wim CAMBRIDGE
@B International Examinations

=8> CAMBRIDGE

“H> UNIVERSITY PRESS

Endorsed for full syllabus coverage

Sylvia Langfield and Dave Duddell

iqriii

E

I

=
!
|

Cam brldge in"ternatloﬁ_; A i”and A Level

- Comp uter 3

Smence

la)(ﬂv /-u,% MG‘J)

Sylvia Langfield and Dave Duddell
Cambridge International
AS and A level

Computer
Science

Coursebook

EE CAMBRIDGE
€5y UNIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: education.cambridge.org
© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library
ISBN 978-1-107-54673-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate. Information regarding prices, travel timetables, and other

factual information given in this work is correct at the time of first printing but

Cambridge University Press does not guarantee the accuracy of such information

thereafter.

NOTICE TO TEACHERS IN THE UK

Itisillegal to reproduce any part of this work in material form (including

photocopying and electronic storage) except under the following circumstances:

(i) where you are abiding by a licence granted to your school or institution by the
Copyright Licensing Agency;

(i) where no such licence exists, or where you wish to exceed the terms of a licence,
and you have gained the written permission of Cambridge University Press;

(iii) where you are allowed to reproduce without permission under the provisions
of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for
example, the reproduction of short passages within certain types of educational
anthology and reproduction for the purposes of setting examination questions.

The past paper questions on pages 107-108 and 316 are taken from the 9608 Specimen papers 1 and 3 respectively
and are reproduced with the permission of Cambridge International Examinations.

All other examination-style questions and comments that appear in this book were written by the authors.

Contents

Contents

Introduction v

PART 1 THEORY FUNDAMENTALS

Chapter 1 Information representation 2
Chapter 2 Communication and Internet technologies 18
Chapter 3 Hardware 36
Chapter 4 Logic gates and logic circuits 49
Chapter 5 Processor fundamentals 59
Chapter 6 Assembly language programming 69
Chapter 7 System software - 78
Chapter 8 Data security, privacy and integrity 88
Chapter 9 Ethics and ownership 99
Chapter 10 Database and data modelling 109

PART 2 FUNDAMENTAL PROBLEM-
SOLVING AND PROGRAMMING SKILLS

Chapter 11 Algorithm design and problem solving 125
Chapter 12 Stepwise refinement and structure charts 155
Chapter 13 Programming and data representation 176
Chapter 14 Structured programming 212
Chapter 15 Software development 228
PART 3 ADVANCED THEORY
Chapter 16 Data representation 246
5 Chapter 17 Communication and Internet technologies 258
Chapter 18 Boolean algebra and logic circuits ' 270
Chapter 19 Processor and computer architecture 282
Chapter 20 System software 287
Chapter 21 Security 303
Chapter 22 Monitoring and control systems 310

Cambridge International AS and A level Computer Science

AND PROGRAMMING SKILLS

Chapter 23 Computational thinking and problem-solving
Chapter 24 Algorithm design methods

Chapter 25 Recursion

Chapter 26 Further programming

Chapter 27 Object-oriented programming (OOP)

Chapter 28 Low level programming

Chapter 29 Declarative programming

Chapter 30 Software development

Glossary
Index

Acknowledgements

PART 4 FURTHER PROBLEM-SOLVING

317
337
347
356
368
394
405
420

430
434
442

Introduction

Introduction

This full-colour, illustrated textbook has been written by experienced authors specifically for
the Cambridge International AS and A Level Computer Science syllabus (9608).

The presentation of the chapters in this book reflects the content of the syllabus:

* The book s divided into four parts, each of which is closely matched to the corresponding
part of the syllabus.

* Each chapter defines a set of learning objectives which closely match the learning
objectives set out in the syllabus.

* Thesyllabus defines two assessment objectives: A01 Knowledge with understanding and
A02 Skills. Papers 1 and 3 have a major focus on A01 and Papers 2 and 4 have a major
focus on A02. The chapters in Parts 1 and 3 have been written with emphasis on the
promotion of knowledge and understanding. The chapters in Parts 2 and 4 have been
written with an emphasis on skill development.

The chapters in Parts 1 and 3 have a narrative. We would encourage students to read the
whole chapter first before going back to revisit the individual sections.

The chapters in Parts 2 and 4 contain many more tasks. We would encourage students to

approach these chapters step-by-step. Whenever a task is presented, this should be carried
out before progressing further.

In particular, Chapter 11 (Algorithm design and problem-solving) may be worked through in
parallel with Chapter 13 (Programming and data representation). For example, Task 13.03

is based on Worked Example 11.03. After studying this worked example, students may wish
to cover the first part of Chapter 13 and write the program for Task 13.03. This will give the
student the opportunity to test their understanding of an algorithm by implementing it in
their chosen programming language. Then further study of Chapter 11 is recommended
before attempting further tasks in Chapter 13.

| ci e gt SR LS IR, L BEE LSt e R e e . i caam s . o 1 DI AR | Sl i O R i 1 , ' 4

Chapter - each chapter begins with
a short list of the learning objectives
_ and concepts that are explained in it.

Learning objectives
By the end of this chapter you should be able to:

= ing of the basis of dif

L] and

systems encoded
L} and be able

character data inits internal binary form

» show understanding of how digital data can be
ling of how data for a bi

vector graphic image is encoded

Cambridge International AS and A level Computer Science

How to use this book: a guided tour

Key Term - clear and
straightforward explanations of
the most important terms in each
chapter.

Byte: a group of eight bits treated as a single unit

Task - exercises

/f fo
TASK 1.01

Convert the denary number 374 into a hexadecimal number.
Convert the hexadecimal number 3A2C to a denary number.

Discussion Point — discussion points
«. intended for class discussion.

\

Discussion Point
What is the two’s complement of the binary value 10007 Are you surprised by this?

Extension Question:
Graphic files can be stored in a number of formats. For example, JPEG, GIF, PNG and TIFF are
just a few of the possibilities. What compression techniques, if any, do these use?

Tip - quick notes to highlight
key facts and important
points.

0

For multiples of bytes, the terminology used has recently changed. Traditionally, computer
scientists have used the terminology kilobyte, megabyte, gigabyte etc. in a way that conflicted
with the definition of these prefixes established by the International System of Units (SI).
Following the SI convention, one kilobyte would represent 1000 bytes. Computer scientists
have used one kilobyte to represent 1024 bytes. There have been a number of variations on
how this was written, for example Kbyte, KB or kB but the basic contradiction remained. In
order to resolve this unsatisfactory situation, the International Electrotechnical Commission
(IEC) in 1998 proposed a new set of definitions for such quantities. 1024 bytes is now identified
as one kibibyte where the kibi can be considered as representing kilobinary. This proposal has
been accepted by other international standards bodies.

test their skills.

\

Question - questions
for the student to test
their knowledge and
understanding.

rthe student to

Question:

Construct a partial drawing list for the graphic shown in figure 1.06. You can take
measurements from the image and use the bottom left corner of the box as the origin of a
coordinate system. You can invent your own format for the drawing list.

Extension Question - extended questions for
consideration of more advanced aspects or topics
beyond the immediate scope of the Cambridge
International AS and A Level syllabus.

Worked Example - step-by-step examples
of solving problems or implementing specific
techniques.

WORKED EXAMPLE 1.01

Converting a negative number expressed in two’s complement form to the
corresponding denary number.

Consider the two's complement binary number 10110001

Method 1. Convert to the corresponding positive binary number then find the denary
value

Converting to two’s complement leaves unchanged the 1in the least significant bit
position then changes all of the remaining bits to produce 01001111

Abinary code or a binary number can be documented as a hexadecimal number.

Internal coding of signed integers is usually based on a two’s complement representation.

BCD is a convenient coding scheme for single denary digits.

ASCll and Unicode are standardised coding schemes for text characters.

An image can be stored either in a vector graphic file or in a bitmap file.

An ADC works by sampling a continuous waveform.

Lossless compression allows an original file to be recovered by a decoder; lossy compression
irretrievably loses some information.

Summary Checklist - at the end of each chapter
to review what the student has learned.

Exam-style Questions

1 Afile contains binary coding. The following are two successive bytes in the file:

| 10010101 | 00110011 |

a One possibility for the information stored is that the two bytes together represent one unsigned integer binary

number.

i Givethe denary number corresponding to this. Show your working. [2]

i Give the hexadecimal number corresponding to this. Show your working. _ (2]
b Give one example of when a hexadecimal representation is used. [1]

Exam-style Questions - Exam-style questions
for the student to test their skills, knowledge and
understanding at the end of each chapter

Learning objectives
By the end of this chapter you should be able to:

show understanding of the basis of different number
systems

show understanding of, and be able to represent,
character data in its internal binary form

show understanding of how data for a bitmapped or
vector graphic image is encoded

art 1 Theory Fundamentals

show understanding of how sound is represented and
encoded

m show understanding of the characteristics of video streams

show understanding of how digital data can be
compressed.

p PiaR) et

Chapter 1: Information Representation

1.01 Number systems

As a child we first encounter numbers when learning to count. Specifically we learn to count
using1,2,3,4,5,6,7,8,9, 10. These are natural numbers expressed in what can be described
as the denary, decimal or base-10 system of numbers. Had we learned to count using 0, 1, 2,
3,4,5,6,7,8,9 we would have more clearly understood that the number system was base-10
because there are 10 individual, distinct symbols or digits available to express a number.

A little later we learn that the representation:of aznumberhastheleastsignificantdigitatthe
right=handwend: For example, writing a denary number as 346 has the meaning:

3x102+4x10'+6x 10°

All computer technology is engineered with components that represent or recognise only
two states. For this reason, familiarity with the binary number system is essential for an
understanding of computing systems. iheibinarymumbersystemnvisiaibase=2:systemmwhich
uses just two symbols, 0 and 1. These binary digits are usually referred to as ‘bits’.

All data inside a computer system are stored and manipulated usingla binary code. However,
if there is ever a need to document some of this binary code outside of the computer system
itis not helpful to use the internal code.

Instead, it is far better to use a hexadecimal representation for documentation purposes.
Whether or not a code represents a binary number, it can be treated as such and converted
to the corresponding hexadecimal number. This makes the representation more compact
and, as a result, more intelligible.

Hexadecimal numbers are in the base-16 system and therefore require 16 individual symbols
to represent a number. The symbols chosen are 0-9 supplemented with A-F. A few examples
of the hexadecimal representation of binary numbers represented by eight bits are shown in

Table 1.01.
Binary Hexadecimal Denary
00001000 08 8
00001010 0A 10
00001111 OF 15
11111131 EF 255

Table 1.01 Hexadecimal representations of binary numbers and the denary values

Note that each grouping of four bits is represented by one hexadecimal symbol. Also note
that it is commonpractice toiincludeleading zerosinahexadecimalnumber when used in
this way.

Question 1.01
Does a computer ever use hexadecimal numbers?

Converting between binary and denary numbers

To convert a binary number to a denary number the straightforward method is to sum the
individual position values knowing that the least significant bit represents 2°, the next one 2!
and so on. This is illustrated by conversion of the binary number 11001 as shown in Figure 1.01.

L i

Pravin

Pravin

Pravin

Cambridge International AS and A level Computer Science

Position values 2*=16 23=8 22=4 2'=2 2%9=1
Binary digits | 1 A T 0 | 0 1

Figure 1.01 Position values for a binary number

Starting from the least significant bit, the denary equivalentis 1+0+0+8 + 16 = 25.

An alternative method is to use the fact that 1 x 16 is equal to 2 x 8 and so on. To carry out
the conversion you start at the most significant bit and successively multiply by two and add
the result to the next digit:

1% 2= .2
add2tol,then 2 x 3 = 6
add6to0,then 2 x 6 =12
add12to0,then 2 x 12 = 24

add 24 to 1 to give 25.

When converting a denary number to binary the procedure is successjve division by two
with the remainder noted at each stage. The converted number is then given as the set of
remainders in reverse order.

This is illustrated by the conversion of denary 246 to binary:

246 + 2 — 123 with remainder 0
| 123 + 2 = 61 withremainder1l
| 61 = 2 = 30 withremainder1l
| 30 + 2 = 15 with remainder0

15 =+ 2 — 7 withremainder1l
- 7 + 2 — 3 withremainder1l
| 3+ 2 — 1 withremainder1l

1+ 2 —> 0 withremainder1l

Thus the binary equivalent of denary 246 is 11110110. As a check that the answer is sensible,
you should remember that you are expecting an 8-bit binary number because the largest
denary number that can be represented in seven bits is 27 - 1 which is 127. Eight bits can
represent values from 0 to 28 - 1 which is 255.

Converting hexadecimal numbers

To convert a hexadecimal number to binary, each digit is treated separately and converted
into a 4-bit binary equivalent, remembering that F converts to 1111, E converts to 1110 and
so on. Subsequent conversion of the resulting binary to denary can then be done if needed.

To convert a binary number to hexadecimal you start with the four least significant bits

and convert them to one hexadecimal digit. You then proceed upwards towards the most
significant bit, successively taking groupings of four bits and converting each grouping to the
corresponding hexadecimal digit.

Itis possible to convert a denary number directly to hexadecimal but it is easier to convert
first to binary before completing the conversion.

TASK1.01
Convert the denary number 374 into a hexadecimal number.
Convert the hexadecimal number 3A2C to a denary number.

Chapter 1: Information Representation

1.02 Internal coding of numbers

: The discussion here relates only to the coding of integer values. The coding of non-integer
numeric values (real numbers) is considered in Chapter 16 (Section 16.03).

» Itis convenient at this point to emphasise that the coding used in a computer system is

[almost exclusively based on bits being grouped together with eight bits representing a byte.
Abyte, or a group of bytes, might represent a binary value but equally might represent a

k code. For either case, the right-hand bit is referred to as the least significant and the left-hand
bit as the most significant or top bit. Furthermore, the bits in a byte are numbered right to left
starting at bit 0 and ending at bit 7.

]
F
Byte: a group of eight bits treated as a single unit
Coding for integers

Computers have to store integer values for a number of purposes. Sometimes the
requirement is only for an unsigned integer to be stored. However, in many cases a signed
integer is needed where the coding has to identify whether the number is positive or
negative.

An unsigned integer can be stored simply as a binary number. The only decision to be made
is how many bytes should be used. If the choice is to use two bytes (16 bits) then the range of
values that can be represented is 0 to 216 - 1 which is 0 to 65535.

If a signed integer is to be represented, the obvious choice is to use one bit to represent
the + or - sign. The remaining bits then represent the value. This is referred to as ‘sign and
magnitude representation’. However, there are a number of disadvantages in using this

! format.

4

The approach generally used is to store signed integers in two’s complement form. Here we
need two definitions. The one’s complement of a binary number is defined as the binary
number obtained if each binary digit is individually subtracted from 1 which, in practice,
means that each 0 is switched to 1 and each 1 switched to 0. The two’s complement is
defined as the binary number obtained if 1 is added to the one’s complement number.

One’s complement: the binary number obtained by subtracting each digit in a binary number from 1
Two’s complement: the one’s complement of a binary number plus 1

If you need to convert a binary number to its two’s complement form you can use the
method indicated by the definition but there is a quicker method. For this you start at the
least significant bit and move left ignoring any zeros up to the first 1 which is also ignored.
Any remaining bits are then changed from 0 to 1 or from 1 to 0.

For example, expressing the number 10100100 in two’s complement form leaves the right-
hand 100 unchanged then the remaining 10100 changes to 01011 so the result is 01011100.

The differences between a sign and magnitude representation and a two’s complement
representation are illustrated in Table 1.02. For simplicity we consider only the values that
can be stored in four bits (referred to as a ‘nibble’).

YT T W T X AT T ey, .

Cambridge International AS and A level Computer Science

Signed denary numberto | Sign and magnitude Two’s complement
be represented representation representation
+7 0111 0111

+6 0110 0110

+5 0101 0101

+4 0100 0100

+3 0011 0011

+2 0010 0010

+1 0001 0001

+0 0000 0000

-0 1000 Not represented
=1 1001 110

-2 1010 1110

=3 1011 1101

-4 1100 1100

=5 1101 1011 -

-6 1110 1010

=4 111 1001

-8 Not represented 1000

Table 1.02 Representations of signed integers

There are several points to note here. The first is that sign and magnitude representation has
a positive and a negative zero which could cause a problem if comparing values. The second,
somewhat trivial, point is that there is an extra negative value represented in two’s complement.

The third and most important point is that the representations in two’s complement are
such that starting from the lowest negative value each successive higher value is obtained by
adding 1 to the binary code. In particular, when all digits are 1 the next step is to roll over to
an all-zero code. This is the same as any digital display would do when each digit has reached
its maximum value.

It can be seen that the codes for positive values in the two’s complement form are the same
as the sign and magnitude codes. However, this fact rather hides the truth that the two’s
complement code is self-complementary. If a negative number is in two’s complement form
then the binary code for the corresponding positive number can be obtained by taking the
two’s complement of the binary code representing the negative number.

TASK 1.02
Take the two’s complement of the binary code for -5 and show that you get the code for +5.

WORKED EXAMPLE 1.01

Converting a negative number expressed in two’s complement form to the
corresponding denary number.

Consider the two’s complement binary number 10110001.

Method 1. Convert to the corresponding positive binary number then find the denary
value

Converting to two’s complement leaves unchanged the 1 in the least significant bit
position then changes all of the remaining bits to produce 01001111.

Chapter 1: Information Representation

Now using the ‘successive multiplication by two’ method we get (ignoring the 0 in the
most significant bit position):

Al Al

2x 1= 2
add2toO,then 2 x 2 = 4
add4to0,then 2 x 4 =
add8tol,then 2 x 9 = 18
add 18to 1,then 2 x 19 = 38
add38to1,then 2 x 39 = 78

add 78 to 1 to give 79
So the original numberis =79 in denary.

Method 2. Sum the individual position values but treat the most significant bit as a
negative value

From the original binary number 10110001 this produces the following:
21+ 0+2° +2* +0+0+0# 1=

“128+0+32+16+0+0+0+ 1=~79.

Discussion Point:

What is the two’s complement of the binary value 1000? Are you surprised by this?

One final point to make here is that the reason for using two’s complement representations

is to simplify the processes for arithmetic calculations. The most important example of this is
that the process used for subtracting one signed integer from another is to convert the number
being subtracted to its two’s complement form and then to add this to the other number.

TASK 1.03

Using a byte to represent each value, carry out the subtraction of denary 35 from denary 67
using binary arithmetic with two’s complement representations.

f Binary coded decimal (BCD)

1 One exception to grouping bits in bytes to represent integers is the binary coded decimal
(BCD) scheme. If there is an application where single denary digits are required to be stored
or transmitted, BCD offers an efficient solution. The BCD code uses four bits (a nibble) to
represent a denary digit. A four-bit code can represent 16 different values so there is scope
for a variety of schemes. This discussion only considers the simplest BCD coding which
expresses the value directly as a binary number.

If a denary number with more than one digit is to be converted to BCD there has to be a
group of four bits for each denary digit. There are, however, two options for BCD; the first is

5 to store one BCD code in one byte leaving four bits unused. The other option is packed BCD
where two 4-bit codes are stored in one byte. Thus, for example, the denary digits 8503 could
be represented by either of the codes shown in Figure 1.02.

One BCD digit per byte [00001000 | 00000101 | 00000000 | 00000011 |

Two BCD digits per byte | 10000101 | 00000011 |

Figure 1.02 Alternative BCD representations of the denary digits 8503

Cambridge International AS and A level Computer Science

There are a number of applications where BCD can be used. The obvious type of application
is where denary digits are to be displayed, for instance on the screen of a calculator orin a
digital time display. A somewhat unexpected application is for the representation of currency
values. When a currency value is written in a format such as $300.25 it is as a fixed-point
decimal number (ignoring the dollar sign). It might be expected that such values would be
stored as real numbers but this cannot be done accurately (this type of problem is discussed
in more detail in Chapter 16 (Section 16.03). One solution to the problem is to store each
denary digit in a BCD code.

Itis instructive to consider how BCD arithmetic
might be performed by a computer if fixed-point

decimal values were stored as BCD values. Let’s 0.26 [00000000 | [00100110 |
consider a simple example of addition to illustrate k3
the potential problem. We will assume a two-byte 0.85 [00000000 | [10000101 |
representation. The first byte represents two ¢

denary digits for the whole part of the number and
the second byte represents two denary digits for
the fractional part. If the two values are $0.26 and
$0.85 then the result should be $1.11. Applying Figure 1.03 Erroneous addition using BCD coding
simple binary addition of the BCD codes will

produce the result shown in Figure 1.03.

[ooooooo0 | [10101011 |

In the first decimal place position, the 2 has been added to the 8 to get 10 but the BCD
scheme only recognises binary codes for a single-digit denary number so the addition has
failed. The same problem has occurred in the addition for the second decimal place values.
The result shown is ‘point ten eleven’, which is meaningless in denary numbers. The ‘carry’ of
a digit from one decimal place to the next has been ignored.

To counteract this in BCD arithmetic, 0.26 r 0000 0000 | | 00100110 I
the processor needs to recognise that =

an impossible value has been produced 0.85 [00000000 | [10000101 |
and apply a method to remedy this. We

will not consider the recognition method. ¢

The remedy is to add 0110 whenever the Initial sum (giving values over 1001) [00000000 | [10101011 |
problem is detected.

Starting with the least significant nibble Add correction to least significant nibble 0110
(see Figure 1.04), adding 0110 to 1011 The result has a carry bit 10001
gives 10001 which is a four-bit value plus)

a carry bit. The carry bit has to be added Add correction plus carry to next nibble 01110001

to the next nibble as well as adding the The result has a carry bit JE00TE0
0110 to correct the error. Adding 1 to 1010 .

and then adding 0110 gives 10001. Again Add carry to next nibble to get 1.11 [00000001 | [00010001]
the carry bit is added to the next nibble to

give the correct result of $1.11 for the sum Figure 1.04 Correct representation of the BCD code for 1.11

of $0.26 and $0.85.

In Chapter 5 (Section 5.02) there is a brief discussion of how a processor can recognise
problems arising from arithmetic operations using numbers coded as binary values.

Chapter 1: Information Representation

| 1.03 Internal coding of text
ASCli code

If text is to be stored in a computer it is necessary to have a coding scheme that provides a
unique binary code for each distinct individual component item of the text. Such a code is
referred to as a character code. There have been three significant coding schemes used in
computing. One of these, which is only mentioned here in passing, is the EBCDIC code used
by IBM in their computer systems.

e

The scheme which has been used for the longest time is the ASCII (American Standard Code

[for Information Interchange) coding scheme. This is an internationally agreed standard.

| There are some variations on ASCII coding schemes but the major one is the 7-bit code. Itis

; customary to present the codes in a table for which a number of different designs have been

3 used.

{ Table 1.03 shows an edited version with just a few of the codes. The first column contains
the binary code which would be stored in one byte, with the most significant bit set to
zero and the remaining bits representing the character code. The second column presents
the hexadecimal equivalent as an illustration of when it can be useful to use such a
representation.

Binary code Hexadecimal equivalent | Character Description
00000000 00 NUL Null character
00000001 01 SOH Start of heading
00000010 02 STX Start of text

1 00100000 20 Space
00100001 20 ! Exclamation mark

{ 00100100 24 S Dollar

[00101011 2B B Plus

! 00101111 ©|oF / Forward slash

1 00110000 30 0 Zero

! 00110001 31 1 One

k 00110010 32 2 Two

01000001 41 A Uppercase A

] 01000010 42 B Uppercase B

p 01000011 43 C Uppercase C

l 01100001 61 a Lowercase a

01100010 62 b Lowercase b
01100011 63 c Lowercase ¢

Table 1.03 Some examples of ASCII codes

o —T

The full table shows the 27(128) different codes available for a 7-bit code. You should not try
to remember any of the individual codes but there are certain aspects of the coding scheme
which you need to understand.

?

y Firstly, you can see that the majority of the codes are for printing or graphic characters.

! However, the first few codes represent non-printing or control characters. These were
introduced to assist in data transmission or in entering data at a computer terminal. It is fair
to say that these codes have very limited use in the modern computer world so they need no
r further consideration.

Cambridge International AS and A level Computer Science

Secondly, it can be seen that the obvious types of character that could be expected to be
used in a text based on the English language have been included. Specifically there are
upper- and lower-case letters, punctuation symbols, numerals and arithmetic symbols in the
coding tables.

It is worth emphasising here that these codes for numbers are exclusively for use in the
context of stored, displayed or printed text. All of the other coding schemes for numbers are
forinternal use in a computer system and would not be used in a text.

There are some special features that make the coding scheme easy to use in certain
circumstances. The firstis that the codes for numbers and for letters are in sequence in each
case so that, for example, if 1 is added to the code for seven the code for eight is produced.
The second is that the codes for the upper-case letters differ from the codes for the
corresponding lower-case letters only in the value of bit 5. This makes conversion of upper
case to lower case, or the reverse, a simple operation.

Unicode

Despite still being widely used, the ASCII codes are far from adequate for many purposes.
For this reason new coding schemes have been developed and continue to be developed
further. The discussion here describes the Unicode schemes but it should be noted that
these have been developed in tandem with the Universal Character Set (UCS) scheme;

the only differences between these schemes are the identifying names given to them. The
aim of Unicode is to be able to represent any possible text in code form. In particular this
includes all languages in the world. However, Unicode is designed so that once a coding set
has been defined it is never changed. In particular, the first 128 characters in Unicode are
the ASCII codes.

Unicode has its own special terminology. For example, a character code is referred to as

a ‘code point’. In any documentation there is a special way of identifying a code point. An
example is U+0041 which is the code point corresponding to the alphabetic character A. The
0041 are hexadecimal characters representing two bytes. The interesting pointis thatin a
text where the coding has been identified as Unicode it is only necessary to use a one-byte
representation for the 128 codes corresponding to ASCII. To ensure such a code cannot be
misinterpreted, the codes where more than one byte is needed have restrictions applied.
Figure 1.05 shows the format used for a two-byte code.

| 117272277 | 10777777 |

Figure 1.05 Unicode two-byte code format

The most significant bit for an ASCIl code is always 0 so neither of the two-byte
representations here can cause confusion.

1.04 Images

Images can be stored in a computer system for the eventual purpose of displaying the image
on a screen or for presenting it on paper, usually as a component of a document. Such an
image can be created by using an appropriate drawing package. Alternatively, when an image
already exists independently of the computer system, the image can be captured by using
photography or by scanning.

Chapter 1: Information Representation

Vector graphics

Itis normal for an image that is created by a drawing package or a computer-aided design
(CAD) package to consist of a number of geometric objects. The outcome is then usually for
the image to be stored as a vector graphic file.

Vector graphic: a graphic consisting of components defined by geometric formulae and associated
¥ properties, such as line colour and style

r We do not need to consider how an image of this type
would be created. We do need to consider how the data
is stored after the image has been created. A vector
graphic file contains a drawing list. The list contains

a command for each object included in the image.

Each command has a list of attributes that define the
properties of the object. The properties include the
basic geometric data such as, for a circle, the position of
the centre and its radius. In addition properties such as
the thickness and style of a line, the colour of a line and
the colour that fills the shape, if that is appropriate, are
defined. An example of what could be created as a vector
graphic file is shown in Figure 1.06.

D, | e el

S
/\

Figure 1.06 Asimple example
of a vector graphic image

Soan i

The most important property of a vector graphic image is that the dimensions of the objects
are not defined explicitly but instead are defined relative to an imaginary drawing canvas. In
other words, the image is scalable. Whenever the image is to be displayed the file is read, the
appropriate calculations are made and the objects are drawn to a suitable scale. If the user
then requests that the image is redrawn at a larger scale the file is read again and another set
of calculations are made before the image is displayed. This process cannot of itself cause
distortion of the image.

D i

TASK 1.04

Construct a partial drawing list for the graphic shown in Figure 1.06. You can take
measurements from the image and use the bottom left corner of the box as the origin of a
coordinate system. You can invent your own format for the drawing list.

Avector graphic file can only be displayed directly on a graph plotter, which is an expensive
specialised piece of hardware. Otherwise the file has to be converted to a bitmap before
presentation. '

Bitmaps

Most images do not consist of geometrically defined shapes so a vector graphic
representation is inappropriate. The general purpose approach is to store an image as a
bitmap. Typical uses are when capturing an existing image by scanning or perhaps by taking
a screen-shot. Alternatively, an image can be created by using a simple drawing package.

The fundamental concept underlying the creation of a bitmap file is that the picture
element (pixel) is the smallest identifiable component of a bitmap image. The image is
stored as a two-dimensional matrix of pixels. The pixel itself is a very simple construct; it has
a position in the matrix and it has a colour.

Cambridge International AS and A level Computer Science

Picture element (pixel): the smallest identifiable component of a bitmap image, defined by just two
properties: its position in the bitmap matrix and its colour

It is of no consequence as to whether it is considered to be a small rectangle, a small circle

or a dot. However, the scheme used to represent the colour has to be decided and this can
be quite detailed. The simplest option is to use one bit to represent the colour, so that the
pixel is either black or white. Storage of the colour in four bits would allow simple greyscale
colouring. At least eight bits per pixel are necessary to code a coloured image. The number of
bits per pixel is sometimes referred to as the colour depth.

The other decision that has to be made concerns the resolution of the image which can be
represented as the product of the number of pixels per row times the number of rows. When
considering resolution it is important to distinguish between the resolution of a stored image
and the resolution of a monitor screen that might be used to display the image. Both of these
have to be considered if a screen display is being designed. 4

From the above discussion it can be seen that a bitmap file does not define the physical

size of a pixel or of the whole image. The image is therefore scalable but when the image

is scaled the number of pixels in it does not change. If a well-designed image is presented

on a suitable screen the human eye cannot distinguish the individual pixels. However, if

the image is magnified too far the quality of the display will deteriorate and the individual
pixels will be evident. Thisisillustrated in Figure 1.07 which shows an original small image, a
magnified version of this small image and a larger image created with a more sensible, higher
resolution.

Figure 1.07 (a) a bitmap logo; (b) an over-magnified version of the image; (c) a sensible larger version

Bitmap file size
The above account has considered the two approaches for storing images and when they are
appropriate.

File size is always an issue with an image file. A large file occupies more memory space and
takes longer to display or to be transmitted across a network. A vector graphic file will have a
smaller size than a corresponding bitmap file. A bitmap file has to store the pixel data but the
file must also have a header that defines the resolution of the image and the coding scheme
for the pixel colour.

Chapter 1: Information Representation

You can calculate the minimum size (the size not including the header) of a bitmap file
knowing the resolution and the colour depth. As an example, consider that a bitmap file is
needed to fill a laptop screen where the resolution is 1366 by 768. If the colour depthis to be
24 then the number of bits needed is:

1366 X 768 x 24 =25178112 bits

The result of this calculation shows the number of bits but a file size is always quoted as a
number of bytes or multiples of bytes. Thus our file size could be quoted as:

25178112 bits =25178112 +8=3147264 bytes
=3147264 + 1024 = 3073.5 kibibytes (3073.5 KiB)
=3073.5 + 1024 = approximately 3 MiB

Kibi: a prefix representing the factor 21°(1024) written as the symbol Ki
Mebi: a prefix representing the factor 22° (1048 576) written as the symbol Mi
Gibi: a prefix representing the factor 2% written as the symbol Gi

o :
TIP

For multiples of bytes, the terminology used has recently changed. Traditionally, computer
scientists have used the terminology kilobyte, mega byte, gigabyte etc. in a way that conflicted
with the definition of these prefixes established by the International System of Units (S).
Following the SI convention, one kilobyte would represent 1000 bytes. Computer scientists
have used one kilobyte to represent 1024 bytes. There have been a number of variations on
how this was written, for example Kbyte, KB or kB but the basic contradiction remained. In
order to resolve this unsatisfactory situation, the International Electrotechnical Commission
(IEC) in 1998 proposed a new set of definitions for such quantities. 1024 bytes is now identified
as one kibibyte where the kibi can be considered as representing kilobinary. This proposal has
been accepted by other international standards bodies.

1.05 Sound

Natural sound consists of variations in pressure which are detected by the human ear. Atypical
sound contains a large number of individual waves each with a defined frequency. The result is
awave form in which the amplitude of the sound varies in a continuous but irregular pattern.

If there is a need to store sound or transmit it electronically the original analogue sound
signal has to be converted to a binary code. A sound encoder has two components. The first
is a band-limiting filter. This is needed to remove high-frequency components. The ear would
not be able to detect these and they could cause problems for the coding if not removed. The
other component in the encoder is an analogue-to-digital converter (ADC).

The method of operation of the ADC is described with reference to Figure 1.08. The amplitude

of the wave (the red line) has to be sampled at regular intervals. The blue vertical lines indicate
the sampling times. The amplitude cannot be measured exactly; instead the amplitude is
approximated by the closest of the defined amplitudes represented by the horizontal lines. In
Figure 1.08, sample values 1 and 4 will be an accurate estimate of the actual amplitude because
the wave is touching an amplitude line. In contrast, samples 5 and 6 will not be accurate because
the actual amplitude is approximately half way between the two closest defined values.

Cambridge International AS and A level Computer Science

D

!
-

Sound
amplitude

|1

S

I i g N

L _]
S hrig

|—A--<-
O) = == o == o == ol o= o w s

~ ==

Figure 1.08 ADC sampling

In practice, for coding sound, two decisions have to be made. The first is the number of

bits to be used to store the amplitude values, which defines the sampling resolution. If only
three bits are used then eight levels can be defined as shown in Figure 1.08. If too few are
used there will be a significant quantisation error. In practice 16 bits will provide reasonable
accuracy for the digitised sound.

The other decision concerns the choice of the sampling rate, which is the number of samples
taken per second. This should be in accordance with Nyquist’s theorem which states that
sampling must be done at a frequency at least twice the highest frequency in the sample.

Once again file size can be an issue. Clearly an increased sampling rate and an increased
sampling resolution will both cause an increase in file size.

Simply recording sound and storing a digital representation is not enough for many
applications. Once a digital representation of the sound has been stored in a file, it can be
manipulated using sound-editing software. This will typically have features for:

» combining sound from different sources
« fadingin orfading out the sound
o editing the sound to remove noise and other imperfections.

1.06 Video

The emphasis here is on the visual aspect of a video recording and, in particular, how the

_ image is displayed on a screen. It might be imagined that a video would be stored very
simply as a succession of still images or frames and the only concern would be the frame rate
defined as the number of frames displayed per second. In practice the issues are far more
complex. They have not been made any more simple by the recent changes that have taken
place with regards to screen technology.

The basic principle of operation is that the display of an individual frame is created line by
line. One of the issues is the choice of resolution. The resolution can be defined in terms

of the number of lines per frame and the number of pixels per line. There needs to be
compatibility between the resolution of the stored image and the resolution of the display
screen. However, the technology used has to be chosen with regard to the sensitivity of the
human eye. One constraint is that unless the screen is refreshed at least 50 times per second

Chapter 1: Information Representation

the eye will notice the flicker. However, provided that the refresh rate is 25 times per second
the eye cannot see that any motion on the screen is not actually continuous.

F The traditional solution to this problem has been to use interlaced encoding. This was used

p in television broadcasting and then adapted for video recordings. The image for each frame

' is splitinto two halves, one containing the odd numbered lines and the other the even. The

E first half is displayed completely then the second half follows. This produces what appears to
the eye as being a high refresh rate but is halving the transmission bandwidth requirements.

r The alternative approach is to use progressive encoding where a full frame is displayed each
time. As improved transmission bandwidths become more generally available it is likely that
progressive encoding will become the norm.

1.07 Compression techniques and packaging of
multimedia content
For another time the issue of file size will be discussed, this time in the context of starting

with a file that needs to have its size reduced to reduce memory storage requirements and
improve transmission rates. -

B il i e 4

B .. g

There are two categories of compression. The first is lossless compression where the file
size is reduced but no information is lost and when necessary the process can be reversed to
re-create the original file. The second is lossy compression where the file size is reduced
with some loss of information and the original file can never be recovered. In many
applications a combination of lossless and lossy methods may be used.

. o

Lossless compression: coding techniques that allow subsequent decoding to recreate exactly the
original file

-

Lossy compression: coding techniques that cause some information to be lost so that the exact
original file cannot be recovered in subsequent decoding

o 4

If a file contains text then compression must be lossless because it is

[not sensible to allow any loss of information. One possible compression Code Character
method would be Huffman coding. The procedure used to carry out the 10 <
compression is quite detailed but the principle is straightforward. Instead 01 t

! of having each character coded in one byte an analysis is carried out to find 11T o

] the most often used characters. These are then given shorter codes. The 110 h
original stream of bytes becomes a bit stream. A possible set of codes if a 0001 l

: text contained only eight different letters is shown in Table 1.04. 0000 p
The important point to note here is the prefix property. None of the codes L W
begins with the sequence of bits representing a shorter code. Thus there 0010 Z

can be no ambiguity when the transmitted compressed file has to be

o Table 1.04 An example of Huffman codin
converted back to the original text. i FAE &

A different lossless compression technique is run-length encoding. This can be particularly
effective for compressing a bitmap file. The compression converts sequences of the same bit
pattern into a code that defines the bit pattern and the number of times it is repeated.

Lossy compression can be used in circumstances where a sound file or an image file can have
some of the detailed coding removed or modified when it is likely that the human ear or eye
will hardly notice any difference. One example would be to reduce the colour depth for the
coding of a bitmap.

Cambridge International AS and A level Computer Science

Extension Question 1.01

Graphic files can be stored in a number of formats. For example, JPEG, GIF, PNG and TIFF are
just a few of the possibilities. What compression techniques, if any, do these use?

If the image coding for a video is to be compressed, one approach is to tackle the spatial
redundancy in individual frames using techniques applicable to an image file. However, this
is unlikely to be an efficient technique because, in general, one frame is very similar to the
preceding one. It will be more effective to tackle this temporal redundancy by changing the
frame by frame coding to one which mainly records differences between adjacent frames.

Avideo contains images and sound but these do not go to the same part of any receiving and
displaying system. Clearly the audio and visual parts of a video must be handled independently
but in a way that guarantees synchronisation. The solution to this is to package the audio and
visual components in what is known as a multimedia container format. This concept is currently
being developed by several different organisations or companies. The use is not restricted to
one video file and one sound file. Rather, one multimedia container file will have many audio
and video streams plus other streams, perhaps for subtitles or chapter headings.

Abinary code or a binary number can be documented as a hexadecimal number.
Internal coding of signed integers is usually based on a two’s complement representation.
BCD is a convenient coding scheme for single denary digits.

ASCIl and Unicode are standardised coding schemes for text characters.

An image can be stored either in a vector graphic file or in a bitmap file.

An ADC works by sampling a continuous waveform.

Lossless compression allows an original file to be recovered by a decoder; lossy compression
irretrievably loses some information.

Exam-style Questions

1 Afile contains binary coding. The following are two successive bytes in the file:

[10010101 [00110011 |

a One possibility for the information stored is that the two bytes together represent one unsigned integer binary

number.

i Givethe denary number corresponding to this. Show your working. [2]

ii Give the hexadecimal number corresponding to this. Show your working. [2]
b Give one example of when a hexadecimal representation is used. (1]

Chapter 1: Information Representation

¢ Another possibility for the information stored is that the two bytes individually represent two signed integer
binary numbers in two’s complement form.

i State which byte represents a negative number and explain the reason for your choice.

i Give the denary number corresponding to each byte. Show your working. [3]

d Give two advantages from representing signed integers in two’s complement form rather than using a sign and
magnitude representation. (2]

e Givethree different examples of other options for the types of information that could be represented by two
bytes. For each example, state whether a representation requires two bytes each time, just one byte or only
part of a byte each time. [3]

2 Adesigner wishes to include some multimedia components on a web page.

a Ifthe designer has some images stored in files there are two possible formats for the files.

i Describe the approach used if a graphic is stored in a vector graphic file. [2]
it Describe the approach used if a graphic is stored in a bitmap file. (2]
iii State which format gives better image quality if the image has to be magnified and explain why. [2]

b Thedesigneris concerned about the size of some bitmap files.

i Ifthe resolution is to be 640 x 480 and the colour depth s to be 16, calculate an approximate size for the
bitmap file. Show your working and express the size using sensible units. 2]

i Explain why this calculation only gives an approximate file size. [1]
¢ Thedesigner decides that the bitmap files need compressing.

i Explain how a simple form of lossless compression could be used. (2]

i Explain one possible approach to lossy compression that could be used. (2]
3 Anaudio encoder s to be used to create a recording of a song. The encoder has two components.
a Oneofthe components is an analogue-to-digital converter (ADC).

i Explain why this is needed. (2]

i Twoimportant factors associated with the use of an ADC are the sampling rate and the sampling
resolution. Explain the two terms. Use a diagram if this will help your explanation. [5]

b The other component of an audio encoder has to be used before the ADC is used.

i Identify this component. (1]

i Explain why it is used. (2]

¢ Therecorded songis to be incorporated into a video. Sound-editing software is to be used as part of this
process. Describe two techniques that the sound-editing software could provide. (3]

i

AL

4
‘.

,ntj..

Communication and Internet Technologies

Learning objectives

By the end of this chapter you should be able to:

explain the client-server model of networked computers
give examples of applications which use the client-server
model

describe what is meant by the World Wide Web (WWW)
and the Internet

explain how hardware and communication systems are
used to support the Internet

explain the benefits and drawbacks of using copper cable,
fibre-optic cabling, radio waves, microwaves, satellites
show understanding of bit streaming and the importance
of bit rates/broadband speed on bit streaming

explain the format of an IP address and how an IP address
is associated with a device on a network

explain the difference between a public IP address and a
private IP address and the implication for security
explain how a Uniform Resource Locator (URL) is used to
locate a resource on the WWW and the role of the Domain
Name Service

describe the sequence of events executed by the client
computer and web server when a web page consisting
only of HTML tags is requested and displayed by a
browser

recognise and identify the purpose of some simple
JavaScript and PHP code and show understanding of
the typical use of client-side code in the design of an
application.

; Cable

2.01 Transmission media

Chapter 2: Communication and Internet Technologies

The options for a cable are twisted pair, coaxial or fibre-optic. (The first two use copper
for the transmission medium.) In discussing suitability for a given application there are a

number of factors to consider. One is the cost of the cable and connecting devices. Another
is the bandwidth achievable, which governs the possible data transmission rate. There are

A then two factors that can cause poor performance: the likelihood of interference affecting
transmitted signals and the extent of attenuation (deterioration of the signal) when high
frequencies are transmitted. These two factors affect the need for repeaters or amplifiers in

transmission lines. Table 2.01 shows some comparisons of the different cable types.

Twisted pair | Coaxial Fibre-optic
Cost Lowest Higher Highest
Bandwidth or data rate Lowest Higher Much higher
Attenuation at high frequency Affected Most affected | Least affected
Interference Worst affected | Less affected | Least affected
Need for repeaters More often More often Less often

Table 2.01 Comparisons between cable types

It should be understood that for each of the three types of cabling
there are defined standards for different grades of cable which must

1 be considered when a final decision is made. However, it can be seen
that fibre-optic cable performs best but does cost more than the other
technologies. For a new installation the improved performance of fibre-
optic cable is likely to be the factor that governs the choice. However,
where copper cable is already installed the cost of replacement by
fibre-optic cable may not be justified.

Currently, twisted pair cable is still in use almost universally for

" connecting a telephone handset to a telephone line. This type of cable
is illustrated in Figure 2.01. It is also the technology of choice for high-
speed local area networks.

Figure 2.01 One cable with four twisted pairs
with differing twist rates to reduce interference
Coaxial cable has mainly been replaced for use in long-distance

telephone cabling but is still used extensively by cable television companies and is often

used in metropolitan area networks. Fibre-optic cable is the technology of choice for long-

distance cabling. As shown in Figure 2.02, coaxial cable is not bundled but a fibre-optic cable

contains many individual fibres.

plastic jacket

dielectric insulator

m r
centre core

(a) (b)

Figure 2.02 (a) Coaxial cable and (b) a bundled fibre-optic cable

Cambridge International AS and A level Computer Science

Wireless

The alternative to cable is wireless transmission. The three options here are radio, microwave
orinfrared, which are all examples of electromagnetic radiation; the only intrinsic difference
between the three types is the frequency of the waves.

When making a choice of which wireless option to use, all of the factors discussed when
comparing cable media need to be considered again. In addition, the ability for the radiation
to transmit through a solid barrier is an important factor. Also the extent to which the
transmission can be focused in a specific direction needs to be considered. Figure 2.03
shows the approximate frequency ranges for the three types of radiation. The factors listed
on the left increase in the direction of the arrow, so the bandwidth increases through radio
and microwave to infrared but the ability of the waves to penetrate solid objects is greatest
for radio waves. Interference is not consistently affected by the frequency.

Radio Microwave Infrared
Frequency range 3KHz-3GHz 3-300GHz 300GHz-400THz

Bandwidth or data rate

Attenuation (mainly due to rain)

Need for repeaters

YV VY

Directional focusing capability

Penetration through a wall <

Interference There is no systematic trend

Figure 2.03 Frequency ranges and frequency dependency of factors affecting wireless
transmission

The increased attenuation for infrared transmission, which has the highest frequency, leads
to it only being suitable for indoor applications. The fact that it will not penetrate through

a wall is then of benefit because the transmission cannot escape and cause unwanted
interference elsewhere. For most applications, microwave transmission is the option of
choice with the improvement in bandwidth being the determining factor.

Comparing cable and wireless transmission

It is worth noting that cables are often referred to as ‘guided media’ and wireless as ‘unguided
media’. This is slightly misleading because only radio wave transmission fits this description.
It is possible with microwaves or infrared to direct a transmission towards a receiver (as
suggested in Figure 2.03).

There are a number of points to make when considering the relative advantages of
transmission through a cable or wireless transmission:

o The use of specific wireless transmission frequencies is regulated by government agencies
and so permission has to be obtained before wireless transmission is used.

 Outside these frequencies, no permission is needed to use the air for transmission but
cables can only be laid in the ground with the permission of landowners.

» For global communications, the two competing technologies are transmission through
fibre-optic cables laid underground or on the sea bed and satellite transmission
(discussed in Section 2.02); currently neither of these technologies is dominant.

 Interference is much more significant for wireless transmission and its extent is
dependent on which frequencies are being used for different applications.

Chapter 2: Communication and Internet Technologies

by il R o

» Repeaters are needed less often for wireless transmission.

o Mobile (cell) phones now dominate Internet use and for these only wireless transmission
is possible.

e For home or small office use, wired or wireless transmission is equally efficient; the lack
of cabling requirement is the one factor that favours wireless connections for a small
network.

2.02 The Internet

Prior to the existence of the Internet there were two major periods of networking
development. The first occurred in the 1970s when what are now referred to as wide area
networks (WANs) were created. The ARPANET in the USA is the one usually mentioned first
in this context. The second period of development was triggered by the arrival of the PC in
the 1980s which led to the creation of the first examples of what are now referred to as local
area networks (LANs). These developments continued into the 1990s (with, along the way,
the addition of metropolitan networks (MANs)) but most importantly with the increasing aim
of connecting up what were originally designed and created as independent, stand-alone
networks. The era of internetworking had arrived and, in particular, thé Internet started to
take shape.

Itisimportant to understand that the Internet is not a WAN; it is the biggest internetwork in
existence. Furthermore, it has never been designed as a coherent entity; it has just evolved
to reach its current form and is still evolving to whatever future form it will take. One of the
consequences of the Internet not having been designed is that there is no agreed definition
of its structure. However, there is a hierarchical aspect to the structure particularly with
respect to the role of an Internet Service Provider (ISP). The initial function of the ISP was

to give Internet access to an individual or company. This function is now performed by
what may be described as an ‘access ISP’. Such ISPs might then connect to what might be
called ‘middle tier’ or regional ISPs which in turn are connected to tier 1 ISPs which may
alternatively be termed ‘backbone’ ISPs. An ISP is a network and connections between ISPs
are handled by Internet Exchange Points (IXPs). The other networks which can be considered
to share the top of the hierarchy with tier 1 ISPs are the major content providers.

Discussion Point:
How many ISPs or major Internet providers are you familiar with?

Communication systems not originally designed for computer networking provide significant
infrastructure support for the Internet. The longest standing example is what is often referred
to as POTS (plain old telephone service) but is more formally described as a PSTN (public
switched telephone network). At the time of the early period of networking the telephone
network carried analogue voice data but digital data could be transmitted provided that

a modem was used to convert the digital data to analogue with a further modem used to
reverse the process at the receiving end. A dial-up network connection was available which
provided modest-speed, shared access when required. However, an organisation could
instead pay for a leased line service which would provide a dedicated link with guaranteed
transmission speed which was permanently connected. Typically, organisations have made
use of leased lines to establish MANs or WANS.

More recently, the PSTNs have upgraded their main communication lines to fibre-optic cable
employing digital technology. This has allowed them to offer improved leased line services to
ISPs but has also given them the opportunity to provide their own ISP services. In this guise

Cambridge International AS and A level Computer Science

they provide two types of connectivity service. The first is a broadband network connection
for traditional network access. The second is WiFi hotspot technology, in which a public
place or area is equipped with an access point which has a connection to a wired network
that provides Internet access. Mobile devices in the vicinity of the access point can connect
to it wirelessly and from this connection gain Internet access.

For users of devices with mobile (cell) phone . A
capability there is an alternative method for Altitude (km)
gaining Internet access. This is provided by mobile 35786 }g }{ }g GEO

phone companies acting as ISPs. The mobile
phone equipped with the appropriate software
communicates with a standard cell tower to access

: i u Van Allen belt
the wireless telephone network which in turn can HEERE el

L) 15000
provide a connection to the Internet. i % }g % MEO
Satellites are important components of modern (e e
communication systems. Three types of satellite are 5000
; i : ' ey LEO
identified by the altitude at which they orbit. Figure }@ }@ }g .
2.04 shows the positioning with respect to altitude of AR === {

the different types of satellite. The Van Allen belts are Figure 2.04 Satellite altitudes
no-go areas full of charged particles.

The highest altitude satellites are in geostationary Earth orbit (GEO) over the equator and these
are used to provide long-distance telephone and computer network communication. Only
three GEO satellites are needed for full global coverage. Closer to Earth are a group of medium-
Earth-orbit (MEO) satellites some of which provide the global positioning system (GPS). Ten
MEO satellites are needed for global coverage. Finally, low-Earth-orbit (LEO) satellites work in
‘constellations’ to supplement the mobile phone networks. Fifty LEO satellites are needed for
full global coverage but currently there are several hundreds of them up there.

Because of its height above the ground a satellite has the advantage thatit can actas a
component in a network and can connect with other components that are separated by
greater distances than would be possible if only ground-based components were used. The
disadvantage is that the greater transmission distance causes transmission delays which can
cause problems for the underlying technology supporting network operation.

2.03 The World Wide Web (WWW)

It is common practice to talk about ‘using the web’ or ‘using the Internet’ as though these
were just two different ways of saying the same thing. This is not true. The Internet is, as
has been described above, an internetwork. By contrast, the World Wide Web (WWW) is a
distributed application which is available on the Internet.

Specifically, the web consists of an enormous collection of websites each having one or more
web pages. The special feature of a web page is that it can contain hyperlinks which, when
clicked, give direct and essentially immediate access to other web pages.

