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Text Encoding

| Textual data in Go uses UTF-8 encoding

| Encoding is a way to represent thousands of different
symbols using code pages

| Code pages are tables which use the first few bytes of
data to determine which page to use

| Each symbol in the code page is called a code point
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Runes

| Text is represented using the rune type

| Similar to char in many other programming languages

| Rune is an alias for int32 (32-bit integer)

| Always a number: will print numeric value unless proper
formatting is specified

| A rune can represent any symbol

| Letters, numbers, emoji, etc
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Strings

| A string is the data type for storing multiple runes

| Strings are just an array of bytes and a string length

| There is no null termination with a Go string
| When iterating a string, iteration occurs over bytes
| Bytes are not symbols

| Special iteration required to retrieve runes/symbols
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Creation

| Runes: "a' '"R" '7" "\n' ‘0" "3 "4

| Strings: "Amount 1is €22\n"
"k"

| Raw Literal: Let's code in "Golang!'"\n



Recap

| Textin Go is encoded using UTF-8

| The rune type can represent any individual symbol
| runeis an alias for int32
| They are created using single quotes:"
| The string type contains a series of symbols as bytes

| Strings are not null terminated

| They are created using double quotes: *

| Raw literals are created using backticks:



