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Abstract—In e-commerce, content quality of the product cata-
log plays a key role in delivering a satisfactory experience to the
customers. In particular, visual content such as product images
influences customers’ engagement and purchase decisions. With
the rapid growth of e-commerce and the advent of artificial
intelligence, traditional content management systems are giving
way to automated scalable systems. In this paper, we present a
machine learning driven visual content management system for
extremely large e-commerce catalogs. For a given product, the
system aggregates images from various suppliers, understands
and analyzes them to produce a superior image set with optimal
image count and quality, and arranges them in an order tailored
to the demands of the customers. The system makes use of an
array of technologies, ranging from deep learning to traditional
computer vision, at different stages of analysis. In this paper, we
outline how the system works and discuss the unique challenges
related to applying machine learning techniques to real-world
data from e-commerce domain. We emphasize how we tune state-
of-the-art image classification techniques to develop solutions
custom made for a massive, diverse, and constantly evolving
product catalog. We also provide the details of how we measure
the system’s impact on various customer engagement metrics.

Index Terms—e-commerce, machine learning; deep learning;
computer vision; image understanding, large-scale system

I. INTRODUCTION

Images play a key role in influencing the quality of cus-
tomer experience and the customers’ decision-making path
in e-commerce transactions. Images provide detailed product
information that helps the customer build confidence in the
product quality and fulfillment promises. Additionally, images
provide inspirational cues about the experience associated with
the product e.g. lifestyle images that show how the customer
can enjoy the product. In most cases, the impact of images in
the customers’ journey from product discovery to evaluation
and decision-making is greater than the impact of other types
of product content such as description and product attributes
(brand, size etc.).

While a nicely curated image set can significantly elevate
the customer experience, bad or incorrect images or an in-
coherent set of images can severely hinder the customers’
progress towards making decisions. It can, in fact, break
the emotional connection between a customer and a product.
Figure 1 showcases some of the problems commonly found
with product images. Too few of them, too many of them,
irrelevant images, inappropriate images, duplicates, incorrectly

ordered images are some of the prominent problems. Hence,
it is very important that the product images satisfy the product
images:

• Each individual image passes quality and compliance
standards (examples of low-quality images are blurry or
distorted ones or images with misleading or distracting
patterns and text. Images with offensive or violent content
are considered non-compliant.)

• Each individual image offers useful information about the
product (for example, a picture of the entire living room
is not so useful when the customer is looking to buy a
small end table. A picture of a car is not needed if the
customer is looking for a car interior polish)

• Each image is significantly different from the rest (for
example, multiple pictures of a TV taken from almost the
same angle cause cognitive overload on the customer)

• The images reveal the information to customers in mean-
ingful steps e.g. in an order that is easy to process (for
example, showing the back of a TV before showing the
front leads to poor customer experience)

The traditional technique of manual curation of images and
other content by in-house experts or crowd workers does not
scale for product catalogs containing millions of items. Human
errors in compiling product information and limitations of
software systems severely hinder the ability to provide a homo-
geneous content experience across categories to the customer.
Hence, it is important to employ the human workforce to
generate training data and develop machine learning based
techniques using that data to ensure that each of the above-
mentioned criteria is satisfied for all product images. In this
paper, we provide a concise account of such a system that uses
computer vision and deep learning to create the optimal set of
images for products.

This paper offers a solution to the above mentioned business
problem. The models and algorithms presented in the paper
are based on known machine learning techniques. However,
the paper discusses innovative customizations needed to deal
with very large datasets, noisy and sparse labels, and ad-hoc
business requirements.

II. SMART IMAGE SELECTION SYSTEM

We present a smart image selection system that creates
an optimal image set that provides adequate and relevant
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Fig. 1. Examples of common problems with product images. Top Left: The
product has just one image. That is too few for the customer for making any
decision. Top Right: The watch has too many images where the first one and
the fifth one (circled in red) are duplicates Bottom Left: Every image shows
the product inside packaging. A clear picture of the memory card (circled in
red) is not provided to the customer. Bottom Right: This is an example of
incorrectly ordered images. The back of the cell phone is presented to the
customer before the front or the screen view.

information in an orderly fashion for every product in the
catalog. The system works through the following stages:

1) Image Aggregation: In a very large catalog, many items
are supplied and sold by multiple parties. Each one of
them may provide a number of images (see leftmost
column of Figure 2 for an example), but none of them
may have an exhaustive set of images. The image
aggregation module simply collects all the images from
various content providing parties and product suppliers
together. The number of images collected this way is
often quite higher than the number of images supplied
by an individual supplier.

2) Image Quality and Compliance Assessment: This mod-
ule contains deep learning classifiers that examine each
image in the aggregated set for quality issues (such as
blurriness, low resolution, poor use of real estate and
compliance issues (such as adult and violent content,
fake marketing badges). The images that fails such
standards are discarded.

3) Image Classification: In this stage, the images are clas-
sified into different types based on viewpoints and some
other criteria. To give an example, the common types of
images for a tee shirt would be a picture of the front,
a picture of the back, a lifestyle images of a human
model wearing it, and a close-up of the texture. For some
product categories, the accessories are an expected type
of image (for example, picture of a stylus that comes
with a tablet). The output of this stage is a set of images

grouped by types.
4) Image De-duplication: The de-duplication module se-

lects from each group a set of representative images
(usually just one). More than one image can be chosen
from a group if it contains images with subtle yet
important differences. Figure 2 shows an example where
two images from left facing views are chosen since one
of the contains the stylus. This module makes sure that
all the chosen images are sufficiently different from one
another.

5) Image Re-ordering Finally, the selected images are re-
ordered to gradually unfold the product information to
the customer, moving from getting the big picture to
looking into important details.

In the following sections, we explain the details of each
technical module of the smart image selection framework.

A. Image Quality Assessment

A number of image quality issues are known to have a
negative impact on the customers [1]. Some of the issues are
explicit such as low-resolution images that appear blurry on
large screen. Some quality issues are more intrinsic such as
images where the central object is surrounded by excessive
white or colored space.

The smart image system detects a number of image quality
problems using a combination of deep learning classifiers. At
present, it consists of three classifiers: the first one detects
blurry images, the second one detects images with small
objects relative to their background area and the third one
detects images with temporary placeholder material with no
real content

Each problem is addressed with a binary classifier that
is fine-tuned with product image data. However, the main
challenge in building these classifiers lies in the sparsity of
the training data. Certain types of low-quality product images
appear so infrequently that it is very difficult to create a sizable
training dataset without manually scanning through millions of
images.

We solve the data sparsity problem by employing clever data
augmentation techniques to synthetically generate problematic
images. A few example augmentations are:

• Regular images are cropped keeping the central object
and then resized back to the original size to create a
dataset of blurry images

• Regular images are padded with whitespace of different
amounts in different directions to create their low-quality
counterparts

• Traditional computer vision techniques such as graph cut
segmentation [2] is used to locate the central object in an
image. Then the background is replaced by disproportion-
ately high amount of white space or natural background.

With the training dataset at hand, we fine-tune the last
few layers of Inception V3 networks pre-trained on our own
catalog data. We keep augmenting the dataset iteratively until
the desired precision and recall is achieved.



Fig. 2. Smart Image Selection Framework explained with an example. The framework first assembles 9 images for a tablet from 3 suppliers, namely A,
B and C. Each of them is first sent through quality and compliance checks. The images that survive the filters are then classified into 5 groups. One or two
images from each groups is selected for the final set. Finally, the images in the final set are re-ordered. For example, the additional right facing images (3rd
from top) is pushed down the list while the side view (at the very bottom) is promoted up. The goal is to produce a final image set which is better than each
input set of images.

Fig. 3. Iterative Training Framework: It allows to start from a very small
amount of training data and gradually improve the model by adding examples
found by the model back to the training data.

B. Non-compliant Image Detection and Removal

Non-complaint images cover a broad spectrum of images
that contain adult, violent, racially inappropriate content.
Clearly, such images can severely damage the customer ex-
perience, lead to legal issues, and invite complaints from
advertising platforms. All of these eventually cause erosion
of the company brand.

We approach the detection of such images as a supervised
image classification problem. However, the main challenge lies
in the sparsity of training examples. It is extremely hard to
build a training dataset with a handful of examples for each
type of non-compliant problems.

We solve this problem by combining three approaches:
collecting examples from the internet, creating synthetic ex-
amples whenever possible, and most importantly, iterative
augmentation of the training data. As Figure 3 shows, the
first set of training images are collected from internal product
catalog and by web search. The first version of the classifier
is built using this dataset. Then, a moderate amount of images
are run through the classifier with the hope of detecting more
positive examples. If the classifier finds more such examples
with high confidence, they are removed from the website
and added to the training data as well. If the classifier finds
examples with low confidence, they are sent for manual review
by crowdsourcing teams. In either case, the detected image is
passed through an deep image similarity model (trained on
our product images) to obtain a number of similar images.
The model prediction and the obtained similar images are
sent to crowdsourcing teams for manual review. The responses
sent by the crowd workers are added to the training set and
the classifier is retrained. A number of iterations are usually
necessary to obtain desired accuracy.

C. Image Type Classification
This step classifies the images of a product into a number of

types that are expected for that type of product. For example,
the popular types for laptop images front view, back view,
top view, side view and close-up of various parts. Broadly,
the types are characterized by how the product looks from
different views, how its features work, and how it is used or
experienced by the customers.