2.04 Internet-supporting hardware

Although the Internet has a structure which is in part hierarchical it is at heart a mesh
structure. The device that acts as a node in this mesh is the router. Routers are found in
what can be described as the backbone fabric of the Internet as well as in the ISP networks.
The details of how a router works are discussed in Chapter 17 (Sections 17.03 and 17.04).

Chapter 2: Communication and Internet Technologies

[At the periphery of the Internet there are different types of network. Whenever networks of a
] different underlying technology need to communicate, the device needed is a gateway. Part
‘r of the functionality provided by a gateway can be the same as that provided by a router.

One definition of a server is a specialised type of computer hardware designed to provide
functionality when connected to a network. A server does not contribute to the functioning
of the network itself but, rather, it is a means of providing services via the network. In the
context of the Internet, a server may act as any of the following:

« an application server (see Section 2.05)
e aweb server (see Section 2.05)

o adomain name server (see Section 2.08)
o afileserver

e aproxy server.

Router: a device that acts as a node on the Internet
Gateway: a device that connects networks of different underlying technologies
Server: a device that provides services via a network

File server functionality is very often provided by what is called a ‘server farm’, in which a very
large numbers of servers work together in a clustered configuration. Tier 1 content providers
use server farms and they are also used in the provision of cloud storage, which an ISP can
offer as part of its service portfolio.

s damalo oo iR cmne il Jadhbo MR o n s s i sl AREERRE. oo, oo i B atitia L el i

One example of the use of a proxy server is when a web server could become overwhelmed
by web page requests. When a web page is requested for the first time the proxy server saves
a copy in a cache. Then, whenever a subsequent request arrives, it can provide the web

) page without having to search through the filestore of the main server. At the same time a
proxy server can act as a firewall and provide some security against malicious attacks on the
server. Security is discussed further in Chapter 8 (Section 8.02).

2.05 Client-server architecture

Following the arrival of the PC in the 1980s it was soon realised that the use of stand-alone
PCs was not viable in any large organisation. In order to provide sufficient resource to any
individual PC it had to be connected to a network. Initially servers were used to provide

t extra facilities that the PCs shared (such as filestore, software applications or printing). A
further development was the implementation of what came to be known as the ‘client-
server’ architecture. At the time, the traditional architecture of a mainframe computer with
connected terminals was still in common use and the client-server approach was seen

as a competitor in which networked PCs (the clients) had access to one or more powerful
F minicomputers acting as servers.

The essence of the client-server architecture as it was first conceived is a distributed

: computer system where a client carries out part of the processing and a server carries out

1 another part. In order for the client and server to cooperate, software called ‘middleware’ has
to be present. This basic concept still holds in present-day client-server applications but the
language used to describe how they operate has changed.

e o

™1 e

Cambridge International AS and A level Computer Science

The server is now a ‘web server’ which is a suite of software that can be installed on virtually
any computer system. A web server provides access to a web application. The client is the
web browser software. The middleware is now the software that supports the transmission of
data across a network together with the provision for scripting (see Section 2.09).

Itis worth emphasising that the original uses of the web involved a browser displaying web
pages which contained information. There was provision for downloading of this information
but the web pages were essentially static. For a client-server application, the web page is
‘dynamic’ which means that what is displayed is determined by the request made by the
client. In this context, there is almost no limit to the variety of applications that can be
supported. The only requirement is that the application involves user interaction. The most
obvious examples of a client-server application can be categorised as ‘ecommerce’ where

a customer buys products online from a company. Other examples are: e-business, email,
searching library catalogues, online banking or obtaining travel timetable information. Most
applications require a ‘web-enabled’ database to be installed on the server or accessible
from the server. In contrast, the monthly payroll run typifies the type of application which is
unsuitable for implementation as a dynamic web application and will continue to be handled
by batch processing.

2.06 Bit streaming

Streaming media are a major component of the use of the Internet for leisure activities like
listening to music or watching a video. Before discussing such applications the use of the @
term bit stream needs an explanation. In general, data prior to transmission is stored in

bytes and it is possible to transmit this as a ‘byte stream’. However, streamed media is always
compressed using techniques discussed in Chapter 1 (Section 1.07). SefeComMpression

(bitistrean So, to summarise, any reference to streaming media would normally imply that bit
streaming is used.

For one category of streaming media, the source is a website that has the media already
stored. One option in this case is for the user to download a file then listen to it or watch it at
some future convenient time. However, when the user does not wish to wait that long there

is the streaming option. This option is described as viewing or listening on demand. In this
case the delivery of the media and the playing of the media are two separate processes. The
incoming media data are received into a buffer created on the user's computer. The user’s
machine has media player software that takes the media data from the buffer and plays it.

:

|

| The other category of streaming media is real-time or live transmission. In this case the

| content is being generated as it is being delivered such as when viewing a sporting event. At

| the receiver end the technology is the same as before. The major problem is at the delivery
end because a very large number of users may be watching simultaneously. The way forward
now is to transmit the media initially to a large number of content provider servers which
then transmit onwards to individual users.

Acrucial point with media streaming is whether the technology has sufficient power to
([providerasatisfactoryuserexperiences\When the media is created it is the intention that the

media is to be delivered to the user at precisely the same speed as used for the creation; a
| song that lasted four minutes when sung for the recording will sound very peculiar if, when

itis received by a user, it lasts six minutes. (Morespecifically theprocessiof deliveringihe

admin
Sticky Note
Lose less and lossy compression in chapter 1.07

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

admin
Highlight

= ko gDl

| (e e i deae i e, s s i iate. et icE A Mo oo fluasmen o amee o difens SfERe L uliiRR o obie. G Dt il i o difiatess diiiies . oamseaer ghiladiiade iuibie dleiaiiee SEtdiE

Chapter 2: Communication and Internet Technologies

(contentwilllbequantifiecibysthe iBimEam@FEon < xample, a relatively poor-quality video can
be delivered at a bit rate of 300 kbps but a reasonably good-quality audio file only requires

delivery at 128 kbps. Figure 2.05 shows a simple schematic diagram of the components
involved in the streaming.

I

|

I R e i L e SRR ': """""""" > Media
= Mledia «— | Bl o =
i player Data flow ’ i Data flow

| High- Low- i

| water water i

I mark mark i

User's computer

Figure 2.05 Schematic diagram of bit streaming

®l

@llowsforunexpectedidelays. These rates are controlled by the media player by continuous

monitoring of the extent of filling of the buffer in relation to the defined high- and low-water
marks. It is essential to have a buffer size that is sufficiently large for it never to get filled.

The rate of transmission to the buffer is imitedibyithe bandwidthofthenetwork
(©onnection For a connection via a PSTN, a broadband link is essential. For good-quality

movie presentation the broadband requirement is about 2.5 Mbps. Because this will not

be available for all users it is often the practice that an individual video is made available

at different levels of compression. The most highly compressed version will be the poorest
quality but the bit rate may be sufficiently low for a reasonable presentation with a relatively
low bandwidth Internet connection.

TASK 2.01

Consider a bit-streaming scenario for a video where the following values apply:
« The buffersizeis 1 MiB

+ Thelow watermark is set at 100KiB

« The high watermark is set at 900 KiB

« Theincoming data rate is 1 Mbps.

+ Thevideo display rate is 300 Kbps.

Assume that the video is playing and that the buffer content has dropped to the low-water
~mark. The media player sets the controls for data input to begin again.

Calculate the amount of data that will be input in two seconds to the buffer and the amount of
data that will be removed from the buffer in the same time period.

Repeat the calculation for 4, 6, 8, 10 and 12 seconds.
From this data, estimate when the buffer will have filled up to the high-water mark.

Assuming that the incoming transmission is halted at this time, calculate how long it will be
before the buffer content has again fallen to the low-water mark level.

admin
Highlight

admin
Highlight

admin
Highlight

admin
Sticky Note
Ask Mr Butt about highlighted text

admin
Highlight

admin
Highlight

Cambridge International AS and A level Computer Science

2.07 IP addressing

The functioning of the Internet is based on the implementation of the TCP/IP protocol suite
as will be explained in Chapter 17 (Section 17.04). One aspect of this is IP addressing which is
used to define from where and to where data is being transmitted.

IPv4 addressing

Currently the Internet functions with IP version 4 (IPv4) addressing. The reason for the
strange name is of no consequence but the fact that this was devised in the late 1970s
is of considerable consequence. Had the PC and the mobile phone not been invented,
the scheme would be still sufficient for needs. Unfortunately for this scheme, these
developments did take place and have come to dominate Internet usage.

The IPv4 addressing scheme is based on 32 bits (four bytes) being used to define an IPv4
address. It is worth putting this into context. The 32 bits allow 2*2 different addresses. For big
numbers like this it is worth remembering that 2% is approximately 1000 in denary so the 32
bits provide for approximately four billion addresses. The population of the world is about
seven billion and it is estimated that approaching half of the world’s population has Internet
access. From this we can see that if there was a need to supply one IP address per Internet
user the scheme would just about be adequate. However, things are not that simple.

IPv4 address: a 32-bit long, hierarchical address of a device on the Internet

The original addressing scheme was designed on the basis of a hierarchical address with
a group of bits defining a network (a netlD) and another group of bits defining a host on
that network (a hostID). The aim was to assign a unique universally recognised address for
each device on the Internet. The separation into two parts allows the initial transmission
to be routed according to the netID. The hostID only needs to be examined on arrival at
the identified network. Before proceeding, it is important to note that the term ‘host’ is a
little misleading because some devices, particularly routers, have more than one network
interface and each interface requires a different IP address.

The other feature of the original scheme was that allocated addresses were based on the
concept of different classes of networks. There were five classes but only the first three need
concern us here. The structures used for the addresses are shown in Table 2.02.

Number of bits Number of bits
Class Class identifier for netID for hostID
Class A 0 7 24
Class B 10 14 16
Class C 110 21 8

Table 2.02 Address structure for three classes of IPv4 address

It can be seen from Table 2.02 that the most significant bit or bits identify the class. A group of
the next most significant bits define the netlD and the remaining, least significant, bits define
the hostID. The rationale was straightforward. The largest organisations would be allocated
to Class A. There could only be 27 i.e. 128 of these but there could be 2% distinct hosts for
each of them. This compared with 22!, approximately two million, organisations that could be
allocated to Class C but each of these could only support 28 i.e. 256 hosts.

o — B i Bl BN schae b Sagbsh uiGee. oiiee filiae. diiie Sadad R AR o e e e A

Chapter 2: Communication and Internet Technologies

The problems with this scheme arose once LANs supporting PCs became commonplace.
The number of Class B netIDs available was insufficient but if organisations were allocated to
Class C the number of hostIDs available was too small. There have been a number of different
modifications made available to solve this problem.

Before considering some of these, the representation used for an IP address needs to be
introduced. During transmission, the technology is based on the 32-bit binary code for

the address; for documentation purposes, a dotted decimal notation is used. Each byte is
written as the denary equivalent of the binary number represented by the binary code. For
example, the 32 bit code:

10000000 00001100 00000010 00011110
is written in dotted decimal notation as:

128.12.2.30

Classless inter-domain routing (CIDR)

The first approach developed for improving the addressing scheme is called ‘classless inter-
domain routing’ (CIDR). This retains the concept of a netID and a hostID but removes the rigid
structure and allows the split between the netID and the hostID to be varied to suit individual
need. The simple method used to achieve this is to add an 8-bit suffix to the address that
specifies the number of bits for the netlD. If, for instance, we define the suffix as 21, that
means that 21 bits are used for the netlD and there are 11 bits remaining (of a 32-bit address)
to specify hostIDs allowing 2%, i.e. 2048, hosts. One example of an IP address using this
scheme is shown in Figure 2.06. The 21 bits representing the netlD have been highlighted.
The remaining 11 bits represent the hostID which would therefore have the binary value
11000001110.

Binary code: {1000010000#0600008: 1000001110/00016101

Y

netlD suffix

Dotted decimal notation: 195.12.6.14/21
Figure 2.06 A CIDR IPv4 address

It should be noted that with this scheme there is no longer any need to use the most
significant bit or bits to define the class. However, it does allow already existing Class A, B or C
addresses to be used with suffixes 8, 16 or 24, respectively.

TASK 2.02

Create an example of the binary code for a Class C address expressed in CIDR format. Give the
corresponding dotted decimal representation.

Sub-netting
A quite different approach, sub-netting, allows further structure in the addressing.

To illustrate an example of this we can consider a medium-sized organisation with about
150 employees each with their own computer workstation. Let’s assume that there are

six individual department LANs and one head-office LAN. Figure 2.07 shows a schematic
diagram of how the LANs would be connected to the Internet if the original scheme were

28

Cambridge International AS and A level Computer Science

used. The organisation would need seven individual Class C netIDs. Each of these would
point to one of the LAN gateways (which have to function as routers). Each netlD would be
associated with 256 hosts so an organisation with just 150 computer workstations would
leave 1642 IP addresses unused and unavailable for use by any other organisation.

Head office

/ Gateway > LAN

——>| Gateway I———> LAN 1
———»| Gateway | LAN 2

— > | Gateway LAN 3
——| Gateway LAN 4

———>| Gateway |—> LAN 5

AN T T

Figure 2.07 Connecting LANs using the original classful IPv4 scheme

The sub-netting solution for this organisation would require allocating just one Class C netID.
For example, the IP addresses allocated might be 194.10.9.0 to 194.10.9.255 where the netlD
comprises the first three bytes, represented by the decimal values 194, 10 and 9.

The sub-netting now works by having a defined structure for the 256 codes constituting the
hostID. A sensible solution for this organisation is to use the top three bits as a code for the
individual LANs and the remaining five bits as codes for the individual workstations. Figure
2.08 shows a schematic diagram of this arrangement.

Head
office LAN

LAN 1

LAN 2

LAN 3
Router

N

LAN 4

LAN 5

//

LAN 6

Figure 2.08 Connecting LANS using sub-netting

On the Internet, all of the allocated IP addresses have a netID pointing to the router. The
router then has to interpret the hostID to direct the transmission to the appropriate host on
one of the LANS. For example:

o hostID code 00001110 could be the address for workstation 14 on the head office LAN
(LAN 000).

¢ hostID code 01110000 would be the address for workstation 16 on LAN 3 (LAN 011).

Chapter 2: Communication and Internet Technologies

With 150 workstations the organisation hasn’t used all of the 256 allocated IP addresses.
However, there are only 106 unused which is a reasonable number to have available in case
of future expansion.

Network address translation (NAT)

The final scheme to be considered is different in that it deviates from the principle that every
IP address should be unique. In this scheme, provision has been made for large organisations
to have private networks (intranets) which use the same protocols as those used for the
Internet. One justification for using a private network has always been that this provides
extra security because of the isolation from the Internet. However, this is no longer normal
practice. Organisations want private networks but they also want Internet connectivity.

The solution for dealing with the addressing is to use network address translation (NAT).
Figure 2.09 shows a schematic diagram of how this can be used. The NAT box has one

IP address which is visible over the Internet so can be used as a sending address or as a
receiving address. Internally the IP addresses have to be chosen from one of the three ranges
of IP addresses shown in Table 2.03 that have been allocated for such networks. (You do not
need to remember these numbers!)

»| NAT 3 /
< box < Internal router ——>

\\>

Figure 2.09 An intranet connected to the Internet using a NAT box

Lower bound Upper bound
10.0.0.0 10.255.255.255
172.16.0.0 172.31:255.255
192.168.0.0 192.168.255,255

Table 2.03 IPv4 addresses to be used in private networks

The important point is that each address can be simultaneously used by any number of
different private networks. There is no knowledge of such use on the Internet itself orin

any other private network. The interface in the NAT box has software installed to examine
each incoming or outgoing transmission. There can be a security check before an incoming
transmission is directed to the correct internal address. The diagram shows undefined
arrows from the router connected to the NAT box. These indicate that the network structure
within the organisation could take many different forms.

Discussion Point:

Can you find out which IP addressing scheme is being used when you are connected to the

[Internet?

Cambridge International AS and A level Computer Science

IPv6 addressing

Today there are combinations of IPv4 approaches in use and these allow the Internet

to continue to function. Respected sources argue that this cannot continue beyond the
current decade. There must soon be a migration to IP version 6 (IPv6), which uses a 128-bit
addressing scheme allowing 2'?¢ different addresses, a huge number! In practice, this will
allow more complex structuring of addresses. Documenting these addresses is not going to
be fun. The addresses are written in a colon hexadecimal notation. The code is broken into
16-bit parts with each of these represented by four hexadecimal characters. Fortunately,
some abbreviations are allowed. A few examples are given in Table 2.04.

IPv6 address Comment
68E6:7C48:FFFE:FFFF:3D20:1180:695A:FF01 | A full address
T2E6::CFFE:3D20:1180:295A:FF01 :0000:0000: has been replaced by ::
6C48:23:FFFE:FFFF:3D20:1180:95A:FF01 Leading zeros omitted
:192.31.20.46 An IPv4 address used in IPv6

Table 2.04 Some examples of IPv6 addresses

Extension question 2.01

If [Pv6 addressin
Earth's surface?

g is used, how many addresses would be available per square metre of the

Do you think there will be enough to go round?

2.08 Domain names

In everyday use of the Internet, a user needs to identify a particular web page or email box.
The user will not wish to have to identify an IP address using its dotted decimal value. To get
round this problem the domain name system (DNS) was invented in 1983. The DNS system
allocates readable domain names for Internet hosts and provides a system for finding the IP
address for an individual domain name.

Domain name system (DNS): a hierarchical distributed database installed on domain name servers
that is responsible for mapping a domain name to an IP address

The system is implemented as a hierarchical distributed database which is installed on

a large number of domain name servers covering the whole of the Internet. The domain
name servers are connected in a hierarchy, with powerful replicated root servers at the top
of the hierarchy supporting the whole Internet. DNS name space is then divided into non-
overlapping zones. Each zone has a primary name server with the database stored on it.
Secondary servers get information from this primary server.

As a result the naming system is hierarchical. There are more than 250 top-level domains
which are either generic (e.g. .com, .edu, and .gov) or represent countries (e.g. .uk and .nl).

The domain name is included in a universal resource allocator (URL), which identifies a web
page, or an email address. A domain is named by the path upward from it. For example, .eng.
cisco.com. refers to the .eng subdomain in the .cisco domain of the .com top-level domain
(which is the reverse of that used for a pathname of a file).

Looking up a domain name to find an IP address is called ‘name resolution’. For such a query
there are three possible outcomes:

Chapter 2: Communication and Internet Technologies

. silsdiilo. giiieae. Gadino. iR Bheam A oo Aol ol Sdibge Sl S deciio. (G GRS Jineiae. SR RS, R L R G B e e

T

 Ifthe domain is under the jurisdiction of the server to which the query is sent then an
authoritative and correct IP address is returned.

 [fthe domain is not under the jurisdiction of the server, an IP address can still be returned
if it is stored in a cache of recently requested addresses but it might be out of date.

« [|fthe domain in the query is remote then the query is sent to a root server which can
provide an address for the name server of the appropriate top-level domain which in turn
can provide the address for the name server in the next lower domain. This continues
until the query reaches a name server that can provide an authoritative IP address.

2.09 Scripting and HTML in a client-server application

Itis possible for an individual to create a client-server-based web application for personal
use on an individual computer. This would require downloading appropriate server software,
installing the application and using the computer’s browser to access the application.
However, a better understanding is gained by considering a scenario where a developer has
created a web application and made it available for use by remote users.

The application developer has to create the application as one or more web pages. This is

a three-stage process. Firstly, for each web page a file has to be created which is written in
HTML (HyperText Markup Language). Secondly, a domain name has to be obtained from a
web-hosting organisation. Finally, the HTML files have to be uploaded to the server provided
by the web-hosting organisation.

The following is the simplest sequence of events associated with a user accessing the
application:

The user opens up a browser on the client computer.

The user types in the URL of the web application or selects it from the bookmark list.
The browser asks the DNS system for the IP address.

The browser connects to the IP address and sends a request for the web page.

The page is sent by the server to the browser.

O U1 A W N K

The browser displays the page.

Once the page is displayed the user can activate the application by clicking on a suitable
feature or by entering data as appropriate.

HTML

We now need to consider the framework for creating a file using HTML. This is a text file
constructed using pairs of what are referred to as ‘tags’. The basic overall structure can be
represented as:

<html>
<head>
</head>
<body>

</body>
</html>

In between each pair of opening and closing tags there can be any number of lines of text.
These can be used to display on the browser screen any or all of the following: text, images,
videos, forms, hyperlinks, icons and so on.

Cambridge International AS and A level Computer Science

The facilities offered by HTML can be supplemented by the inclusion of scripted code, written
in JavaScript or PHP.

JavaScript

JavaScript is written by the application developer into the HTML text but its effect is to allow
the user at the client end to interact with the application and to cause processing to take
place on the client computer. For this to work the browser must have JavaScript enabled. In
the early days of the use of JavaScript it was necessary to ensure this and to include explicit
reference to the use of JavaScript in the HTML file. However, JavaScript is now the default
scripting language so a script runs automatically. The important point is that this has nothing
to do with what is installed on the server.

One way to incorporate JavaScript is to write the code in a separate file which is then called
from within the HTML. Here we only consider the case when JavaScript code is contained
within the HTML itself. This is easily done (and easily recognised in an example HTML file) by
containing the scriptin script tags: .

<scripts>

// Lines of JavaScript code

</script>

If the developer wants the script to be accessed immediately when the web page is displayed
the script tags are included in the HTML header section.

JavaScript is a full-blown computer programming language. Below is an example script
which indicates how easy it is to identify some JavaScript within HTML and to see what it is
doing. It uses variables (see Section 13.02 for more information about variables) to convert

a temperature value input in Celsius to a value output as Fahrenheit. The input uses the
prompt construct, which provides text to guide the user as to what should be input, and the
alert construct, which displays an explanatory text with the output value.

<!DOCTYPE html>

<html>

<body>

<hlsYou can input a value in Celsius and this will be converted to Fahrenheit.</hl>
<script>

var tempC = prompt("Please enter the Celsius value", "");
var tempF = (tempC * 1.8) + 32;

alert("The Fahrenheit value is " + tempF)

</ecripts

</body>

</html>

The question now is when would a developer want to use JavaScript? The answer to this is
‘whenever the developer wants the user to have processing carried out on the client computer
which does not involve the software running on the server’. This might involve running a
program as illustrated by the above simple example. More often the JavaScript is used for
collecting data which is to be used by a program running on the server. In particular, data
validation and verification can be handled using JavaScript (see Chapter 8, Section 8.04).

Chapter 2: Communication and Internet Technologies

PHP

PHP is also a full-blown computer programming language. The difference is that any PHP
scriptis processed on the server. As for JavaScript, the PHP can be contained in a separate
file accessed by the HTML. The example considered here will have the script written inside
the file containing the HTML. In this case the HTML file must be named with a .php extension
rather than the usual .html extension. The PHP code is included within special tags:

<?php
// Lines of PHP code

P>

The JavaScript program shown in the previous section could be converted to PHP to run on
the server in the following way:

<!DOCTYPE html>

<html>

<body>

<?php

StempC = $ GET["value"];
StempF = (StempC * 2) + 30;
Echo ("The Fahrenheit value is ");
Echo StempF;

?>

</body>

</html>

This particular example has to be run by supplying the value for stempc as a parameter to
the URL for the file. This is done when the URL is entered into the address bar of the browser.
To provide the value 25 the format is to append ?value=25 to the URL following the .php file
extension (e.g. index.php?value=25).

As before this simple example shows how to identify some PHP code within HTML and see
what itis doing. It is worth noting that variables start with $ and they are case sensitive.
The first character has to be in lower case so ¢ _ GeT, which is the method for getting the
parameter value, can be recognised as not being a variable.

The main question is, again, why would a developer choose to include PHP script in some
HTML? The answer is that an application will not run quickly if it is constantly transmitting
data back and forward between the client computer and the server. For the particular case
of a database application it is imperative that the database remains on the server (or within
the system of which the server is part) and that only the results of queries are displayed on

a browser screen. Also any SQL associated with the use of the database needs to be running
on the server not on the client. An example of this will be considered after SQL has been
introduced in Chapter 10 (Section 10.6).

IIHHI

Cambridge International AS and A level Computer Science

@ The main transmission media are copper (twisted pair, coaxial) cables, fibre-optic cables and wireless
(radio, microwave, infrared).

® Factors to consider are bandwidth, attenuation, interference and the need for repeaters.
@ TheInternet is the largest internetwork in existence.

@ The World Wide Web is a distributed application accessible on the Internet.

® ISPs provide access to the Internet.

@ Internet infrastructure is supported by PSTNs and cell phone companies.

@ Client-server architecture is established using a web server and a client browser.

@ The current addressing scheme is IPv4, with IPv6 a future contender.

® The DNS resolves a domain name to an IP address.

@ JavaScript is used to provide client-side processing.

@ PHP is used to provide server-side processing.

Exam-style Questions

1 Anew company has been established. It has bought some new premises which consist of a
number of buildings on a single site. It has decided that all of the computer workstations in
the different buildings need to be networked. They are considering ways in which the network
might be set up.

a Oneoption they are considering is to use cabling for the network and to install it themselves.
i Name the three types of cabling that they might consider.

i Explain two factors, other than cost, that they need to consider when choosing suitable cabling.

b Another option they are considering is to use wireless technology for at least part of the network.
i Explain one option that might be suitable for wireless networking.
ii Identify one advantage, other than cost, of using wireless rather than cable networking.
ili Identify one disadvantage (other than cost) of using wireless rather than cable networking.
¢ Thefinal option they are considering is to use the services of a PSTN.
i Define whata PSTN is or does.

ii Explain how a PSTN could provide a network for the company.

2 a TheDomain Name System is vitally important for Internet users.

i Name the type of software used by the system and the type of hardware on which the software is installed.

€ T--

i Name two types of application that use the Domain Name System and for each give a brief description of
how itis used.

In the classful IPv4 addressing scheme, the 32-bit binary code for the address has the top (most significant)
bit set to 0ifitis of class A, the top two bits set to 10 if class B or the top three bits set to 110 if class C. In a
document an IPv4 address has been written as 205.124.16.152.

i Give the name for this notation for an IP address and explain how it relates to the 32-bit binary code.
i Identify the class of the address and explain your reason.

iii Explain why an IPv4 address defines a netID and a hostID.

If the CIDR scheme for an IPv4 address is used the IP address 205.124.16.152 would be written as:
205.124.16.152/24

State the binary code for the hostID in this address with a reason.

A client-server web application has been developed which uses a file containing the following code:

<!DOCTYPE html>
<htmls>
<body>

<hl>We can give you an estimate of how many you will need if you are tiling a floor
with our tiles.

You need to tell us the length and the width of the room
(in metres).</hl>

<scripts>

var length = prompt("enter the room length", "");

var width = prompt("enter the room width", "");

var tileSize = 0.25;

var numberOfTiles = (length * width)/tileSize;

alert ("The estimate for the number of tiles needed is " + numberOfTiles);
</script>

</body>

</html>

i Name the role of the person who would create this file.
i Identify where this file would be stored.
iii Abrowseris needed to run the application. State where the browser software is installed.

The file uses JavaScript.

i Identify two component parts of the file which involve JavaScript and explain their purpose.

il Explain the sequence of events executed by the client computer and the web server when this
application is used.

Y T W R NP S T OSSR (R A TSN W N e Y T T - Qo W ey

36

Learning objectives
By the end of this chapter you should be able to:

show understanding of the need for primary storage
m show understanding of the need for secondary (including
removable) storage

identify hardware devices used for input, output,
secondary storage

show understanding of the basic internal operation of
specific types of device.

3.01 The memory system

As a broad generalisation it can be said that there are two main uses of a computer system.
The firstis to run programs.

In the discussion of computer system architecture in Chapter 5 (Section 5.01) you will see
that the simplest model consists of a processor with access to a stored program. The history
of computing is one of increasing performance. In the context of increasing performance of
the system in running programs, the first requirement is for the speed of the processor to
increase. However, this potential for improvement can only be realised if the time taken for
the processor to access the stored program decreases to match the increased processor
speed. The reality so far has been that access speeds have improved but they haven’t kept
pace fully with the improvement in processor speeds.

The second main use of a computer system is to store data. Here the major issues with
regards to increasing performance are capacity and cost; access speeds are not so
important.

The terminology used to describe components for storing programs and data is not always
consistent. One variation is to distinguish between memory as the component which the
processor can access directly and the (file-) store used for long-term storage. An alternative is
to distinguish between the primary and the secondary storage.

The memory system hierarchy is a useful concept for considering the choice of components
in a memory system. Figure 3.01 uses a simplified version of a memory system hierarchy to
show the trends in the important factors affecting this choice. The factors increase in the
direction of the arrow.

Component Category Access time Capacity Size Cost
Register Processor component A
Cache memory Primary storage

Main memory

Hard disk Secondary storage

Auxiliary storage

Figure 3.01 Trends in the factors affecting the choice of memory components

The individual entries in the Component column are discussed in Sections 3.02 and 3.03.
Computer users would really like to have a large amount of primary storage that costs little
and allows quick access. This is not possible; the fastest components cost more and have
limited capacity. In practice, the choice made is a compromise.

It could be argued that there is a need for secondary storage because the use of only primary
storage would be far too expensive. However, it is more sensible simply to recognise that
long-term storage of data requires separate dedicated components.

Chapter 3: Hardware

Cambridge International AS and A level Computer Science

3.02 Memory components

The processor has direct access to three types of storage component. The registers, as
discussed in Chapter 5 (Section 5.02), are contained within the processor. External to the
processor there is cache memory and main memory, which together constitute the primary
storage. Cache memory is used to store data that at any time is the most likely to be needed
again by the processor.

There is another way of categorising memory components. The first category is called
random-access memory (RAM). This is a potentially misleading term because a
programmer does not expect a program to make random decisions about which memory
location should be accessed.

Random-access memory (RAM): volatile memory that can be read from or written to any number of
times

Read-only memory (ROM): non-volatile memory that cannot be written to but can be read from any
number of times

The name has been chosen because such memory can be accessed at any location
independently of which previous location was used (it might have been better called ‘direct-
access memory’). A better description is read-write memory because RAM can be repeatedly
read from or written to. Another distinguishing characteristic of RAM is that it is volatile which
means that when the computer system is switched off the contents of the memory are lost.

There are two general types of RAM technology. Dynamic RAM (DRAM) is constructed
from capacitors which leak electricity and therefore need regularly recharging (every few
milliseconds) to maintain the identity of the data stored. Static RAM (SRAM) is constructed
from flip-flops (discussed in Chapter 18 (Section 18.02)) which continue to store data
indefinitely while the computer system is switched on.

SRAM provides shorter access time but unfortunately it compares unfavourably with DRAM in
all other aspects. DRAM is less expensive to make, it can store more bits per chip and despite
the need for recharging it requires less power to operate. So, once more, a compromise is
needed. The norm is for cache memory to be provided by SRAM with the main memory
being constructed from DRAM technology.

The second category of memory component is called read-only memory (ROM). Again

this name does not give a full picture of the characteristics of this type of component. ROM
shares the random-access or direct-access properties of RAM except that it cannot be written
to. The other important characteristic is that the data in ROM is not lost when the computer
system is switched off; the memory is non-volatile.

ROM has specialised uses involving the storage of data or programs that are going to be

used unchanged over and over again. ROM may be programmable (PROM) or erasable PROM
(EPROM) or even electrically erasable PROM (EEPROM). These terms relate to the manufacture
and installation of the ROM and do not impact on its basic use in a computer system.

Discussion Point:

Can you find out what memory components are i

omputer system you are using and

any details about them such as the type and storage capacity?

L BRUERRS oo mna ooo daiies, s Sibiiie iiSiiae ChbEERER Sl an diiniibies (iShes SiERie. dnualiis . e, i SR S

3.03 Secondary storage devices

Before discussing storage devices it is appropriate to discuss some terminology that can
confuse. For any hardware device, whether an integral part of the computer system or a
connected peripheral, its operation requires appropriate software to be installed. This
software is referred to as the ‘device driver’. This should not be confused with the term ‘drive’
associated specifically with a storage device. Furthermore, the term ‘drive’ was initially
introduced to refer to the hardware that housed a storage medium item and provided the
physical mechanism for transferring data to it or reading data from it. However, as so often
happens, such distinctions are often ignored. As a result, for example, references to a ‘hard
disk’, a ‘hard disk drive’ and to a ‘hard drive’ have the same meaning.

Magnetic media

Magnetic media have been the mainstay of filestore technology for a very long time. The
invention of magnetic tape for sound recording pre-dates the invention of the computer by
many years so, not unexpectedly, this technology was the first to be utilised as a storage
device. In contrast the hard disk was invented as a technology specifically for computer
storage, arriving a few years later than the first use of magnetic tape.

For either type of magnetic media the interaction with it is controlled by a read head and
a write head. A read head uses the basic law of physics that a state of magnetisation will
affect an electrical property; a write head uses the reverse law. Although they are separate
devices the two heads are combined in a read-write head. The two alternative states of
magnetisation are interpreted asa 1 or 0.

A schematic diagram of a hard disk is shown in Figure 3.02. Points to note about the physical
construction are that there is more than one platter (disk) and that each platter has a read-
write head for each side. The platters spin in unison. The read-write heads are attached to
actuator arms which allow the heads to move over the surfaces of the platters. The motion
of each actuator head is synchronised with the motion of the other heads. A cushion of air
ensures that a head does not touch a platter surface.

Read-write
head

Block

Cylinder

Track

Sector

>

(a) A hard disc drive (b) Asingle disk
Figure 3.02 A schematic drawing of the components of a hard disk drive

The logical construction is that data is stored in concentric tracks. Each track consists of a
sequence of bits but these are formatted into sectors where each sector contains a defined

Chapter 3: Hardware

Cambridge International AS and A level Computer Science

number of bytes. The sector becomes the smallest unit of storage. To store a file, a sufficient
number of sectors have to be allocated but these may or may not be adjacent to each other.
As files are created and subsequently deleted or edited the use of the sectors becomes
increasingly fragmented which degrades the performance of the disk. A defragmentation
program can reorganise the allocation of sectors to files to restore performance. This is
discussed in Chapter 7 (Section 7.03).

A hard drive is considered to be a direct-access read-write device because any sector can be
chosen for reading or writing. However, the data in a sector has to be read sequentially.

The above account only gives a simplified version of hard drive technology. One particular
omission is consideration of how manufacturers can effectively deal with the fact that the
physical length of a track increases from the innermost track to the outermost track. If this
factisignored the data storage capacity must be less than it potentially could be. The other
omission is the simple fact that the storage capacity of disk drives has continued to improve
and sizes have continued to shrink. There is every reason to believe that this performance
improvement is due to continue for some time.

There has always been a need for a storage device that can be removed from the computer
system. For large installations an organisation’s requirement is normally driven by security
concerns and the need for suitable back-up procedures. For individuals the need may be the
storage of personal data or personally owned programs or simple transfer of data between
computers or between a computer and, for example, a camera. The first technology to
dominate the use by individuals was the floppy disk but this was superseded by optical storage.

Optical media

| As with the magnetic tape medium, optical storage was developed from existing technology

| not associated with computing systems. The compact disc (CD) evolved into CD digital audio
(CD-DA) and this became the technology used in the CD-ROM. This was extensively used for
distributing software but was of no value as a replacement for the floppy disk. The read-write
version (CD-RW) which came later provided the needed write functionality. However, the

CD has now given way to the DVD (originally ‘digital video disc’ but later renamed as ‘digital
versatile disc’). The latest and most powerful technology is the Blu-ray disc (BD).

A schematic diagram of an optical disc drive is shown in Figure 3.03. The disc spins and the laser
beam is reflected from a surface which is sandwiched between a substrate and a protective
outer coating, For a CD-ROM, the reflective surface is
manufactured with indentations, called ‘pits’, separated by e

what are referred to as ‘lands’. When the disc is being read, B o
the travel of the laser beam to a pit causes a difference =

in phase compared to reflection from a land. This phase
difference is recognised by the photodiode detector and

attached circuitry and interpreted as a 1 or 0. For CD-RW y Y P

x])) ocus offset control D Bichroiemirror: .
and DVD-RW technologies, the reflective surface is a special L Dise
alloy material. When data is being written to the disc (the Read-write
‘burn’ process) the heat generated by the absorption of the ‘(?:§§ :
laser light changes the material to liquid form. Depending on Dichroic mirror || Objective

i : ; ; . e | d
the intensity of the laser light the material reverts to either a Signal collection lens % el

crystalline or an amorphous solid form when it cools. When
the disc is read, the laser light is reflected from the crystalline

solid but not from the amorphous solid allowing the coding
ofalor0. Figure 3.03 A schematic drawing of an optical disc drive

variable
spherical
aberration
correction

Read signal detector

e ccduiAL . Ol o

e coamnt | ol Liabiogn SRR, codihist, oGl ol odineiie gl bt ol ous

RRpciadie ol Giaen . Lbiing Giiagihe Laidisho

Chapter 3: Hardware

While the disc is spinning the optical head that directs the laser beam is made to move so
that the point of contact of the laser beam with the disc follows a single spiral path from the
centre of the disc to the periphery. Despite there only being this one path the formatting of
the data into sectors allows the disc to be used as a direct-access device just as is the case for
a magnetic hard disk.

Another similarity with magnetic disk technology is that the storage capacity is dependent on how
close together individual physical representations of a binary digit can get. There are two aspects
governing this for an optical disc. The firstis that if the disc is spinning at constant revolutions per
second the outer part of the disc travels faster than the inner part. Early technology counteracted
this by spinning at a constantly changing speed keeping the bit density constant along the spiral
path. The second is that the wavelength of the light controls how well the light can be focused; the
shorter the wavelength the better the focus. The original infrared diode laser used in a CD-ROM
has much longer wavelength than the red laser light used in a DVD. The more recently used blue
laser light has an even shorter wavelength. This change in wavelength is one of the reasons for the
improvements in the storage capacity of the modern technology.

Solid-state media

Despite the continued improvement in optical technology there is now a powerful
competitor in solid-state storage. The basis for this is ‘flash” memory which is often said to
be a form of EEPROM but where the programmable aspect is part of the normal use. Flash
memory is a semiconductor technology with no moving parts. The circuits consist of arrays
of transistors acting as memory cells. The most frequently used technology is called ‘NAND’
because the basic circuitry resembles that of a NAND logic gate (see Section 4.03) with the
memory cells connected in series. The special feature is that blocks of memory cells can
have their contents erased all at once ‘in a flash’. Furthermore, before data can be written to
a block of cells in the memory the data in the block first has to be erased. When data is read,
a whole block of data has to be read in one operation.

The technology can be used for ‘solid-state’ drives, which can replace hard disk drives. The
more frequent use is either in a memory card orin a USB flash drive. In the latter case the
flash memory is incorporated in a device with the memory chip connected to a standard USB
connector. This is currently the technology of choice for removable data storage but how
long this will remain so is very uncertain with alternative technologies such as phase-change
random access memory (PRAM) already under development.

Extension Question 3.01
Carry out some research into the technologies currently available for storage.

Consider first the options available for the storage device inside a laptop computer. Create a
table showing cost, storage capacity and access speed for typical examples. Then consider
the options available for peripheral storage devices. Create a similar table for these.

Can you identify which technologies remain viable and which ones are becoming
uncompetitive? Are there any new technologies likely to come into common use?

3.04 Computer graphics

The technologies associated with presenting a computer graphic as a screen display or as
a printed page share common limitations. The nature of these was well understood by the
newspaper printing industry many years before computers were invented. The issue was
how to include pictures that were originally photographs. A photograph has continuous

-

Cambridge International AS and A level Computer Science

tones but a printer at any position on a page could only print black or nothing. The solution
to this was halftoning. This technique approximated a grey tone by printing an array of black
dots; varying the size of the dots changed the tone displayed. The technique, of course, relies
on the limitations of the human eye which does not register the individual dots if they are
sufficiently small.

Avariation of this technique is used in computer graphic presentation. Normally, neither
screen nor printer technology can produce varying size dots but the same effect can be
produced by varying the number of dots created in what can be described as a halftone cell.
It is now standard practice for grey-scale images or colour images to be presented using a
halftoning technology. This requires a raster image processor, which can be a combination
of hardware and software, to control the conversion of data stored in a graphics file to the
physical screen display or printed page.

3.05 Screens and associated technologies

Screen technology associated with computer systems has a long evolutionary history. For
many years the only example was the visual display unit (VDU) which was used as a computer
monitor or terminal. The VDU employed the cathode ray tube (CRT) technology used in a
television set but the functionality offered by the device was limited to recording keyboard
input and displaying text output.

Computer mouse

Asignificant step forward came with the introduction of graphical user interfaces (GUls) as
standard features for microcomputer systems in the 1980s. The screen technology remained
the same but the functionality was completely transformed by the arrival of screen windows
and icons. To use the GUI effectively, the user needed a pointing device. The computer
mouse was introduced for this purpose. The screen became not just an output device but
also an input device activated by a mouse click.

There are two aspects to computer mouse technology. The first is the behaviour instigated
by a button click which needs no further discussion; the second is the operation of the
mouse in controlling a screen cursor. The important point to emphasise here is that a mouse
has no knowledge of an absolute position; all it can do is
allow a relative movement to be recorded so that it can
influence the screen cursor position.

The computer mouse introduced initially contained

a rubber ball held in contact with two rollers set
perpendicularly to each other. Figure 3.04 shows a
schematic diagram. As the mouse moves the rubber

ball rotates causing one or both rollers to rotate. Each
roller is attached to a spindle on which there is a disc
with holes arranged around the outer edge. A light

beam and detector are arranged so that the intermittent
transmission of the light through the holes in the disc is
recorded as the disc rotates and the circuitry attached to

the pair of detectors then sends the appropriate data to Figure 3.04 The components of a mechanical mouse
the computer to activate movement of the screen cursor.

More recently the tracker ball mouse was phased out and the optical mouse was introduced. This
technology dispenses with the mechanical aspects associated with the movement of a rubber

Chapter 3: Hardware

: ball. The mouse shines a light beam from a light emitting diode down onto the surface the mouse
is resting on. This light is reflected back on to a sensor fitted to the underside of the mouse. As the
mouse is moved along the surface the sensor acts like a camera taking successive images of the
surface. Image processing software then interprets these images to establish the movement that
F has taken place and this data is transmitted to the computer as before.

: Screen display

We can now consider the technology associated with the creation of a screen display. Chapter 1
(Section 1.04) described how an image could be stored as a bitmap built up from pixels. Screen
displays are also based on the pixel concept but with one major difference: a screen pixel
consists of three sub-pixels typically one each for red, green and blue. Varying the level of light
emitted from the individual sub-pixels allows a full range of colours to be displayed.

ool

B -Chaiaall Sbakilee aENcs

There have been a number of very different technologies used to create a pixel. In the original
cathode ray tube (CRT) technology, there is no individual component for a pixel. The inner
surface of the screen is covered with phosphor, which is a material that emits light when
irradiated. An individual pixel is created by controlling the direction of the electron beam
irradiating the phosphor. This is modified for colour displays where individual red, green and
blue phosphors are arranged so as to create an array of pixels.

Maba . pAG gine eciiRaibe i

=

R

Phosphors are also used in one of the major flat-screen technologies, the plasma screen.
There is now a construction based on individual cells constituting a matrix of pixels. Each
cell contains plasma and a phosphor. When an electrical charge is applied to the plasma

it releases radiation that hits the phosphor and causes light emission. Each pixel or, more
accurately, each sub-pixel is a light source. The sub-pixel emits one of red, green or blue light.

Liquid-crystal display (LCD): a screen back-lit by light-emitting diodes and with liquid crystal cells
sandwiched between polarisers

T T e .

In the flat-screen technology that is most used at present, the pixel is not a light source.
The liquid-crystal display (LCD) screen has individual cells containing a liquid crystal to
create the pixel matrix but these do not
emit light. The pixel matrix is illuminated
by back-lighting and each pixel can affect
the transmission of this light to cause the
on-screen display. A typical arrangement is
shown in Figure 3.05.

Polarizer

Colour Filter

Colour Filter glass
The back-lighting is usually provided by

light-emitting diodes (LEDs). The important
i feature is the use of polarised light directed
: towards the pixel matrix and the use of a
further polariser between the pixel matrix
and the screen. If a voltage is applied to an
individual pixel cell the alignment of the
liquid crystal molecules is affected and in
turn this can change the polarisation of the Backlight
light and therefore affect what is displayed on
the screen. There are a number of different

T e T

TFT Glass
Polarizer

Figure 3.05 The components of a liquid-crystal display screen

Cambridge International AS and A level Computer Science

technologies but the principle of their functioning is the same and colour displays use red, green
and blue combinations as before.

More recently, a different technology has been introduced. This is based on the use of an
organic light-emitting diode (OLED) to create the pixel. The OLED is used directly as a light
source so this technology requires no back-lighting.

Touch screens

As well as providing improved display capability, flat-screen technology has allowed a new
mechanism for interaction with the display. Touch-screen technology is now a major feature
of a whole range of computer-based products.

Extension Question 3.02

Consider the different possibilities for interacting with a screen display. Create a table

showing the advantages and disadvantages for each technique.

The modern version of a touch-sensitive screen has the layers of technology providing the
display with extra layers of technology added immediately beneath the surface of the screen.
There have been two approaches used. The first is the resistive touch screen. This type
has two layers separated by a thin space beneath the screen surface. The screen is not rigid
so when a finger presses on to the screen the pressure moves the topmost of these two
separated layers so that it makes contact with the lower layer. The point of contact creates a
voltage divider in the horizontal and vertical directions. These allow the position of the point
of contact to be transmitted to the processor.

The second technology is the capacitive touch screen. This does not require a soft

screen but instead makes use of the fact that a finger touching a glass screen can cause

a capacitance change in a circuit component immediately below the screen. The most
effective technology is projective capacitive touch (PCT) with mutual capacitance. This has
a circuit beneath the screen which contains an array of capacitors. This enables multi-touch
technology, which allows more functionality than just pointing at one location on a screen.

Resistive touch screen: a flexible surface which causes contact between electrically resistive layers
beneath when touched

Capacitive touch screen: a rigid surface above a conductive layer which undergoes a change in
electrical state when a finger touches the screen

Discussion Point:
Investigate which flat-screen technologies are used in any computer, laptop, tablet or mobile/

cell phone that you use. Discuss the benefits and drawbacks associated with their use.

3.06 Keyboards and keypads

The standard method of inputting significant amounts of text data into a computer system
has always been to use a QWERTY keyboard (named after the top left row of alphabetic
characters). The central part of the keyboard layout matches that of a standard typewriter,
allowing skilled typists to continue to function effectively. When numbers only need to be
input a skilled operator will use a numeric keypad. What might be described as a traditional
mobile phone has a different type of keypad which can be used to input text data. The

Chapter 3: Hardware

technology underpinning all of these devices is the same assuming that there are actual
physical keys to be used.

When the keyboard is being used to input text it appears as though a key press immediately
transfers the appropriate character to the computer screen but this is an illusion. The key
press has to be converted to a character code which is transmitted to the processor. The
processor, under the control of the operating system, ensures that the text character is

; displayed on the screen. The same process takes place if the keyboard is used to initiate

, some action, perhaps by using a shortcut key combination, except that the processor has to
respond by taking the requested action.

] To achieve this functionality the keyboard has electrical circuitry together with its own
microprocessor and a ROM chip. The keys are positioned above a key matrix which consists
of a set of rows of wires and another set of columns of wires. Pressing a key causes contact
at a specific intersection. The microprocessor continuously tests to see if any electrical
circuit involving a row wire and a column wire has become closed. When the microprocessor
; recognises that a circuit has become closed, it can identify the particular intersection that

is causing this. It then uses data stored in the ROM to create the appropriate character code
relating to the key associated with that intersection and sends this code to the processor.
The same principles apply if two keys are pressed simultaneously.

3.07 Printers, scanners and plotters

Inkjet printer

Two technologies have come to dominate the printing of documents from data stored in a
computer system. The technologies can be used irrespective of whether text or an image is
being printed. The technology that is cheapest to buy is the inkjet printer but the purchase
price is soon dwarfed by the cost of replacement ink. A genuine advantage of an inkjet printer
is its relatively small size.

The working principle of an inkjet printer is very simply explained: a sheet of paper is fed in;
the printhead moves across the sheet depositing ink on to the paper; the paper is moved
forward a fraction and the printhead carries out another traversal and so on until the sheet
has been fully printed. The precision of the mechanical operations involved is one of the
factors governing the quality of the printing. The other factor is the accuracy of the process
of applying the ink to the paper. The printhead consists of nozzles that spray droplets on to
the paper. The number of nozzles in a printhead is truly amazing, running into the thousands.

oot ERal. h bR hhic b ol W g YT W W

B

i This is only possible because the manufacturing process can produce an individual nozzle

i with a diameter considerably less than that of a human hair. There are two alternative

1 technologies for causing the ejection of the ink droplet (thermal bubble or piezoelectric) but

b neither has significant advantages or disadvantages.

; Ink is supplied to the printhead from one or more ink cartridges. Often the printhead is part

| of the cartridge. For black and white printing only one cartridge is required but for colour
printing more are needed. The simplest technology for colour printing uses three colour

| cartridges (one for each of the subtractive primaries: cyan, magenta and yellow) in addition

to the black cartridge. Suitable positioning of combinations of overlapping droplets in
principle allows any colour to be created. Good quality printing requires a printing resolution
of several hundred dots per inch which is achievable because of the large number and small
size of the nozzles. The number of dots per inch is defined by the printhead geometry and
cannot be changed but the number of dots per pixel can be dictated by the controlling
software. Increasing the number gives better colour definition for the pixel but the pixel size is

|
|
|
|
|
|
\

Cambridge International AS and A level Computer Science

increased giving poorer resolution for the image. Better resolution can only be achieved with
poorer colour definition.

Laser printer

The alternative technology is the laser printer. Laser printers have always been more
expensive to buy and used to offer much higher-quality printing but the comparison is no
longer so clear cut.

A schematic diagram of the workings of a laser printer is shown in Figure 3.06. The operation
can be summarised as follows:

1 Thedrum is given an electric charge.

2 Thedrum starts to revolve step by step.

3 Ateach step alaser beam is directed by the mirror and
lens assembly to a sequence of positions across the
width of the drum.

4 Ateach position the laser is either switched off to leave
the charge on the drum or switched on to discharge the
position.

PAPER EXIT

5 This process repeats until a full page electrostatic Laser Unit
image has been created. Photoreceptor
<— Drum

6 Thedrumis coated with a charged toner which
only sticks to positions where the drum has been

Assembly

discharged. - \Fuser L—
7 Thedrum rolls over a sheet of paper which is initially PAPER TRAY
given an electric charge. e i

8 The sheet of paperis discharged and then is passed
through heated rollers to fuse the toner particles and Figure 3.06 A schematic diagram of a laser printer
seal the image on the paper surface.

9 Thedrum is discharged before the process starts again for the next page.

The above sequence represents black and white printing. For colour printing, separate toners
are required for the colours and the process has to take place for each colour. Although the
technology is completely different the logical aspect of the printing is the same as that for
inkjet printing. Colours are created from cyan, magenta, yellow and black. The technology
produces dots; quality depends on the number of dots per inch and software can control the
number of dots per pixel.

