Futures and
Promises

Back to the Future|T]

Future[T] is a computation which will finish at some point

import ExecutionContext.Implicits. a default ExecutionContext
already implemented

val recipesFuture: Future[List[Recipe]] = Future {

// some code that takes a Long time to run
jamieOliverDb.getAll()

} ecis passed implicitly*

non-blocking processing future.onComplete { case Success(recipes) => ...

map, flatMap, filter, for-comprehensions
falling back

blocking if need be val txStatus = Await.result(transaction, 1 seconds)

Making Promises

Futures are immutable, "read-only" objects.
Promises are "writable-once" containers over a future.

thread 1: thread 2:
creates an empty promise « holds the promise
knows how to handle the result - fulfills or fails the promise

promise wraps future
future is "undefined" val result = doComputation()

p.success(result)

val p = Promise[Int]()
val future = p.future

triggers completion

p.failure(new BadException(...))

future.onComplete {
case Success(value) => ..
case Failure(ex) => ..

}

p.complete(Try {...})

Scala rocks

