
Many system vulnerab ilities are associated directly with the activities of legitimate users of a
system. Malware can be introduced inadvertently by the user in a number of ways:

attaching a portable storage device
• opening an email attachment
• accessing a website
• down loading a file from the Internet.

Alternatively, a legitimate user with a grievance might introduce malware deliberately.

Other vulnerabilities are indirectly associated with the activities of legit imate users. By far
the most significant is the use of weak passwords and particularly those which have a direct
connection to the user. A poor choice of password gives the would-be hacker a strong chance
of being able to gain unauthorised access. Other examples include a legitimate user not
recognising a phishing or pharming attack and, as a resu lt, disclosing sensitive information.

Systems inherently lack optimum security. Operating systems are notorious for lacking good
security. There is a tendency for operating systems to increase in complexity which tends to
offer the potentia l for more insecurity. The regu lar updates are often required because of a
newly discovered security vulnerability. In the past, commonly used application packages
have allowed macro viruses to flourish but this particular problem is largely under control .

A very specific vulnerab ility is buffer overflow. Programs written in the C programming
language, of which there are very many, do not automatica lly carry out array bound checks.
A program can be written to deliberately write code to the part of memory that is outside
the address range defined for the array implemented as a buffer. This w ill overwrite what is
stored there so when a subsequent program reads this overwritten section it wi ll not execute
as it should. This might just cause minor disruption but if cleverly engineered it cou ld lead to
an attacker gaining unauthorised access to the system and causing serious problems.

Chapter 8 (Section 8.02) has a discussion of the standard security measures for computer
systems such as firewalls and anti-virus software.

--------- - -- - - - ---- ----------

'! Chapter 21: Security

• Alternatives for encryption are symmetric, using one key, or asymmetric, using two different keys,

• Encryption converts plaintext to ciphertext; decryption reverses the process,
• The five main security concerns when transmitting messages are: confidentiality, authenticity,

integrity, non-repudiation and availability.

• Authentication can be achieved using a digital signature and a digital certificate,

• A digital certificate is provided by a certification authority within a public key infrastructure.

• Secure Socket Layer (SSL) and Transport Layer Security (TLS) protocols provide security for
transmissions using the Internet.

• The following are types of malware: virus, worm, logic bomb, Trojan horse, spyware a·nd bot.

• Malicious activities include pharming, phishing, keylogging and hacking.

• Malware can inadvertently enter a system through a user attaching a portable storage device,
opening an email attachment, accessing a website or downloading a file from the Internet.

Exam-style Questions
1 a When tra nsmitti ng data across a network three concern s relate to: confidential ity, aut henticity and integrity.

Explai n each of t hese terms.

b Encrypt ion and decryption can be ca rried out using a symmetric or an asymmetric key method.

Exp lai n how keys are used in each of t hese methods. You are not requ ired to describe t he algorithms used.
Your account must include reference to a pub lic key, a private key and a secret key.

c Digita l signatu res and digital certificates are used in message t ransmission .

Give an explanation of t heir use.

2 Malware is a serious concern for computer system users.

a Give the names of two types of malware which involve some ma licious code being input into a system.

b Expla in the difference between t he t wo types of code.

C Identify and explain two approaches for preventing mal icious code from entering a computer system.

d Exp lain the terms 'ph ishing' and 'pharming'.

e Identify one possible policy for reducing the threat from ph ishing or pha rming.

[4]

[6]

[5]

[2]

[3]

[4]

[3]

[2]

-

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the difference between a
monitoring system and a control system

• show understanding of sensors and actuators and their
usage

• show understanding of the additional hardware required
to build these systems

• show understanding of the importance of feedback in a
control system

• show understanding of the software requirements of
these systems

• show understanding of how bit manipulation can be used
to monitor/control a device

• carry out bit manipulations
• show understanding of how to make use of appropriate

bit manipulation in monitoring systems and control
systems.

Chapter 22: Monitoring and Control Systems

22.01 Logistics
Monitoring can be used to describe a very wide range of activi t ies but all are characterised
by the measurement of some physical property. Typical examples of the physical property
cou ld be temperature, pressu re, light intensity, flow rate or movement.

Let's consider temperature as an example. If this was being monitored under hu man control,
the measurement could be made with a standa rd mercury t hermometer. However, in this
chapter we are interested in systems where a computer or microprocessor is being used.
In this scenario, monitoring requires a measuring device tha t records a value wh ich can be
transmitted to the computer. Such a measuring device is a called a sensor. For mon itoring
temperature, a sensor could contain a thermocouple wh ich outputs a temperature-
dependent vo ltage.

There can only be one of two reasons to monitor a system:

• to check whether or not the moni tored value is within acceptable lim its; in a safety
system, if the measured property has reached a dangerous level;some immediate action
is requ ired .

• to ensure routinely and continuously that the mon itored property is as required ; if t he
va lue measured indicates t hat a change has occu rred, then t he control part of the system
may have to take measures to reverse this change.

The con t rol element of a monitoring and control system needs a device, called an actuator.
Figure 22.01 shows a schematic diagram of a computer-control led environment.

Sensor: a hardware device that measures a property and transmits a value to a controlling computer

Actuator: a hardware device that receives a signal from a computer and adjusts the setting of a
controlling device

Figure 22.01 includes an analogue-to-
digi tal converter (ADC) and a digital -to-
analogue converter (DAC) as separate
components bu t they are likely to be
integra l to the device in the control led
environment. It should be noted that
the diagram also shows an actuator
as a single component. This is a
simplification . An actuator is an electric
motor t hat drives a cont rolling device
which is not shown.

The system shown in Figure 22.01
involves a conti nuous process where

Computer
or

microprocessor
)~

Digita l
measured

value

I ADC 1-I~

Digital control signal

Controlled
environment

Analogue
measured

value I
I Sensor

a measurement is made and then, if
needed, a con t rol action is initiated.
Following t his contro l action, a
measurement is taken aga in. There is
therefore an element of feedback in the
system.

Figure 22.01 Computer-controlled environment

----- - -- ---

,EJ
Analogue
control
signal

' f

I Actuator I

I

•

Cambridge International AS and A level Computer Science

A closed -loop feedback control system is a special type of monitoring and contro l system
where t he feedback directly controls the operation . Figure 22 .02 shows a schematic diagram
of such a system. A microprocessor functions as t he controller. This compa res the value for
the actual output, as read by the sensor, wi t h the desired output. It t hen t ransmits a value to
t he actuator which depends on the difference calcu lated .

22.02 Real-time
programming
Monitoring and co nt rol systems requ ire
real-t ime programm ing. Whether a program
is just mon itoring or is monitoring and
cont ro lling, it must incorporate a st ructure
for repet itive sensor reading. This must
cont inue for the whole durat ion of t he
period that t he system is switched on .
A simple loop structure wi ll achieve this

Desired
valu e for
out put

, Controller Actuator -
i

Sensor --

Figure 22.02 Closed-loop feedback cont ro l system

but reading sensor values every clock cycle of a processor is unnecessarily frequent. The
program must contro l t he timing of the repet it ions. This might be done by creat ing a t imed
sequence for readi ng va lues or possibly by includ ing a time delay inside a loop.

Extension question 22.01
Research the capabilities for controlling the timing sequence for continuous running in
your chosen programming language. Which ones would be best suited to a monitoring and
control program?

An example monitoring program
Consider the fo llowing fragment of pseu docode:

EndReadingSensor FALSE
ReadingOutOfRange FALSE
REPEAT

CALL SensorRead (SensorValue)
IF Sensor Value > MaximumAl l owed

THEN
ReadingOutOfRange..., TRUE
Read i ng~ 'H '

ELSE

ENDIF

IF SensorValue < MinimumAllowed
THEN

ENDIF

Readi ngOutOfRange TRUE
Reading ' L'

IF ReadingOut OfRange
THEN

CALL WarningDisplay (Reading)
ENDIF
ReadingOutOfRange FALSE
FOR TimeFiller 1 TO 999999
END FOR

UNTIL EndReadingSensor

Process -
Actu
outp

,

al
ut

- - -

I

Chapter 22: Monitoring and Control Systems

Note t he fo llowing features of t he program:

There is an infinite loop.
• The loop fi nishes wi t h another loop that does nothing other than create a delay before

the outer loop repeat s.
When t he sensor reading indicates a problem, t he loop cal ls a procedure to handle
whateve r notification meth od is to be used.
Fo llowing this call, t he loop continues so the Boolean va riab le has to be reset to prevent
t he warni ng procedure being repeti tive ly cal led.

An example monitoring and control program
Consider a system which is con troll ing an enclosed enviro nment. The envi ronment has
a sensor to mon itor a property and an actuator to contro l that property. The fo llowing
fragment of cod e might be used:

EndReadingSensor FALSE
READ DesiredOutputLevel
REPEAT

CALL SensorRead (SensorValue)
SensorDifference DesiredOutputLevel - SensorValue
I F ABS(SensorDifference) < DesiredOutputLevel / 100

THEN
SensorDifference O

ENDIF
IF SensorDifferenc e > 0

THEN

ENDIF

ActuatorAdjustmentFactor SensorDi f ference/DesiredOutputLevel
AdjustmentDirect ion 'up '
CALL ActivateActuator (AdjustmentDirection, ActuatorAdj ustmentFac t or)

IF SensorDifference < o
THEN

ENDIF

ActuatorAdj ustmentFactor ABS(SensorDifference) / Des i redOutputLeve l
Adjus t mentDi rection ' down'
CALL Act i vateActuator (AdjustmentDirection, ActuatorAdjustmentFactor)

FOR TimeFi ller 1 TO 999999
END FOR

UNTIL EndReadingSensor

Note the fo llowing features of the program:

A procedure is cal led to activate the actuator only if the sensor reading shows a signifi cant
change.
The code will on ly work properly if it ca n be guaranteed that the act ivation of the actuator
has ca used a cha nge in t he property befo re the sensor rea ding in the next iterat ion of t he
loop.

22.03 Bit manipulation
The two fragments of code in Sect ion 22.02 have a direct ca ll to a procedure to take some
action. A slight ly different approach would be to set values fo r Boolean variables subject
to what t he sensors detect. Fo r insta nce if a cont rol led envi ronment had two propert ies to

----- - -- ---

I

Cambridge International AS and A level Computer Science

be monitored and controlled, four Boo lean variables could be used. Values cou ld be set by
assignment statements such as:

IF SensorDifferencel > 0 THEN SensorlHighFlag TRUE
IF SensorDifferencel < 0 THEN SensorlLowFlag TRUE
IF SensorDifference2 > 0 THEN Sensor2HighFlag TRUE
IF SensorDifference2 < 0 THEN Sensor2LowFlag TRUE

Another part of the mon itoring and control program would be checking whether any of the
four flags were set. The machine code for running such a program could use individual bits to
represent each flag. The way t hat flags could be set and read are illustrated by the following
assembly language code fragments in which the three least significant bits (positions 0, 1 and
2) of the byte are used as flags:

LDD 0034

AND #BOOOOOOOO

STO 0034

LDD 0034

XOR #BOOOOOOOl

STO 0034

LDD 0034

AND #BOOOOOOlO

STO 0034

LDD 0034

OR #BOOOOOlOO

STO 0034

Loads a byte into the accumu lator from an address
Uses a bitwise AND operation of the contents of the accumulator with the
operand to convert each bit to O ·
Stores the altered byte in the original address

Uses a bitwise XOR operation of the contents of the accumulator with the
operand to toggle the value of the bit stored in position 0. This changes the
value of the flag it represents.

Uses a bitwise AND operation of the contents of the accumulator with the
operand to leave the value in position 1 unchanged but to convert every other
bit to 0. A subsequent instruction can now compare the value of the byte with
denary 2 to see if the flag represented by this bit position is set.

Uses a bitwise OR operation of the contents of the accumulator with the
operand to set the flag represented by the bit in position 2. All other bit
positions remain unchanged.

-

----- --- --------- ----

,,.-- ~ - - -- - - - -

Chapter 22: Monitoring and Control Systems

t

• A monitoring system requires sensors; a monitoring and control system also requires actuators.

• A program used for a monitoring and control system has to operate in real time with an infinite
loop that accepts input from the sensors at t imed intervals.

• The program transmits signals to the actuators if the values received from the sensors indicate a
need for control measures to be taken.

• Bit manipulation can be used within an assembly language program to monitor or control
devices.

Exam-style Questions
1 A zoo rept ile house has sixteen tanks which accommodate its rept iles. Each tank has to have its own microcli mate

where the appropriate levels of heat and humidity are crucial. The zoo implement s a computer system wh ich
su pp lies the condit ions in each of t he tanks to a te rminal in a cent ral area. Wa rning messages are flashed up on
t he screen if any cond ition arises wh ich req ui res the intervention of a zoo-keeper.

a State the name of the type of com puting system descri bed .

b State two items of hardware which need to be present in t he t anks fo r this system to function correctly.

c This is t he pol li ng routine which is used to ru n the system indefinitely:

01 REPEAT
02 FOR i 1 TO
03 READ Conditionl, Co nditio n2 in tank (i)
04 IF Conditio nl < Extreme[i,1] OR Conditio nl > Extreme[i,2]
05 THEN
06 OUTPUT "Warning! Problem in Tank ", i
07 ENDIF
08 IF Condition2 < Ex treme [i, 3] OR Conditio n3 > Extreme [i, 4]
09 THEN
10
11 ENDIF
1 2 END FOR
13

OUTPUT "Warnin g ! Pro blem in Tank

14 FOR i 1 TO 999999
15 END FOR
16 UNTIL

Fill in the gaps in t he pseudocode.

ii Exp lain what is stored in t he array Extreme .

iii Explain what happens in lines 04 to 11.

iv Explain t he purpose of the loop in lin es 14 to 15.

i

[l]

[2]

[2]

[2]

[3]

[l]

I

• I

Cambridge International AS and A level Computer Science

d The zoo decides that the computer system needs to be updated. The computer system wil l now make use
of actuators. These actuators wi ll operate devices which adjust the microclimate.

Act uators can be in two states, on or off. Whether an actuator is on or off is determined by a single bit
value (0 means off, 1 means on) in a specific 8-bit memory location.

The actuators to control the cl imate in Tank 4 use memory location 0804. Bit 5 of this memory location
contro ls the heater.

7 6 5 4 3 12 1 0 bit number
0 0 1 1 0 11 0 1 value

Use some of t he assemb ly language instructions to write the instruct ions that will ensure bit 5 of location
0804 is set to 1. [6]

Instruction

I Operand
Explanation

Op Code I

LDM #n Immediate addressi ng. Load the number n to ACC

LLD <address> Direct addressing. Load the contents of the given address to ACC

STO <address> Store the contents of ACC at the given address

OUT Output to the screen the character whose ASCII value is stored in ACC

AND #n Bitwise AND operation of the contents of ACC with the operand

AND <address> Bitwise AND operation of the contents of ACC with the contents of <address>

XOR #n Bitwise XOR operation of the contents of ACC with the operand

OR #n Bitwise OR operation of the contents of ACC with the operand

Cambridge International AS and A Level Computer Science 9608 Specimen Paper 3 Q 3

- - - --- - --

Learning objectives
By the end of this chapter you should be able to:

• show understanding of how to model a complex system
by only including essential details

• write a binary search algorithm to solve a particular
problem

• show understanding of the conditions necessary for the
use of a binary search

• show understanding of how the performance of a binary
search varies according to the number of data items

• write algorithms to:
• implement an insertion sort
• implement a bubble sort
• find an item in each of the following: linked list, binary

tree, hash table
• insert an item into each of the following: stack, queue,

linked list, binary tree, hash table
• delete an item from each of the following: stack, queue,

linked list

• show understanding that performance of a sort routine
may depend on the initial order of the data and the
number of data items

• show understanding that different algorithms which
perform the same task can be compared by using criteria
such as time taken to complete the task and memory used

• show understanding that an abstract data type (ADT) is a
collection of data and a set of operations on those data

• show understanding that data structures not available
as built-in types in a particular programming language
need to be constructed from those data structures which
are built-in within the language

• show how it is possible for ADTs to be implemented from
another ADT

• describe the following ADTs and demonstrate how they can
be implemented from appropriate built-in types or other
ADTs: stack, queue, linked list, dictionary, binary tree.

Cambridge International AS and A level Computer Science

23.01 What is computational thinking?
We have already been thinking computationally in Chapters 11 to 15. Here is the forma l
definition:

Computational thinking is a problem-solving process where a number of steps are taken in
order to reach a solution, rather than relying on rote learning to draw conclusions without
considering these conclusions.

Computational thinking involves abstraction, decomposition, data modell ing, pattern
recognition and algorithm design.

Abstraction
Abstraction involves filtering out information that is not necessary to solving the problem.
There are many examples in everyday life where abstraction is used. In Chapter 11 (Section
11.01), we saw part of the underground map of London, UK. The purpose of this map is
to help people plan their journey w ithin London. The map does not show a geographical
representation of the tracks of the underground train network.nor does it show the streets
above ground. It shows the stations and which train lines connect the stations. In other
words, the information that is not necessary when planning how to get from Kings Cross St.
Pancras to Westminster is fi ltered out. The essential information we need to be able to plan
our route is clearly represented.

Abstraction gives us the power to deal with complexity. An algorit hm is an abstraction of a
process that takes inputs, execute-s a sequence of steps, and produces outputs. An abstract
data t ype defines an abstract set of values and operations for manipulating those values.

Decomposition
Decomposition means breaking tasks down into smaller pa rts in order to explain a process
more clearly. Decomposition is another word for step-wise refinement (covered in Chapter
12, Section 12.01). This led us to structured programming using procedures and functions
with parameters, covered in Chapter 14 (Section 14.03 to 14.05).

Data modelling
Data modelling involves analysing and organising data. In Chapter 13 we met simple data
types such as integer, character and Boolean. The string data type is a composite type:
a sequence of characters. When we have groups of data items we used one-dimensional
(lD) arrays to represent linear lists and two-dimensional (2D) arrays to represent tables
or matrices. We stored data in text files. In Chapter 10, we used data modelling to design
database tables.

We can set up abs~ract data types to model rea l-world concepts, such as records, queues
or stacks. When a programming language does not have such data types built-in, we can
define our own by building them from existing data types (see Section 23.03). There are more
ways to build data models. In Chapter 27 we cover object-oriented programming where we
build data models by defining classes. In Chapter 29 we model data using facts and rules. In
Chapter 26 we cover random files.

-

Chapter 23: Computational Thinking and Problem-solving

Pattern recognition
Pattern recogn ition means looking for patterns or common solutions to common problems
and exploiting these to complete tasks in a more efficient and effective way. There are many
standard algorithms to solve standard problems, such as insertion sort or bi nary search (see
Section 23.02).

Algorithm design
Algorithm design involves developing step-by-step instructions to solve a problem (see
Chapter 11).

23.02 Standard algorithms

Bubble sort
In Chapter 11, we developed the algorithm for a bubble sort (Worked Example 11.12).

Discussion Point:
What we1·e the essentia l features of a bubble sort?

TASK23.01
Write program code for the most efficient bubble sort algorithm. Assume that the items to be
sorted are stored in a 1D array with n elements.

Insertion sort
Imagine you have a number of cards with a different value printed on each card. How wou ld
you sort these cards into order of increasing value?

You can consider the pile of cards as consisting of a sorted part and an unsorted part. Place
the unsorted cards in a pile on the table. Hold the sorted cards as a pack in you r hand. To
start with only the first (top) card is sorted. The ca rd on the top of the pi le on the table is the
next card to be inserted . The last (bottom) card in your hand is your current card .

Figure 23 .01 shows the sorted cards in your hand as blue and the pile of unsorted cards as
white. The next card to be inserted is shown in red. Each column shows the state of the pile
as the cards are sorted .

Position
number

1
2
3 54
4 17
5 93
6 28

Figure 23.01 Sorting cards

17
93
28

6
47
54

6
17
47
54

6
17
47

6
17
28
47
54
93

Repeat the following steps until al l cards in the unsorted pile have been inserted into the
correct position:

1 Repeat until the card to be inserted has been placed in its correct position.

, __
--- ---- -

Key

i Sorted
Next card

4 Unsorted

I

Cambridge International AS and A level Computer Science

1.1 Compare the current card with the card to be inserted.
1.2 If the card to be inserted is greater than the current card, insert it below the current

card.
1.3 Otherwise, if there is a card above the current card in your hand, make this your new

current card.

1.4 If there is no new current card, place the card to be inserted at the top of the sorted
pile.

What happens when you work through the sorted cards to find the correct position for the
card to be inserted? In effect, as you consider the cards in your hand, you move the current
card down a position. If the value of the card to be inserted is smaller than the last card you
considered, then the card is inserted at the top of the pile (position 1).

This method is known as an insertion sort. It is a standard sort method.

We can write this algorithm using pseudocode. Assume the values to be sorted are stored in
a 10 array, List:

FOR Pointer+- 2 TO NumberOfitems
ItemToBeinserted +- List [Pointer]
Currentite'm +- Pointer - 1 // pointer to last item in sorted part of list
WHILE (List[Currentitem] > ItemToBeinserted) AND (Currentitem > 0)

List [Currentitem + l] +- List [Currentitem] // move current item down
Current i tem +- Currentitem - 1 // look at the item above

ENDWHILE
List[Currentitem + l] +- ItemToBeinserted // insert item

END FOR

TASK23.02

1 Dry-run the insertion sort algorithm using a trace table. Assume the list consists of the
following six items in the order given: 53, 21, 60, 18, 42, 19.

2 Write program code for the insertion sort algorithm. Assume that the items to be sorted are
stored in a 1D array with n elements.

Extension question 23.01
Investigate the performances of the insertion sort and the bubble sort by:

• varying the initial order of the items

• increasing the number of items to be sorted .

Binary search
In Chapter 11 we developed the algorithm for a linear search (Worked Example 11.11). This is
the only way we can systematically search an unordered list. However, if the list is ordered,
then we can use a different technique.

Consider the fol lowing rea l-world example.

If you want to look up a word in a dictionary, you are unlikely to start searching for the word
from the beginning of the dictionary. Suppose you are looking for the word 'quicksort'. You
look at the middle entry of the dictionary (approximately) and find the word 'magnetic'.
'quicksort' comes after 'magnetic', so you look in the second ha lf of the dictionary. Aga in you
look at the entry in the middle of this second half of the dictionary (approximately) and find

-- -- - - ----- - - - - - --- -- - - - - - -

'
\ Chapter 23: Computational Thinking and Problem-solving

t he word 'report '. 'qu ickso rt ' comes before 'report', so you look in t he third quarter. You ca n
keep looking at t he middle ent ry of the part which must con t ain your word , unt il you fi nd the
wo rd . If th e word does not exist in the dictionary, you w ill have no ent ries in the dict ionary left
to find the midd le of.

This method is known as a binary search. It is a standard m ethod .

Binary search: repeated checking of the middle item in an ordered search list and discarding the half
of the list wh ich does not contain the sea rch item

We can write thi s algorithm using pseudocode. Assume the va lues are sorted in ascend ing
order and stored in a 10 ar ray, List of size Max items .

Found +- FALSE
SearchFailed +- FALSE
First +- 1
Last +- Maxitems II set boundaries of sea rch area
WHILE NOT Found AND NOT SearchFailed

Middle +- (First+ Last) DIV 2 II find middle of current search area
IF List [Middle] = Searchitem

THEN
Found +- TRUE

ELSE
IF First >= Last II no search area left

THEN
Sear chFailed +- TRUE

ELSE

ENDIF

I F List[Mi ddle] > Searchitem
THEN II must be in first half

Last +- Middl e - 1 II move upper boundary
ELSE II must be in second half

First +- Middle+ 1 II move lower boundary
ENDIF

ENDIF
ENDWHILE
IF Found = TRUE

THEN
OUTPUT Middle II output position where i tem was found

ELSE
OUTPUT "Item not present in array"

END IF

TASK23.03
Dry-run t he binary search algorithm using a t race ta ble. Assume t he list consists of t he
fo llowing 20 items in the order given: 7, 12, 19, 23, 27, 33, 37, 41, 45, 56, 59, 60, 62, 71, 75, 80, 84,
88, 92, 99.
Sea rch for t he value 60. How many ti mes did you have to execute the Whi l e loop?

Dry-run t he algorithm again, thi s t ime sea rching fo r the va lue 34. How many t imes did you
have to execute the While loop?

, __
- - --- - --

I

I

I

Cambridge International AS and A level Computer Science

Discussion Point:
Compare the binary-search algorithm with the linear-search algorithm. If the array contains
n items, how many times on average do you need to test a value when using a bina ry search
and how many times on average do you need to test a value when using a linear search? Can
you describe how the search time varies with increasing n?

23.03 Abstract data types {ADTs)
An abstract data type is a col lection of data. When we want to use an abstract data type,
we need a set of basic operations:

• create a new instance of the data structure
• f ind an element in t he data structure

• insert a new element into t he data st ructu re
• delete an element from the data st ructure

• access al l elements stored in the data st ructure in a systematic manner.

Abstract data type: a collection of data with associated operations

The re mainder of this chapter describes the following ADTs: stack, queue, linked list, binary
tree, hash table and dictionary. It also demonstrates how they can be implemented from
appropriate bui lt- in types or other ADTs.

23.04 Stacks
What are t he features of a stack in the real world? To make a stack, we pile
items on top of each other. The item t hat is accessib le is the one on top of the
stack. If we try to find an item in the stack and take it out, we are likely to cause
the pi le of items to col lapse.

Figure 23 .02 shows how we can represent a stack when we have added four
items in this order: A, B, C, D. Note that the slots are shown numbered from the
bottom as th is is more intu itive.

8
7
6
5
4
3

D
C

2 B
1 A

Top Of St ackPo inter

Base Of Sta c kPo inte r
The BaseofstackPointer wi ll always point to the first slot in t he stack. The
TopOfStackPoint er wi ll point to the last element pushed onto the stack.
When an element is removed from the stack, t he TopOf St ackPoi nter wi ll
decrease to point to the element now at t he top of the stack. Figure 23.02 A stack

23.05 Queues
What are the features of a queue in t he real world? When peop le form a queue,
t hey join the queue at t he end. People leave t he queue from the fro nt of the
queue. If it is an orderly queue, no-one pushes in between and people don't
leave t he queue from any other position.

Figure 23.03 shows how we can represe nt a queue when five items have joined
the queue in this order: A, B, C, D, E.

---- -~ - - -----

1
2
3
4
5
6
7
8

A
B
C
D
E

FrontOf QueuePointer

EndOf QueuePointer

Figure 23.03 A queue

' J Chapter 23: Computational Thinking and Problem-solving

When the item at the fron t of the queue leaves, we need to move all the
other items one slot forward . Th is would involve a lot of moving of data .
A more efficient way to make use of the slot s is the concept of a 'c ircu lar'
queue. Pointers show where t he front and end of t he queue are. Eve ntually
th e queue will 'wrap around ' to t he beginning. Fi gure 23.04 shows a
circular queue after 11 items have joined and five items have left the
queue.

1
2
3
4
5
6
7
8

I
J
K EndOfQueuePointer

F FrontOfQueuePointer
G
H

23.06 Linked lists Figure 23.04 A circular queue

I ,

In Chapter 11 we used an array as a linear list. In a linear list, the list items are stored in
consecutive locations. This is not always appropriate. Another method is to store an
individual list item in whatever location is ava ilab le and link the ind ividual item into an
ordered sequence using pointers.

An element of a list is ca lled a node. A node can consist of several data items and a pointer,
wh ich is a variable that sto res the address of the node it points to.

A pointer that does not point at anything is called a null pointer. It is usua lly rep resented
by 0 . A variab le t hat stores the address of the first element is ca lled a start pointer.

Node: an element of a list

Pointer: a variable that stores the address of the node it points to

Null pointer: a pointer that does not point at anything

Start pointer: a variable that stores the address of the first element of a linked list

In Figu re 23.05, the data value in t he node box represents the key field of that node. There are
li kely to be many data items associated with each node. The arrows represent t he pointe rs.
It does not show at wh ich address a node is stored, so t he d iagram does not give the value of
the pointer, only where it conceptually links to.

StartPointer

I I ·I.____ _8 ---'------'I I ·l.___0____.______.I I > .___I -L ~I 0 I
node node node

Figure 23.05 Conceptual diagram of a linked list

Ir-----------

I

•

Cambridge International AS and A level Computer Science

A new node, A, is inserted at the beginn ing of the list. The content of s t a rtPo int er is copied
into the new node's pointer field and star tpointer is set to point to the new node, A.