Itis normal nowadays for a laser printer or an inkjet printer to be a multi-functional device.
It will have the capability to act as a flatbed scanner with the option for this also to provide
a photocopying facility. Effectively, a scanner reverses the printing process in that it takes
an image and creates from it a digital representation rather than the digital representation
being used to create an image on paper. The principles of the operation of a typical scanner
are straightforward. The sheet of paper is held in a fixed position and a light source covering
the width of the paper moves from one end of the sheet to the other. The reflected light is
directed by a system of mirrors and lenses on to a charge-coupled device (CCD). The finer
details of how a CCD works are not important but the three aspects to note are:

o Itconsists of an array of photo-sensitive cells.
« It produces for each cell an electrical response proportional to the light intensity.
o Itneeds an analogue-to-digital converter to create a digital value to be stored.

Chapter 3: Hardware

Graphics plotter and 3D printer

In Chapter 1 (Section 1.04) the difference between a bitmap and a vector graphic was

. discussed. If a vector graphic file has been created the image can be displayed on a screen
or printed by first converting the file to a bitmap version. However, specialised technical
applications often require a more accurate representation to be created on paper. This
requires the use of a graphics plotter. A plotter uses pens to write, usually, on a large sheet
of paper constrained by sprockets along one pair of sides. The sprockets can move the
paper forwards or backwards and pens can either be parked or in use at any given time. The
controlling circuitry and software can create the drawing directly from the original vector
graphic file.

i\ g

TTRRE gt s WY

Engineers and designers working in manufacturing are potential users of graph plotters. They
are also potential users of the 3D printer. The name could be said to be a little misleading but
its meaning is generally understood. It is a device that offers an alternative technology for
computer-aided manufacture (CAM).

The original concept was that the starting point is a 3D design created in a suitable computer-
aided design (CAD) package. The design is split into layers. The data for the first layer is
transmitted to the 3D printer. Rather than using ink to draw the
layer, the 3D printer uses a nozzle to squirt material on to the
printer bed to create a physical layer to match the design. This
process is repeated for successive layers. When the whole object
has been formed it has to be cured in some way to ensure that
the layers are, in effect, welded together and the material has
been converted to the form required for the finished product.

il oS usSheal i Shche) L IENRGhe OsfighbEE. ASESHEISERY Thoder. o i ol

o SiIREE . i | e, .

The technology is very versatile and still under development.
Figure 3.07 shows a striking example. This bionic ear was

| constructed with three ‘inks’. Silicone was used for the basic
i structure, a gel containing chondrocyte cells and silicone infused
4 with silver nanoparticles were the other two ‘inks’. The final
] curing step involved incubation in a cglture medium to.all-ow Figure 3.07 A bionic ear created using a 3D printer
l the chondrocyte cells to produce cartilage. The only missing
! component was skin.
| 3.08 Input and output of sound
IP telephony and video conferencing are the two obvious technologies requiring voice input
: to a computer system and voice output from a computer system. Voice recognition is an
[alternative technique for data input to a computer.
' Forinput, a microphone is needed. This is a device that has a diaphragm, a flexible material
which is caused to vibrate by an incoming sound. If the diaphragm is connected to suitable
{ circuitry the vibration can cause a change in an electrical signal. A condenser microphone
i uses capacitance change as the mechanism; an alternative is to use a piezoelectric crystal.
4 The electrical signal has to be converted to a digjtal signal by an analogue-to-digital

converter before it can be processed by a sound (audio) card inside the computer.

For output, a loudspeaker or speaker is needed. This is involved in what is effectively the
reverse process to that for input. The computer sound card produces a digital signal which
is converted to analogue by a digital-to-analogue converter. The analogue signal is fed to
the speaker. In the traditional technology the current flows through a coil suspended within

Cambridge International AS and A level Computer Science

the magnetic field provided by a permanent magnet in the speaker. As the direction of the
current keeps reversing, the coil moves backwards and forwards. This movement controls
the movement of a diaphragm which causes sound to be created.

Primary storage is main memory, consisting of RAM (DRAM or SRAM) and ROM.
Secondary storage includes magnetic, optical and solid-state media.
Input devices include the mouse, keyboard, scanner and microphone.

Output devices include screens (CRT, plasma, LCD, OLED), printers (inkjet, laser and 3D), plotters and speakers.

Touch screens (capacitive or resistive) are used for both input and output.

Exam-style Questions
e 1 a Atypical computer will have RAM and ROM.
i Describe two differences between RAM and ROM. 4]
ii Name one similarity between RAM and ROM. : (1]
iii RAM may be either DRAM or SRAM. Explain the difference between these. (2]

b Secondary storage can be magnetic, optical or solid state.

i Foreach type of storage identify one feature of the basic internal operation which
is different from that of the other two types. [3]

i Fortwo of the three types of storage identify two similarities in the basic internal operation. [2]

2 a Pressingakey on acomputer keyboard can cause a character to be displayed on the computer screen.

i Identify four aspects of the basic internal operation of a keyboard that makes this happen. [4]

ii Describe an alternative method for a user to enter some text into a computer system. (2]
b There are two types of printer commonly used with a PC.

i Describe two differences between how an inkjet printer works and how a laser printer works. (4]

i Identify two similarities in the logical approach used in these two types of printer. 2]

- 49

_ R

Logih Gates and Logic Circuits

Learning objectives
By the end of this chapter you should be able to:

= use logic gate symbols construct a truth table from:
® understand and define the functions of NOT, AND, OR, » alogic circuit
NAND, NOR and XOR (EOR) gates » a logic expression

construct the truth table for each of the logic gates above show understanding that some circuits can be constructed
construct a logic circuit from: from fewer gates to produce the same outputs.
« a problem statement

* alogic expression

Cambridge International AS and A level Computer Science

4.01 Boolean logic and problem statements
Consider the following question:
Is Colombo further north than Singapore?

In everyday language the answer will be either yes or no. (‘Yes’, in fact.) However, the question
could be rephrased to make use of the language of Boolean logic:

Colombo is further north than Singapore TRUE or FALSE?
More formally, the statement:
Colombo is further north than Singapore.

can be described as an example of a logic assertion or a logic proposition that can have
only one of the two alternative Boolean logic values TRUE or FALSE.

Logic proposition: a statement that is either TRUE or FALSE

Now consider the following two individual statements:

o You should take an umbrella ifit is raining or if the weather forecast is for rain later.

» The air-conditioning system is set to come on in an office only during working hours but
also only if the temperature rises to above 25°C.

Each of these statements contains two logic propositions which are highlighted. In each
statement these logic propositions are combined in some way. Finally, each statement has
the addition of an outcome which is dependent on the combination of the two propositions.
Each of these is, therefore, an individual example of a problem statement.

Problem statement: an informal definition of an outcome which is dependent on one logic
proposition or a combination of two or more logic propositions

4.02 Boolean operators

The problem statements identified above can be more formally expressed in a form that is
suitable for handling with Boolean logic. To do this it is necessary to use Boolean operators.
The three basic Boolean operators are AND, OR and NOT.

The definition for AND can be expressed as:
AAND Bis TRUE if Ais TRUE and B is TRUE

Here, both A and B represent any logic proposition or assertion that has a value TRUE or
FALSE.

In a similar way the definition for OR is:
AORBIis TRUE if Ais TRUE or B is TRUE
The two problem statements above might be rephrased as follows:

o Take_umbrella=TRUE IF (raining=TRUE) OR (rain_forecast = TRUE)
o System_on=TRUE IF (office hours = TRUE) AND (temperature > 25°C)

Chapter 4: Logic Gates and Logic Circuits

Each original problem statement has now been rephrased as a form of logic expression
with a defined outcome. The format of each expression here does not follow any formally
defined convention but the structure does allow the underlying logic to be understood. In
general, a logic expression consists of logic propositions combined using Boolean operators
and the expression optionally may be stated with a defined output.

Logic expression: logic propositions combined using Boolean operators, which may be written with a
defined outcome

TASK 4.01
Convert the following problem statement into a simple logic expression:

Adocument can only be copied if it is not covered by copyright or if there is copyright and
permission has been obtained.

Any logic expression can be constructed using only the Boolean operators AND, OR and NOT
butitis often convenient to use other operators. Here are the definitions for the six operators
with which you need to be familiar:

o NOTAIsTRUEif Ais FALSE
e AANDBIisTRUEifAis TRUE and B is TRUE
¢ AORBIsTRUEifAis TRUE or Bis TRUE

e ANAND Bis TRUE if Ais FALSE or B is FALSE
e ANORBIisTRUE ifAis FALSE and B is FALSE
4

e AXORBIisTRUEifAis TRUE or Bis true but not both of them

4.03 Truth tables

The truth table is a simple but powerful technique for representing any logic expression or for
describing the possible outputs from a logic circuit.

Atruth table is presented by making use of the convention that TRUE can be

represented as 1 and FALSE can be represented as 0. The simplest use of a truth table is
A . : A B X
to represent the logic associated with a Boolean operator.
As an example let us consider the AND operator. The labelling of the truth table follows ; ’
the convention that the initially defined values are represented by A and B and the value O . -
obtained from the simple expression using the AND operator is represented by X. In other il 0 0
words we write the truth table for X= AAND B. Remembering that AND only returns true if 1 1 1
both Aand B are true we expect a truth table with only one instance of X having the value 1.
The truth table is shown in Table 4.01. Table 4.01 The truth table for
the AND operator

The truth table has four rows corresponding to the four combinations of the truth values
for Aand B. Three of these lead to a 0 in the X column as expected.

TASK 4.02
Without looking further on in the chapter, construct the truth table for the OR operator.

Cambridge International AS and A level Computer Science

4.04 Logic circuits and logic gates

The digital circuits that constitute the inner workings of a computer system all operate on the
basis that at any one time an individual part of the circuit is either in an ‘on’ state, which can
be represented by a 1, orin an ‘off’ state, represented by a 0. The physical circuitry consists of
integrated circuits constructed from transistors. There can be billions of transistors in a single
integrated circuit.

We will view a logic circuit as comprising component parts called logic gates. Fach different
logic gate has an operation that matches a Boolean operator.

Logic gate: a component of a logic circuit that has an operation matching that of a Boolean operator

Discussion Point:

will be no further discussic

ure of a small-scale integration chip.

When drawing a circuit, standard symbols are used for the logic gates. As an example,

the symbol shown in Figure 4.01 represents an AND gate. Figure 4.01 The symbol for

The first point to note here is that the shape defines the type of gate. The second point the AND logic gate
is that the inputs are on the left-hand side and the output is on the right-hand side. In

general, the number of inputs is not limited to two but the discussion in this book will only

consider circuits where the number of inputs does not exceed two.

Figure 4.02 shows the logic gate symbols and the associated truth tables for each of the six
Boolean operators introduced in Section 4.02.

A
NOT —Do; 0 | 1
1| o
A | BR[| X
0o | o] o
AND _D— g | 1% g
=l 18 e e
1 | 1 | 1
A B | X
g oo
OR @— ol | ek
Lol
NERE
A| B | X
‘ o o u
NAND _7:>o— g | 1 | &
e i | e § &
RN

k.

Chapter 4: Logic Gates and Logic Circuits

Figure 4.02 Logic gate symbols and their associated truth tables

=B |lOo|O| >
H|OoO(R|Olm
O|lO|O|H|>X

=R |Oo|lOo|>
R|o|~|o|lm
o|lr|—|lo|x

There are two other points to note here. The NOT gate is a special case having only one
input. The NAND and NOR gates are each a combination of a gate and the NOT gate so they
produce complementary output to that produced by the AND and OR gates.

TASK 4.03

Draw a circuit where A and B are input to an AND gate from which the output is carried to a
NOT gate from which there is an output X. Show that this has the same outcome as having one
NAND gate.

Extension question 4.01
Could the same outcome be produced by positioning a NOT gate before the AND gate?

You need to remember the symbol for each of these gates. A good start here is to remember
that AN ‘D has the proper D symbol and OR has the curvy one. You also need to remember the
definitions for the gates so that you can construct the corresponding truth table for each gate.

Question 4.01

Can you recall from memory the symbols and definitions of the six logic gates introduced in
this chapter?

WORKED EXAMPLE 4.01

Constructing a logic circuit from a problem statement or logic expression

You need to be able to construct a logic circuit from either a problem statement or from
a logic expression. If you are given a problem statement the best approach is to first
convert it to a logic expression and then to identify the individual Boolean operations in
the logic expression. This approach will be illustrated here.

Consider the following problem statement: A bank offers a special lending rate to
customers subject to certain conditions. To qualify, a customer must satisfy certain criteria:
o The customer has been with the bank for two years.
« Two of the following conditions must also apply:

e The customer is married.

e The customer is aged 25 years or older.

o The customer’s parents are customers of the bank.

Cambridge International AS and A level Computer Science

To convert this statement to a logic expression you need to represent each condition by
a symbol (in the same way that a problem might be tackled in normal algebra):

o LetArepresentan account held for two years.

o LetBrepresent that the customer is married.

e LetCrepresent that the customer’s is age 25 years or more.

o Let D represent that the customer’s parents have an account.

The logic expression can then be written as:

AAND (((B AND C) OR (B AND D)) OR (C AND D))
This could alternatively be presented with an outcome:
Special_rate IF AAND (((B AND C) OR (B AND D)) OR (C AND D))

Note the use of brackets to ensure that the meaning is clear. You may think that not all of
the brackets are needed. In this example, an extra pair has been included to guide the
construction of the circuit where only two inputs are allowed for any of the gates.

It can be seen, therefore, that the logic circuit corresponding to this logic expression
derived from the original problem statement could be constructed using four AND gates
and two OR gates as shown in Figure 4.03.

A

|)~

D

Figure 4.03 A logic circuit constructed from a problem statement

WORKED EXAMPLE 4.02

Constructing a truth table from a logic expression or logic circuit

You also need to be able to construct a truth table from either a logic expression or a
logic circuit. We might have continued with the problem in Worked Example 4.01 but
four inputs will lead to 16 rows in the truth table. Instead, we consider a slightly simpler
problem with only three inputs and therefore only eight rows in the truth table. We will
start with the circuit shown in Figure 4.04.

o L X
; >|_3_|_3_

¢
Figure 4.04 A circuit with three inputs for conversion to a truth table

Chapter 4: Logic Gates and Logic Circuits

Table 4.02 shows how the truth table needs to be set up initially. There are several points
to note here. The first is that you must take care to include all of the eight different possible
combinations of the input values. Therefore, you present the values in increasing binary
number value from 000 to 111. The second point is that for such a circuit it is not sensible to
try to work out the outputs directly from the input values. Instead a systematic approach
should be used. This involves identifying intermediate points in the circuit and recording
the values at each of them in the columns headed ‘Workspace’ in Table 4.02.

Inputs Workspace Output
A B C X
0 0 0
0 0 1
0 1 0
0 il il
i 0 0
i 0 il
il il 0
1 L il

Table 4.02 The initial empty truth table

Figure 4.05 shows the same circuit but with four intermediate points labelled M, N, P and
Q identified. Each one has been inserted on the output side of a logic gate.

A=)M |>P

(&
Figure 4.05 The circuit in Figure 4.04 with intermediate points identified

Now you need to work systematically through the intermediate points. You start by
filling in the columns for M and N. Then you fill in the columns for P and Q which feed
into the final AND gate. The final truth table is shown as Table 4.03. The circuit has two
combinations of inputs that lead to a TRUE output from the circuit.

b gusbenlicics Slmen Chscied Py ilaaene ol lhoanu,, GBiSe. DAl Sl A A coailo o oo Sdis e SRR gieteo UBE - - - - b - - g o b - R - b -

The columns containing the intermediate values (the workspace) could be deleted at this stage.
Inputs Workspace Output
A B C M N P Q X
0 0 0 0 il il 0 0
0 0 1 0 1 1 Il il
0 1 0 0 0 il 0 0
0 1 1 0 0 i 0 0
1 0 0 0 1 il 0 0
3 1 0 1 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0
Table 4.03 The truth table for the circuit shown in Figure 4.05
: i B] Cal i1 PR BT B = § FE— .

Cambridge International AS and A level Computer Science

One final point to make here is that you may be able to check part of your final solution
by looking at just part of the circuit. For this example, if you look at the circuit you

will see that the path from input C to the output passes through two AND gates. It
follows, therefore, that for all combinations with C having value 0 the output must be 0.
Therefore, in order to check your final solution you only need to examine the other four
combinations of input values where C has value 1.

TASK 4.04

An oven has a number of components which should all be working properly. For each
component there is a signalling mechanism that informs a management system if all is well
orifthereis a problem when the oven is being used. Table 4.04 summarises the signal values
that record the status for each component.

Signal Value Component condition
5 0 Fan not working
1 Fan working properly
. 0 Internal light not working
1 Internal light working properly
" 0 Thermometer reading too high
1 Thermometer reading in range

Table 4.04 Signals from the oven components

If the thermometer reading is in range but either or both the fan and light are not working, the
management system has to output a signal to activate a warning light on the control panel.
Draw a logic circuit for this fault condition.

4.05 Alternative circuits

For any given logic problem there will be different circuits that deliver the same output values
from a given set of inputs. In some cases it will be possible to simplify an initial circuit design
by reducing the number of logic gates. As a trivial example you may have noticed that the
circuit in Figure 4.04 includes an AND gate immediately followed by a NOT gate. These could
have been combined as a NAND gate. For more complex examples, there are techniques
available which will be discussed in Chapter 18 (Sections 18.03 and 18.04).

However, reducing complexity is not just about reducing the number

of logic gates. Logic circuit manufacturers can reduce costs by building ‘
circuits that contain only one type of logic gate; one that is itself cheap & Sl
to manufacture. The NAND gate is an example of a universal gate which

fits this requirement (the NOR gate is the other possibility). Manufacturers :>__|-) o

may find it cheaper to build a circuit with just NAND gates even though the - S -
circuit contains more components than alternatives containing different
gates. To illustrate the concept of the universal NAND gate the circuitin Figure 4.06 A circuit containing only NAND
Figure 4.06 has the same functionality as an OR gate. gates which is equivalent to an OR gate

Extension question 4.02
Create the truth table for the circuit shown in Figure 4.06 and show that it is the same as that
foran OR gate.

Chapter 4: Logic Gates and Logic Circuits

Alogic scenario can be described by a problem statement or a logic expression.

A logic expression comprises logic propositions and Boolean operators.

Logic circuits are constructed from logic gates.

The operation of a logic gate matches that of a Boolean operator.

The outcome of a logic expression or a logic circuit can be expressed as a truth table.

Exam-style Questions

1 a Thefollowing are the symbols for three different logic gates.

Gatel

0 >

Gate 2

Gate 3

) ol

i Identify each of the logic gates.

ii Draw the truth table for either Gate 1 or Gate 2.

b Consider the following circuit:

A

i Construct the truth table for the circuit using the following template:

Inputs

Workspace

Qutput

B

X

0

0

—|lolo|lo|lo | >

o|l~Rr|lo|lrlOo|l~|lo |O

=

ii Thereisan element of redundancy in this diagram. Explain what the problem is.

Cambridge International AS and A level Computer Science

ANAND Bis TRUE if Ais FALSE or B is FALSE
Draw the truth table for a NAND gate [4]

b Consider the following statement:

In a competition, two teams play two matches against each other. One of the teams is declared the winner
if one of the following results occurs:
e The team wins both matches.

e Theteam wins one match and loses the other but has the highest total score.
i Identify the three logic propositions in this statement. [3]

ii By assigning the symbols A, B and C to these three propositions express the outcome of the competition
as a logic expression. s (3]

iii Construct a logic circuit to match this logic expression. (4]

3 Adomestic heating system has a hot water tank and a number of radiators. There is a computerised management
system which receives signals dependent on whether or not the conditions for components are as they should be.

|

}

2 a Thedefinition of the NAND gate can be expressed as:
The following table summarises the signals received:

Signal Value Component condition
ﬂ 7 0 Water flow in the radiators is too low
’ 1 Water flow in the radiators is within limits
‘ . 0 Hot water tank temperature too high
| 1 Hot water tank temperature within limits
} . 0 Water level in hot water tank too low
‘ 1 Water level in hot water tank within limits

a Consider the following fault condition. The water level in the hot water tank is too low and the temperature
in the hot water tank is too high. The management system must output a signal to switch off the system.

i Constructa truth table for this fault condition including the A, B and C signals.) [4]
ii Construct the circuit diagram for this fault condition to match this truth table. (5]

b Considerthe fault condition where the hot water tank temperature is within limits but the water flow in the
radiators is too low and the water level in the hot water tank is too low. Construct the circuit diagram for this fault
condition which requires the management system to output a signal to increase water pressure. (5]

—

‘};
- ,'-//
~ul |

-~

-

-

Nl
i WPy

o

Processor Fundamentals

Learning objectives
By the end of this chapter you should be able to:

® show understanding of the basic Von Neumann model

® show understanding of the roles carried out by registers

® show understanding of the roles carried out by the
Arithmetic and Logic Unit (ALU), Control Unit and system
clock
show understanding of how data are transferred between
various components of the computer system using the
address bus, data bus and control bus

show understanding of how the bus width and clock
speed are factors that contribute to the performance of
the computer system

show understanding of the need for ports
describe the stages of the fetch-execute cycle
show understanding of ‘register transfer’ notation
describe how interrupts are handled.

Cambridge International AS and A level Computer Science

5.01 The Von Neumann model of a computer system

The simplest form of what might be described as a computer system model or computer
system architecture is usually attributed to John von Neumann. This recognises the fact that
he was the first to describe the basic principles in a publication.

The model has the following basic features:

o Thereis a processor, a central processing unit.

e The processor has direct access to a memory.

« The memory contains a ‘stored program’ (which can be replaced by another at any time)

and the data required by the program.

e Thestored program consists of individual instructions.

o The processor executes instructions sequentially.

5.02 Central processing unit (CPU) architecture

Modern processors are extremely complex; some
of the complexities will be discussed in Chapter
19 (Sections 19.02 and 19.03). In this chapter the
focus is on the fundamentals of the operation of
an up-to-date version of a simple von Neumann
computer system.

Figure 5.01 gives a simplified schematic diagram
of a processor that could be part of this simple
system. The dotted outline shows the boundary
of the processor. The logical arrangement of some
of the processor components is indicated. The
arrows show possible directions of flow of data.
As the following discussion will show, the data for
some of the arrows is specifically an address or an
instruction. However, in general, data might be an
instruction, an address or a value.

Components of the CPU

The two major components of the CPU are the
arithmetic and logic unit (ALU) (or Arithmetic
Logic Unit) and the control unit. As its name
implies, the ALU is responsible for any arithmetic
or logic processing that might be needed when a
program is running. The functions of the control

Address Data
bus bus

Y

- = Control~ —
A mt

A

A
Y

A i
v ~ Other

| registers

A
Y

~ Arithmetic
: and
~ Logic Unit

[e e i e e e e B

Figure 5.01 A schematic diagram of the architecture of a simple CPU

unit are more diverse. One aspect is controlling the flow of data throughout the processor
and, indeed, throughout the whole computer system. Another is ensuring that program
instructions are handled correctly. A vital part of the control unit is a clock which is used
by the unit to synchronise processes. Strictly speaking there are two clocks. The firstis an
internal clock which controls the cycles of activity within the processor. The other is the
system clock which controls activities outside the processor. The CPU will have a defined
frequency for its clock cycle, which is usually referred to as the clock speed. The frequency
defines the minimum period of time that separates successive activities within the system.

R ———————— e

Chapter 5: Processor Fundamentals

: Extension question 5.01
, In an advertisement for a laptop computer, the system is described as 4GB, 1 TB, 1.7 GHz.
I 1 Which three components are being referred to here?

2 Have the values quoted been presented correctly? To answer this you need to refer back
, to the discussion in Chapter 1 (Section 1.04) about terminology.

, 3 Calculate the minimum time period that could separate successive activities on this

system.
' Registers
: The other components of the CPU are the registers. These are storage components which,
; because of their proximity to the ALU, allow very short access times. Each register has limited
1 storage capacity, typically 16, 32 or 64 bits. A register is either general purpose or special

purpose. If there is only one general-purpose register it is referred to as the accumulator.
For the rest of this discussion and for the discussion in Chapter 6, the assumption will be that

j the processor does have just this one general-purpose register. The Accumulator is used to
r store a single value at any one time. A value is stored in the Accumulator that is to be used
4 by the ALU for the execution of an instruction. The ALU can then store a different value in the

Accumulator after the execution of the instruction.

Accumulator: a general-purpose register that stores a value before and after the execution of an
instruction by the ALU

Figure 5.01 shows some of the special-purpose registers as individual components. The box
labelled ‘Other registers’ can be considered to comprise the Accumulator plus the special-
purpose registers not identified individually. The full names of the special-purpose registers
included in the simple CPU which we are going to discuss are given in Table 5.01 with a brief
description of their function.

D EERL e acEa dmoae | cma sage S, dieeo) JUiioliNE i S CChe daie. i R e . o

Register name Abbreviation | Register’s function
Current instruction CIR Stores the current instruction while it is being
register decoded and executed
Index register IX Stores a value; only used for indexed addressing
Memory address MAR Stores the address of a memory location which is
register about to have a value read from or written to
M i ;
eERy Gals Iglater Stores data that has just been read from memory or
(memory buffer MDR (MBR) g !
; is just about to be written to memory
register)
Stores the address of where the next instruction is
Program counter PC
to be read from
Status register SR Contains individual bits that are either set or cleared

Table 5.01 Registers in a simple CPU

Two points are worth making at this point. The first is that the alternative name for the MDR
emphasises that this particular register must act as a buffer because transfers of data within
the processor take place much more quickly than transfers outside the processor. This

Cambridge International AS and A level Computer Science

statement has to be slightly qualified because the transfer could be to or from cache memory
which would be a fast process but it is otherwise generally applicable. The mention of cache
memory brings us to the second point which is that all discussion in this chapter and Chapter
6 ignores the fact that cache memory exists. All references are simply to memory as in

Table 5.01.

Afurther point to note here is that the index register (IX) can be abbreviated as IR but in some
sources the current instruction register (CIR) is abbreviated as ‘IR’, which is an unnecessary
potential cause of confusion. In this book, the index register is always IX and the current
instruction register is CIR. Finally, there is also possible confusion if the abbreviation PC is
used. This will only be used in this book when register transfer notation is being used as you
will see later in the chapter. Everywhere else, a PC is a computer.

The SRis used when an instruction requires arithmetic or logic processing. Each individual
bitin the SR operates as a flag. The bit is set to 1 if a condition is detected. As an example, the
use of the following three flags will be illustrated:

e Thecarryflag, identified as C, is set to 1 if there is a carry.

« Thenegative flag, identified as N, is set to 1 if a result is negative.

« Theoverflow flag, identified as V, is set to 1 if overflow is detected.

WORKED EXAMPLE 5.01

Using the status register during an arithmetic operation

1 Consider the addition of two positive values where the sum of the two produces an
answer that is too large to be correctly identified with the limited number of bits used to
represent the values. For, example if an eight-bit binary integer representation is being
used and an attempt is made to add denary 66 to denary 68 the following happens:

0100 0010

E 0100 0100
Flags: N V C
10000110 110

The value produced as an answer is denary — 122. Two positive numbers have been
added to get a negative number. This impossibility is detected by the combination of
the negative flag and the overflow flag being set to 1. The processor has identified the
problem and can therefore send out an appropriate message.

2 Consider using the same eight-bit binary integer representation but this time two
negative numbers (—66 and —68 in denary) are added:

10111110
+ 10111100

Flags: N V C

(1) 0111 1010 011

This time we get the answer +122. This impossibility is detected by the combination of
the negative flag not being set and both the overflow and the carry flag being set to 1.

Chapter 5: Processor Fundamentals

Extension question 5.02
Carry out a comparable calculation for the addition in binary of —66 to +68. What do you
think the processor should do with the carry bit?

5.03 The system bus

Abus is a parallel transmission component with each separate wire carrying a single bit. It
isimportant not to describe a bus as a storage device. A bus does not hold data. Instead it
is a mechanism for data to be transferred from one system
component to another.

In the simple computer system described in this chapter
there will be a system bus that comprises three distinct
components: the address bus, the data bus and the control

bus. The schematic diagram of the CPU in Figure 5.01 Y Y -
shows the logical connection between each bus and a CPU I CoRtoipus I &
component. The address bus is connected to the MAR; the v [4 2
data bus to the MDR; and the control bus to the control unit. [Address bus I 5
w
The system bus allows data flow between the CPU, the ¥ v &
: . b | Data bus |
memory, and input or output (I/O) devices as shown in the
schematic diagram in Figure 5.02.
Figure 5.02 A schematic diagram of the system bus
The address bus
The sole function of the address bus is to carry an address. This address is loaded on to the

bus from the MAR as and when directed by the control unit. The address specifies a location

in memory which is due to receive data or from which data is to be read. The address bus is a
‘one-way street’. It can only be used to send an address to a memory controller. It cannot be

used to carry an address from the memory controller back to the CPU.

Address bus: a component that carries an address to the memory controller to identify a location in
memory which is to be read from or written to

k The crucial aspect of the address bus is the ‘bus width’, which is the number of separate wires

t in the bus. The number of wires defines the number of bits in the address’s binary code. In -

1 the simple computer system considered here we will assume that the bus width is 16 bits

L allowing 65 536 memory locations to be directly addressed. Such a memory size would, of
course, be totally inadequate for a modern computer system. Even doubling the address bus
width to 32 bits would only allow the direct addressing of a little over four billion addresses. If
the memory size is too large special techniques have to be used.

[The data bus

The function of the data bus is to carry data. This might be an instruction, an address or a
value. As can be seen from Figure 5.02, the data bus might be carrying the data from CPU to
memory or from memory to CPU.

However, another option is to carry data to or from an |/O device. The diagram does not
make clear whether, for instance, data coming from an input device is carried first to the CPU
or directly to the memory. There is a good reason for this. Some computer systems will only

Cambridge International AS and A level Computer Science

allow input to the CPU before the data can be stored in memory. Other systems will allow
direct transfer to memory.

Bus width is again an important factor in considering how the data bus is used. Before
discussing this, it is useful to introduce the concept of a word. A word consists of a number
of bytes and for any system the word length is defined. The significance of the word length is
that it defines a grouping that the system will handle as one unit. The word length might be
stated as a number of bytes or as a number of bits. Typical word lengths are 16, 32 or 64 bits
thatis, 2, 4 or 8 bytes respectively. For a given computer system, the bus width is ideally the
same as the word length. If this is not possible the bus width can be half the word length so
that a full word can be transmitted by two consecutive data transfers. For our simple system
we assume a data bus width of 16 bits and a word length of two bytes to match this.

Data bus: a component that carries data to and from the processor
Word: a small number of bytes handled as a unit by the computer system

Extension question 5.03
Can you find out the bus widths used in the computer system you are using?

The control bus

The control bus is another bidirectional bus which transmits a signal from the control unit to
any other system component or transmits a signal to the control unit. There is no need for
extended width so the control bus typically has just eight wires. A major use of the control
bus is to carry timing signals. As described in Section 5.02, the system clock in the control
unit defines the clock cycle for the computer system. The control bus carries timing signals
at time intervals dictated by the clock cycle. This ensures that the time that one component
transmits data is synchronised with the time that another component reads it.

The clock speed is the most important factor governing the processing speed of the system.
However, it is not the only factor. The performance will be limited if the bus widths are
insufficient for the whole of a data value to be transferred in one clock cycle. For optimum
performance it is also particularly important that memory access is as efficient as possible.

The schematic diagram in Figure 5.02 slightly misrepresents the situation because it looks as
if the CPU, the memory and the /O devices have similar access to the data and control buses.
The reality is different. Each I/O device is connected to an interface called a port. Each port

is connected to the I/O or device controller. This controller handles the interaction between
the CPU and an |/O device. A port is described as ‘internal’ if the connected I/0 device is an
integral part of the computer system. An external port allows the computer user to connect a
peripheral I/O device.

The universal serial bus (USB)

In the early days of the PC, the process of connecting a peripheral was time-consuming and
required technical expertise. The aim of the plug-and-play concept was to remove the need
for technical knowledge so that any computer user could connect a peripheral and start
using it straight away. The plug-and-play concept was only fully realised by the creation of the
USB (Universal Serial Bus) standard. Nowadays anyone buying a new peripheral device will
expect it to connect to a USB port. There is an alternative technology known as FireWire but
this is not so commonly used in computer systems.

Chapter 5: Processor Fundamentals

Some information about the USB standard:

» Ahierarchy of connections is supported.
e The computeris at the root of this hierarchy and can handle 127 attached devices.

 Devices can be attached while the computer is switched on and are automatically
configured for use.

» Thestandard has evolved, with USB 3.0 being the latest version.

Discussion Point:
Carry out an investigation into storage devices that could be connected as a peripheral to a
PC using the USB port.

For two representative devices find out which specific USB technology is being used and
what the potential data transfer speed is. How do these speeds compare with the speed of
access of a hard drive installed inside the computer?

5.04 The fetch-execute cycle

The full name for this is the fetch, decode and execute cycle. This is illustrated by the
flowchart in Figure 5.03.

START

TAA

>y

Any instructk'\lO

to execute?

Fetch next
instruction
Transfer control to
Y interrupt-handling
Decode program
instruction
A
Y
Execute
instruction

Y

Any interrupts
to be processed?

YES

Figure 5.03 Flowchart for the fetch, decode and execute cycle

Cambridge International AS and A level Computer Science

If we assume that a program is already running then the program counter already holds the
address of an instruction. In the fetch stage, the following steps happen:

1 Thisaddressin the program counter is transferred within the CPU to the MAR.
2 During the next clock cycle two things happen simultaneously:
o theinstruction held in the address pointed to by the MAR is fetched into the MDR
o theaddress stored in the program counter is incremented.
3 Theinstruction stored in the MDR is transferred within the CPU to the CIR.
For our simple system the program counter will be incremented by 1. However, it should be
noted that the instruction just loaded might be a jump instruction. In this case, the program

counter contents will have to be updated in accordance with the jump condition. This can
only happen after the instruction has been decoded.

In the decode stage, the instruction stored in the CIR is received as input by the circuitry
within the control unit. Depending on the type of instruction, the control unit will send
signals to the appropriate components so that the execute stage can begin. At this stage, the
ALU will be activated if the instruction requires arithmetic or logic processing.

The description of the execute stage is postponed until Chapter 6, in which a simple
instruction set is introduced and discussed.

5.05 Register transfer notation

Operations involving registers can be described by register transfer notation. The simplest
form of this can be illustrated by the following representation of the fetch stage of the fetch-
execute cycle:

MAR <« [PC]
PC « [PC] + 1; MDR <« [[MAR]]
CIR « [MDR]

The basic format for an individual data transfer is similar to that for variable assignment. The
firstitem is the destination of the data. Here the appropriate abbreviation is used to identify
the particular register. To the right of the arrow showing the transmission of data is the
definition of this data. In this definition, the square brackets around a register abbreviation
show that the content of the register is being moved possibly with some arithmetic operation
being applied. When two data operations are placed on the same line separated by a
semi-colon this means that the two transfers take place simultaneously. The double pair of
brackets around MAR on the second line needs careful interpretation. The content of the MAR
is an address; it is the content of that address which is being transferred to the MDR.

5.06 Interrupt handling
There are many different reasons for an interrupt to be generated. Some examples are:

o afatalerrorina program

o ahardware fault

» aneed for |/O processing to begin
e userinteraction

o atimersignal.

There are a number of different approaches possible for the detailed mechanisms used to
handle interrupts but the overriding principles are clearly defined. Each different interrupt

Chapter 5: Processor Fundamentals

needs to be handled appropriately and different interrupts might possibly have different
priorities. Therefore, the processor must have a means of identifying the type of interrupt.
One way is to have an interrupt register in the CPU that works like the status register, with
each individual bit operating as a flag for a specific type of interrupt.

As the flowchart in Figure 5.03 shows, the existence of an interrupt is only detected at the
end of a fetch-execute cycle. This allows the current program to be interrupted and leftin a
defined state which can be returned to later. The first step in handling the interrupt is to store
the contents of the program counter and any other registers somewhere safe in memory.

Following this, the appropriate interrupt handler or interrupt service routine (ISR) program

is initiated by loading its start address into the program counter. When the ISR program

has been executed there needs to be an immediate check to see if further interrupts need
handling. If there are none, the safely stored contents of the registers are restored to the CPU
and the originally running program is resumed.

Summa_ry

The von Neumann architecture for a computer system is based on the stored program concept.
The CPU contains a control unit, an arithmetic and logic unit, and registers.

Registers can be special purpose or general purpose.

The status register has individual bits acting as condition flags.

The system bus contains the data, address and control buses.

A universal serial bus (USB) port can be used to attach peripheral devices.

Instructions are handled by the fetch-execute cycle.

Register transfer notation is used to describe data transfers.

If an interrupt is detected, control passes to an interrupt-handling routine.

Exam-style Questions

1 a Aprocessorhasjust one general-purpose register. Give the name of this register. [1]

b The memory address register (MAR) is a special-purpose register. State:
i itsfunction
ii thetype of data stored in it

iii theregister that supplies this data at the start of the fetch stage of the fetch-execute cycle. [3]

Cambridge International AS and A level Computer Science

¢ Thecurrentinstruction register (CIR) is another special-purpose register. State:
i itsfunction
ii thetype of data stored in it
iii theregister that supplies this data at the end of the fetch stage of the fetch-execute cycle. (3]

d Explain three differences between the memory address register and the memory data register. [5]
2 The system bus comprises three individual buses: the data bus, the address bus and the control bus.
a Foreach bus give a brief explanation of its use. [6]

b Each bus has a defined bus width.

i State what determines the width of a bus. [1]
ii Explain which bus will have the least width. [2]
iii Explain the effect of changing the address bus from a 32-bit bus to a 64-bit bus. [3]

3 Thefetch stage of the fetch-decode-execute cycle can be represented by the following statements using register
transfer notation:

MAR <« [PC]
PC < [PC] + 1; MDR « [[MAR]]
CIR < [MDR]

a Explain the meaning of each statement. The explanation must include definitions of the following items:
MAR, PC, [], <, MDR, [[1], CIR. [10]

b Explain the use of the address bus and the data bus for two of the statements. (4]

¥ v F 7§ W Y
it

I ™ v.grg&

¥

L) .a(a); update slider()

*m = & I 54 - s i e"';z:.m »

e i‘F (8 < C. 1&&32‘:?@) {

T g ™ i ~I I-« s "

tep05

4N Old 9)5 .5 ‘iéﬂﬁtmc%ﬁ

G e e

S y - -

Assembly Language Programming

Ty T T g T Ny ™

Learning objectives
By the end of this chapter you should be able to:

= show understanding that the set of instructions are « compare instructions
grouped into instructions for: « modes of addressing
« data movement m show understanding of the relationship between
« input and output of data assembly language and machine code
- arithmetic operations E trace a given simple assembly language program.

« unconditional and conditional jump instructions

i i Hie g y
f‘l“:i | ¢ - B -
m“ “ # i - #
Ih “\ ﬂ‘tm . };‘ R 2
‘m QHl‘ ettt ot
'*m" &ﬁ“ i L aitik h
;mi L

"% 1 *w i \\m}‘
e ‘\!m‘ h\.u‘
L '; ¥

Cambridge International AS and A level Computer Science

6.01 Machine code instructions

The only language that the CPU recognises is machine code. Therefore, when a program is
running and an instruction is fetched from memory this has to be in the format of a binary
code that matches the specific machine code that the CPU uses.

Different processors have different instruction sets associated with them. Even if two
different processors have the same instruction, the machine codes for them will be different
but the structure of the code for an instruction will be similar for different processors.

For a particular processor, the following components are defined for an individual machine
code instruction:

o thetotal number of bits or bytes for the whole instruction

o the number of bits that define the opcode

e the number of operands that are defined in the remaining bits

+ whetherthe opcode occupies the most significant or the least significant bits.

In general, there can be anything up to three operands for an instruction. However, following
on from the approach in Chapter 5, we consider a simple system where there is either one or
zero operands.

Machine code instruction: a binary code with a defined number of bits that comprises an opcode
and, most often, one operand

The number of bits needed for the opcode depends on the number of different opcodes in
the instruction set for the processor. The opcode is structured with the first few bits defining
the operation and the remaining bits associated with addressing. A sensible instruction
format for our simple processor is shown in Figure 6.01.

Opcode Operand
Operation Addressmode Register addressing
| 4bits | 2 bits [2 bits | 16 bits 7

Figure 6.01 A simple instruction format

This has an eight-bit opcode consisting of four bits for the operation, two bits for the address
mode (discussed in Section 6.03) and the remaining two bits for addressing registers. This
allows 16 different operations each with one of four addressing modes. This opcode will
occupy the most significant bits in the instruction. Because in some circumstances the
operand will be a memory address it is sensible to allocate 16 bits for it. This is in keeping
with the 16-bit address bus.

Because an instruction has two components, a slight modification to register transfer
notation (see Section 5.05) is needed. As an example the first step in the decode stage of the
fetch-execute cycle could be written as:

CU <« [CIR(23:16)]

Indicating that only bits 16 to 23 from the contents of the CIR have been transferred to the
control unit; bits 0 to 15 are not needed in this first step.

Chapter 6: Assembly Language Programming

6.02 Assembly language

A programmer might wish to write a program where the actions taken by the processor
are directly controlled. Itis argued that this can produce optimum efficiency in a program.
However, writing a program as a sequence of machine code instructions would be a very
time-consuming and error-prone process. The solution for this type of programming is to
use assembly language. As well as having a uniquely defined machine code language each
processor has its own assembly language.

The essence of assembly language is that for each machine code instruction there is an
equivalent assembly language instruction which comprises:

* amnemonic (a symbolic abbreviation) for the opcode

o acharacter representation for the operand.

If a program has been written in assembly language it has to be translated into machine
code before it can be executed by the processor. The translation program is called an
‘assembler’, of which some details will be discussed in Chapter 7 (Section 7.05). The fact
that an assembler is to be used allows a programmer to include some special features in an
assembly language program. Examples of these are:

e comments

e symbolic names for constants

e labels for addresses

e Macros

e subroutines

o directives
o system calls.

The first three items on this list are there to directly assist the programmer in writing the M|
program. Of these, comments are removed by the assembler and symbolic names and labels

require a conversion to binary code by the assembler. A macro or a subroutine contains a

sequence of instructions that is to be used more than once in a program.

Directives and system calls are instructions to the assembler as to how it should construct
the final executable machine code. They can involve directing how memory should be used
or defining files or procedures that will be used. They do not have to be converted into binary
code.

Directive: an instruction to the assembler program

6.03 Addressing modes

When an instruction requires a value to be loaded into a register there are different ways

of identifying the value. These different ways are described as the ‘addressing modes’. In
Section 6.01, it was stated that, for our simple processor, two bits of the opcode in a machine
s code instruction would be used to define the addressing mode. This allows four different
modes which are described in Table 6.01.

SRR e A e e Gl S e Sttt o i e e e L e e e i e T e i i e e e i b i S i L i ~

Cambridge International AS and A level Computer Science

Addressing mode Operand

Immediate The value to be used in the instruction

Direct An addrgss which holds the value to be used in the
instruction

ndiient An address which holds the address which holds the value

to be used in the instruction

An address to which must be added what is currently in the
Indexed index register (IX) to get the address which holds the value
in the instruction

Table 6.01 Addressing modes

6.04 Assembly language instructions

The examples described here do not correspond directly to those found in the assembly
language for any specific processor. Individual instructions will have a match in more than
one real-life set. The important point is that these examples are representative. In particular,
there are examples of the most common categories of instruction.

Data movement

These types of instruction can involve loading data into a register or storing data in memory.
Table 6.02 contains a few examples of the format of the instructions with explanations.

It should be understood that an actual instance of an instruction would have an actual
address where <addresss> is shown, a register abbreviation where <registers isshown
and a denary value for n where #n is shown. The explanations use ACC to indicate the
accumulator.

Instruction opcode Instruction operand Explanation

LDM #n Immediate addressing loading n to ACC
LDR #n Immediate addressing loading n to IX
LDD <address> Direct addressing, loading to ACC

LDI <address> Indirect addressing, loading to ACC
LDX <address> Indexed addressing, loading to ACC
STO <address> Storing the contents of ACC

Table 6.02 Some instruction formats for data movement

The important point to notice is that the mnemonic defines the instruction type including
which register is involved and, where appropriate, the addressing mode. It is important to
read the mnemonic carefully! The explanations for LDD, LDI and LDX need reference back to
Table 6.01.

Itis possible to use register transfer notation to describe the execution of an instruction. For
example, the LDD instruction is described by:

ACC < [[CIR(15:0)]1]

Chapter 6: Assembly Language Programming

The instruction is in the CIR and only the 16-bit address needs to be examined to identify
the location of the data in memory. The contents of that location are transferred into the
accumulator.

TASK 6.01
Use register transfer notation to describe the execution of an LDI instruction.

Arithmetic operations
Table 6.03 contains a few examples of instruction formats used for arithmetic operations.

Instruction opcode | Instruction operand Explanation

ADD <address> Add the address content to the
content in the ACC

INC <register> Add 1 to the value stored in the
specified register

DEC <register> Subtract 1 from the value stored in
the specified register

Table 6.03 Some instruction formats for arithmetic operations

Question 6.01

What would you need to do if, for example, you wanted to add 5 to the content in the
accumulator?

Comparisons and jumps

A program might require an unconditional jump or might only need a jump if a condition

is met. In the latter case, a compare instruction is executed first and the result of the
comparison is recorded by a flag in the status register. The execution of the conditional jump
instruction begins by checking whether or not the flag bit has been set. Table 6.04 shows the
format for these types of instruction.

Instruction

opcode Instruction operand | Explanation

JMP <address> Jump to the address specified

CMP <address> Compare the ACC content with the
address content

CMP #n Compare the ACC content with n

JPE <address> Jump to the address if the result of the previous
comparison was TRUE

JPN <address> Jump to the address if the result of the previous
comparison was FALSE

Table 6.04 Some jump and compare instruction formats

Cambridge International AS and A level Computer Science

Note that the two compare instructions have the same opcode. For the second one, the
immediate addressing is identified by the # symbol preceding the number. In the absence of
the # the operand is interpreted as an address. Note also that the comparison is restricted to
asking if two values are equal.

The other point to note is that a jump instruction does not cause an actual immediate
jump. Rather, it causes a new value to be supplied to the program counter so that the next
instruction is fetched from this newly specified address. The incrementing of the program
counter that took place automatically when the instruction was fetched is overwritten.

Input and output

The two examples here are instructions for a single character to be input or output. In each
case the instruction has only an opcode; there is no operand:

» Theinstruction with opcode 1N is used to store in the ACC the ASClI value of a character
typed at the keyboard.

e Theinstruction with opcode ouT is used to display on the screen the character for which
the ASCII code is stored in the ACC.

WORKED EXAMPLE 6.01

Tracing an assembly language program

Consider some program instructions are contained in memory locations from 100 and
some eight-bit binary data values are contained in memory locations 200 and onwards.
For illustrative purposes the instructions are shown in assembly language form. At the
start of a part of the program, the memory contents are as shown in Figure 6.02.

Address Contents Address Contents
100 LDD 201 200 0000 0000
101 INC ACC 201 0000 0001
102 ADD 203 202 0000 0010
103 CMP 205 203 0000 0011
104 JPE 106 204 00000100
105 DEC ACC 205 00000101
106 INC ACC 206 00000111
107 STO 206 207 0000 0000

Figure 6.02 The contents of memory addresses before execution of the program begins

Chapter 6: Assembly Language Programming

The values stored in the program counter and in the accumulator as the program
instructions are executed are shown in Figure 6.03.

N

!

:

|

3

|

{ Program counter Accumulator

E At the start of the execution 100 0000 0000

L After the instruction in 100 has been executed 101 0000 0001

: After the instruction in 101 has been executed 102 0000 0010

;

L After the instruction in 102 has been executed 103 00000101

| After the instruction in 103 has been executed 104 00000101

r After the instruction in 104 has been executed 106 00000101
After the instruction in 106 has been executed 107 00000110
After the instruction in 107 has been executed 108 00000110

Figure 6.03 The contents of the program counter and accumulator
during program execution

Question 6.02

Can you follow through the changes in the values in the two registers in Worked Example
6.017 Are there any changes to the contents of memory locations 100 to 107 or 200 to 207
while the program is executing?

Summary

A machine code instruction consists of an opcode and an operand.

An assembly language program contains assembly language instructions plus directives that
provide information to the assembler.

Processor addressing modes can be: immediate, direct, indirect or indexed.

Assembly language instructions can be categorised as: data movement, arithmetic, compare,
jump and input/output.

F Exam-style Questions

1 Threeinstructions for a processor with an accumulator as the single general purpose register are:
LDD <address> for direct addressing
LDI <addresss forindirect addressing

LDX <address> forindexed addressing

Cambridge International AS and A level Computer Science

In the diagrams below, the instruction operands, the register content, memory addresses and the memory contents
are all shown as denary values.

a
\
1
b
(o

Consider the instruction LDD 103.

i Draw arrows on a copy of the diagram below to explain execution of the instruction.

Memory Memory
address content
100 116
101 114
102 112
Accumulator 103 110
| | 104 108
105 106
Index register 106 104
| 3 B 107 102

ii Show the contents of the accumulator as a denary value after execution of the instruction.

Consider the instruction LDI 107.

i Drawarrows on a copy of the diagram below to explain execution of the instruction.

Memory Memory
address content
100 116
101 114
102 112
Accumulator 103 110
| E 104 108
105 106
Index register 106 104
[3 o 107 102

ii Show the contents of the accumulator as a denary value after execution of the instruction.

i Drawarrows on a copy of the diagram below to explain the execution of the instruction LDX 103.

Memory Memory
address content
100 116
101 114
102 112
Accumulator 103 110
i | 104 108
105 106
Index register 106 104
| 3 | 107 102

ii Show the contents of the accumulator as a denary value after the execution.

SRR e ARG Ladio e S abiine caudii o bit. o i, Sl ol RS . T

Chapter 6: Assembly Language Programming

2 Every machine code instruction has an equivalent in assembly language. An assembly language program will
contain assembly language instructions. An assembly language program also contains components not directly
transformed into machine code instructions when the program is assembled.

Name three types of component of an assembly language program that are not intended to be directly
transformed into machine code by the assembler. For one component, state its purpose. [4]

Trace the following assembly language program using a copy of the trace table provided. Note that the
LDl instruction uses indirect addressing. [6]

Assembly language program
Memory address Memory content

100 LDD 201

101 INC ACC

102 STO 202

103 LDT 203

104 DEC ACC

105 STO 201

105 ADD 204

107 STO 201

108 END

i

201 10

202 0

203 204

204 5

NeenaulSiee Memory addresses
201 202 203 204
0 10 0 204 5

System Software

Learning objectives
By the end of this chapter you should be able to:

m describe why a computer system requires an operating
system '

m explain the key management tasks carried out by the
operating system

® show an understanding of the need for typical utility
software used by a PC computer system

E show an understanding that software under development
is often constructed using existing code from program
libraries

m describe the benefits to the developer of software
constructed using library files, including Dynamic Link
Library (DLL) files

draw on experience of the writing of programs which
include library routines

show an undetstanding of the need for assembler
software, a compiler and an interpreter

describe the different stages of the assembly process for a
‘two-pass’ assembler

explain the benefits and drawbacks of using either a
compiler or an interpreter

show awareness that high-level language programs may
be partially compiled and partially interpreted, such as

those written in Java.
N E v

Chapter 7: System Software

7.01 System software
In the 1960s, the likely scenario for using a computer would be something like this:

Enter machine room with deck of punched cards and a punched paper tape reel.
Switch on computer.

