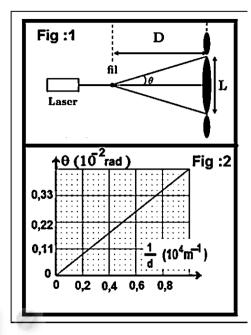
Niveau : 2BACOFTD de révision globalePr. Alaeddine ABIDAMatière :PCPropagation d'une onde lumineuse0696307274

- **1.** Une onde lumineuse monochromatique a une fréquence $f = 4,5.10^{14} Hz$.
- **1.1.** Quelle est sa longueur d'onde λ_n dans le vide .
- 1.2. Cette onde lumineuse est-elle visible par l'œil humain? si oui quelle couleur lui est associée.
- 2. Cette onde lumineuse se propage maintenant dans l'eau.
- 2.1. Sa célérité est-elle modifiée .si oui, indiquer comment par rapport à sa célérité dans le vide.
- **2.2.** Sa couleur sera –t-elle modifié .
- 2.3. Sa longueur d'onde sera-t-elle modifiée.
- **2.** On éclaire une fente fine de largeur a par un faisceau de lumière monochromatique de longueur d'onde λ_0 dans le vide.
- **2.1.** Décrire la figure obtenue sur un écran placé au- delà de la fente, perpendiculairement au faisceau lumineux. Comment appelle-t-on ce phénomène.
- **2.2.** On remplace la fente par un fil de diamètre a: la figure est-t-elle modifiée.
- 2.3. On remplace la fente par un trou : la figure est-t-elle modifiée.
- **3.** Pour étudier la phénomène de la diffraction d'une onde lumineuse de longueur d'onde dans le vide $\lambda = 563nm$ œ, on utilise une fente de largeur $a = 20 \, \mu m$.
- **3.1.** Dessiner la figure de diffraction obtenue si la fente est horizontale.
- **3.2.** Faire un schéma du montage et représenter l'écart angulaire θ caractéristique de la tache centrale de diffraction.
- **3.3.** Indiquer la relation entre θ , λ et a . Calculer θ .
- **3.4.** On modifie la largeur de la fente: $a' = 100 \mu m$. Dessiner la nouvelle figure de diffraction en précisant ce qui a été modifiée. Justifier l'allure de la figure sans calcul.
- **4.** Un faisceau laser de longueur d'onde $\lambda=630nm$ éclaire une fente de largueur a .On place un écran perpendiculaire à la direction du faisceau, à une distance D=2m de la fente. On observe une figure de diffraction dont la tache centrale a une larguer L=7cm.
- **4.1.** Représenter le montage et faire apparaître l'écart angulaire θ entre le milieu de la tache centrale et le centre de la tache sombre adjacente.
- **4.2.** θ est un angle petit ($\tan \theta \approx \theta$), quelle est la relation entre θ , L et D. Calculer θ .
- **4.3.** Quelle est la relation entre θ , λ et a. En déduire la largeur de la fente a.
- **4.4.** On éclaire maintenant la tente précédant par un autre laser de lumière monochromatique de longueur d'onde dans le vide λ ', la figure de diffraction observée présente une tache centrale de largeur L'=8,4cm. Déduire de cette mesure la longueur d'onde λ '.
- **5.** Une onde lumineuse émise par le laser rouge-néon, utilisé dans les lycées, dont la longueur d'onde dans le vide vaut : $\lambda = 633nm$.
- **5.1.** Calculer la fréquence de l'onde lumineuse émise par le laser rouge-néon.
- **5.2.** Quelle est la longueur d'onde de l'onde lumineuse lorsqu'elle se propage dans l'eau dont l'indice de réfraction, vaut $n_{eau}=1,33$. On donne $C=3.10^8 m/s$.
- 5.3. Calculer par deux méthodes la célérité de cette lumière dans l'eau.

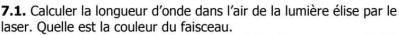

Soutien scolaire
Pr. Alaeddine ABIDA
Physique Chimie

0696307274

6. Une lumière monochromatique dont la longueur d'onde λ émit par une source laser rencontre verticalement de fins fil de diamètre d. On voit l'aspect de diffraction obtenu sur un écran à une distance D de fil, nous mesurons la largeur L de la tache centrale, et nous calculons l'écart angulaire entre le centre de la tache centrale et le 1^{er} extinction pour un fil particulier.(**Fig :1**). ci-contre :

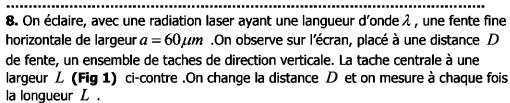
On donne
$$C = 3.10^8 m/s$$
; $\tan \theta \approx \theta$; $d = \frac{\lambda}{2}$ et $D = 2m$.

