Loops

01

Basic Loop

02

While Loop

03

Infinite Loop



Looping
| Itis often required to repeat actions in code more than once
or to iterate over the items in a collection

| These are accomplished using loops

| Go uses the for keyword for repetition



for: Basic

initialization post statement

1= l

for 1 s 1 < 103 1++ {
} |
condition

| Post statement is executed on each loop iteration

| Execution continues as long as the condition is true



for: While

for 1 < 10 {

1++

| Using loops in this manner require explicitly updating the
condition within the loop

| Failure to do so results in an infinite loop



for: Infinite

| Infinite loops are usually used for servers

| Use the break keyword to exit (break out of) the loop

for { for {

1f somethingHappened {
1 break

}



Continue

| Use the continue keyword to skip the current loop

for i := 03 i < 103 i++ {
if 1%2 == 0 {
continue

}
fmt.Println(1i)



Recap

| The for keyword creates a loop
| Use the break keyword to exit the loop on a specific condition

| The initialization variable can be used only within the loop
block

| The post statement executes every iteration
for 1 := 03 1 < 103 1i++ { for i < 10 { for {

1 1++ 1