Put deck of cards into card reader and press button.

Put paper tape into tape reader and press button.

a A W N

Press button to run the program, entered into memory from the punched cards, which
uses the data entered into memory from the paper tape.

6 Press button to get output printed on the line-printer.
7 Switch off computer.
8 Leave machine room with deck of cards, paper tape and line-printer output.

What happened is that the user controlled the computer hardware by pressing buttons. Just
try to imagine how many buttons would be needed if you had to control a computer in the
same way today.

The missing component from the 1960s computer was, of course, an operating system; in
other words some software to control the hardware. An operating system is an example of

a type of software called ‘system software’. This distinguishes it from application software
which is created to perform a specific task for a computer user rather than just helping to run
the system.

Operating system: a software platform that provides facilities for programs to be run which are of
benefit to a user

7.02 Operating system activities

Operating systems are extremely complex and it is not possible to give an all-embracing
description of what an operating system is. However, what an operating system does can be
generalised by saying that it provides an environment within which programs can be run that
are of benefit to a user.

The activities of an operating system can be sub-divided into different categories. There is
overlap between many of these but the classification is worthwhile. The following account
provides a very brief explanation of each of the various tasks carried out by the operating
system. Details of how some of them are carried out are discussed in Chapter 20 (Sections
20.01, 20.02 and 20.03).

User-system interface

A user interface is needed to allow the user to get the software and hardware to do
something useful. An operating system should provide at least the following for user input
and output:

e acommand-line interface

e agraphical user interface (GUI).

Cambridge International AS and A level Computer Science

Discussion Point:

rience of using a command-line interface?

Program-hardware interface

Programmers write software and users run this software. The software uses the hardware.
The operating system has to ensure that the hardware does what the software wants it to do.
Program development tools associated with a programming language allow a programmer
to write a program without needing to know the details of how the hardware, particularly the
processor, actually works. The operating system then has to provide the mechanism for the
execution of the developed program.

Resource management

When the execution of a program has begun it is described as a process. In a modern
computer system, a process will not be able to run to completion without interruption. At
any time there will be many processes running on the computer system. Each process needs
access to the resources provided by the computer system.

Process: a program that has begun execution

The resource management provided by the operating system aims to achieve optimum
efficiency in computer system use. The two most important aspects of this are:
» scheduling of processes

o resolution of conflicts when two processes require the same resource.

Memory management

There are three important aspects of memory management:

« Memory protection ensures that one program does not try to use the same memory
locations as another program.

» The memory organisation scheme is chosen to achieve optimum usage of a limited
memory size, for example, virtual memory involving paging or segmentation.

« Memory usage optimisation involves decisions about which processes should be in main
memory at any one time and where they are stored in this memory.

Device management

Every computer system has a variety of components that are categorised as ‘devices’.
Examples include the monitor screen, the keyboard, the printer and the webcam. The
management of these requires:

« installation of the appropriate device driver software

» control of usage by processes.

Chapter 7: System Software

File management
Three major features here are the provision of:

o file naming conventions
 directory (folder) structures

e access control mechanisms.

Security management

Chapters 8 (Section 8.02) and 21 (Section 21.04) discuss details of security issues. There are
several aspects of security management which include:

 provision for recovery when data is lost

» prevention of intrusion

 ensuring data privacy.

Error detection and recovery

Errors can arise in the execution of a program either because it was badly written or because
it has been supplied with inappropriate data. Other errors are associated with devices not
working correctly. Whatever the cause of an error, the operating system should have the
capability to interrupt a running process and provide error diagnostics where appropriate.

In extreme cases, the operating system needs to be able to shut down the system in an
organised fashion without loss of data.

TASK 7.01

For each of the above categories of operating system task, the individual points mentioned
could often be mentioned in a different category. Make an abbreviated list of these categories
and add arrows to indicate alternative places where items could be placed.

Question 7.01

It is useful to describe the management tasks carried out by an operating system as being
primarily one of the following types:

o those assisting the user of the system
o those concerned with the running of the system.

Considering the management tasks that have already been categorised, can you identify
them as belonging to one or other of the above types? Are there any problems in doing this?

7.03 Utility programs used by a PC

A utility program is one that might be provided by the operating system but it might also be
one thatisinstalled as a separate entity. It is a program that is not executed as part of the
normal routine of operating system utilisation. Rather it is a program that the user can decide
to run when needed or possibly a program that the operating system might decide to run in
certain circumstances. Some utility programs are associated with hard disk usage.

| i i i i o i i i L . e i i i e i e G . i e i i e e e i e e G . e (i

Cambridge International AS and A level Computer Science

Hard disk formatter and checker
A disk formatter will typically carry out the following tasks:

» removing existing data from a disk that has been used previously

o setting up the file system on the disk, based on a table of contents that allows a file
recognised by the operating system to be associated with a specific physical part of the
disk

o partitioning the disk into logical drives if this is required.

Another utility program, which might be a component of a disk formatter, performs disk
contents analysis and, if possible, disk repair when needed. The program first checks for
errors on the disk. Some errors arise from a physical defect resulting in what is called a ‘bad
sector’. There are a number of possible causes of bad sectors. However, they usually arise
either during manufacture or from mishandling of the system. An example is moving the
computer without ensuring that the disk heads are secured away from the disk surface.

Other errors arise from some abnormal event such as a loss of power or an error causing
sudden system shutdown. As a result some of the files stored on the disk might no longer be
in an identifiable state. A disk repair utility program can mark bad sectors as such and ensure
that the file system no longer tries to use them. When the integrity of files has been affected,
the utility might be able to recover some of the data but otherwise it has to delete the files
from the file system.

Hard disk defragmenter

A disk defragmenter utility could possibly be part of a disk repair utility program but it is

not primarily concerned with errors. A perfectly functioning disk will, while in use, gradually
become less efficient because the constant creation, editing and deletion of files leaves them in
a fragmented state. The cause of this is the logical arrangement of data in sectors as discussed
in Chapter 3 (Section 3.03), which does not allow a file to be stored as a contiguous entity.

Asimple illustration of the problem is shown in Figure 7.01. Initially file A occupies three
sectors fully and part of a fourth one. File B is small so occupies only part of a sector.

File C occupies two sectors fully and part of a third. When File B is deleted, the sector
remains unfilled because it would require too much system overhead to rearrange the file
organisation every time there is a change. When File A is extended it completely fills the first
four sectors and the remainder of the extended file is stored in all of Sector 8 and part of
Sector 9. Sector 4 will only be used again if a small file is created or if the disk fills up, when it
might store the first part of a longer file.

Sectors 0-3 Sector 4 Sectors 5-7 Sectors 8-9
Initlial position File A | File B | FileC |
File Bis deleted | File A |] | FileC [| |
File Ais extended | File A | | Hlet | FEleAT |

Figure 7.01 File fragmentation on a hard disk

A defragmenter utility program reorganises the file storage to return it to a state where
all files are stored in contiguous sectors. For a large disk this will take some time. It will be
impossible if the disk is too full because of the lack of working space for the rearrangement.

Chapter 7: System Software

TASK7.02

If you have never used a disk defragmenter or disk repair utility program can you get access to
a system where you can use one? If so, note the changes that are carried out and recorded by
the utility program.

Backup software

Itis quite likely that you perform a manual backup every now and then using a flash memory
stick. However, a safer and more reliable approach is to have a backup utility program do
this for you. You can still use the memory stick to store the backed-up data but the utility
program will control the process. In particular it can do two things:

o establish a schedule for backups
 only create a new backup file when there has been a change.

File compression

Afile compression utility program can be used as a matter of routine by an operating system
to minimise hard disk storage requirements. If the operating system does not do this, a user
can still choose to implement a suitable program. However, as was discussed in Chapter 1
(Section 1.07), file compression is most important when transmitting data. In particular, it
makes sense to compress (or zip’) a file before attaching it to an email.

Virus checker

Avirus-checking program should be installed as a permanent facility to protect a computer
system. In an ideal world, it would only need to be used to scan a file when the file initially
entered the system. Unfortunately this ideal state can never be realised. When a new virus
comes along there is a delay before it is recognised and a further delay before a virus checker
has been updated to deal with it. As a result it is necessary for a virus checker to be regularly
updated and for it to scan all files on a computer system as a matter of routine.

7.04 Library programs

;

‘r

Alibrary program can be defined as a program contained in a program library but both
‘library program’ and ‘program library’” are misleading terms. There may be programs in
a program library but more often they are subroutines that programmers can use in their
{ programs.

:

]

]

I‘

There is no advantage to a programmer in ‘reinventing the wheel’. If a routine exists in a
library a programmer would be very unwise to write his or her own routine. Existing library
routines will have been extensively tested before release. Even if some residual bugs did
exist following testing, the regular use of the routines would almost inevitably lead to their
detection.

The most obvious examples of library routines are the built-in functions available for use
when programming in a particular language. Examples of these are discussed in Chapter 13
(Section 13.08). Another example is the collection of over 1600 procedures for mathematical
and statistics processing available from the Numerical Algorithms Group (NAG) library. This
organisation has been creating routines since 1971 and they are universally accepted as
being as reliable as software ever can be.

Cambridge International AS and A level Computer Science

In Section 7.05, the methods available for translation of source code are discussed. For
the purpose of the discussion here you just need an overview of what happens. The
source code is written in a programming language of choice. If a compiler is used for the
translation and no errors are found, the compiler produces object code (machine code).
This code cannot be executed by itself. Instead it has to be linked with the code for any
subroutines used by it. It is possible to carry out the linking before loading the composite
code into memory and running it.

By contrast, dynamic linking has the routines from a dynamic link library (DLL) already in
memory. While the code is running, it links to the DLL routine that it needs. A DLL is created
so that its routines can be shared. More than one process can dynamically link to a DLL file at
any one time.

7.05 Language translators

As with much of this chapter, the discussion will contain few details of how translators work
because they are dealt with in Chapter 20 (Section 20.05). The need for a language translator
is easy to explain and, indeed, is explained in Chapter 6 (Section 6.02). Writing a program
directly in machine code would take a very long time and undoubtedly would lead to a
multitude of errors.

Assemblers

If a programmer has decided to write a program, or perhaps a procedure, in assembly
language there is a need for a program to translate this into machine code. The program
needed is called an assembler. If the program was written in a very simple form the
conversion would require straightforward conversion of the instructions written in
mnemonic form to the machine code version. However, in most instances more is required.

A‘two-pass’ assembler is not an essential requirement but it does clearly differentiate
between the two stages that are required in translation. As was discussed in Chapter 6, an
assembly language program will contain features that are used to help the programmer
and others that are used to inform the assembler program. In the first pass of a two-pass
assembler all of these features are either removed or acted upon. Typical actions are:

e removal of comments

» creation of a symbol table containing the binary codes for symbolic names and labels
« creation of a literal table if the programmer has used constants in the program

e expansion of macros

o identification of system calls and subroutines used.

If errors are not found, the second pass of the assembler generates the object code. This

involves replacing symbolic addresses with absolute addresses.

As noted above, object code is not an executable code. The creation of executable code
requires a linker to be used to ensure that the object code for the program and the object
codes for associated procedures are transferrable into memory with mutually consistent
memory locations. The actual transfer into memory is carried out by a loader or the loader
element of a link-loader. This carries out any final adjustment of memory addresses that
might be necessary.

Chapter 7: System Software

Compilers and interpreters

The starting point for using either a compiler or an interpreter is a file containing source code,
which is a program written in a high-level language.

For an interpreter the following steps apply:

1 Theinterpreter program, the source code file and the data to be used by the source code
program are all made available.

The interpreter program begins execution.

The first line of the source code is read.

The line is analysed.

If an error is found this is reported and the interpreter program halts execution.

If no error is found the line of source code is converted to an intermediate code.

The interpreter program uses this intermediate code to execute the required action.

0 =~ & U1 A W N

The next line of source code is read and Steps 4-8 are repeated. .
For a compiler the following steps apply:

The compiler program and the source code file are made available but no data is needed.

The compiler program begins execution.

The first line of the source code is read.

The line is analysed.

If an erroris found this is recorded.

If no error is found the line of source code is converted to an intermediate code. H
The next line of source code is read and Steps 4-7 are repeated.

© N OO U A WN R

when the whole of the source code has been dealt with one of the following happens:

converted into object code.
o Ifanyerrors are found a list of these is output and no object code is produced.

Execution of the program can only begin when the compilation has shown no errors. This
can take place automatically under the control of the compiler program if data for the
program is available. Alternatively the object code is stored and the program is executed later
with no involvement of the compiler.

Discussion Point:
What type of facility for language translation are you being provided with? Does your
experience of using it match what has been described here?

For a programmer, the following statements can be made about the advantages and
disadvantages of creating interpreted or compiled programs:

o Aninterpreter has advantages when a program is being developed because errors can be
identified as they occur and corrected immediately without having to wait for the whole
of the source code to be read and analysed.

» Aninterpreter has a disadvantage in that during a particular execution of the program,
parts of the code which contain syntax errors may not be accessed so if errors are still
present they are not discovered until later.

o Aninterpreter has a disadvantage when a program is error free and is distributed to users
because the source code has to be sent to each user.

\

P

|

£

A

t o Ifnoerroris found in the whole source code the complete intermediate code is
|

86

Cambridge International AS and A level Computer Science

» Acompiler has the advantage that an executable file can be distributed to users so the
users have no access to the source code.

For a user, the following statements can be made about the advantages and disadvantages
of using interpreted or compiled programs:

« Foran interpreted program, the interpreter and the source code have to be available each
time that an error-free program is run.

o Foracompiled program, only the object code has to be available each time that an error-
free program is run.

o Compiled object code will provide faster execution than is possible for an interpreted
program.

o Compiled object code is less secure because it could contain a virus.

Whether an interpreter or a compiler is going to be used, a program can only be run on a
particular computer with a particular processor if the interpreter or compiler program has
been written for that processor.

Java

When the programming language Java was created, a different philosophy was applied to
how it should be used. Each different type of computer has to have a Java Virtual Machine
created for it. Then when a programmer writes a Java program this is compiled first of all to
create what is called Java Byte Code. When the program is run, this code is interpreted by the
Java Virtual Machine. The Java Byte Code can be transferred to any computer that has a Java
Virtual Machine installed.

Operating system tasks can be categorised in more than one way, for example, some are for helping the user,
others are for running the system.

Utility programs for a PC include hard disk utilities, backup programs, virus checkers and file compression utilities.

Library programs, including Dynamic Link Library (DLL) files, are available to be incorporated into programs;
they are usually subroutines and are very reliable.

For a two-pass assembler, typical activities in the first pass are creation of a symbol table and expansion of
macros; object code is generated in the second pass.

A high-level language can be translated using an interpreter or a compiler.

A Java compiler produces Java Byte Code which is interpreted by a Java Virtual Machine.

Chapter 7: System Software

Exam-style Questions

1 a Oneofthereasons for having an operating system is to provide a user interface to a

computer system.

i Name two different types of interface that an operating system should provide. (2]

ii Identify for each type of interface a device that could be used to enter data. [2]
b Identify and explain briefly three other management tasks carried out by an operating system. [6]

2 a APCoperating system will make available to a user a number of utility programs.

i Identify two utility programs that might be used to deal with a hard disk problem. [2]
ii Foreach of these utility programs explain why it might be needed and explain

what it does. ‘ (5]
iii Identify two other utility programs for a PC user. (2]

b Library programs are made available for programmers.
i Explain why a programmer should use library programs. [3]
i Identify two examples of a library program. (2]

3 a Assemblers, compilers and interpreters are examples of translation programs.

i Statethe difference between an assembler and a compiler or interpreter. (1]
ii A‘two-pass’ assembler is usually used. Give two examples of what will be done in the first pass. 2
iii State what will be produced in the second pass. [1]

b Aprogrammer can choose to use an interpreter or a compiler.
i Statethree differences between how an interpreter works and how a compiler works. 3]
ii Discuss the advantages and disadvantages of an interpreter compared to a compiler. [4]

i 1fa programmer chooses Java, a special approach is used. Identify one feature of
this special approach. (1]

:
@
|
:

Learning objectives
By the end of this chapter you should be able to:

explain the difference between the terms security, privacy
and integrity of data

show appreciation of the need for both the security of
data and the security of the computer system

describe security measures designed to protect computer
systems, ranging from the stand-alone PC to a network

of computers, including user accounts, firewalls and
authentication techniques

describe security measures designed to protect the
security of data

show awareness of what kind of data errors can occur and
what can be done about them

describe error detection and correction measures
designed to protect the integrity of data including: data
validation, data verification for data entry and data
verification during data transfer.

Chapter 8: Data Security, Privacy and Integrity

8.01 Definitions of data integrity, privacy and security

Itis easy to define integrity of data but far less easy to ensure it. Only accurate and up-to-
date data has data integrity. Any person or organisation that stores data needs it to have
integrity. Methods that can be used to give the best chance of achieving data integrity are
discussed in this chapter and also in Chapter 10 (Section 10.01).

Data integrity: a requirement for data to be accurate and up to date
Data privacy: a requirement for data to be available only to authorised users
Data security: a requirement for data to be recoverable if lost or corrupted

Data privacy is about keeping data private rather than allowing it to be available in the
public domain. The term ‘data privacy’ may be applied to a person or an organisation. Each
individual has an almost limitless amount of data associated with théir existence. Assuming
that an individual is not engaged in criminal or subversive activities, he or she should be in
control of which data about himself or herself is made public and which data remains private.
An organisation can have data that is private to the organisation, such as the minutes of
management meetings, but this will not be discussed further here.

Foranindividual there is little chance of data privacy if there is not a legal framework in place

to penalise offenders who breach this privacy. Such laws are referred to as data protection

laws. The major aspects of data protection laws relate to personal, therefore private, data

that an individual supplies to an organisation. The data is supplied to allow the organisation n
to use it but only for purposes understood and agreed by the individual. Data protection laws

oblige organisations to ensure the privacy and the integrity of this data. Unfortunately having

laws does not guarantee adherence to them but they do act as a deterrent if wrong-doers

can be subject to legal proceedings.

Data protection law: a law that relates to data privacy

Discussion Point:
What data protection laws are in place in your country? Are you familiar with any details of
these laws?

R - 0 OO N - T e

Data protection normally applies to data stored in computer systems with the consent of the
individual. Should these laws be extended to cover storage of data obtained from telephone
calls or search engine usage?

o
a

Data can be said to be ‘secure’ if it is available for use when needed and the data made
available is the data that was stored originally. The security of data has been breached if the
data has been lost or corrupted.

It should be clear that data security is a prerequisite for ensuring data integrity and data
privacy. However, by itself it cannot guarantee either.

Cambridge International AS and A level Computer Science

8.02 Security measures for protecting computer systems

One of the requirements for protection of data is the security of the system used to store the
data. However, system security is not needed just to protect data. There are two primary
aims of system security measures. The first is to ensure system functionality. The second is to
ensure that only authorised users have access to the system.

The threats to the security of a system can be categorised as being one of the following
types:

e internal mismanagement

e natural disasters

e unauthorised intrusion into the system by an individual
e malicious software entering the system.

Continuity of operation is vital for large computer installations that are an integral part of the
| day-to-day operations of an organisation. Measures are needed to ensure that the system

| remains functional whatever event occurs or, if there has to be a systém shut-down, at the

| very least to guarantee resumption of service within a very short time. Such measures come
under the general heading of disaster recovery contingency planning. The contingency plan
should be based on a risk assessment. The plan will have provision for an alternative system
to be brought into action. If an organisation has a full system always ready to replace the
normally operational one, it is referred to as a ‘hot site’. By definition such a system has to be
remote from the original system to allow recovery from natural disasters such as earthquake
or flood.

A special case of system vulnerability arises when there is a major update of hardware and/
or software. Traditionally, organisations had the luxury of installing and testing a new system
over a weekend when no service was being provided. In the modern era, globally available
systems are the norm: a company is never closed for business. As a result, organisations
may need to have the original system and its replacement running in parallel for a period to
ensure continuity of service.

Discussion Point:
Major failings of large computer systems are

to find son

ana a airrerent examplte wi

Even if a PCis used by only one person there should be a user account set up. User accounts
are, of course, essential for a multi-user (timesharing) system. The main security feature

of a user account is the authentication of the user. The normal method is to associate a
password with each account. In order for this to be effective the password needs a large
number of characters including a variety of those provided in the ASCIl scheme.

Authentication: verification of a user’s identity

Chapter 8: Data Security, Privacy and Integrity

VR S

.

B lidices . S o Jiomeite _soaces.. . bl i Giiiese. odatbat SREEL. . (idhnen sibiidlie. .. o oliRibe it Aol

v

i ghme. aEabe Neocs e g

ol

TASK 8.01

1 Create an example of a secure password using eight characters (but not one you are going
to use).

2 Assuming that each character is taken from the ASCII set of graphic characters how many
different possible passwords could be defined by eight characters?

3 Do you think this is a sufficient number of characters to assume that the password would
not be encountered by someone trying all possible passwords in turn to access the
system?

Alternative methods of authentication include biometric methods and security tokens. A
biometric method might require examination of a fingerprint or the face or the eye. A security
token can be a small item of hardware provided for each individual user that confirms their
identity. Similar protection can be provided by software with the user required to provide
further input after the password has been entered. Normal practice is to combine one of
these alternative methods with the password system.

General good practice that helps to keep a personal computer secure includes not leaving
the computer switched on when unattended, not allowing someone else to observe you
accessing the computer and not writing down details of how you access it.

A computer system is not only accessed by users logging in. One potential problem arises

from users attaching portable storage devices which can contain a virus. The safest practice

is for an organisation to have a policy banning the use of such devices. Unfortunately this is
not possible if normal business processes require portability of data.

The threat that is virtually unavoidable arises because of the connection of an organisation’s
systems to the Internet. The major potential problem is that transmissions into the system
from the Internet may contain malicious software. However, a further consequence of
Internet connection is that sensitive data from the system might be exported out to some
other system.

The primary defence to such problems is to install a firewall. Ideally a firewall will be a
hardware device that acts like a security gate at an international airport. Nothing is allowed
through without it being inspected. Alternatively, a firewall might be implemented as
software. The transmission must then enter the system but it can be inspected immediately.
The action of a firewall might be to concentrate solely on the addresses identified in any
transmission. However, in addition, a firewall might examine the data within the transmission
to check for anything inappropriate.

If an incoming transmission is an email, there can be a concern about authenticating the
identity of the sender. The solution is to insist on the sender attaching a digital certificate to
the email. Some details of this are discussed in Chapter 21 (Section 21.02).

Security measures restricting access to a system do not guarantee success in removing all
threats. It is therefore necessary to have, in addition, programs running on a system to check
for problems. Options for this are:

» avirus checker which carries out regular system scans to detect any viruses and remove
them or deactivate them

e anintrusion detection system that will take as input an audit record of system use and
look for anomalous use.

Cambridge International AS and A level Computer Science

It hardly needs saying that individuals intent on causing damage to systems are using
methods that are becoming ever more sophisticated. The defence methods have to be
improved continually to counter these threats.

8.03 Security measures for protecting data

There are a number of scenarios which require security methods for protecting data. The
three discussed here are data loss, access to data and protection of data content.

Recovering from data loss

In addition to problems arising from malicious activity there are a variety of reasons for
accidental loss of data:

o adisk ortape gets corrupted

o adisk ortapeis destroyed

e thesystem crashes

o thefileis erased or overwritten by mistake
o the location of the file is forgotten.

A system therefore needs a backup procedure to be implemented. The system administrator
has to decide on the details of the procedure. The principles for the procedure traditionally
followed are straightforward:

o afull backup is made at regular intervals, perhaps weekly
o atleast two generations of full backup are kept in storage
e incremental backups are made on a daily basis.

For maximum security the backup disks or tapes are stored away from the system in a fire-
proof and flood-proof location.

This worked well when an incremental backup was done overnight with the full backup
handled at the weekend. With systems running 24/7 and therefore with data potentially
changing at any time, such a simple approach to backup will leave data in an inconsistent
state. One solution is to have a backup program that effectively freezes the file store
while data is being copied but also records elsewhere within the system changes that are
happening due to ongoing system use. The changes can then be made to the system files
when the backup copy has been stored.

An alternative approach is to use a disk-mirroring strategy. In this case, data is simultaneously
stored on two disk systems during the normal operation of the system. The individual disk
systems might be at remote locations as part of a disaster recovery plan.

Restricting access to data

If a user has logged in they have been authorised to use the computer system but not
necessarily all of it. In particular, the system administrator may recognise different categories
of user with different needs with respect to the data they are allowed to see and use. The
typical trivial example usually quoted is that one employee should be able to use the system
to look up another employee’s internal phone number. This should not allow the employee at
the same time to check the salary paid to the other employee.

The solution is to have an authorisation policy which in general gives different access
rights to different files for different individuals. For a particular file, a particular individual
might have no access at all or possibly read access but not write access. In another case, an
individual might have read and append access but not unrestricted write access.

Chapter 8: Data Security, Privacy and Integrity

Authorisation: definition of a user’s access rights to system components

Protecting data content
Even with appropriate security measures in place it can happen that there is unauthorised
access to a system or interception of data transmission. This can be made a futile activity
i for the perpetrator if the data cannot be read. Data can be encrypted to ensure this. Some
?
;
{
E
,?
V
i

details of encryption methods are discussed in Chapter 21 (Section 21.01).

8.04 Data validation and verification

Data integrity can never be absolutely guaranteed but the chances are improved if
appropriate measures are taken when data originally enters a system or when it is
transmitted from one system to another.

Validation and verification of data entry

The term validation is a somewhat misleading one. It seems to imply that data is accurate if
it has been validated. This is far from the truth. If entry of a name is expected but the wrong
name is entered, it will be recognised as a name and therefore accepted as valid. Validation
can only prevent incorrect data if there is an attempt to input data that is of the wrong type,
in the wrong format or out of range.

Data validation is implemented by software associated with a data entry interface. There are
a number of different types of check that can be made. Typical examples are:

e apresence check to ensure that an entry field is not left blank

« aformat check, for example a date has to be dd/mm/yyyy

e alength check, for example with a telephone number

o arange check, for example the month in a date must not exceed 12

» atype check, for example only a numeric value for the month in a date.

Verification of data means confirming what has been entered. The most common example
iswhen a user is asked to supply a new password. There will always be a request for the
password to be re-entered. Clearly, if the user entered a password but did not enter it as
intended, subsequent attempts at access would fail. Verification is usually an effective
process but in general it does not ensure data accuracy because the wrong data could be
entered initially and in the re-entry.

Validation: a check that data entered is of the correct type and format; it does not guarantee that data
is accurate

Verification: confirmation of data received by a system

i Verification during data transfer

Itis possible for data to be corrupted during transmission. Typically this applies at the bit
level with an individual bit being flipped from 1 to 0 or vice versa. Verification technigues
) need to check on some property associated with the bit pattern.

Cambridge International AS and A level Computer Science

The simplest approach is to use a simple one-bit parity check. This is particularly easy to
implement if data is transferred in bytes using a seven-bit code. Either even or odd parity can
be implemented in the eighth bit of the byte. Assuming even parity, the procedure is:

At the transmitting end, the number of 1s in the seven -bit code is counted.

If the count gives an even number, the parity bit is set to 0.

If the count gives an odd number, the parity bitis set to 1.

This is repeated for every byte in the transmission.

At the receiving end, the number of 1s in the eight-bit code is counted.

o U1 A W N K

If the count gives an even number, the byte is accepted.
7 Thisis repeated for every byte in the transmission.

If no errors are found, the transmission is accepted. However, the transmission cannot be
guaranteed to be error free. It is possible for two bits to be flipped in an individual byte.
Fortunately this is rather unlikely so it is a sensible assumption to assume no error. The
limitation of the method is that it can only detect the presence of an error. It cannot identify
the actual bit thatis in error. If an error is detected, re-transmission has to be requested.

An alternative approach is to use the checksum method. In this case at the transmitting end
a block is defined as a number of bytes. Then, irrespective of what the bytes represent, the
bits in each byte are interpreted as a binary number. The sum of these binary numbersin a
block is calculated and supplied as a checksum value in the transmission. This is repeated
for each block. The receiver does the same calculation and checks the summation value with
the checksum value transmitted for each block in turn. Once again an error can be detected
but its position in the transmission cannot be determined.

For a method to detect the exact position of an error and therefore be able to correct an
error it has to be considerably more complex. A simple approach to this is the parity block
check method. Like the checksum method this is a longitudinal parity check; it is used to
check a serial sequence of binary digits contained in a number of bytes.

WORKED EXAMPLE 8.01

Using a parity block check

At the transmitting end, a program reads a group of seven bytes as illustrated in Figure
8.01. The data is represented by seven bits for each byte. The most significant bit in each
byte, bit 7, is undefined so we have left it blank.

Seven-bit codes

o|lo|o|lo| | o|r
|| ~|lolol+~|lo
[y TR [(N
olo|lo|lr|rRlo|lo
O|lO|O|rRr| O]l OO
O|IO|RrR(O| OO
— ~|lolo|l ol |+

Figure 8.01 Seven bytes to be transmitted

Chapter 8: Data Security, Privacy and Integrity

achieve even parity.

The parity bitis set for each of the bytes, as in Figure 8.02. The most significant bit is set to

Parity
bits Seven-bit codes
0 il 0 1 0 0 ! 1
1 0 1 i 0 0 0 1
1 1 0 1 1 0 0 0
1 0 0 1 1 it 0 0
1 0 1 il 0 0 1 0
1 0 1 1 0 0 0 1
1 0 i il 0 0 0 il

illustrated in Figure 8.03.

Figure 8.02 Bytes with the parity bit set

Parity
bits Seven-bit codes
0 1l 0 1 0 0 1 i}
1) 0 1 i 0 0 0 i
1 1 0 1 1 0 0 0
1 0 0 il 1 1 0 0
1 0 i 1 0 0 i 0
1 0 il 1 0 0 0 1
1 0 1 1 0 0 0 i
0 0 0 1 0 1 0 0

Figure 8.03 Parity byte added

accepted.

The program then transmits the eight bytes in sequence.

An additional byte is then created and each bit is set as a parity bit for the bits at that bit
position. This includes counting the parity bits in the seven bytes containing data. This is

<«— Parity byte

At the receiving end, a program takes the eight bytes as input and checks the parity sums
for the individual bytes and for the bit positions.

Note that the method is handling a serial transmission so it includes longitudinal checking
but the actual checking algorithm is working on a matrix of bit values. If there is just one
error in the seven bytes this method will allow the program at the receiving end to identify
the position of the error. It can therefore correct the error so the transmission can be

Cambridge International AS and A level Computer Science

Question 8.01

1 Assume that the seven bytes shown in Figure 8.04 contain data. The most significant bit
is undefined because a seven-bit ASCII code is being used to represent character data.
Choose a parity and create the appropriate parity bit for each byte, then create the eighth
byte that would be used for transmission in a parity block check method.

| 01001000 | [01000101 | | 01110010 | | 01100011 |

| 00101100 | [01010101 | | 00110010 |

Figure 8.04 Seven bytes to be transmitted

2 The eight bytes shown in Figure 8.05 have been received in a transmission using the parity
block method. The first seven bytes contain the data and the last byte contains the parity

check bits.
| 01001000 | | 11000101 | | 11110001 | | 01100011 |
| 01001010 | | 01010101 | [01110010 | | 01110010 |

Figure 8.05 Eight bytes received in a transmission

a Identify what has gone wrong during the transmission.

b What would happen after the transmission is checked?

Summary

Important considerations for the storage of data are: data integrity, data privacy and data security.
Data protection laws relate to data privacy.

Security measures for computer systems include authentication of users, prevention of
unauthorised access, protection from malware and methods for recovery following system failure.

Security methods for data include backup procedures, user authorisation and access control.

Data entry to a system should be subject to data validation and data verification.

Verification for data transmission may be carried out using: a parity check, a checksum or a parity
block check method.

Chapter 8: Data Security, Privacy and Integrity

Exam-style Questions

1 a [tisimportantthat data hasintegrity.
i Identify the missing word in the sentence ‘Concerns about the integrity of data are concerns about its ¢ [1]
i Validation and verification are techniques that help to ensure data integrity when data is entered into a system.
Explain the difference between validation and verification. (3]
iii Define a type of validation and give an example. 2]

iv Even after validation has been correctly applied data may lack integrity when it comes to be used. Explain
why that might happen. (2]

b Datashould be protected from being read by unauthorised individuals.
Explain two policies that can be used to provide the protection. [4]
2 a Security of datais animportant concern for a system administrator.
i Identify three reasons why data might not be available when a user needs it. [3]
ii Describe what could be features of a policy for ensuring data security. [3]
b Itisimportant for mission-critical systems that there is a disaster recovery contingency plan in place.

i Define what type of disaster is under consideration here. 2]

ii Define what will be a major feature of the contingency plan. 2]

¢ Measures to ensure security of a computer system need to be in place on a daily basis if the system is connected
to the Internet.

Describe two measures that could be taken to ensure security of the system. (4]

3 a Whendatais transmitted measures need to be applied to check whether the data
has been transmitted correctly.

i Ifdata consists of seven-bit codes transmitted in bytes, describe how a simple parity check system would
be used. Your account should include a description of what happens at the transmitting end and what
happens at the receiving end. (5]

ii Analternative approach is to use a checksum method. Describe how this works. 3]
b Foreither of these two methods there are limitations as to what can be achieved by them.

Identify two of these limitations. 2]

Ll T . g o) L D Rlde ool ol ol ks SR S R i AR G S ke c D R ot Gl A e iR e ol s i _tE e i

-~

Cambridge International AS and A level Computer Science

¢ Adifferent method which does not have all of these limitations is the parity block check method.

The following diagram represents eight bytes received where the parity block method has been applied at the
transmitting end. The first seven bytes contain the data and the last byte contains parity bits.

CoMBEEEEETEEE TR
Byte2 [1 [o] 1 J1Jof]o]o]1]
3 Byte3 [1 [1 J o] 1JofJo]ol]o]
| Bytea [1 JoJ o] 11 1o o]
| Byte5 | 1 [0 | 1 [1]JoJo]1]o]
Byteis’ = T T g e e T s
Baey | 1 (@& (1 1l e [8 e e
Byte8 [0 [o [o [1 [oJ 1o o]

Identify the problem with this received data and what would be done with it by the program used by the receiver. [4]

L]

”lllx
myll 1

Learning objectives

By the end of this chapter you should be able to:

m show a basic understanding of ethics
m explain how ethics may impact on the job role of the

computing professional
show understanding of the eight principles listed in the
ACM/IEEE Software Engineering Code of Ethics

1 demonstrate the relevance of these principles to some

typical software developer workplace scenarios

show understanding of the need for a professional code
of conduct for a computer system developer

show understanding of the concept of ownership and
copyright

describe the need for legislation to protect ownership,
usage and copyright

discuss measures to restrict access to data made
available through the Internet and World Wide Web

show understanding of the implications of different types
of software licensing.

100

Cambridge International AS and A level Computer Science

9.01 Ethics

You can find a number of definitions of what we might mean when we talk about ‘ethics’. The
following three sentences are representative:

e Ethicsis the field of moral science.
e Ethics are the moral principles by which any person is guided.
« Ethics are the rules of conduct recognised in a particular profession or area of human life.

For present purposes we can ignore the first of these definitions. The third definition is the
focus of this chapter. However, the rules of conduct must inevitably reflect, at least in part,
the moral principles that are the foundation of the second definition. The following are some
observations that come to mind when considering moral principles.

Moral principles concern right or wrong. The concept of virtue is often linked to what
is considered to be right. What is right and wrong might be considered from one of the
following viewpoints: philosophical, religious, legal or pragmatic.

Philosophical debate has been going on for well over 2000 years. Early thinkers frequently
quoted in this context are Aristotle and Confucius but there are many more. Religions have
sometimes incorporated philosophies already existing or have introduced their own. Laws
should reflect what is right and wrong. Pragmatism could be defined as applying common
sense.

This chapter is not an appropriate place to discuss religious beliefs other than to make

the obvious statement that religious beliefs do have to be considered in the working
environment. Legal issues clearly impact on working practices but they are rarely the primary
focus in rules of conduct. What remains as the foundation for rules of conduct are the
philosophical views of right and wrong and the pragmatic views of what is common sense.
These will constitute a frame of reference for what follows in this chapter.

9.02 The ACM/IEEE Software Engineering Code of Ethics

The Association for Computing Machinery (ACM) and the Institute of Electrical and
Electronics Engineers (IEEE) are both based in the USA but have a global perspective and
global influence. It is therefore appropriate to consider the code of ethics that they have
proposed but this does not signify that codes of practice published in other countries are not
important.

In presenting the code, the authors make it clear that it in no way does the code represent
a look-up table that will prescribe an action to be taken given a defined circumstance.
They stress that the public interest is the central focus for the code. The code presents a
set of fundamental principles. They advocate that a professional should make an ethical
judgement based on thoughtful consideration of these fundamental principles.

The code defines eight principles. For each principle there is a one-sentence definition in the
preamble. In the full version of the code, each principle is expanded into clauses. Each clause
refers to a specific aspect that should be considered in the context of that principle. Thisis a
form of checklist that gives a framework for an ethical judgement.

ﬂ—-—'-s——-———-_m

Chapter 9: Ethics and Ownership

The eight principles are presented as follows in the preamble:

1 PUBLIC - Software engineers shall act consistently with the public interest.

2 CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public interest.

3 PRODUCT - Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

4 JUDGMENT - Software engineers shall maintain integrity and independence in their
professional judgment.

5 MANAGEMENT - Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

6 PROFESSION - Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7 COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8 SELF - Software engineers shall participate in lifelong learning regarding the practice of
their profession and shall promote an ethical approach to the practice of the profession.

In total there are 80 clauses for these eight principles (numbered from 1.01 through to 8.09).
There is little to be gained from including all of them in this book. However, you should have
a copy readily available when you are studying this chapter (see https://www.acm.org/about/
se-code).

Examination of some of the clauses soon makes it clear that many do not contain specific
reference to software engineering but rather, relate to proper behaviour for any group of
professionals. This can be illustrated by the following examples:

2.03 Use the property of a client or employer only in ways properly authorized, and with the
client’s or employer’s knowledge and consent.

5.04 Assign work only after taking into account appropriate contributions of education and
experience tempered with a desire to further that education and experience.

5.05 Ensure realistic quantitative estimates of cost, scheduling, personnel, quality and
outcomes on any project on which they work or propose to work, and provide an
uncertainty assessment of these estimates.

6.06 Obey all laws governing their work, unless, in exceptional circumstances, such
compliance is inconsistent with the public interest.

Clauses 5.04 and 6.06 illustrate a general tendency for the clauses to be more wordy than
they might have been because many of them have a qualifier. The same qualifier appears
more than once. Clause 5.05 is somewhat unusual with regard to the amount of detail. You
would expect a mention of realistic quantitative estimates but probably not the insistence on
an uncertainty assessment.

Discussion Point:
Should clause 5.05 include an insistence on an uncertainty assessment? Are there alternative
suggestions that might have been included?

Clause 6.06 advocates law-breaking to serve the public interest. Can you think of
circumstances when you could agree that such action would be ethical? You might wish to
consider ‘whistle-blowing’.

102

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 9.01

Applying ethics to a software engineering scenario

In a real-life scenario there might be many individual clauses that should be considered
when a judgement is to be made. For example, let’s consider the following scenario.

You are working on a software engineering project. One day the project manager states
that the project is running behind schedule. As a result, the time allocated for testing of
the software will be limited to one week rather than the one month that was stated in the
project plan.

You could approach your thinking by adopting a step-by-step approach.

1 You would rule out any immediate need to consider public interest.

2 Youwould identify the primary cause of concern as being directly addressed by
clause 3.10: Ensure adequate testing, debugging, and review of software and related
documents on which they work. ;

3 You would identify the secondary cause of concern as being one of poor management
with clauses 5.01 and 5.11 being the most relevant: Ensure good management for any
project on which they work, including effective procedures for promotion of quality and
reduction of risk. Not ask a software engineer to do anything inconsistent with this Code.

4 You would now consider what action to take and would refer to clauses 6.11, 6.12 and
6.13: Recognize that violations of this Code are inconsistent with being a professional
software engineer. Express concerns to the people involved when significant violations
of this Code are detected unless this is impossible, counter-productive, or dangerous.
Report significant violations of this Code to appropriate authorities when it is clear that
consultation with people involved in these significant violations is impossible, counter-
productive or dangerous.

Question 9.01

There are several other clauses that might be considered as relevant. Have a look at clauses
3.02,3.05 and 7.01. Do you consider that any of these offer anything new in helping to judge
what should be done?

Discussion Point:

Search the clauses for all eight principles and identify the ones that mention documentation.

Why is documentation mentioned so many times?

9.03 The public good

What has been considered so far relates directly to professional working practices and
therefore revolves around the third definition of ethics presented in Section 9.01. When the
question of public good arises, consideration has to relate to the second definition as well. In
different parts of the code there is reference to:

o the health, safety and welfare of the public

» the publicinterest

« the public good

e public concern.

Chapter 9: Ethics and Ownership

There is no further indication of how these should be interpreted. It will be helpful to consider
some individual cases to illustrate what might be considered.

Fortunately, there are very few examples which have involved loss of life and certainly
none where large numbers of deaths were caused. However, there have been a number of
incidents where extremely large sums of money were wasted because of rather simplistic
errors.

The first example that could be mentioned is the Ariane 5 rocket which exploded 40 seconds
after blast-off in 1996. To the detriment of the public good, approximately 500 million dollars
were spent for no benefit at all. The problem was caused by a line of code that tried to
convert a 64-bit floating point number into a 16-bit integer. The resulting overflow crashed
the program and as a result also the rocket.

The second example also relates to space exploration. The NASA Mars Climate Orbiter
project centred on a space probe that was due to orbit Mars to study the climate. The probe
got to Mars but unfortunately failed to get into orbit. The cause of the problem was that all
of the software was supposed to use the SI system of units for all calculations. One group of
software engineers used the Imperial system of units. This mismatch only caused a problem
at the stage when the calculations concerned with achieving orbit around Mars were
executed. This time the loss to the public purse was a mere 125 million dollars.

These examples can be said to illustrate the public interest in successful software
engineering. There is a strong argument that the correct application of the code of ethics
with respect to specification and testing of software could have saved a lot of money.

A different type of disaster is the system that never gets built. In 2011 the UK government
scrapped the National Programme for IT in the NHS (National Health Service), which had
been commissioned in 2002. The project failed to produce a workable system. The estimated
amount spent on the program was 12 billion pounds. The initial estimated cost was less than
three billion pounds. In examples like this the software engineers are not to blame, but if
correctly applied, the part of the code of ethics specifically targeted at project management
would not have allowed this type of fiasco to occur.

L ahEREE | _oeliiE ShnEE A | IS CEdEaRE USSR i Cosiile. EEREE lliiedi G

In the three examples outlined above the public concern was solely related to the costs
associated with a failed project. There was no public concern relating to the ethics of the
endeavour itself. In contrast there are many areas associated with computer-based systems
where there is public concern about the nature of the endeavour or at least about what it has
led to. The following examples can be considered in this context:

W TROTRRR——— §

e powerful commercial companies being able to exert pressure on less powerful
companies to ensure that the powerful company’s products are used when alternatives
might be more suitable or less costly

e companies providing systems that do not guarantee security against unauthorised access

e iR | e e SRR R

» organisations that try to conceal information about a security breach that has occurred in
their systems

e private data transmitted by individuals to other individuals being stored and made
Y available to security services

) « social media sites allowing abusive or subversive content to be transmitted

e search engines providing search results with no concern about the quality of the content.

Cambridge International AS and A level Computer Science

There is by no means a consistent public attitude to concerns like this. This makes it difficult
for an individual software engineer to make a judgement with respect to public good. Even if
the judgement is that a company is not acting in the public good it will always be difficult for
an individual to exert any influence. There are recent examples where individuals have taken
action which has resulted in their life being severely affected.

Discussion Point:

This section has deliberately been presented in generalisations. You should carry out a
search for some individual examples and then consider actions that could be taken and
justified as being for the public good.

9.04 Ownership and copyright

| Copyright is a formal recognition of ownership. If an individual creates and publishes

‘ some work that has an element of originality, the individual becomes the owner and can

| therefore claim copyright. An exception is if the individual is working for an organisation.

| An organisation can claim copyright for a published work if it is created by one or more

| individuals that work for the organisation. Copyright cannot apply to an idea and it cannot
| apply to a component of a published work.

Copyright: a formal recognition of ownership of a created and published work

.
Copyright can apply to any of:

o aliterary work

e amusical composition
o afilm

e amusic recording

e aradioor TV broadcast
o aworkofart

e acomputer program.

The justification for the existence of copyright has two components. The first is that the
creation takes time and effort and requires original thinking. There should, therefore, be
opportunity for the copyright holder to be rewarded financially for this endeavour. The
second is that it is unfair for some other individual or organisation to reproduce the work and
to make money from it without any compensation to the original creator.

As with the case of data protection discussed in Chapter 8 (Section 8.01), there is a need

for legislation to try to deter abuses of copyright. The similarity continues in that legislation
cannot ensure that no abuses occur. Different countries have different details in their
legislation but there is an international agreement that copyright laws cannot be evaded by
reproducing the work in a different country from where the work was created.

Chapter 9: Ethics and Ownership

Typical copyright legislation will include:

e arequirement for registration recording the date of creation of the work

» adefined period when copyright will apply

 apolicy to be applied if an individual holding copyright dies

e anagreed method for indicating the copyright, for example the use of the © symbol.

When copyrightis in place there will be implications for how the work can be used. The
copyright owner can include a statement concerning how the work might be used. For
instance, the ACM has the following statement relating to the code of ethics discussed in
Section 9.02:

This Code may be published without permission as long as it is not changed in any way and it
carries the copyright notice. Copyright © 1999 by the Association for Computing Machinery,
Inc. and the Institute for Electrical and Electronics Engineers, Inc.

B . bR ke, i SRR iy, o . il ARG . Gl o JEEEARRE e e 00

Somaiil LT HHeen T

This is one of several possible variations referring to permissions that are granted when the
work has not been sold. If someone has bought a copy of a copyrighted product there is no
restriction on copies being made provided that these are solely for the use of the individual.

A general regulation relates to books in a library, where a library user can photocopy part of a
book.

SN,

9.05 The consequences of the development of the
Internet and World Wide Web

Before the Internet came to be a dominant feature of people’s lives, breaches of copyright 105
were routinely happening in two ways. Individuals with a music system that included a tape

cassette recorder could record a radio broadcast. It also allowed a copy to be made of a

friend’s vinyl record. Individuals also often had unrestricted access to a photocopier in their

place of work and could copy printed material.

In the modern world, the cinema, broadcast and music industries are attempting to sell their
products as CDs, DVDs or Blu-ray discs. lllegal copying (known as ‘piracy’) now takes place
through using the Internet to download or stream data that was originally released for sale
on one of these optical media. As well as the change in approach, there is the significant
difference thatillegal copying is now happening on a major scale and thus seriously affecting
the profitability of the creators.

In order for an individual or an organisation to make an illegal copy of a product available
for downloading or streaming the data has to be ‘ripped’ from an original product. This is
the process of converting the product into a form that can be stored as a computer file.
The producers of the original product can use digital rights management (DRM) to attempt
to counter such activity. Originally DRM was simply used to make a CD playable on a CD
player but to prevent it being played on a computer system. Now DRM has to be used to
prevent ripping. This might involve encryption or deliberate inclusion of damaged sectors.
Unfortunately these techniques do not guarantee the prevention of piracy.

The major mechanism for piracy of media content is the widespread use of peer-to-peer file
sharing, a technology discussed in Chapter 17 (Section 17.07). As a result, there are moves
afoot to force ISPs to monitor the usage of this technology and to report usage to interested
parties. Naturally enough there is considerable resistance to such action in that it amounts to
a breach of privacy.

b o Sidieee U Ay, iR | e diiee EEine. L oiSiiescoiiiiie: CoiEiie iUl Sbsc S Sns (SRS . aibihe acSiia. atiio o UiSaadodicaiie Coiiie. . | coblin. Seibiie: iisa ol

106

Cambridge International AS and A level Computer Science

9.06 Software licensing

Commercial software

Commercial software almost always has to be paid for but there are a number of different
options that might be available:

o Afeeis paid for each individual copy of the software.

o Acompany might have the option of buying a site licence which allows a defined number
of copies to be running at any one time.
o Special rates might be available for educational use.

» Earlier versions or limited versions might be offered free or at reduced price.

Open or free licensing

For open licensing there are two major operations under way. Both are global non-profit
organisations.

The Open Source Initiative makes open source software, including the source code,
available for free. The aim is for collaborative development of software to take place. The user
of the software is free to use it, modify it, copy it or distribute it according to need.

The Free Software Foundation has similar objectives but has also incorporated what it has
called ‘copyleft’. This is the condition that if the software is modified the source code for the
modified version must be made available under the same conditions of usage.

The two organisations are not in competition but there are some subtle differences in their
philosophy. There is a different raft of products made available by each of them.

Both these organisations offer free products. Another form of free software is termed
freeware. This is software that is distributed for free but without the source code.
Discussion Point:

How often do you think that open licence software is being used? Should it be used more
often?

TASK 9.01
Carry out a search to investigate some of the software available under an open licence.

Open source software: software free with unlimited use allowed and access to source code
Shareware: software free for use for a limited period but no source code provided
Freeware: software free with unlimited use allowed but no source code provided

Shareware licensing

Shareware is commercial software which is made available on a trial basis. It might be a
limited version of a full package or free to use for a trial period. A beta test version of new
software might be considered to come in the shareware category.

T T —T—

There are different definitions of ethics.

The ARM/IEEE Code of Ethics has a focus on the public good.

Chapter 9: Ethics and Ownership

There is a history of software disasters that might have been prevented if sound software

engineering practice had been employed.
Copyright is formal recognition of ownership.

lllegal copying using the Internet is a serious concern.

Commercial software has to be paid for; alternatives are open licence or shareware which are free.

Exam-style Questions

1 TheACM and IEEE set out eight principles for ethics and professional practice. The categories, with a short explanation,

are shown in this diagram.

Public Act consistently in the public interest

Act in the best interests of the client

Employer Act in the best interests of their employer

Product Statement 1/2/3 (Circle the correct number.)

Maintain integrity and independence in
their professional judgement

Code of Ethics

Judgement

Management Statement 1/2/3 (Circle the correct number.)

Software engineers shall advance the

Profession integrity and reputation of the profession

Software engineers shall be fair to and

Colleagues supportive of their colleagues

Statement 1/2/3 (Circle the correct number.)

Statement 1: Team leaders should subscribe to and promote an ethical approach to the management of software

development and maintenance.

Statement 2: Software engineers shall participate in lifelong learning regarding the practice of the profession.

Statement 3: Software and related modifications meet the highest possible standards.

a These three statements need to be added to the diagram. Circle the correct numbers on the diagram to indicate

the positions for Statement 1, Statement 2 and Statement 3.

(2]

107

Cambridge International AS and A level Computer Science

b Foreach of these three workplace scenarios, unethical behaviour is demonstrated. Explain the principle(s) which
are not being met.

Workplace scenario 1

A large project is devolved to project teams, each led by a project leader. One project leader fails to inform his
manager that he has major concerns that:

« their team’s software contribution is taking much longer to write and test than anticipated

o they are consequently at risk of spending over their allocated budget.