StartPointer

. - - -- ---~ B D L 0 , ,

, , node node node

,~
A

node

Figure 23.06 Conceptual diagram of adding a new node to the beginning of a linked list

In Figure 23.07, a new node, P, is inserted at t he end of the list. The pointer field of node L
points to the new node, P. The pointer field of the new node, P, contains the nu ll pointe r.

StartPointer

B D L

node node node

p 0
node

Figure 23.07 Conceptual diagram of add ing a new node to the end of a linked list

To delete the first node in the list (Figure 23 .08), we copy the pointer fie ld of the node to be
deleted into St artPo inter.

StartPointer

I 1·---+--~~-8 ~I I ·'----.--I D~I I ·~I -L ~I 0 I
'-· _______ no_d_e ______ ~t node node

Figu re 23.08 Deleting the first node in a linked list

To delete the last node in the list (Figu re 23.09), we set the pointer field for the previous node
to the nu ll pointer.

StartPointer

B D

node node node

Figure 23.09 Concept ual diagram of deleting the last node of a linked list

Somet imes t he nodes are lin ked together in order of key field value to produce an ordered
linked list. This means a new node may need to be inserted or deleted from between two
existi ng nodes.

t. Chapter 23: Computational Thinking and Problem-solving

'
'

'

To insert a new node, C, between existing nodes, Band D (Figure 23.10), we copy the pointer
field of node B into the pointer field of the new node, C. We change the pointer field of node B
to point to the new node, C.

StartPointer

- B -- - -----1 D I I ,

node II' node node

,.

C

node

Figure 23.10 Conceptual diagram of adding a new node into a linked list

To delete a node, D, within the list (Figure 23.11), we copy t he pointer field of the node to be
deleted , D, into the pointer field of node B.

StartPointer

I ·I B I ---1-- ---1 D I I ·I L I 01
node I node j node

Figure 23.11 Conceptual diagram of deleting a node with in a linked list

Remem ber t hat , in real applica tions, t he data wou ld consist of much more than a key field
and one data item. This is why linked lists are preferable to li nea r lists. When list elements
need reordering, on ly pointers need cha nging in a linked list. In a linear list, all data items
wou ld need to be moved.

Using lin ked lists saves t ime, however we need more storage space for the pointer fields.

In Chapter 16 we looked at com posite data types, in particular the user-defined record type.
We grouped together related data items into record data structures. To use a record variable,
we first define a record type. Then we declare variab les of t hat record type.

We ca n store the linked list in an array of records. One record represents a node and consists
of the data and a pointer. When a node is inserted or deleted, only the pointers need to
change. A pointer va lue is the array index of t he node pointed to.

Unused nodes need to be easy to f ind. A suitable technique is to link t he unused nodes to
form anot her li nked list: t he free list. Figure 23.12 shows our linked list and its free list.

node

FreelistPtr

node node node node

Figure 23.12 Conceptual diagram of a linked list and a free list

-- --- -- - - --------

•

Cambridge International AS and A level Computer Science

When an array of nodes is first initialised to work as a linked list, t he lin ked list will be empty.
So the start pointer will be the null pointer. All nodes need to be linked to form the free
list. Figure 23.13 shows an example of an imp lementation of a linked list before any data is
inserted into it.

List
Data Pointer

[1] 2

StartPointer 0 [2] 3

[3] 4

FreeListPtr D [4] 5

[5] 6

[6] 7

[7] 0

Figure 23.13 A linked list before any nodes are used

We now code t he basic operations discussed using the conceptual diagrams in Figures 23.05
to 23.12.

Create a new linked list
II NullPointer should be set to -1 if using array element with index O
CONSTANT NullPointer = 0
II Declare record type to store data and pointer
TYPE ListNode

DECLARE Data STRING
DECLARE Pointer INTEGER

ENDTYPE
DECLARE StartPointer : INTEGER
DECLARE FreeListPtr : INTEGER
DECLARE List[l : 7] OF ListNode

PROCEDURE InitialiseList
StartPointer +-- NullPointer
FreeListPtr +-- 1
FOR Index +-- 1 TO 6

II set start pointer
II set starting position of free list
II link all nodes to make free list

List [Index] . Pointer +-- Index + 1
END FOR
List [7]. Pointer +-- Null Pointer I I last node of free list

END PROCEDURE

Chapter 23: Computational Thinking and Problem-solving

Insert a new node into an ordered linked list
PROCEDURE InsertNode(Newitem)

IF FreeListPtr <> NullPointer
THEN II there is space in the array

END IF

II take node from free list and store data item
NewNodePtr +- FreeListPtr
List [NewNodePtr] .Data +- Newitem
FreeListPtr +- List [FreeListPtr] . Pointer
II find insertion point

ThisNodePtr +- Start Pointer
WHILE ThisNodePtr <> NullPointer

AND List[ThisNode Ptr] .Data

II start at beginning of list
II while not end of list

< Newitem
PreviousNodePtr +- ThisNodePtr II remember this node

II follow the pointer to the next node
ThisNodePtr +- List [ThisNodePtr]. Pointer

ENDWHILE
IF PreviousNodePtr = StartPointer

THEN II insert new node at start of list
List [NewNodePtr]. Pointer +- StartPointer
StartPointer +- NewNodePtr

ELSE II insert new n o de between previous node and this node
List [NewNodePtr]. Pointe r +- List [PreviousNodePtr]. Pointer
List [PreviousNodePtr] . Pointer +- NewNodePtr

ENDIF

END PROCEDURE

After t hree data items have been added to t he linked list , the array content s are as shown in
Figure 23.14.

List
Data Pointer

[1] B 2

Start Pointer L] [2] D 3

[3] L 0

FreeListPtr 8 [4] 5

[5] 6

[6] 7

[7] 0

Figure 23.14 Linked list of three nodes and free list of four nodes

Find an element in an ordered linked list
FUNCTION FindNode(Dataitem) RETURNS INTEGER II returns pointer to node

CurrentNodePtr +- StartPointer II start at beginning of list
WHILE CurrentNodePtr <> NullPointer II not end of list

AND List[CurrentNodePtr].Data <> Dataitem II item not found
II follow the pointer to the next node
CurrentNodePtr +- List [CurrentNodePtr]. Pointer

ENDWHILE
RETURN CurrentNodePtr II returns NullPointer if item not found

END FUNCTION

•

Cambridge International AS and A level Computer Science

Delete a node from an ordered linked list
PROCEDURE DeleteNod e (Dataite m)

ThisNodePtr +- StartPointer
WHILE ThisNodePtr <> NullPointer

II start at beginning of list
II while not end o f list

AND List[ThisNodePtr] .Data <> Dataitem II and item not found
Previo usNodePtr +- ThisNodePtr II remember t his node

II follow the pointer to the next node
ThisNodePtr +- Li st [ThisNodePtr] . Pointer

ENDWHILE
IF ThisNodePtr <> NullPointer II n o d e exists in list

THEN
IF ThisNodePtr = StartPointe r II first node to be deleted

THEN
Start Pointer +- List [StartPointer] .Pointer

ELSE
List [PreviousNodePtr] +- List [ThisNodePtr]. Pointer

ENDIF

END IF

Li s t [ThisNode Ptr]. Po inter <- FreeListPtr
FreeListPtr +- ThisNodePtr

END PROCEDURE

Access all nodes stored in the linked list
PROCEDURE OutputAllNo des

CurrentNodePtr +- StartPointer II start a t beginning of list
WHILE CurrentNodePtr <> NullPointe r II while not end of list

OUTPUT List[CurrentNodePtr] .Data
II follow the pointer to the next node
CurrentNodePtr +- List~urrentNodePtrj .Pointer

ENDWHILE
ENDPROCEDURE

TASK23.04
Convert the pseudocode for the linked-l ist handl ing subroutines to program code.
Incorporate the subrout ines into a program and test them.

Note t hat a stack ADT and a queue ADT can be treated as specia l cases of li nked lists. Th e
li nked list st ack on ly needs to add and remove nodes from the front of t he li nked list. The
li nked list queue only needs to add nodes to th e end of t he linked list and remove nodes from
the front of t he li nked list.

TASK23.05
Write program code to implement a stack as a linked list. Note that t he adding and removi ng
of nodes is much simpler than fo r an ordered linked list.

Chapter 23: Computational Thinking and Problem-solving

TASK23.06
Write program code to implement a queue as a linked list. You may find it helpful to introduce
another pointer that always points to the end of the queue. You will need to update it when
you add a new node to the queue.

23.07 Binary trees
In the real world, we draw tree structures to represent hierarchies . For example, we can draw
a fami ly tree showing ancestors and thei r children . A binary tree is different to a family tree
because each node can have at most two 'children'.

In computer science binary trees are used for different purposes. In Chapter 20 (Section
20.05), you saw the use of a binary tree as a syntax tree. In this chapter, you w ill use an
ordered binary tree ADT (such as the one shown in Figure 23 .15) as a binary sea rch tree.

Root node

Left subtree Leaf node

Figure 23.15 Conceptual diagram of an ordered binary tree

Nodes are added to an ordered binary t ree in a specific way:

Sta rt at the root node as t he current node.

Repeat

Right subtree

If the data value is greater t han the current node's data value, follow the right branch .

If the data value is smaller than the current node's data value, follow the left branch .

Until the current node has no branch to follow.

Add the new node in this posit ion .

Fo r example, if we want to add a new node with data value D to
the binary tree in Figure 23.15, we execute the fol lowing steps:

1 Start at the root node.

2 Dis smaller than F, so turn left.

3 Dis greater than C, so turn right.

4 Dis smaller than E, so turn left.

5 There is no branch going left from E, so we add Das a left
chi ld from E (see Figure 23.16) .

s

This type of tree has a special use as a search tree. Just like
the binary search applied to an ordered linear list, the binary Figure 23.16 Conceptual diagram of adding a node to an

ordered binary tree

I

Cambridge International AS and A level Computer Science

search t ree gives the benefi t of a faste r search than a linea r sea rch or sea rching a li nked list.
The ordered binary tree also has a benefi t when adding a new node: ot her nodes do not
need to be moved, only a left or right pointer needs to be added to link the new node into the
existing t ree.

We ca n store t he binary tree in an array of records (see Figure 23 .17). One record represents a
node an d consists of the data and a left pointer and a right pointer. Unused nodes are linked
together to form a free list.

RootPointer 0

FreePtr

[l]

[2]

(3]

[4]

[5]

[6]

[7]

Tree

LeftPointer Data

2

3

4

5

6

7

0

Figure 23.17 Binary tree before any nodes are inserted

Create a new binary tree

RightPointer

II NullPointer should be set to -1 if u sing a r ray element with index O
CONSTANT NullPointer = 0
II Declare record type to store data and pointers
TYPE TreeNo de

DECLARE Data : STRING
DECLARE LeftPointer : INTEGER
DECLARE RightPoint er : INTEGER

END TYPE
DECLARE RootPointer : INTEGER
DECLARE FreePtr : INTEGER
DECLARE Tree[l : 7] OF TreeNode
PROCEDURE InitialiseTree

RootPointer <- NullPointer II set start pointer
FreePtr <- 1 I I set starting position of free list
FOR Index <- 1 TO 6 II link all nodes to make fre e list

Tree [Index] . LeftPointer <- Index + 1
END FOR
Tree [7] .LeftPointer <- NullPointer I I last node of free list

END PROCEDURE

Chapter 23: Computational Thinking and Problem-solving

Insert a new node into a binary tree
PROCEDURE Ins er t No de (Newitem)

IF FreePtr <> NullPointer
THEN II there is space in the array

ENDIF

II take node from free list, store data item and set null pointers
NewNodePtr <- FreePtr
FreePtr <- Tree [FreePtr] . LeftPointer
Tree[NewNodePtr] .Data <- Newitem
Tree[NewNodePtr] .LeftPo inter <- NullPointer
Tree [NewNodePtr] .RightPointer <- NullPointer
II check if empty tree
IF RootPointer = NullPointe r

THEN II insert new node at root
RootPointer <- NewNodePtr

ELSE II find insertion point

ENDIF

ThisNodePtr <- RootPointer II start at the root of the tree
WHILE ThisNodePtr <> NullPointer II ·while not a leaf node

PreviousNodePtr <- ThisNodePtr II remember this node
IF Tree[ThisNodePtr] .Data > Newitem

THEN II f o llow left pointer
TurnedLeft <- TRUE
ThisNodePtr <- Tree [ThisNodePtr] .LeftPointer

ELSE II follow right pointer
TurnedLeft <- FALSE
ThisNodePtr <- Tree [ThisNodePtr] .RightPointer

ENDIF
ENDWHILE
IF TurnedLeft = TRUE

THEN
Tree [PreviousNodePtr] .Left Pointer <- NewNodePtr

ELSE
Tree[PreviousNodePtr] .RightPointer <- NewNodePtr

ENDIF

END PROCEDURE

Find a node in a binary tree
FUNCTION FindNode(Searchitem) RETURNS INTEGER II returns pointer to node

ThisNodePtr <- RootPointer II start at the root of the tree
WHILE ThisNodePtr < > NullPointer II while a pointer to follow

AND Tree[ThisNodePtr].Data <> Searchitem II and search item not found
IF Tree[ThisNodePtr].Data > Searchitem

THEN II follow left pointer
ThisNodePtr <- Tree [ThisNodePtr] .LeftPointer

ELSE II follow right pointer

ENDIF
ENDWHILE

ThisNodePtr <- Tree [ThisNodePtr] .RightPointer

RETURN ThisNodePtr II will return null pointer if search item not found
END FUNCTION

-- -----------

•

•

Cambridge International AS and A level Computer Science

TASK23.07
Write program code to implement a binary search tree.

23.08 Hash tables
If we want to sto re records in an array and have direct access to records, we can use the
concept of a hash table.

The idea beh ind a hash tab le is that we calculate an address (the array index) from the
key value of the record and store the record at this address. When we search for a record,
we calculate the address from the key and go to the calculated address to find the record.
Calculating an address from a key is called 'hashing'.

Finding a hashing function that wi ll give a unique address from a unique key va lue is very
difficult. If two different key values hash to the same address th is is called a 'collision'. There
are different ways to handle collisions:

• chaining: create a linked list for collisions with start po inter.at the hashed address

using overflow areas: all coll isions are stored in a separate overflow area, known as
'closed hashing'

using neighbouring slots: perfo rm a linear search from the hashed address to find an
empty slot, known as 'open hashing' .

WORKED EXAMPLE 23.01

Calculating addresses in a hash table
Assume we want to store customer records in a l D array HashTable [o : n l. Each
customer has a unique customer ID, an integer in the range 10001 to 99999.

We need to design a su itable hashing function. The result of the hashing fu nction should be
such that every index of the array can be addressed d irectly. The simplest hashing function
gives us addresses between O and n:

FUNCTION Hash (Key) RETURNS INTEGER
Address <- Key MOD(n + 1)
RETURN Address

ENDFUNCTION

For illustrative purposes, we choose n to be 9. Our hash ing function is:

Index<- CustomerID MOD 10

We want to store records with customer IDs: 45876, 32390, 95312, 64636, 23467. We can
store the first three reco rds in their correct slots, as shown in Figure 23.18.

[OJ [lJ [2J [3J [4J [SJ [6] [7] [8] [9]

132390 1 195312 1 145876

Figure 23.18 A hash table without coll isions

The four th record key (64636) also hashes to index 6. This slot is already ta ken; we have a
co llision. If we store our reco rd here, we lose the previous record. To resolve the collis ion,
we can choose to store our record in the next available space, as shown in Figure 23.19.

-

(
1 Chapter 23: Computational Thinking and Problem-solving

[OJ [lJ [2] [3J [4J [SJ [6] [7] [8J [9J

132390 195312 I 45876 64636

Figure 23.19 A hash table with a collision resolved by open hashing

The fi fth record key (23467) hashes to index 7. This slot has been taken up by the previous
record, so again we need to use the next avai lable space (Figure 23.20).

[OJ [lJ [2] [3J [4J [SJ [6J [7J [8] [9J

1 32390 1 1 95312 1 1 45876 1 64636 23467

Figure 23.20 A hash table with two collisions resolved by open hashing
'

When searching fo r a record , we need to allow for these out-of-place reco rds. We know if
the reco rd we are searching fo r does not exist in t he hash table when we come across an
unoccupied slot.

We will now develop algorithms to insert a record into a hash table and to search fo r a reco rd
in the hash table using its record key.

The hash ta ble is a 1D array HashTable [O : Max) OF Record.

• The records stored in the hash table have a unique key stored in fi eld Key.

Insert a record into a hash table
PROCEDURE Insert (NewRecord)

Index +- Hash (NewRecord.Key)
WHILE HashTable[Index) NOT empty

Index +- Index + 1 I I go to next slot
IF Index > Max II beyond table b oundary?

THEN II wrap around to beginning of table
Index +- 1

ENDIF
ENDWHILE
HashTable[Index) +- NewRecord

END PROCEDURE

Find a record in a hash table
FUNCTION FindRecord(Searc hKey) RETURNS Record

Index +- Hash (SearchKey)
WHILE (HashTable[Index).Key <> SearchKey) AND (HashTable[Index) NOT empty)

Index +- Index+ 1 II go to next slot
IF Index > Max II beyond table boundary?

THEN II wrap around to beginning of table
Index +- O

ENDIF
ENDWHILE
IF HashTable[Index) NOT empty II if record found

THEN
RETURN HashTable[Index) II return the record

ENDIF
END FUNCTION

•

Cambridge International AS and A level Computer Science

23.09 Dictionaries
A rea l-world dictionary is a co llection of key-va lue pairs. The key is t he term you use to look
up t he required va lue. For example, if you use an Engl ish - French di ctionary to look up t he
English word 'book', you wi ll fi nd t he French equiva lent word 'livre'. A rea l-world dicti onary is
organised in alphabet ica l order of keys.

An ADT dictionary in co mputer science is implemented using a hash table, so t hat a value ca n
be looked up using a direct-access method.

Python has a built-in ADT d ictionary. The hashing fu nction is determined by Pyt hon. For VB
and Pasca l, we need to implement our own.

Here are some exa mples of Python dictionaries:
EnglishFrench = {} # empty dictionary
EnglishFrench["boo k"] = "liv re" # add a key-value pair to the dictionary
EnglishFrench["pen"] = "stylo"

print (EnglishFrench ["book"]) # acc ess a value in the dictionary

alternative method of setting up a dictionary
ComputingTerms = {"Boo lean" : "can be TRUE o r FALSE", "Bit"

print (Computing Terms ["Bit "])

"0 o r 1" }

There are many built- in fu nctions for Pyth on dictionaries. These are beyo nd the scope of th is
book. However, we need to understand how d ictionaries are implemented . The fo llowing
pseudocode shows how to create a new dictionary.

TYPE DictionaryEntry
DECLARE Key STRING
DECLARE Value : STRING

ENDTYPE
DECLARE EnglishFrenc h[O : 999] OF DictionaryEntry II empty dictionary

TASK23.08
Write pseudocode to:

insert a key-value pair into a dict ionary
look up a value in a dictionary.

Use the hashing function from Worked Example 23.01.

• Standard algorithms include bubble sort, insertion sort, linear search and binary search.

• Abstract data types (ADTs) include records, stacks, queues, linked lists, binary trees, hash tables
and dictionaries.

• Basic operations required for an ADT include creating an ADT and inserting, finding or deleting an
element of an ADT.

~·

l
I

I

r.
[,

· Chapter 23: Computational Thinking and Problem-solving

Exam-style Questions
1 a Comp lete the algorithm for a binary search funct ion FindName.

The data being searched is stored in the array Names [O : 50].

The name to be searched for is passed as a parameter.

FUNCTION FindName (s : STRING) RETURNS INTEGER
Index +- -1
First +- O
Last +- 50
WHILE (L ast >= First) AND .. .

Middle +- (First + Last) DIV 2
IF Names[Middle] = s

THEN
Index +- Middle

ELSE
IF

ENDIF
ENDWHILE

END FUNCTION

THEN
Last +- Middle+ 1 ·

ELSE

ENDIF

b The binary search does not work if the data in t he array being sea rched is.

c What does the function FindName return when :

the name searched for exists in the array

ii t he name searched for does not exist in the array7

2 A queue Abstract Data Type (ADT) is to be imp lemented as a linked li st of nodes. Each node is a record, consisting
of a data field and a pointer field. The queue ADT also has a FrontOfQueue pointer and an EndOfQueue pointer
associated with it. The possible queue operat ions are: JoinQueue and LeaveQueue.

a Add labels to the diagram to show the state of t he queue after three data items have been added to the
queue in the given order: Apple, Pear, Ba nana .

I I

I I

I I
I I

I I
ii Add labels to the diagram to show how the unused nodes are li nked to form a list of free nodes. This list

has a StartOfFreeList po inter associated with it.

[3)

[l]

[2]

[5)

[2]

I

Cambridge International AS and A level Computer Science

b i Using program code, decla re the record type Node.

ii Write program code to create an array Queue with 50 records of type Node. Your solution should link all
nodes and initia lise the pointers FrontOfQueue , EndOfQueue and StartOfFreeList .

c The pseudocode algorithm for the queue operation JoinQueue is written as a procedure with the header:

PROCEDURE JoinQueue(Newitem)

where Newitem is the new va lue to be added to the queue. The procedu re uses the variables shown
in the following identifier tab le:

Identifier Data type Description
Null Pointer INTEGER Co nstant set to - 1

Array to store queue data
STRING Va lue to be added

Pointer to next free node in array
Pointer to first node in queue

Pointer to last node in queue

Pointer to node to be added

Complete the ident ifier table.

ii Complete the pseudocode using the identifiers from the table in part (i).

PROCEDURE JoinQueue(Newitem : STRING)
II Report error if no free nodes remaining
IF StartOfFreeList =

THEN
Report Error

ELSE

ENDIF

II new data item placed in node at start of free list
NewNodePointer +-- StartOfFreeList
Queue [NewNodePointer] .Data +-- Newitem
II adjust f r ee list pointer
StartOfFreeList +-- Queue [NewNode Pointer]. Pointer
Queue [NewNodePo inter]. Pointer +-- Null Pointer
II if first item in queue then adjust front of queue pointer
IF FrontOfQueue = NullPointer

THEN
. . . . • . • • • . • . . • +- •.••••..•.•...

ENDIF
II new node is new end of queue
Queue[...] . Pointer +-- ••••••...••••••••••••

EndOfQueue +-- •••.•••••••••••• •• ••• • •••••••••••••••••••••••• .

END PROCEDURE

[3]

[7]

[7]

[6]

.....

- ----- - - ---

Learning objectives
By the end of this chapter you should be able to:

• describe the purpose of a decision table
• construct a decision table with a maximum of three

conditions and simplify it by removing redundancies
• construct a JSP structure diagram showing repetition
• construct a JSP structure diagram showing selection
• write equivalent pseudocode from JSP structure charts
• construct a JSP structure diagram to describe a data

structure

• construct a JSP data structure diagram using sequence,
selection, iteration

• construct a JSP diagram for a program design
• • use state-transition diagrams to document an algorithm

and show the behaviour of an object.

Cambridge International AS and A level Computer Science

24.01 Decision tables
A decision table is a precise way of modelling logic. Each possible combination of
conditions is considered in turn and what action is required.

Decision table: a precise way of modelling logic

A decision table has the format shown in Figure 24.01.

Example
Students in a particular college take an end-of-year test. Any student with 90 marks or more
gets a distinction. Students with fewer than 20 marks fail. All other students get a pass.

We set up a decision tab le by allowing one row for each condition and one row for each
possible action. We need one column for every possible combination of condit ions. Two
conditions require four columns; three condit ions require eight. columns. Table 24.01 shows
the decision table for awarding grades.

Vl
C

>= 90 marks y y N N 0 :-e
"O
C

< 20 marks 0 y N y N u

Distinction - X
Vl
C
0

Pass ·.;:::; - X u
<(

Fail - X

Table 24.01 Decision table example

Note that Y means true and N means false. X means this action is to be performed. A dash is
added where the condition alternatives are irre levant or impossible: a student cannot have
fewer than 20 marks and at the same time at least 90 marks.

The real power of decision tables becomes apparent when the conditions and resulting
act ions are more complex. Inspection of the action entries sometimes shows redundancies
and the decision table can be simplified. This means the program code to be written will also
be simplified.

WORKED EXAMPLE 24.01

Creating a decision table
Consider an on line order company that charges $5 for delivery of packages. If the order
value is over $50, the package is small and the customer has a promotion code, the
delivery is free. If the order va lue is over $50 and the package is small, the delivery charge
is $1. If the order value is over $50 and the customer has a promotion code, the delivery
charge is $1.

Conditions Condition
alternatives

Actions Action entries

Figure 24.01 The four
quadrants of a decision
table

'

i
. Chapter 24: Algorithm Design Methods

We complete the cond itions in a decision table for the order form in the systematic
manner shown. Table 24.02 shows the delivery charge conditions .

Vl order value over $50 y y y y N N N N C
0 :-e small package y y N N y y N N -0
C
0

promotion code y N y u N y N y N

Table 24.02 Delivery charge conditions

Next, we look at each combinat ion of co nd itions in turn and decide which act ion needs
to be taken and mark those with X (see Tab le 24.03).

Vl order value over $50 y y y y N N N N C
0 :-E small package y y N N y y N N -0
C
0 promotion code y N y N y N y N u

Vl free delivery X
C
0 $1 charge X X ·.;;
u
<(

$5 charge X X X X X

Tab le 24.03 Delivery cha rge decision table

To find redundancies, we look at each action and then check whether the conditions are
required: • Free delivery only applies if all 3 conditions are true. There are no redundancies here.

The $1 charge applies if condition 1 is true and either condi tion 2 or condition 3 is true.
There are no redundancies here ei t her.

The $5 charge applies in all cases where condition 1 is false. The redu ndant conditions
are shown by the shaded ce lls. We can therefore simplify the tab le (see Table 24.04) We
put a dash in the cells where the cond ition can be t rue or fa lse - the action will be the
same. The dash is sometimes referred to as the 'don't care' symbol.

Vl order va lue over $50 y y y y N C
0

small package y y N N --0
C
0 u promotion code y N y N -

free delivery X
Vl
C
0 $1 charge X X ·.;;
u
<(

$5 charge . X X

Table 24.04 Simplified delivery charge decision table

Decision tables can also be used to define outputs dependent on inputs so can be a
basis for testing a program.

Cambridge International AS and A level Computer Science

24.02 Jackson structured programming (JSP)
When designing a program using Jackson structured programming (JSP), we set up a
structure based on the structure of the data the intended program is to handle.

A structure can consist of elementary components (they have no parts) and composite
components (sequence, select ion or iteration). A sequence has two or more components.
Selection consists of two or more parts, only one of which is selected. Iteration consists of
one part that repeats zero or more times.

WORKED EXAMPLE 24.02

Designing a program using JSP
Consider a company's order form template:

Parts Order Form
Customer Name:
Customer Address:

Product ID Description Quantity Unit Price

Postage & Packing
Total Price

Payment by: Cheque/Bank card (delete as appropriate)
Bank Card Number:

Figure 24.02 Order form

Price

The first stage of designing a program to process the data in this order form is to draw a
data structure diagram of the data .

Using the top-down approach, at the top level the order form consists of these
components: the header, the order body, the totals and the payment method.

• The header is a sequence composite component containing customer name and address.
• The body is an iteration composite component contain ing repeated products and

their quantity, etc.
• The payment method is a selection composite component containing either cheque

or bank card.
On the data structure diagram (see Figure 24.03):

• Repetition is shown by an asterisk(*) in the corner of components that are repeated .
• Selection is shown by a circle in the corner of components where only one is chosen.

t_ Chapter 24: Algorithm Design Methods

Customer
Name

Customer
Actress

Order form

Order Body

*
Product ID Quantity

Figure 24.03 Jackson data structure diagram

* Postage &
Packing Total price

0 0

Cheque Bank card

From the data structure diagram, we can draw the program structure diagram (see Figure 24.04).

Process Header
data

Process Order
form

Process Order
Body data

Read Payment
method

Read Customer
Name

Read Customer
Address Read Product ID Read Quantity Add Postage &

Packing
Calculate Total

price

0

Process Cheque
0

Read Bank card
detalis

Figure 24.04 Jackson program structure diagram

TASK24.0l
Write pseudocode from the Jackson program structure diagram in Figure 24.04.

