Strings & Runes

01

Text Encoding

03

Strings

Text Encoding

| Textual data in Go uses UTF-8 encoding

| Encoding is a way to represent thousands of different
symbols using code pages

| Code pages are tables which use the first few bytes of
data to determine which page to use

| Each symbol in the code page is called a code point

Example Code Page

0o 1 2
0| 3 |8 | &

1 a » C

10 11 12

2 & = |V

20 21 22

e @ | LY | D

4FO L4F 1 LI 2

Runes

| Text is represented using the rune type

| Similar to char in many other programming languages

| Rune is an alias for int32 (32-bit integer)

| Always a number: will print numeric value unless proper
formatting is specified

| A rune can represent any symbol

| Letters, numbers, emoji, etc

Rune Byte Representation

Q /)
/1 3 p. 1 /1 3 p. 1

Bytes Bytes

Strings

| A string is the data type for storing multiple runes

| Strings are just an array of bytes and a string length

| There is no null termination with a Go string
| When iterating a string, iteration occurs over bytes
| Bytes are not symbols

| Special iteration required to retrieve runes/symbols

String Byte Representation

Runes
B E2 | 82 | BF _
String
a

3

- E2 | 86 | 92 B = ¢

C c2 | A2

Creation

| Runes: "a' '"R" '7" "\n' ‘0" "3 "4

| Strings: "Amount 1is €22\n"
"k"

| Raw Literal: Let's code in "Golang!'"\n

Recap

| Textin Go is encoded using UTF-8

| The rune type can represent any individual symbol
| runeis an alias for int32
| They are created using single quotes:"
| The string type contains a series of symbols as bytes

| Strings are not null terminated

| They are created using double quotes: *

| Raw literals are created using backticks:

