Structures

01

About

02

Define, Create, Access

03

Anonymous Structures



Overview

| Structures allow data to be stored in groups

| Similar to a "class"” in other programming languages

| Each data point in the structure is called a field
| Storing data in groups is usually more efficient
| Possible to associate functionality with structures

| Helps organize code and data



Defining a Structure

type Sample struct {
field string
a, b 1int



Instantiating a Structure

data := Sample{'"'word", 1, 2}

data := Sample{
field: "word",
a: 1,
b: 2,

type Sample struct {
field string
a, b 1int



Default Values

| Any fields not indicated during instantiation will have default
values

data := Sample{}

data :

Sample{a: 5}

type Sample struct {
field string
a, b 1int



Accessing Fields

| Fields can be read from and written to

ata.field
ata.a, data.b

word := d
a, b :=d

data.field = ""hello"
data.a = 10 data := Sample{

field: "word",

data.b = 20 a: 1,

b: 2,



Anonymous Structures

| It's possible to create anonymous/inline structures inside of a
function

| Useful when working with library functions or when shipping
data across a network

| Can easily define the data structure as-needed



Anonymous Structures

| Inline structs created using var will have default values

| Shorthand version must have each field defined

var sample struct { sample := struct {
field string field string
a, b int a, b 1int
} H
"Thello'',
sample.field = "hello" 1, 2,

sample.a = 9 }



Recap

| Structures are used to group similar data
| Data points are called fields
| Structures defined using a type alias

| Fields can be accessed using dot-notation

| Any fields not present during instantiation are set to defaults

| Inline/anonymous structures can be created within functions