In more compl icated systems, t he output data can be subjected to the same analysis,
possibly leading to conflicts to be resolved.

24.03 State-transition diagrams
A computer system can be seen as a finite state machine (FSM). An FSM has a start state.
An input to the FSM produces a transformation from one state to another state.

The information about the states of an FSM can be presented in a state-transition table.

Finite state machine (FSM): a mach ine that consists of a fixed set of possible states with a set of
inputs that change the state and a set of possible outputs

State-transition table: a table that gives information about the states of an FSM

•

Cambridge International AS and A level Computer Science

Table 24.05 shows an example FSM represented as a state-transition table
If the FSM is in state Sl, an input of a causes no change of state.

• If the FSM is in state Sl, an input of b transfo rms Sl to S2.

• If the FSM is in state S2, an input of b causes no change of state.

If the FSM is in state S2, an input of a transforms S2 to Sl.
input

current state

Sl S2

a Sl Sl

b S2 S2

A state-transition diagram can be used to describe the behaviour of Table 24.05 State-transition table
an FSM. Figure 24.05 shows the start state as Sl (denoted by• >).
If the FSM has a final state (also known as the halting state), this is
shown by a double-circled state (Sl in the example).

State-transition diagram: a diagram that describes the behaviour of an FSM

b

a

Figure 24.05 State-transition diagram

If an input causes an output this is shown by a vertical bar (as in Figure 24.06). For example, if
the current state is Sl, an input of b produces out put c and transforms the FSM to state S2.

Figure 24.06 State-transition diagram with outputs

_..,

t Chapter 24: Algorithm Design Methods

WORKED EXAMPLE 24.03

Creating a state-transition diagram for an intruder detection system

A program is required that simulates the behaviour of an intruder detection system.

Description of the system: The system has a battery power supply. The system is
activated when the start button is pressed. Pressing the start button when the system
is active has no effect. To de-activate the system, the operator must enter a PIN. The
system goes into alert mode when a sensor is activated. The system wi ll stay in alert
mode for two minutes. If the system has not been de-activated within two minutes an
alarm bel l w ill ring.

We can complete a state-transit ion table (Table 24.06) using the information from the
system description.

Current state Even t Next state
S stem inactive Press start button S stem active
S stem active Enter PIN S stem inactive
S stem active Activate sensor Alert mode
S stem active Press start button S stem active
Alert mode Enter PIN S stem inactive
Alert mode 2 minutes pass Alarm bell rin in
Alert mode Press start button Alert mode
Alarm bell rin in Enter PIN S stem inactive
Alarm bell rin in Press start button Alarm bell rin in

Table 24.06 State-transition table for intruder detection simulation

The start state is 'System inactive'. We can draw a state-transition diagram (Figure 24.07)
from the information in Table 24.06.

Press button

Press button

Sensor activated
Enter PIN

Enter PIN

Press button

2 minutes pass

Figure 24.07 State-transition diagram for intruder alarm system

•

• I

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 24.04

Creating a state-transition diagram for a two's complement FSM

A finite state machine has been designed that will take as input a positive binary integer,
one bit at a time, starting with the least significant bit. The FSM converts the binary
integer into the two's complement negative equivalent. The method to be used is:

1 Output the bits input up to and including the first 1.
2 Output the other bits following this scheme:

2.1 For each 1, output a O

2.2 For each 0, output a 1.

This information is represented in the state-transition table shown in Table 24.07.

Current state Sl Sl S2 S2
Input bit 0 1 0 1
Next state Sl S2 S2 S2
Output bit 0 1 1 0

Table 24.07 State-transition table with outputs

This method can be represented as the state-transition diagram in Figure 24.08.

111

010 011 (p,10
Figure 24.08 State-transition diagram for a two's complement FSM

TASK24.02
Write a program that simulates the intruder alarm system in Worked Example 24.03.

Question 24.01
What is the ou t put from the FSM represented by the state-transition diagram in Figure 24.08,
when the input is 01 01 ?

Extension Question 24.01
Does the FSM in Figure 24.08 work for converting a negative binary number into its positive
equiva lent?

- -

: Chapter 24: Algorithm Design Methods

• A decision table shows all possible combinations of conditions and the resulting actions. A
decision table may show redundancies that result in a simplified decision table.

• Jackson structured programming (JSP) is modelled on the structure of the data.

• JSP structures consist of elementary and composite components.

• Composite components represent sequence, selection or iteration.

• A finite state machine (FSM) has a start state.

• A state-transition table shows each state of a FSM and the events that produce a transformation
from one state to another state.

• A state-transition diagram is another way of representing the states and transformations of a FSM.

Exam-style Questions
1 A toll road is a road on which motor vehicle drivers have to pay to drive. The payment is calculated as fol lows: Motor

vehicles pay a standard charge. If passenger vehicles (cars and buses) use the road du ring off-peak times (not within
06:00 hrs to 19:00 hrs), the charge is reduced. Passenger vehicles with more than three occupants do not get charged .

a Complete the decision table.

Vl
passenger vehicle

C
0 between 06:00 and ·.;::::;

-0 19:00 C
0 u

more than 3 occupants

standard charge
Vl
C
0 reduced charge ·.;::::;
u
<(

Free

b Simplify your solution by removing redundancies .

2 A bank uses a data fil e to print a monthly statement fo r a ba nk account. The file consists of a header (account number
and name of account holder), fol lowed by a statement body (repeated transactions detailing date of payment, recipient
and amount), followed by a trailer (final balance and message if overdrawn).

[6)

[3)

•

•

Cambridge International AS and A level Computer Science

Complete the JSP data structure diagram:

Bank file

*

0

3 A car park has a barrier at the exit. The starting position of the barrier is lowered. When a car wants to exit the car park,
the driver has to insert a coin into a coin slot at the barrier. The barrier raises and allows the car to drive out of the car park.
After the car has passed through the barrier, the barrier lowers. In case of emergency, a member of staff can open the
barrier using a remote control. The barrier will remain open until the remote control is used again to lower the barrier.

The barrier has three states: lowered, raised and open. The transition from one state to another is as shown in the
state-transition table:

Current state Event Next state
Barrier lowered Coin inserted Barrier raised
Barrier lowered Open remote ly Barrier open
Barrier open Close remotely Barrier lowered

Barrier ra ised Car has exited Barrier lowered

Complete the st ate-transit ion diagram for the barrier:

start~

E)

[5]

I

1

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the essential features of recursion
• show understanding of how recursion is expressed in a

programming language
• trace recursive algorithms

• write recursive algorithms
• show understanding of when the use of recursion is

beneficial
• show awareness of what a compiler has to do to

implement recursion in a programming language.

•

Cambridge International AS and A level Computer Science

25.01 Concept of recursion
In mathematica l logic and computer science, a function or procedure is sa id to be a
recursive routine if it is defined in terms of itself.

Recursive routine: a function or procedure defined in terms of itself

The classic mathematical example is the factorial funct ion, n!, which is defined in Figu re
25.01. Th is definition holds fo r all positive whole numbers.

The base case
O! = 1

n! = n x (n -1)! -=====::-f The general case)

Figure 25.01 Mathematical definition of the factorial function

Figure 25.02 shows expressions of the factorial function for the first fou r numbers.

4! = 4 X (4 - 1)! = 4 X 3!

3! = 3 X (3 - 1)! = 3 X 2!

2! = 2 X (2 - 1) ! = 2 X 1!

Here is the recursive
function, with a smaller number (3)

The number for the recursive
function keeps getting smaller, until
we reach O!, which is explicitly defined.

Figure 25.02 Expressions of the factorial function

Because O! = 1:

41 = 4 X 3 X 2 X l X l = 24

Recursive solutions have a base case and a general case. The base case gives a result
without involving the general case. The general case is defined in terms of the definition
itself. It is very important that the general case must come closer to the base case with each
recursion, for any starting point.

Base case: an explicit solution to a recursive function

General case: a definition of a recursive function in terms of itself

{

) Chapter 25: Recursion

25.02 Programming a recursive subroutine
WORKED EXAMPLE 25.01

Coding the factorial function
We cou l d p r ogram the f u nc t i on Factori a l iterat i v e ly, u s i ng a l oop :

FUNCTION Fac t orial (n : INTEGER) RETURNS I NTEGER
Resu l t .,_ 1
FOR i .,_ 1 TO n

Result.,_ Result* i
END FOR
RETURN Result

ENDFUNCTION

Alternatively, we can define the funct ion Factorial recursive ly (Figure 25.03).

FUNCTION Fac torial (n
IF n = 0

THEN
Result .,_ 1

ELSE

INTEGER) RETURNS INTEGER

Th is is the base case

Result.,_ n * Factorial (n - 1)
END IF
RETURN Resul t

ENDFUNCTION This is the recursive call

Figure 25.03 The factorial function coded recursively

The recursive pseudocode resembles the original mathematical definition of the factorial
function. The dry run in Table 25.02 (Sect ion 25.03) shows how this works.

Discussion Point:
Carefully examine the two solutions to the factorial function . What happens if the ite1-ative
function is called with parameter 07 What happens if the recursive function is ca lled with
parameter O? What changes would need to be made so the mathematical definition holds
for all values of n?

When writ ing a recursive subroutine, there are three rules you must observe. A recu rsive
subroutine must:

have a base case

have a genera l case

reach the base case after a fini te nu mber of calls to itself.

•

Cambridge International AS and A level Computer Science

TASK25.01
Write program code to implement the recursive algorithm for the
Factorial function.

Question 25.01

What happens when the function is called with Factorial (-2)? Which rule is not satisfied?

WORKED EXAMPLE 25.02

Coding a recursive procedure
Consider a procedure to count down from a given integer. We can write the solution as an
iterative algorithm:

PROCEDURE CountDownFrom(n : INTEGER)
FOR i n DOWNTO 0

OUTPUT i
ENDFOR

END PROCEDURE

We can also write the solution as a recursive algorithm. Consider w hat happens after the
first value has been output. The remaining numbers fol low the same pattern of counting
dow n from the next smaller value. The base case is when n reaches 0. 0 will be output but
no further numbers. The general case is outputting n and then counting dow n from (n-1).
This can be written using pseudocode:

PROCEDURE CountDownFrom (n : INTEGER)
OUTPUT n
IF n > 0

THEN
CALL CountDownFrom(n-1)

ENDIF
END PROCEDURE

25.03 Tracing a recursive subroutine

Tracing a recursive procedure
Dry-running the recursive procedure from Worked Example 25.02, we can complete a trace
table as shown in Table 25.01.

Call number Procedure call OUTPUT n>O
1 CountDownFrom(3) 3 TRUE
2 CountDownFrom(2) 2 TRUE
3 CountDownFrom(l) 1 TRUE
4 CountDownFrom(O) 0 FALSE

Table 25.01 Trace table for CALL CountDownFrom(3)

It is more complex to trace a subroutine that conta ins statements to execute after the
recursive call. Look at the slightly modified algorithm:

- - -

' Chapter 25: Recursion

PROCEDURE CountUp To(n INTEGER)
IF n > 0

THEN
CALL CountUpTo (n-1)

ENDIF
OUTPUT n

ENDPROCEDURE

Note that the statements after CALL countUpTo(n-1) are not executed until control returns
to this statement as the recursive calls unwind .

What is the effect of moving the OUTPUT statement to the end of the procedure? Figure 25.04
traces the execution of CALL countUpTo(3)

Call number Procedure call n>O OUTPUT
1 Count Up To(3) TRUE
2 CountUpTo(2) TRUE

~ - Base case reached) 3 Count Up To(1) TRUE
4 CountUpTo(0) FALSE 0 -

(3) Count Up To(1) TRUE 1 -
(2) Count Up To(2) TRUE 2 -
(1) CountUpTo(3) TRUE 3 _ Recursive calls unwind)

Figure 25.04 Trace table for CALL CountUpTo (3)

When the base case is reached, the fourth call of the procedure is complete and the
procedure is exited. Contro l then passes back to the third call and so on. Note how we show
the trace as the recursive calls unwind . Don't go back up the table and fill in the OUTPUT
column as this will not make it clear enough when the outpu t occurred.

Tracing a recursive function
A recursive function has a statement after the recursive ca ll to itse lf: the RETURN statement.
Again we show what happens when the recursive ca lls unwind by fi lling in more rows in the
trace table. Let's cons ider the factorial function again .

FUNCTION Factorial(n : INTEGER) RETURNS INTEGER
IF n = 0

THEN
Result 1

ELSE
Result n * Factorial (n-1)

ENDIF
RETURN Result

END FUNCTION

Call Procedure call
number

1 Factorial (4)
2 Factorial (3)
3 Factorial(2)
4 Factorial(!)
5 Factorial(O)

(4) Factorial (!)
(3) Factoria1(2)
(2) Factorial (3)
(1) Factorial (4)

n=O Result

FALSE 4 * Factorial(3)
FALSE 3 * Factoria1(2)
FALSE 2 * Factorial(!)
FALSE 1 * Factorial (O)
TRUE 1
FALSE 1 * 1
FALSE 2 * 1
FALSE 3 * 2
FALSE 4 * 6

Figure 25.05 Trace table for CALL Factorial (4)

Return
value

1
1 -
2
6

24 ..

[A Base case reached J

Recursive calls unwind)

•

Cambridge International AS and A level Computer Science

Another way to illustrate how the function calls unwind is by framing each call with a box (see
Figure 25.06). When the inner-most box is completed the result is fed to the next outer one.
And so on until the outermost box has been completed.

Factorial(4)
Result~ 4 * Factorial(3)

Factorial(3)
Result~ 3 * Factorial(2)

Factorial(2)
Result~ 2 * Factorial(l)

Factorial(l)
Result~ 1 * Factorial(O)

Factorial (O)
Result~ 1

Result 1
Return 1

Return 2
Return 6

Return 24

Figure 25.06 Diagrammatic view of recursive calls of Factorial

TASK25.02
Consider the following recursive algorithm:
PROCEDURE X(n : INTEGER)

IF (n = 0) OR (n = 1)
THEN

OUTPUT n
ELSE

ENDIF

CALL X(n DIV 2)
OUTPUT(n MOD 2)

END PROCEDURE

Dry-run the procedure call X(l9) by completing a trace table. What is the purpose of
this algorithm?

25.04 Running a recursive subroutine
Recursive subroutines can only be executed if the compiler produces object code that uses a
stack to push return addresses and local variables when calling a subroutine repeatedly.

WORKED EXAMPLE 25.03

Running the factorial function
Consider the following program, written in pseudocode:

010 PROGRAM
020
030 FUNCTION Factorial(n INTEGER} RETURNS INTEGER
040 IF n = 0
050 THEN
060 Result ... 1
070 ELSE
080 Resul t ... n * Factorial(n - 1)
090 ENDIF

-

100 RETURN Result
llO END FUNCTION
120
130 I I main program
140
150 DECLARE Answer : INTEGER
160 Answer <- Fac torial (Number)
170 OUTPUT Answer
180
190 END PROGRAM

The first program statement to be executed is line 160. Th e actua l parameter n has the
value 3. The funct ion call causes the return address to be put on the stack, as shown in
Figure 25.07. Program execution jumps to line 30.

When line 80 is reached, the function call causes t he return address to be stored on the stack,
together with the current contents of the local variables. The locations used to store these
values are referred to as a stack frame (represented by the blue borders in Figure 25.07). Each
recursive call wi ll add another stack frame to the stack until the base case is reached.

When the base case is reached, t he result of the function ca II Factorial (O) is returned by
pushing it onto the stack. The result is popped off the stack by the previous invocation of
the function. With each return from a function call, the correspond ing stack frame is taken
off and the values of the loca l variables are restored. Eventua lly, con t rol is returned to line
160 with the result of the function ca ll on the top of the stack. The value of Answer is output
in line 170.

Stack Description

160 1st call is made (n=3)

160 080 3 2nd call is made (n=2)

160 080 3 080 I 2 3rd call is made {n=l)

1 160 080 3 080 I 2 080 1 4th call is made (n=O)

160 080 3 080 I 2 080 1 1 Base case reached. push result onto stack
Return to call 3

080 I
Pop result and stack frame; push new

160 080 3 2 1 result.
Return to call 2

I 160 1 080 I
Pop result and stack frame; push new

3 2 result.
Return to call l

Pop result and stack frame; push new
I 160 I 6 result.

Return to main program

Figure 25.07 Stack contents during recursive calls of Factorial

Chapter 25: Recursion

•

• I
I
I

Cambridge International AS and A level Computer Science

TASK25.03

Use you r program code from Task 25.01 and add the main program as shown in Worked
Example 25.03 .

Amend your code in the following ways (line numbers are relative to the pseudocode in
Worked Example 25.03):

Add a global integer variable CallNumber.

Initialise CallNumber to zero (line 155).

Increment CallNumber (line 35).

Add a statement to output the va lues of CallNumber and n (line 36).

Add a statement to out put the value of Result (line 95).

Run the program and study the output.

25.05 Benefits and drawbacks of recursion
Recursion is an important technique in different programming p<;1rad igms (See Chapter 29,
Section 29.08). When design ing a solution to a mathematical p roblem that is inherently
recursive, t he easiest way to write a so lu tion is to im plement the recursive definit ion.

Recursive so lutions are often more elegant and use less program code than iterative
solutions. However, repeated recu rsive calls can carry large overheads in terms of
memory usage and processor time (see Section 25.04) . Fo r example, the procedure call
countDownFrom(100) w ill require 100 stack frames before it comp letes.

• A recursive subroutine is defined in terms of itself.

• A recursive subroutine must have a base case and a general case.

• A recursive subroutine must reach the base case after a finite number of calls to itself.

• Each time a subroutine is called, a stack frame is pushed onto the stack.

• A stack frame consists of the return address and the values of the local variables.

• When a subroutine completes, the corresponding stack frame is popped off the stack.

I

t

Chapter 25: Recursion

Exam-style Questions
1 a Dist inguish between iterati on and recu rsion.

b Give one adva ntage and one disadvantage of using recursive su broutines.

2 The fol lowing is a recurs ively defined funct ion w hich calculates t he result of BaseExponent.
For exam ple, 23 is 8.

FUNCTION Power (Base: INTEGER, Exponent

IF Exponent= 0

THEN

Result <- 1

ELSE

INTEGER) RETURNS INTEGER

Result <- Base* Power (Base, Exponent - 1)
ENDIF

RETURN Result

END FUNCTION

a What is meant by 'recu rsive ly defin ed '?

b Trace the execut ion of t he fu nct ion call Power (2, 4) showing for each re-ent ry into the Power fun cti on, the
values passed to the function and t he resu lts retu rned.

c Exp lain the ro le of the stack in the executi on of the Power fu ncti on .

e Write a pseudocode non-recurs ive (iterative) ve rsion of the Powerfunctio n.

f i Give one reason why a non-recursive Power fun ct ion may be prefer red to a recursive one.

ii Give one reason why a recursive Power functi on may be preferred to a non-recursive one.

3 The fo llowing is a recu rsively defined func ti on which calculates t he n t h integer in t he sequence of Fibonacc i
nu mbers .

01 FUNCTION Fibonacci (n : INTEGER) RETURNS INTEGER

02 IF (n 0) OR (n = 1)

03 THEN

04 Result <---1

05 ELSE

06 Result <- Fibonacci (n - 1) + Fibonacci (n - 2)

07 ENDIF

08 RETURN Re sult

09 ENDFUNCTION

a i Which line is the base case?

ii Which line is th e genera l case?

b Dry-run the function cal l Fibonacci (4) .

[2]

[2]

[l]

[6]

[3]

[6]

[l]

[l]

[l]

[l]

[7]

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of what is meant by a programming
paradigm

• show understanding of the characteristics of a number of
programming paradigms
(low-level, imperative, object-oriented, declarative)

• write code to define a record structure
• write code to perform file-processing operations: open or

close a file; read or write a record to a file
• use pseudocode for random file handling
• write code to perform file-processing operations on serial,

sequential and random files

• show understanding of an exception and the importance
of exception handling

• show understanding of when it is appropriate to use
exception handling

• write code to use exception handling in practical
programming

• describe features in editors that benefit programming

• know when to use compilers and interpreters

• describe facilities available in debuggers and how and
when they should be deployed.

Chapter 26: Further Programming

26.01 Programming paradigms
A programming paradigm is a fundamental style of programming. Each parad igm will
support a different way of thinking and problem solving. Paradigms are supported by
programming language featu res. Some programming languages support more than one
pa radigm. There are many different paradigms, not all mutually exclusive. Here are just a few
different parad igms.

Low-level programming paradigm
The features of [ow-level programming languages give us the abili t y to manipulate the
co ntents of memory addresses and registers directly and exploit the architectu re of a given
processor. We solve problems in a very different way when we use the low-level programming
paradigm than if we use a high-level paradigm. See Chapter 6 and Chapter 28 for low-level
programming examples. Note that each different t ype of processor has its own programming
language. There are 'families' of processors that are designed with similar architectures
and therefore use similar programming languages. For example, the In.tel processo r family
(present in many PC-type computers) uses the x86 instruct ion set.

Imperative programming paradigm
Imperative programm ing involves writing a program as a sequence of explici t steps t hat are
execu ted by t he processor. Most of the programs in this book use imperative programming
(Chapters 11 to 15 and Chapters 23 to 26). An imperative program tells the computer how to
get a desired result, in cont rast to decla rative programming where a program describes what
the desired result should be. Note that the procedural programming paradigm belongs to
the imperative programming paradigm. There are many imperative programming languages,
Pascal, C and Basic to name just a few.

Object-oriented programming paradigm
The object-orien ted paradigm is based on objects interacting w ith one another. These
objects are data structures with associated methods (see Chapter 27). Many programming
languages that were originally imperative have been developed further to support the object-
oriented paradigm. Examples include Pascal (under the name Delph i or Object Pascal) and
Visual Basic (the .NET version being the first fully object-oriented version). Newer languages,
such as Python and Java, were designed to be object-oriented from the beginning.

Declarative programming paradigm
Declarative programs are expressed as formal logic and computations are deduct ions from
the formal logic statements (see Chapter 29). Declarative programming languages include
SQL (see Chapter 10, Section 10.07) and Pro log (Chapter 29).

26.02 Records
We used records in Chapter 23 (Sect ion 23.06 onwards) to declare nodes. Reco rds are user-
defined types (discussed in Chapter 16, Section 16.01).

•

• I

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 26.01

Using records
A car manufacturer and seller wants to store deta ils about cars. These deta ils can
be stored in a record st ructure:

TYPE CarRecord
DECLARE VehicleID STRING / / unique identifier and record key

STRING DECLARE Registration
DECLARE DateOfRegistration
DECLARE EngineSize
DECLARE PurchasePrice

DATE
INTEGER
CURRENCY

ENDTYPE

To declare a variable of t hat t ype we write:

DECLARE ThisCar : CarRecord

Note that we ca n decla re arrays of reco rds. If we wan t to store t he details of 100 ca rs,
we decla re an array of type carRecord

DECLARE Car[l:100] OF CarRecord

Python Pyt hon does not have a record type. However, we can use a class definit ion
(see Chapter 27 for more about classes) .

The pseudocode example of a car record described in Worked Example 26.01 can be
progra mmed as fo llows:

c l ass CarRecord:
de f i nit (self) :

dec l ar i ng a class wi t hout othe r methods
constructor

self .VehicleID = ""
self.Registration= " "
self.DateOfRegistration = None
self.EngineSize = 0
self . PurchasePrice = 0 . 00

ThisCar = CarRecord() # instantiates a car record
ThisCar.EngineSize = 2500 # ass i g n ing a value to a fi e l d

ThisCar = CarRecord() # instant i ates a car r e cord
Car= [ThisCar for i in range (lOO)] # mak e a list o f 100 car records
Car[l].EngineSize = 2500 # a ss i gn i ng value t o a fi e l d o f the 2n d car in l ist

VB.NET St ructure CarRecord
Dim VehicleID As St ring
Di m Registration As String
Dim DateOfRegistration As Date
Di m EngineSize As I nteger
Dim PurchasePrice As Decima l

End Structure
Dim ThisCar As CarRecord
Di m Car (lOO) As CarRecord

' declare a variable of CarRecord type
' declare an array of CarRecord type

ThisCar.EngineSize = 250 0 ' assign v alue to a field
Car(2) .Eng i neSize = 2500 ' assign value to a field of 2nd car in array

f
I
i,
I
f
,J

I

i Chapter 26: Further Programming
I

Pascal type
CarRecord = record

Vehic l e ID : string[20] ;
Registration : string[lO];
DateOfRegistrat i on : TDateTime;
EngineSize : integer;
PurchasePrice : currency;

end ;
var ThisCar : CarRecord; II declare a variable of CarRecord type
var Car : array [l .. 100] of CarRecord; II declare an array of CarRecord type
ThisCar.EngineSize : = 2500; II assign va l ue to a field
Car[2] .EngineSize := 2500; II assign value to a field of 2nd car in array

26.03 File processing
In Chapter 13 (Section 13.09) we used text files to store and read li nes of text. Text files only
allow us to write strings in a serial or sequent ial manner. We can append strings to the end of
the file.

When we want to store records in a file, we create a binary file (see Chapter 16, Section 16.02).
We can store records serially or sequentia lly. We can also store records using direct access to
a random file. Table 26 .01 lists the operations we use for processing files.

Random file: a file that stores records at specific addresses that can be accessed directly

Structured English Pseudocode

Create a file and open it for writing OPENFILE <filename > FOR WRITE

Open a fil e for read ing OPENFILE <filename > FOR READ

Open a file for random access OPENFILE <fil ename> FOR RANDOM

Close a file CLOSEFILE <fi l ename>

Write a record to a file PUTRECORD <filename>, <identifier>

Read a record from a file GETRECORD <filename>, <identifi er>

Move to a specific disk address within the file SEEK <fi l e name >, <address>

Test for end of fil e EOF (< filename>)

Table 26.01 Operations for file processing

Sequential file processing
If we have an array of records, we may want to store the records on disk before the program
quits, so that we don't lose the data. We can open a binary fi le and write one record after
another to the file. We can then read the records back into the array when the program is run
again.

•

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 26.02

Processing records in a sequential file
Table 26.02 shows the pseudocode for storing the car reco rds from Wo rked Example 26.01
in a sequential file and accessing them.

Saving contents of array Restoring contents of array
OPENFILE "CarFile" FOR WRITE OPENFILE "CarFile" FOR READ
FOR i <- 1 TO MaxRecords FOR i <- 1 TO MaxRecords

PUT RECORD "CarFi le", Car[i] GETRECORD "CarFile", Car[i]
END FOR END FOR
CLOSEFILE "CarFile" CLOSEFILE "CarFile"

Table 26.02 Pseudocode for processing records

Processing records sequentially in Python, VB.NET and Pasca_l

Python

VB.NET

i mport pickle # this library is requi red to create b inary f i les
ThisCar = CarRecord()
Car = [ThisCar for i in range (100)]

CarFile = open ('Cars.DAT', 'wb ') # open f i le f o r binary wri te

for i in range (lOO) : # loop for each array eleme nt
pickle.dump (Car[i], CarFile) # write a whole record to the b i nary file

CarFile.close() # close file

CarFile = open ('Cars.DAT','rb') # open file for binary read

Car= [] # start with empty list
while True: # check for end of file

Car.append (pickle.load(CarFile)) # append record from file to end of l i st

CarFile. close ()

Optio n Explicit On
I mports System.IO

Dim CarFileWriter As BinaryWriter
Dim CarFileReader As BinaryReader
Dim CarFi le As FileStream
Dim Car(lOO) As CarRecord ' dec lar e an array of CarRecord type

' link file to the fi l e name
CarFile = New FileStream("CarFi le. DAT" , F i leMode. Create)
' create a new file and open it for writing
CarFileWriter = Ne w BinaryWriter (CarFile)

r
I

I

Chapter 26: Further Programming

For i = 1 To 100 ' loop for each array element
CarFileWriter. Write (Car (i) .VehicleID) ' write a f ield to the binary file
CarFileWriter.Write (Car (i) .Registration)
CarFileWriter.Write (Car(i) .DateOfRegistration)
CarFileWriter. Wri te (Car (i) .EngineSize)
CarFileWriter. Write (Car (i) . PurchasePrice)

Next

CarFileWriter. Close ()
CarFile. Close ()

' close file channel

'link fi l e to the filename
CarFile = New FileStream ("CarFile .DAT", FileMode .Open)
' create a new file and open it for reading
CarFileReader = New Bi naryReader (CarFile)

' loop until end of binary file reached
Do While CarFile.Position < CarFile.Length

' r ead fields from the binary file
Car (i) .VehicleID = CarFileReader.ReadString ()
Car (i) .Registration = CarFileReader.ReadString ()
Car(i) .DateOfRegistrat i on = CarFileReader.ReadString()
Car (i). EngineSize = CarFileReader. Readint32 ()
Car (i) . PurchasePrice = CarFileReader .ReadDecimal ()
i = i + 1

Loop

CarFileReader. Close () 'close fi l e channel

CarFile .Close()

Pascal var
CarFile : file of CarRecord; II declare a file channel to take car records
Car : array [l .. 100) of CarRecord; II declare an array of CarRecord type

AssignFi l e(CarFile, 'CarFi le.DAT'); II link the file channel to the filename
Rewrite(CarFile); II create a new file and open it for writing

for i . - 1 to 100 do II loop for each array element
Write(CarFile, Car[i)); II write a whole record to the binary file

CloseFile(CarFile); II close file channel

AssignFile (CarFile, ' CarFile .DAT'); I I link the file channel to the filename
Reset(CarFi l e); II open file for reading

i . - 1;

while not Eof(CarFile) do II check for end of file
begin

Read(CarFile, Car [i)); II read a record from file into record variable
i . - i + l ;

end ;

CloseFile(CarFil e); II close file channel

•

Cambridge International AS and A level Computer Science

TASK26.0l
1 Write a complete program to save several car records to a sequential file.
2 Write another program to read the file and display the contents on screen.