- **6.1.** A partir de la courbe **(fig :2)** ci-contre déterminer la valeur de la longueur d'onde λ .
- **6. 2.** Déterminer la fréquence ν de l'onde.
- **6.3.** Donner une relation entre les grandeurs suivantes d; D; θ et λ .
- **6.4.** Calculer la largeur L de la tache centrale.



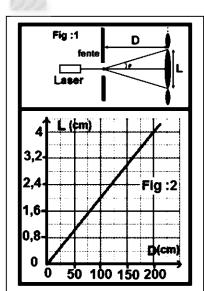
\$d1

Laser


7. Un faisceau laser , utilisé par un conférencier, émet un faisceau lumineux de fréquence $v = 4,22.10^{14}\,Hz$ et de

puissance P=2mW par une ouverture circulaire de diamètre $d_1=2mm$. Il produit une tache lumineuse de diamètre $d_2=10mm$ sur un écran situé à la distance D=10m de l'ouverture.

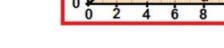
- **7.2.** Calculer la valeur de l'ongle $\,lpha\,$ appelé la divergence $\,lpha\,$ du faisceau
- **7.3.** Quelle est l'aire A de la tache lumineuse obtenue sur l'écran.
- **7.4.** On admet que toute la puissance émise est transportée jusqu'à l'écran. Calculer la puissance lumineuse par unité de surface reçue par l'écran.


7.5. Le faisceau est dangereux pour l'œil humain si la puissance reçue par unité de surface est supérieure à $20W/m^{-2}$. Conclure. **On donne** : $C = 3.10^8 m/s$.



La courbe de la figure 2 donne les variations de $\,L\,$ en fonction de $\,D\,$.

- **8.1.** Etablir l'expression de L en fonction λ , a et D . $(\tan \theta \approx \theta)$.
- **8.2.** En exploitant la courbe de la figure2 , montrer que $\lambda = 600 nm$.
- **8.3.** On fixe l'écran à une distance de la fente, et on remplace la fente par un cheveu fin de diamètre d. On obtient alors, avec la même radiation de longueur λ , une tache centrale de largeur $L_{\rm l}=3cm$. Déterminer le diamètre d du cheveu.



On éclair le fil à l'aide d'une laser et on observe sur l'écran des taches de diffraction de la lumière. On appelle ${\cal L}\,$ la largeur de la tache centrale.

- 9.1. Faire un schéma du montage pour réaliser cette expérience.
- **9.2.** Quelle est la nature de la lumière qui mise en évidence par le phénomène de diffraction de la lumière.
- **9.3.** Déterminer l'expression de la largueur L en fonction de λ , D et a .

sachant que l'écart angulaire $\theta = \frac{\lambda}{a}$ et $(\tan \theta \approx \theta)$.

(mm)

56

28

9.4. On utilise des fils de différentes diamètre et on mesure pour chaque fil la largeur L de la tache centrale.

On obtient la courbe représentée dans la figure ci-contre qui représente la variation de L en fonction de $\frac{1}{a}$

On exploitant la courbe de la figure ci-contre déterminer la valeur de la longueur de l'onde lumineuse λ .

9.5. En réalisant la même expérience et en posant à la place exactement du fil un cheveu de diamètre d. La mesure de la largeur de la tache centrale a donné le résultat suivant : L=42mm. Déterminer en utilisant la courbe de la figure2 le diamètre d du cheveu.

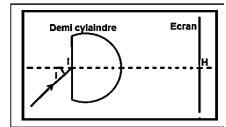
- **10.** Un laser Y.A.G (yttrium Aluminium Garnet) utilisé en médecine possède, dans le vide une longueur d'onde $\lambda_0 = 1,06 \mu m$.
- 10.1. Cette onde lumineuse est-elle visible. Dans quelle domaine du spectre se situé-t-elle.
- 10.2. Calculer sa fréquence .
- **10.3.** Calculer la longueur d'onde λ_1 de ce laser dans un verre flint d'indice $n_1 = 1,58$.
- **10.4.** Dans un verre crown, la longueur d'onde de ce laser est $\lambda_2 = 716nm$.Calculer l'indice de réfraction de ce verre.

11. Une radiation mise par une lampe à vapeur de sodium se propage dans l'air d'indice de réfraction $(n_{air} = 1)$ puis pénètre dans l'eau d'indice de réfraction $(n_{eau} = 1,33)$, la fréquence de cette radiation est égale à $v = 5,09.10^{14} Hz$

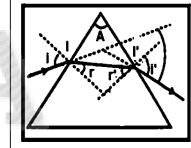
On rappelle que la célérité de la lumière dans le vide est égale à $C = 3.10^8 m/s$.

