Synchronization

01 02 03

About Mutex Wait Groups




Synchronization

| Managing data across multiple goroutines can become
problematic and hard to debug

| Multiple goroutines can change the same data leading to
unpredictable results

| Using channels to communicate is not always ideal

| Synchronization solves this issue, and enables:
| Waiting for goroutines to finish

| Prevents multiple goroutines from modifying data
simultaneously




Mutex

| A mutex is short for mutual exclusion
| Provides a way to lock and unlock data

| Locked data cannot be accessed by any other goroutine until
it Is unlocked

| While locked, all other goroutines are blocked until the mutex
Is unlocked

| Execution waits until lock is available, or if select is used

| Helps reduce bugs when working with multiple goroutines



Mutex

‘ ‘ Lock

Blocked




Mutex

- " n
import Tsync data := SyncedData{inner: make(map[stringlint)}

data.Insert(""'sample', 5)

type SyncedData struct { data.Insert('"test", 2)
inner map[string]int fmt.Println(data.Get("sample'))
mutex sync.Mutex fmt.Println(data.Get("test"))

}

func (d *SyncedData) Insert(k string, v int) {
d.mutex.Lock()
d.inner k] = v
d.mutex.Unlock()

}

func (d *SyncedData) Get(k string) int {
d.mutex.Lock()
data := d.1inner/[k]
d.mutex.Unlock()

return data



Deferred Unlock

| defer can be used to ensure the mutex gets unlocked

func (d *SyncedData) Get(k string) int { func (d *SyncedData) Insert(k string, v int) {
d.mutex.Lock() d.mutex.Lock()
data := d.inner k] d.inner[k] = v
d.mutex.Unlock() d.mutex.Unlock()
return data }
} func (d *SyncedData) Insert(k string, v int) {
func (d *SyncedData) Get(k string) int { d.mutex.Lock()
d.mutex.Lock() defer d.mutex.Unlock()
defer d.mutex.Unlock() d.inner[k] = v
return d.inner[k] ¥



Wait Groups
| Wait groups enable an application to wait for goroutines to
finish
| Operates by incrementing a counter whenever a goroutine is
added, and decrementing when it finishes

| Waiting on the group will block execution until the counter is O



Wait Groups

var wg sync.WaitGroup

sum :=
for 1 (= 03 1 < 203 1i++ {
wg.Add (1)
value := 1
go func() {
defer wg.Done()
sum += value
}()
}
wg.Wait()

fmt.Println("sum =", sum)



Recap

| Data can be safely accessed across goroutines using a mutex
| Locking a mutex prevents other goroutines from locking it
| Always remember to unlock a mutex

| Itis possible to wait for goroutines to finish with a wait group

| Add 1 per goroutine to the wait group, then use .Done() in
each goroutine to decrement the group counter

| Using defer makes it simple to unlock mutexes and when
working with wait groups