Random-access file processing
Instead of stori ng records in an array, we may want to store each record in a binary f ile as t he
record is created . We can then update the record in situ (read it, cha nge it and save it back
in the same place). Note t hat this only works for fixed- lengt h records. We can use a hashing
function to calcu late an address fro m the record key and store the record at t he calculated
add ress in the file (t his is sim ilar to using a hash table, see Chapter 23, Section 23.08). Just as
with a hash table, collis ions may occur an d records need to be stored in the next free record
space.

WORKED EXAMPLE 26.03

Processing records in a random-access file
Table 26.03 shows the pseudocode fo r storing a car record from Worked Example _26.01
in a ran dom-access fi le and accessing it.

Saving a record Retrieving a record
OPENFILE "Ca rFile " FOR RANDOM OPENFILE "CarFile" FOR RANDOM
Address Hash (ThisCar.VehicleID) Address Hash (ThisCar.VehicleID)
SEEK "CarFile", Address SEEK "CarFile", Address
PUTRECORD "CarFile", ThisCar GETRECORD "CarFi le" , ThisCar
CLOSEFILE "CarFi le" CLOSEFILE "CarFile"

Table 26.03 Pseu docode for random-access file operations

SEEK moves a pointer to t he given record address. The PUTRECORD and GETRECORD
co mmands access th e record at that add ress. After t he comma nd has been executed t he
pointer poin t s to t he next record in the file.

Processing random-access records in Python, VB.NET and Pascal
Python import pickle # this library is required to create b i nary f i les

This Car = CarRecord ()

CarFi l e = open (1 Cars.DAT' , 1 rb+ 1) # open file for b i nar y read and write
Address = hash (ThisCar .VehicleID)
CarFileseek (Address)
pickle.dump (ThisCar, CarFile) # write a whole record to the b i nary file

CarFile.clo se () # close file

CarFile = o p e n ('Cars.DAT','rb') # open file for binary read

J
•
'
'

I

VB.NET

Address= hash(VehicleID)
CarFile. seek (Address)

Chapter 26: Further Programming

ThisCar = pickle.load(CarFile) # load record from fi l e

CarFile . close()

In Python, the hash fu nct ion needs to allow for the record size in bytes. For example, if the record
size is 58 bytes, then the second record slot starts at position 59. Then th record slot starts at
position (n - 1) x 58 + 1.
Dim CarFileWriter As Bi naryWriter
Dim CarFileReader As BinaryReader
Dim CarFile As Fi l eStream
Dim ThisCar, MyCar As CarRecord
' link the file to the f i lename
CarFile = New FileStream ("CarFile.DAT", FileMode .Open)

' create a new file and open it for writing
CarFileWriter = New BinaryWriter (CarFile)
' get starting address for record
CarFile. Position = Hash (This Car .VehicleID)

' write fields to the binar y f ile

CarFileWriter. Write (ThisCar.VehicleID)
CarFileWriter.Write(ThisCar.Registration)
CarFileWriter.Write(ThisCar.DateOfRegistration)
CarFileWriter.Write(ThisCar.EngineSize)
CarFileWriter.Write(ThisCar.PurchasePrice)

CarFileWriter.Close() 'close fi l e channel
CarFile. Close ()

CarFile = New Fi leStream("CarFile.DAT" , FileMode .Open)
CarFileReader = New BinaryReader (CarFile)
' get start i ng address for record
CarFile.Position = Hash(VehicleID)

' r ead f ields from the binary f ile
MyCar .VehicleID = CarFileReader. ReadString ()
MyCar.Registration = CarFileReader.ReadString()
MyCar.DateOfRegistration = CarFileReader.ReadString()
MyCar. EngineSize = CarFileReader. Readint32 ()
MyCar.PurchasePrice = CarFileReader.ReadDecimal()

CarFileReader. Close ()
Car File. Close()

'close file channel

In VB. NET, the hash function needs to allow for the record size in bytes. For example, if the reco rd
size is 58 bytes, then the second record slot starts at position 59. The n th record slot starts at
position (n - 1) x 58 + 1.

•

Cambridge International AS and A level Computer Science

Pascal var

TASK26.02

CarFile
This Car

file of CarRecord; II d e clare a file c hannel to take ca r records
CarRecord; II declare a variable of car record type

AssignFile(CarFile, 'CarFi le.DAT'); II link the file channel to the filename
Reset(CarFile); II open file for updating (file must already exist)

Address : = Hash(ThisCar.VehicleID);
Seek(CarFile, Address);
Write(CarFile, ThisCar); II write a whole record to the binary file

CloseFile (CarFile); II c l ose file channel
AssignFile(CarFile, 1 Car File .DAT 1) ; II link t he fil e channel to the filename
Reset(CarFile) ; II open file for reading

Address := Hash(ThisCar .VehicleID);
Seek(CarFile, Address);
Read (CarFile, ThisCar); II read a record from file into record vari able
CloseFile(CarFile); II close file channel

In Pascal, the file is of the given record type and the addresses for the records are slot addresses
where each slot has the required number of bytes to accommodate the record.

Write a complete program to save severa l car records to a random -access file. Write another
program to find a record in the random-access file using the record key. Display the record
data on screen .

26.04 Exception handling
Run-time errors can occur for many reasons. Some examples are division by zero, invalid
array index or try ing to open a non-existent file. Run-time errors are called 'exceptions'. They
can be handled (resolved) wi th an error subroutine (known as an 'exception hand ler'), rather
than let the program crash .

Using pseudocode, the error-hand li ng structure is:

TRY
<statementsA>

EXCEPT
<statementsB>

ENDTRY

Any run-time error that occurs during the execution of <statementsA> is caught and handled
by executi ng <statementsB >. There can be more than one EXCEPT block, each handling a
diffe rent type of exception . Sometimes a FINALLY block follows the exception handlers. The
statements in this block w ill be executed regardless of whether there was an exception or
not.

VB.NET and Delph i are designed to treat exceptions as abnormal and unpredictable
erroneous situations. Python is designed to use exception hand ling as flow-control
struct ures. You may find you need to include exception handling in the code for Worked
Example 26.02. Otherwise the end of fi le is encountered and the program crashes.

I
' Chapter 26: Further Programming

!
I

.---

Python distinguishes between different types of exception, such as:

• IOError: for example, a file cannot be opened
• ImportError: Python cannot find the module

• ValueError: an argument has an inappropriate value
Keyboardinterrupt: the user presses Ctrl+C or Ctrl+Del
EOFError: a file-read meets an end-of-file condition
ZeroDivisionError.

WORKED EXAMPLE 26.04

Here is a simple example of exception handling. Asking the user to key in an integer could
result in a non-integer input. This should not crash the progra m.

Python

VB.NET

Pascal

TASK26.03

NumberString = input ("enter an integer : ")
try :

n = int(NumberString)
print(n)

except:
print("This was not an integer")

NumberString = Console .ReadLine()
Try

n = Int (NumberString)
Console .WriteLine(n)

Catch
Console .Wri teLine ("this was not an integer")

End Try
The integrated debugger must be switched off for exception handl ing to work. In
the Tools men u, select Debugger Opt ions and ensure the Integrated Debugger
opt ion is not ticked.

ReadLn(NumberString);
try

n . - StrToint (NumberString);
except

WriteLn('thi s was not an integer ');
end;

Add exception-handling code to your programs for Task 26.01 or Task 26.02. Test your code
handles exceptions without the program crashing.

26.05 Programming environments
Programming environments fo r Python, VB.NET and Pasca l were introduced in Chapter 15.
Section 15.02 covered the features found in a typ ical integrated development environment
(IDE). Section 15.04 described the use of a debugger.

Chapter 7 (Section 7.05) discussed t he operation of compilers and interpreters and their
relat ive merits. In theory, t he ideal situation would be to use an interpreter while developing

•

Cambridge International AS and A level Computer Science

a program, because partial programs can be tested and no t ime is wasted wait ing fo r
co mpilation. When the program is fi nished t he compiled object code could be dist ributed
without having to divu lge the source code. Compi led code also runs faster than a program
executed using an interpreter. Compi led code will not contain any syntax errors. Unless every
line of an interpreted program has been executed, it is possib le that there are syntax errors
still present in the source code.

In practice, this choice rare ly ex ists. Pascal programs can only be executed once compi led.
Simi la rly, VB. NET has to be compiled befo re it ca n be executed . Python programs, on the
other hand, run under an interpreter. Internal ly, Pyt hon source code is always translated
into a bytecode representat ion and t his bytecode is then executed by t he Pyth on virtual
mach ine.

• Programming paradigms include low-level, imperative, procedural, object-oriented and declarative.

• Records are user-defined types.

• Records can be stored in files in a serial, sequential or random (d irect access) manner.

• Exception handling is advisable to avoid program crashes due to run-time errors.

• Pascal and VB.NET programs must be compiled before they can be executed.

• Python programs are executed using an interpreter (the Python virtual machine) .

Exam-style Questions
1 A company stores details about their customers in a binary fi le of records.

The key fi eld of a customer record is the customer ID (a number between 100001 and 999999).

The name of the customer is stored in a 30-cha racter field .

The customer's telephone number is stored in a 14-cha racter fi eld .

The tota l value of orders so far is stored in a currency (decimal) fi eld.

a i Declare t he record data type customerRec ord required to store the data. Write program code.

ii Declare an array customerData [O : 999] to store customer reco rds.

[6]

[2]

i

I

Chapter 26: Further Programming

b The array customerData is to be used as a hash tab le to store customer records.
The function Hash is used to calculate the address where a record is to be stored .

FUNCTION Hash(CustomerID : INTEGER) RETURNS INTEGER
Address~ CustomerID MOD 1000
RETURN Address

END FUNCTION

Write program code to implement the function Hash.

ii Write a procedure AddRecord(Customer : CustomerRecord) to add a customer record to the
hash table CustomerData. Your solution should handle collisions by using the next available
slot in the hash table.

iii Write a fu nction FindRecord (Customerrn : INTEGER) that returns the index of the hash table
slot where the record for the customer with customerrn is stored.

c Before the program stops, t he hash t able records must be stored in a sequential file, so that the records can
be restored to the array when the program is re-entered.

Write program code to store the records of the array customerData sequentially into a binary file
CustomerData.DAT

d Instead of using a hash tab le, the company decide they want to store customer records
in a di rect-access binary file.

Explain what changes need to be made to your program to do th is.

2 A program allows a user to enter a f ilename fo r accessing a data fil e. If the user types in a filename that does
not exist, the program crashes. Write program code that includes exception handling to replace the following
pseudocode:

OUTPUT "Which file do you want to use? "
INPUT FileName

OPENFILE FileName FOR RANDOM

[3]

(7]

[7]

[6]

[6]

[SJ

I

Learning objectives
By the end of this chapter you should be able to:

• solve a problem by designing appropriate classes • write code that demonstrates the use of classes,
inheritance, polymorphism and containment
(aggregation).

,- -

' Chapter 27: Object-oriented Programming (OOP)

27.01 Concept of OOP
Chapters 14 and 26 covered programming using the procedural aspect of our programming
languages. Procedural programming groups related programming statements into
subroutines. Re lated data items are grouped together into record data structures. To use a
record va riable, we first define a record type. Then we declare variables of that record type.

OOP goes one step further and groups together the record data structure and the
subroutines that operate on the data items in this data structure. Such a group is called
an 'object'. The feature of data being combined with the subroutines acting on the data is
known as encapsulation.

To use an object, we first define an object type. An object type is called a class.

Encapsulation: combining data and subroutines into a class

Class: a type that combines a record with the methods that operate on the properties in the record

Example of using a record
A car manufacturer and seller wants to store details about cars. These details can be stored
in a record structure (see Chapter 16, Section 16.01 and Chapter 26, Section 26.02):

TYPE CarRecord
DECLARE VehicleID
DECLARE Registration
DECLARE DateOfRegistration
DECLARE EngineSize
DECLARE PurchasePrice

END TYPE

STRING
STRING
DATE
INTEGER
CURRENCY

We can write program code to access and assign values to the fields of this record .
For example:

PROCEDURE UpdateRegistration(BYREF ThisCar : CarRecord,
BYVAL NewRegistration)

ThisCar.Registration NewRegistration
END PROCEDURE

We can call this procedure from anywhere in our program. This seems a well-regu lated way
of operating on the data record . However, we can also access the record fields directly from
anywhere within the scope of ThisCar:

ThisCar.EngineSize 2500

-~'''-~-

•

_-.· _ .. _. _::,.

Cambridge International AS and A level Computer Science

Classes in OOP
The idea behind classes in OOP is that attributes can only be accessed through methods
written as part of the class definition and validation can be part of these methods. The
direct path to the data is unavailable. Attributes are referred to as 'private'. The methods to
access the data are made available to programmers, so these are 'public'.
Classes are templates for objects. When a class type has been defined it can be used to
create one or more objects of this class type.

Attributes: the data items of a class

Methods: the subroutines of a class

Object: an instance of a class

The first stage of writing an object-oriented program to solve a problem is to design the
classes. This is part of object-oriented design. From this design, a pr9gram can be written
using an object-oriented programming (OOP) language.

The programming languages the syllabus prescribes can be used for OOP: Python 3, VB.NET
and Delphi/ObjectPascal.

Advantages of OOP over procedural languages
The advantage of OOP is that it produces robust code. The attributes can only be
manipulated using methods provided by the class definition. This means the attributes are
protected from accidental changes. Classes provided in module libraries are thorough ly
tested . If you use tried and tested building blocks to construct your program, you are less
likely to introduce bugs than when you write code from scratch.

27.02 Designing classes and objects
When designing a class, we need to think about the attributes we want to store. We also
need to think about the methods we need to access the data and assign values to the data
of an object. A data type is a blueprint when declaring a variab le of that data type. A class
definition is a blueprint when declaring an object of that class. Creating a new object is
known as 'instantiation'.

Any data that is held about an object must be accessible, otherwise there is no point in
storing it. We therefore need methods to access each one of these attributes. These methods
are usually referred to as getters. They get an attribute of the object.

When we first set up an object of a particular class, we use a constructor. A constructor
instantiates the object and assigns initial values to the attributes.

Any properties that might be updated after instantiation will need subroutines to update
their values. These are referred to as setters. Some properties get set only at instantiation.
These don't need setters. This makes an object more robust, because you cannot change
properties that were not designed to be changed.

Constructor: a special type of method that is called to create a new object and initialise its attributes

--------- -- -- ---- - ---

I
Chapter 27: Object-oriented Programming (OOP)

WORKED EXAMPLE 27.01

Creating a class

Consider the car data from Section 27.01.

When a ca r is manufactu red it is given a unique vehicle ID that will remain t he same throughout t he car's existence. The
engine size of the car is fixed at the time of manufacture. The registration ID will be given to the car when the car is sold .

In our program, when a car is manufactured, we want to create a new car object. We need to instantiate it using t he
constructor. Any attributes that are already known at the time of instantiation can be set with the constructor. In our
example, v e h i c l e ID and Engi nesize can be set by the constructor. The other attributes are assigned values at the time
of pu rchase and registration. So we need setters for them. The identifier table for the car class is shown in Table 27.01.

Identifier Description
Car Class identifier
Vehicle ID Unique ID assigned at time of manufacture
Registration Unique ID assigned after time of purchase
DateOfRegi s t rat i on Date of registration
EngineSize Engine size assigned at t ime of manufacture
PurchasePrice Purchase price assigned at time of purchase

Constru c t or () Method to create a Car object and set properties
assigned at manufacture

SetPurch asePrice () Method to assign purchase price at time of purchase
SetRegi strat ion() Method to assign registrat ion ID
SetDateOfRegist ration () Method to assign date of registration
GetVehicleID () Met hod to access vehicle ID
GetRegi stration() Method to access registration ID
GetDateOfRegi stration() Method to access date of registration
GetEngineSi ze () Method to access engine size
GetPurchasePrice () Method to access purchase price

Table 27.01 Identifier t able fo r car class

We can represent this information as a class diagram in Figure 27.01.

Attributes

Methods

Vehicle ID

Reg i stration

Car

STRING

STRING

DateOfRegistration DATE

Eng i neSize INTEGER

Purchase Price CURRENCY

Constructor ()

SetPurchasePrice()

SetRegi stration()

SetDateOfRegistration()

GetVehicleID ()

GetRegistration()

GetDateOfRegistration()

GetEngineSize ()

GetPurchasePrice()

Figure 27.01 Car class diagram

Attributes must be
decla red as Private

Methods must be
declared as Public

•

Cambridge International AS and A level Computer Science

27.03 Writing object-oriented code
Declaring a class
Attributes should always be declared as 'Private'. This means they can only be accessed
through the class methods. So that the methods can be called from the ma in program, they
have to be declared as 'Public'. There are other modifiers (such as 'Protected'), bu t they are
beyond the scope of this book.

The syntax for declaring classes is quite different for the different programming languages. We
will look at the three chosen languages. You are expected to write programs in one of these.

Python and VB.NET include the method body within the class declaration.

Declaring a class in Python
The code below shows how a constructor is declared in Python .

Python

Two underscore characters
are required before and after
init to define the constructor

Self is the first parameter
in the parameter list for
every method

def (self, n, e): # constructor
self. Veh i cle ID : n
self. _Registration : 1111

self. DateOfRegistration
self. _EngineSize : e
self. PurchasePrice : 0.00

def SetPurchasePrice(sel f, p):
self. PurchasePrice: p

def SetRegistration(self, r):
self._Registration: r

None

def SetDateOfRegistration(self , d):
self._DateOfRegistration d

def GetVehicleID(self):
return (self. _ Vehic leID)

def GetRegistration(self):
return (self._Registration)

def GetDateOfRegistration(self):
return (self . _DateOfRegistration)

def GetEngineSize (self) :
return (self._EngineSize)

def GetPurchasePrice (sel f):
return (self. PurchasePrice)

Two underscore characters
before an attribute name
signify it is private

. - -

· Chapter 27: Object-oriented Programming (OOP)

Declaring a class in VB.NET
The code below shows how properties and the const ructor are declared in VB.NET

VB.NET Class Car

Each attribute must be
preceded by Private

Private VehicleID As String
Private Regis t ratio n As String _ II II

Private DateOfRegis t ration As Date
Private EngineSize As Integer

#1 / 1 / 1 900#

Private Purchase Pri c e As De cimal = 0. 0 Every public method header
must st art with Public

Publ i c Sub New(ByVal n As String, ByVal e As String)
VehicleID = n
EngineSize = e

End Sub
The constructor always
has identifier New

Publ i c Sub SetPurchasePrice (ByVal p As Dec i mal)
PurchasePrice = p

End Sub

Public Sub SetRegistration (ByVal r As String)
Regist r a t i on= r

End Sub

Publ i c Sub SetDateOfRegistration (ByVa l d As Date)
DateOfRegistrat ion = d

End Sub

Pub l ic Funct i on GetVehicleID() As String
Retur n (Vehicle I D)

End Funct i on

Public Function GetRegistration() As Stri ng
Return (Registration)

End Funct i on

Publ i c Funct i on GetDateOfRegistration () As Date
Re turn (Dat eOfRegis t rati on)

End Function

Publ i c Funct i on Ge t EngineSize() As Integer
Return (EngineSize)

End Function

Public Function GetPurchasePri c e () As Dec i mal
Return (Pu rchasePric e)

End Function

End Class

I

Cambridge International AS and A level Computer Science

Declaring a class in Pascal
Pasca l includes only the headers of the functions and procedures wi thin the class defin ition.
The full method code follows the class definition. Note that the class name is included when
the met hod is coded after the class declaration.

The code below shows how properties and the constructor are declared in Pascal.

Pascal

This keyword shows
that a class is a type

Car= class
private

All the following
declarations are private

VehicleID string;
Registrat i on : string;
DateOfRegistration : TDateTime;
EngineSize : integer;
PurchasePrice : currency;

public

Ali"the following
declarations are public

constructor Create(n : string; e : integer) ;
procedure SetPurchasePrice(p : currency);
procedure SetRegistration(r : string);
procedure SetDateOfRegistration(d : TDateTime);
function GetVehic leID : string;

This ends the
class declaration

function GetRegistration : string;
function GetDateOfRegistration: TDateTime;
function GetEngineSize : integer;
function GetPurchasePrice : currency;

constructor Car. Create (n string; e : integer);
begin

The constructor keyword indicates a
special method for instantiating an object

VehicleID := n;
EngineSize := e;
Registration := 1 1 ;

DateOfRegistration .- O;
PurchasePrice . - O;

Convention is to name
the constructor Create

end;
The class identifier precedes
the method identifier

procedure Car.SetPurchasePrice(p : currency) ;
begin

Purc hasePri ce .- p;
end;

procedure Car.SetRegistration(r
begin

Registration .- r;
end;

string);

Chapter 27: Object-oriented Programming (OOP)

procedure Car.SetDateOfRegistration(d
begin

DateOfRegistration .- d;
end;

function Car.GetVehicleID : string;
begin

GetVehicleID .- Vehicle!D;
end;

function Car.GetRegistration : string;
begin

GetRegistration . - Registration;
end;

TDateTime} ;

function Car.GetDateOfRegistration : TDateTime;
begin

GetDateOfRegistration . - DateOfRegistration;
end;

function Car.GetEngineSize : integer;
begin

GetEngineSize . - EngineSize;
end;

function Car.GetPurchasePrice : currency;
begin

GetPurchasePrice .-
end;

PurchasePrice;

Instantiating a class
To use an object of a class type in a program the object must first be instantiated . This
means the memory space must be reserved to store the attributes.
The following code instantiates an object Thi scar of class car.

Python ThisCar = Car("ABC1 23 4" , 2500)

VB.NET Dim ThisCar As New Car("ABC1234" , 2500)

Pascal var ThisCar : Car;
ThisCar .- Car.Create('ABC1234', 2500);

Using a method
To call a method in program code, the object identifier is fol lowed by the method identifier
and the parameter list.
The following code sets the purchase price for an object Thiscar of class car.

Python This Car. SetPurchasePrice (12000)

VB.NET ThisCar.SetPurchasePrice(l2000}

Pascal ThisCar. SetPurchasePrice (12000);

The following code gets and prints the vehicle ID for an object Thiscar of class car.

Python print (ThisCar.GetVehicleID (}}

VB.NET Console . WriteLine (ThisCar.GetVehicleID (}}

Pascal WriteLn(ThisCar .GetVehicleID};

•

• I

Cambridge International AS and A level Computer Science

TASK27.0l
1 Copy the car class definition into your program editor and write a simple program to test

that each method works.
2 A business wants to store data about companies they supply. The data to be stored

includes: company name, email address, date of last contact.
(a) Design a class Company and draw a class diagram.
(b) Write program code to declare the class. Company name and email address are to

be set by the constructor and wil l never be changed.
(c) Instantiate one object of this class and test your class code works.

27.04 Inheritance
The advantage of OOP is that we can design a class (a base class or a superclass) and then
derive further classes (subclasses) from t his base class. This means t hat we write the code for
the base class on ly once and the subclasses make use of the attributes and methods of the
base class, as wel l as having their own attribu tes and methods. This is known as inheritance
and can be represen ted by an inheritance diagram (Figure 27.02) .

r
I I

(a) (b)
Figure 27.02 Inheritance diagram (a) standard and (b) alternative

Inheritance: a ll attributes and met hods of the base class are copied to the subclass

f

r ,..
I

r

I
r
i r

WORKED EXAMPLE 27.02

Implementing a library system
Consider the following problem:

• A college library has items for loan.

• The items are currently books and CDs.

• Items can be borrowed for three weeks.

Chapter 27: Object-oriented Programming (OOP)

• If a book is on loan, it can be requested by another borrower.

Table 27.02 shows the information to be stored.

Library item
Book CD

Title of book* Title of CD*
Author of book* Artist of CD*
Unique libra ry reference number* Unique li brary reference number*
Whether it is on loan* Whether it is on loan*
The date the book is due for return* The date the CD is due for return*
Whether the book is requested by another The t ype of music on the CD (genre)
borrower

Table 27.02 Library system information

The information to be stored about books and CDs needs further analysis. Note that we could
have a variable Title, which stores the book t itle or the CD title, depending on wh ich type of
library item we are working with. There are further similarities (marked* in Table 27.02).

There are some items of data that are different for books and CDs. Books can be
requested by a borrower. For CDs, t he genre is to be stored.

We can define a class Libraryrtem and derive a Book class and a CD class from it. We can
draw the inheritance diagrams for the Libraryitem, Book and CD classes as in Figure 27.03.

Libraryitem

i
I I

Book CD

Figure 27.03 Inheritance diagram for Li brary Item, Book and CD classes

--- ---- - - ---

I

Cambridge International AS and A level Computer Science

Analysing the attributes and methods required for al l library items and those on ly
required for books and only for CDs, we arrive at the class diagram in Figure 27.04.

Attribute specific
to Book class

Methods specific
to Book class

Libraryltem

Title
Author Artist
ItemID
OnLoan
DueDat e

STRING
STRING
INTEGER
BOOLEAN
DATE

Constructor ()
GetTitle ()
GetAuthor_Artist()
GetitemID ()
GetOnLoan ()
GetDueDate ()
Borrowing ()
Returning ()
PrintDetails()

All library items have
these attributes

All library items have
-="'----' these methods

Book

IsRequested

CD Attribute specific
r-------------:7" to CD class

Constructor ()
GetisRequested()
SetisRequested ()

BOOLEAN Genre STRING

Constructor ()
GetGenre ()
SetGenre ()

Methods specific
to CD class

Figu re 27.04 Class diagram for Library Item, Book and CD

A base class that is never used to create objects directly is known as an abstract class.
Libraryitem is an abstract class.

Abstract class: a base class that is never used to create objects directly

-

Chapter 27: Object-oriented Programming (OOP)

Declaring a base class and derived classes (subclasses) in Python
The code below shows how a base class and its subclasses are declared in Python.

Python import datetime
class Library!tem:

The base class
definition

def init (self, t, a, i):
self. Title = t
self . Author Ar tist = a

ItemID = i
OnLoan = False

initial i ser me t hod

self.
self.
self. DueDate = datetime. date. today()

def GetTitle (self):
return (self. Title)

other Get methods go here

def Borrowing(self):
self. OnLoan = True
self . DueDate = self. DueDate + datetime.timedelta(weeks=3)

def Returning(self):
self. OnLoan = False

def PrintDetails (self):
prin t (self ._Title, '; ' self. Author Artist, '; end= '')
p rint (self. ItemID, '; ' , self._OnLoan, '; ' , self._DueDate)

class Book(Libraryitem): -====; A subclass definition I
def init (self, t, a, i): # i nitialiser method

Library!tem. init (self, t, a, i)
self._IsRequested = False
self._ RequestedBy = O This statement calls the

def GetisRequested(self): constructor for the base class
return (self. IsRequested)

def SetisRequested(self):
self. IsRequested = True

class CD(Libraryrtem):
def init (self, t, a, i): # i n i t i aliser method

Library!tem . init (self, t, a, i)
self. Genre= ""

def GetGenre (sel f):
return (self._Genre)

def SetGenre (self, g):
self. Genre= g

•

Cambridge International AS and A level Computer Science

Declaring a base class and derived classes (subclasses) in VB.NET
The code below shows how a base class and its subclasses are declared in VB.NET.