- **11.1.** Calculer la longueur d'onde λ_1 de cette radiation dans l'air.
- 11.2. Calculer la célérité de la lumière dans l'eau.
- **11.3.** En déduire la longueur d'onde λ_2 de cette radiation dans l'eau.
- **11.4.** Calculer la variation relative de longueur d'onde lors du passage de l'air à l'eau.

Pr. Alaeddine ABIDA Physique Chimie 0696307274

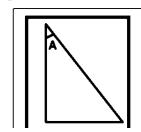

Soutien scolaire

- **12.** Une lumière polychromatique constituée de deux radiations de longueurs d'onde $\lambda_1 = 589,3nm$ et
- $\lambda_2=768,2nm$ rencontre la surface horizontale d'un volume d'eau en faisant un angle de 5° par rapport à la verticale.
- **12.1.** Dans l'hypothèse où l'eau est constituée comme milieu non dispersive $(n_{eau} = 1, 33)$, calculer l'angle que le rayon réfracté forme avec la verticale.
- **12.2.** répondre à la même question dans l'hypothèse où l'eau est un milieu dispersif sachant que $n_{1(eau)}=n(\lambda_1)=1,33$ et $n_{2(eau)}=n(\lambda_2)=1,3289$.


13. Un rayon lumineux (R_1) monochromatique de fréquence $v_1 = 3,8.10^{14} Hz$ arrive sur la face plane d'un demi cylindre en verre transparent au point d'incidence I sous un angle d'incidence $i = 60^{\circ}$. Le rayon (R_1) se réfracte au point I et arrive à l'écran vertical au point A .(figure ci-contre).

On fait maintenant arriver un rayon lumineux monochromatique (R_2) de fréquence $v_2 = 7,50.10^{14}$ Hz sur la face

plane du demi cylindre sous le même incidence $i=60^\circ$. On constate que le rayon (R_2) se réfracte aussi au point I mais il arrive à l'écran vertical en un autre point B de tel sorte que l'angle entre les deux rayons réfractés est $\alpha=0,563^\circ$. Données : L'indice de réfraction du verre pour le rayon de fréquence v_1 est $n_1=1,626$; L'indice de réfraction de l'air est $n_0=1$ et la célérité de la lumière dans le vide est $C=3.10^8\,m/s$.


- **13.1.** Montrer que la valeur de l'indice de réfraction du verre pour le rayon lumineux de fréquence v_2 est $n_1 = 1,652$.
- **13.2.** Trouver l'expression de la longueur d'onde λ_2 du rayon lumineux de fréquence ν_2 dans le verre ,en fonction de C , n_2 et ν_2 .Calculer la valeur de λ_2 .
- **14.** Pour déterminer λ' la longueur d'onde lumineuse dans le verre on envoie un faisceau lumineux monochromatique émise par le laser à la surface d'un prisme en verre d'indice de réfraction n.
- **14.1.** Le rayon lumineux arrive sur la face (1) du prisme avec un angle d'incidence i, puis il émerge de l'autre face avec un angle d'émergence i telle que i = i (incidence minimale).
- a- rappeler les relations du prisme.
- **b-**Trouver l'expression de l'angle A en fonction de r .
- **c-**Trouver l'expression de la déviation D en fonction de A et i .
- **d-** Donner l'expression de la longueur d'onde λ ' en fonction de λ_0 , A l'angle de prisme et l'angle de déviation $D=39^\circ$.
- **14.2.** Qu'observe-t-on si on remplace la lumière monochromatique par la lumière blanche. Quel est le nom de ce phénomène. Données :La longueur d'onde dans le vide est $\lambda_0=665,4nm$, l'angle du prisme $A=60^\circ$ et l'angle de déviation $D=39^\circ$

- **15.** On envoie sur un prisme de verre un rayon de lumière blanche, celui-ci traverse le dioptre air-verre à une incidence normale mais il sera réfracté sur le dioptre verre-air.
- On considère la radiation rouge et la radiation bleue contenues dans ce rayon de lumière blanche.

On connait les indices de réfraction du verre pour ces radiations : $n_{range} = n_R = 1,5$ et $n_{hlene} = n_R = 1,6$.

- 13.1. Compléter le schéma de la figure ci-contre.
- 13.2. Pourquoi le rayon ne se réfracte pas au niveau du dioptre air-verre.(justifier par calcul)
- **13.3.** Calculer i'_{R} et i'_{R} les angles de réfraction à la sortie du prisme.
- **13.4.** Construisez, sur le schéma les rayons rouge et bleu à la sortie du prisme.(justifier par calcul)
- 13.5. Calculer l'angle que fait le rayon bleu avec le rayon rouge à la sortie du prise.

