
Synchronization

MutexAbout Wait Groups



Managing data across multiple goroutines can become
problematic and hard to debug

Synchronization solves this issue, and enables:

Multiple goroutines can change the same data leading to
unpredictable results
Using channels to communicate is not always ideal

Waiting for goroutines to finish
Prevents multiple goroutines from modifying data
simultaneously



A mutex is short for mutual exclusion
Provides a way to lock and unlock data

Locked data cannot be accessed by any other goroutine until
it is unlocked

Helps reduce bugs when working with multiple goroutines

While locked, all other goroutines are blocked until the mutex
is unlocked

Execution waits until lock is available, or if select is used







defer can be used to ensure the mutex gets unlocked



Wait groups enable an application to wait for goroutines to
finish
Operates by incrementing a counter whenever a goroutine is
added, and decrementing when it finishes

Waiting on the group will block execution until the counter is 0





Data can be safely accessed across goroutines using a mutex
Locking a mutex prevents other goroutines from locking it
Always remember to unlock a mutex

It is possible to wait for goroutines to finish with a wait group
Add 1 per goroutine to the wait group, then use .Done() in
each goroutine to decrement the group counter

Using defer makes it simple to unlock mutexes and when
working with wait groups