VB.NET

Private Author_Artis t As String
Private ItemI D As Integer
Private OnLoan As Boolean = False
Private DueDate As Date = Today

Sub Create(ByVal t As String, ByVal a As String , ByVal i As I nteger)
Ti tle = t
Aut hor Art i st = a
I temID = i

End Sub

Publ i c Function Get Title() As String.
Re t urn (Tit l e)

End Function

' other Ge t methods go here

Publ i c Sub Borrowi ng ()
OnLoan = True
Due Date = DateAdd (Dateinterval .Day, 21, Today ()) ' 3 wee ks from today

End Sub

Public Sub Returning ()
OnLoan = False

End Sub

Sub Pr intDet a il s ()
Cons o l e .Wri teLine(Tit l e & 11 ; 11 & I temI D & 11 ; 11 & OnLoan & 11

;
11 & Du eDate)

End Sub
End Class A subclass definition The Inherits statement is

the fi rst statement of a Cl ass Book
subclass definition Inherits Lib r a r yitem

Pri vat e IsReque ste d As Boo lean= False

Publ i c Function Get i sRequ ested() As Boolean
Return (I sRequ ested)

End Function

Public Sub SetisRequested()
I sRe q uest e d = True

End Sub
End Cl ass

t

r r

t

1
t

f
l

Class CD
Inherits Libraryitem
Private Genre As String

Chapter 27: Object-oriented Programming (OOP)

Public Function GetGenre() As String
Return (Genre)

End Function

Public Sub SetGenre(ByVal g As String)
Genre = g

End Sub
End Class

Declaring a base class and derived classes (subclasses) in Pascal
The code below shows how a base class and its subclasses are declared in Pascal.

Pascal type
Libraryitem

private
Title

class

STRING;

Base class
definition

Author Artist : STRING;
ItemID : INTEGER;
OnLoan : BOOLEAN;
DueDate : TDATETIME;

The keyword virtual allows a
subclass to redefine the constructor

public
constructor Create(t, a : STRING; i
function GetTitle : STRING;
function GetAuthor_Artist : STRING;
function GetitemID : INTEGER;
function GetOnLoan : BOOLEAN;
function GetDueDate : TDATETIME;

INTEGER); virtual;

procedure Borrowing;
procedure Returning;
procedure

end;

Subclass definition shows
the base class in brackets

Book= class (Libraryitem)
private

IsRequested : BOOLEAN;
public

constructor Create (t, a
function GetisRequested
procedure SetisRequested;

end;

CD= class (Lib raryitem)
private

Genre : STRING;
public

STRING; i
BOOLEAN;

constructor Create (t , a : STRING; i
function GetGenre : STRING;
procedure SetGenre (g : STRING);

end;

The keyword override shows
that the constructor is redefined

INTEGER); override;

INTEGER); override;

L

I

Cambridge International AS and A level Computer Science

I I implementation of methods

constructor Libraryltem.Create(t, a : STRING; i : INTEGER);
begin

Title .- t;
Author Artist .- a;
ItemID .- i;
OnLoan .- FALSE;
DueDate . - O;

end;

function Libraryitem.GetTitle : STRING;
begin

GetTitle .- Title;
end;

II other Get methods go here

procedure Library!tem.Borrowing;
begin

OnLoan . - TRUE;
DueDate .- Date() + 21;

end;

procedure Libraryltem.Returning;
begin

OnLoan .- FALSE;
end;

procedure Libraryltem.PrintDetails;
begin

Write(Title, '; ', ItemID, ' ; ' , OnLoan, '; ', DateToStr (DueDate))
end; I ..-,::::::::::: The subclass constructor
constructor
begin

Book.Create(t, a : STRING; i : INTEGER);

inherited Create(t, a,
IsRequested .- FALSE;

end;

i);

procedure Book.SetisRequested;
begin

IsRequested .- TRUE;
end;

This statements calls the
constructor for the base class

function Book.GetisRequested : BOOLEAN;
begin

GetisRequested .- IsRequested;
end;

I.

Chapter 27: Object-oriented Programming (OOP)

constructor CD.Create(t, a : STRING; i
begin

inherited Create(t, a, i);
Genre .- g;

end;

function CD.GetGenre : STRING;
begin

GetGenre .- Genre;
end;

procedure CD.SetGenre(g
begin

Genre .- g;
end;

STRING);

INTEGER);

Instantiating a subclass
Creating an object of a subclass is done in the same way as with any class (See Section 27.03).

Python ThisBook = Book(Title, Author, ItemID)

ThisCD = CD (Title, Artist, ItemID)

VB.NET Dim ThisBoo k As New Book ()

Dim ThisCD As New CD ()

Thi s Book.Create(Title, Author, ItemID)

Th isCD .Create(Title, Artist, ItemID)

Pascal var Th isBook : Book;

var ThisCD : CD;

ThisBook : = Book.Create (Title, Author, ItemID) ;

ThisCD .- CD.Create(Title, Artist, ItemID) ;

Using a method

Using an object created from a subclass is exactly the same as an object created from any class.

TASK27.02

Copy the class definitions for Libraryitem, Book and CD into your program editor. Write
the additional get methods. Write a simple program to test that each method works.

•

•

Cambridge International AS and A level Computer Science

TASK27.03

Write code to define a Borrower class as shown in the class diagram in Figure 27.05.

Borrower

BorrowerName : STRING

EmailAddress STRING

Borrower ID : INTEGER

ItemsOnLoan : INTEGER

Constructor ()

GetBorrowerName()

GetEmailAddress()

GetBorrowerID ()

GetitemsOnLoan ()

UpdateitemsOnLoan()

PrintDetails()

Figure 27.05 Borrower class diagram

The constructor should initialise ItemsOnLoan too. UpdateitemsOnLoa·no should
increment ItemsOnLoan by an integer passed as parameter.
Write a simple program to test the methods.

27.05 Polymorphism
Look at Worked Exam ple 27.02 and the code that implements it in Section 27.04. The
constructor method of the base class is redefined in the subclasses. The constructor
for the Book class calls the constructor of the Libraryitem class and also initialises
the IsRequested attribute. The constructor for the CD class calls the constructor of the
Libraryitem class and also initialises the Genre attribute.

The PrintDetails method is currently only defined in the base class. This means we
can only get information on the attributes that are part of the base class. To include the
additional attributes from the subclass, we need to decla re the method again . Although the
method in the subclass w ill have the same identifier as in the base class, the method wi ll
actually behave differently. This is known as polymorphism.

Polymorphism: the method behaves differently for different classes in the hierarchy

; Chapter 27: Object-oriented Programming (OOP)

The way the programming languages re -define a method varies.

The code show n here includes a call to the base class method wi t h t he same name. You can
completely re-write t he met hod if requ ired .

Python # def i ne the print details method for Book
def Print Details (self) :

pr i nt ("Book Details") This line calls the base class
Libraryitem .Prin tDeta ils(self) method with the same name.

pr i n t(self.~I s Requ es ted)

VB.NET I in base class, add the keyword Overridable
I to the method to be redefined
Ove rridableSub PrintDeta il s()

I in subclass , add the redefined method:
Public Overrides Sub PrintDetails ()

Console. WriteLine ("Book Deta i ls ") _J

MyBase .PrintDet a il s() This line calls the base class
Console. WriteLine(I s Reques t e d) I method wit h the same name.

End Sub

Pascal II in base class , add the keyword virtual
II t o method header to b e redefined:
procedur e Pr intDetai ls; virtual ;

II add the procedure header to the Book c l a s s
procedur e PrintDetai ls; ov erride ;

I I define the method
procedure Book.PrintDetail s;
begin

WriteLn ('Book Detail s ') ; I This line calls the base class I i nherited ; method with the same name.
WriteLn(IsRequeste d) ; -,

end ;

TASK27.04
Use your program code from Task 27.02. Re-define the Print Detail methods for the Bo ok
class and t he CD class. Test your code.

TASK27.05

Use your program code from Task 27.03. Add another attribute, BorrowerID, to the
Libraryite m class so that t he item being loaned can have the bo rrower recorded .
Change the Library i t em.Loanit em and Lib rary i tem. Returnitem methods, so that
Lo anite m.BorrowerID and Bo r rower. ItemsOnLoan are updated when a library item is
borrowed or returned .

TASK27.06

Use your code from Task 27.02 or Task 27.04. Add another attribute, Requ estedBy, to t he
Book class so that the borrower making the request can be recorded.
Change the method Book.RequestBook , so that Book.Request edBy is updated when a
book is req uested.

•

•

Cambridge International AS and A level Computer Science

TASK27.07

Use you r code from Task 27.06 to write the complete program to implement a simplified
library system.
Write code to provide the user wi th a menu to choose an option. An example of a menu that
would be suitable is shown in Figure 27.06.

1 - Add a new borrower
2 - Add a new book
3 - Add a new CD
4 - Borrow a b ook
5 - Return a book
6 - Borrow a CD
7 - Return a CD
8 - Re que st book
9 - Print a l l details
99 - Exit program
Enter y our menu cho i c e :

Figure 27.06 Library system menu

27.06 Garbage collection
When objects are created they occupy memory. When they are no longer needed, they should
be made to release t hat memory, so it ca n be re-used. If objects do not let go of memory,
we eventually end up wi t h no free memory when we t ry and run a program. This is known as
'memory leakage'.

How do our progra mming languages handle this?

Table 27.03 Garbage collection strategies

Python Memory management involves a private heap conta ining al l Python objects
and data structures. The management of the Python heap is performed by the
interpreter it se lf. The program mer does not need to do any housekeepi ng.

VB.N ET A garbage collector automat ically reclai ms memory from objects that are no
longer referred to by t he ru nning program.

Pascal When an object is no longer required, the programmer can use t he method
. Free. For example, Thi sBook . Free.

27.07 Containment (aggregation}
In Sect ion 27.04 we covered how a subclass inherits from a base class. This can be seen
as generalisation and specia lisat ion. The base class is t he most genera l class, subclasses
derived from this base class are more specialised .

We have other kinds of relationships between classes. Containment means t hat one class
conta ins other classes. For example, a car is made up of different pa rts and each pa rt wi ll be
an object based on a class. Th e wheels are objects of a different class to t he engine object.
The engine is also made up of different parts. Together, all these pa rts make up one big object.

-

Chapter 27: Object-oriented Programming (OOP)

Containment: a relationship in which one class has a component that is of another class type

The containment re lationship is shown in Figure 27.07.

Figure 27.07 Containment (aggregation) class diagram

WORKEDEXAMPLE2~03

Using containment
A college runs courses of up to 50 lessons. A cou rse may end wit h an· assessment. Object-
oriented programming is to be used to set up courses. The classes required are show n in
Figure 27.08.

Course

CourseTi t le
MaxStudents
NurnberOfLessons

: STRING
: INTEGER
: INTEGER

CourseLesson [l : 5 0] OF Lesson
CourseAssessrnent : Assessment

Constructor ()
AddLesson ()
AddAssessrnent()
OutputCourseDetails ()

Lesson Assessment

LessonTitle : STRING
DurationMinutes : INTEGER
RequiresLab : BOOLEAN

Constructor ()
OutputLessonDetails ()

Figure 27.08 Containment class diagram

AssessrnentTitle : STRING
MaxMarks : INTEGER

Constructor ()
OutputAssessrnentDetails()

•

•

Cambridge International AS and A level Computer Science

Assu ming that all at tribu tes for the Lesson and Assessment class are set by values
passed as pa rameters to th e const ructor, the code for dec laring the Lesson and
Assessment classes are st ra ightforward.

The code below shows how the cour se class is decla red.

Python Course class declaration
class Course:

def i n i t (self, t, m) : # sets up a new course
self . CourseTitle = t
self. MaxStudents = m
s elf . NumberOfLessons = 0
self . CourseLesson = []
self . CourseAssessment = Assessment

def AddLe sson(se l f, t , d, r):
self . NumberOfLessons = self. NumberOfLessons + 1
self . CourseLesson .append (Lesson (t, d, r))

def AddAss essment(self, t, m) :
self. CourseAssessment = Assessment(t, m)

def OutputCourseDetails (self) :
print (self . CourseTitle, "Maxi mum number : " self. _ MaxStudents)
for i i n range (self . _ NumberOfLessons) :

pri n t (se l f._ CourseLesson [i] .OutputLessonDetails ())

VB.NET Course class declaration
Class Course

Priv ate CourseTitle As Stri n g
Priv ate MaxStudents As Integer
Priv ate NumberOfLessons As Integ er = O
Priv ate CourseLesson (SO) As Lesson
Private CourseAssessment As Assessment

Public Sub Create(ByVal t As String, ByVal m As Integer)
Cour seTit l e t
MaxStudents = m

End Sub

Sub AddLesson(ByVal t As String, ByVal d As Integer, By Val r As Boolean)
NumberOfLe s sons = NumberOfLessons + 1
CourseLesson (NumberOfLessons) = New Lesson
CourseLesson (Numbe r OfLessons) .Create (t, d, r)

End Sub

Public Sub AddAssessment (ByVal t As String , ByVal m As Integer)
Course Assessment = New Assessment
CourseAssessment .Create(t, m)

End Sub

Publ ic Sub OutputCo u r seDetai ls (}
Console .WriteLine (Cour seTitle & "Ma ximum number : 11 & MaxStudents)
For i = 1 To NumberOf Lessons

Next
End Sub

End Class

CourseLesson(i) .OutputLessonDetails ()

--- --- -- - - - - - - -

- -

Pascal Course class declaration

Course= class
private

CourseTitle : string;
Ma x Students : integer;
Nu mberOfLessons : integer;
CourseLesson : [l. . 50] of Lesson;
CourseAssessment Array: Assessment;

public
constructor Create(t : string; m : integer);
procedure AddLesson(t : string; d : integer; r : boolean);
procedure AddAssessment(t : string; m : integer);
procedure OutputCourseDetails;

end;

II*** class implementation starts here*******

constructor Create(t : string; m : integer);
begin

CourseTitle .- t;
MaxStudents . - m;

end;

procedure Course.AddLesson(t : string; d
begin

integer; r boolean);

NumberOfLessons := NumberOfLessons + 1;
CourseLesson[NumberOfLessons] .- Lesson.Create(t, d, r);

end;

procedure Course.AddAssessment(t : string; m : integer);
begin

CourseAssessment . - Assessment .Create (t, m);
end;

procedure Course.OutputCourseDetails;
var i : integer;
begin

WriteLn(CourseTitle, Maximum number :
for i := 1 to NumberOfLessons do
WriteLn(CourseLesson[i] .LessonTitle);

end;

Here are simple test programs to check it works.

Python test program

def Main():

MaxStudents);

MyCourse = Course(" Computing", 10) # sets up a new course

MyCourse.AddAssessment("Programming", 100) # adds an assignment

add 3 lessons
MyCourse.AddLesson("Problem Solving" , 60, False)
MyCourse .AddLesson (" Programming" , 120, True)
MyCourse.AddLesson(" Theory", 60, False)

check it all works
MyCourse.OutputCourseDetails()

•

Cambridge International AS and A level Computer Science

VB.NET test program

Di m MyCourse As New Course
MyCourse.Create("Computing" , 10) ' sets up a new course

MyCourse.AddAssessment("Programming" , 100) ' adds an assessment

' add 3 lessons
MyCourse.AddLesson("Problem Solving" , 60, False)
MyCourse .AddLesson ("Programming" , 120, True)
MyCourse .AddLesson("Theory" , 60, False)

'check it all works
MyCourse.OutputCourseDetails()
Console. ReadLine ()

Pascal test program

var MyCourse : Course;
begin

MyCourse : = Course.Create('Computing', 10); II sets up a new course

MyCourse .AddAssessment ('Programming', 100); I I adds an assessment

I I add 3 lessons
MyCourse .AddLesson(' Problem Solving ', 60, FALSE);
MyCourse. AddLe sson ('Programming', 12 O, TRUE);
MyCourse.AddLesson('Theory' ,60, FALSE) ;

II check it all works
MyCourse .OutputCourse Details;
Re adLn;
MyCourse . Free; II free memory

end.

TASK27.08
Write the code required for the Lesson and Assessment classes. Add the code for the
Course class and test your program with the appropriate simple program from Worked
Example 27.03.

Chapter 27: Object-oriented Programming (OOP)

• A class has attributes (decla red as private) and methods (declared as public) that operate on the
attributes. This is known as encapsu lation.

• A class is a blueprint for creating objects.
• An object is an instance of a class.
• A constructor is a method that instantiates a new object.
• A class and its attributes and methods can be represented by a class diagram.
• Classes (subclasses) can inherit from another class (the base class or superclass). This relationship between a base

class and its subclasses can be represented using an inheritance diagram.
• A subclass has all the attributes and methods of its base class. It also has additional attributes and/or methods.
• Polymorphism describes the different behaviour of a subclass method with the same name as the base class

method.
• Containment is a relationsh ip between two classes where one class has a component that is of the

other class type. This can be represented using a containment diagram.

Exam-style Questions
1 A program is to be written using an object-oriented programming language. A bank account class is designed .

Two subclasses have been identified:

a

Pe rsonalAc count: the account holder pays a monthly fee and may overdraw the accou nt up to an agreed
overdraft limit

sav ingsAccount : the account holder must ma inta in a pos it ive balance and gets pa id inte rest on the balance at
an agreed interest rate.

Draw an inheritance diagram for these classes.

The design for the BankAccount class co nsists of:

attributes:
• Acc ountHolderName

• IBAN: International Ba nk Acco unt Number

methods
• CreateNewAccount

• SetAc c o untHo lderName

• GetAccoun t Ho lderName

• GetIBAN

b Write program code for the class def inition of the superclass BankAccount .

[3]

[5]

•

Cambridge International AS and A level Computer Science

C State the attributes and/or methods requi red for the subclass Person a l Account

ii State the attri butes and/or methods requi red for t he subclass savin gsAccount.

iii Name the fea ture of object-oriented program design that combines the attri bu tes and methods into
a class.

2 A bus compa ny in a town has two types of season ticket for t heir regu lar customers: pay-as-you-go and co ntract.
All season t icket holders have their name and email address recorded .

A pay-as-you-go t icket holder pays a chosen amount into their account. Each t ime the t icket holder makes a
jou rney on the bus, t he price of the fare is deducted from the amount held in the account. They can top up the amount
at anytime.

A contract ti cket holder pays a fixed fee per month. They ca n then make unlimited journeys on the bus.

The bus compa ny wants a program to process t he season t icket data. The program wi ll be written using an object-oriented
programmi ng language.

a Complete the class diagram showing the appropriate attributes ~nd methods.

SeasonTicketHo l der
PRI VATE
TicketHolderName: STRING

PUBLIC
Construc tor ()

Pav-As-You-Go-TicketHolder ContractTi cketHolder

Constructo r (Name: STRING,
ema i l : STRI NG , Fee : CURRENCY)

b Att ributes and methods can be declared as ei ther public or private.

Explain why the Seaso nTicketHol der attributes are declared as private.

ii Explain why the SeasonTicket Hol der methods have been decla red as publ ic.

[4]

[4]

[l]

[7]

[2]

[2]

• l

l
I • l

I
I

-

Chapter 27: Object-oriented Programming (OOP)

c Write program code to create a new instance of ContractTicketHolder with:

Identifier: NewCustomer

name: A. Smith

email address: xyz@abc.xx

monthly fee: $10

3 A queue abstract data type (ADT) is to be implemented using object-oriented programming.
Two classes have been ident ified : Queue and Node. The class diagrams
are as fol lows:

QueueClass NodeClass

Queue : ARRAY[O : 50] OF NodeClass Data : STRING

Head : INTEGER Pointer : INTEGER

Tai l : I NTEGER Cons tructor ()

Constructor () SetData(d : STRING)

JoinQueue(Newitem : NodeClass) SetPointer(x : INTEGER)

LeaveQueue() : STRING GetData () : STRING

GetPointer () : INTEGER

a State the relationship between these two classes.

b The NodeClass constructor is to

create a new node

in itialise the Data attribute to the empty stri ng

in itialise the Pointer attribu te to-1.

Write program code to define Nodeclass, includ ing t he get and set methods.

C The QueueClass constructor is to

create a new queue

initialise the Head and Tail attributes to -1 .

Write program code to define the constructor for Queuec lass.

d The JoinQueue method is to

create a new object, Node , of NodeClass

assign the value passed as parameter to t he Data attribute of Node

assign Node to the end of Queue.

Write program code to define the JoinQueue method.

[3]

[l]

[10l

[3]

[5]

•

Learning objectives
By the end of this chapter you should be able to:

• write low-level code that uses various address modes:
immediate, direct, ind irect, indexed and relative.

Chapter 28: Low-level Programming

28.01 Processor instruction set
For the purposes of this chapter, the inst ruction set used is given in Table 28.01.

Instruction
Label Op code Operand

Explanation

Data movement instructions
LDM #n Immediate addressing. Load the number n

tOACC
LDD <address> Direct addressing. Load the contents of the

location at t he given address to ACC
LDI <address > Indirect addressing. The address to be used

is at the given address. Load the contents
of this second add ress to Acc

LDX <address> Indexed addressing. Form the address
from <address>+ the contents of the
index register. Copy the contents of this
calculated address to Acc

LDR #n Immed iate add ress ing. Load the number n
to I X

STO <address> Store the con tents of Acc at the given
address

STX <address> Indexed addressing. Form the address from
<address> + the contents of the index • register. Copy th e contents from Acc to this
calculated address

STI <address> Indirect addressing. The address to be used
is at the given address. Store the contents
of ACC at this second address

Arithmetic operations
ADD <address> Add the contents of the given address to

theACC
INC <register> Add 1 to the contents of the register (Ace

or I X)
DEC <register > Subtract 1 from the contents of the register

(ACC or IX)
Comparison and jump instructions

JMP <address> Jump to the given address
CMP <address> Compare the contents of ACC wi th the

contents of <address >
CMP #n Compare the contents of Acc with number n
JPE <address> Following a compare instruction,jump to

<address > if the compa re was True
JPN <address> Following a compare instruction, j ump to

<address > if the compare was False

Cambridge International AS and A level Computer Science

Input/output instructions
IN Key in a character and store its ASCII va lue

inACC
OUT Output to the screen the character whose

ASCII value is stored in Ace
Bit manipu lation instructions

AND #n Bitwise AND operation of the contents of
Ace with the operand

AND <address> Bitwise AND operation of the contents of
ACC with the contents of <add re s s>

XOR #n Bitwise XOR operation of the contents of
Ace with the operand

XOR <address> Bitwise XOR operation of the contents of
ACC with the contents of <address>

OR #n Bitwise OR operation of the contents of Ace
with the operand

OR <address> Bitwise OR operation of the contents of Ace
with the contents of <address>

LSL #n Bits in Ace are shifted n places to the left.
Zeros are introduced on the right hand end

LSR #n Bits in Ace are shifted n places to the right.
Zeros are introduced on the left hand end

Other
END Return control to the operating system

<label>: <opcode> <operand> Labels an instruction
<label>: <data> Gives a symbolic address <label> to the

memory location with contents <data>

Tab le 28.01 Processor instruction set

In the assembly code in this chapter:

• Ace denotes the Accumulator.

IX denotes the Index Register.

denotes immediate addressing.
B denotes a binary number, e.g. Bo1001010.

& denotes a hexadecima l number, e.g. &4A.
• <address> can be an absolute address or a symbol ic address.
The data movement, arithmetic operation, comparison and jump instructions were
introduced in Chapter 6. The bit-wise manipu lation instructions were introduced in
Chapter 22.

To write usefu l programs, we need instructions for input and output. IN and OUT are
provided here to input and output single characters, represented interna lly by their
ASCII codes.

- -

Chapter 28: Low-level Programming

28.02 Symbolic addresses
A label is a symbolic name for the memory location that it represents . You can treat it like a
variable name. When writing low-level programs, we can give absolute addresses of memory
locations. This is very restrictive, especially if we want to change the program by adding extra
instructions. Writing low-level instructions using symbolic addresses (labels), allows us to
think at a higher level. The assembler will allocate absolute addresses during the assembly
process (see Chapter 7, Section 7.05).

28.03 Problem-solving and assembly-language programs
When writing a solution to a prob lem using low-level programming, we need to break down
the problem into simple steps that can be programmed using the instruction set available.

One approach is to think in terms of the basic constructs we discussed for high-level
languages. You can use the following examples as design patterns.

Assignment
Table 28.02 shows some examp les of assembly language assignments that match the
pseudocode.

Pseudocode Assembly code Explanation
examples examples
A<- 34 LDM #34 To store a value in a memory location, the value

STOA must first be generated in the accumulator
B <- B + 1 LDD B To increment the value stored at a memory

INC ACC location: first load the value into the accumulator,
STO B increment the value and then store the contents of

the accumulator back to the memory location
B <- B + A LDD B To calculate a va lue: load the first value from a

ADD A memory location into the accumulator, then add
STO B the value stored at the second memory location to

the accumulator and then store the contents of the
accumulator to the required memory location

A <- - A LDD A Load the value (assuming eight bits),
XOR #&FF XOR with 11111111 to produce the one's complement.
INC ACC Add 1 to get the two's complement.
STOA

Table 28.02 Using assignment inst ructions

TASK28.0l
Write assembly code instructions for this sequence of pseudocode statements:
A <- 2
B <- 10
C <- A + B
D <- A - B

•

Cambridge International AS and A level Computer Science

Selection
Table 28.03 shows some examples of assembly language selections that match the pseudocode.

Pseudocode Assembly code Explanation
examples examples
IF A= 0 LDD A Load the conten ts of the memory

THEN CMP #0 location to be tested. Compare it w ith
B B + 1 JPN ENDIF the required value (in this example 0).

ENDIF THEN: LDD B If the com parison result is false (A does
INC ACC not equa l O), a jump over the THEN part is
STO B requ ired; if the comparison result is t rue

ENDIF: ... (A = O) then the following instructions are
executed . For ease of understan di ng, the
labels THEN and END IF are used.

IF A= B LDD A Load the contents of A.
THEN XOR #&FF Get the negative equivalent.

OUTPUT 11 y 11 INC ACC
ELSE ADD B Add B.

OUTPUT "N " CMP #0 If the result is zero, A= B.
ENDIF JPN ELSE If the comparison resu lt is false (A does

THEN: LDM #89 not equa l B), j ump to the ELSE part; if

OUT the comparison result is t rue (A = B) the
instructions following the THEN label are

J MP ENDIF executed .
ELSE : LDM #78 Note that a jump over the ELSE part is

OUT required .
ENDIF : ...

Table 28.03 Using selection instructions

TASK28.02
Write assembly code instructions for th is sequence of pseudocode statements:
IF A<> 0

THEN
B A

ELSE
B B - 1

Repetition
Table 28.04 shows an example of repetit ion in assembly language that matches the
pseudocode.

Pseudocode Assembly code Exp lanation
examples examples
A = 0 LDM #0
REPEAT STOA Store the initial value of t he counter in A.

OUTPUT 11 * 11 LOOP : LDM #42 Generate the ASCII code fo r the cha ra cter 11 * 11

A<-- A + 1 OUT and output it.
UNTIL A = 5 LDD A Load the counter value,

INC ACC
increment the counter,
save it,

STOA test for fina l value.
CMP #5 If final value has not been reached, jump back
JPN LOOP to beginning of loop.

Table 28.04 Using repetition instructions

-- ------

, Chapter 28: Low-level Programming

TASK28.03
Write assembly code instructions for this sequence of pseudocode statements:
Number<- 1
Total<- O
Max<- 5
REPEAT

Total<- Total+ Number
Number<- Number+ 1

UNTIL Number= Max

Input/output
Table 28.05 shows some examples of input and output in assembly language that match the
pseudocode.

Pseudocode Assembly code Explanation
examples examples
INPUT A IN Store a character input from the keyboard at

STOA memory location A
OUTPUT B LDR # -1 To output a string of characters stored in

LOOP: INC IX consecutive locations, a loop and indexed
LDX B addressing are used.
OUT
CMP #13 The first time round the loop the index register is
JPN LOOP 0 and the character in memory location B will be

loaded into the accumulator and output to the
screen. Then a check is made for the end of the
string (the carriage return character with ASCI I
code 13). If it is not the end of the string, jump
back to the beginning of the loop.

