
Pointers

Creation & UsageMemory Visualization



Function calls in Go are "pass by value"

A copy of each function argument is made, regardless of size

Potentially slow for large data structures

More difficult to manage program state

This can be changed by using pointers



Pointers are variables that "point to" memory

The value of the variable itself is a memory address

Accessing the data requires dereferencing the pointer

This allows changing values that exist elsewhere in the
program



Asterisk (*) when used with a type indicates the value is a
pointer
Ampersand (&) creates a pointer from a variable



Asterisk (*) when used with a pointer will dereference the
pointer

This provides access to the actual data it points to





Pointers are used to modify data that exists outside of a
function

Asterisk (*) on a type indicates the type is a pointer

Ampersand (&) creates a pointer

Asterisk (*) on a variable will dereference the pointer

Operations on a dereferenced pointer occur on the original
data