This image classification serves as an important precursor
to image ranking. Our system first needs to detect different
views of a product from its images in order to rank them.

We treat this as a supervised classification problem because
we determine the expected image types for a given product
category are finite in advance. The data analysts study a
fraction of product images from a category and formulate a
list of image types that are commonly found for a category.
We then create a small training dataset of images from that
category and have them labeled via crowd-sourcing.

As shown in Figure 4, we train an image classifier for each
category (such as Television, Tablet Computer, Laptop etc.).
Since the catalog contains thousands of categories and each
category has a number of types, developing a single model
to address all categories would be a daunting task. Instead,
we leverage the in-house product categorizer that predicts the
category of the item from its title and description. Our system
then directs items to different classifiers based on the product’s
category.

Fig. 4. Image Classification Module: A deep learning classifier is trained
for each product category.

We have a relatively small dataset of images for training
the model for each category. While a category may have as
many as a million items in it, the training dataset usually
contains few thousands images at best. This is why we leverage
open source deep neural networks pre-trained on Imagenet
dataset [3]. We have experimented with two approaches:

• One approach is to re-train the last few layers of a pre-
trained network with our images

• Another approach is to add a few fully connected layers
on top of a pre-trained network (Figure 5) and to train
the additional layers. In our experiment, we train to min-
imize categorical cross-entropy using stochastic gradient
descent with a slow learning rate as the optimizer.

Probably because we use small datasets to retrain each classi-
fier, the second approach has consistently showed marginally
better performance.

D. Image De-duplication

The image classification step (Section II-C) produces a
number of groups of images. Each group usually contains
several images of the same type that are exactly identical or
nearly identical (example: 4 left facing images in Figure 6). We

Fig. 5. Architecture of Image Classification Module: A shallow network is
added on top of popular deep learning architectures for each product category.

run each group of images through an unsupervised clustering
algorithm that performs pairwise comparisons and creates one
or more clusters within the group. The images within a cluster
are almost identical, they vary either by size, resolution, or the
white space around the central object. Since they contain the
same content, selecting any one from each cluster is sufficient
for our objective of optimizing the customer experience. On
the other hand, the images in different clusters are of the same
type, but their contents are significantly different (example, the
left view and the left view with a stylus). Hence, selecting one
image from each cluster leads to a de-duplicated set.

Fig. 6. Unsupervised De-duplication algorithm: Images with the same class
label are run through an unsupervised clustering to create a de-duplicated set
of images.

Fig. 7. Examples of identical and different pairs: Pairs A, B, and C
represent real duplicate pairs from the product catalog. D, E and F represents
very similar pairs that should be considered as different images and both
should be presented to the customer.

Details of Clustering: Given an image group, we do not
know the number of clusters in advance, hence we cannot



use off-the-shelf algorithms such as K-means. Instead, we
create the clusters in a top-down fashion by comparing image
pairs. A pairwise comparator that accepts two images and
returns a binary decision - duplicate (covers both exact and
near duplicates) or different - is at the heart of our clustering
algorithm. Identifying near-duplicate images is a reasonably
difficult problem in computer vision. It is more difficult in
our case because the definition of near duplicate varies widely
from category to category. In some cases, two images that
are almost identical can represent two different features of
the same product and hence, should be considered different.
Figure 7 shows such pairs (D, E, F) on the right column. For
example, a picture of a camera and another picture from the
same angle with the flash popped out are very similar-looking
images, but both of them should be retained for the customer
to view. On the other hand, the examples shown on the left
column (A, B, C) are also near duplicate images, but they
should be treated as duplicates since they present the exact
same information to the customer. Only one from such pairs
should be shown to the customer.

Details of Pairwise Comparator: Since our image com-
parator needs to address such subtle differences, a supervised
method would require us to collect training data for every
category, if not every product. Considering the difficulty and
the cost, we consider the option of using an unsupervised
technique that would work without the knowledge of what
is in the image. We observe that in most cases where two
images should be treated as different, there are sub-regions
with strong differences between the edges (such as E and
F) or there is a significant difference in color (example pair
D). Based on this observation, we choose to develop custom
descriptors that are compared using some distance metric.
Using embeddings generated by deep neural nets as descriptors
is another option, but such embeddings are tuned for object
recognition and classification, hence they tend to be oblivious
to subtle differences between two images of the same object.