To output a number, the number must first be
changed into its equivalent string and stored in
consecutive memory locations. Then the above
method can be used.

INPUT A LDR #-1 Store a string of characters input from the
LOOP: INC I X keyboard into consecutive memory locations

IN
STX A

st art ing from A.

CMP #13
JPN LOOP

Table 28.05 Using input and output instructions

TASK28.04
Write assembly code instruct ions for this sequence of pseudocode statements:
Count<- O
REPEAT

Count<- Count+ 1
INPUT Character

UNTIL Character= "N"

•

Cambridge International AS and A level Computer Science

TASK28.0S
Modify your assembly code instructions from Task 28.04 to implement this sequence of
pseudocode statements:
Cou n t <- 0
REPEAT

Count<- Count+ 1
I NPUT Char acter

UNTIL Character = "N"
OUTPUT Count

28.04 Absolute and relative addressing
An absolute address is the numeric address of a memory locat ion. A program using absolute
addresses cannot be loaded anywhere else in memory. Some assemblers produce relative
addresses, so that the program can be loaded anywhere in memory.

Re lative addresses are addresses relat ive to a base address, for example the first instruction
of the program. When the program is loaded into memory the base address is stored
in a base register BR. Instructions that refer to addresses then use t he va lue in the base
register, modified by the offset. For example, STO [BRJ + 10 will store the contents of the
accumu lator at the address calculated from (contents of the base register)+ 10.

Table 28.06 shows an example of instructions using symbolic, relative and absolute
add ressing.

Symbolic addressing Offset from Relative addressing (base address
base (START) stored in base register)

START: LDM #0 0 LDM #0
STOA 1 STO [BR) + 10

LOOP: LDM #42 2 LDM #42
OUT 3 OUT
LDD A 4 LDD [BR) + 10
INC ACC 5 INC ACC
STOA 6 STO [BR) + 10
CMP #5 7 CMP #5
J PN LOOP 8 JPN [BR] + 2
END 9 END

A: 0 10 0

Table 28.06 Symbolic, relative and absolute addressing

It is very important t hat, at the end of t he program, control is passed back to the operating
system. Otherwise the binary pattern held in the next memory location will be interpreted as an
instruction. If the content of that memory location does not correspond to a valid instruction, the
processor will crash. The instruction END signals the end of the program instructions.

28.05 Indirect addressing
Indi rect addressing is useful if the memory address to be used in an instruction is changed
during the execution of the program.

One example is when programming subroutines to which parameters are passed by
reference (this is beyond the scope of this book).

Anot her use of ind irect addressing is for a pointer variable.

Absolute addressing

100 LDM #0
201 STO 210
202 LDM #42
203 OUT
204 LDD 210
205 INC ACC
206 STO 210
207 CMP #5
208 JPN 202
209 END
210 0

------------- -

Chapter 28: Low-level Programming
I

WORKED EXAMPLE 28.01

Writing a program for a simple queue

At the top level, we can write the problem using structured English:

Add a charact e r to the queue:

1 Store t h e contents of the accumulator in the memory l ocation
pointed to by the tail pointer.

2 Increment the tail pointer.

Remove a character from the queue:

1 Load conte nts of t he memory l oca t i on at t he head of t he queu e .

2 Increment the head pointer .

Table 28.07 shows an example of instructions that implement the above queue-
processing algorithms.

Instruction
Label Op code Operand

Explanation

JO I NQ: STI TAILPTR Store contents of Acc in the memory
locat ion pointed to by the tail pointer

LDD TAILPTR Increment the tail pointer
INC ACC
STO TAILPTR
JMP ENDQ

LEAVEQ: LDI HEADPTR Load contents of memory location at the
head of the queue

OUT Output the character
LDD HEADPTR Increment the head pointer
INC ACC
STO HEADPTR
JMP ENDQ

ENDQ:

HEADPTR: QSTART Pointer to start of queue
TAI LPTR: QSTART Pointer to next free location in queue
QSTART : 11 11 Start of memory reserved for queue,

currently empty

Table 28.07 Queue processing

Note that t he value shown in Tab le 28.07 at the memory locations labelled HEADPTR and
TAILPTR is the address of the start of the memory locations reserved for the queue. As
values are added to the queue, the TAILPTR value will increase to point to the memory
location at the end of the queue data. When a value is taken from the queue, the HEADPTR
value will increase to point to the memory location at the head of the queue data.

TASK28.06
Write instructions to reverse a word entered at the keyboard. This requires access to an area
of memory treated as a stack.

•

Cambridge International AS and A level Computer Science

• A problem to be solved must be broken down into simple steps that can be programmed using the
processor's given instruction set.

• A value must be copied into the accumulator before it can be processed.

• Processing includes:
o arithmetic: adding, incrementing, decrementing
o comparison: equal or not equa l

o bitwise operations: AND, OR, XOR, shifting
o output to screen.

• To set a value in the accumulator it can be:
o input from the keyboard
o created using immediate addressing

o loaded from a memory location using direct, relative, indirect or indexed addressing.

• An address can be absolute (a number) or symbolic (a label).

Exam-style Questions
1 The instruction set of a processor with one genera l-purpose register, the accumulator,

includes the fol lowing instructions.

Instruction
Label Op code Operand

Explanation

LDD <add ress> Direct addressing. Load the contents of t he
location at the given address to Ace

STO <addres s > Store the contents of Ace at the given
address

ADD <addre ss> Add the contents of the given address to t he
ACC

IN Key in a cha racter and store its ASCII va lue in
ACC

AND <address> Bitwise AND operation of t he contents of Ace
with the contents of <address>

LSL #n Bits in ACC are shifted n places to t he left .
Zeros are introduced on the right hand end

END Return control to the operating system
<labe l >: <data> Gives a symbol ic address <label> to the

memory location with contents <data>

- - -----

f
2

r
" l
I
I

I

i

• I

f
I
I
l
I
I

' t
I
r ,
I
I .

Chapter 28: Low-level Programming

ACC denotes the Accumulator.
, # denotes immediate addressing.
, & denotes a hexadecimal number, e.g. &4A.

• <address> can be an absolute address or a symbolic address.

a Explain the operation of the AND instruction.

b The ASCII code for 'O' is the binary value 00110000. The ASCII code for 'l' is the binary value 00110001 .

Write an AND instruction to convert any numeric digit stored in Ace in the form of an ASCII code to its eight-bit
binary integer equivalent.

c Write the assembly code instructions to convert a two-digit number keyed in at the keyboard to its BCD

[l]

[l]

representation . Store the result in the memory location labelled Result. [7]

Instruction
Label Op code Operand

Explanation

Input first digit
Convert from ASCII to its digit value
Move to upper nibble
Store in location Result
Input second digit
Convert from ASCI I to its digit value

- Combine the two values
Store result
End of program

Mask: Mask to convert from ASCII to digit equivalent
Resul t : &00 Memory locat ion for result

A given processor has on e general-purpose register, the accumulator Ace, and one index register, IX. Part of the
instruction set fo r this processor is as follows. [8]

Instruction
Label Op code Operand

Explanation

LDM #n Immediate addressing. Load th e number n to Ace

LDD <address> Direct addressing. Load the contents of the
location at the given address to ACC

LDX <address> Indexed addressing. Form the address from
<address>+ the contents of the index register.
Copy the contents of this calcu lated address to
ACC

LDR #n Immediate addressing. Load the number n to IX

STO <address> Store the contents of Ace at the given address
STX <address> Indexed addressing. Form the address from

<address> + the contents of the index register.
Copy the contents from Ace to th is calculated
address

ADD <address> Add the contents of the given address to the
ACC

I

Cambridge International AS and A level Computer Science

INC <register> Add 1 to the contents of the register (Ace or Ix)
JMP <address> Jump to the given address
CMP <address> Compare the contents of Ace with the contents

Of<address>
CMP #n Compare the contents of Ace with number n
JPE <address> Following a compare instruct ion, j ump to

<address> if the compare was True
JPN <address> Following a compare instruction, jump to

<address> if the compare was False
IN Key in a character and store it s ASC II value in

ACC
END Return control to the operating system

<label >: <Op code> <operand> Labels an instruction
<label>: <data> Gives a symbolic address <label> to the

memory location with contents <data> . # denotes immediate addressing . . <address> can be an absolute address or a symbol ic address .

Write an assembly language program that takes a sequence of characters as input from the
keyboard and stores each character in successive locations, starting at the location label led:
STRING. Input ends when the input character is '!' (ASC II code 33).

Instruction
Label Op code Operand

Explanation

set index register to zero
input character
store it at STRING (modified by index register)
increment index registe r
is this character the! key?
No - jump to beginning of loop
End of program

STRING: store input characters from here onwards

Learning objectives
By the end of this chapter you should be able to:

• solve a problem by writing appropriate facts and rules
based on supplied information

• write code that can satisfy a goal using facts and rules.

.#It ~(·" , !/J !•11
· •· j •.• ,a Xfpf (r .b. a _l e_· ~&.a···· l {:,

., ' ,1 · ···· •, ,, E RHJ ll ,;;;; \f :c s !5 I('' ···Ir ,,t) ·1c .. Ul1 .11.. ,. • f I
f1'111tt- • . • ii "' 1/1 ' . ·. ' i . .· ' mo.. _V t:~_ Cl all/II '(::"' 'ii{"' ,.,,, .. ,,,_ """" ·.,.,.. . ;., ·,.·, ·ffli., iv. a , (l . I /ul ~), , '11 ,, ,,,,,11 ,/:, I J ll:.

J . lti,11111 .,,,,,,., . ,, "" : ,_ . ,,, ' ' J rt eY_frtm~string (b) ; · ..
~t1f,i(t 1 C, l err~'t . jfjtJ,;,::.a 1 I J f ..-._ • a

•

Cambridge International AS and A level Computer Science

29.01 Imperative and declarative programming languages
Programming languages such as Pascal, VB and Python are referred to as 'imperative
programming languages' because the programmer writes sequences of statements that
reflect how to so lve the problem. When a programmer uses a declarative programming
language, the programmer writes down (in the language of logic) a declarative specification
that describes the situation of interest: what the problem is. The programmer doesn't tel l the
computer what to do. To get information, the programmer poses a query (sets a goal). It 's up
to the logic programming system to work out how to get the answer.

Declarative languages include database query languages (such as SQL, see Chapter 10,
Section 10.07), regu lar expressions, logic programm ing and functional programming.

Pro log is a logic programming language widely used for art ificial intelligence and expert
systems.

The Prolog programs in this chapter have been prepared using the SWI -Pro log environment
shown in Figure 29.01 (see www.swi-prolog.org for a free download).

«:"' SWI-Prolog (AMD64, Multi-threa e
File Edit Settings Run Debug Help
Welcome to SWI-Prolog (Multi-threaded, 64 bits , Version 6 . 6 . 6)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam ..J
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions .
Please visit http: //www . swi-prolog . org for details .

For help, use?- help(Topic). or?- apropos(Word).

1 ?-

Figure 29.01 SWI-Prolog environment

29.02 Prolog basics
There are three basic constructs in Prolog: facts, rules and queries.

The program logic is expressed using clauses (facts and rules). Problems are so lved by
running a query (goal) .

A collection of clauses is called a 'knowledge base'. Writing a Pro log program means writing a
knowledge base as a collection of clauses. We use the program by writing queries.

A clause is of the form:

Head : - Body.

Note that a clause always terminates with a full stop(.)

Prolog has a single data type, called a 'term'. A term can be:

• an atom, a genera l-purpose name with no inherent mean ing that always starts with a
lower case letter

• a number, integer or float (real)

-_..,

Chapter 29: Declarative Programming
'

a variable, denoted by an identifier that starts w ith a capital letter or an underscore(_)

a compound term, a predicate, consisting of an atom and a number of arguments in
parentheses.

The arguments themselves can be compound terms . A predicate has an arity (that is, the
number of arguments in parentheses).

Prolog is case sensitive.

29.03 Facts in Prolog
A clause without a body is a fact, for examp le:

01 capitalCity(paris).
02 capitalCity (berlin).
03 capitalCity(cairo).

The meaning of clause 01 is: Paris is a capital city.

capitalCity(paris) is a compound term. Both capitalCity and paris are atoms.
capital City is called a predicate and paris is the argument.

capitalCity has arity 1, as it has just one argument. This can be written as capi talcity/1,
the /1 showing that it takes one argument.

TASK29.0l
Launch the editor (File, New ...) from the SWI-Prolog environment. Enter the three clauses
above, as shown in Figure 29.02. Then save the file (File, Save buffer) as Exl.

File Edit Browse Compile Prolog Pee Help
Ex1 .pl
capitalcity (paris) .
capitalCity (berlin).
capitalCity (cairo) . .._

Buffer saved in fi le 'Ex1 .pl'

Figure 29.02 Example facts in SWI-Prolog editor

Line: 1

Clauses 01 to 03 are a knowledge base. We can run a query on this knowledge base.

To ask the question whether Paris is a cap ital city, we write:

capitalCity(pari s).

Prolog answers true .

This means: yes, Paris is a capital city.

To ask the question whether London is a capital city, we write:

capitalCity(london).

Pro log answers false.

This means: no, London is not a capital city.

-- -- - - - - ------- - - ---- --

I

Cambridge International AS and A level Computer Science

This is because the fact that London is a capital city has not been included in our knowledge base.

TASK29.02
Run you r own queries. You first need to consult the knowledge base (File, Consult ...) from
with in the Prolog environment. Note that SWI-Prolog uses the prompt 7_ (see Figure 29.03) .

.!'!' ,swI-Prolog (AMD64, Hulb-t
File Edit Settings Run Debug Help
Welcome to SWI-Prolog (Multi-threaded, 64 bi t s , Version 6.6.6)
Copyright (c) 1990-2013 University of Amsterdam. VU Amsterdam :::J
SWI-Prolog comes with ABSOLUTELY NO WARRANTY . This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http ://www.swi-prolog . org for details .

For help, use ? - help (Topic). or?- apropos(Word).

1 ?-
% c: / Users/ Sylvia/ My Programming/ CIE Book/ Prolog/ E:<1. pl compiled O. 0 0
sec , 4 clauses
1 ?- capitalCity(paris) .
true.

2 ?- capitalCity(london)
false .
3 ?-

Figure 29.03 Example queries in SWI-Prolog

If your query does not get a response, check that you have:
consulted your knowledge base (green text in Figu re 29.03)

used lower-case letters appropriately

used a full stop at the end of your query.

29.04 Prolog variables
Let 's add some more facts to our knowledge base. Comments in Pro log are enclosed in/* and*/.

04 cityinCountry(paris, france) . /* Paris is a city in France*/
05 cityinCountry(berlin, germany),
06 cityinCountry(cairo, egypt).
07 cityinCountry(munich, germany).

To find out wh ich country Berlin is in, we can run the query (see Figure 29.04):

cityinCountry(berlin, Country) .

Note that country is a variable (it starts with a capital letter).

To find out wh ich cities are in Germany, we can run the query (see Figure 29.04) :

cityinCountry(City, germany).

- --- - - - ------- - - - - --- - --

Chapter 29: Declarative Programming

File Edit Settings Run Debug Help
/. c : / Users/ Sylvia/ My Progra.mming/ CIE Book/ Prolog/ Exl . pl compiled O. 00
sec, 8 clauses
1 ?- cityinCountry(berlin , Country).
Country; germany.

2 ?- cityinCountry(Ci t y , germany) .
City berlin
City; munich .

3 ?-

Figure 29.04 Instantiations of a variable

Note how Pro log responds wh en running a query that includes a variable. When t here is more
than one answer, you need to t ype a semicolon after the first answer and Pro log will give the
second answer. The sem icolon has the mean ing OR. First city is instantiated to berlin and
then city is instantiated to munich.

WORKED EXAMPLE 29.01

Using a knowledge base
Consider the following knowledge base:

01 vegetable(aubergine). / * aubergine is a vegetable*/
02 vegetable (potato).
03 vegetable (tomato).
04 meat (chicken). / * chicken is a type of meat*/
05 meat (beef) .
06 meat (lamb).
07 ingredient(tagine, aubergine, 250). / * tagine contains 250g aubergine*/
08 ingredient (tagine, tomato, 100).
09 ingredient(stew, b e ef, 400).
10 ingredi ent (stew, potato, 600).

We can check the ingred ients of tagine by asking:

ingredient (tagine , Ingre dient, Amount).

Look at t he response Pro log gives in Figure 29.05.

~ iSWI·Prolog (AMD64, Multi-
File Edit Settings Run Debug Help
7 ?- ingredient(tagine, Ingredient, Amount) .
Ingredient; aubergine,
Amount; 250
Ingredient; tomato ,
Amount; 100 .

8 ?-

Figure 29.05 Instantiation of variables

- ------ - - - --

•

Cambridge International AS and A level Computer Science

29.05 The anonymous variable
Consider the knowledge base from Worked Example 29.01. If we are not interested in
the amount of each ingredient, we can use the anonymous variable (represented by the
underscore character). The query then becomes

ingredient(tagine, Ingredient, _).

29.06 Rules in Prolog
Remember a clause is of the form Head : - Body.

A rule's body consists of calls to predicates, which are ca lled the rule's goals. A predicate is
either true or false, based on its terms. If the body of the rule is true, then the head of the rule
is true too.

WORKED EXAMPLE 29.02

Using rules in a knowledge base
Consider the following knowledge base:

01 parent (fred, jack). /* Fred is
02 parent (fred, alia).
03 parent(fred, paul).
04 parent(dave, fred).

the father of Jack */

We know that G is a grandparent of S, if G is a parent of P and Pis a parent of S.

We could write this as a rule:

grandparent(G, S) IF parent(G, P) AND parent(P, S).

However, in Prolog the IF is replaced by :- and the AND is replaced with a comma:

grandparent(G, S) :- parent(G, P), parent(P, S).

A person has a sibling (brother or sister) if they have the same parent. We can write this as
the Prolog rule:

sibling(A, B) :-
parent(P, A),
parent(P, B).

If we run the query sibling(jack, x) ., we get the answers we expect, but we also get the
answer that Jack is his own sib li ng. To avoid this we modify the query to ensure that A is
not equa l to 8:

sibling(A, B) :-
parent (P, A),
parent(P, B),
not(A=B).

•

,,

- -

Chapter 29: Declarative Programming

Question 29.01
What answer do you expect to get from Pro log to the following query:

sib ling(dave, X).

TASK29.03

Write a knowledge base for your own family. You can include more predicates, for example:

Predicate Meaning
male (fred) . Fred is male
female (alia). Alia is female

Write a rule for father.

Test your program.

WORKED EXAMPLE 29.03

Adding a rule to a knowledge base
Using the knowledge base from Worked Example 29.01, we want to know which dishes
contain meat. We are not interested how much meat, so we don't need to know the value
of the third argu ment of the pred icate ingredient/3 . We ca n wri te the rule:

containsMeat(X) : -
ingredient (X, Meat,) ,
meat(Meat).

The query containsMeat(X). returns x stew.

29.07 Instantiation and backtracking
Pro log responds to a query with an answer, such as the one in Worked Example 29.03: x = stew.

The= sign is not an assignment as in imperat ive programs. The = sign shows in stant iation.

How does Pro log use the knowledge base to arrive at t he answers? One way to see exact ly
what Prolog is doing is to use the graph ical debugger.

f--------- ---- --- - ---- --- -- - -- ---------

I

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 29.04

Use the knowledge base from Worked Example 29.03. After consul t ing the knowledge
base, start t he debugger (Debug, Graphical debugger) from the Prolog environment.
Then type: trace . and then the goal as shown in Figure 29.06.

SWI-Prolog (AMD64, MultHhre e .
File Edit Settings R1Jn Debug Help
Welcome to SWI-Prolog (Multi-threaded. 64 bits . Version 6.6.6) .!J
Copyright (c) 1990-2013 University of Amsterdam , VU Amsterdam _J
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http ://www.swi-prolog.org for details .

For help, use?- help(Topic) or?- apropos(Word).

1 ?-
% c. / Users/ Sylvia/ My Programming/ CIE Book/ Prolog/ E,d . pl compiled O. 00
sec , 1 2 cla.uses
% The gra.phical front-end will be used for subsequent tracin•:,
1 ?- trace .
true.

[trace] 1 ?- containsMeat(X) .

Figure 29.06 Switching on the trace facil ity

The graphical debugger window opens as shown in Figure 29.07.

--

' '"'· '"=··., - ID!~
Iool _Edit :\liew l:;ompile t!elp

.i 1-.hl ~l ~tj ffiJrij,J ?-111h1ml .;.tj .,;. tj .!!I .. a tJGI~ 3l£l l;"a;..., Call Stack

11 6 mll•I.IIIIIIIIIII ~J ·ir
vegetable (aubergine). . -
vegetable (potato) .
vegetable (tomato).
meat (chicken) . I* c h i c ken i s a t ype o f meat * I
meat (bee f) .
meat (la mb} .
ingredient(tagine, aubergine, 250).
ingredient(tagine, tomato, 100).
ingredient(stew, beef, 400).
ingredient(stew, potato, 600) .

:m: t:onta.1.nsMeat (XU
ingre dient (X, Meat, -) '
meat (Meat) .• -

T

Figure 29.07 Graphical debugger

Using the space bar you can step through the program. When Prolog gives an answer in
the Prolog Environment window, remember to input a semicolon, so that Pro log will go
and check fo r another possible answer.

If you don't use the graph ical debugger but type trace. you can see the t race in t he SWI-
Prolog window, as shown in Figure 29.08.

Chapter 29: Declarative Programming

0c ~Wl-Prolog -- c/Users/Sylvia[Hy
File Edit Settings Run Debug Help
1 ?-
% c / Users/ Sylvia/ My Programming/ CIE Book/ Prolog/ Ex3 pl compiled 0
sec , 1 clauses

00

1 ?- trace .
true.

[trace] 1 ?- containsMeat(X).
Call e (6) containsMeat(_G464) ? creep
Call e (7) ingredient(_G464. _G536 . _G537) ? creep
Exit : (7) ingredient(tagine , aubergine, 250) ? creep
Call e (7) meat(aubergine) ? creep
Fail : (7) meat(aubergine) ? creep

(7) ingredient(_G464. _G53 6. _G537) ? creep
Exit : (7) ingredient(tagine, tomato . 100) ? creep
Call ; (7) meat(tomato) ? creep
Fail ; (7) meat(tomato) ? creep

Exit ;
Call ;
Exit ;
Exit ;

X = stew

Exit ;
Call ;
Fail :
Fail ;

false .

(7) ingredient(_G464 . _G53 6. _G537) ? creep
(7) ingredient(stew. beef. 400) ? creep
(7) meat(beef) ? creep
(7) meat(beef) ? creep
(6) containsMeat(stew) ? creep

(7)
(7)
(7)
(7)
(6)

ingredient(_G464. _G536 . _G53 7) ? creep
ingredient(stew . potato. 600) ? creep
meat(potato) ? creep
meat(potato) ? creep
containsMeat(_G464) ? creep

[trace] 2 ?-

Figure 29.08 SWI-Prolog trace of goal containsMeat (X).

The following terminology is used when discussing a trace:

call is the initial entry to a predicate.

creep ind icates that Prolog is moving to the next predicate.

Exit is a successful return.

_J

Redo indicates that the predicate is backed into for another answer.

Fail ind icates that Pro log can find no more solutions.

29.08 Recursion
Recursion for imperative languages is covered in Chapter 25. Recursion for declarative
languages is where a ru le is defined by itself, or more precisely, a rule uses itself as a sub-goal.

Let us expand the Family knowledge base from Worked Example 29.02.

We want a ru le that defines whether person A is an ancestor of person B. If A is a parent of B,
then A is an ancestor of B. Similarly, if person A is the parent of P, who is the parent of B, then
A is an ancestor of B. This is true for the parent of a parent of a parent of B. In general, if A is a
parent of X and Xis an ancestor of B, then A is an ancestor of B. We can write this information
as the ru les shown in Figure 29.09.

ancestor(A, B) parent(A, B).
The base case)

ancestor(A, B) parent(A, X), ancestor(X, B). =---=(The general case

Figure 29.09 Recursive rules

Note that recursion in declarative programming must follow the equivalent rules that
imperat ive programming must follow. A recursive rule must:

have a base case

have a general case

reach the base case after a finite number of calls to itself.

- - --- - --

)

I

Cambridge International AS and A level Computer Science

TASK29.04

Add the ancestor ru les to the Family knowledge base and check that the following query gives
the correct results:
ancestor(A, jack).

WORKED EXAMPLE 29.05

Creating the Factorial function in Prolog
In Chapter 25, Worked Example 25.01, we programmed the factorial function using
recursion wi th imperative programming. We can also program th is function using
recursion in Prolog.

factorial(O, 1). / * base case: O! = 1 */
factorial (N, Result) /* Result = N! */

M is N - 1, / * assign N-1 to M. */
factorial (M, PartResult), / * PartResult = (N-1) ! */
Result is PartResult * N. I * Result = N * (N-1) ! */

TASK29.0S

Enter the code from Worked Example 29.05 into the Pro log editor. Save it and consult it. Then
pose the following query:
factorial(S, Answer).

Do you get the correct answer?

29.09 Lists
A list is an ordered collection of terms. It is denoted by square brackets with the terms
separated by commas or in the case of the empty list,[]. For example [l , 2, 3} or [red, green,
blue]. An element can be any type of Prolog object. Different types can be mixed wi thin one
list. Lists are used in Pro log where arrays may be used in procedural languages.

Any non-empty list can be thought of as consisting of two parts: the head and the tail. The
head is the first item in the list; the tail is the list that rema ins when we take the first element
away. This means that t he ta il of a list is always a list.

Lists are manipulated by separating the head from the tail. The separator used is a vertical
line (a bar):I

If Pro log tries to match [HIT] to [car, lorry, boat, ship] , it wi ll instantiate H to car and
T to [lorry, boat, ship] .

The clause definition showHeadAndTail([HITJ, H, T) . can be used to pose the query:
showHeadAndTail([fred, jack, emma], Head, Tail) .

Prolog responds with:

Head fred,
Tail = [jack, emma].

,,
, Chapter 29: Declarative Programming

[

t

f •

The clause definition myList ([l, 2, 3l). can be used to pose the query:

myList([HjTl).

Pro log responds with:
H 1,
T = [2, 3l.

The clause definition emptyList (A) A = [l . can be used to pose the query:

emptyList ([ll).

Pro log responds with:

false.

List-processing predicate: append

The built-in predicate append(A, B, c) joins list A and list Band produces list C.

append([a, bl, [c, dl, MyList).

produces MyList = [a, b, c, dl.

append(FirstList, [c, dl, [a, b, c, dl).

produces FirstList = [a, bl.

List-processing predicate: member

The built-in predicate member(A, B) returns true if item A is in list B.

member(c, [a, b, c, d, el).

produces:

true.

member(X,[a, b, c, dl).

produces:

X = a
X
X

b .
'

C .
'

X = d .

List-processing predicates: write and r e ad

The built-in predicate write (A) outputs A to the screen.

write('message: '). outputs message:.

write (X). outputs the value currently instantiated with the variable X.

The built-in predicate read(A) reads a value from the keyboard into variable A.

read(Name). waits for an atom to be input from the keyboard and instantiates the variable
Name with that value.

Note that the input must sta rt with a lower case letter and not have spaces or be enclosed in
quotes.

nl moves the output to a new line.

We can write user-friendly programs using the read and write predicates.

•

•

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 29.06

Using the read and write predicates
Note how t he interface with t he user in the code be low is wr it ten as a ru le wi t h the
separate steps separated by co mmas (representing AN D).

assert / ! adds the clause given as the argument to the knowledge base.

retrac tall/ 1 ta kes the given clause out of the know ledge base, so t he next time the
program is ru n, t he new facts wil l be added and used in t he goa l.

/ * Weather knowledge base*/
weather (good) : -

temp (high) ,
humidity (dry) ,
sky (sunny).

weather (bad): -
(humidity (wet) ;
temp (low) ;
sky (cloudy)) .

/ * interface*/
go:-

write (' Is the temperature high or low?') ,
read (Temp) , nl,
write (' Is the s ky sunny or cloudy ?') ,
rea d (Sky) , nl,
write (' Is the humidity dry or wet?') ,
read(Humidity), nl,
assert (temp (Te mp)) ,
assert (sky (Sky)) ,
assert (humidity(Humidity)),
weather (Weather) ,
write (' The weather is ') , write (Weather),
retractall (temp(_)) ,
retractall (sky (_)) ,
retractall (humidity ()) .

