Goroutines

01 02 03

About Example Closures




Goroutines

| Goroutines allow functions to run concurrently

| Can also run function literals / closures

| Go will automatically select parallel or asynchronous
execution

| New goroutines can be created with the go keyword



Example - Basic

func count(amount int) {
for i := 13 1 <= amount; i++ {
time.Sleep (100 * time.Millisecond)
fmt.Println(3i)

) go run ./lecture.go
wait for goroutine

e
a b WPN M

func main() {
go count(5)
fmt.Println("wait for goroutine')
time.Sleep (1000 * time.Millisecond)
fmt.Println("end program')

end program



Example - Closures

counter := 0

wait := func(ms time.Duration) {
time.Sleep(ms * time.Millisecond)

counter += 1

fmt.Println('"Launching goroutines'")
go wait(100)

go wait(900)

go wait(1000)

fmt.Println("Launched. Counter =", counter)

time.Sleep (1100 * time.Millisecond)
fmt.Println('"Waited 1100ms. Counter =", counter)

Y go run ./lecture.go

Launching goroutines

Launched.
Waited 1100ms.

Counter
Counter

w o



Recap

| Goroutines allow functions & closures to run concurrently

| Use the go keyword to create a new goroutine

| The function that starts a goroutine will not wait for it to
finish

| Both the calling function and goroutine will run to completion

| Closure captures are shared among all goroutines

| Easy to parallelize code