Workplace scenario 2

The software house is about to train a number of programmers in a new programming language. Two
employees are refusing to attend the training.

The company is developing some monitoring software which requires sensors placed in a nature reserve.
One employee considers the sensors will be a danger to some of the wildlife, but is told by his manager that
the matter is none of his concern.

(2]

Cambridge International AS and A Level Computer Science 9608 Specimen Paper 1 Q6

2 a Copyrightisanimportant consideration when something is created.

State what copyright primarily defines.

When copyright is registered, some data will be recorded. Identify two examples of the type of data that
would be recorded.

Copyright legislation defines two conditions that will apply to the copyrighted work. Identify one of these.

When copyright has been established there are options for how usage will be controlled. Give two alternatives
for the instructions that could be included in the copyright statement for the created item.

b When software is obtained there will be an associated license defining how it can be used.

For commercial software, describe two different ways in which the license might be applied and explain the
benefits to the customer of one of these.

Define the difference between freeware and shareware.

Database and Data Modelling "

Learning objectives
By the end of this chapter you should be able to:

= show understanding of the limitations of using a file-
based approach for the storage and retrieval of data
describe the features of a relational database which
address the limitations of a file-based approach
show understanding of the features provided by a
DBMS to address the issues of: data management, data
modelling, logical schema, data integrity, data security
show understanding of how software tools found within a
DBMS are used in practice
show awareness that high-level languages provide
accessing facilities for data stored in a database

show understanding of, and use, the terminology
associated with a relational database model

produce a relational design from a given description of a
system

use an entity-relationship diagram to document a
database design

N

109

show understanding of the normalisation process

explain why a given set of database tables are, or are not,

in 3NF and make the changes to a given set of tables to

produce a solution in 3NF

show understanding that DBMS software carries out:

« all creation/modification of the database structure using
its DDL

» query and maintenance of data using its DML

show understanding that the industry standard for both

DDL and DML is Structured Query Language (SQL)

show understanding of a given SQL script

write simple SQL (DDL) commands for: creating a

database, creating or changing a table definition, adding

a primary or foreign key to a table

write a SQL script for querying or modifying data (DML)

which are stored in (at most two) database tables

Cambridge International AS and A level Computer Science

10.01 Limitations of a file-based approach

Data integrity and data privacy concerns

Let’s consider a simple scenario. A theatrical agency makes bookings for bands and is setting
up a computerised system. Text files are to be used. One of these text files is to store data
about individual band members. Each line of the file is to contain the following data for one
band member:

Name, contact details, banking details, band name, band agent name,
band agent contact details

The intention is that this file could be used if the agency needed to contact the band member
directly or through the band’s agent. It could also be used after a gig when the band member
has to be paid. Ignoring what would constitute contact details or banking details, we can

look at a snapshot of some of the data that might be stored for the member’s given name,
the member’s family name and the band name. The file might have a thousand or more lines
of text. The following is a selection of some of the data that might be contained in various
lines in the file:

Xiangfei Jha ComputerKidz
Mahesh Ravuru ITWizz

Dylan Stoddart

Graham Vandana ITWizz
Vandana Graham ITWizz
Mahesh Ravuru ITWizz
Precious Olsen ComputerKidz
Precious Olsen ITWizz

Itis clear that there are problems with this data. It would appear that when the data for
Vandana Graham was first entered her names were inserted in the wrong order. A later
correct entry was made without deletion of the original incorrect data. This type of problem
is not unique to a file-based system. There is no validation technique that could detect the
original error. By contrast, validation should have led to the correction of the missing band
name for Dylan Stoddart. The Precious Olsen data are examples of duplication of data and
inconsistent data.

There is also possibly an error that is not evident from looking at the file contents. A band
name could be entered here when that band doesn’t exist. This shows how a file-based
approach can lead to data integrity problems in an individual file. The reason is the lack of
in-built control when data is entered. The database approach can prevent such problems or,
at least, minimise the chances of them happening.

A different problem is a lack of data privacy. The file above was designed so that the finance
section could find the banking details and the recruitment section could find contact details.
The problem is that there cannot be any control of access to part of a file so staff in the
recruitment section would be able to access the banking details of band members. Data
privacy would be properly handled by a database system.

Mindful of this privacy problem the agency decides to store data in different files for different
departments of the organisation. Table 10.01 summarises the main data to be stored in each
department’s file.

Chapter 10: Database and Data Modelling

-

e M i i il S At Gl Slinaie. b, . ARG iienens diibbae . AR Al ibh. SEEiie bl SRGSiEEe s SRS it SRR, Siine ShRhine SEESREEE AREEEEN. ISR A SR A

Department Data items in the section’s file

Contract Member names Band name | Gig details

Finance Member names | Bank details Gig details

Publicity Band name | Gig details

Recruitment Member names Band name Agent details

Table 10.01 Data to be held in the department files

There is now data duplication across the files. This is commonly referred to as data
redundancy which doesn’t mean that the data is no longer of use but rather that once data
has been stored there is no need for it to be stored again. This can lead to data inconsistency
because of errors in the original entry or errors in subsequent editing. This is a different cause
of data lacking integrity. One of the primary aims of the database approach is the elimination
of data redundancy.

Data redundancy: the same data stored more than once

Data dependency concerns

The above account has focussed on the problems associated with data storage in files. We
now need to consider the problems that might occur when programs access the files.

Traditionally a programmer wrote a program and at the same time defined the data files that
the program would need. For the agency each department would have its own programs
which would access the department’s data files. When a programmer creates a program for a
department the programmer has to know how the data is organised in these files, for example,
that the fourth item on a line in the file is a band name. This is an example of ‘data dependency’.

Itis very likely that the files used by one department might have some data which is the same
as the data in the files of other departments. However, in the scenario presented above there
is no plan for file sharing. A further issue is that the agency might decide that there is a need
fora change in the data stored. For instance, they might see an increasing trend for bands

to perform with additional session musicians. Their data will need to be entered into some
files. This will require the existing files to be re-written. In turn, this will require the programs
to be re-written so that the new files are read correctly. In a database scenario the existing
programs could still be run even though additional data was added. The only programming
change needed would be the writing of additional programs which used this additional data.

The other aspect of data dependency is that when file structures have been defined to suit
specific programs they will not be suited to supporting new applications. The agency might feel
the need for an information system to analyse the success or otherwise of the gigs they have
organised over a number of years. Extracting the data for this from the sort of file-based system
described here would be a complex task which would take considerable time to complete.

10.02 The database approach

Itis vital to understand that a database is not just a collection of data. A database is an
implementation according to the rules of a theoretical model. The basic concept was
proposed some 40 years ago by ANSI (American National Standards Institute) in its three-
level model. The three levels are:

112

Cambridge International AS and A level Computer Science

o theexternal level
o the conceptual level
o theinternal level.

The architecture is illustrated in Figure 10.01 in the context of a database to be set up for our
theatrical agency.

External level

lProgram| LProgramJ lProgram| |Program| LPrograml |Program| [Programl

Contract Publicity Finance Recruitment
view view view view

e

Conceptual level

Internal level

1

Physical storage

Figure 10.01 The ANSI three-level architecture for the theatrical agency database

The physical storage of the data is represented here as being on disk. The details of the
storage (the internal schema) are known only at the internal level, the lowest level in the ANSI
architecture. This is controlled by the database management system (DBMS) software.
The programmers who wrote this software are the only ones who know the structure for

the storage of the data on disk. The software will accommodate any changes that might be
needed in the storage medium.

At the next level, the conceptual level, there is a single universal view of the database. This is
controlled by the database administrator (DBA) who has access to the DBMS. In the ANS|
architecture the conceptual level has a conceptual schema describing the organisation of the
data as perceived by a user or programmer. However, this is often described as a logical schema.

At the external level there are individual user and programmer views. Each view has an
external schema describing which parts of the database are accessible. A view can support a
number of user programs. The DBA is responsible for setting up these views and for defining
the appropriate, specific access rights. The DBMS provides facilities for a programmer to
develop a user interface for a program. It also provides a query processor. The query is the
mechanism for extracting and manipulating data from the database. A programmer will
incorporate access to queries in a user interface. The other feature provided by the DBMS is
the capability for creating a report to present formatted output.

Data management system (DBMS): software that controls access to data in a database

Database administrator (DBA): a person who uses the DBMS to customise the database to suit user
and programmer requirements

Chapter 10: Database and Data Modelling

Discussion Point:

How many of the above concepts are recognisable in your experience of using a database?

10.03 The relational database

In the relational database model each item of data is stored in a relation which is a special
type of table. The strange choice of name has its origin in a mathematical theory. A relational
database is a collection of relational tables.

il s ool ol e RS L Ul el _a

When a table is created in a relational database it is first given a name and then the attributes
are named. In a database design, a table would be given a name with the attribute names
listed in brackets after the table name. For example, a database for the theatrical agency may
contain the following tables:

Member(MemberID, MemberGivenName, MemberFamilyName, BandName, ...)
Band(BandName, AgentiD, ...)

The logical view of the data in these tables is given in Table 10.02 and Table 10.03. Each
attribute is associated with one column in the table and is in effect a column header. The
column itself contains attribute values.

T v v RNy e e R W T T T R mmm—m—————, W e R e R TR e W T TR T

Table 10.02 Logical view of Member table in a relational database

BandName AgentID
ComputerKidz 01
ITWizz 07

Table 10.03 Logical view of Band table in a relational database

Although some database products do allow a direct view of a table this is not the norm hence
the use of the term ‘logical view’ here. If a user wishes to inspect all of the data in a table a
query should be used.

Relation: the special type of table which is used in a relational database
Attribute: a column in a relation that contains values

Arow in a relation should be referred to as a tuple but this strict nomenclature is not

always used. Often a row is called a ‘record’ and the attribute values ‘fields’. The tuple is the
collection of data stored for one ‘instance’ of the relation. In Table 10.02, each tuple relates to
one individual band member. A fundamental principle of a relational database is that a tuple
is a set of atomic values; each attribute has one value or no value.

MemberID Member Member Band
GivenName FamilyName Name
0005 Xiangfei Jha ComputerKidz
0009 Mahesh Ravuru [TWizz
0001 Dylan Stoddart ComputerKidz e
0025 Vandana Graham ITWizz

Cambridge International AS and A level Computer Science

The most important feature of the relational database concept is the primary key. A primary
key may be a single attribute or a combination of attributes. Every table must have a primary
key and each tuple in the table must have a value for the primary key and that value must

be unique. Once a table and its attributes have been defined the next task is to choose the
primary key. In some cases there may be more than one attribute for which unique values are
guaranteed. In this case, each one is a candidate key and one will be selected as the primary
key. More often there is no candidate key and so a primary key has to be created. Table 10.02
shows an example of this with the introduction of the attribute MemberlD as the primary key
(the primary key is underlined in the logical view).

The primary key ensures ‘entity integrity’. The DBMS will not allow an attempt to insert a
value for a primary key when that value already exists. Therefore each tuple must be unique.
This is one of the features of the relational model that helps to ensure data integrity. The
primary key also provides a unique reference to any attribute value that a query is selecting.

Although itis possible for a database to contain stand-alone tables it is usually true that each
table will have some relationship with another table. This relationship.is implemented by
using a foreign key.

Primary key: an attribute or a combination of attributes for which there is a value in each tuple and
that value is unique

Foreign key: an attribute in one table that refers to the primary key in another table

The use of a foreign key can be discussed on the basis of the two database tables
represented in Table 10.02 and Table 10.03. When the database is being created, the Band
table is created first. BandName is chosen as the primary key because unique names for
bands can be guaranteed. Then the Member table is created. MemberlID is defined as the
primary key and the attribute BandName is identified as a foreign key referencing the primary
key in the Band table. Once this relationship between primary and foreign keys has been
established, the DBMS will prevent any entry for BandName in the Member table being made
if the corresponding value does not exist in the Band table. This provides referential integrity
which is another reason why the relational database model helps to ensure data integrity.

Question 10.01
BandName is a primary key for the Band table. Does this mean that as a foreign key in the
Member table it must have unique values? Explain your reasoning.

10.04 Entity-relationship modelling

The top-down, stepwise refinement (see Chapter 12, Section 12.01) approach to database
design uses an entity-relationship (ER) diagram. This might be initially created and used by
a systems analyst before being passed on to the database designer. Otherwise the designer
has to create it. The term ‘relationship’ (not to be confused with a relation!) was introduced
earlier in connection with the use of a foreign key. An entity (strictly speaking an entity
type) could be a thing, a type of person, an event, a transaction or an organisation. Most
importantly, there must be a number of ‘instances’ of the entity. An entity is something that
will become a table in a relational database.

Chapter 10: Database and Data Modelling

WORKED EXAMPLE 10.01

Creating an entity-relationship diagram for the theatrical agency

Let’s consider a scenario for the theatrical agency which will be sufficient to model a
part of the final database they would need. The starting point for a top-down design is a
statement of the requirement:

The agency needs a database to handle bookings for bands. Each band has a number of
members. Each booking is for a venue. Each booking might be for one or more bands.

Step 1: Choose the entities

You look for the nouns. You ignore ‘agency’ because there is only the one. You choose
Booking, Band, Member and Venue. For each of these there will be more than one
instance. You are aware that each booking is for a gig at a venue but you ignore this
because you think that the Booking entity will be sufficient to hold the required data
about a gig. :

Step 2: Identify the relationships

This requires experience but the aim is not to define too many. You choose the following
three:

« Booking with Venue
+ Booking with Band
« Band with Member. 115

You ignore the fact that there will be, for example, a relationship between Member and
Venue because you think that this will be handled through the other relationships that
indirectly link them. You can now draw a preliminary ER diagram as shown in Figure 10.02.

Member Band Booking Venue

Figure 10.02 A preliminary entity-relationship diagram

Step 3: Decide the cardinalities of the relationships

Now comes the crucial stage of deciding on what are known as the ‘cardinalities’ of the
relationships. At present we have a single line connecting each pair of entities. This line
actually defines two relationships which might be described as the ‘forward’ one and
the ‘backward’ one on the diagram as drawn. However, this only becomes apparent at
the final stage of drawing the relationship. First we have to choose one of the following
descriptions for the cardinality of each relation:

e o A s b iSiaie. o g G Bl i . iR R A oo R SSERSEE. e (LGSR caiiate RS Bl i SEEE. GRS chiShbie: ciiiiiie Soiibe i S . iiRd GEEREED . Sl o

« one-to-oneorl:l

* « one-to-many or 1I:M

¢ many-to-one or M:1

« Mmany-to-many or M:M.

- This can be illustrated by considering the relationship between Member and Band. We
] argue that one Member is a member of only one Band. (This needs to be confirmed as a
fact by the agency.) We then argue that one Band has more than one Member so it has

Cambridge International AS and A level Computer Science

many. Therefore the relationship between Member and Band is M:1. In its simplest form,
this relationship can be drawn as shown in Figure 10.03.

Member Band

Figure 10.03 The M:1 relationship between Member and Band

This can be given more detail by including the fact that a member must belong to a Band
and a Band must have more than one Member. To reflect this, the relationship can be
drawn as shown in Figure 10.04.

Member HH Band

Figure 10.04 The M:1 relationship with more detail

At each end of the relationship there are two symbols. One of the symbols shows the
minimum cardinality and the other the maximum cardinality. In this-particular case the
minimum and maximum values just happen to be the same. However, using the diagram
to document that a Member must belong to a Band is important. It indicates that when
the database is created it must not be possible to create a new entry in the Member table
unless there is a valid entry for BandName in that table.

For the relationship between Booking and Venue we argue that one Booking is for one
Venue (there must be a venue and there cannot be more than one) and that one Venue
can be used for many Bookings so the relationship between Booking and Venue is M:1.
116 However, a Venue might exist that has so far never had a booking so the relationship can
be drawn as shown in Figure 10.05.

Booking s HH Venue

Figure 10.05 The M:1 relationship between Booking and Venue

Finally for the relationship between Band and Booking we argue that one Booking can
be for many Bands and that one Band has many Bookings (hopefully!) so the relationship
is M:M. However, a new band might not yet have a booking. Also there might be only one
Band for a booking so the relationship can be drawn as shown in Figure 10.06.

Band P>}———o< Booking

Figure 10.06 The M:M relationship between Band and Booking

Step 4: Create the full ER diagram

At this stage we should name each relationship. The full ER diagram for the limited
scenario that has been considered is as shown in Figure 10.07.

belongs to is booked for is made at
has is for is booked for

Figure 10.07 The ER diagram for the theatrical agency’s booking database

To illustrate how the information should be read from such a diagram we can look at the
part shown in Figure 10.08. Despite the fact that there is a many-to-many relationship,

a reading of a relationship always considers just one entity to begin the sentence. So,
reading forwards and then backwards, we say that:

Chapter 10: Database and Data Modelling

I One Band is booked for zero or many Bookings
‘ One Booking is for one or many Bands

Figure 10.08 Part of the annotated ER diagram

10.05 A logical entity-relationship model

Afully annotated ER diagram of the type developed in Section 10.04 holds all of the
information about the relationships that exist for the data that is to be stored in a system.

It can be defined as a conceptual model because it does not relate to any specific way of
implementing a system. If the system is to be implemented as a relational database the ER
diagram has to be converted to a logical model. To do this we can start with a simplified ER
diagram that just identifies cardinalities. '

If a relationship is 1:M, no further refinement is needed. The relationship shows that the entity at
the many end needs to have a foreign key referencing the primary key of the entity at the one end.

If there were a 1:1 relationship there are options for implementation. However, such
relationships are extremely rare and will not be considered further.

The problem relationship is the M:M, where a foreign key cannot be used. A foreign key
attribute can only have a single value so it cannot handle the many references required. The
solution for the M:M relationship is to create a link entity. For Band and Booking, the logical
entity model will contain the link entity shown in Figure 10.09.

Band < Band-Booking Booking

is booked for
Band P o< Bookin
} | Band | =

Figure 10.09 A link entity inserted to resolve a M:M relationship

Extension Question 10.01
s it possible to annotate these relationships?

With the link entity in the model it is now possible to have two foreign keys in the link entity;
one referencing the primary key of Band and one referencing the primary key of Booking.

[Each entity in the logical ER diagram will become a table in the relational database. It is
therefore possible to choose primary keys and foreign keys for the tables. These can be

, summarised in a key table. Table 10.04 shows sensible choices for the theatrical agency’s
booking database.
Table name Primary key Foreign key
4 Member MemberID BandName
Band BandName
Band-Booking BandName & Booking|D BandName, BookinglD
Booking BookingID VenueName
Venue VenueName

Table 10.04 A key table for the agency booking database

Cambridge International AS and A level Computer Science

The decisions about the primary keys are determined by the uniqueness requirement. The
link entity cannot use either BandName or BookingID alone but the combination of the two
in a compound primary key will work.

TASK10.01

Consider the following scenario. An organisation books cruises for passengers. Each cruise
visits a number of ports. Create a conceptual ER diagram and convert it to a logical ER
diagram. Create a key table for the database that could be implemented from the design.

10.06 Normalisation

Normalisation is a design technique for constructing a set of table designs from a list of data
items. It can also be used to improve on existing table designs.

WORKED EXAMPLE 10.02

Normalising data for the theatrical agency

To illustrate the technique let’s consider the document shown in Figure 10.10. This is a
booking data sheet that the theatrical company might use.

Booking data sheet: 2016/023
Venue:
Cambridge International Theatre
Camside
CAl
Booking data: 23.06.2016
Bands booked Number of band members Headlining

ComputerKidz 5 Y
ITWizz 3 N

Figure 10.10 Example booking data sheet

The data items on this sheet (ignoring headings) can be listed as a set of attributes:

(BookinglD, VenueName, VenueAddressl, VenueAddress2, Date,
(BandName, NumberOfMembers, Headlining))

The list is put inside brackets because we are starting a process of table design. The
extra set of brackets around BandName, NumberOfMembers, Headlining is because they
represent a repeating group. If there is a repeating group, the attributes cannot sensibly
be put into one relational table. A table must have single rows and atomic attribute
values so the only possibility would be to include tuples such as those shown in Table
10.05. There is now data redundancy here with the duplication of the bookingID, venue
data and the date.

Booking| Venue Venue Venue Date Band Number Headlining
ID Name Address1 | Address2 Name Of Members

2016/023 | Cambridge International Theatre | Camside CAl 23.06.2016 |ComputerKidz (5 b

2016/023 |Cambridge International Theatre | Camside | CAl 23.06.2016 | ITWizz < N

Table 10.05 Data stored in an unnormalised table

Chapter 10: Database and Data Modelling

Step 1: Conversion to first normal form (INF)

stage we represent the data as table definitions. Therefore we have to choose table names
and identify a primary key for each table. One table contains the non-repeating group

"P The conversion to first normal form (INF) requires splitting the data into two groups. At this
{ attributes the other the repeating group attributes. For the first table a sensible design is:

, Booking(BookingID, VenueName, VenueAddressl, VenueAddress2, Date)
, The table with the repeating group is not so straightforward. It needs a compound

_ primary key and a foreign key to give a reference to the first table. The sensible design is:
i

1

Band-Booking(BandName, BookingID(fk), NumberOfMembers, Headlining)

Again the primary key is underlined but also the foreign key has been identified, with
(fk). Because the repeating groups have been moved to a second table, these two tables
could be implemented with no data redundancy in either. This is one aspect of INF. Also
it can be said that for each table the attributes are dependent on the primary key.

Step 2: Conversion to second normal form (2NF)

The Booking table is automatically in 2NF; only tables with repeating group attributes
have to be converted. For conversion to second normal form (2NF), the process is

to examine each non-key attribute and ask if it is dependent on both parts of the
compound key. Any attributes that are dependent on only one of the attributes in the
compound key must be moved out into a new table. In this case, NumberOfMembers is

only dependent on BandName. In 2NF there are now three table definitions:
119
Booking(BookinglD, VenueName, VenueAddress1, VenueAddress2, Date)

Band-Booking(BandName(fk), BookingID(fk), Headlining)
Band(BandName, NumberOfMembers)

Note that the Booking table is unchanged from 1NF. The Band-Booking table now has
two foreign keys to provide reference to data in the other two tables. The characteristics
of a table in 2NF is that it either has a single primary key or it has a compound primary
key with any non-key attribute dependent on both components.

Step 3: Conversion to third normal form (3NF)

For conversion to third normal form (3NF) each table has to be examined to see if there
are any non-key dependencies; that means we must look for any non-key attribute that is
dependent on another non-key attribute. If there is, a new table must be defined.

In our example, VenueAddress1 and VenueAddress2 are dependent on VenueName. With
the addition of the fourth table we have the following 3NF definitions:

Band(BandName, NumberOfMembers)
Band-Booking(BandName(fk), BookingID(fk), Headlining)

Booking(BookinglD, Date, VenueName(fk))
Venue(VenueName, VenueAddressl, VenueAddress2)

Note that once again a new foreign key has been identified to keep a reference to data in the
4 newly created table. These four table definitions match four of the entities in the logical ER
model for which the keys were identified in Table 10.04. This will not always happen. A logical
ER diagram will describe a 2NF set of entities but not necessarily a 3NF set.

Cambridge International AS and A level Computer Science

Repeating group: a set of attributes that have more than one set of values when the other attributes
each have a single value

To summarise, if a set of tables are in 3NF it can be said that each non-key attribute is
dependent on the key, the whole key and nothing but the key.

Question 10.02

In Step 2 of Worked Example 10.02, why is the Headlining attribute not placed in the Band table?
TASK 10.02
Normalise the data shown in Figure 10.11.
Order no: Date:
07845 ' 25-06-2016
Customer no: Customer name: CUP
056 Address: Cambridge square Cambridge
Sales rep no: 2 Sales Rep name: Dylan Stoddart
Product s e Price /
D ;
- escription Quantity - Total
327 Inkjet cartridges 24 $30 §720
563 Laser toner 5 $25 $125
Total Price $835

Figure 10.11 An order form

10.07 Structured Query Language (SQL)

SQL is the programming language provided by a DBMS to support all of the operations
associated with a relational database. Even when a database package offers high-level
facilities for user interaction, they use SQL.

Data Definition Language (DDL)
Data Definition Language (DDL) is the part of SQL provided for creating or altering tables.
These commands only create the structure. They do not put any data into the database.

The following are some examples of DDL that could be used in creating the database for the
theatrical agency:

CREATE DATABASE BandBooking;
CREATE TABLE Band (
BandName varchar2(25),
NumberOfMembers number(1));
ALTER TABLE Band ADD PRIMARY KEY (BandName);
ALTER TABLE Band-Booking ADD FOREIGN KEY (BandName REFERENCES
Band (BandName) ;

These examples show that once the database has been created the tables can be created
and the attributes defined. It is possible to define a primary key and a foreign key within the
CREATE TABLE command butthe ALTER TABLE command can be used as shown (it can
also be used to add extra attributes).

Chapter 10: Database and Data Modelling

TASK 10.03
For the database defined in Worked Example 10.02, complete the DDL for creating the four

; tables. Use varchar2(5) for BookinglD, number(1) for NumberOfMembers, date for Date,
g
:

varchar2(1) for Headlining and varchar2(25) for all other data.

Data Manipulation Language (DML)

Data Manipulation Language (DML) is used when a database is first created, to populate the
tables with data. It can then be used for ongoing maintenance. The following code shows a
selection of the use of the commands:

INSERT INTO Band ('ComputerKidz', 5);

INSERT INTO Band-Booking (BandName, BookingID)
VALUES ('ComputerKidz', '2016/023'");

UPDATE Band

SET NumberOfMembers = 6;

DELETE FROM BandName

WHERE BandName = 'ITWizz';

The above code shows the two methods of inserting data. The first, simpler version can be
used if the order of the attributes is known. The second is the safer method: the attributes
are defined then the values are listed. The next two statements show a change of data and
the removal of data.

The main use of DML is to obtain data from a database using a query. A query always starts
with the seLECT command. Some examples are:

SELECT BandName
FROM Band
ORDER BY BandName;

FROM Band-Booking
WHERE Headlining = 'Y'
4 GROUP BY BandName;

; SELECT BandName
r

Both of these examples select data from a single table. The first produces an ordered list of
3 all the bands. The second produces a list of bands that have headlined a gig. The Group BY
[restriction ensures that the band names are not repeated.

A query can be based on a ‘join condition’ between data in two tables. The most frequently
y used is an inner join which is illustrated by:

SELECT VenueName, Date

FROM Booking

WHERE Band-Booking.BookingID = Booking.BookingID
AND Band-Booking.BandName = 'ComputerKidz';

Note the use of the full names of attributes, which include the table name. This query will find
the venue and date of bookings for the band ComputerKidz.

Cambridge International AS and A level Computer Science

Accessing SQL commands using a different language

Although a database can be accessed directly using SQL there is often a need to control
access to a database using a different language. This makes sense because a program can
access data in a file so why not in a database? Programming languages therefore have a
mechanism for embedding an SQL command into a program.

Aspecial case arises in a client-server web application as mentioned in Chapter 2 (Section
2.09). Server-side scripting using PHP can access a database associated with the server. The
following is an example of some code that could be included in an HTML file:

<?php
// Connect to localhost using root as the username and no password
mysqgl connect("localhost", "root", "");

// Select the database

mysqgl _ select _ db("BandBooking");

//Run a query

Sresult = mysqgl _query("SELECT * FROM Band")

2>

This code assumes that you have created a MYSQL database on a server located on your own
computer.

10.08 DBMS features

There are a few important features of a DBMS which have not been mentioned. The first and
most important is the data dictionary which is part of the database that is hidden from view
from everyone except the DBA. It contains metadata about the data. This includes details
of all the definitions of tables, attributes and so on but also of how the physical storage is
organised.

There are a number of features to improve performance. Of special note is the capability

to create an index for a table. This is needed if the table contains a lot of data. An index is a
secondary table which is associated with an attribute that has unique values. The index table
contains the attribute values and pointers to the corresponding tuple in the original table.
The index can be on the primary key or on a secondary key which was a candidate key when
the choice of primary key was made. Searching an index table is much quicker than searching
the full table.

Finally, the DBMS controls security issues which include:
e setting access rights for users

e implementing backup procedures

e ensuring that an interrupted database transaction cannot leave the database in an
undefined state.

Y Ty WTTWyT VTR W TYTYW T

— T

Chapter 10: Database and Data Modelling

A database offers improved methods for ensuring data integrity compared to a file-based
approach.

A database architecture provides, for the user, a conceptual level interface to the stored data.

Arelational database comprises tables of a special type; each table has a primary key and may
contain foreign keys.

Entity-relationship modelling is a top-down approach to database design.

Normalisation is a database design method which starts with a collection of attributes and
converts them into first normal form then into second normal form and, finally, into third normal
form.

Structured Query Language (SQL) includes data definition language (DDL) commands for
establishing a database and data manipulation language (DML) commands for creating queries.

Features provided by a database management system (DBMS) include: a data dictionary, indexing
capability, control of user access rights and backup procedures.

Exam-style Questions

1 a Arelational database has been created to store data about subjects that students are studying. The following is a
selection of some data stored in one of the tables. The data represents the student’s name, the personal tutor group,
the personal tutor, the subject studied, the level of study and the subject teacher but there is some data missing:

Xiangfei 3 MUB Computing | A DER
Xiangfei 3 MUB Maths A BNN
Xiangfei 3 MUB Physics AS DAB
Mahesh 2 BAR History AS UM

Mahesh 2 BAR Geography | AS CAB

i Define the terms used to describe the components in a relational database table using examples from
this table. 2]

ii Ifthis represented all of the data, it would have been impossible to create this table.
What is it that has not been shown here and must have been defined to allow the creation as a relational
database table? Explain your answer and suggest examples of the missing data. (4]

iii Isthistablein first normal form (INF)? Explain your reason. [2]

b It has been suggested that the database design could be improved. The design suggested contains the following
two tables:

Student(StudentName, TutorGroup, Tutor)

StudentSubject(StudentName, Subject,
Level, SubjectTeacher)

124

Cambridge International AS and A level Computer Science

i Identify features of this design which are characteristic of a relational database.
ii Explain why the use of StudentName here is a potential problem.
iii Explain why the Student table is not in third normal form (3NF).

2 Consider the following scenario:

A company provides catering services for clients who need special-occasion, celebratory dinners. For
each dinner, a number of dishes are to be offered. The dinner will be held at a venue. The company will
provide staff to serve the meals at the venue.

The company needs a database to store data related to this business activity.

a Anentity-relationship model is to be created as the first step in a database design. Identify a list of entities.
b Identify pairs of entities where there is a direct relationship between them.

¢ Foreach pair of entities, draw the relationship and justify the choice of cardinality illustrated by the
representation.

3 Consider the following booking form used by a travel agency.

Booking Number 00453
Hotel: Esplanade Rating: +x«
Colwyn Bay
North Wales
Number of
Date Room type — Room rate
23/06/2016 Front-facing double 2 $80
23/06/2016 Rear-facing double i $65
24/06/2016 | Front-facing double 2 $80

a Create an unnormalised list of attributes using the data shown in this form. Make sure that you distinguish
between the repeating and non-repeating attributes.

b Convert the data to first normal form (INF). Present this as designs for two tables with
keys identified.

¢ Choose the appropriate table and convert it to two tables in second normal form (2NF). Explain your choice
of table to modify. Explain your identification of the keys for these two new tables.

d Identify which part of your design is not in Third Normal Form (3NF).

R T i e e g SRS T, SUNPRRRRRS Bt SR S s A

_ .

Fundamental Problem-Solving
and Programming Skills

Algorithm Design and Problem-Solving

Learning objectives
By the end of this chapter you should be able to:

m show understanding that an algorithm is a solution to a
problem expressed as a sequence of defined steps

m use suitable identifiers for the representation of data
used by a problem and summarise identifiers using an
identifier table

m show understanding that many algorithms are expressed
using the four basic constructs of assignment, sequence,
selection and repetition

m show understanding that simple algorithms consist of
input, process, output at various stages

® document a simple algorithm using: structured English,
pseudocode, program flowchart

derive pseudocode or a program flowchart from a
structured English description of a problem

m derive pseudocode from a given program flowchart
= show an appreciation of why logic statements are used to

define parts of an algorithm solution

use logic statements to define parts of an algorithm
solution

use the technical terms associated with arrays including
upper and lower bound

select a suitable data structure (1D or 2D array) to use for
a given task

write algorithms to process array data including sorting
using a bubble sort and searching using a linear search.

Cambridge International AS and A level Computer Science

11.01 What is an algorithm?

#

2

Algorithm: a sequence of steps that can be carried out to perform a task

We use algorithms in everyday life. If you need to change a wheel on a car, you might need to
follow instructions (the algorithm) from a manual:

Take a spanner and loosen the wheel nuts.
Position a jack in an appropriate place.
Raise the car.

Take off the wheel nuts and the wheel.

Lift replacement wheel into position.
Replace wheel nuts and tighten by hand.
Lower the car.

00 ~N O U1 A W N K

Fully tighten wheel nuts.

This might sound all very straightforward. However, if the instructions are not followed in the
correct logical sequence, the process might become much more difficult or even impossible.
For example, if you tried to do Step 1 after Step 3, the wheel may spin and you can’t loosen
the wheel nuts. You can’t do Step 4 before Step 3.

If you want to bake a cake, you follow a recipe:
1 Measure the following ingredients: 200g sugar, 200g butter, 4 eggs, 200g flour, 2 teaspoons

baking powder and 2 tablespoons of milk.

2 Mixtheingredients togetherin a large bowl, until the consistency of the mixture is
smooth.

Pour the mixture into a cake tin.

Bake in the oven at 190° C for 20 minutes.
Check it is fully cooked.

Turn cake out of the tin and cool on a wire rack.

o 1~ W

The recipe is an algorithm. The ingredients are the input and the cake is the output. The
process is mixing the ingredients and cooking the mixture in the oven.

Sometimes a step might need breaking down into smaller steps. For example Step 2 can be
more detailed:

2.1 Beat the sugar and butter together until fluffy.

2.2 Add the eggs, one at a time, mixing constantly.

2.3 Sieve the flour and baking powder and stir slowly into the egg mixture.

2.4 Add milk and mix to give a creamy consistency.

Chapter 11: Algorithm Design and Problem Solving

.

ST T W TR ey, e\

Sometimes there might be different steps depending on some other conditions. For example,
consider how to get from one place to another using the map of the London Underground
system in Figure 11.01.

<
chley Road Ington
ﬂ“ gwiss Cottase MO Grescent
s, Joho's Wood

Ange!
*F
0—0.
portiant g — N = adon Q@
isquaf‘ Russell \

= e 2000 B gquare

s Cross
s Cro
K fpancres

Rse Brondesbury

en

ark = o\d Stre

avale e
Padd:\i““ Road

O
a*
Edgware Marylebon®
Road

Chancery
Lane

Bayswater

Lancaster lo.r\:t e

Gate Str

(J nham
O Tcm Road
Arch ®
@

sereet Hyde Park
\2-“““‘““ Carne’,

Lelcester yansion
square House

-
— Piccadilly
- \lictoria
—— Jubilee

Figure 11.01 Underground map of London, UK

To travel from King’s Cross St. Pancras to Westminster, we consider two routes:

» Route A: Take the Victoria Line to Green Park (4 stations); then take the Jubilee Line to
Westminster (1 station).

o Route B: Take the Piccadilly Line to Green Park (6 stations); then take the Jubilee Line to
Westminster (1 station).

Route A looks like the best route. If there are engineering works on the Victoria Line and
trains are delayed, Route B might turn out to be the quicker route.
The directions on how to get from King’s Cross St. Pancras to Westminster can be written as:

IF there are engineering works on the Victoria Line

THEN
Take the Piccadilly Line to Green Park (6 stations)
Take the Jubilee Line to Westminster (1 station)
ElLSE
Take the Victoria Line to Green Park (4 stations)
Take the Jubilee Line to Westminster (1 station)

TASK 11.01

Write the steps to be followed to:

« make a sandwich

« walk from your school/college to the nearest shop
« logon to your computer.

Many problems have more than one solution. Sometimes it is a personal preference which
solution to choose. Sometimes one solution will be better than another.

128

Cambridge International AS and A level Computer Science

11.02 Expressing algorithms

TIP

Computer scientists are interested in finding good solutions. A good solution gives the correct
results, takes up as little computer memory as possible and executes as fast as possible. The
solution should be concise, elegant and easy to understand.

In computer science, when we design a solution to a problem we express the solution

(the algorithm) using sequences of steps written in structured English or pseudocode.
Structured English is a subset of the English language and consists of command statements.
Pseudocode resembles a programming language without following the syntax of a particular
programming language. A flowchart is an alternative method of representing an algorithm. A
flowchart consists of specific shapes, linked together.

An algorithm consists of a sequence of steps. Under certain conditions we may wish not to

Structured English: a subset of the English language that consists of command statements used to
describe an algorithm

Pseudocode: a way of using keywords and identifiers to describe an algorithm without following the
syntax of a particular programming language

Flowchart: shapes linked together to represent the sequential steps of an algorithm

perform some steps. We may wish to repeat a number of steps. In computer science, when
writing algorithms, we use four basic types of construct:

o Assignment:
avalue is given a name (identifier) or the value associated with a given identifier is
changed.

* Sequence:
a number of steps are performed, one after the other.

o Selection:
under certain conditions some steps are performed, otherwise different (or no) steps are
performed.
o Repetition:
a sequence of steps is performed a number of times. This is also known as iteration or
looping.
Many problems we try to solve with a computer involve data. The solution involves inputting
data to the computer, processing the data and outputting results (as shown in Figure 11.02).

Input Process

Y

Output

Y

Figure 11.02 Input-process-output

We therefore also need input and output statements.

We need to know the constructs so we know how detailed our design has to be.
These constructs are represented in each of the three notations as shown in Table 11.01.

Chapter 11: Algorithm Design and Problem Solving

Structured English Pseudocode Flowchart
Assignment and SET A TO 34 A« 34
Sequence INCREMENT B B« B+ 1
Set A to 34
4
Increment B
Selection IF A IS GREATER THAN B IF A > B
THEN ... THEN ...
ELSE ELSE
ENDIF NO
Yes
Repetition REPEAT UNTIL A IS EQUAL TO B |REPEAT
UNTIL A = B
Loop)=
}
i Input INPUT A INPUT "Prompt:" A
P INPUT "Prompt:" A
i Output OUTPUT "Message" OUTPUT "Message" B l
] OUTPUT B
OUTPUT "Message" B

Table 11.01 Constructs for computing algorithms

Cambridge International AS and A level Computer Science

In this book, algorithms and program code are typed using the courier font.

11.03 Variables

When we input data for a process, individual values need to be stored in memory. We need

to be able to refer to a specific memory location so that we can write statements of what to
do with the value stored there. We refer to these named memory locations as variables. You
can imagine these variables like boxes with name labels on them. When a value is input, it is
stored in the box with the specified name (identifier) on it.

Variable: a storage location for a data value that has an identifier

For example, the variable used to store a count of how many guesses have been made might
be given the identifier Numberofcuesses and the player’s name might be stored in a variable
called ThisPlayer, as shown in Figure 11.03.

o @

NumberOfGuesses ThisPlayer

480 Figure 11.03 Variables

Variable identifiers should not contain spaces, only letters, digits and _ (the underscore
symbol). To make algorithms easier to understand, the naming of a variable should reflect

the variable’s use. This means often that more than one word is used as an identifier. The
formatting convention used here is known as CamelCaps. It makes an identifier easier to read.

11.04 Assignments
Assigning a value
The following pseudocode stores the value The following pseudocode stores the
that is input (for example 15) in a variable with value 1 in the variable with the identifier
the identifier Number (see Figure 11.04(a)). NumberOfGuesses (see Figure 11.04(b)).
INPUT Number NumberOfGuesses « 1

2

vam's

7
NumberOfGuesses
Number

(a) (b)

Figure 11.04 Variables being assigned a value

Chapter 11: Algorithm Design and Problem Solving

Updating a value

The following pseudocode takes the value stored in NumberofGuesses (see Figure 11.05 (a)),
adds 1 to that value and then stores the new value back into the variable NumberofGuesses
(see Figure 11.05 (b)).

NumberOfGuesses <« NumberOfGuesses + 1

e e Sl . R o o _cose. 0

NumberOfGuesses
: NumberOfGuesses

(a) (b)

Figure 11.05 Updating the value of a variable

Copying avalue
Values can be copied from one variable to another.

The following pseudocode takes the value stored in value1 and copies it to value2
(see Figure 11.06).

Value2 <« Valuel

Valuel Value2

= e

Valuel Value?2

(b)

e, e . e . . R .
—
Q
~

Figure 11.06 Copying the value of a variable

The value in valuel remains the same until it is assigned a different value.

Swapping two values

If we want to swap the contents of two variables, we need to store one of the values in
another variable temporarily. Otherwise the second value to be moved will be overwritten by
the first value to be moved.

Cambridge International AS and A level Computer Science

In Figure 11.07(a), we copy the content from valuel into a temporary variable called Temp.
Then we copy the content from value2 into valuel Figure 11.07(b)). Finally we can copy the
value from Temp into value2 (Figure 11.07(c)).

1:5 34
15
Valuel Value2
Temp
(a)
34 < 34
15
Valuel Value2
Temp
(b)
34 15
1
Valuel Value2
Temp
()

Figure 11.07 Swapping the values of two variables
Using pseudocode we write:

Temp < Valuel
Valuel <« Value2

Value2 <« Temp

WORKED EXAMPLE 11.01

Using input, output, assignment and sequence constructs
The problem to be solved: Convert a distance in miles and output the equivalent distance in km.

Step 1: Write the problem as a series of structured English statements:

INPUT number of miles
Calculate number of km
OUTPUT calculated result as km

Step 2: Analyse the data values that are needed.

We need a variable to store the original distance in miles and a variable to store the result
of multiplying the number of miles by 1.61. It is helpful to construct an identifier table to
list the variables.

Identifier Explanation

Miles Distance as a whole number of miles

Km The result from using the given
formula: Km = Miles * 1.61

Table 11.02 Identifier table for miles to km conversion

Chapter 11: Algorithm Design and Problem Solving

Step 3: Provide more detail by drawing a flowchart or writing pseudocode.

The detail given in a flowchart should be the same as the detail given in pseudocode. It
should use the basic constructs listed in Table 11.01.

Figure 11.08 represents our algorithm using a flowchart and the equivalent pseudocode.

INPUT "Enter miles:" Miles
Start Km < Miles * 1.61

OUTPUT "km:" Km
Y

INPUT "Enter miles:"
Miles

Y

Km < Miles * 1.61

Y

OUTPUT “Km:"
Km

Y
End

Figure 11.08 Flowchart and pseudocode for miles to km conversion

Identifier table: a table listing the variable identifiers required for the solution, with explanations

TASK 11.02

Consider the following algorithm steps:

1 Inputa lengthininches.

2 Calculate the equivalent in centimetres.

3 Output the result.

List the variables required in an identifier table.

Write pseudocode or draw a flowchart for the algorithm.

Cambridge International AS and A level Computer Science

11.05 Logic statements

In Section 11.01, we looked at an algorithm with different steps depending on some other
condition:

IF there are engineering works on the Victoria Line

THEN
Take the Piccadilly Line to Green Park (6 stations)
Take the Jubilee Line to Westminster (1 station)
ELSE
Take the Victoria Line to Green Park (4 stations)
Take the Jubilee Line to Westminster (1 station)

The selection construct in Table 11.01 uses a condition to follow either the first group of steps
or the second group of steps (see Figure 11.09).
IF ENZNE

A Simple condition]
THEN

<statement (s) >
ELSE
<statement (s) >
ENDIF

Figure 11.09 Structured English for the selection construct

A condition consists of at least one logic proposition (see Chapter 4, Section 4.01). Logic
propositions use the relational (comparison) operators shown in Table 11.03.

Operator Comparison
= Is equal to
< Is less than
> Is greater than
<= Is less than or equal to
>= Is greater than or equal to
<> Is not equal to

Table 11.03 Relational operators

Conditions are either TRUE or FALSE. In pseudocode, we distinguish between the relational
operator = (which tests for equality) and the assignment symbol «.

A person is classed as a child if they are under 13 and as an adult if they are over 19. If they are
between 13 and 19 inclusive they are classed as teenagers. We can write these statements as
logic statements:

o IfAge<13then personis a child

o If Age>19then personisan adult

o If Age>=13 AND Age <= 19 then person is a teenager

Chapter 11: Algorithm Design and Problem Solving

- W AarmemoTer Tmww Towmeays O ww W ¥V W L i - b cililiee o - - g - v o

L et aliahad e e A A

TASK11.03

Atown has a bus service where passengers under the age of 12 and over the age of 60 do not
need to pay a fare. Write the logic statements for free fares.

A number-guessing game follows different steps depending on certain conditions. Here is a
description of the algorithm:

e The player inputs a number to guess the secret number stored.
e Ifthe guess was correct, output a congratulations message.

 Ifthe numberinput was larger than the secret number, output message “secret number is
smaller”.

e Ifthe number input was smaller than the secret number, output message “secret number
is greater”.

We can re-write the number-guessing game steps as an algorithm in-structured English:

SET value for secret number
INPUT Guess
IF Guess = SecretNumber
THEN
OUTPUT "Well done. You have guessed the secret number"
ELSE
IF Guess > SecretNumber
THEN
OUTPUT "secret number is smaller"
ELSE
OUTPUT "secret number is greater"

ENDIF
ENDIF

More complex conditions can be formed by using the logical operators AND, OR and NOT. For
example, the number-guessing game might allow the player multiple guesses; if the player
has not guessed the secret number after 10 guesses, a different message is output.

IF Guess = SecretNumber
THEN
OUTPUT "Well done. You have guessed the secret number"

ELSE ‘4¢:[CompkxcondMOn]

IF Guess <> SecretNumber AND NumberOfGuesses = 10

THEN
OUTPUT "You still have not guessed the secret number"
ELSE
IF Guess > SecretNumber
THEN
OUTPUT "The secret number is smaller"
ELSE
OUTPUT "The secret number is greater"
ENDIF
ENDIF
ENDIF

136

Cambridge International AS and A level Computer Science

WORKED EXAMPLE 11.02

Using selection constructs
The problem to be solved: Take three numbers as input and output the largest number.

There are several different methods (algorithms) to solve this problem. Here is one method:

1 Inputall three numbers at the beginning,.

2 Storeeach of the input values in a separate variable (the identifiers are shown in Table
11.04).

| 3 Compare the first number with the second number and then compare the bigger one
of these with the third number.

4 The bigger number of this second comparison is output.
See Worked Example 11.03 for another solution.

Identifier Explanation

Numberl The first number to be input
Number2 The second number to be input
Number3 The third number to be input

Table 11.04 Identifier table for biggest number problem

The algorithm can be expressed in the following pseudocode:

INPUT Numberl
INPUT Number2
INPUT Number3
IF Numberl > Number2
THEN // Numberl is bigger
IF Numberl > Number3
THEN
OUTPUT Numberl
ELSE
OUTPUT Number3
ENDIF
ELSE // Number2 is bigger
IF Number2 > Number3
THEN
OUTPUT Number2
ELSE
OUTPUT Number3
ENDIF
ENDIF

When an 1F statement contains another IF statement, we refer to these as nested 1F
statements.

Nested IF statements: conditional statements within conditional statements

Chapter 11: Algorithm Design and Problem Solving

Question: 11.01

What changes do you need to make to output the smallest number?

WORKED EXAMPLE 11.03

Using selection constructs (alternative method)
The problem to be solved: Take three numbers as input and output the largest number.

Thisis an alternative method to Worked Example 11.02.

Input the first number and store it in BiggestSoFar

Input the second number and compare it with the value in BiggestSoFar.
If the second number is bigger, assign its value to BiggestSoFar

Input the third number and compare it with the value in BiggestSoFar

If the third number is bigger, assign its value to BiggestSoFar

o 1 A W N R

The value stored in BiggestSoFar is output.
The identifiers required for this solution are shown in Table 11.05.

Identifier Explanation
t BiggestSoFar Stores the biggest number input so far

NextNumber The next number to be input

Table 11.05 Identifier table for the alternative solution to the biggest number problem

The algorithm can be expressed in the following pseudocode: o

INPUT BiggestSoFar
INPUT NextNumber
IF NextNumber > BiggestSoFar
THEN
BiggestSoFar <« NextNumber
ENDIF
INPUT NextNumber
IF NextNumber > BiggestSoFar
THEN
BiggestSoFar <« NextNumber
ENDIF
OUTPUT BiggestSoFar

Note that when we input the third number in this method the second number gets
overwritten asitis no longer needed.

There are several advantages of using the method in Worked Example 11.03 compared to the
method in Worked Example 11.02:

e Only two variables are used.

o The conditional statements are not nested and do not have an ELSE part. This makes
them easier to understand.

e This algorithm can be adapted more easily if further numbers are to be compared (see
Worked Example 11.04).

The disadvantage of the method in Worked Example 11.03 compared to the method in
Worked Example 11.02 is that there is more work involved with this algorithm. If the second
number is bigger than the first number, the value of BiggestsoFar has to be changed. If
the third number is bigger than the value in BiggestSoFar then the value of BiggestSoFar

TITTTNTTTITINTTIRRRRR. | W TR, . "W W e S v www v v "w v

Cambridge International AS and A level Computer Science

has to be changed again. Depending on the input values, this could result in two extra
assignment instructions being carried out.

11.06 Loops

Look at the pseudocode algorithm in Worked Example 11.03. The two IF statements are
identical. To compare 10 numbers we would need to write this statement nine times.
Moreover, if the problem changed to having to compare, for example, 100 numbers, our
algorithm would become very tedious. If we use a repetition construct (a loop) we can avoid
writing the same lines of pseudocode over and over again.

WORKED EXAMPLE 11.04

Repetition using REPEAT.. . UNTIL
The problem to be solved: Take 10 numbers as input and output the largest number.

We need one further variable to store a counter, so that we know when we have
compared 10 numbers.

Identifier Explanation

BiggestSoFar Stores the biggest number input so far
NextNumber The next number to be input

Counter Stores how many numbers have been input so far

Table 11.06 Identifier table for the biggest number problem using REPEAT. . .UNTIL

The algorithm can be expressed in the following pseudocode:

INPUT BiggestSoFar
Counter « 1
REPEAT
INPUT NextNumber
Counter <« Counter + 1
IF NextNumber > BiggestSoFar
THEN
BiggestSoFar « NextNumber
ENDIF
UNTIL Counter = 10
OUTPUT BiggestSoFar

Question: 11.02

What changes do you need to make to the algorithm in Worked Example 11.04:
e . to compare 100 numbers?
o totake as afirstinput the number of numbers to be compared?

There is another loop construct that does the counting for us: the FOR...ENDFOR loop.

Chapter 11: Algorithm Design and Problem Solving

Repetition using FOR...ENDFOR
The problem to be solved: Take 10 numbers as input and output the largest number.

l WORKED EXAMPLE 11.05
?
)

We can use the same identifiers as in Worked Example 11.04. Note that the purpose of

7 Counter has changed.

i’ Identifier Explanation

[BiggestSoFar Stores the biggest number input so far

1 NextNumber The next number to be input

4 Counter Counts the number of times round the loop
i} Table 11.07 Identifier table for biggest number problem using a FOR loop

’

The algorithm can be expressed in the following pseudocode:

INPUT BiggestSoFar
FOR Counter <« 2 TO 10
INPUT NextNumber
IF NextNumber > BiggestSoFar
THEN
BiggestSoFar <« NextNumber
ENDIF
ENDFOR
OUTPUT BiggestSoFar

The first time round the loop, counter is set to 2. The next time round the loop,
Counter has automatically increased to 3, and so on. The last time round the loop,
Counter has the value 10.

Arogue value is a value used to terminate a sequence of values. The rogue value is of the
same data type but outside the range of normal expected values.

et U

Rogue value: a value used to terminate a sequence of values

WORKED EXAMPLE 11.06

Repetition using a rogue value

The problem to be solved: A sequence of non-zero numbers is terminated by 0. Take this
sequence as input and output the largest number.

G . il e N, . e L. i i R b e R o e

Note: In this example the rogue value chosen is 0. It is very important to choose a rogue value
that is of the same data type but outside the range of normal expected values. For example, if
the input might normally include 0 then a negative value, such as—1, might be chosen.

Look at Worked Example 11.05. Instead of counting the numbers input, we need to check
whether the numberinputis 0 to terminate the loop. The identifiers are shown in Table 11.08.

Identifier Explanation
BiggestSoFar Stores the biggest number input so far
NextNumber The next number to be input

Table 11.08 Identifier table for biggest number problem using a rogue value

Cambridge International AS and A level Computer Science

A possible pseudocode algorithm is:

INPUT BiggestSoFar
| REPEAT
INPUT NextNumber
IF NextNumber > BiggestSoFar
THEN
BiggestSoFar « NextNumber
ENDIF
UNTIL NextNumber = 0
OUTPUT BiggestSoFar

This algorithm works even if the sequence consists of only one non-zero input. However,
it will not work if the only input is 0. In that case, we don’t want to perform the statements
within the loop at all. We can use an alternative construct, the WHILE. . . ENDWHILE (0Op.

INPUT NextNumber
BiggestSoFar <« NextNumber
WHILE NextNumber <> 0 // sequence terminator not encountered

INPUT NextNumber

IF NextNumber > BiggestSoFar

THEN
BiggestSoFar <« NextNumber

ENDIF
ENDWHILE
OUTPUT BiggestSoFar

Before we enter the loop we check whether we have a non-zero number. To make this
work for the first number, we store it in NextNumber and also in BiggestSoFar. If this
first number is zero we don’t follow the instructions within the loop. For a non-zero first
number this algorithm has the same effect as the algorithm using REPEAT. . .UNTIL.

- WORKED EXAMPLE 11.07

Implementing the number-guessing game with a loop

Consider the number guessing game again, this time allowing repeated guesses:

1 The player repeatedly inputs a number to guess the secret number stored.

2 Ifthe guessis correct, the number of guesses made is output and the game stops.

3 Ifthe number input s larger than the secret number, the player is given the message to
input a smaller number,

4 |fthe number input is smaller than the secret number, the player is given the message
to input a larger number.

The algorithm is expressed in structured English, as a flowchart and in pseudocode.

Algorithm for the number-guessing game in structured English

SET value for secret number

REPEAT the following UNTIL correct guess
| INPUT guess

A COMPARE guess with secret number
OUTPUT comment

We need variables to store the following values:
e thesecret number (to be set as a random number)
o thenumberinput by the player as a guess

« the count of how many guesses the player has made so far.

Chapter 11: Algorithm Design and Problem Solving

We represent this information in the identifier table shown in Table 11.09.

Identifier Explanation

SecretNumber The number to be guessed
NumberOfGuesses The number of guesses the player has made
Guess The number the player has input as a guess

Table 11.09 Identifier table for number-guessing game

Algorithm for the number-guessing game as a flowchart

‘ Start ’

Y

SET SecretNumber
to a random number

Y

INPUT "Guess
the secret
number: "
Guess

4

SET NumberOfGuesses
To 1

No SET NumberOfGuesses

e il R a8 e e il bR b i e e B e __ibh i . Ul o iR i i R e b ol ol Ll et e e i anec s i i

SecretNumber ? TO NumberOfGuesses
+ 1
Yes
Guess >
SecretNumber ?
No
\4
INPUT "Guess INPUT "Guess
a smaller a larger
number:" number:"
Guess Guess
Y
OUTPUT "You took™" 4
NumberOfGuesses
"guesses"
‘ Y
End
r— e e—— —— —_— — _—

Cambridge International AS and A level Computer Science

Pseudocode for the number-guessing game with a post-condition loop

SecretNumber <« Random

NumberOfGuesses « 0

REPEAT
INPUT Guess
NumberOfGuesses <« NumberOfGuesses + 1
IF Guess > SecretNumber

THEN
the player is given the message to input a smaller number
ENDIF :
IF Guess < SecretNumber
THEN
the player is given the message to input a larger number
ENDIF

UNTIL Guess = SecretNumber

Pseudocode for the number-guessing game with a pre-condition loop
The above solution uses a post-condition (REPEAT. ..uNTIL) loop. An alternative solution
uses a pre-condition (WHILE...ENDWHILE) loop:

SecretNumber <« Random
INPUT Guess
NumberOfGuesses « 1
WHILE Guess <> SecretNumber
IF Guess > SecretNumber
THEN
the player is given the message to input a smaller number
ENDIF
IF Guess < SecretNumber
THEN
the player is given the message to input a larger number
ENDIF
INPUT Guess
NumberOfGuesses « NumberOfGuesses + 1
ENDWHILE

WORKED EXAMPLE 11.08

" Calculating running totals and averages
The problem to be solved: Take 10 numbers as input and output the sum of these
numbers and the average.

Identifier Explanation

RunningTotal Stores the sum of the numbers input so far
Counter How many numbers have been input
NextNumber The next number input

Average The average of the numbers input

Table 11.10 Identifier table for running total and average algorithm

Chapter 11: Algorithm Design and Problem Solving

The following pseudocode gives a possible algorithm:

RunningTotal « 0
FOR Counter « 1 TO 10
INPUT NextNumber
RunningTotal <« RunningTotal + NextNumber
ENDFOR
OUTPUT RunningTotal
Average < RunningTotal / 10
OUTPUT Average

Itis very important that the value stored in RunningTotal is initialised to zero before we
start adding the numbers being input.

TASK 11.04

Change the algorithm in Worked Example 11.08 so that the sequence of numbers is
terminated by a rogue value of 0.

WORKED EXAMPLE 11.09

Using nested loops

The problem to be solved: Take as input two numbers and a symbol. Output a grid made
up entirely of the chosen symbol, with the number of rows matching the first number

input and the number of columns matching the second number input.

For example the three input values 3, 7 and &, result in the output:

& &8 & &bl
8888 &&&
&&&&&&E

We need two variables to store the number of rows and the number of columns. We also need a
variable to store the symbol. We need a counter for the rows and a counter for the columns.

Identifier Explanation

NumberOfRows Stores the number of rows of the grid
NumberOfColumns Stores the number of columns of the grid
Symbol Stores the chosen character symbol
RowCounter Counts the number of rows
ColumnCounter Counts the number of columns

T WAy Ty e ay Wy W Sayt W W w© WSV s T e Ty W T W VY W TTwT w

Table 11.11 Identifier table for the nested loop example

INPUT NumberOfRows

' INPUT NumberOfColumns
INPUT Symbol
' FOR RowCounter « 1 TO NumberOfRows

} FOR ColumnCounter <« 1 TO NumberOfColumns
OUTPUT Symbol // without moving to next line
ENDFOR
OUTPUT Newline // move to the next line
ENDFOR

Cambridge International AS and A level Computer Science

Each time round the outer loop (counting the number of rows) we complete the inner loop,
outputting a symbol for each count of the number of columns. This type of construct is
called a nested loop.

Nested loop: loop containing another loop

11.07 Working with arrays

WORKED EXAMPLE 11.10

| Working with a one-dimensional array

The problem to be solved: Take seven numbers as input and store them for later use.
|

:

We could use seven separate variables. However, if we wanted our algorithm to work with
70 numbers, for example, then this would become very tedious. We can make use of a
data structure, known as a ‘linear list’ or a one-dimensional (1D) array.

| This array is given an identifier, for example MyList, and each element within the array
| is referred to using this identifier and its position (index) within the array. For example,
| MyList[4] refers to the fourth element in the myList array.

We can use a loop to access each array element in turn. If the numbers input to the
pseudocode algorithm below are 25, 34, 98, 7, 41, 19 and 5 then the algorithm will
produce the result in Figure 11.10.

144

FOR Index <« 1 TO 7
INPUT MyList[Index]
ENDFOR

Index MyList

[1] 25
[2] 34
(3] 98
(4] 7
(5] 41
(6] 19
[7] 5

Figure 11.10 myList array populated by a loop

Chapter 11: Algorithm Design and Problem Solving

TASK 11.05
Set up two arrays, one for your friends’ names and one for their ages as shown in Figure 11.11.

Name Age
[1] Matt [1] 15
[2] Fred [2] 16
3] Anna 13] 14
t t
[20] Xenios [20] : 17

Figure 11.11 Arrays for names and ages

WORKED EXAMPLE 11.11

Searching a 1D array

The problem to be solved: Take a number as input. Search for this number in an existing
1D array of seven numbers (see Worked Example 11.10).

Start at the first element of the array and check each element in turn until the search
value is found or the end of the array is reached. This method is called a linear search.

Identifier Explanation
MyList Data structure (1D array) to store seven numbers
MaxIndex The number of elements in the array
Searchvalue The value to be searched for
Found TRUE if the value has been found
FALSE if the value has not been found
Index Index of the array element currently being processed

Table 11.13 Identifier table for linear search algorithm

B g e ailie - i i, Al i il GiEEEER. e Gl R i s G i e o A

Cambridge International AS and A level Computer Science

MaxIndex <« 7
INPUT SearchValue
Found <« FALSE
Index <« 0
REPEAT

Index « Index + 1

IF MyList[Index]= SearchValue

THEN
Found <« TRUE

ENDIF
UNTIL FOUND = TRUE OR Index >= MaxIndex
IF Found = TRUE

THEN
OUTPUT "Value found at location:" Index
ELSE
OUTPUT "Value not found"
ENDIF

The complex condition to the REPEAT. .. UNTIL loop allows us to exit the loop when

the search value is found. Using the variable Found makes the algorithm easier to
understand. Found is initialised to FALSE before entering the loop and set to TRUE if the
value is found.

Ifthe value is not in the array, the loop terminates when Index is greater than or equal to
MaxIndex That means we have come to the end of the array. Note that using MaxIndex
in the logic statement to terminate the loop makes it much easier to adapt the algorithm
when the array consists of a different number of elements. The algorithm only needs to
be changed in the first line, where MaxIndex is given a value.

Linear search: checking each element of an array in turn for a required value

TASK11.06

Use the algorithm in Worked Example 11.11 as a design pattern to search for a friend’s name
and output their age.

WORKED EXAMPLE 11.12

Sorting elements in a 1D array

The simplest way to sort an unordered list of values is the following method:

1 Compare the first and second values. If the first value is larger than the second value,
swap them.

2 Compare the second and third values. If the second value is larger than the third value,
swap them.

3 Compare the third and fourth values. If the third value is larger than the fourth value,
swap them.

4 Keep on comparing adjacent values, swapping them if necessary, until the last two
values in the list have been processed.

Chapter 11: Algorithm Design and Problem Solving

Figure 11.12 shows what happens to the values as we work down the array, following this

algorithm.
Compare Compare Compare Compare Compare Compare Sorted
1* Pair 2" pair 3" Pair 4" pair sJ’nPair 6" Pair list
25 N6 25 25 25 25 25 25
20| Swap (B 34 34 34 34 34

No
98 98 swap

swap (BEo8 i 7 7 7
7 7 7 >< 98 (V| a1 41 4
41 41 41 41 >< 98 (W] 19 19
19 19 19 19 19 >< 98 :swapz 5

5 5 5 5; 5 5

Figure 11.12 Swapping values working down the array
When we have completed the first pass through the entire array, the largest value is in the
correct position at the end of the array. The other values may or may not be in the correct order.

We need to work through the array again and again. After each pass through the array the
next largest value will be in its correct position, as shown in Figure 11.13.

Original After After After After After After
list pass 1 pass 2 pass 3 pass 4 pass 5 pass 6

34 34 T 25 19 5

98 4 34 19 5

7 41

41 19

19 5

.

Figure 11.13 States of the array after each pass

In effect we perform a loop within a loop, a nested loop. This method is known as a
bubble sort. The name comes from the fact that smaller values slowly rise to the top, like
bubblesin a liquid.

The identifiers needed for the algorithm are listed in Table 11.13.

E
|
E

Identifier Explanation
MyList [1..7] Data structure (1D array) to store seven numbers
MaxIndex The number of elements in the array
) n The number of elements to compare in each pass
i Counter for outer loop
] Counter for inner loop
Temp Variable for temporary storage while swapping values

Table 11.13 Identifier table for bubble sort algorithm

148

Cambridge International AS and A level Computer Science

The algorithm in pseudocode is:

n « MaxIndex - 1
FOR 1 « 1 TO MaxIndex - 1
FOR j « 1 TO n
IF MyList[j] > MyList[j + 1]
THEN
Temp <« MyList[j]
MyList[j] < MyList[j + 1]
MyList[j + 1] <« Temp
ENDIF
ENDFOR
n < n -1 // this means the next time round the inner loop, we don't
// look at the values already in the correct positions.
ENDFOR

The values to be sorted may already be in the correct order before the outer loop has
been through all its iterations. Look at the list of values in Figure 11.14. It is only slightly
different from the first list we sorted.

Original After After After After After After

list pass 1 pass 2 pass 3 pass 4 pass 5 pass 6
5 5 5 5 5 5 5
34 34 7

98 i 34
7 41 19

41 19

19 25

25

Figure 11.14 States of the list after each pass

After the third pass the values are all in the correct order but our algorithm will carry on
with three further passes through the array. This means we are making comparisons when
no further comparisons need to be made.

If we have gone through the whole of the inner loop (one pass) without swapping any
values, we know that the array elements must be in the correct order. We can therefore
replace the outer loop with a conditional loop.

We can use a variable NoMoreswaps to store whether or not a swap has taken place
during the current pass. We initialise the variable NoMoreswaps to TRUE When we swap a
pair of values we set NoMoreSwaps to FALSE. At the end of the pass through the array we
can check whether a swap has taken place.

Chapter 11: Algorithm Design and Problem Solving

The identifier table for this improved algorithm is shown in Table 11.14.

Identifier Explanation

MyList [1..7] Data structure (1D array) to store seven numbers
MaxIndex The number of elements in the array

n The number of elements to compare in each pass
NoMoreSwaps TRUE When no swaps have occurred in current pass

FALSE when a swap has occurred

J Counter for inner loop

Temp Variable for temporary storage while swapping values

Table 11.14 Identifier table for improved bubble sort algorithm

This improved algorithm in pseudocode is:

n « MaxIndex - 1
REPEAT
NoMoreSwaps < TRUE
FOR j « 1 TO n
IF MyList[j] > MyList[j + 1]
THEN
Temp <« MyList[j]
MyList[j] < MyList[j + 1]
MyList[j + 1] <« Temp
NoMoreSwaps <« FALSE
ENDIF i
ENDFOR
nen-1
UNTIL NoMoreSwaps = TRUE

e e S5 . ke doliahe. odifhe. oiiine. S i

Bubble sort: a sort method where adjacent pairs of values are compared and swapped

) Discussion Point:
| What happens if the array elements are already in the correct order?

TASK 11.07
Rewrite the algorithm in Worked Example 11.12 to sort the array elements into descending order.

WORKED EXAMPLE 11.13

) Working with two-dimensional arrays and nested loops

] A 1D array is like a linear list. The nth element within the array MyList is referred to as
1 MyList[n].

Atwo-dimensional (2D) array is like a table or matrix. The element in row x and column y
of ThisTable is referred to as ThisTablelx, vl.

For example to store the value 5 in the element in the fourth row and second column, we write:

ThisTable[4, 2] « 5

Cambridge International AS and A level Computer Science

When we want to access each element of a 1D array, we use a loop to access each element
in turn. When working with a 2D array, we need a loop to access each row. Within each row
we need to access each column. This means we use a loop within a loop (nested loops).

In structured English our algorithm is:

For each row
For each column
Assign the initial value to the element at the current position

We need the identifiers shown in Table 11.15.

Identifier Explanation :
ThisTable[1..4, 1..6] |Tabledata structure (2D array) to store values
MaxRows The number of rows in the table (4 in this example)
MaxColumns The number of columns in the table (6 in this example)
Row Counter for the row index

Column Counter for the column index

Table 11.15 Identifier table for working with a table

Using pseudocode, the algorithm to set each element of array ThisTable to zero is:

FOR Row « 1 TO MaxRows
FOR Column <« 1 TO MaxColumns
ThisTable[Row, Column] < 0

ENDFOR
ENDFOR

When we want to output the contents of a 2D array, we again need nested loops. We want
to output all the values in one row of the array on the same line. At the end of the row, we
want to output a new line.

FOR Row « 1 TO MaxRows

FOR Column « 1 TO MaxColumns
OUTPUT ThisTable[Row, Column] // stay on same line
ENDFOR
OUTPUT Newline // move to next line for next row
ENDFOR '

An algorithm is a sequence of steps that can be carried out to solve a problem.

Algorithms are expressed using the four basic constructs of assignment, sequence, selection and
repetition.

Algorithms can be documented using structured English, pseudocode or a program flowchart.

Logic statements use the relational operators =, <, >, <>, <=and >=and the logic operators AND,
OR and NOT.

Selection constructs and conditional loops use conditions to determine the steps to be followed.

Chapter 11: Algorithm Design and Problem Solving

Exam-style Questions

1 The Modulo-11 method of calculating a check digit for a sequence of nine digits is as follows:

Each digit in the sequence is given a weight depending on its position in the sequence. The leftmost digit has a weight of 10.
The next digit to the right has a weight of 9, the next one 8 and so on. Values are calculated by multiplying each digit by its
weight. These values are added together and the sum is divided by 11. The remainder from this division is subtracted from 11
and this value is the check digit. If this value is 10, then the check digit is X. Note that x MOD y gives the remainder from the
division of x by y.

Complete the flowchart using the statements in the table.

C Start)
Y

ol o . AVv‘ﬁ‘ﬁwvaTm—rmw
o1

v
v
Loop
Statement | Statement
/ / number
v 1 | CheckDigit <= 11 - Remainder
2 | CheckDigit < X
v 3 | Checkbigit =10 2
1 4 | Count <1
v 5 | count < Count + 1
6 | Count = 9 ?
l 7 | INPUT Digit
8 | Remainder < Total MOD 11
= 9 | Total <0

Yes 10 | Total < Total + Value
11 | Value < Digit * Weighting
12 | Weighting < Weighting - 1

Weighting < 10

>3
=
w

F Yes

A

End

Cambridge International AS and A level Computer Science

Draw a flowchart for the following problem given in structured English.

REPEAT the following UNTIL the number input is zero
INPUT a number

Check whether number is positive or negative

Increment positive number count if the number is positive

Increment negative number count if the number is negative

3 Write pseudocode from the given flowchart. Use a wHILE loop.

=)

Y

RogueValue « -1

Y

Total « 0

Count « 0

Y

iInput Numbeﬁ///

NO
Number <> RogueValue

Count <« Count + 1 Average < Total / Count
Y Y
Total « Total + Number ///;UTPUT Averag?///
Y

INPUT Number

[8]

Chapter 11: Algorithm Design and Problem Solving

4 Alanusestwo 1D arrays, UserList and PasswordList. For twenty users, he stores each user
ID in UserList and the corresponding password in PasswordList. For example, the person

' with user ID Fred12 has password rzt456.
UserList PasswordList
! [1] Matt05] pgklmn4
[21] Fredl2 [2] rzt456
[3] Anna? [jedd321
[20]| ZXenios4 [20] wkletmp6

Alan wants to write an algorithm to check whether a user ID and password, entered by a user,
are correct. He designs the algorithm to search userList for the user ID. If the user ID is
found, the password stored in PasswordList is to be compared to the entered password. If
the passwords match, the login is successful. In all other cases, login is unsuccessful.

a Complete the identifier table. (4]

Identifier Explanation
UserList [1..20] 1D array to store user IDs
.. 1D array to store passwords
MaxIndex Number of elements in each array
MyUserID User ID entered to login
Mybasewore, . 0 e N e T e e
UserIdFound FALSE if user ID not found in

UserList

PRI sess os o ehaus s et s
LoginOK EBESET ot coteoets i it o5 e =

TR b2 g st B e Je sl
Index Pointer to current array element

- R, —

e L.y

Cambridge International AS and A level Computer Science

b Complete the pseudocode for Alan’s algorithm:

MaxIndex « 20
INPUT MyUserID
INPUT MyPassword
UserIdFound < FALSE

LOginGR &= ... sebsammmmes
Index « 0
REPEAT
INDEX & wioesssissyssiens
IF UserLigtl.cessswsemmnsms = el s s
THEN
UserIdFound < TRUE
ENDIF
L1 6 R, g as s
IF UserIdFound = TRUE
THEN
IF PasswordList [oceessesamsmmes = et s S
THEN
LoginOK « TRUE
ENDIF
LE s
THEN
OUTPUT "Login successful"
ELSE

OUTPUT "User ID and/or password incorrect"
ENDIF

[10]

Learning objectives

By the end of this chapter you should be able to:

use the process of stepwise refinement to express an m describe the purpose of a structure chart

algorithm to a level of detail from which the task may be m construct a structure chart for a given problem

programmed m derive equivalent pseudocode from a structure chart.

decompose a problem into sub-tasks leading to the
concept of a program module (procedure/function)
use a structure chart to express the parameters passed
between the various modules/procedures/functions
which are part of the algorithm design

Cambridge International AS and A level Computer Science

12.01 Stepwise refinement

Many problems that we want to solve are bigger than the ones we met in Chapter 11. To make
it easier to solve a bigger problem, we break the problem down into smaller steps. These
might need breaking down further until the steps are small enough to solve easily.

For a solution to a problem to be programmable, we need to break down the steps of the
solution into the basic constructs of sequence, assignment, selection, repetition, input and
output.

We can use a method called stepwise refinement to break down the steps of our outline
solution into smaller steps until it is detailed enough. In Section 11.01 we looked at a recipe
for a cake. The step of mixing together all the ingredients was broken down into more
detailed steps.

Stepwise refinement: breaking down the steps of an outline solution into smaller and smaller steps

| WORKED EXAMPLE 12.01

Drawing a pyramid using stepwise refinement

The problem to be solved: Take as input a chosen symbol and an odd number. Output a
pyramid shape made up entirely of the chosen symbol, with the number of symbols in the
156 final row matching the number input.

For example the two input values A and 9 result in the following output:

A
AAA
AAAAA
AAAAAAA
AAAAAAAAA

This problem is similar to Worked Example 11.09 in Chapter 11, but the number of symbols
in each row starts with one and increases by two with each row. Each row starts with a
decreasing number of spaces, to create the slope effect.

Our first attempt at solving this problem using structured English is:

01 Set up initial values
02 REPEAT

03 Output number of spaces
04 Output number of symbols
05 Adjust number of spaces and number of symbols to be output in next row

06 UNTIL the required number of symbols have been output in one row
The steps are numbered to make it easier to refer to them later.

This is not enough detail to write a program in a high-level programming language. Exactly
what values do we need to set?

Chapter 12: Stepwise Refinement and Structure Charts

j We need as input:

+ the symbol character from which the pyramid is to be formed
o the number of symbols in the final row (for the pyramid to look symmetrical, this needs

to be an odd number).
We need to calculate how many spaces we need in the first row. So that the slope of the
b

pyramid is symmetrical, this number should be half of the final row’s symbols. We need
to set the number of symbols to be output in the first row to 1. We therefore need the
identifiers listed in Table 12.01.

Identifier Explanation

Symbol The character symbol to form the pyramid
MaxNumberOfSymbols | The number of symbols in the final row
NumberOfSpaces The number of spaces to be output in the current row

NumberOfSymbols The number of symbols to be output in.the current row

Table 12.01 Identifier table for pyramid example

Using pseudocode, we now refine the steps of our first attempt. To show which step
we are refining, a numbering system is used as shown.

Step 01 can be broken down as follows:

01 // Set up initial values expands into:

01.1 INPUT symbol

01.2 INPUT MaxNumberOfSymbols

01.3 NumberOfSpaces « (MaxNumberOfSymbols - 1) / 2
01.4 NumberOfSymbols <« 1

Remember we need an odd number for MaxNumberofSymbols. We need to make sure
the input is an odd number. So we further refine Step 01.2:

01.2 // INPUT MaxNumberOfSymbols expands into:

01.2.1 REPEAT

0L.2.2 INPUT MaxNumberOfSymbols

01.2.3 UNTIL MaxNumberOfSymbols MOD 2 = 1

01.2.4 // MOD 2 gives the remainder after integer division by 2

We can now look to refine Steps 03 and 04:

03 // Output number of spaces expands into:
03.1 FOR i « 1 TO NumberOfSpaces

03.2 OUTPUT Space // without moving to next line
93,2 ENDFOR

04 // Output number of symbols expands into:
04.1 FOR i « 1 TO NumberOfSymbols
04.2 OUTPUT Symbol // without moving to next line
04.3 ENDFOR

04.4 OUTPUT Newline // move to the next line

Cambridge International AS and A level Computer Science

E In Step 05 we need to decrease the number of spaces by 1 and increase the number of
| symbols by 2:

05 // Adjust values for next row expands into:
05.1 NumberOfSpaces <« NumberOfSpaces - 1
| 05.2 NumberOfSymbols <« NumberOfSymbols + 2

Step 06 essentially checks whether the number of symbols for the next row is now
greater than the value input at the beginning.
06 UNTIL NumberOfSymbols > MaxNumberOfSymbols
We can put together all the steps and end up with a solution.
01 // Set Values
0.4 INPUT symbol
01.2 // Input max number of symbols (an odd number)
01.2.1 REPEAT
01.2. INPUT MaxNumberOfSymbols
01.2.3 UNTIL MaxNumberOfSymbols MOD 2 = 1
0143 NumberOfSpaces <« (MaxNumberOfSymbols - 1) / 2
01.4 NumberOfSymbols <« 1
02 REPEAT
03 // Output number of spaces
031 FOR i « 1 TO NumberOfSpaces
03,2 OUTPUT Space // without moving to next line
| 03,3 ENDFOR
| o4 // Output number of symbols
04.1 FOR i < 1 TO NumberOfSymbols
04.2 OUTPUT Symbol // without moving to next line
| 04.3 ENDFOR
04.4 OUTPUT Newline // move to the next line
05 // Adjust Values For Next Row
05,1 NumberOfSpaces <« NumberOfSpaces - 1
5 05.2 NumberOfSymbols < NumberOfSymbols + 2
| 06 UNTIL NumberOfSymbols > MaxNumberOfSymbols
TASK12.01

Use stepwise refinement to output a hollow triangle. For example the two input values A and
9 result in the following output:

A A
AAAAAAAAA
Afirst attempt at solving this problem using structured English is:

01 Set up initial values
02 REPEAT

03 Output leading number of spaces
04 Output symbol, middle spaces, symbol
05 Adjust number of spaces and number of symbols to be output in next row

06 UNTIL the required number of symbols have been output in one row

Chapter 12: Stepwise Refinement and Structure Charts

12.02 Modules

Another method of developing a solution is to decompose the problem into sub-tasks. Each
sub-task can be considered as a ‘module’ that is refined separately. Modules are procedures
and functions.

A procedure groups together a number of steps and gives them a name (an identifier). We
can use this identifier when we want to refer to this group of steps. When we want to perform
the steps in a procedure we call the procedure by its name.

Procedure: a sequence of steps that is given an identifier and can be called to perform a sub-task

l

CALL ProcedureXYZ CALL ProcedureXYZ

!

(@) (b)

Figure 12.01 Representation of a procedure in (a) pseudocode and (b) a flowchart

The rules for module identifiers are the same as for variable identifiers (see Section 11.03)

WORKED EXAMPLE 12.02

Drawing a pyramid using modules
The problemis the same as in Worked Example 12.01.

When we want to set up the initial values, we call a procedure, using the following
statement:

CALL SetValues

y' We can rewrite the top-level solution to our pyramid problem using a procedure for each
step, as:

CALL SetValues
REPEAT
CALL OutputSpaces
CALL OutputSymbols
CALL AdjustValuesForNextRow

UNTIL NumberOfSymbols > MaxNumberOfSymbols

This top-level solution calls four procedures. This means each procedure has to be defined.
The procedure definitions are:

PROCEDURE SetValues
INPUT symbol
CALL InputMaxNumberOfSymbols // need to ensure it is an odd number
NumberOfSpaces ¢« (MaxNumberOfSymbols - 1) / 2
NumberOfSymbols « 1
ENDPROCEDURE

Cambridge International AS and A level Computer Science

PROCEDURE InputMaxNumberOfSymbols
REPEAT
INPUT MaxNumberOfSymbols
UNTIL MaxNumberOfSymbols MOD 2 = 1
ENDPROCEDURE

PROCEDURE OutputSpaces
FOR Count <« 1 TO NumberOfSpaces
OUTPUT Space // without moving to next line
ENDFOR
ENDPROCEDURE

PROCEDURE OutputSymbols
| FOR Count « 1 TO NumberOfSymbols
OUTPUT Symbol // without moving to next line

ENDFOR
OUTPUT Newline // move to the next line

i ENDPROCEDURE

\

|

\

|

|

PROCEDURE AdjustValuesForNextRow
NumberOfSpaces ¢« NumberOfSpaces - 1
NumberOfSymbols « NumberOfSymbols + 2

ENDPROCEDURE

TASK 12.02
Amend your algorithm for Task 12.01 to use modules.

WORKED EXAMPLE 12.03

Creating a program to play Connect 4

Connect 4 is a game played by two players. In the commercial version shown in Figure
12.01, one player uses red tokens and the other uses black. Each player has 21 tokens.
The game board is a vertical grid of six rows and seven columns.

160

Figure 12.01 A Connect 4 board

Columns get filled with tokens from the bottom. The players take it in turns to choose
a column that is not full and drop a token into this column. The token will occupy the

Chapter 12: Stepwise Refinement and Structure Charts

lowest empty position in the chosen column. The winner is the player who is the first
to connect four of their own tokens in a horizontal, vertical or diagonal line. If all tokens
have been used and neither player has connected four tokens, the game ends in a draw.

If we want to write a program to play this game on a computer, we need to work out the
steps required to ‘solve the problem’, that means to let players take their turn in placing
tokens and checking for a winner. We will designate our players (and their tokens) by

‘0’ and X’. The game board will be represented by a 2D array. To simplify the problem,
the winner is the player who is the first to connect four of their tokens horizontally or
vertically.

Our first attempt in structured English is:

Initialise board
Set up game
Display board
While game not finished
This Player makes a move
Display board
Check if this player has won
If game not finished, swap player

The top-level pseudocode version using modules is:

01 CALL InitialiseBoard

02 CALL SetUpGame

03 CALL OutputBoard

04 WHILE GameFinished = FALSE

05 CALL ThisPlayerMakesMove

06 CALL OutputBoard

07 CALL CheckIfThisPlayerHasWon
08 IF GameFinished = FALSE

09 THEN

10 CALL SwapThisPlayer

Ak, ENDIF

12 ENDWHILE

Note that Steps 03 and 06 are the same. This means that we can save ourselves some
effort. We only need to define this module once, but can call it from more than one place.
This is one of the advantages of using modules.

The identifier table for the program is shown in Table 12.03.

Identifier Explanation

Board[l..6, 1..7] 2D array to represent the board

InitialiseBoard Procedure to initialise the board to all blanks

SetUpGame Procedure to set initial values for GameFinished and
ThisPlayer

GameFinished FALSE if the game is not finished

TRUE if the board is full or a player has won
ThisPlayer 'or whenitis Player O’s turn

x' when itis Player X’s turn
OutputBoard Procedure to output the current contents of the board

162

Cambridge International AS and A level Computer Science

ThisPlayerMakesMove Procedure to place the current player’s token into the
chosen board location
CheckIfThisPlayerHasWon| Procedure to check if the token just placed makes the
current player a winner

SwapThisPlayer Procedure to change player’s turn

Table 12.02 Initial identifier table for Connect 4 game

Now we can refine each procedure (module). This is likely to add some more identifiers to
our identifier table. The additional entries required are shown after each procedure.

PROCEDURE InitialiseBoard
FOR Row « 1 TO 6
FOR Column « 1 TO 7
Board[Row, Column] < BLANK // use a suitable yalue for blank

ENDFOR
ENDFOR
ENDPROCEDURE
Identifier Explanation
Row Loop counter for the rows
Column Loop counter for the columns
BLANK Avalue that represents an empty board location

Table 12.03 Additional identifiers for the InitialiseBoard procedure

PROCEDURE SetUpGame
ThisPlayer < 'O' // Player O always starts
GameFinished <« FALSE

ENDPROCEDURE

PROCEDURE OutputBoard
FOR Row « 1 TO 6
FOR Column « 1 TO 7
OUTPUT Board[Row, Column] // don't move to next line
ENDFOR
OUTPUT Newline // move to next line
ENDFOR
ENDPROCEDURE

PROCEDURE ThisPlayerMakesMove
ValidColumn <« ThisPlayerChoosesColumn // a module returns column number
ValidRow < FindNextFreePositionInColumn // a module returns row number
Board[ValidRow, ValidColumn] <« ThisPlayer

ENDPROCEDURE

Note that the modules ThisPlayerChoosesColumn and
FindNextFreePositionInColumn are not procedures. These modules produce

and return a value that is used in the assignment statement. We call such a module a
function. Like a procedure, a function groups together a number of steps and gives them

Chapter 12: Stepwise Refinement and Structure Charts

an identifier. But the steps of a function are to work out a single value that is returned
from the function. This value is used in an expression.

Identifier Explanation

ValidColumn The column number the player has chosen

ThisPlayerChoosesColumn Function to get the current player’s valid choice
of column

ValidRow The row number that represents the first free
location in the chosen column

FindNextFreePositionInColumn Function to find the next free location in the
chosen column

Table 12.04 Additional identifiers for the ThisPlayerMakesMove procedure

FUNCTION ThisPlayerChoosesColumn // returns a valid column number
OUTPUT "Player " ThisPlayer "'s turn."
REPEAT
OUTPUT "Enter a valid column number:"
INPUT ColumnNumber
UNTIL ColumnNumberValid = TRUE // check whether the column number is valid
RETURN ColumnNumber

; ENDFUNCTION

f Identifier Explanation
ColumnNumber The column number chosen by the current player
ColumnNumberValid | Function to check whether the chosen column is valid

Table 12.05 Additional identifiers for ThisPlayerChoosesColumn function

Note that we need to define the function columnNumbervalid. A column is valid if it is
within the range 1 to 7 inclusive and there is still at least one empty location in that column.

FUNCTION ColumnNumberValid // returns whether or not the column number is valid

r Valid < FALSE
i IF ColumnNumber >= 1 AND ColumnNumber <= 7
‘ THEN
! IF Board[6, ColumnNumber]= BLANK // at least 1 empty space in column
; THEN
' Valid « TRUE
ENDIF

ENDIF
RETURN Valid

ENDFUNCTION
Identifier Explanation
Valid FALSE if column number is not valid

TRUE if column number is valid

] Table 12.06 Additional identifier for the ColumnNumbervalid function

Cambridge International AS and A level Computer Science

FUNCTION FindNextFreePositionInColumn // returns the next free position
ThisRow « 1
WHILE Board[ThisRow, ValidColumn] <> BLANK // find first empty cell
ThisRow <« ThisRow + 1

ENDWHILE
RETURN ThisRow
ENDFUNCTION
Identifier Explanation
ThisRow Points to the next row to be checked

Table 12.07 Additional identifier for the FindNextFreePositionInColumn function

PROCEDURE CheckIfThisPlayerHasWon
WinnerFound <« FALSE
CALL CheckHorizontalLineInValidRow
IF WinnerFound = FALSE

THEN
CALL CheckVerticalLineInValidColumn
ENDIF
IF WinnerFound = TRUE
THEN

GameFinished < TRUE
OUTPUT ThisPlayer " is the winner"
ELSE
CALL CheckForFullBoard
ENDIF
ENDPROCEDURE

Note that the CheckIfThisPlayerHasWon procedure uses three further procedures that
we need to define.

Identifier Explanation

WinnerFound FALSE if no winning line

TRUE if a winning line is found

CheckHorizontalLineInvalidRow | Procedure to check if there is a winning horizontal
line in the row the last token was placed in

CheckVerticalLineInvalidColumn | Procedure to check if there is a winning vertical
line in the column the last token was placed in

CheckForFullBoard Procedure to check whether the board is full

Table 12.08 Additional identifiers for the CheckIfThisPlayerHasWon procedure

s AR S

Chapter 12: Stepwise Refinement and Structure Charts

PROCEDURE CheckHorizontalLineInValidRow
FOR 1 = 1710 4
IF Board[ValidRow, i] = ThisPlayer AND
Board[ValidRow, i + 1] = ThisPlayer AND
Board[ValidRow, i + 2] ThisPlayer AND
Board[ValidRow, i + 3] ThisPlayer
THEN
\ WinnerFound <« TRUE
ENDIF
ENDFOR
ENDPROCEDURE

PROCEDURE CheckVerticallLineInvValidColumn
IF ValidRow = 4 OR ValidRow = 5 OR ValidRow = 6
THEN
IF Board[ValidRow, ValidColumn] = ThisPlayer AND
Board[ValidRow - 1, ValidColumn] = ThisPlayer AND
Board[ValidRow - 2, ValidColumn] = ThisPlayer AND
Board[ValidRow - 3, ValidColumn] = ThisPlayer
THEN
WinnerFound <« TRUE
ENDIF
ENDIF
ENDPROCEDURE

PROCEDURE CheckForFullBoard
BlankFound <« FALSE
ThisRow < 0
REPEAT
ThisColumn <« 0
ThisRow < ThisRow + 1
REPEAT
ThisColumn <« ThisColumn + 1
IF Board[ThisRow, ThisColumn] = BLANK
THEN
BlankFound < TRUE
ENDIF
UNTIL ThisColumn = 7 OR BlankFound = TRUE
UNTIL ThisRow = 6 OR BlankFound = TRUE
IF BlankFound FALSE
THEN
OUTPUT "It is a draw"
GameFinished < TRUE

1]

ENDIF
ENDPROCEDURE
Identifier Explanation
BlankFound FALSE if no blank location found on the board
TRUE if a blank location found on the board
ThisRow Loop counter for rows
ThisColumn Loop counter for columns

Table 12.09 Additional identifiers for the CheckForFullBoard procedure

166

Cambridge International AS and A level Computer Science

PROCEDURE SwapThisPlayer
IF ThisPlayer = 'O’
THEN
ThisPlayer <« 'X!'
ELSE
ThisPlayer <« 'O'
ENDIF
ENDPROCEDURE

The complete identifier table for the Connect 4 program is shown in Table 12.11.

Identifier

Explanation

Board[l..6, 1..7]

2D array to represent the board

InitialiseBoard Procedure to initialise the board to all blanks
SetUpGame Procedure to set initial values for
GameFinished and ThisPlayer
GameFinished FALSE if the game is not finished
TRUE if the board is full or a player has won
ThisPlayer o' when itis Player O’s turn
'x' when itis Player X’s turn
OutputBoard Procedure to output the current contents of

the board

ThisPlayerMakesMove

Procedure to place the current player’s token
into the chosen board location

CheckIfThisPlayerHasWon

Procedure to check if the token just placed
makes the current player a winner

SwapThisPlayer Procedure to change player’s turn

Row Loop counter for the rows

Column Loop counter for the columns

BLANK Avalue that represents an empty board
location

ValidColumn The column number the player has chosen

ThisPlayerChoosesColumn

Function to get the current player’s valid
choice of column

ValidRow

The row number that represents the first free
location in the chosen column

FindNextFreePositionInColumn

Function to find the next free location in the
chosen column

ColumnNumber

The column number chosen by the current
player

ColumnNumberValid

Function to check whether the chosen
column is valid

Valid

FALSE if column number is not valid

TRUE if column number is valid

Chapter 12: Stepwise Refinement and Structure Charts

ThisRow Points to the next row to be checked

WinnerFound FALSE if no winning line

TRUE if a winning line is found
CheckHorizontalLineInValidRow Procedure to check if there is a winning
horizontal line in the row the last token was
placedin
CheckVerticalLineInValidColumn | Procedure to checkif there is a winning
vertical line in the column the last token was

placed in
CheckForFullBoard Procedure to check whether the board is full
BlankFound FALSE if no blank location is found on the
board
TRUE if a blank location is found on the board
ThisRow Loop counter for rows
ThisColumn Loop counter for columns

Table 12.10 Complete identifier table for Connect 4 game

Function: a sequence of steps that is given an identifier and returns a single value; function call is part
of an expression

Note that some of the identifiers in Table 12.10 are for variables that are used only within a
single module. We call such a variable a local variable (see Chapter 14, Section 14.03). In Table
12.10, the local variables are highlighted. The other variables in Table 12.10 are used by several
sub-tasks. Variables available to all modules are known as global variables (see Chapter 14,
Section 14.03).

Local variable: a variable that is only accessible within the module in which it is declared

Global variable: a variable that is accessible from all modules

12.03 Structure charts

An alternative approach to modular design is to choose the sub-tasks and then construct a
structure chart to show the interrelations between the modules. Each box of the structure
chart represents a module. Each level is a refinement of the level above.

A structure chart also shows the interface between modules, the variables. These variables
are referred to as ‘parameters’. A parameter supplying a value to a lower-level module is
shown as a downwards pointing arrow. A parameter supplying a new value to the module at
the next higher level is shown as an upward pointing arrow.

Structure chart: a graphical representation of the modular structure of a solution
Parameter: a value passed between modules

Cambridge International AS and A level Computer Science

Figure 12.02 shows a structure chart for a module that calculates the average of two
numbers. The top-level box is the name of the module, which is refined into the three sub-
tasks of Level 1. The input numbers (parameters Numberl and Number2) are passed into

| the ‘Calculate Average’ sub-task and then the Average parameter is passed into the ‘OUTPUT

| Average’ sub-task. The arrows show how the parameters are passed between the modules.

| This parameter passing is known as the ‘interface’.

Averages Level 0
g E||%
OAB ERIRS Avg interface
Sl "%
OA& Sl
W\
W
INPUT Calculate OUTPUT leeniali
numbers average average

Figure 12.02 Structure chart for a module that calculates the average of two numbers

TASK12.03
Draw a structure chart for the following module: Input a number of km, output the equivalent
number of miles.

Structure charts can also show control information: selection and repetition.

The simple number-guessing game that was introduced in Chapter 11 (Section 11.05) could
be modularised and presented as a structure chart, as shown in Figure 12.03.

Number Guessing Game

Generate

SecretNumber NPT GRS OUTPUT message

OUTPUT
OUTPUT consolation
congratulation message

Figure 12.03 Structure chart for number-guessing game with only one guess allowed

Chapter 12: Stepwise Refinement and Structure Charts

The diamond shape shows a condition that is either True or False. So either one branch or
the other will be followed.

Figure 12.04 shows the structure chart for the pyramid-drawing program from Worked
Example 12.01. The semi-circular arrow represents repetition of the modules below the
arrow. The label shows the condition when repetition occurs.

Pyramid

UNTIL NumberOfSymbols =
MaxNumberOfSymbols

Adjust values for

Initiali (
nitialise values Output spaces Output symbols At row

>
>

MaxNumberOfSymbols

o

Input Max number
of symbols

Figure 12.04 Structure chart for pyramid-drawing program

TASK 12.04

Amend the structure chart for the number-guessing game (Figure 12.03) to include repeated
guesses until the player guesses the secret number. The output should include the number of
guesses made.

TASK 12.05

Draw a structure chart for the following problem: A user attempts to log on with a user ID. User
IDs and passwords are stored in two 1D arrays (lists). The algorithm searches the list of user
IDs and looks up the password in the password list. The user is given three chances to input
the correct password. if the correct password is entered, a suitable message is output. If the
third attempt is incorrect, a warning message is output.

Cambridge International AS and A level Computer Science

Structure charts help programmers to visualise how modules are interrelated and how
they interface with each other. When looking at a larger problem this becomes even more
important. Figure 12.05 shows a structure chart for the Connect 4 program. It uses the
following symbols:

e Anarrow with a solid round end e——— shows that the value transferred is a flag (a
Boolean value).

o Adouble-headed arrow «———o—— shows that the variable value is updated within

the module.
Connect4
WHILE game not finished
Initialise Setup Player makes OUTPUT Check game Swap
board game move board finished player

Player chooses Find free Check if player Check for full
Column row has won board
()
(o
=
HE
=i >
3
o
®
Check column Check horizontal Check vertical
number valid line line

Figure 12.05 Structure chart for the Connect 4 program

12.04 Deriving pseudocode from a structure chart

Let’s look at the pyramid problem again (Figure 12.04). In Worked Example 12.02, a modular
solution was created without using a structure chart and all variables were global. Now

we are going use local variables and parameters. The reason for using local variables and
parameters is that modules are then self-contained and any changes to variables do not have
accidental effects on a variable value elsewhere.

The top-level module, Pyramid, calls four modules. When a module is called, we supply
the parameters in parentheses after the module identifier. This gives the following
pseudocode:

Chapter 12: Stepwise Refinement and Structure Charts

MODULE Pyramid
CALL SetValues(NumberOfSymbols, NumberOfSpaces, Symbol, MaxNumberOfSymbols)
REPEAT
CALL OutputSpaces (NumberOfSpaces)
CALL OutputSymbols(NumberOfSymbols, Symbol)
CALL AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)
UNTIL NumberOfSymbols > MaxNumberOfSymbols
ENDMODULE

PROCEDURE SetValues(NumberOfSymbols, NumberOfSpaces, Symbol, MaxNumberOfSymbols)
INPUT Symbol
CALL InputMaxNumberOfSymbols
NumberOfSpaces <« (MaxNumberOfSymbols - 1) / 2
NumberOfSymbols < 1
ENDPROCEDURE

PROCEDURE InputMaxNumberOfSymbols(MaxNumberOfSymbols)
REPEAT
INPUT MaxNumberOfSymbols
UNTIL MaxNumberOfSymbols MOD 2 = 1
ENDPROCEDURE

PROCEDURE OutputSpaces (NumberOfSpaces)
FOR Count <+ 1 TO NumberOfSpaces
OUTPUT Space // without moving to next line
ENDFOR
ENDPROCEDURE

PROCEDURE OutputSymbols(NumberOfSymbols, Symbol)
FOR Count < 1 TO NumberOfSymbols
OUTPUT Symbol // without moving to next line
ENDFOR
OUTPUT Newline // move to the next line
ENDPROCEDURE

PROCEDURE AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)
NumberOfSpaces <« NumberOfSpaces - 1
NumberOfSymbols < NumberOfSymbols + 2

ENDPROCEDURE

Discussion Point:

The full rules of Connect 4 are that a diagonal of four tokens also is a winning line. Where
in Figure 12.05 should the module to check for a diagonal be added? What parameters

are required for this module? Does this additional module require further stepwise
refinement?

IHHI

Cambridge International AS and A level Computer Science

Stepwise refinement involves breaking down the steps of an outline solution into smaller and
smaller steps (sub-tasks).

Stepwise refinement is used to produce a solution that can be stated in terms of the four basic
constructs of sequence, assignment, selection and repetition.

Each sub-task can be written as a module.
Modules are either procedures or functions.

A procedure is a sequence of steps that are given an identifier. A procedure can be called
whenever this sequence of steps should be followed.

Afunction is a sequence of steps that are given an identifier. This sequence of steps results in a single
value that is returned from the function. A function call is part of an expression or assignment.

Local variables are variables that are used within a single module.
Global variables are variables that are used throughout the solution.
Structure charts are graphical representations of the modular structure of solutions.

Astructure chart shows the interface between modules: parameters passed between the calling
module and the module being called.

Structure charts show selection, where a module is called only under certain conditions.

Structure charts show repetition, where modules are called repeatedly.

Exam-style Questions

1 Arandom number generator is to be tested to see whether all numbers within the range 1 to

20 are generated equally frequently. The structured English version of the algorithm is

Initialise a tally for the numbers 1 to 20

Repeatedly generate numbers in range 1 to 20

For each number generated, increment the relevant count
Calculate how often each number should be generated (expected
frequency)

Output expected frequency

Output the list of numbers as a table with actual frequency

The identifiers required are:

Identifier Explanation

Tallyl[1..20] 1D array to store the count of how many
times each number has been generated

RandomNumber The random number generated

NumberOfTests The number of times a random number is to

be generated (1000 in this example)
ExpectedFrequency | The number of times any one number would
be generated if all numbers are generated
equally frequently (1000/20 in this example)

T T— TS T T—

b

Complete the structure chart below by naming the labels A to E: [5]

Random Number
Tally

A B Update Tally Output Tally

Produce pseudocode from the structure chart. [12]

A game to test players’ memory is played as follows:

There are 64 square cards with 32 different pictures.

Each picture is on two different cards.

The cards are placed face down in random order as an 8 x 8 grid pattern.

Two players take turns.

When itis a player’s turn, the player chooses two cards and turns them face up so the pictures show.
If the pictures are the same, the player takes the pair of cards, gains a point and has another go.

If the pictures are not the same, the cards are turned face down again.

All players can see the up-turned pictures and memorise their grid positions.

The game finishes when all cards have been paired.

The player with the most points is the winner.

The problem is to design an algorithm that

puts 64 cards into random positions into an 8 x 8 table

after the input of two sets of co-ordinates shows the chosen cards for a short time
removes the cards if there is a match '
updates the player’s points

outputs the number of points for both players when there are no more cards (the game has finished).

For the purpose of this algorithm:

The pictures are to be represented by the numbers 1 to 32.

A grid position with no card is to be represented by 0.