To ru n the progra m, type g o .

TASK29.06
· Test the recursively defined rule writelist/ 1 to output the elements of a list.
writeList ([]).
writeList([H iTJ) :-write (H) , nl, writeList (T).

- - --- - - - - - - - - - - ------ --- - - -

' -

I

l
i •

'

Chapter 29: Declarative Programming

• Imperative programs reflect the steps of how to solve a problem.

• Declarative programs reflect what the problem is.

• A knowledge base consists of two types of clause: facts and rules.

• Clauses are sometimes referred to as predicates.

• The arity of a predicate shows how many arguments it takes.

• To solve a problem, the user of the knowledge base poses a query.

• A recu rsive rule is defined in terms of itself.

• In logic programm ing, a list is manipulated by separating the head from the tail ([HIT]).

Exam-style Questions
1 A logic programming language is used to represent, as a set of facts and ru les, details of cities of the world. The set of

facts and rules are shown below in clauses labelled 1 to 17.

01
02
03
04
05
06
07
08
09
10
11
12
1 3
14
15
16
17

capital (vienna) .
capital(london).
capital (santiago) .
capital (caracas).
capital(tokyo).
cityin (vienna, austria).
cityin(sant iago, chile).
cityin(salzburg, austria).
cityin(maracaibo, venezuela).
continent (austria, europe).
continent (chile, southAmerica) .
continent(uk, europe) .
continent(argentina, southAmerica).
iVisited(vienna).
iVisited(tokyo).
capitalOf(City, Country) IF capital(City) AND cityin(City, Country).
europeanCity (City)

IF cityin(City, Country) AND continent(Country, europe).

These clauses have the fol lowing meanings:
Clause Meaning
01 Vienna is a capital.
06 Vienna is in Austria.
10 Austr ia is in the continent of Europe.
14 I visited the city of Vienna.
16 City is the capital of Country if

City is a capital and it is in Country.

17 City is a city in Europe if city is in country and
Country is in Eu rope.

•

Cambridge International AS and A level Computer Science

a Write down t he extra clauses needed to express the following facts:

London is in t he UK.
ii I visited the city of Strasbourg.

b The clause cityin(City, austria) would return the result: vienna, salzburg.

Write down the result returned by the clause:
continent(Country, southAmerica) .

c Complete the rule to list countries that I have visited
countriesIVisited (Country) IF ...

2 In a particular country, to become a qualified driver you must:

have a licence: there is a minimum age at which a person can be issued w ith a licence
and it is different for cars and trucks

pass a theory test: it is the same test for cars and trucks

• pass a driving test for a specific vehicle (car or truck).

A decla rative progra mming language is to be used to rep resent the knowledge base shown
below:

01 minimumAge (car, 18) .
02 minimumAge (truck, 21).
03 age (fred, 19).
04 age (jack, 22).
05 age(mike, 17) .
06 age (j hon, 20).
07 age (emma, 22).
08 age(sheena, 19).
09 hasLicence (fred).
10 hasLicence (jack).
11 hasLicence (mike) .
12 hasLicence (jhon).
13 hasLicence (emma).
14 hasLicence (sheena) .
15 allowedToDrive(X, V)

IF hasLicence (X) AND minimumAge (V, L)
AND age (X, A)
AND A >= L.

16 passedTheoryTest(jack).
17 passedTheoryTest (emma).
18 passedTheoryTest(jhon).
19 passedTheoryTest (fred).
20 passedDrivingTest (jhon, car).
21 passedDrivingTest (fred, car).
22 passedDrivingTest(jack, car).
23 passedDrivingTest (jack, truck).
24 passedDrivingTest (sheena, car).
25 qualifiedDriver (X, V)

IF allowedToDrive (X, V)
AND passedTheoryTest (X)
AND passedDrivingTest(X, V).

[l]
[l]

[2]

[3]

'
, Chapter 29: Declarative Programming

(
!

I
r

•

These clauses have the following meanings:

Clause Meaning
01 The minimum age for a car licence is 18.
03 Fred is aged 19.
09 Fred has a licence.
15 Person xis able to drive vehicle v if person x has a licence and the age A of

person xis greater than or equal to the minimum age L to drive vehicle v.

a give one example of a fact in this knowledge base.

ii Give one example of a rule in this knowledge base.

b Show the output produced from these clauses:

passedDrivingTest(Who, truck).

ii allowedToDri ve(mike, car).

iii NOT (hasLicence (sheena)).

c Write a clause to output:

all qualified car drivers

ii all drivers who have passed the theory test but not a driving test.

d To produce the output from a clause, the inference engine uses a process called backtracking.

Consider the clause:

Al lowedToDrive(mike , car).

[l)

[l)

[l)

[l)

[l)

[2)

[3)

List the order in which clauses are used to produce the output. For each clause, describe the result that it returns. [5)

I

Learning objectives
By the end of this chapter you should be able to:

• show understanding of the possible role of program
generators and program libraries in the development
process

• show awareness of why errors occur
• show understanding of how testing can expose possible

errors
• appreciate the significance of testing throughout software

development
• show understanding of the methods of testing available:

dry run , walkthrough, white-box, black-box, integration,
alpha, beta, acceptance

• show understanding of the need for a test strategy and
test plan and their likely contents

• choose appropriate test data (normal, abnormal and
extreme/ boundary) for a test plan

• show understanding that large developments will involve
teams

• show understanding of the need for project management
• show understanding of project planning techniques

including t he use of Gantt and Program Evaluation and
Review Technique (PERT) charts

• describe the information that Gantt and PERT charts
provide

• construct and edit Gantt and PERT charts.

. ++ + • . .~
. • T •

i . # . .

,- - --

Chapter 30: Software development .

30.01 Program generators and program libraries
The first computers had to be programmed using machine code. This is a very ted ious
method for writing programs. Assemblers were invented to generate a computer program
in machine code from assembly code instructions. Later interpreters and compi lers were
invented to generate low-level code from high-level programs written by people. So you can
see that program generators have been around for a very long t ime.

Development is ongoing to invent program generators that wi ll take ever more abstract
models and translate t hem into executable code. An integrated development environment
(IDE) for a modern high-leve l language provides facilities for software development, such as a
source code editor with intelligent code complet ion, build automation and a debugger. Some
ID Es have more advanced forms of code generation . For examp le, programmers can design
GU ls interactively or generate code from a wizard or template. Computer-aided software
engineering (CASE) tools are also used to generate code.

In Chapter 13 (Section 13.08) we covered built-in functions. These are part of a program
library.

Program generator: a computer program that can be used to create other computer programs

Program library: a collection of pre-compiled routines or modules that a program can use

30.02 Why errors occur and how to find them
Software may not perform as expected for a number of reasons:

• The programmer has made a coding mistake.

• The requirement specificati on was not drawn up correctly.
• The software designer has made a design error.

• The user interface is poorly designed and the user makes mistakes.
• Computer hardware experiences failure.

How are errors found? The end user may report an erro r. This is not good for the reputation
of the software developer. Testing software before it is released for genera l use is essential.
Research has shown that the earlier an erro r can be found, the cheaper it is to fix it. It is very
important that software is tested t hroughout its development.

The pu rpose of test ing is to discover errors. Edsger Dij kstra, a famous Dutch computer
scientist , said 'Program testing can be used to show the presence of bugs, but never to show
their absence!'.

30.03 Testing methods
We covered logic errors and run-time errors in Chapter 15. In Section 15.03 we discussed
black-box and wh ite-box testing. In Section 15.04 we used debugging facilities in an IDE. In
Section 15.05 we worked through program code by dry-running it and recording t he steps in
a trace table. Dry- running program code is also somet imes referred to as a 'walkth rough'.

These testing methods are used early on in software development, for example when
individua l modules are written. Sometimes programmers themselves use these testing

---- ---- ~ -·~-·- - - - - - - -

I

.!

•

Cambridge International AS and A level Computer Science

methods. In larger software development organisations, separate software testers will be
employed.

Discussion Point:
Do you think that a program tester wi ll find errors the programmer did not know about? You
can try out the idea by let ting your friends test a program that you th ink works perfectly.

Software often consists of many modules, sometimes writ ten by different programmers.
Each individual module may have passed all the tests, but when modules are joined together
into one program, it is vital that th e whole program is tested. This is known as integration
testing. Integration testing is usually done incrementally. This means that a module at a time
is added and further testing is carried out before the next module is added.

Software will be tested in-house by software testers before being released to customers. This
type of testing is called alpha testing.

Bespoke software (written for a specific customer) wi ll then be released to the customer.
The customer will check that it meets their requirements and works as expected. This
stage is refe rred to as acceptance testing. It is generally part of the hand-over process. On
successful acceptance testing, the customer will sign off the software.

When software is not bespoke but produced for general sale, there is no specific customer
to perform acceptance testing and sign off the software. So, after alpha testing, a version is
released to a limited audience of potential users, known as 'beta testers'. These beta testers
will use the software and test it in their own environm~nts. This early release version is called
a beta version and the chosen users perform beta testing. During beta testing, the users will
feed back to the software house any problems they have found, so that t he software house
can correct any reported faults .

Integration testing: individually tested modules are joined into one program and tested to ensure the
modules interact correctly

Alpha testing: testing of software in-house by dedicated testers

Acceptance testing: testing of software by customers before sign-off

Beta testing: testing of software by a limited number of chosen users before general release

30.04 Test plans and test data
During the design stage of a software project, a suitable testing strategy must be worked
out to ensure rigorous testing of the software from the very beginning. Consideration should
be given to which testing methods are appropriate for the project in question. A carefully
designed test plan has to be produced.

It is important to recognise that large programs cannot be exhaustively tested but it is
important that systematic testing finds as many errors as possible. We therefore need a test
plan. In the first instance, an outline plan is designed, for example:

• flow of control: does the user get appropriate choices and does the chosen option go to
the correct module?

• validation of input: has all data been entered into the system correctly?

' -

-

r i Chapter 30: Software development

'

'

'

i

I

t

'
l

I

• do loops and decisions perform correctly?
• is data saved into the correct files?
• does the system produce the correct results?

This outline test plan needs to be made into a detai led test plan.

How can we carry out these tests? We need to select data that will allow us to see whether
it is handled correctly. Th is type of data is called 'test data'. It diffe rs from real, live data
because it is specifically chosen with a view of testing different possibilities. We distinguish
between different types of test data, listed in Table 30.01.

Type of test data
>

Explanation

'
Normal (valid) Typ ical data values that are va lid
Abnormal (erroneous)

'
Data values that the system should not accept

Boundary (extreme)

Table 30.01 Types of test data

Data values that are at a boundary or an ext reme end of the range of normal data; test
data shou ld include values just w ithin t he boundary (that is, val id data) and just outside
the boundary (that is, invalid data) ·

WORKED EXAMPLE 30.01

Designing test data
Look at the Pyramid Problem (code shown in Section 14.07). This is a simple program,
but we can use it to illustrate how to choose test data. There are just two user inputs: the
number of symbols that make up the base and the symbo l that is to be used to construct
t he pyra mid . Let's consider just t he test data for t he number of symbo ls (Tab le 30.02).

Type oftest Example Explanation
data test values
Norma l 7 7 is an odd in teger, so should be accepted.
(valid) Any odd positive integer wou ld be su itable as test data. However, it should be bigger

t han 1 to check that the pyramid is correctly formed. More t han one different value to
test wou ld be a good idea.

Abnormal Any number t hat is not a positive odd integer. This will requi re severa l test s to ensure
(erroneous) tha t t he followi ng types of data are not accepted :

-7 • negative integer

8 . even integer

7.5 • real number

'* I • non -nu meric input
You should not take shortcuts and choose one negative even integer or one negative
real number and think you can test two thi ngs at the same t ime. You wil l not know
whether t he test fa ils for just one reason or both.

•

Cambridge International AS and A level Computer Science

Boundary 1 What is a boundary value? The sma llest possible pyramid is a single symbol. So the
(extreme) value 1 is just within the boundary.

Sometimes choosing test data throws up some interesting questions that need to be
considered when design ing the solution:

0 • Should O be accepted? Is O an even number?

Is it outside the boundary because a pyramid of 0
symbols is not rea lly a pyramid?

• Is there just one boundary? Should the program
reject numbers that are too large?

79 The output would not look like a pyramid if there is a wrap-around. So the program

81 really should check how many symbols fit onto one line and not allow the user to input
a number greater than th is. If the number of characters across the screen is 80, then 79
would be just with in the boundary but 81 would be outside the boundary, and should
not be accepted .

Note that by testing with values within the boundary you are also testing normal data,
albeit at t he extreme ends of the normal range.

Tab le 30.02 Test data for the pyramid problem

TASK30.0l
Look at the programs you wrote in Chapter 14 (Task 14.04).

1 Design test data for the number-guessing game.

2 Design test data for the Connect 4 game.

30.05 How to prevent errors
The best way to write a program that works correctly is to prevent errors in t he first place.
How can we minimise the errors in a program? A major cause of errors is poor requ irements
analysis. When designing a solution it is very important that we understand the problem and
what the user of the system wants or needs. We should use:

• tried and tested design techniques such as structured programming or object-oriented
design

• conventions such as identifier tables, data structures and standard algorithms
• t ried and tested modules or objects from program libraries.

30.06 Project management
If you embark on writing a large program, you may wish to map out stages and a schedule
when you should achieve certain milestones. This is especially important if you are working
to a deadl ine.

Commercial software consists of very large programs that require many people to work on
them. Usua lly there are programmers to write code designed by senior program designers.
There will be software testers and document writers. If new hardware is req uired, t here will
be engineers and insta llers. To manage people and resources and schedu le activities, a
project manager is usually appointed.

-------- ----- - -- - - -

..
· Chapter 30: Software development I

Discussion Point:
Explore the job titles of people involved in producing computer software.

The first task of a project management team is to break down the project into individual
activit ies that need to be completed to produce the final product These activities wi ll take a
certain amount of time and will need to be done in a certain order. Some activi t ies can only start
when other activities have been completed. This is where scheduling becomes very important

Project managers can use various methods to help them. They can make use of the Program
Evaluation and Review Technique (PERT) to establish the critical pat h. Then t hey can use a
Gantt cha rt to schedu le activities.

PERT charts
PERT was developed for the US Navy to simplify t he planning and scheduling of a large and
complex project It is a method to analyse the activities required to com plete a project,
especial ly the t ime requ ired to complete each activi t y. It also helps to identify t he minimum
t ime needed to complete the project (critical path ana lys is) . ·

An activity may result in a document, a report or some othe r building block of t he project
Such a building block is called a deliverable.

A milestone is a scheduled event signifying the completion or submission of a del iverab le.

Deliverable: the result of an activity, such as a document or a report

Milestone: a scheduled event signifying the completion or submission of a deliverab le

WORKED EXAMPLE 30.02

Reading a PERT chart
A software developer is to produce software for a customer. The activities, deliverab les and
milestones in Table 30.03 have been identified .

Activity Description Weeks to complete Deliverables
Start

A Identify requirements 1 Requirement specificat ion
B Produce design 2 Program design
C Write program code 8 Complete program code
D Test modules 5 Tested program modu les
E Integration testi ng 2 Tested integrated softwa re
F Install software 1 Software ready to use
G Acceptance testing 2 Software signed off
H Wr ite documentat ion 4 Techn ical documentat ion
J Write tra ining materia l 2 User documentation
K Tra in users 3 Users t rained
L Go live 1 Finish

Table 30.03 Breakdown of project into activities, deliverables and milestones

Milestone
1
2
3
4

5
6

7

8
9
8
10
11

I

Cambridge International AS and A level Computer Science

The project manager produces the PERT chart shown in Figure 30.01 for this project.

Figure 30.01 PERT chart

Figure 30.01 demonstrates the fo llowing features:

Milestones are shown as numbered nodes.
• Activities are represented by arrows linking the milestones. The arrows are labe lled w it h

the act ivity code below the arrow and the duration above the arrow.
Nodes 1, 2, 3, 5, 6, 7, 8, 10 and 11 are joined by so lid arrows. These activities must be
completed in sequence; they are ca lled 'dependent activ ities'.

• Activities t hat must be completed in sequence but t hat don't requ ire resources or
complet ion t ime are represented by dotted lines and are ca lled 'dum my act ivities'. The
dotted line between milestones 3 and 4 indicates that the program modules must be
tested before software installation can begin, but t he t ime req uired to do t he testing is
on another path (path D).

Critical path
The crit ical path is the longest possible continuous pathway from Start to Finish. It
determines the shortest t ime req uired to complete the project. Any t ime delays along the
critica l path will delay t he f inal milestone.

Critical path: the longest possible continuous pathway from Start to Finish

In Wo rked Example 30.02, the critical path is A, B, C, E, F, G, K, L. Th is means t he shortest
possible time to comp lete the project is 20 weeks.

Question 30.01
What wou ld be the effect of Activity H taking six weeks instead of the original four weeks7

Explain .

Gantt charts
A Gantt chart is a horizontal bar chart developed by Henry Gantt. It is a graphical
representat ion of a project schedu le and helps to plan specific activities in a project.

Gantt charts can be produced on paper, in sp readsheet software or in speci fi c project
management software.

~ - --- ---- ------- --

-

.r

. Chapter 30: Software development

WORKED EXAMPLE 30.03

Reading a Gantt chart

Following on from Worked Example 30.02, the Gantt chart for the project is shown in
Figure 30.02.

Activity

Identify requ irements

Produce design

Write program code

Test modules

Integration testing

Install software

Acceptance testing

Write documentation

Write training material

Train users

Go live

Week Number

Figure 30.2 Gantt chart

Figure 30.02 demonstrates the following features:

• The horizontal axis represents t ime. In t his example the schedu le is worked out in
weekly steps. This cou ld be done on a daily or monthly basis, depend ing on t he overall
lengt h of the project.
Individual act ivities are shown as horizontal bars, one activity per row.

• Activities can overlap. In this example, module testing can begin before all the program
code has been written . The documentation can be started before all the testing has
been completed.

• Some activi t ies can only begin when others have been co mpleted . In th is examp le,
integration testing can on ly start after all modules have been successfu lly tested.
Software can only be installed after integrat ion testing has been successful ly comp leted .

If any activities take longer than planned, the chart may need to be modified to represent the
revised schedule. For example, if serious problems are encountered during acceptance testing,
further design, program coding, module testing and integration testing may be required.

Question 30.02
Redraw the Gantt chart from Figure 30.02 to show the position if the acceptance testing
failed and an extra week of design, two extra weeks of coding, one week of module testing
and a further week of integration testing are required before the software can be re -installed .

- --- - ---- -- - -- -

•

Cambridge International AS and A level Computer Science

• A program generator is a computer program to create other computer programs.

• A program library is a collection of tried and tested pre-compiled routines.

• The purpose of program testing is to find errors.

• The types of test data are: normal (valid), abnormal (erroneous) and boundary or extreme data.

• Structured programming and object-oriented design min imise programming errors.

• Project management use PERT charts and Gantt charts to schedule project activities.

• PERT charts show activities, their duration and milestones.

• A Gantt chart is a horizontal bar chart, showing the individual activities including their start and end times.

Exam-style Questions
1 A proced ure to output a row in a tally cha rt has been written using pseudocode:

PROCEDURE OutputTa llyRow(NumberToDra w : INTEGER)
IF Count > O

THEN

ENDIF

FOR Count ~ 1 TO NumberToDraw
IF (Count MOD 5) = 0

THEN
OUTPUT(' \ ') // e ve r y 5th b a r s lants t h e other wa y

ELSE

ENDIF
END FOR

OUTPUT(' / ')

OUTPUT NewLine // move to next row
END PROCEDURE

Design suitable test data that wil l test t he procedu re adequately. Just ify you r cho ices in each case. [9]

- -.. -
1 Chapter 30: Software development

2 A business approaches a software house for a bespoke system. The systems analyst for this
project has drawn up the following outline activities:

Activity Description Weeks to complete dependent on activity
A Identify requirements 1
B Produce program design 5 A

C Produce hardware requirements 3 A

D Programming 10 B
E Order hardware 4 C

G Module testing 7 D
M Technical documentat ion 5 D
F Instal l hardware 1 E
p Convert data fi les 1 F
H Integration testing 2 G
J Alpha testing 3 H
L Acceptance testing 2 J
N User documentation 2 J
K Train users 4 N
Q Go live 1 K, L, P

a Complete the PERT chart, showing all activities and durations.

ii Use the PERT chart to work out the crit ica l path.

b Draw a Ga ntt chart from the informat ion in the above t able.

ii Using the information from the Gantt chart, calculate the time required for the project from start
to completion.

[8]

[3]

[8]

[3]

•

Glossary

Glossary

Abstract class: a base class that is never used to create
objects directly

Abstract data type: a col lection of data with associated
operations

Acceptance testing: testing of software by customers
before sign-off

Accumulator: a general-purpose register that stores a
value before and after the execution of an instruction by the
ALU

Actuator: a hardware device that receives a signal from a
computer and adjusts the setting of a controlling device

Adaptive maintenance: amending a program to enhance
functiona lity or in response to specification changes

Address bus: a component that carries an address to t he
memory controller to identify a location in memory which
is to be read from or written to

Algorithm: a sequence of steps that can be carried out to
perform a task

Alpha testing: testing of software in-house by dedicated
testers

Attribute: a column in a relation that contains values

Attributes: the data items of a class

Authentication: verification of a user's identity

Authorisation: definition of a user's access rights to
system components

Base case: an explicit solution to a recursive function

Beta testing: testing of software by a limited number of
chosen users before general release

Binary file: a file designed for storing data to be used by a
computer program

Binary search: repeated check ing of the midd le item in an
ordered search list and discarding the half of the list wh ich
does not contain the search item

Black-box testing: comparing expected results with
actual results when a program is run

Bubble sort: a sort method where adjacent pairs of values
are compared and swapped

By reference: the address of the variable is passed into the
procedure

By value: the actual value is passed into the procedure

Byte: a group of eight bits treated as a single unit

Capacitive touch screen: a rigid surface above a
conductive layer which undergoes a change in electrical
state when a finger touches the screen

Ciphertext: the result of applying an encryption algorithm
to data

Combinational circuit: a circuit in wh ich the output is
dependent only on the input values

Constructor: a special type of method that is called to
create a new object and initialise its properties

Containment: a relationship in which one class has a
component that is of another class type

Copyright: a formal recognition of ownership of a created
and publ ished work

Corrective maintenance: correcting identified errors

Critical path: the longest possible continuous pathway
from Start to Finish

Data bus: a component that carries data to and from the
processor

Data integrity: a requirement for data to be accurate and
up to date

Data management system (DBMS): software that
cont rols access to data in a database

Data privacy: a requirement for data to be available only
to authorised users

Data protection law: a law that relates to data privacy

Data redundancy: the same data stored more than once

Data security: a requirement for data to be recoverable if
lost or corrupted

Database administrator (DBA): a person who uses
the DBMS to customise the database to suit user and
programmer requirements

Debugging: finding and correcting errors in a program

------------- -------- - - - ---- --- - ---

r - - -- ---- --
, Glossary

Deliverable: the result of an activity, such as a document
or a report

Directive: an instruction to the assembler program

Domain name system (DNS): a hierarchical distributed
database instal led on domain name servers that is
responsible for mapping a domain name to an IP address

Dry-run: the process of checking the execution of an
algorithm or program by recording variable values in a
trace table

Enumerated data type: a list of possible data values

Finite state machine (FSM): a machine that consists of a
fixed set of possible states with a set of inputs that change
the state and a set of possible outputs

Floating-point representation: a representation of real
numbers that stores a value for the mantissa and a va lue
for the exponent

Flowchart: shapes linked together to represent the
sequential steps of an algorithm

Foreign key: an attribute in one table that refers to the
primary key in another table

Freeware: softwa re free with unlimited use allowed but no
source code provided

Function: a sequence of steps that is given an identifier
and returns a single value; function ca ll is part of an
expression

Gateway: a device that connects networks of different
underlying technologies

General case: a definition of a recursive function in terms
of itself

Gibi: a prefix representing the factor 230 written as the
symbol Gi

Global variable: a variable that is accessible from all
modules

Identifier table: a tab le listing the variable identifiers
required for the solution, wi t h explanations

Inheritance: all properties and methods of the base class
are copied to the subclass

Integration testing: individually tested modules are
joined into one program and tested to ensure the modules
interact correctly

1Pv4 address: a 32-bit long, hierarchical address of a
device on the Internet

---- --- ------- - - - - -

Kibi: a prefix representing the factor 210 (1024) written as
the symbol Ki

Linear search: checking each element of an array in turn
for a requi red value

Liquid-crystal display (LCD): a screen back-li t by light-
emitting diodes and with liquid crystal ce lls sandwiched
between polarisers

Local variable: a variable that is only accessible within the
module in which it is declared

Logic error: an error in the logic of the solution that causes
it not to behave as intended

Logic expression: logic propositions combined using
Boolean operators, which may be written with a defined
outcome

Logic gate: a component of a logic circuit that has an
operat ion matching that of a Boolean operato r

Logic proposition: a statement that is either TRUE or
FALSE

Lossless compression: coding techniques that allow
subsequent decoding to recreate exactly the original file

Lossy compression: coding techniques that cause some
information to be lost so that the exact original file cannot
be recovered in subsequent decoding

Machine code instruction: a binary code with a defined
number of bits that comprises an opcode and, most often,
one operand

Mebi: a prefix representing the factor 220 (1048 576) written
as the symbol Mi

Methods: the subroutines of a class

Milestone: a scheduled event signifying the completion or
submission of a del iverab le

Nested IF statements: cond itional statements with in
conditional statements

Nested loop: loop containing another loop

Node: an element of a list

Null pointer: a pointer that does not point at anything

Object: an instance of a class

One's complement: the binary number obtained by
subtract ing each digit in a binary number from 1

Open source software: software free with un lim ited use
al lowed and access to source code

•

Glossary

Operating system: a software platform that provides
facilities for programs to be run which are of benefit to a
user

Parameter: a value passed between modules

Picture element (pixel): the smallest identifiable
component of a bitmap image, defined by just two
properties: its position in the bitmap matrix and its colour

Pipelining: instruction-level parallelism

Plaintext: data before encryption

Pointer: a variable that stores the address of the node it
points to

Polymorphism: the method behaves differently for
different classes in the hierarchy

Primary key: an attribute or a combination of attributes
for which there is a value in each tuple and that value is
unique

Problem statement: an informal definition of an
outcome which is dependent on one logic proposition or a
combination of two or more logic propositions

Procedure: a sequence of steps that is given an identifier
and can be called to perform a sub-task

Process control block (PCB): a complex data structure
containing all data relevant to the running of a process

Process: a program in memory that has an associated
process control block

Process: a program that has begun execution

Protocol: a set of rules for data transmission which are
agreed by sender and receiver

Pseudocode: a way of using keywords and identifiers to
describe an algorithm without following the syntax of a
particular programming language

Random-access memory (RAM): volatile memory that
can be read from or written to any number of times

Read-only memory (ROM): non-volati le memory that
cannot be written to but can be read from any number of
t imes

Record data type: a data type that contains a fixed
number of components, which can be of different types

Record: a collection of fields containing data values

Recursive routine: a function or procedure defined in
terms of itself

Relation: the special type of tab le wh ich is used in a
relational database

Repeating group: a set of attributes that have more than
one set of values when the other attributes each have a
single value

Resistive touch screen: a flexible surface which causes
contact between electrically resistive layers beneath when
touched

Rogue value: a value used to terminate a sequence of
values

Router: a device that acts as a node on the Internet

Rules of precedence: define the order of the calculations
to be performed

Run-time error: an error that causes program execution
to crash or freeze

Sensor: a hardware device that measures a property and
transmits a value to a contro lling computer

Sequential circuit: a circuit in which the output depends
on the input va lues and the previous output

Server: a device that provides services via a network

Shareware: software free for use for a limited period but
no source code provided

Start pointer: a variable that stores the address of the first
element of a linked list

State-transition diagram: a diagram that describes the
behaviour of an FSM

State-transition table: a table that gives information
about the states of an FSM

Stepwise refinement: breaking down the steps of an
outline solution into smaller and smaller steps

Structure chart: a graphica l representation of the
modular structure of a solution

Structured English: a subset of the Engl ish language
that consists of command statements used to describe an
algorithm

Symbol table: a data structure in which each record
contains the name and attributes of an identifier

Syntax error: an error in which a program statement does
not fo llow the rules of the language

