Interfaces

01

About

02

Implementation

03

Usage



Interfaces

| The type of data expected by a function must be specified in
the function parameters

| Don't always know the type ahead of time

| Interfaces allow specifying behaviors of a type instead of the
type itself

| This allows functions to operate on more than one type of
data



Creation & Implementation

type MyInterface interface {
Functionl()
Function2(x int) 1int

type MyType 1int

func (m MyType) Functionl() {}

func (m MyType) Function2(x int) int {
return x + X

}

func execute(i MyInterface) {
i.Functionl()

}



Notes

| Interfaces are implicitly implemented

| When a type has all receiver functions required by the
interface, then it is considered implemented

| Functions operating on interfaces should never accept a
pointer to an interface

| Caller determines whether pointer or value (copy) is used

| Prefer multiple interfaces with a few functions over one large
interface




Pass By Value vs Pointer

type MyType 1int

func execute(i MyInterface) {
1.Functionl()

}

m := MyType(1l)
execute(m)
execute(&m)



Pointer Receiver Implementation

| When implementing a pointer receiver function, all functions
accepting the interface will only accept pointers

| If self-modification is needed, implement all interface
functions as receiver functions for consistency

type MyType int func execute(i MyInterface) {
i.Functionl()
func (m *MyType) Functionl() {} }
func (m MyType) Function2(x int) int { m := MyType(1)
return x + X execute(m)

1 execute(&m)



Pointer Receiver Implementation

type MyType 1int

func (m *MyType) Functionl() {}

func (m MyType) Function2(x int) int {
return X + X

}

func (m *MyType) Functionl() {}
func (m *MyType) Function2(x int) int {
return X + X

}



Example

type Resetter interface {

Reset()
}
type Player struct {

health int

position Coordinate player := Player{50, Coordinate{5, 5}}
} fmt.Println(player)

Reset(&player)

func (p *Player) Reset() { fmt.Println(player)

p.health = 100
p.position = Coordinate{0,0}

¥

func Reset(r Resetter) {
r.Reset()

¥



Access Implementing Type

| It is sometimes needed to access the underlying type that
implements an interface

| Call functions, make modifications, etc

func ResetWithPenalty(r Resetter) {
if player, ok := r.(Player); ok {
player.health = 50
} else {
r.Reset ()

}



Recap

| Interfaces allow functions to operate on more than one data
type
| Interfaces are implicitly implemented

| Create receiver functions matching interface function
signatures

| No need to use pointers to interfaces in function parameters
| Use a pointer at the call site

| If a pointer receiver function is implemented, then the type
can only be used as a pointer in function calls