The identifiers required are:

Identifier Explanation

Grid[1..8, 1..8] Table to store the card values

Points(1..2] List to store the points for player 1 and player 2
ThisPlayer The number of the current player (1 or 2)
GameEnd FALSE while there are cards left in the grid

TRUE when all cards have been taken

x1, vyl The co-ordinate pairs of the two cards chosen by the current player

x2, y2

Cambridge International AS and A level Computer Science

Top-level algorithm:

01
02
03
04
05
06
07
08
09
| 10
| 11

174

CALL SetUpEmptyGrid
CALL RandomlyDistributeCards
CALL SetUpPlayers
GameEnd ¢« FALSE
REPEAT
CALL GetPlayersCoordinates
CALL DisplayGrid
CALL TestForMatch
CALL TestForEndGame
UNTIL GameEnd = TRUE
CALL OutputResults

What is the name given to the method of breaking the above steps down into smaller steps? [1]
Complete the following procedures: ‘
PROCEDURE SetUpEmptyGrid
FOR i < 1 TO 8
FOR j < 1 TO 8
.. // assign grid elements
ENDFOR
ENDFOR
ENDPROCEDURE

PROCEDURE RandomlyDistributeCards
FOR Number « 1 TO 32
CALL GetEmptyGridPosition
Grid[x, y] ¢« Number // place first card with this number
CALL GetEmptyGridPosition
.................... // place second card with this number
ENDFOR
ENDPROCEDURE

PROCEDURE GetEmptyGridPosition
REPEAT
X < RandomNumber(l,8) // generate a random number between 1 and 8
y ¢ RandomNumber(l,8) // generate another random number
UNTTL wspwsmsmssessssmens // find a grid position without a card
ENDPROCEDURE

PROCEDURE SetUpPlayers
Points[l] < 0 // both players start with 0 points
ThisPlayer « 1

ENDPROCEDURE

PROCEDURE GetPlayersCoordinates
REPEAT
INPUT x1; yl
UNTIL Grid[xl, y1l] > 0 // check grid position has a card
CALL DisplayGrid
REPEAT
INPUT x2, y2
// check grid position has a card and is not in the same position as first card
UNTIL (i im s assmdasmamnme) AND e e e)
ENDPROCEDURE

Chapter 12: Stepwise Refinement and Structure Charts

PROCEDURE DisplayGrid
FOR 1 « 1 TO 8
FOR j « 1 TO 8
IF (i = x1) AND (j = yl) // it is the chosen card
THEN
[0 AR 06 AR AR P N B S A A AR S 6 50 60 00 5 D0 B9 EE G5 A Aad
ELSE
IF Grid[i, jl = 0 // the card in this position has been removed
THEN
OQUT B odalsissyaiee s eensiessvesuse]ars laorasas s shsosnssacerarstosnssinio sy asatayareioyalofotuteds
ELSE // back of card to be shown as ' ? '
@UIBEUTS il it sim s s leisitalemael bl v s fvansie S iavelsssratoreranapretasainlatsiora

ENDIF
ENDIF
ENDFOR
ENDFOR
ENDPROCEDURE
PROCEDURE TestForMatch
IF Grid[x1l, yl] = Grid[x2, y2]
THEN
// match found, remove cards
Gridixl, Vil e i
Gridzxd; y2l €= ciriirmaemenenin s
// increment points
BOINES[TRASPIAVER] €= e e toeinieiinasoinaioinnin inafotaoin
i
|
i

ELSE
CALL SwapPlayers

ENDIF
ENDPROCEDURE

PROCEDURE SwapPlayers

ENDPROCEDURE

PROCEDURE TestForEndGame
IF Points[l] + Points[2] = 32
THEN
e B S e e R N v
ENDIF
ENDPROCEDURE

PROCEDURE OutputResults

ENDPROCEDURE (18]
¢ Draw astructure chart for this problem. (15]

Programming and Data Representation

Learning objectives
By the end of this chapter you should be able to:

write a program in a high-level language (Python, Visual

Basic console mode, Pascal/Delphi console mode)

implement and write a program from a given design

presented as either a program flowchart or pseudocode

write program statements for:

» the declaration of variables and constants

» the assignment of values to variables and constants

» expressions involving any of the arithmetic or logical
operators

» input from the keyboard and output to the console

select appropriate data types for a problem solution

(integer, real, char, string, Boolean, date)

show understanding of how character and string data are

represented by software including the ASCIl and Unicode

character sets

use an ‘IF’ structure including the ‘ELSE’ clause and

nested IF statements

use a ‘CASE’ structure

use a loop (‘count controlled’, ‘post-condition’, ‘pre-
condition’)

justify why one loop structure may be better suited to a
problem than the others

select a suitable data structure (1D or 2D array) to use for
a given task

write program code to process array data (including
bubble sort and linear search)

recognise the basic control structures in a high-level
language other than the one chosen to be studied in depth
use a subset of the built-in functions and library routines
supported by the chosen programming language,
including those used for string/character manipulation,
formatting of numbers, random number generator

use the information provided in technical documentation
describing functions/procedures

show understanding of why files are needed and write
pseudocode and program code for simple file handling of
a text file, consisting of several lines of text.

Chapter 13 Programming and Data Representation

Chapters 11 and 12 introduced the concept of solving a problem and representing a solution
using a flowchart, pseudocode or a structure chart. We expressed our solutions using the
basic constructs: assignment, sequence, selection, iteration, input and output.

To write a computer program, we need to know the syntax of these basic constructs in our
chosen programming language. This chapter introduces syntax for Python, Visual Basic
console mode and Pascal/Delphi console mode.

You only need learn to program in one of the three languages covered in this book. However,
you should be able to recognise the basic control structures in a high-level language other
than the one chosen to be studied in depth. So do read the sections covering the other two
programming languages.

Python

Python was conceived by Guido van Rossum in the late 1980s. Python 2.0 was released in
2000 and Python 3.0 in 2008. Python is a multi-paradigm programming language. It fully
supports both object-oriented programming and structured programming. Many other
paradigms, including logic programming, are supported using extensions. These paradigms
are covered in Chapters 26, 27 and 29.

The Python programs in this book have been prepared using Python 3 (see www.python.org
for a free download) and Python’s Integrated Development Environment (IDLE).

Key characteristics of Python are:

o Everystatement must be on a separate line.
« Indentation is significant. This is known as the ‘off-side rule’.
o Keywords are written in lower case.

o Pythonis case sensitive: the identifier Number1 is seen as different from number1 or
NUMBERL.

o Everythingin Python is an object (see Chapter 27).

o Code makes extensive use of a concept called ‘slicing’ (see Section 13.08).

« Programs are interpreted (see Chapter 7, Section 7.05 for information on interpreted and
compiled programs).

You can type a statement into the Python Shell and the Python interpreter will run it

13.01 Programming languages
J
F
F
P
F

immediately (see Figure 13.01).

i
’ Python Shell

File Edit Shell Debug Up’hons \nﬁndows Help

(Python 3.2.3 (default, Apr 11 2012, 07:12:16) {HSC ¥.1500 &4 bit {AHD64)] on WlnSZ _l

Type "copyright”, "credits"™ or "license ()" for more information.

>»> print ("Hello World!"™)

Hello World!
' >33 |

-

3 Ln: 5/Col: 4
! Figure 13.01 Running a statement in the Python Shell

Cambridge International AS and A level Computer Science

You can also type program code into a Python editor (such as IDLE), save it with a .py extension and then run the
program code from the Run menu in the editor window (see Figure 13.02).

(a) Users |\ Sylvia ?{“;L _]g{_)_g] | (b) Python Sheil

File Edit Format Run Options ‘Windows Help Filz Edit Shell Debug Options Windows Help

madulel.py - €\

my first program B ‘Pychan 3.2.3 (default, Apr 11 2012, 07:12:16) [MSC v.1500 64 bit (AMD64)] on :_I
win32

print ("Hellec World!"™) Type "copyright”, "credits" or "license ()" for more information.
> RESTART

oo d
Hello World!
b 2

Figure 13.02 (a) A saved program in the Python editor window and (b) running in the Python shell

ad

Visual Basic Console Mode (VB.NET)

VB.NET is a multi-paradigm, high-level programming language, implemented on the .NET Framework. Microsoft
launched VB.NET in 2002 as the successor to its original Visual Basic language. Microsoft’s integrated development
environment (IDE) for developing in VB.NET is Visual Studio. Visual Studio Express and Visual Studio Community are
freeware.

The Visual Basic programs in this book have been prepared using Microsoft Visual Basic 2010 Express Console
Application. (Free download available from www.visualstudio.com/products/visual-studio-express-vs)

Key characteristics of VB.NET are:

+ Every statement should be on a separate line. Statements can be typed on the same line
with a colon () as a separator. However, this is not recommended.
» Indentation is good practice.

o VB.NET is not case sensitive. Modern VB.NET editors will automatically copy the case
from the first definition of an identifier.

|
¢ The convention is to use CamelCaps (also known as PascalCaps) for identifiers and
keywords.

e Programs need to be compiled (see Chapter 7, Section 7.05 for information on interpreted
and compiled programs).

You type your program code into the Integrated Development Environment (IDE) as shown in

Figure 13.03 (a), save the program code and then click on the Run button (E]). This invokes

the compiler. If there are no syntax errors the compiled program will then run. Output will be
shown in a separate console window (see Figure 13.03 (b)).

Chapter 13 Programming and Data Representation

Modulel.vb X

4 Module1 -] i) (Declarations)
EModule Hodulel

Sub Main()
Console.WriteLine("Hello World!™)
Console.Readline()

End Sub

!
100% ~ 4]

B Immediate Window |

Ready n7

Figure 13.03 (a) A saved program in the VB.NET editor and (b) running in the program
execution (console) window

Note that the console window shuts when the program has finished execution. To keep it
open, so you can see the output, the last statement of your program should be
Console.ReadLine() (See Figure 13.03(a)).

Pascal/Delphi Console Mode (Pascal)

Designed by Niklaus Wirth as a small and efficient language, Pascal was intended to
encourage good programming practice using structured programming. Pascal was
published in 1970. A derivative known as Object Pascal for object-oriented programming was
developed in 1985. Delphi was originally developed by Borland and uses Object Pascal. Since
2008, Delphi has been owned by Embarcadero Technologies.

The Pascal programs in this book have been prepared using Borland Delphi 7 Console
Application. Other Pascal/Delphi IDEs will work in a similar way (for example, the free version
from www.lazarus.freepascal.org).

Key characteristics of Pascal are:

o Everystatement ends with a semicolon (;). More than one statement can go on a single
line, but this is not recommended.

o Indentation is good practice.

o Pascal is not case sensitive.

o The convention is to use CamelCaps (also known as PascalCaps) for identifiers and lower
case for keywords.

o Acompound statement consists of a sequence of statements enclosed between the
keywords begin and end.

e Whenever Pascal syntax requires a statement, a compound statement can be used. For
an example see Table 13.28.

» Programs need to be compiled (see Chapter 7, Section 7.05 for information on interpreted
and compiled programs).

You type your program statements into the Integrated Development Environment (IDE) as

shown in Figure 13.04 (a), save the program code and then click on the Run button

(_B]). This invokes the compiler. If there are no syntax errors the compiled program code will

then run. Output will be shown in a separate (console) window (see Figure 13.04 (b).

180

Cambridge International AS and A level Computer Science

(a) =1 Projectz.pr
Project2]

program Project2;

{$APPTYPE CONSOLE}

uses

SysUtils;
+ |begin
* WriteLn('Hello World!'):;
+ ReadLn;
+ lend.
KIR|
I l e i }‘Insert

Figure 13.04 (a) A Pascal program in the Delphi editor and (b) running in the program
execution (console) window

Note that the console window shuts when the program has finished execution. To keep it
open, so you can see the output, the last statement of your program should be Readrn; (see
Figure 13.04(a)).

13.02 Programming basics

Declaration of variables

Most programming languages require you to declare the type of data to be stored in a
variable, so the correct amount of memory space can be reserved by the compiler. A variable
declared to store a whole number (integer) cannot then be used to store alphanumeric
characters (strings) or vice versa. Pascal and VB.NET require variables to be declared before
they are used.

Python handles variables differently to most programming languages. It tags values. This is
why Python does not have variable declarations. However, it is good programming practice
to include a comment about the variables you are planning to use and the type of data you
will store in them.

In pseudocode, variable declarations are written as:

DECLARE <identifier> : <dataType>

For example, you may declare the following variables:

DECLARE Numberl : INTEGER // this declares Numberl to store a whole number

DECLARE YourName : STRING // this declares YourName to store a sequence of
// alphanumeric characters

DECLARE N1, N2, N3 : INTEGER // declares 3 integer variables

DECLARE Namel, Name2 : STRING // declares 2 string variables

Chapter 13 Programming and Data Representation

Syntax definitions
The syntax of variable declarations in language code is as follows:

Python Python does not have variable declarations

VB.NET Dim <identifier>[, <identifier] As <dataType>
Each line of declarations must start with the keyword pim.

Pascal var <identifier>[, <identifier>] : <dataType>;
The keyword var starts declarations.

Code examples

Python # Numberl of type Integer There are no declarations, but
YourName of type String comments should be made at
N1, N2, N3 of type integer; | ihe hesinningofa module (see
Homel, Named of typpe etuiam the section about comments
atthe end of Section 13.02).

VB.NET Dim Numberl As Integer You can group more than one
Bug Towrlane A8 Strang variable of the same type on
Dim N1, N2, N3 As Integer the same line

Dim Namel, Name2 As String

Pascal var Numberl : integer; The keyword var can be
var YourName : string;

: repeated on each line or
f W B, g e ¢ pEnedec; omitted for further lines of
Namel, Name2 : string; :
L declarations. You can group
more than one variable of the 5
! same type on the same line.
" Declaration and assignment of constants
Sometimes we use a value in a solution that never changes, for example, the value of the
; mathematical constant pi (w). Instead of using the actual value in program statements, it is
good practice and helps readability, if we give a constant value a name and declare it at the
| beginning of the program.
i In pseudocode, constant declarations are written as:

CONSTANT <identifier> = <value>

; For example:

: CONSTANT Pi = 3.14

Syntax definitions

Python <identifier> = <value>
VB.NET Const <identifiers = <value>

Each line of declarations must start with the keyword const.
Pascal Const <identifiers> = <value>;

The keyword const must be used to start the declarations.

Cambridge International AS and A level Computer Science

Code examples

Python PI = 3.14 Python convention is to write constant
identifiers using all capital letters. The values
can be changed, although you should treat
constants as not changeable.

VB.NET Const Pi = 3.14 The value of a constant in VB.NET cannot be
altered within the program.

n

w
=
S

Pascal Const Pi The value of a constant in Pascal cannot be

altered within the program.

Assignment of variables
Once we have declared a variable, we can assign a value to it (See Chapter 11, Section 11.04).

In pseudocode, assignment statements are written as:

<identifier> <« <expression>

| Syntax definitions and code examples

Python <identifier> = <expression> A = 34 The assignmentoperatoris:.
B =B + 1
VB.NET | <identifier> = <expression> A = 34 The ags]gnmentoperat@r
Bl.= B 1 =
Pascal |<identifier> := <expressions; A = 34; The ass]gnmentoperator
B =B + 1; |isacombination of acolon
and an equals sign without
a space in between (:=).

VB.NET allows you to initialise a variable as part of the declaration statement, for example:

Dim Numberl As Integer = 0

VB.NET and Python allow increment statements suchass = B + 1tobewrittenaspB += 1.

Arithmetic operators

Assignments don’t just give initial values to variables. We also use an assignment when we
need to store the result of a calculation. The arithmetic operators used for calculations are
shown in Table 13.01.

Operation Pseudocode Python VB.NET Pascal
Addition + + + +

Subtraction = - - -

Multiplication X * * ¥

Division / 7 / 7
Exponent & * 5 Not available
Integer division DIV /! \ Div
Modulus MOD % Mod Mod

Table 13.01 Arithmetic operators

When more than one operator appears in an expression, the order of evaluation depends
on the mathematical rules of precedence: parentheses, exponentiation, multiplication,
division, addition, subtraction.

Chapter 13 Programming and Data Representation

Rules of precedence: define the order of the calculations to be performed

Question 13.01
Evaluate each of the following expressions:

4*3-342

(4*3-3)12
4*(3-3)72
4*(3-312)

Outputting information to the screen
In pseudocode, output statements are written as:

OUTPUT <string>
OUTPUT <identifier(s)>

When outputting text and data to the console screen, we can list a mixture of output strings
and variable values in the print list.

Syntax definitions

Python print(<printlist>) Print list items are separated
print(<printlist>, end = '') by commas (,)‘ To avo[d
moving onto the next line after
the output,use end = '

VB.NET Console.WriteLine(<printlist>) Print listitems are joined using
Console.Write(<printlist>) &. Console.WriteLine will

move onto the next line after
the output; console. Write
will remain on the same line.
Pascal WriteLn(<printlist>); Print list items are separated
Write(<printlists); by commas (,). WriteLn
will move onto the next line
after the output; write will
remain on the same line.

e o0 Sl B A e

Cambridge International AS and A level Computer Science

Code examples

In the examples below, the print list consists of four separate items:

“Hello ” and “. Your number is ” are strings and

YourName and Numberl are variables, for which we print the value.
OUTPUT "Hello ", YourName, ". Your number is ", Numberl // newline
OUTPUT "Hello " // no new line

In pseudocode, we can indicate whether a new line should be output at theend by a

comment at the end of the statement.

Python print("Hello ", YourName,
" Your number is ", Numberl)
print("Hello ", end= '')
VB.NET Console.WriteLine("Hello " & YourName &
". Your number is " & Numberl)

Console.Write("Hello")

Pascal WriteLn('Hello ', YourName,
'. Your number is ', Numberl);
Write('Hello ');

In the code examples above you can see how output statements can be spread over more than
one line when they are very long. You must break the line between two print list items. You
cannot break in the middle of a string, unless you make the string into two separate strings.

In Python and VB.NET you can also use the placeholder method for output: the variables
to be printed are represented by sequential numbers in {}in the message string and the
variables are listed in the correct order after the string, separated by commas:

Python print ("Hello {0}. Your number is {1}".format(YourName,
Numberl))

VB.NET Console.WriteLine("Hello {0}. Your number is {1}",
YourName, Numberl)

Getting input from the user
When coding an input statement, it is good practice to prompt the user as to what they are
meant to enter. For example, consider the pseudocode statement:

INBUT "Prompt: " A

Note the space between the colon and the closing quote. This is significant. It gives a space
before the user types their input.

Chapter 13 Programming and Data Representation

Python A = input("Prompt: ") The prompt is provided as a
parameter to the input function.
Single quotes are also accepted.
Allinput is taken to be a string;
if you want to use the input as a
number the input string has to
be converted using a function
(see Section 13.03).

VB.NET Console.Write("Prompt: ") | The prompt has to be supplied
A = Console.ReadLine() as an output statement
separately.

Pascal Write('Prompt: '); The prompt has to be supplied as
Beaelaihy an output statement separately.
Note the single quotes around
the message text. The ReadLn
procedure returns as a parameter
the value entered by the user. An
alternative procedure, Read exists
butits use is very specialised as

it does not remove the new line
character from the input string.

Comments
Itis good programming practice to add comments to explain code where necessary.

Python # this is a comment
this is another comment

VB.NET // this is a comment
// this is another comment

Pascal // this is a comment

// this is another comment

{this is a multi-line
comment}

TASK 13.01

Use the IDE of your chosen programming language (in future just referred to as ‘your
language’). Type the program statements equivalent to the following pseudocode (you may
need to declare the variable YourName first):

INPUT "What is your name? " YourName
OUTPUT "Have a nice day, " YourName

Save your program as Examplel and then run it. Is the output as you expected?

Cambridge International AS and A level Computer Science

13.03 Data types

Every programming language has built-in data types. Table 13.02 gives a subset of those
available. The number of bytes of memory allocated to a variable of the given type is given in
brackets for VB.NET and Pascal.

alphanumeric
characters (a string)

Use single (') or double
(m) quotation marks to
delimit a string.

but Unicode strings
are also available)

Use single (1), double
(v) or triple (v» or wnv)
quotation marks to
delimit a string.

character)

Use double ()
quotation marks to
delimit a string.

Description of data Pseudocode Python VB.NET Pascal

Whole signed numbers | INTEGER int Integer (4 bytes) Integer (4 bytes)
Signed numbers with a | REAL float Single (4 bytes) Real (8 bytes)
decimal point Double (8 bytes)

Asingle alphanumeric | CHAR Not available Char (2 bytes - char (1 byte - ASCII)
character Unicode)

A sequence of STRING str (stored asASCll | string (2 bytes per | string (1 byte per

character plus 1)

Use single (')
quotation marks to
delimit a string.

Logical values:

True (represented as 1)
and

False (represented as0)

BOOLEAN

bool

Boolean (2 bytes)

Boolean (1 byte)

Table 13.02 Simple data types

In Python, a single alphanumeric character is represented as a string of length 1.

See Chapter 1 (Sections 1.02 and 1.03) on how integers and characters are represented
inside the computer. Chapter 16 (Section 16.03) covers the internal representation of real
(single, double, float) numbers.

The string data type is known as a structured type because it is essentially a sequence

of characters. A special case is the empty string: a value of data type string, but with no
characters stored in it. In VB.NET, each character in a string requires two bytes of memory
and each character is represented in memory as Unicode (in which, the values from 1 to

127 correspond to ASCII).

In Pascal, a string occupies as many bytes as its maximum length plus one. The first byte
contains the current length of the string and the following bytes contain the characters of the
string (stored as ASCII). Because the largest unsigned integer that can be stored in a byte is
255, the maximum length of a string is 255 characters.

Date and currency have various internal representations but are output in conventional
format (except in Pascal where you have to do a string conversion for dates).

Chapter 13 Programming and Data Representation

Description of Pseudocode | Python VB.NET Pascal
data
Date value DATE Not available | pate (8 bytes)| ThateTime (8 bytes)
as a built=in
data type
Monetary value | CURRENCY Not available | Dpecimal Currency (8 bytes)
(16 bytes)

Table 13.03 Further data types

In Python, date and currency are not available as built-in data types. A date is stored as the
number of days after 1/1/0001, using the datetime class (see Section 13.08). For currency,
use float.

VB.NET stores dates and times from 1.1.0001 (0 hours) to 31.12.9999 (23:59:59 hours) with a
resolution of 100 nanoseconds (this unitis called a ‘tick’). Floating-point (decimal) numbers
are stored in binary-coded decimal format (see Section 1.02).

Pascal stores dates and times internally as a real number: the whole number part represents
the days since 30/12/1899 and the fractional part represents the part of the day that has
elapsed (time). Currency values are stored internally as a scaled and signed 64-bit integer
with the least significant four digits implicitly representing four decimal places.

There are many more data types. Programmers can also design and declare their own data
types (see Chapter 16 (Section 16.01) and Chapter 26 (Section 26.02).

TASK 13.02
1 Lookat the identifier tables in Chapter 11 (Tables 11.02 and 11.04 to 11.12). Decide which

data type from your language is appropriate for each variable listed.
2 Write program code to implement the pseudocode from Worked Example 11.01 in Chapter 11.
13.04 Boolean expressions
In Chapter 11 (Section 11.05), we covered logic statements. These were statements that
included a condition. Conditions are also known as Boolean expressions and evaluate to
; either True or False. True and False are known as Boolean values.
‘ Simple Boolean expressions involve comparison operators (Table 13.04). Complex Boolean
L expressions also involve Boolean operators (Table 13.05).
Operation Pseudocode | Python VB.NET Pascal
equal = — = =
not equal <> I= < <
greater than > > > >
less than < < < <
greater than orequal to | >= >= >= >=
1 less than or equal to <= <= <= <=

Table 13.04 Comparison operators

Cambridge International AS and A level Computer Science

Operation Pseudocode | Python VB.NET Pascal
AND (logical conjunction) | AND and And AND
OR (logical inclusion) OR or or OR
NOT (logical negation) NOT not Not NOT

Table 13.05 Boolean operators

13.05 Selection

IF...THEN statements
In pseudocode the IF. THEN construct is written as:

IF <Boolean expressions>
THEN

<statement(s)>
ENDIF

Syntax definitions

Python |if <Boolean expression>: Note that the TaEN keyword is replaced
SRCACANENL ()= by a colon (). Indentation is used to
show which statements form part of the
conditional statement.

VB.NET |If <Boolean expression> Then | Note the position of Then on the same

188 <Ebabemsnk (o) line as the Boolean expression. The
Eae 3= End If keywords should line up with
the 1f keyword.
Pascal if <Boolean expression> If more than one statement is required
e as part of the conditional statement,
<statement>;

the statements must be put between
begin and end keywords.

Code examples
Pseudocode example:

IF x < 0
THEN
OUTPUT "Negative"
ENDIF
Python ZE % = 0O:
print("Negative")
VB.NET If x = @ Then
Console.WriteLine ("Negative")
End If
Pascal if x < 0
then
WriteLn('Negative');

TASK 13.03

Chapter 13 Programming and Data Representation

Write program code to implement the pseudocode from Worked Example 11.03 in Chapter 11.

iIF...THEN...ELSE statements

In pseudocode, the IF..THEN...ELSE construct is written as:

IF <Boolean expressions>
THEN
<statement(s)>
ELSE
<statement(s)>
ENDIF

Syntax definitions

Python if <Boolean expressions: Indentation’is used to show which
sBCatemeat (&) = statements form part of the

Elgi;tatement(s)) conditional statement the else
keyword must line up with the
corresponding if keyword.

VB.NET If <Boolean expression> Then | The glse keyword is on its own
el SRR on a separate line. It is good

Elae programming practice to line it up

<statement(s)> . :

e with the corresponding 1£ keyword
and indent the statements within
the conditional statement.

Pascal if <Boolean expression> If more than one statement is
Elen required in the else part of the
e statement, the statements must be
i placed between begin and end.
<statement>;
Note the convention for indentation.
Do not include a semicolon before
the else.

Code examples
Pseudocode example:

IF % = 0
THEN
OUTPUT "Negative"
ELSE
OUTPUT "Positive"
ENDIF

Cambridge International AS and A level Computer Science

Python

if X < 0
print("Negative")

print("Positive'")

VB.NET

If x < 0 Then

Else

End If

Console.WriteLine ("Negative")

Console.WriteLine("Positive")

Pascal

if x ¢ 0O

then
WriteLn('Negative')

else

WriteLn('Positive!');

Nested

In pseudocode, the nested IF statement is written as:

IF statements

IF <Boolean expressions>
THEN

<statement(s)>

ELSE

190

ENDIF

IF <Boolean expressions
THEN
<statement(s)>
ELSE
<statement(s)>
ENDIF

Syntax definitions

Python if <Boolean expression>: Note the keyword e1if (an
<SEAREmEIE () > abbreviation of else if). This
elif <Boolean expressions: keymmﬂdrnusthneup\Nkhthe
<statement(s)> ! N
o corresponding if.
<statement(s)> There can be as many elif parts
to this construct as required.
VB.NET |If <Boolean expression> Then If E1serf isused as one word,
saEarament (e} only one End Ifisrequired at the
BLARLE end of this construct.
<statement(s)>
Else There can be as many ElseIf
<statement(s)> parts as required.
End If
Pascal if <Boolean expression> Repeated indentation can make
. nested if statements quite
X e awkward. However, without
else . 2 <
] X careful indentation, the overview
if <Boolean expression>
. can be lost. Whenever possible, a
R CASE statement is preferable (see
alse the next section).
<statement>;

Chapter 13 Programming and Data Representation

Code examples

Pseudocode example:
IF x < 0
THEN
OUTPUT "Negative"
ELSE
IF' x = 0O
THEN
OUTPUT "Zero®
ELSE
OUTPUT "Positive"
&
I

ENDIF

Python 18 5 < 0
print("Negative")

elif

% = [
print("Zero")
elge:

print("Positive")

ENDIF
VB.NET TE = <0 Thern
Console.WriteLine("Negative")
ElseIf x = 0 Then
Console.WriteLine("Zero")
Else
Console.WriteLine("Positive")
End If
Pascal if x <0
then
WriteLn('Negative')
else
if x = 0
then
WriteLn('Zero')

else

WriteLn('Positive');

TASK 13.04
Write program code to implement the pseudocode from Worked Example 11.02 in Chapter 11.

Cambridge International AS and A level Computer Science

CASE statements
An alternative selection construct is the CASE statement. Each considered CASE condition

can be:

o asingle value

o single values separated by commas

e arange.

In pseudocode, the CASE statement is written as:

CASE OF <expression>

<valuels> : <statement(s)>
<value2>,<value3> : <statement(s)>
<valued4> TO <valueb5> : <statement(s)>

OTHERWISE <statement(s)>
ENDCASE

The value of <expressions determines which statements are executed. There can be as many
separate cases as required. The OTHERWISE clause is optional and useful for error trapping.

Syntax definitions

Python Python does not have a CASE statement. You need to use nested If
statements instead.

VB.NET Select Case <expression>

Case valuel
<statement(s)>

Case value2,value3
<statement(s)>

Case value4 To valueb
<statement(s)>

Case Else
<statement(s)>
End Select

Pascal case <expression> of

valuel: <statements>;

value2, value3: <statements>;
value4d. .value5: <statements>;

else
<statement>;

end;

Chapter 13 Programming and Data Representation

Code examples
In pseudocode, an example CASE statement is:
CASE OF Grade

npm : QUTPUT "Top grade"

At : 'OUTPUT "Faill

uBu, "EM : OUTPUT “Pass!

OTHERWISE

OUTPUT "Invalid grade"
ENDCASE
Python if Grade == "A":
print("Top grade")
elif Grade == "F" or Grade == "U":

print("Fail™)
p llf Grade in (||BI|,||CII,IIDIIIIIEII):
print("Pass")

1]

1]

els

(D
)

print("Invalid grade")

VB.NET Select Case Grade

Cage "AN
Console.WriteLine("Top grade")

Case uFu’nUn
Console.WriteLine("Fail")

CaSe "BH TO HEII
Console.WriteLine("Pass")

Case Else

Console.WriteLine("Invalid grade")

End Select
Pascal case Grade of
A : WriteLn('Top grade');
R T : WriteLn('Fail');
'B'..'E' : WriteLn('Pass');
else

WriteLn('Invalid grade');
end;

A Cambridge International AS and A level Computer Science

The problem to be solved: the user enters the number of the month and year. The output
is the number of days in that month. The program has to check if the year is a leap year for
February.

The pseudocode solution is:

INPUT MonthNumber
INPUT Year
Days <« O
CASE OF MonthNumber
CASE 1,3,5,7,8,10,12: Days « 31
CASE 4,6,9,11: Days <« 30
CASE 2: Days < 28
If Year MOD 400 = O
THEN // it is a leap year
Days = 29
ENDIF
IF (Year MOD 4 = 0) AND (Year MOD 100 > 0)
THEN // it is a leap year
Days < 29
ENDIF
OTHERWISE: OUTPUT "Invalid month number"
ENDCASE

OUTPUT Days
Write program code to implement the pseudocode above.

TASK 13.05
|

194

13.06 Iteration

Count-controlled (for) loops
In pseudocode, a count-controlled loop is written as:

FOR <control variable> « s TO e STEP i // STEP is optional
<statement(g)>
ENDFOR

The control variable starts with value s, increments by value i each time round the loop and
finishes when the control variable reaches the value e.

Chapter 13 Programming and Data Representation

Syntax definitions
Python for <control variable> in range(s, e, 1): | Thevalues s, e and i must
<statement (s)> be of type integer.
The loop finishes when the
control variable is just below
e. Thevalues for s and i can
be omitted and they default
to 0and 1, respectively.
VB.NET For <control variable> = s To e Step i | Thevaluess,eandicanbe
<statement(s)> of type integer or float.
Next
Pascal for <control variable> := s to e do The control variable can
sHERBemRE; be of type integer or char.
Intervals other than 1 are not
available.
Code examples
Python for x in range(5): The startvalue of xis0 and
pite s, eadt itincreases by 1 on each
iteration.
Output:0 1 2 3 4
& for x in range(2, 14, 3): Output:2 5 8 11
print(x, end=' ')
for x in range(s, 1, -i): The start value of x is 5 and
iR, =t N it decreases by 1 on each
iteration.
Output:s 4 3 2
for x in ["a","b","c"]: The control variable takes
: print(x, end="') the value of each of the
group elements in turn.
Output: abe
VB.NET For x = 1 To 5 Output:1 2 3 4 5
Console.Write(x)
Next
For x = 2 To 14 Step 3 Output:2 5 8 11 14
Console.Write (x)
Next
For x = 5 To 1 Step -1 Output:5 4 3 2 1
Console.Write(x)
Next
Bor x = I Ta 2.5 Step: 0.5 Output:
Congole.WriteLine (x)
Next -
1.5
2
2.5

Cambridge International AS and A level Computer Science

For Each x In {"af, "b", "e'} The control variable takes
Console.Write(x) the value of each of the
Next group elements in turn.
Output: abe
Pascal for x := 1 to 5 do Output:1 2 3 4 5
write(x);
for x := 5 downto 1 do Output;s 4 3 2 4
write(x);
for x := 'a' to '¢' do Output: abe
write(x);

TASK13.06

1 Write program code to implement the pseudocode from Worked Example 11.05 in Chapter 11.
2 Write program code to implement the pseudocode from Worked Example 11.08 in Chapter 11.

3 Write program code to implement the pseudocode from Worked Example 11.09 in Chapter 11.

Post-condition loops

A post-condition loop, as the name suggests, executes the statements within the loop at
least once. When the condition is encountered, it is evaluated. As long as the condition
evaluates to False the statements within the loop are executed again. When the condition
evaluates to True, execution will go to the next statement after the loop.

When coding a post-condition loop, you must ensure that there is a statement within the
loop that will at some point change the end condition to True. Otherwise the loop will

execute forever,

In pseudocode, the post-condition loop is written as:

REPEAT
<statement(s)>
UNTIL <condition>

Syntax definitions

pre-condition loop instead.

Python Post-condition loops are not available in Python. Use a

VB.NET Do

<statement(s)>
Loop Until <conditions

Pascal repeat
<statement(s)>;

until <conditions;

Code examples
Pseudocode example:

REPEAT
INPUT "Enter Y or N: " Answer
UNTIL Answer = "y"

Chapter 13 Programming and Data Representation

VB.NET Do

Console.Write("Enter Y or N: ")
Answer = Console.ReadLine()
Loop Until Answer = "Y'

Pascal repeat
Write('Enter Y or N: ');
ReadLn(Answer);

until Answer = 'Y';

TASK 13,07
1 Write program code to implement the pseudocode from Worked Example 11.04 in Chapter 11.

G Lo, R L SRS L Cdiie. L EEEE L oiiided e eReE £ SabE. o

2 Write program code to implement the first algorithm from Worked Example 11.06 in
Chapter 11.

Pre-condition loops

Pre-condition loops, as the name suggests, evaluate the condition before the statements
within the loop are executed. Pre-condition loops will execute the statements within the loop
as long as the condition evaluates to True. When the condition evaluates to False, execution
will go to the next statement after the loop. Note that any variable used in the condition must
not be undefined when the loop structure is first encountered.

When coding a pre-condition loop, you must ensure that there is a statement within the loop
that will at some point change the value of the controlling condition. Otherwise the loop will
execute forever.

In pseudocode the pre-condition loop is written as:

WHILE <condition>
<statement(s)>
ENDWHILE

Syntax definitions

Python while <condition>: Note that statements within the loop
<sEatement () must be indented by a set number of
| spaces. The first statement after the loop
| must be indented less.
’ VB.NET Do While <condition> Note the keyword Loop indicates the end
<statement(s)> of the loop.
l Loop "
Do Until scondibicms VB.NET also has a pre-condition tntil
<statement(s)> loop. This will execute the statements
Loop within the loop as long as the condition

evaluates to False. If the condition
evaluates to True when the loop is first
encountered, the statements within the
loop are not executed at all.

Pascal while <condition> do

<statement>;

Cambridge International AS and A level Computer Science

Code examples
Pseudocode example,

Answer < ""
WHILE Answer <> "Y"

INPUT "Enter Y or N: " Answer
ENDWHILE

Python Answer = '!
while Answer != 'Y':
Answer = input('Enter Y or N: ')
VB.NET Dim Answer As String = ""
Do While Answer <> "Y"
Congole.Write("Enter Y or N: ")

Answer = Console.ReadLine()

Loop

Answer = ""

Do Until Answer = "Y"
Console.Write("Enter Y or N: ")
Answer = Console.ReadLine()

Loop
Pascal Answer := ''; Note the use of the compound
MR RS en e TR statement, enclosed between
begm. the keywords begin and
Write('Enter Y or N: ');
end. These keywords are not
ReadLn(Answer); g : ! y
end; required if there is only a single

statement within the loop. For
example:

while x < 10 do
X = X+

TASK 13.08
Write program code to implement the second algorithm from Worked Example 11.06 in Chapter 11.

Which loop structure to use?

If you know how many times around the loop you need to go when the program execution
gets to the loop statements, use a count-controlled loop. If the termination of the loop
depends on some condition determined by what happens within the loop, then use a
conditional loop. A pre-condition loop has the added benefit that the loop may not be
entered at all, if the condition does not require it.

13.07 Arrays

Traditionally, an array is a static data structure. This means the array is declared with a
specified number of elements of one specified data type and this does not change after
compilation. However, many programming languages now allow an array to be dynamic. This
means the array can grow in size if required.

Chapter 13 Programming and Data Representation

Creating 1D arrays

When we write a list on a piece of paper and number the individual items, we would normally
start the numbering with 1. You can view a 1D array like a numbered list of items. VB.NET

and Python number array elements from 0 (the lower bound). Depending on the problem to
be solved, it might make sense to ignore element 0. Pascal allows you to choose your lower
bound to be any integer. The upper bound is the largest number used for numbering the
elements of an array.

In pseudocode, a 1D array declaration is written as:

DECLARE <arrayIdentifier> : ARRAY[<lowerBounds:<upperBound>] OF <dataType>

Syntax definitions

Python In Python, there are no arrays. The equivalent data structure is
called a list. A list is an ordered sequence of items that do not have
to be of the same data type. Python’s lists are dynamic.

VB.NET Dim <arrayIdentifiers(<upperBound>) As <dataType>

var <arrayldentifiers> : array[lowerBound..upperBound]

Pascal of <dataTypes;

Code examples
Pseudocode example:

DECLARE Listl : ARRAY[1:3] OF STRING // 3 elements in this list
DECLARE List2 : ARRAY[0:5] OF INTEGER // 6 elements in this list
DECLARE List3 : ARRAY[1:100] OF INTEGER // 100 elements in this list
DECLARE List4 : ARRAY[0:25] OF STRING // 26 elements in this list

Python |Listl = [] As there are no declarations, the
Listl.append("Fred") only way to generate a list is to
Listl.append("Jack") initialise one

Listl.append("Ali")
You can append elements to an

existing list.

List2 = [0, 0, O, O, O, O] You can enclose the elements
in[].

List3 = [0 for i in range(100)] You can use a loop.

AList = ["] * 26 You can provide an initial

value, multiplied by number of
elements required.

VB.NET |Dim Listl As String () = {"","",""} |You caninitialise an array

Dim List2(5) As Integer at declaration time (as with
g, TapeSllon) mey Raksges List1). Note that List3 has
Dim AList(0 To 25) As String e a———
range as an array dimension (as
with aList) however the lower
bound must be 0.

Pascal var Listl : array[l..3] of string; The dimension can be an

var List2 : array[10..15] of integer; integer range or a char range.
var NList : array[1..100] of integer;

’ Ranges can start with any value.
var AlList : array['A'..'Z'] of string;

Cambridge International AS and A level Computer Science

Accessing 1D arrays
Aspecific element in an array is accessed using an index value. In pseudocode, this is written as:

<arrayldentifiers[x]

Code examples
Pseudocode example:

NList[25] = 0 // set 25th element to zero

AList[3] = "D" // set 4th element to letter D
Python |NList[24] = 0
AList[3] = "D"
VB.NET |NList(25) = 0 We ignore element 0, so the
alrpety = 25th element is NList (25).
Pascal NList[24] := 0
AList['D'] := 'D!

In Python, you can print the whole contents of a list using print (List). In VB.NET and
Pascal, you need to use a loop to print one element of an array at a time.

TASK 13.09
1 Write program code to implement the pseudocode from Worked Example 11.10 in Chapter 11.
2 Write program code to implement the pseudocode from Worked Example 11.11 in Chapter 11.

3 Write program code to implement the improved algorithm from Worked Example 11.12 in
Chapter 11.

Creating 2D arrays

When we write a table of data (a matrix) on a piece of paper and want to refer to individual
elements of the table, the convention is to give the row number first and then the column
number. When declaring a 2D array, the number of rows is given first, then the number of

columns. Again we have lower and upper bounds for each dimension. VB.NET and Python
number all elements from 0.

In pseudocode, a 2D array declaration is written as:

DECLARE <identifier> : ARRAY[<lBoundl>:<uBoundl>,
<lBound2>:<uBound2>] OF <dataType>

Syntax definitions

Python In Python, there are no arrays. The equivalent data structureis a
list of lists.

VB.NET Dim <arrayIdentifiers(<uBoundl, uBound2>) As
<dataType>

Pascal var <arrayldentifier> : array[lBoundl..uBoundl,
1Bound2..uBound2] of <dataTypes>;

Code examples

To declare a 2D array to represent a game board of six rows and seven columns, the
pseudocode statement is:

Board[1l:6, 1:7] OF INTEGER

L e e ol e e e e b e R L B G o s e e e e S e i ki e B B B

Chapter 13 Programming and Data Representation

[[6, ©; ©
[o, 0, ©
[0, 0, O
[0, 0, O
0, 0

0, 0

1,

(=]

1l

Python |Board .+ 01, 2D lists can be initialised
. 0l in a similar way to 1D lists.

0
0

; 8’ ol, Remember that elements are
0

’ 7

;
’

g 8;' numbered from 0.

[0, , 0, 011 These are alternative ways of
Board = [[0 for i in range(7)] initialising a 6 x 7 list. The rows

for j in range(6)] are numbered 0 to 5 and the
Board CIeY = 91 = § columns 0 to 6.

[Ol

1 ’

o B B o @

1 ’

3 0O o O O O

e

The upper value of the range is
not included.

VB.NET |Dim Board(6, 7) As Integer Elements are numbered from

0 to the given number. This
declaration has one row and one
column too many. However, the
algorithm may be such that it

is easier to convert to program
codeif row 0 and column 0 are
ignored.

Pascal var Board : array[l..6, 1..7] of Similar to 1D arrays, 2D array
S i ranges can start with any value
and can be of type integer or

char.

Accessing 2D arrays
A specific element in a table is accessed using an index pair. In pseudocode this is written as:

<arrayldentifiers[x, vyI
Code examples
Pseudocode example:

Board([3,4] = 0 // sets the element in row 3 and column 4 to zero

The following code examples demonstrate how to access elements in each of the three
languages.

Python |Board[2][3] = 0 Elements are numbered
from 0 in Python, so [3] gives
access to the fourth element.

VB.NET |Board(3, 4) =0 We are ignoring row 0 and
column 0.
Pascal Board[3, 4] := 0 When the array was

declared, the elements were

numbered from 1.

TASK13.10

Write program code to implement the pseudocode from Worked Example 11.13; first initialise
the table and then output its contents.

201

Cambridge International AS and A level Computer Science

13.08 Built-in functions

Programming environments provide many built-in functions. Some of them are always

available to use; some need to be imported from specialist module libraries.

Discussion Point:

Investigate your own

String manipulation functions

Table 13.06 contains some useful functions for manipulating strings.

programming environment and research other library routines.

Description

Pseudocode

Python

VB.NET

Pascal

Access a single
character using
its position Pin a
string

ThisString([P]
Counts from 1

ThisString[P]
Counts from 0

ThisString(P)
Counts from 0

ThisString[P]
Counts from 1

Return the CHAR(1) chr(i) Chz/(d) Ehe (i)
character
associated with
the specified
character code
Return an ASCII(ch) ord(ch) Asc(ch) Ord(ch)
integer value
representing the
character code
of the specified
character
Return an mteger LENGTH(S) len(S) len(s) Length(S)
that contains
the number of
charactersin
string s
Return a substring| LEFT(S, L) S[0:Ll Left(s, L) Uses the StrUtils library
of length L from See the next LeftStr(S, L)
the left of string s section, on
slicing
Return a substring| RIGHT(S, L) S[-L:] Right(s, L) Uses the StrUtils library
of length . from See the next RightStr(s, L)
the right of string section, on
s slicing
Return a substring| MID(S, P, L) S : P+ 1] |mid(s, P, L) Uses the StrUtils library
of length L. from See the next MidStr(S, P, L)
position pin section, on
string s slicing
Join strings CONCAT(S1, S2) |s = S1 + 82 s = S1 + 82 S := Goncat(sl, 82);
S1 & 82 s = Sl & 82 S := S1 + 82;

Table 13.06 Some useful string manipulation functions

Chapter 13 Programming and Data Representation

Slicing in Python

In Python a subsequence of any sequence type (e.g. lists and strings) can be created using
‘slicing’.

Aslice is a substring of a string. For example, to get a substring of length L from position P in
string S we write S[P: P+ L].

Figure 13.05 shows a representation of Thisstring. If we want to return a slice of length 3
starting at position 3, we use ThisString[3 : 6] to give ‘DEF’. Position is counted from 0
and the position at the upper bound of the slice is not included in the substring.

ThisString
[o] [1] [2] [31] [4] [5] [el

Figure 13.05 A representation of ThisString

If you imagine the numbering of each element to start at the left-hand end (as shown in
Figure 13.05), then it is easier to see how the left element (the lower bound) is included, but
the right element (the upper bound) is excluded. Table 13.07 shows some other useful slices
in Python.

Expression Result Explanation

ThisString[2:] CDEFG If you do not state the upper bound, the slice
includes all characters to the end of the string. 203
ThisString[:2] |AB If you do not state the lower bound, the slice
includes all characters from the beginning of
the string.

r'

i ThisString[-2:] |FG A negative lower bound means that it takes the
y

|

.

4

|

t

-

slice starting from the end of the string.
ThisString[:-2] | ABCDE A negative upper bound means that it
terminates the string at that position.

Table 13.07 Some useful slices in Python

Rounding numbers
Sometimes we need to round numbers after a calculation involving real numbers. Rounding is
done away from zero. This means that 0.5 is rounded to 1 and —0.5 is rounded to —1.0.

Python |round(x[, ndigits]) The floating-point value x is rounded to
ndigits after the decimal point. If ndigits
is omitted, it defaults to zero. The result is a
floating point number.

VB.NET | Math.Round(x) The value of x is rounded to the nearest
whole number.

Pascal Round (x) The value of x is rounded to the nearest
whole number.

Cambridge International AS and A level Computer Science

Truncating numbers

Instead of rounding, sometimes we just want the whole number part of a real number.
This is known as ‘truncation’.

Python |int(x) If x is a floating-point number, the
conversion truncates towards zero.

VB.NET |Math.Truncate(x) The whole number part of the real number x
is returned.

Pascal Trunc(x) The whole number part of the real number x
is returned.

Converting a string to a number

Sometimes a whole number may be held as a string. To use such a number in a calculation,
we first need to convert it to an integer. For example, these functions return the integer value
5 from the string n5m:

Python |int(s)
VB.NET CInt(S)
Pascal StrToInt(S)

Sometimes a number with a decimal point may be held as a string. To use such a numberin a
calculation, we first need to convert it to a real (float). For example, these functions return the

204 real number 75.43 from the string "75.43™
Python |float(x) The returned value is a floating-point

number.
VB.NET | CDbl(S) The returned value is of type double.
Pascal StrToFloat(s) The returned value is a floating-point

number.

Formatting numbers for output
When we want to present output in a tabulated way, we need to format the output
statement.

Python |print('N1:{0:>10}N2:{1:710}|N3:{2:<10}[${ | When usingthe placeholder method for a
HBEP arnatiNg, N2, HB, Rrisel) print statement in Python, you can format
the output. Within {}, you give the number of
the item in the print list, then a colon (;) and
then these codes:

A centres thevalue
align the value on the left
aligns the value on the right

| w anumber giving the overall
character width of the value

xf where x is the number of decimal
places for a floating point number

Chapter 13 Programming and Data Representation

VB.NET Dim N1 As Decimal = 21.457
Dim N2 As Double = 3.14159

Congole.WriteLine("Price:{0:C}",
Console.WriteLine("Pi:{0:F}", N2)

N1)

:C outputs the value as currency: $21.46.
:F outputs a double as fixed point (with two
decimal places): 3.14.

Pascal Write(<printlistitem>:W:D);
WriteLn(Pi:5:2);

Print list items can be formatted using a
field width, W, and the number of decimal
places, D.

Random number generator

Random numbers are often required for simulations. Most programming languages have
various random number generators available. As the random numbers are generated
through a program, they are referred to as ‘pseudo-random’ numbers.

Python |# in the random library:
randint(1l, 6)

This code produces a random number
between 1 and 6 inclusive.

Dim x As Integer
x = RandomNumber.Next(l, 6)

VB.NET Dim RandomNumber As New Random

You have to set up a RandomNumber Object
(see Chapter 27). This code generates

an integer between 1 (inclusive) and 6
(exclusive).

Pascal Random(6)

The simplest option returns a random
number between 0 (inclusive) and
6 (exclusive).

Randomize; This code initialises the random number
generator.
RandSeed := <integer value> It can be useful, particularly during testing,

to produce the same sequence of random
numbers each time the program executes.

RandomRange (1, 6)

There is a function in the Math library
that returns a random number between
two values, in this case 1 (inclusive) and 6
(exclusive).

TASK13.11

1 Write program code to generate 20 random numbers in the range 1 to 10 inclusive.
2 Write program code to implement the pseudocode using a pre-condition loop from

Worked Example 11.07 in Chapter 11.

Date and time functions

Sometimes we want to work with the current time and date. The system clock can provide
this. There are many functions available to manipulate dates and times. Most are beyond the
scope of this book. Here are just a few basic functions.

205

Cambridge International AS and A level Computer Science

Python |from datetime import * Import the library.
, SOnEDase: =, das L .1 Convert the separate integers for year,
month and day into a date.

Today = date.today () The system clock can be read.
print(SomeDate) Date values con be output without
PR] conversion.
SomeDate = SomeDate + Adding timedelta(1) moves the date on by
timedelta (1) 1 day.

VB.NET Dim SomeDate, Today As Date Declare date variables.
SomeDate = #3/15/20154 The format of the string is MM/DD/YYYY.
Today = Now() The system clock can be read. The value

returned is of type Date.

Console.WriteLine(SomeDate) Date type values can be output without
Console.WriteLine(Today) conversion.
SomeDate = Add a value to a date to increment it by a
SomeDate.AddDays (1) number of days.

Pascal var SomeDate, Today : Declare date variables.

| e A date stored as a string can be converted
| vaz Datedtring, i, Srmiags to store it in a variable of type TbateTime.

DateString := '15/03/2015';
SomeDate :=

StrToDate(DateString);

206 Today := Date(); The system clock can be read. The value
returned is of type TDateTime.
DateString := A date must be converted to a string for
DateToStr (SomeDate); output.
WriteLn(DateString);

DateString := DateToStr(Today);
WriteLn(DateString);

SomeDate := SomeDate + 1; Adding 1 to a date produces the next day’s
date.

TASK 13.12

Write program code to get today’s date from the system clock and output it with a suitable
message. Also output tomorrow’s date with a suitable message. Will your program give the
correct information, regardless of which day it is executed?

Extend your program to output yesterday’s date.

Discussion Point:

What other useful functions can you find? Which module libraries have you searched?

Chapter 13 Programming and Data Representation

13.09 Text files

Data need to be stored permanently. One approach is to use a file. For example, any data
held in an array while your program is executing will be lost when the program stops. You

can save the data out to file and read it back in when your program requires it on subsequent
executions.

Atext file consists of a sequence of characters formatted into lines. Each line is terminated by
an end-of-line marker. The text file is terminated by an end-of-file marker.

Note: you can check the contents of a text file (or even create a text file required by a
program) by using a text editor such as NotePad.

Writing to a text file

Writing to a text file usually means creating a text file.
The following pseudocode statements provide facilities for writing to a file:

OPENFILE <filename> FOR WRITE // open the file for writing
WRITEFILE <filename>, <stringValue> // write a line of text to the file
CLOSEFILE // close file
The following code examples demonstrate how to open, write to and close a file called
SampleFile.TXT in each of the three languages. If the file already exists, it is overwritten as
soon as the file handle is assigned by the ‘open file’ command.

Python |FileHandle = open("SampleFile . TXT", "w") |You specify the filename and mode (‘w’ for
FileHandle.write(LineOfText) write) when you call the open function. The
Bilsmandlealosed] line of text to be written to the file must
contain the newline character "\n" to move
to the next line of the text file.