Test data: carefully chosen values that will test a program

Thread: part of a process being executed

' ' Glossary

Trace table: a table with a column for each variable that
records their changing values

Two's complement: the one's complement of a binary
number plus 1

Validation: a check that data entered is of the correct type
and format; it does not guarantee that data is accurate

Variable: a storage location for a data value that has an
identifier

Vector graphic: a graphic consisting of components
defined by geometric formulae and associated properties,
such as line colour and style

Verification: confirmation of data received by a system

Virtual memory: a paging mechanism that allows a
program to use more memory addresses than are avai lable
in main memory

White-box testing: test ing every path through the
program code

Word: a small number of bytes handled as a unit by the
computer system

I

Index

Index

absolute addressing, 400
abstract classes, 378
abstract data types (ADTs), 322- 334
abstraction, 318
acceptance testing, 422

access restrictions, 92
accumulators, 61

ACM (Association for Computing
Machinery), 100-101

actuator heads, 39
actuators, 311
adaptive maintenance, 244

ADCs (analogue-to-digital converters),
13-14

address bus, 63
addressing modes, 71-72
ADTs (abstract data types), 322-334

aggregation (containment), 386-390
algebraic expressions, 297-300
algorithms, 126-130, 319- 322

design methods, 338-344
dry-running, 240-43

scheduling, 292
alpha testing, 422

ALU (arithmetic and logic unit), 60

American Standard Code for
Information Interchange (ASCII) code,

9-10

amplitude, sound, 13-14
analogue-to-digital converters (ADCs),

13-14

AND operator, 50-51
API (application programming

interface), 289

append ing to text files, 208- 9
application-layer protocols, 263,

264-66

application programming interface
(API), 289

arithmetic and logic unit (ALU), 60
arithmetic operations, 73, 182, 395
arrays, 144- 150, 198-201
ASCII (American Standard Code for

Information Interchange) code, 9-10
assemblers, 71, 84

assembly languages, 71-75
problem solving and, 397- 400

assignments

algorithms, 128-29, 130- 33

assembly languages, 397
constants and variab les, 181-82

-
Association for Computing Machinery

(ACM), 100-101

asymmetric key encryption, 305
atoms (Prolog), 406
attributes (object-o riented

programming), 370, 372
attributes (relational databases), 113
authentication, user, 90- 91

authorisation policies, 92
average calculation, 142-43, 168

back-end synthesis, 297
backtracking (Prolog), 411-13

backup procedures, 92
backup software, 83
Backus-Naur Form (BN F), 296

bandwidth, 25

base-10 number system, 3-4
base-16 number system, 3

base case solutions, 348
base classes (superclasses), 379-383

basic input output system (BIOS), 288
BCD (binary coded decima l)

representation, 7-8
beta testing, 422

binary coded decimal (BCD)
representation, 7-8

binary digits (bits), 3, 5

binary files, 249
binary number system, 3-4
binary search, 320-21
binary t rees, 329- 331
biometric authentication, 91

bit manipulation, 313- 14, 396
bit streaming, 24-25
bitmap files, 11-13

bits (binary digits), 3, 5
BitTorrent protocol, 267

black-box testing, 235-36
Blu-ray discs, 40
Bluetooth, 267
BNF (Backus-Naur Form), 296

Boolean algebra, 271-72, 275-79
Boolean operators, 50-51, 187-88

bootstrap programs, 288
bots, 307
broadband network connections, 22
broadcasts, 260
bubble sort, 147,149,242, 319
buffer overflow, 308

buffers, 25
built-in data types, 186-87
built-in functions, 202-6

bus networks, 259
buses, 63-65
by reference, 220, 221-22

by value, 220- 21

bytes,5

cables, 19, 20-21

CAD (computer-aided design), 47

calls, procedure, 159

-

J Index

CAM (computer-aided manufactu re), 47 comparison instructions, 73-74, 395 data protection laws, 89
capacitive touch screens, 44 compilers, 85-86, 294-300, 365-66 data redundancy, 111
carry flag, 62 composite data types, 248-49 data security, 89, 92-93
CAs (Certification Authorities), 306 compression, file, 15- 16, 83 data types
CASE statements, 192-93 computational thinking, 318-19 built in, 186- 87
CCDs (charge-coupled devices), 46 computer-a ided design (CAD), 47 user defined, 247-49
CD-RO Ms, 40 computer-aided manufacture (CAM), 47 data validation and verification, 93-94
cell (mobile) phones, 22, 268 computer graphics, 41- 42 database administrators (DBAs), 112
cellular networks, 268 Connect 4 game, 160- 67, 170 database management systems
central processing unit (CPU), 60-62, constants, 181-82 (DBMS), 112

288-89 constructors, 370 databases,111-122
Certification Authorities (CAs), 306 containment (aggregation), 386-390 dates, 187, 205-6
charge-coupled devices (CCDs), 46 context-sensitive prompts, 232-33 DBAs (database adm inistrators), 112
check bits, 94 contro l bus, 64 DBMS (database management
checksum verification, 94 control systems, 311-14 systems), 112

CIDR (classless inter-domain routing), 27 control units, 283 DDLs (data definition languages), 120
ciphertext, 304 copying values, 131 debugging, 237-38

CIR (current instruction register), 61-62 copyright, 104-5 in Pro!og, 412-:)3

circuit switching, 260-61 corrective maintenance, 243 decimal number system, 3-4

circular queues, 323 corruption, data, 93-94 decision tables, 338-39 I CISC processors, 283- 85 cost overrun, 103 declaration, constants and variables,
classes, 369, 370-76 180-82

count-controlled loops, 194-96
classless inter-domain routing (CJDR), 27 CPU (centra l processing un it), 60-62,

declarative programming languages,
357,406 clauses (Pro log), 406 288-89

client-server architecture, 23-24 critical paths, 426
decomposition, 318

defragmenter utility programs, 82 scripting and HTML, 31-33 CRTs (cathode ray tubes), 43
deliverables, 425

clock (CPU component), 60, 64 CSMA/CD, 266
de nary number system, 3- 4, 254-55

closed -loop feedback control currency values, 8, 187
derived classes (subclasses), 376, systems, 312 current instruction register (CIR), 61- 62 379-383

cluster computing, 285
design stage, 229

coax ial cab les, 19 data bus, 63-64 device drivers, 39
coding data communication systems, 259-260 device management, 80

integers, 5- 8 data definition languages (DDLs), 120 dictionaries, 334
text, 9-10 data dependency, 111 digital certificates, 305-6

coding stage, 229 data dictionaries, 122 digital rights management (DRM), 105
collapsed code blocks, 233-34 data integrity, 89, 110- 11 digital signatures, 305- 6 collisions, 332 data manipulation languages (DMLs), direct-access files, 250 colour representation, 11- 12 121
combinat ional circuits, 274 data modelling, 318

directives, 71

disaster recovery contingency comments (in programs), 185 data movement instructions, 72-73, 395 planning, 90
compact discs, 40 data privacy, 89, 110- 11

•

Index

disk drives, magnetic see hard disk
drives

DLLs (dynamic link libraries), 84
DMLs (data manipulation languages),

121
DNS (doma in name system), 30-31
domain name system (DNS), 30-31
DRAM (dynamic RAM), 38
drives (storage devices), 39- 41

dry-running, 240-43
duplex mode, 260
DVDs, 40
dynamic link li braries (DLLs), 84
dynamic RAM (DRAM), 38
dynamic syntax checks, 233

electrically erasable PROM (EEPROM),
38

email protocols, 265
encapsulation, 369

encryption, 304- 5
end-of-file (EoF) markers, 209- 10

entity-relationsh ip modelling, 114-18

enumerated data types, 247
EoF (end -of-file) markers, 209-10

erasable PROM (EPROM), 38

errors
detection, 81,421

prevention, 424

Ethernet protocol, 266-67
ethics, 100-107
exception handl ing, 364- 65

executable code, 84
execution stage, 230
expanded code blocks, 233- 34

exponent, 251- 53
expressions, algebraic, 297-300
exrad (exponent), 251- 53

factorial funct ions, 348
facts (Prolog), 407-8

FCFS (first come first served), 292

feedback control, 311- 12
fetch-decode-execute cycle, 65-66, 284

fibre-optic cables, 19, 21
fields, 113
FIFO (first-in first-out), 292

fi le access, 250-51
file management, 81
file organisation, 249-251

file processing, 359-364

file size
bitmaps, 12- 13
compression, 15- 16, 83

sound, 14
Fi le Transfer Protoco l (FTP), 265- 66

finite state machines (FSMs), 341

firewalls, 91
first come first served (FCFS), 292
first-in first-out (FIFO), 292
fixed -point representation, 251-52

flags, 62
'flash' memory, 41
flip -flop circui ts, 274-75
floating-point representation, 251-52,

254-56
flowcharts, 128
for loops, 139, 194-96

foreign keys, 114
formatting util ity programs, 82

fragmentation, disk, 40
freeware, 106
frequency, sound, 13-14
front-end analysis, 294-96
FSMs (finite state machines), 341
FTP (File Transfer Protocol), 265-66

fu ll adder circuits, 274
functions, 162-63, 167, 215-18

passing parameters to, 218-19

Gantt charts, 426- 27

garbage col lection, 386

gateways, 23
general case solutions, 348

geostationary-Earth-orbit (GEO)
satellites, 22

getters, 370
gibi prefix, 13
global variables, 167, 216- 17

goals (Pro log), 406
grammar rules, 296
graphical user interfaces (GU ls), 42

graphics plotters, 47
guided media, 20
GU ls (graph ical user interfaces), 42

ha lf adder circuits, 273, 276-77

half duplex mode, 260

halftoning, 42
Handshake Protocol, 307

hard disk drives

mirro ring, 92 -
technology, 39-40
utility programs, 82

hash tables, 332-33
hexadecimal number system, 3, 4

'hot sites,' 90
HTML (HyperText Markup Language),

31- 32
HTTP (HyperText Transfer Protocol),

264-65
HTTPS, 307

hubs, 262
Huffman coding, 15
HyperText Markup Language (HTM L),

31-32
HyperText Transfer Protocol (HTTP),

264- 65

IDE (integrated development
envi ronment), 230-34

identifier tables, 133
IEEE (Institute of Electrical and

Electronics Engineers), 100- 101

IEEE 802.3 standard, 266- 67

IF.THEN statements, 188

Index

IF.THEN .ELSE statements, 129, 134- 36,
189-190

images, 10-13

IMAP (Internet Message Access
Protocol), 265

imperative programming languages,
357,406

INCREMENT statements, 129

index register (IX), 61- 62

index tables, 122

indirect addressing, 400

infix expressions, 297- 300

infrared transmission, 20
inheritance, 376-384

inkjet printers, 45-46

input/output (1/0) system, 288- 89
input statements

algorithms, 128-29, 132-33

assembly languages, 74-75, 396,
399

high-level languages, 184- 85

insertion sort, 319- 320

instantiation , 370,375,383

in Prolog, 411-13

Institute of Electrical and Electronics
Engineers (IEEE), 100- 101, 266- 67

instruction sets, 395- 96

integers, coding, 5- 8

integrated development environment
(IDE), 230-34

integration testing, 422

interlaced encoding, 15

intermediate codes, 296
Internet

ethical issues, 105

technology, 21- 22

Internet Message Access Protocol
(IMAP), 265

Internet Protocol (IP), 264

Internet Service Providers (ISPs), 21

interpreters, 85-86, 365-66

interrupt handling, 66- 67, 284

interrupt service routine (ISR)
programs, 67

interrupts, 291

intrusion detection systems, 91

IP (Internet Protocol), 264

1Pv4 addressing, 26-29

1Pv6 addressing, 30

ISPs (Internet Service Providers), 21

ISR (interrupt service routine)
programs, 67

iteration see loops

IX (index register), 61-62

Jackson structured programming
(JSP), 340-41

Java,86

JavaScript, 32

JK flip-flop circuits, 275

JSP (Jackson structured
programming), 340- 41

jump instructions, 73- 74, 395

Karna ugh maps (K-maps), 277- 79

kernel mode, 289-290

keyboards, 44-45

keyloggers, 308
keypads, 44-45

kibi prefix, 13

knowledge bases, 406,409, 410,411

labels, 397

language translators, 84- 86, 229,
294-300

LANs (local area networks), 21, 266-67
laser printers, 46

latch circuits, 274- 75

LCDs (liquid -crystal displays), 43

LEDs (light-em itting diodes), 43

LEO (low-Earth-orbit) satellites, 22

lexical analysis, 295

library programs, 83-84

licensing, software, 106

light-emitting diodes (LEDs), 43
linear search, 146

linked lists, 323- 28

liquid-crystal displays (LCDs), 43

lists (Prolog), 414-16

local area networks (LANs), 21, 266-67
local variables, 167, 216-17

logic bombs, 307

logic circuits, 52- 56, 272-75, 276- 77

logic errors, 234

logic expressions, 51, 53-56

logic gates, 52-53, 56

logic programming languages, 406

logic propositions, 50

logic statements, 134-38

loops

algorithms, 128-29, 138- 144

assembly lan·guages, 398

high -level languages, 194- 98

lossless compression, 15

lossy compression, 15

loudspeakers, 47-48

low-Earth-orbit (LEO) sate llites, 22

low-level programming languages,
357, 395-401

MAC addresses, 266- 67

machine code instructions, 70

magnetic storage media see hard disk
drives

maintenance, 243- 44

malware, 307- 8

mantissa, 251-54

MAR (memory address register), 61

massively parallel computers, 285

MBR (memory buffer register), 61-62

MDR (memory data register), 61- 62

mebi prefix, 13

media streaming, 24- 25

medium-Earth-orbit (MEO) satellites, 22

memory, 37- 38, 288- 89

memory address register (MAR), 61

I

Index

memory buffer register (M BR), 61-62

memory data register (MDR), 61-62

memory leakage, 386

memory management, 80, 292- 93

MEO (medium-Earth-orbit) satellites, 22

mesh networks, 259
methods, 370, 372, 375, 383-84

mice, 42-43

microphones, 47

microwave transmission, 20

middleware, 23-24

milestones, 425
MIMD (Multip le Instruction Multiple

Data stream), 285

mirroring, disk, 92

MISD (Mu ltiple Instruction Single Da ta
stream), 285

mobile (cel l) phones, 22, 268

modules, 159-167

monitoring systems, 311- 14

multicasts, 260

multi-functional devices, 46

multimedia

files, 15-16, 25
streaming, 24-25

multi -programming, 288

NAG (Numerical Algorithms Group)
li brary, 83

name resolution, 30-31

NAND memory, 41
NAT (network add ress translation), 29

negative flag, 62
nested IF statements, 136, 190- 91

nested loops, 143-44, 149- 150

network add ress translation (NAT), 29

network interface cards (NI Cs), 261, 266

network-layer protocols, 263

nibbles, 7, 8
NI Cs (network interface cards), 261,266

nodes, 323

non-composite data types, 247-48

normalisation, 118- 120, 253-54

NOT operator, 50-51

null pointers, 323

number-guessing game, 135, 140-42,
168,241

numbers

coding, 5-8

held as strings, 204

output statements, 204-5

random, 205
representation systems, 3-4, 254-55

rounding, 203

truncating, 204

Numerical Algorithms Group (NAG)
li brary, 83
Nyquist's theorem, 14

object code, 84

object-oriented design, 370

object-oriented programming (OOP),
357, 369-390

objects, 370-71
OLEDs (organ ic light-emitting diodes),

44
one-dimensional arrays, 144-49,

199-200

one's comp lement representation, 5

opcodes, 70

open source software, 106

operating systems

activities, 79-81

purpose, 288-290

security, 308

optical storage media , 40-41

optimisation, 297

OR operator, 50-51
organic light-emitting diodes (OLEDs),

44

output statements

algor ithms, 128- 29, 132- 33

assembly languages, 74-75, 396,
399

high-level languages, 183-84,
204-5

overflow flag, 62

ownership, 104-5

P2P (peer-to -peer) file sharing, 105,267

packet switching, 261

parallel processing, 285

parameters, 167, 218-223

parity bits, 94
parity block checks, 94- 95

Pascal/Delphi Console Mode, 179- 180

passwords, 90, 308
pattern recognition, 319

PCBs (process control blocks), 290- 91

PCT (projective capacitive touch)
screens, 44

peer-to-peer (P2P) file sharing, 105, 267

PERT charts, 425- 26

pharmi ng, 308

phishing, 308

phosphors, 43

PHP, 33,122
picture elements (pixels), 11-12

pipelining, 284

piracy, 105
pixels (picture elements), 11-12

plaintext, 304

platters, disk, 39
point-to-point networks, 259

pointer data types, 247-48

pointers, 323
pointing devices, 42- 43

polymorphism, 384-86
POP3 (Post Office Protocol version 3),

265
portable storage devices, 91

post-condition loops, 196-97

Post Office Protocol version 3 (POP3),
265

- -

/ Index

precision, 253-54 pyramid-drawing program, 156-160, ring networks, 259
pre-condition loops, 197-98 169- 171,221-26,423-24 RISC processors, 283-85
predicates (Pro log), 407, 410 Python, 177-78 rogue values, 139-140
prettyprinting, 230- 32 ROM (read-only memory), 38
primary keys, 114 queries (Prolog), 406 round-robin algorithms, 292
printers, 45-47 queues, 322-23 rounding numbers, 203
priority-based scheduling algorithms, routers, 22-23, 262, 264

292 radio transmission, 20 RPN (Reverse Polish Notation), 297-300
privacy, data, 89, 110-11 RAM (random-access memory), 38 rules of precedence, 182
private properties, 370, 372 random-access file processing, 362-64 rules (Prolog), 406, 410-11
privileged mode, 289-290 random-access files, 250 run-length encoding, 15
problem-solving stage, 229 random-access memory (RAM), 38 run-time errors, 234, 364-65
problem statements, 50, 53-54 random files, 359 running totals, 142-43
procedures, 159,213-15 random number generators, 205

passing parameters to, 220- 23 read heads, 39 satellites, 22
process contro l blocks (PCBs), 290-91 read -only memory (ROM), 38 scanners, 46
process scheduling, 290- 92 read-write heads, 39 scheduling algorithms, 292
processes,80,290- 91 reading from text files, 208 screen displays, 43-44
program counter, 61 real numbers, 251-56 sectors, disk, 39-40
program development cycle, 229-230 rea l-time programming, 312- 13 Secure Socket Layer (SSL), 307 I program generators, 421 record data types, 248 security
program-hardware interfaces, 80 records, 113, 249,357- 59,369 data, 89, 92-93
program libraries, 83-84, 421 recursion databases, 122
programmable ROM (PROM), 38 declarative languages, 413-14 systems, 90- 92
programming languages, 177-180 imperative languages, 348- 354 security tokens, 91
programming parad igms, 357 recursive routines, 348 selection
progressive encoding, 15 recursive subroutines, 349-353 algorithms, 128-29, 136-37
project management, 424-27 redundancies, in decision tables, 338- 39 assembly languages, 398
projective capacitive touch (PCT) redundancy, data, 111 high-level languages, 188- 194

screens, 44 reference, by, 220, 221-22 semantic analysis, 295- 96
Pro log, 406-16 registe r transfer notation, 66 sensors, 311
PROM (programmable ROM), 38 registers, 61-62 sequences,128- 29,132-33
protoco ls, data transmission, 262-66 relat iona l databases, 113-122 sequential circuits, 274-75
proxy servers, 23 relational operators, 134 sequentia l file processing, 359-361
pseudocode,128,170-71 relations (databases), 113 sequentia l files, 250
PSTNs (publ ic switched telephone relative addressing, 400 serial files, 249-250 networks), 21

repetition see loops servers, 23 publ ic good, 102-4
representation of numbers, 3- 4, 254-55 set data types, 248- 49 public methods, 370,372
resistive touch screens, 44 SET statements, 129 pub lic switched telephone networks
resource management, 80, 288-89 setters, 370 (PSTNs), 21
Reverse Polish Notation (RPN), 297-300 shareware, 106

•

Index

shunting-yard algorithm, 299
sign and magnitude representation, 5-6

significand (mantissa), 251- 52

SIMD (Single Instruction Multiple Data
stream), 285

Simple Mail Transfer Protocol (SMTP),
265

simplex mode, 260

SISD (Si ngle Instruction Single Data
stream), 285

slices, 203

SM TP (Simple Mai l Transfer Protocol),
265

software development, 229- 244, 421-27

Software Engineering Code of Ethics,
100-101

software licensing, 106

solid-state storage media, 41

sound

input and output, 47-48

representation, 13-14

speakers, 47- 48

spyware, 307
SQLs (structured query languages),

120-22

SR (status registe r), 61- 62

SR flip-flop circuits, 274-75

SRAM (stat ic RAM), 38

SSL (Secure Socket Layer), 307

stacks,299-300,322

star topology, 260
sta rt pointers, 323

state-transition diagrams, 341-44

state-transition tables, 341

static RAM (SRAM), 38

status register (SR), 61-62

stepwise refinement, 156-58

streaming media, 24-25

strings, 186, 202, 204

structure charts, 167- 171

structured English, 128
structured query languages (SQLs),

120- 22

stub testing, 235

sub-netting, 27-29

subclasses (derived classes), 376,
379- 383

subroutines

bui lt-in functions, 202-6

passing parameters to, 218
recu rsive, 349- 354

terminology, 213

superclasses (base classes), 379- 383

swapping values, 131- 32

SWI-Prolog, 406

switches, 262

symbol tables, 295

symbolic addresses, 397

symmetric key encryption, 304-5

syntax analysis, 295, 298

syntax diagrams, 296
syntax errors, 229- 230

syntax trees, 298

system bus, 63-65

system security, 90-92
system software, 79-86, 288-300

TCP (Transm ission Control Protocol),
263-64

TCP/IP protocol suite, 262-66

test data, 236, 422-24

test plans, 422-24

testing, software, 234-240, 421- 24

text, coding, 9- 10

text files, 207- 10, 249

threads, 291
three dimensional (30) printers, 47

three- input problems, 278-79

times, 187, 205-6

TLS (Transport Layer Security), 307

tokens, security, 91

touch screens, 44

trace tables, 240- 43

translators, language, 84-86, 229,
294-300

transmission, data, 93-94
Transmission Control Protocol (TCP),

263-64
transmission media, 19- 21

transport- layer protocols, 263

Transport Layer Security (TLS), 307

Trojan horses, 307

truncating numbers, 204

truth tables, 51, 54-56, 275- 79

tuples, 113-14

twisted pair cables, 19
two-dimensional arrays, 149-150,

200-201
two's complement representations,

5-7, 344

unguided media , 20

unicasts, 260

Unicode, 10
universal resource allocators (URLs), 30

universal serial bus (USB), 64- 65

updating values, 131
URLs (universal resource allocators), 30

USB (universal serial bus), 64-65

user authentication, 90-91

user-defined data types, 247-49

user interfaces, 289

user-system interfaces, 79

utility programs, 81-83

val idation, data, 93

value, by, 220 - 21

values, 130-32

variables
in Pro log, 407, 408-9

programming, 180-81, 182

sto rage locations, 130-32

VB.NET (Visual Basic Console Mode),
178-79

vector graphics, 11

verification, data, 93

video, representation, 14- 15

-- - -- --- -~--~·-

Index

virtua l machine, 293-94
virtual memory, 292- 93
virus checkers, 83, 91
viruses, 307

Visual Basic Console Mode (VB .NET),
178- 79

von Neumann model, 60

WANs (wide area networks), 21
waves, sound, 13-14

web servers, 24
wh ite-box testing, 236-37
w ide area networks (WANs), 21
Wi Fi hotspots, 22

WiFi networks, 267- 68

WiMAX protocol, 268
w ireless networks, 267- 68
wire less t ransmission, 20-21
words (data), 64

Wor ld Wide Web (WWW)

defin it ion, 22
eth ical issues, 105

worms, 307
write heads, 39

writi ng to text files, 207
WWW see World Wide Web (WWW)

•

- - -

Acknowledgements ;

Acknowledgements

The authors and publishers acknowledge the following sources of copyright
material and are grateful for the permissions granted. While every effort has been
made, it has not always been possible to identify the sources of all the material
used, or to trace all copyright holders. If any omissions are brought to our notice,
we will be happy to include the appropriate acknowledgements on reprinting.

p. 101-ACM/IEEE Software Engineering Code of Ethics, adapted with permission.
www.acm.org/about/se-code
pp. 107-108, 316 questions from Cambridge International AS and A Level
Computer Science 9608 Specimen papers 1 and 3 are reproduced by permission
of Cambridge International Examinations

Images:
p. 2 polygraphus/Shutterstock; p. 18 dgbomb/Shutterstock; p. 19 Galushko
Sergey/Shutterstock; p. 19 Solomonkein/Shutterstock; p. 36 Pingingz/
Shutterstock; p. 47 photo by Fran k Wojciechowski, used with permission of
Michael McAlpine and Princeton University; p. 49 agsandrew/Shutterstock; p. 59
Raimundas/Shutterstock; pp. 69, 155,212,356,405 Mclek/Shutterstock; p. 78
Toria/Shutterstock; p. 88 deepadesigns/ Shutterstock; p. 99 R. Gino Santa Maria/
Shutterstock; p. 109 kubais/Shutterstock; pp. 125, 258 bluebay/Shutterstock;
p. 127 Thinglass/Shutterstock; p. 160 digitalreflections/Shutterstock; pp. 176,
246 Kheng Guan Toh/Shutterstock; p. 228 wongwean/Shutterstock; p. 270
James Steidl/Shutterstock; p. 282 Lukas Rs/ Shutterstock; pp. 287,310, 337
kentoh/Shutterstock; p. 303 jijomathaidesigners/ Shutterstock; p. 317 mistery/
Shutterstock; p. 347 Titima Ongkantong/Shutterstock; p. 368 Mike McDonald/
Shutterstock; p. 394 Tashatuvango/Shutterstock; p. 420 Mario7/ Shutterstock

Cambridge International AS and A Level
Computer Science
Coursebook

Sylvia Langfield and Dave Duddell _

Cambridge International AS and A Level Computer Science provides
an accessible guide to theoretical and practical ski lls, with a clear
progression of tasks that consolidate and develop knowledge.

It offers students detailed descriptions of the concepts, reinforced with
examples that outline complex subject matter in a clear way. Alongside
fundamental definitions, higher level programming skil ls are developed
through the explanation of processes and strengthened through
practical exam-style questions for students to attempt.

• Examples of all three syllabus-recommended codes - Visual Basic,
P hon and Pascal/ Delphi

• C ear coverage i'n four units, structured to facilitate progress from
arne al skills to advanced knowledge

• a e and end-of-unit exam-style questions with answers
e supporting Teacher's Resource

978-1-107-54754-4
f3ld and Dave Dudde/1 978-1-316-60985-9

ridge

= ::~ ~a. ns prepares school students for life,
c s· y and a lasting passion for
e ..\ssessment, a department of the

ent of the University of
commi ment to providing the

ha · last their entire lifetime.
<: • -~ Cai bridge In ema ional

~oduce high-quality endorsed
r Carr ndge eachers and

ria ·ans visrt

	Scan1 (20 files merged).pdf (p.1-20)
	Scan21 (20 files merged).pdf (p.21-40)
	Scan41 (20 files merged).pdf (p.41-60)
	Scan61 (20 files merged).pdf (p.61-80)
	Scan81 (20 files merged).pdf (p.81-100)
	Scan101 (20 files merged).pdf (p.101-120)
	Scan121 (20 files merged).pdf (p.121-140)
	Scan141 (20 files merged).pdf (p.141-160)
	Scan161 (20 files merged).pdf (p.161-180)
	Scan181 (20 files merged).pdf (p.181-200)
	Scan201 (20 files merged).pdf (p.201-220)
	Scan221 (20 files merged).pdf (p.221-240)
	Scan241 (20 files merged).pdf (p.241-260)
	Scan261 (20 files merged).pdf (p.261-280)
	Scan281 (20 files merged).pdf (p.281-300)
	Scan301 (20 files merged).pdf (p.301-320)
	Scan321 (20 files merged).pdf (p.321-340)
	Scan341 (20 files merged).pdf (p.341-360)
	Scan361 (20 files merged).pdf (p.361-380)
	Scan381 (20 files merged).pdf (p.381-400)
	Scan401 (20 files merged).pdf (p.401-420)
	Scan421 (20 files merged).pdf (p.421-440)
	Scan441 (11 files merged).pdf (p.441-451)

