Pointers

01

Memory

02

Creation & Usage

03

Visualization



Memory

| Function calls in Go are "pass by value®

| A copy of each function argument is made, regardless of size

| Potentially slow for large data structures
| More difficult to manage program state

| This can be changed by using pointers




Pointers

| Pointers are variables that "point to" memory
| The value of the variable itself is a memory address
| Accessing the data requires dereferencing the pointer

| This allows changing values that exist elsewhere in the
program




Creating Pointers

| Asterisk (*) when used with a type indicates the value is a
pointer

| Ampersand (&) creates a pointer from a variable

value := 10 value := 10

valuePtr := &value
var valuePtr *int

valuePtr = &value



Using Pointers

| Asterisk (*) when used with a pointer will dereference the
pointer

| This provides access to the actual data it points to

func dincrement(x *int) {
*X += 1

}

1 := 1
increment (&1)



Pointers Visualized

Ox07A
0x07D

Data

(998

ol7/Al

big := 998
bigPtr := &big

Ox07A ‘9 9 9\ *bigPtr += 1

i
<
S

3




Recap

| Pointers are used to modify data that exists outside of a
function

| Asterisk (*) on a type indicates the type is a pointer
| Ampersand (&) creates a pointer
| Asterisk (*) on a variable will dereference the pointer

| Operations on a dereferenced pointer occur on the original
data



