ommunication Chan



HELWLEE

01

About

02

Send / Recelve

03

Selection



Channels

| Channels offer bidirectional communication
| Conceptually the same as a two-ended pipe:
| Write data in one end and read data out the other
| This is also called sending and receiving
| Utilizing channels enables goroutines to communicate:
| Can send/receive messages or computational results

| Channel ends can be duplicated across goroutines



Visual

N CWASTL Read / Receive
Msg BB \’ r) B Msg

B—-0808




Multiple Receive Ends

Read / Receive

L2008
Write / Send o ?

<00 .
“>oom



Creation & Usage

channel := make(chan int)

go func() { channel <- 1 }()
go func() { channel <- 2 }()
go func() { channel <- 3 }()

first := <-channel
second := <-channel
third := <-channel
fmt.Println(first, second, third)



Detalls

| Channels can be buffered or unbuffered

| Unbuffered channels will block when sending until a reader is
available

| Buffered channels have a specified capacity
| Can send messages up to the capacity, even without a reader
| Messages on a channel are FIFO ordering




Buffered Channel

channel := make(chan int, 2)

channel <- 1
channel <- 2

go func() { channel <- 3 }()

first := <-channel
second := <-channel
third := <-channel
fmt.Println(first, second, third)



Goroutines: Unidirectional

Goroutine Goroutine

HEEE | OO0 R
Read / Receive Read / Receive
OO0 R
Read / Receive

Goroutine

Main Thread

Write / Send



Goroutines: Control Channel

Goroutine Goroutine

OO0 . OO0 .

Main Thread Read / Receive Read / Receive

O O

Write / Send Write / Send

O

Write / Send

Read / Receive

OO0 N

OO0 .

Read / Receive

O

Write / Send

Goroutine



Channel Selection

| The select keyword lets you work with multiple, potentially
blocking, channels

| Send/Receive attempts are made, regardless of blocking status

one := make(chan 1int)

two := make(chan int)

for {

select {

case o0 := <-ohnhe:
fmt.Println("one:", o)

case t := <-two:
fmt.Println("two:", t)

default:
fmt.Println("no data to receive')
time.Sleep(50 * time.Millisecond)



Timeouts

| The time package can be combined with select to create
timeouts

one := make(chan 1int)
two := make(chan 1int)
for {

select {

case o := <-one:
fmt.Println("one:", o)
case t = <-two:
fmt.Println("two:", t)
case <-time.After (300 *» time.Millisecond):
fmt.Println("timed out")
return



Recap

| Channels are bidirectional communication pipes
| They have a send/write end and a receive/read end
| The ends of a channel can be duplicated across goroutines

| select can be used to send or receive on multiple different
channels

| Buffered channels are non-blocking, unbuffered channels will
block







