
JVM Thread
Communication

Thread Comms:
Exercises!

Synchronized

val someObject = "hello"

someObject.synchronized {
// code

}

Entering a synchronized expression on an object locks the object:

lock the object's monitor
any other thread trying to run this will block
release the lock

Only AnyRefs can have synchronized blocks.

General principles:
• make no assumptions about who gets the lock first
• keep locking to a minimum
• maintain thread safety at ALL times in parallel applications

wait() and notify()
// thread 1
val someObject = "hello"
someObject.synchronized {
// ... code part 1
someObject.wait()
// ... code part 2

}

wait() –ing on an object's monitor suspends you (the thread) indefinitely

lock the object's monitor

release the lock and... wait

Waiting and notifying only work in synchronized expressions.

when allowed to proceed,
lock the monitor again and continue

// thread 2
someObject.synchronized {
// ... code
someObject.notify()
// ... more code

}

lock the object's monitor

signal ONE sleeping thread they may continue

but only after I'm done and unlock the monitor

Which thread?
You don't know!

Use notifyAll()
to awaken ALL threads

Scala rocks