VB.NET |Dim FileHandle As IO.StreamWriter The file is accessed through an object (see

i LimeOETant A8 Staing Chapter 27) called a streamiriter.
FileHandle = New

I0.StreamWriter("SampleFile.TXT")
FileHandle.WriteLine(LineOfText)
FileHandle.Close()

Pascal var LineOfText : String; The TextFile data type enables append

var FileHandle : TextFile; access to a file. Note that the AssignFile
AssignFile(FileHandle, 'SampleFile.TXT')i | yracadure simply connects the variable

Rewrite(FileHandle); : y ,
e‘f’nte(o i , with the filename; the Rewrite procedure
WriteLn(FileHandle, LineOfText); {

opens the file.

CloseFile(FileHandle);

Lo B i i e e i di e LR ST e T W v e T - TR TS e - T R, T Ny —

S NN .

7“ S R L

208

Cambridge International AS and A level Computer Science

Reading from a text file
An existing file can be read by a program. The following pseudocode statements provide
facilities for reading from a file:

OPENFILE <filename> FOR READ // open file for reading
READFILE <filename>, <stringVariables // read a line of text from the file
CLOSEFILE // close file

The following code examples demonstrate how to open, read from and close a file called
SampleFile.TXT in each of the three languages.

Python |FileHandle = open("SampleFile.TXT", "r") | Yoy specify the filename and mode (1’ for
HESEgETEE = FElenaieliereadiana) read) when you call the open function.
FileHandle.close

VB.NET |Dim LineOfText As String Thefile is accessed through an object (see
Rt et e (88 it Chapter 27) called a streamreader.

I0.StreamReader

FileHandle = New System.
I0.StreamReader ("SampleFile.TXT")
LineOfText = FileHandle.ReadLine()
FileHandle.Close()

Pascal var FileHandle : TextFile; The TextFile data type enables read

var LineOfText : String; access to afile. Note that the Reset
i ' . 1 g 1) . .

AssignFile(FileHandle, 'SampleFile.TXT'); | ,ocedyre opens the file for reading.

Reset(FileHandle);

ReadLn(FileHandle, LineOfText);
CloseFile(FileHandle);

Appending to a text file
Sometimes we may wish to add data to an existing file rather than creating a new file. This
can be done in Append mode. It adds the new data to the end of the existing file.

The following pseudocode statements provide facilities for appending to a file:

OPENFILE <filename> FOR APPEND // open file for append
WRITEFILE <filename>, <stringValue> // write a line of text to the file
CLOSEFILE // close file

The following code examples demonstrate how to open, append to and close a file called
SampleFile.TXT in each of the three languages.

Chapter 13 Programming and Data Representation

Python |FileHandle = open("SampleFile.TXT", "a") You specify the filename and mode (‘a’ for
FileHandle.write(LineOfText) append) when you call the open function.
FileHandle.close()

VB.NET |Dim FileHandle As IO.StreamWriter The file is accessed through a
FileHandle = New StreamWriter. The extra parameter, True,

I0.StreamWriter ("SampleFile.TXT", True)
FileHandle.WriteLine(LineOfText)
FileHandle.Close()

Pascal var LineOfText : String; The TextFile datatype enablesappend
var FileHandle : TextFile; access to a file. Note that the Append

AssignFile(FileHandle, 'SampleFile.TXT'); procedure opens the file for appending,
Append(FileHandle);

WriteLn(FileHandle, LineOfText);
CloseFile(FileHandle);

tells the system to append to the object.

The end-of-file (EoF) marker

If we want to read a file from beginning to end we can use a conditional loop. Text files
contain a special marker at the end of the file that we can test for. Testing for this special end-
of-file marker is a standard function in programming languages. Every time this function is
called it will test for this marker. The function will return FALSE if the end of the file is not yet
reached and will return TRUE if the end-of-file marker has been reached.

In pseudocode we call this function Eor (). We can use the construct REPEAT. . .UNTIL, EOF().
If it is possible that the file contains no data, it is better to use the construct WHILE NOT

EOF().
i For example, the following pseudocode statements read a text file and output its contents:
k OPENFILE "Test.txt! FOR READ
WHILE NOT EOF("Test.txt")
READFILE "Test.txt", TextString
OUTPUT TextString

ENDWHILE
CLOSEFILE "Test.txt"

The following code examples demonstrate how to output the contents of a file in each of the
three languages.

1'*1'“—'-.—"“ e e S

Cambridge International AS and A level Computer Science

Python |FileHandle = open('Test.txt", "z") There is no explicit EOF function. However,
TloeReTaet, = Eileandle seallinel) when a line of text has been read that only

Lls: TeulineOeTest) & U consists of the end-of-file marker, the line of
LineOfText = FileHandle.readline() ;
textis of length 0.

print(LineOfText)
FileHandle.close
VB.NET |Dim LineOfText As String When the end-of-file marker is detected,
Dim FileHandle As System.IO.StreamReader the Endofstream method returns the value

FileHandle = New

System.IO.StreamReader ("Test.txt")

Do Until FileHandle.EndOfStream
LineOfText = FileHandle.ReadLine()
Console.WriteLine(LineOfText)

True and so the loop will end.

Loop
FileHandle.Close()

Pascal var FileHandle : TextFile; The EoF function returns the value True
var LineOfText : String; . when the end-of-file marker is detected.

AssignFile(FileHandle, 'Test.txt!');
Reset(FileHandle);
while not EoF(Filehandle) do
begin
ReadLn(FileHandle, LineOfText);
WriteLn(LineOfText);
end;
CloseFile(FileHandle);

Summary

Programming constructs in Python, VB.NET and Pascal have been introduced:
+ declaration and assignment of constants and variables

« the basic constructs of assignment, selection, repetition, input and output

- built-in data types and functions

« declaring arrays and using them in a program.

Code should be commented where it helps understanding.

Boolean expressions are needed for conditions.

Text files can be written to and read from within a program.

Chapter 13 Programming and Data Representation

Exam-style Questions

1 Mattwants a program to output a conversion table for ounces to grams (1 ounce is 28.35
grams). He writes an algorithm:

OUTPUT "Ounces Grams"

FOR Ounces « 1 TO 30
Grams <« Rounded(Ounces * 28.35) // whole number of grams only
OUTPUT Ounces, Grams

ENDFOR

Write program code to implement the algorithm. Include formatting, so that the output is tabulated.
2 Write program code to accept an input string UsexrID. The program is to test the UserID format. A valid format UserID
consists of three upper case letters and four digits. The program is to output a message whether UserID is valid or not.

3 Fred surveysthe students at his college to find out their favourite hobby. He wants to present
the data as a tally chart.

Fred plans to enter the data into the computer as he surveys the students. After data entry
is complete, he wants to output the total for each hobby.

1 Reading books \\\

2 Play computer games AW

3 Sport A

4 Programming \\

5 Watching TV AN

He starts by writing an algorithm:

Initialise Tally array
REPEAT
INPUT Choice // 1 for Reading, 2 for computer games,
// 3 for Sport, 4 for Programming, 5 for TV
// 0 to end input
Increment Tally[Choice]
UNTIL Choice = 0
FOR Index = 1 TO 5
OUTPUT Tally[Index]
ENDFOR

a Write program code to declare and initialise the array Tally[1:5] OF INTEGER.
b Write program code to implement the algorithm above.

¢ Write program code to declare an array to store the hobby titles and rewrite the FOR loop of your program in
part (b) so that the hobby title is output before each tally.

d Write program code to save the array data in a text file.

e Write program code to read the data from the text file back into the initialised array.

[7]

(5]

Learning objectives
By the end of this chapter you should be able to:

= use a procedure and explain where in the construction of m use the terminology associated with procedures and
an algorithm it is appropriate to use a procedure functions: procedure/function header, procedure/

show understanding of passing parameters by reference function interface, parameter, argument, return value

and by value show understanding that a function is used in an

use a function and explain where in the construction of an expression
algorithm it is appropriate to use a function write programs containing several components and
showing good use of resources.

Chapter 14: Structured Programming

14.01 Terminology
Different programming languages use different terminology for their subroutines, as listed
in Table 14.01.

Pseudocode PROCEDURE FUNCTION

Python void function fruitful function

VB Subroutine Function

Pascal procedure function

Table 14.01 Programming language terminology for subroutines

14.02 Procedures

In Chapter 12 (Section 12.02), we used procedures as a means of giving a group of statements
a name. When we want to program a procedure we need to define it before the main
program. We call it in the main program when we want the statements in the procedure body
to be executed.

In pseudocode, a procedure definition is written as:

PROCEDURE <procedureIldentifier>() // this is the procedure header
<statement(s)> // these statements are the procedure body
ENDPROCEDURE

This procedure is called using the pseudocode statement:

CALL <procedureldentifiers>()

Syntax definitions
Python def <identifiers():

<statement(s)>
VB.NET Sub <identifier>()

<statement(s)>

End Sub
Pascal procedure <identifiers;

begin

<statement(s)>;

end;

When programming a procedure, note where the definition is written and how the procedure
is called from the main program.

Code examples
Here is an example pseudocode procedure definition:

PROCEDURE InputOddNumber ()

e A e b

REPEAT
r INPUT "Enter an odd number: " Number
UNTIL Number MOD 2 = 1
ENDPROCEDURE

This procedure is called using the caLL statement:

CALL InputOddNumber ()

Cambridge International AS and A level Computer Science

Bython ProcedureExample.py - C:/Users/Sylvia/M gramiming /< =101 =]
File Edit Format Run Opbions Windows Help
def TInputOddNumber () : =
Number = 0
while Number % 2 == 0:
Humber = int (input ("Enter an odd number: "}}
§ ®wwwkERk®® main program Starts here **Fkrekkekkdiis
InputCddNumber ()
-
‘Ln: 2|Col: 0
Figure 14.01 The Python editor with a procedure
The Python editor colour-codes the different parts of a statement. This helps
when you are typing your own code. The indentation shows which statements
are part of the loop.
The built-in function input returns a string, which must be converted to an
integer before it can be used as a number.

VB.NET I3 consoleApplicationi - soft Vicual Basic 2010 Exprect = S [u| rq

ﬁeemwNmammmew«mmV ~
AT -d@ s a@ial=2(9-¢-[pa
Modulel.vb X
<% Module1

-‘:'Mndule Modulel
Dim Number As Integer

vlﬁiﬁ(ﬂe(ﬂaratknuﬂ

= Sub InputOddiumber()
Do
Console.Write("Enter an odd number: ™)
Number = Console.Readline
Loop Until Number Mod 2 = 1
End Sub

o] Sub Main()
InputOddumber()
Console.Readline()

End Sub

End Module
100% ~ ¢

Figure 14.02 The Visual Basic Express editor with a procedure

The Visual Basic Express editor colour-codes different parts of the statement,
s0 it is easy to see if syntax errors are made. The editor also auto-indents and
capitalises keywords.

; Variables need to be declared before they are used. The editor will follow the
capitalisation of the variable declaration when you type an identifier without
following your original capitalisation.

|
The editor is predictive: pop-up lists will show when you type the first part of a
statement.

When you execute the Main program, Console.ReadLine() keeps the
run-time window open.

Chapter 14: Structured Programming

Pascal B Project2.dpr s = =101 xf

Pruiactzl - . =

3 program Project2; b=
lr {SAPPTYPE CONSOLE}

uses
F SysUtils;

var Number : integer:

procedure InputOddNumber;

* begin =
repeat
* Write ('Enter an odd number: '}:
* ReadLn (Number) ;
until Number MOD 2 = 1;
+ end;
J/ **kkkrikidmain program Starts here *hkswswkskwst

+ |begin

. InputOddNumber;
+ ReadLn;
.

end. -
EE| »

| =] finsert [\Cose/ 4

Figure 14.03 The Pascal editor with a procedure

The Pascal editor automatically emboldens keywords.
The procedure body is enclosed within begin and end statements.
There is no semicolon after the keywords begin or repeat.

Variables need to be declared before they are used.

When you execute the main program, ReadLn keeps the run-time window
open. The main program finishes with end. (note the full stop).

TASK 14.01
Write program code to implement the pseudocode from Worked Example 12.02 in Chapter 12.

b Aiiiee . GiGes fommenn Mo

14.03 Functions

In Chapter 13 (Section 13.08), we used built-in functions. These are useful subroutines written
by other programmers and made available in module libraries. The most-used ones are
usually in the system library, so are available without having to explicitly import them.

You can write your own functions. Any function you have written can be used in another
program if you build up your own module library.

Afunction is used as part of an expression. When program execution gets to the statement
that includes a function call as part of the expression, the function is executed. The value
returned from this function call is then used in the expression.

Ml

When writing your own function, ensure you always return a value as part of the statements
that make up the function (the function body). You can have more than one RETURN
statement if there are different paths through the function body.

YT W

Cambridge International AS and A level Computer Science

In pseudocode, a function definition is written as:

FUNCTION <functionIdentifier>() RETURNS <dataType> // function header
<statement(s)> // function body
RETURN <value>

ENDPROCEDURE

Syntax definitions

Python def <functionIdentifierx>():
<statement(s)>

return <value>

VB.NET Function <functionIdentifier>() As <dataType>
<statement(s)>
<functionIdentifier> = <value> 'Return <value>
End Function

Pascal function <functionIdentifiers() : <dataType>;
begin
<statement(s);
result := <value>; // <functionIdentifier> := <value>;
end;

When programming a function, the definition is written in the same place as a procedure. The
function is called from within an expression in the main program, or in a procedure.

Code example

We can write the example procedure from Section 14.02 as a function. In pseudocode, this is:

FUNCTION InputOddNumber() RETURNS INTEGER
REPEAT
INPUT "Enter an odd number: " Number
UNTIL Number MOD 2 = 1
RETURN Number
ENDFUNCTION

Python

=lol x|

Filz Edit Format Ron Options
| d=f InputOddNumber |} : =
Humber = 0O
while Number % 2 == Q:

Number = int (input ("Enter an odd number: "})
return Number

AERERERES main program start=s here R R R R R R W

Hewllunber = Inputlddfumber |}
-
[I—; n: 10|Col: D

Figure 14.04 The Python editor with a function and local variable

The variable Number in Figure 14.04 is not accessible in the main program. Python's variables are local
unless declared to be global.

Chapter 14: Structured Programming

VB.NET B3 ConsoleAppiication] - Microsoft Visual Basic it
Fiie (Edit View Project Debug Data Tools Window Help ;
() LB @ b aBA[Z219 -0 p s

Modulelvb X

1] (General)
ElModule Modulel
Dim Number, Newlumber As Integer

.lﬁ(bedaraﬁons)
EModule Modulel E3
Dim NewNumber As Integer -

-| £ (Dedlarations)

: Function InputOddiumber()
Dim Number As Integer
Do

= Function InputOddiumber()
Do

Console.Write("Enter an odd number: ")
Number = Conscls.Readline
Loop Until Number Mod 2 = 1
InputOddNumber = Number
End Function

Conscle.Write("Enter an odd number: ")
Number = Conscle.Readline
Loop Until Humber Moed 2 = 1
InputOddiumber = Number
End Function

= Sub Main()
Newhumber = InputOddNumber()
Console.ReadLine()

El Sub Main()
| NewNumber = InputOddiumber()
{

End Sub Console.ReadLine()
End Sub
End Module |
| End Module
100% ~ 4] L
00% ~ 4

Figure 14.05 The VB.NET editor with (a) global variables and (b) a local variable

The variable Number in Figure 14.05(a) is declared | In Figure 14.05(b), the variable Number is declared
as a global variable at the start of the module. This |as a local variable within the function.
is not good programming practice.

Pascal (a) < T =10] x| E Project2.dpr : =10l x|
Project? | e — Project? | e
program Project2: - program Project2; =
{SAPPTYPE {SAPPTYPE CONSCLE}
uses uses
SysUcils; SysUtils;
var Number, NewNumber : integer; var NewNumber : integer;
function InputOddNumber : integer; function InputCddNumber : integexr;
- begin i var Number : integer;
repeat begin -
. Write('Enter an odd number: '}; repeat
. ReadLn (Number) ; Write('Enter an odd number: '};
. until Nunber MOD 2 = 1: ReadLn (Number) ;
- Result := Numbexr; until Number MOD 2 = 1;
* end; Result := Number;
[/ ktkrriiiiimain Drogram SLarts here *riikisisiiis end;
+ |begin [/ **4sssswsimain Drogram SLArts here *rEssisiissis
* NewNumber := InputOddNumber; begin
= ReadLn; r := Input® 7
+ |end. = ReadLn:
4 I | » end. =
i == oot [\cose/ RY) v
A \guiaf BT oded et [\cese/ =

Figure 14.06 The Pascal editor with (a) global variable and (b) local variable

The variable Number in Figure 14.06(a) is declared | In Figure 14.06(b), the variable Number is declared
as a global variable, outside the function. This is as a local variable within the function.

not good programming practice.

A global variable is available in any part of the program code. It is good programming
practice to declare a variable that is only used within a subroutine as a local variable.

In Python, every variable is local, unless it is overridden with a global declaration. In VB.NET
and Pascal, you need to write the declaration statement for a local variable within the
subroutine.

.y

218

Cambridge International AS and A level Computer Science

TASK 14.02

Write program code to implement the pseudocode from Worked Example 12.03 in Chapter 12.
The global and local variables are listed in Table 12.11.

14.04 Passing parameters to subroutines

When a subroutine requires one or more values from the main program, we supply these as
arguments to the subroutine at call time. This is how we use built-in functions. We don’t need
to know the identifiers used within the function when we call a built-in function.

When we define a subroutine that requires values to be passed to the subroutine body, we
use a parameter list in the subroutine header. When the subroutine is called, we supply

the arguments in brackets. The arguments supplied are assigned to the corresponding
parameter of the subroutine (note the order of the parameters in the parameter list must be
the same as the order in the list of arguments). This is known as the subroutine interface.

14.05 Passing parameters to functions

The function header is written in pseudocode as:

FUNCTION <functionlIdentifier> (<parameterList>) RETURNS <dataType>

where <parameterList> is a list of identifiers and their data types, separated by commas.

Here is an example pseudocode function definition that uses parameters:

FUNCTION SumRange(FirstValue : INTEGER, LastValue : INTEGER) : INTEGER
DECLARE Sum, ThisValue : INTEGER
Sum <« 0

FOR ThisValue <« FirstValue TO LastValue
Sum <« Sum + ThisValue
ENDFOR
RETURN Sum
ENDFUNCTION

ProcedureExample.py - C:/Users
File Edit Format Run Options MWindows Help

- =loixt

def SumRange (FirstWalue, LastWValue)}:

Sum = 0

or ThisValue in range (FirstValue, LastWValue + 1}:
Sum = Sum 4+ ThisValue

return Sum

wRERARRERR main program Starts here *eFkissraerkird
HewNumber = SumRange(l, 5}
print (NewNumber)

E: 4|Col: O

Figure 14.07 The SsumRange () function in Python

E
g
;

Modulel.vb >
i) (General) - I i (Declarations)
EModule Modulel
Dim Number, NewNumber As Integer

i}

Function SumRange(ByVal FirstValue, ByVal LastValue)
Dim Sum, ThisValue As Integer
Sum = @
For ThisValue = FirstValue To LastValue
Sum = Sum + ThisValue
Next
SumRange = Sum
End Function

= Sub Main()
NewNumber = SumRange(1, 5)
Consaole.Writeline(NewNumber)
Conscle.ReadLine()
End Sub

| End Module _:l

00% - 4

Project? | iy
program Project2:;

{SAPPTYPE COMN:

uses
SysUtils;

var NewNumber : integer;

function SumRange (FirstValue, LastValue : integer)
var Sum, ThisValue : integer;
begin s
Sum := 0;
for ThisValue := FirstValue to LastValue do
Sum := Sum + ThisValue;
Result := Sum;
end;
// **krkkkiiimain program Starts here *riisiiiiiiis
+ 'begin
* NewNumber := SumRange (1, 5):
- WriteLn (NewNumber) ;
.
.

¢ ¢ s s

ReadLn;

HE of

| | 10: 50 f [Insert {\Eo_d_ej 7

Figure 14.09 The sumRange () function in Pascal

TASK 14.03

Write a function to implement the following pseudocode:

FUNCTION Factorial (Number : INTEGER)
DECLARE Product : INTEGER

Product « 1

FOR n « 2 TO Number

Product <« Product * n

ENDFOR

RETURN Product
ENDFUNCTION

Chapter 14: Structured Programming

220

Cambridge International AS and A level Computer Science

14.06 Passing parameters to procedures

If a parameteris passed by value, at call time the argument can be an actual value (as we
showed in Section 14.04). If the argument is a variable, then a copy of the current value of the
variable is passed into the subroutine. The value of the variable in the calling program is not
affected by what happens in the subroutine.

For procedures, a parameter can be passed by reference. At call time, the argument must be
avariable. A pointer to the memory location of that variable is passed into the procedure. Any
changes that are applied to the variable’s contents will be effective outside the procedure in
the calling program/module.

By value: the actual value is passed into the procedure
By reference: the address of the variable is passed into the procedure

Note that neither of these methods of parameter passing applies to Python. In Python, the
method is called pass by object reference. This is basically an object-criented way of passing
parameters and is beyond the scope of this chapter (objects are dealt with in Chapter 27).
The important point is to understand how to program in Python to get the desired effect.

The full procedure header is written in pseudocode, in a very similar fashion to that for
function headers, as:

PROCEDURE <Procedureldentifier> (<parameterList>)

The parameter list needs more information for a procedure definition. In pseudocode, a
parameterin the list is represented in one of the following formats:

BYREF <identifierls> : <dataType>
BYVAL <identifier2> : <dataType>

Passing parameters by value

The pseudocode for the pyramid example in Chapter 12 (Section 12.04) includes a procedure
definition that uses two parameters passed by value. We can now make that explicit:

PROCEDURE OutputSymbols(BYVAL NumberOfSymbols : INTEGER, BYVAL Symbol : CHAR)
DECLARE Count : INTEGER
FOR Count <« 1 TO NumberOfSymbols
OUTPUT Symbol // without moving to next line
ENDFOR
OUTPUT NewLine
ENDPROCEDURE

In Python (Figure 14.10), all parameters behave like local variables and their effectis as
though they are passed by value.

ProcedureExample.py - €/
File Edit Format Run Options

iindows Help

def OutputSymbols (NumberOfSymbols, Symbol): =
for Count in range (NumberCIfSymbols):

| print (Symbol, end="")

| print{}

§ whRkmkkkEE madin LrOgQram Starts here #Feskaskasrssis

CutputSymbol= ({5, "*'}

__r;I
ﬁ.‘n: 9|Col: 0

Figure 14.10 Parameters passed to a Python subroutine

Chapter 14: Structured Programming

In VB.NET (Figure 14.11), parameters default to passing by value. The keyword Byval is
automatically inserted by the editor.

B Conselefpplication? - Microsoft Visual Ba e — -Inixi
Fle Gt Ve Pokec Dag Dafa Toos Windon Hep ‘
QG- ddsanglz2i9-n-|

Modulel.vb X

»5 P

-| i) (Dediarations)

FModule Modulel

= Sub QutputSymbols(ByVal NumberOfSymbols, ByVal Symbol)
i Dim Count As Integer

| For Count = 1 To NumberOfSymbols

| Console.Write(Symbol)

| Next

| Consocle.WriteLine()

End Sub

=] Sub Main()

OutputSymbols(5, "*")

| Censole.ReadlLine()
End Sub

! End Module _:j

00% ~ 4] | 2

Figure 14.11 Parameters passed by value to a VB.NET procedure

In Pascal (Figure 14.12), there is no keyword for passing by value. This is the default method.

Project.dpr i S -|I:I|_>§_|
Proiectz' = om

program Project2;

I»

{SAPPTYPE CCONSOLE}

uses
SysUtils;

procedure CutputSymbols (NumberOfSymbols : integer: Symbol : chax);
var Count : integer;

* begin

* for Count := 1 to NumberOfSymbols do —

. Write (Symbol);

+ Writeln:

] end;

Sf AEEEkkkdidmain program starts here #wrasdddddddds

+ |begin

* CutputSymbols (5, "%*');

ot ReadLn;

< |end. =
[= finsert \Code/ =

Figure 14.12 Parameters passed by value to a Pascal procedure

Passing parameters by reference
The pseudocode for the pyramid example generated in Chapter 12 (Section 12.04) includes a
procedure definition that uses two parameters passed by reference. We can now make that
explicit:
PROCEDURE AdjustValuesForNextRow(BYREF Spaces : INTEGER,
BYREF Symbols : INTEGER)
Spaces < Spaces — 1
Symbols < Symbols + 2
ENDPROCEDURE

222

Cambridge International AS and A level Computer Science

The pseudocode statement to call the procedure is:

CALL AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)

Python does not have a facility to pass parameters by reference. Instead the subroutine
behaves as a function and returns multiple values (see Figure 14.13). Note the order of the
variables as they receive these values in the main part of the program.

procedure3.py - (:/Users/Sylvia/#y Progmmmfmmki Py _.[_]- [} l’

File Edit Format Run Options Windows Help

E def AdjustValuesForxNextRow (Spaces, Symbols): _f_l

! Spaces = Spaces - 1
Symbols = Symbols + 2
return Spaces, Symbols

#za‘:izkiktkﬁmain pl’ogra_m 3tarts E"‘.E’."E R R R R R R R R d R R R R kR R R R

NumberOfSpaces = int (input())

Number0fSymbols = int (input({))

NumberCOfSpaces, NumberCfSymbols = AdjustValuesForNextRow (NumberOfSpaces, NumberOfSymbols)
| print (NumberOfSpaces) ’

| print (NumberOfSymbols)

ILn: &cal: 62

Figure 14.13 Multiple values returned from a Python subroutine
This way of treating a multiple of values as a unit is called a ‘tuple’. This concept is beyond the
scope of this book. You can find out more by reading the Python help files.

In VB.NET (Figure 14.14), the Byref keyword is placed in front of each parameter to be passed
by reference.

3 ConsoleApplicationt - Microsaft Visual Basic
Fle Edit View Project Debug Data Tools Window s =
idSa-dd 4 aBAiT2(9-0-ir aEES G0

752 Modulel
EModule Modulel
Dim NumberOfSpaces, NumberOfSymbols As Integer

= Sub AdjustvalussForNextRow(ByRef Spaces, ByRef Symbols)
Spaces = Spacas - 1
Symbols = Symbols + 2
End Sub

= Sub Main()
NumbarOfSpaces = Conscle.ReadLine()
NumberOfSymbols = Console.ReadLine()
AdjustValuesForNextRow(NumbarOfSpaces, NumberDfSymbols)
Conzole.WriteLine(NumberOfSpaces)
le.Writaline{NumberDfSymbels)
.ReadLine()

Con
End Sub

End Module

W% ~ 4

Figure 14.14 Parameters passed by reference to a VB.NET procedure

Chapter 14: Structured Programming

In Pascal (Figure 14.15), The keyword var is placed in front of the declaration of parameters
to be passed by reference.

B ProjectZdpr e B o
Proiect.?l - - = -
program Projectl: .:l

{$APPIYPFE CONSCLE}
uses
SysUtils:
var NumberCfSpaces, NumberOfSymbols : integer;

procedure AdjustValuesForMNextRow(var Spaces, Symbols : integer):

begin
Spaces := Spaces - 1;
Symbols := Symbols + 2:
end; =

// *****##**kmain pragram Starts here LR Rk E R
begin
ReadLn (NurkberCfSpaces) ;
ReadLn (NumberOf5ymbols) ;
AdjustValuesForNextRow (NumberCfSpaces, NumberOfSymbols):
WritelLn (NumberOfSpaces)
Writeln (NumberOfSymbols) ;

ReadLn:
end. .
] _vJ’J
| | 123 |Modfied [inset [\Code/ : I —

Figure 14.15 Parameters passed by reference to a Pascal procedure

TASK 14.04
1 Write program code to implement the structure chart from Figure 12.02 in Chapter 12
(for the average of two numbers).

EER i R iRl iR

2 Write program code to implement the structure chart from Figure 12.03 in Chapter 12
(for the number-guessing game).

3 Amend your program code from Task 14.02 to implement the interface shown in the
structure chart from Figure 12.05 in Chapter 12.

TENRTT T T R W

‘ 14.07 Putting it all together

The programs in this section are full solutions to the pyramid-drawing program developed in
Chapter 12 (Section 12.04).

The parameters of the subroutines have different identifiers from the variables in the main
program. This is done deliberately, so that it is quite clear that the parameters and local
variables within a subroutine are separate from those in the calling program or module.

If a parameter is passed by reference to a procedure, the parameter identifier within the
procedure references the same memory location as the variable identifier passed to the
procedure as argument.

| o
|
|

223

Cambridge International AS and A level Computer Science

The pyramid-drawing program in Python VB.NET and Pascal

Python SPACE = ' ' # constant to give a space a name
def InputMaxNumberOfSymbols():
Number = 0
while Number % 2 ==
print("How many symbols make the base?")
Number = int(input("Input an odd number: "))
return Number

def SetvValues():
Symbol = input("What symbol do you want to use? ")
MaxSymbols = InputMaxNumberOfSymbols()
Spaces = (MaxSymbols + 1) // 2
Symbols = 1
return Symbol, MaxSymbols, Spaces, Symbols

def OutputChars(Number, Symbol):
for Count in range (Number):
print(Symbol, end='')

def AdjustValuesForNextRow(Spaces, Symbols):
Spaces = Spaces - 1
Symbols = Symbols + 2
return Spaces, Symbols

def main():
ThisSymbol, MaxNumberOfSymbols, NumberOfSpaces, NumberOfSymbols = SetValues()
while NumberOfSymbols <= MaxNumberOfSymbols:
OutputChars (NumberOfSpaces, SPACE)
OutputChars (NumberOfSymbols, ThisSymbol)
print() # move to new line
NumberOfSpaces, NumberOfSymbols = AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)
main()
VB.NET |Module
Const Space = " " 'constant to give a space a name
Dim NumberOfSpaces, NumberOfSymbols As Integer
Dim MaxNumberOfSymbols As Integer
Dim ThisSymbol As Char

Sub InputMaxNumberOfSymbols(ByRef Number As Integer)
Do
- .WriteLine("How many symbols make the base?")
Write("Input an odd number: ")
Number = nsole.ReadLine()
Loop Until (Number Mod 2 = 1)
End Sub

Sub SetValues(ByRef Symbol, ByRef MaxSymbols, ByRef Spaces, ByRef Symbols)
Write("What symbol do you want to use? ")

Symbol = Cons .ReadLine()
InputMaxNumberOfSymbols (MaxSymbols)
Spaces = (MaxSymbols + 1) \ 2
Symbols = 1

End Sub

Chapter 14: Structured Programming

Sub OutputChars(ByVal Number, ByVal Symbol)
Dim Count As Integer
For Count = 1 To Number
L& . Write(Symbol)
Next
End Sub

Sub AdjustValuesForNextRow(ByRef Spaces, ByRef Symbols)
Spaces = Spaces — 1
Symbols = Symbols + 2

End Sub

Sub Main()
SetValues(ThisSymbol, MaxNumberOfSymbols, NumberOfSpaces, NumberOfSymbols)
Do
OutputChars(NumberOfSpaces, Space)
OutputChars(NumberOfSymbols, ThisSymbol)
e le.WriteLine() 'move to new line ‘
AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)
Loop Until NumberOfSymbols > MaxNumberOfSymbols
yle.ReadLine()
End Sub

End Module

Pascal |program Project2;

{$APPTYPE CONSOLE}

uses
SysUtils;
const Space = ' '; // constant to gIive a space a name
var NumberOfSpaces, NumberOfSymbols : integer;

var MaxNumberOfSymbols : integer;
var SymbolsThisSymbol : char;
procedure InputMaxNumberOfSymbols(var Number : integer);
begin
repeat
WriteLn('How many symbols make the base?');
Write('Input an odd number: ');
ReadLn(Number);
until Number MOD 2 = 1;
end;

i L) S

procedure SetValues(var Symbol : char; var MaxSymbols, Spaces, Symbols : integer);
begin

Write('What symbol do you want to use? ');

ReadLn(Symbol);

InputMaxNumberOfSymbols (MaxSymbols);

Spaces := (MaxSymbols + 1) DIV 2;
Symbols := 1;
end;

R T s R Y R e

Cambridge International AS and A level Computer Science

procedure OutputChars(Number : integer; Symbol : char);
var Count : integer;

begin
for Count := 1 to Number do
Write(Symbol);
end;

procedure AdjustValuesForNextRow(var Spaces, Symbols : integer);

begin
Spaces := Spaces - 1;
Symbols := Symbols + 2;
end;

// *kkEkAKK*RR main program starts here *#*tdkkkkkkkoksk
begin
SetValues(ThisSymbol, MaxNumberOfSymbols, NumberOfSpaces, NumberOfSymbols);
repeat
OutputChars(NumberOfSpaces, Space);
OutputChars (NumberOfSymbols, ThisSymbol);
Writeln; // move to new line
AdjustValuesForNextRow (NumberOfSpaces, NumberOfSymbols);
until NumberOfSymbols > MaxNumberOfSymbols;
ReadLn; // to keep the window open
end.

Discussion Point:

Can you see how the two procedures outputSpaces and outputSymbols have been
replaced by a single procedure outputchars without changing the effect of the program?

Summary

Declaration of subroutines (functions and procedures) is done before the main program body.
Calling a procedure is a program statement.

Calling a function is done within an expression, for example an assignment.

VB.NET and Pascal functions return exactly one value.

Parameters can be passed to a subroutine. This is known as the interface.

VB.NET and Pascal pass parameters by value, as a default, but can return one or more values via parameters if they are
declared as reference parameters.

In Python, parameters can only pass values into a subroutine. The only way to update a value of a variable in the calling
program is to return one or more values from a function.

When a subroutine is defined, parameters are the ‘placeholders’ for values passed into a subroutine.

Arguments are the values passed to the subroutine when it is called.

Chapter 14: Structured Programming

Exam-style Questions

1 Write program code for a procedure outputTimesTable that takes one integer parameter, n, and outputs the times
table for n. For example the procedure call outputTimesTable (5) should produce:

KX XX KX MM XX
(S0, I I W WE, B W WS
LT T A 1 R
N
o

O WW~JO0 U WN K

=

2 Write program code for a function isbivisible() that takes two integer parameters, x and y. The function is to
return the value True or False to indicate whether x is exactly divisible by y. For example, isDivisible (24, 6)
should return True and isDivisible(24, 7) should return False. [6]

3 Apoultry farm packs eggs into egg boxes. Each box takes six eggs. Boxes must not contain fewer than six eggs.

Write program code for a procedure EggsIntoBoxes that takes an integer parameter, NumberofEggs. The procedure
is to calculate how many egg boxes can be filled with the given number of eggs and how many eggs will be left over. The
procedure is to return two values as parameters, NumberOfBoxes and EggsLeftOver. [9]

e eedT®

Software Development

Learning objectives
By the end of this chapter you should be able to:

® show understanding of the design, coding and testing
stages in the program development cycle
E show understanding of how to write, translate, test and
run a high-level language program
= describe features found in a typical Integrated
Development Environment (IDE):
« for coding, including context-sensitive prompts
« forinitial error detection, including dynamic syntax
checks
« for presentation, including prettyprint, expand and
collapse code blocks
« for debugging, including: single stepping, breakpoints,
variables/expressions report window
m show understanding of ways of exposing faults in
programs and ways of avoiding faults

a_ar/

locate and identify the different types of errors (syntax
errors, logic errors and run-time errors)

correct identified errors

choose suitable data for black-box testing

understand the need for stub testing

perform white-box testing by selecting suitable data and
using a trace table

identify any error(s) in the algorithm by using the
completed trace table and amend the algorithm if
required

make amendments to an algorithm and data structure in
response to specification changes

analyse an existing program and make amendments to

enhance functionality.

D _ A

Chapter 15: Software Development

15.01 Stages in the program development cycle

Problem solving
The first step in solving a problem is to define it clearly. This is usually done in structured
English (See Chapter 11, Section 11.02) and is known as a ‘specification’.

The next step is planning a solution. Sometimes there is more than one solution. You need to
decide which is the most appropriate.

The third step is to decide how to solve the problem:

o bottom-up: start with a small sub-problem and then build on this

» top-down: stepwise refinement using pseudocode, flowcharts or structure charts.

Design

You have a solution in mind. How do you design the solution in detail? Chapter 11 (Section
11.04) showed that an identifier table is a good starting point. This leads you to thinking
about data structures: do you need a 1D array or a 2D array to store data while it is
processed? Do you need a file to store data long-term?

Plan your algorithm by drawing a flowchart or writing pseudocode.

Coding

When you have designed your solution you may need to choose a suitable high-level
programming language. If you know more than one programming language, you have to
weigh up the pros and cons of each one. Looking at Chapter 13, you need to decide which
programming language would best suit the problem you are trying to solve and which
language you are most familiar with.

You implement your algorithm by converting your pseudocode into program code.
Depending on your editor you may have some helpful facilities (for features to expect see
Section 15.02).

Some syntax errors may be flagged up by your editor, so you can correct these as you go
along. A syntax error is a ‘grammatical’ error, in which a program statement does not follow
the rules of the high-level language constructs.

Syntax error: an error in which a program statement does not follow the rules of the language

Translation

Some syntax errors may only become apparent when you are using an interpreter or
compiler to translate your program. Interpreters and compilers work differently (see Chapter
7, Section 7.05, and Chapter 20, Section 20.05). When a program compiles successfully, you
know there will be no syntax errors remaining.

This is not the case with interpreted programs. Only statements that are about to be
executed will be syntax checked. So, if your program has not been thoroughly tested, it may
even have syntax errors remaining.

Figure 15.01 gives an example of how a compiler flags a syntax error. The compiler stops
when it first notices a syntax error. The error is often on the previous line. The compiler can’t
tell until it gets to the next line of code and finds an unexpected keyword.

Cambridge International AS and A level Computer Science

B Projetl.dpr -‘I glz‘_j

Proieth’ - '4- R

program Project2;

I»

nses

SysUtils; —
const Space = ' ': 2The;is m|55|ng
var NumberCfSpaces, NumberCfSymbols : integer s on the line above

'u'ari MazNumberOfSymbols : int b
var symbol : char;

procedure InputMaxNumberOfSymbols|var Number : integer):
begin
repeat
Writeln('How many symbols make the base?');
Write('Input an odd number: '};
ReadLn (Number) ;
until Number MOD 2 = 1;
end:;

1 The compiler gives an error
message with a suggestion

A | 86 | [Insert / \Code/ of what might be wrong
‘.aii [Errar] Project2.dpr(9): ;' espected but WYAR' found 5
| &
\Build/

Figure 15.01 Syntax error in a Pascal program

Execution

When you start writing programs you may find it takes several attempts before the program
compiles. When it finally does, you can execute it. It may ‘crash’, meaning that it stops
working. In this case, you need to debug the code. The program may run and give you some
output. This is the Eureka moment: ‘it works!!!ll’. But does the program do what it was meant
to do?

Testing

Only thorough testing can ensure the program really works under all circumstances (see
Sections 15.03 to 15.05).

Discussion Point:

Do you think that all programs can be totally error-free?

15.02 Features found in a typical Integrated Development
Environment (IDE)

Prettyprinting

Prettyprint refers to the presentation of the program code typed into an editor. It includes
indentation, colour-coding of keywords and comments.

Chapter 15: Software Development

Python

IDLE (see Figure 15.02) automatically colour-codes keywords, built-in function calls,
comments, strings and the identifier in a function header. Indentation is automatic. When
you need to unindent after a block of statements, delete the spaces provided.

ProcedureExample.py - C/isers{Sylvia/ ity Prograni siF

File Edit Format Run Options Windows Help

def CutputSymbols (NumberOfSymbols, Symbol): el
for Count in range (NumberOfSymbols) :
print (Symbol, end='"')
print ()

F AEmwasss® main program Starts here *FFRERRRRRRRRR
OutputSymbols (5, '*'}

Figure 15.02 Prettyprintin IDLE

VB.NET

The editor provided by Visual Studio (see Figure 15.03) automatically colour-codes keywords,
object references (such as console), comments and strings. The editor automatically indents
blocks of code correctly.

B3 consoleApplication1 - Micrasoft Visual Basie 2010 Exprose
ﬁe Edt Vew Project Debug Data Took Window Help

,;ld_l'ﬂﬂ!& aalalzoo-e-r J"C"”!?‘@"
Modulel.vb* X

4% Modulel ~| @ OutputSymbols
EModule Modulel

=) Sub OutputSymbols(ByVal NumberOfSymbols, ByVal Symbol)
| Dim Count As Integer
For Count = 1 To NumberOfSymbols
Console.Write(Symbol) ' stay on the same line
Next
Console.WriteLine() ' move to a new line
End Sub

Sub Main()

OutputSymbols(5, "*")

Console.ReadLine() ' keep the Run Window open
End Sub

End Module
100% ~ 4|

Error List

Figure 15.03 Prettyprint in Visual Studio

Cambridge International AS and A level Computer Science

Pascal

This Delphi editor (see Figure 15.04) emboldens keywords and colour-codes strings,
comments and system directives (such as {appTYPE CONSOLE}). When the programmer
indents a line of code, the next line is automatically indented by the same amount.

B Project2 dpr s : S R
F‘reiiect2! = = -
program Project2; =

uses
SysUtils:;

procedure OutputSymbols (NumberOfSymbols : integer; Symbol : char):
var Count : integer;

* begin
* for Count := 1 to NumberOfSymbols do el
* Write (Symbol):
+ WriteLn;
@ end;
Jf EEEkddktttimain program starts here #**#iiisissds
+ |begin
* CutputSymbols (5, "%*');
* ReadLn;

+ |end. =
l l 21: 14 l [Inse:l \Code/ - : .

Figure 15.04 Prettyprint in the Delphi editor

Context-sensitive prompts

This feature displays hints or a choice of keywords and available identifiers appropriate at the
current insertion point of the program code.

Figure 15.05 shows an example of the Visual Studio editor responding to text typed in by the
programmer.

¥ consoleApplication1 - Microsoft Visual Basic 2010 Express
File Edit View Project Debug Data Tools Window Help

| Modulel.vb* X
; 4% Module1 -g ¥ OutputChar
Sub SetValues(ByRef Symbol, ByRef MaxSymbols, ByRef Spaces, ByRef Symbols)
ole.Write(“What symbol do you want to use? ")
= Console.ReadLine()
axNumberOfSymbols (MaxSymbols)
= (MaxSymbols + 1) \ 2
s =1

1 When you type ‘f’, a pop-up
list appears, displaying all
possible keywords and

identifiers starting with ‘F’
OutputChar(Byval Number, ByVal Symbol)

Dim Count As Integer
£

2 Choose the
required keyword

-~ i FirstWeekOfYear
@ Fix
“i% FlagsAttribute
& For For statement
= For Each Introduces a loop that is iterated a specified number of times.
Note: Tab twice to insert the For snippet.

B Sub i ForeignKeyConstraint
“ Format arofSpaces, NuWPs)

¥ FormatCurrency

Hioow - @ FommnataTime = 3 An explanation of the chosen
~I Commen S8 construct appears. Pressing
the TAB key twice will put the
FOR loop construct into the cody

Figure 15.05 Context-sensitive prompts in the Visual Studio editor

Chapter 15: Software Development

In Figure 15.06, the Python editor, IDLE, shows the required parameters after a function
identifier has been typed in by the programmer.

*procedure3.py - C:/Users/Sylvia/My Programming/CIE Book /Ch13 /pythe
Fle Edit Format Run Options Windows Help
SPACE = ' ' # constant to give a sSpace 2 name "l
def InputMaxNumberOfSymbols () :
Number = 0
while Number % 2 == 0:
print ("How many symbols m
Number = :L?lt(l"ip..t(” nput ar
urn Number

def SetValues():
Symbol = input ("What symbol do you want to use? "}
MaxSymbols = InputMaxNumberOfSymbols ()
Spaces = (MaxSymbols + 1) // 2
Symbols = 1
return Symbol, MaxSymbols, Spaces, Symbols

Pop-up text shows that print list elements
are separated by commas and the

£ CutputChar (Number, Symbol}: parameters that you can specify (the
for Count in range (Number) : separator (sep) and how a line should end)
print (
print (value, ..., sep=' ', end='\n', file=sys. stdout)l

e

Figure 15.06 Context-sensitive prompts in IDLE

Dynamic syntax checks

When a line has been typed, some editors perform syntax checks and alert the programmer to errors.

Figure 15.07 shows an example of the Visual Studio editor responding to a syntax error.

= ConsoleApplication1 - Microsoft Visual Basic 2010 Express
Fie Edi: View Pm;ed Debug ~ Data Tooks thow g

X

4 Module1
=Module Modulel
| Const Space := " " ' constant to give a space a name

‘; Dim Number'Of] End of statement expected. is As Integer
1 Dim MaxNumbe

Dim Symbol As Char
100% ~ 4|

The blue underline shows that
there is a syntax error.

As you move the mouse

Error List pointer over different parts of
| theline of code, the editor will
Col56 display explanations.

Here the mouse pointer

hovered under the := symboy

= N TN T T W W R T W Ay R T R T R Y - WY - A N L _— e N __—_y e T ey
& =
3 i
< h
I
1!
I }
I
J
; l

Figure 15.07 Dynamic syntax check in the Visual Studio editor

Expanding and collapsing code blocks
When working on program code consisting of many lines of code, it saves excessive scrolling
if you can collapse blocks of statements.

Figure 15.08 shows the Visual Studio editor window with the procedures collapsed, so the
programmer can see the global variable declarations and the main program body. The procedure
headings are still visible to help the programmer supply the correct arguments when calling one of
] these procedures from the main program.

Cambridge International AS and A level Computer Science

I ConsoleApplication1 - Microsoft Visual Basic 2010 Express

Modulel.vb X

4% Module1
EModule Modulel
Const Space = constant to give a space a name
Dim NumberOfSpaces, NumberOfSymbols As Integer
Dim MaxNumberOfSymbols As Integer
Dim Symbol As Char

womo1

1Sub InputMaxiumberOfSymbols (ByRef Number As Integer) ...

ISub SetValues(ByRef Symbol, ByRef MaxSymbols, ByRef Spaces, ByRef Symbol

OutputChars(ByVal Number, ByVal Symbol) ...

AdjustValuesForNextRow(ByRef Spaces, ByRef Symbols) ...

Main()
SetValues(Symbol, MaxNumberOfSymbols, NumberOfSpaces, NumberOfSymbols)
Do
OutputChars(NumberOfSpaces, Space)
OutputChars (NumberOfSymbols, Symbol)
Console.WriteLine() ' move to new line
AdjustValuesForNextRow(NumberOfSpaces, NumberOfSymbols)
Loop Until NumberOfSymbols > MaxNumberOfSymbols
Console.ReadlLine()
End Sub

End Module

100% ~ 4|

Error List

Ready

Figure 15.08 Collapsed code blocks in the Visual Studio editor

TASK 15.01

Investigate the facilities in the editors you have available. If you have a choice of editors, you
may like to use the editor with the most helpful facilities.

15.03 Testing strategies

Finding syntax errors is easy. The compiler/interpreter will find them for you and usually gives
you a hint as to what is wrong.

Much more difficult to find are logic errors and run-time errors. A run-time error occurs when
program execution comes to an unexpected halt or ‘crash’ or it goes into an infinite loop and ‘freezes.

Logic error: an error in the logic of the solution that causes it not to behave as intended
Run-time error: an error that causes program execution to crash or freeze

Both of these types of error can only be found by careful testing. The danger of such errors is that
they may only manifest themselves under certain circumstances. If a program crashes every time it
is executed, it is obvious there is an error. If the program is used frequently and appears to work until

Chapter 15: Software Development

a certain set of data causes a malfunction, that is much more difficult to discover without perhaps
serious consequences.

Stub testing

When you develop a user interface, you may wish to test it before you have implemented all the facilities. You can write
a ‘stub’ for each procedure (see Figure 15.09). The procedure body only contains an output statement to acknowledge
that the call was made. Each option the user chooses in the main program will call the relevant procedure.

Modulel.wb X

4 Module1
ElModule Medulel
| Dim MenuChoice As String
Dim ProgramEnd As Boolean = False

Showtlenu() ...

EntertlewStudent()
Console.WriteLine(“EnterNewStudent routine called™)
Sub

AmendDetails()

Conscle.Writeline("AmendDetails routine called")
Sub

Printlist()

Console.Writeline("PrintList routine called")
Sub

‘SearchByl'léVmey()]

Censole.Writeline("SearchBylame routine called")
Sub

Main(}
Do
ShowMenu()
MenuChoice = Conscle.Readline()
Select Case MenuChoice
Case "1"
EnterlewStudent()
Case “2"
AmendDetails()
Case "3"
Printlist()
Case "4"
SearchByName(}
Case "5"
ProgramEnd = True
Case Else
Censele Writeline("Invalid choice. Try again™)
End Select
Loop Until ProgramEnd

End Sub

| End Module

wose - 4

Ln 22

Figure 15.09 VB.NET stub testing

Black-box testing
As the programmer, you can see your program code and your testing will involve knowledge
of the code (see the next section, about white-box testing).

As part of thorough testing, a program should also be tested by other people, who do not see
the program code and don’t know how the solution was coded.

Cambridge International AS and A level Computer Science

Such program testers will look at the program specification to see what the program is
meant to do, devise test data and work out expected results. Test data usually consists of
normal data values, boundary data values and erroneous data values.

The tester then runs the program with the test data and records their results. This method of
testing is called black-box testing because the tester can’t see inside the program code: the
program is a ‘black box’.

Where the actual results don’t match the expected results, a problem exists. This needs
further investigation by the programmer to find the reason for this discrepancy and correct
the program (see Section 15.06). Once black-box testing has established that there is an
| error, other methods (see Sections 15.04 and 15.05) have to be employed to find the lines of
| code that need correcting.

| Test data: carefully chosen values that will test a program
| Black-box testing: comparing expected results with actual results when a program is run
\

White-box testing

How can we check that code works correctly? We choose suitable test data that checks every
path through the code.

236 White-box testing: testing every path through the program code

| WORKED EXAMPLE 15.01

White-box testing of pseudocode

This is the pseudocode from Worked Example 11.02 in Chapter 11:

INPUT Numberl
INPUT Number2
INPUT Number3
IF Numberl > Number2

THEN // Numberl is bigger
IF Numberl > Number3
THEN
OUTPUT Numberl
ELSE
OUTPUT Number3
ENDIF
ELSE // Number2 is bigger
IF Number2 > Number3
THEN
OUTPUT Number2
ELSE
OUTPUT Number3
ENDIF

ENDIF

Chapter 15: Software Development

To test it, we need four sets of numbers with the following characteristics:

I o Thefirst number is the largest.

3 o Thefirst number larger than the second number; the third number is the largest.

g e Thesecond numberis the largest.

F e Thesecond numberis larger than the first number; the third number is the largest.

Note that it does not matter what exact values are chosen as test data. The important point
is that the values differ in such a way that each part of the nested 1F statement is checked.

i Table 15.01 lists four sets of test data and the results from them. The parts of the algorithm
; not entered for a particular set of data are greyed out. This makes it easier to see that each
b part has been checked after all four tests have been done.
i Line of algofithm Test1 Test 2 Test3 Test4
) INPUT Numberl 15 12 i 8
I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>