Fig. 8. Image pair comparator: A combination of hash and histogram based
techniques is used to detect near-duplicate images

We leverage image hashes that are well known as image
descriptors or signatures (usually 64 bits long). In short, a
hash is a signature of an image after reduction of size and
color. We leverage the fact that certain variations of image
hashes are more robust to subtle edge differences. We employ

a combination of two hash-based descriptors and a histogram
based descriptor (Figure 8):

• Perceptual Hash based Comparator: Perceptual
hash [4], [5] of an image is computed by performing
cosine transform on a color and size reduced version of
the image. Two images that are almost identical should
have almost equal perceptual hashes. This comparator
uses the difference between the perceptual hashes and
applies a threshold on them to return a binary decision
based on distance.

• Difference Hash based Comparator: Difference hash
works similarly, but it emphasizes the differences in the
edges. This is effective in catching differences shown in
cases E and F in Figure 7. We use edge-enhanced versions
of the product images as input to accentuate the difference
further.

• Histogram based Comparator: Since hash-based de-
scriptors are applied after color reduction, they fail to
differentiate between two images of the same product
in two different colors (as shown in the example D in
Figure 7). This descriptor is designed to catch those
cases. It uses HSV color histograms of the images as the
descriptor and computes Chi-square distance between the
histograms. A threshold is used to turn the distance to a
binary decision.

Two images are considered duplicate if the decisions from
all three classifiers indicate are same. The rationale behind
this is as follows: from the customer’s point of view, the
cost of wrongly dropping an image is higher than leaving
a near duplicate. Hence, our de-duplicator is optimized for
minimizing false positives.

E. Image Re-ordering

The de-duplicated set is a list of images along with image
types. We re-order this list based on category specialists’
(in-house product experts) experience and other A/B tests
performed in-house. These tests give us a prioritized list of
image types for a category. If more than one image of a type
is present, the additional ones are pushed down the list. Ideally,
images can be re-ordered based on customer clicks on images,
if that data is available.

III. RESULTS

In this section we present quantitative results from some of
the key algorithmic components followed by qualitative case
studies.

A. Quantitative Results

While we experiment using various models and architec-
tures, the techniques that are in use can broadly be divided
into two categories:

• Techniques where a shallow neural network or a different
model such as logistic regression is trained on top of
embeddings taken from the last dense layer of a general-
purpose deep learning model



• Techniques where the last few layers of a pre-trained deep
learning model is re-trained with our data

In our experience, the quality and quantity of the data makes
a much stronger difference than the choice of the modeling
technique or the deep learning architecture. All of the follow-
ing experiments are run on internal datasets, and the goal of
the experiments is not to beat the state-of-the-art, rather to
find the method that best suits our data. Hence, the absolute
performance numbers are not presented, instead in each table
we compare a number of candidate techniques against the best
performing one. For each table, the reference method (usually
the best performing one) is shown in bold.

Non-compliant Image Detection Performance: The re-
sults provided here are from a model that separates images
containing assault rifles from the rest. This is a specific use
case of non-compliant image detection (Section II-B ). In the
first approach, an Inception-v3 based deep learning model
is trained on a very large dataset of our catalog images
for a different problem - product categorization. Then, the
embeddings generated from this model are passed through
either a logistic regression or a random forest model to perform
the assault rifle detection. The same embeddings are re-used
for various classification tasks. In the second approach, we
use a Resnet50 model and retrain its last convolution block.
We also experiment by retraining the last inception module of
a pre-trained Inception-v3 model. We perform the retraining
with ∼150 positive examples (assault rifles) and ∼1M negative
examples.

TABLE I
NON-COMPLIANT IMAGE DETECTION RESULTS

Method/Network Pre-trained on Precision Recall F1-Score
Deep embeddings
+ logistic regres-
sion

our catalog
images

-0.02 -0.11 -0.06

Deep embeddings
+ random forest

our catalog
images

-0.05 -0.11 -0.08

Resnet-50 Imagenet +0.01 -0.07 -0.03
Inception-V3 Imagenet x x x

Results from both approaches are presented in Table I. Pre-
cision and recall values of the second approach are marginally
better. Advantage of first approach is that the entire model
is trained on our own images for a general task, hence it
may generalize well for new data and new tasks. However,
retraining this model is a heavyweight task. The second
approach allows quick retraining with small data, but the
model is primarily trained on Imagenet dataset.

Image Type Classifier Performance: Table III presents
the performances of the image type classifier (described in
Section II-C for two categories based on a 10% hold-out set.
The first approach of building a shallow network on top of pre-
trained architectures shows slightly better performance over
retraining the architecture itself, possibly because we have
very small datasets (1000 to 3000 images per category) for
retraining.

TABLE II
IMAGE CLASSIFICATION PERFORMANCE FOR Tablet Computers

Technique Precision Recall F1-Score
VGG19 + shallow network x x x
Resnet50 + shallow network -0.01 -0.0 -0.0
Inception + shallow network -0.05 -0.04 -0.04
Resnet50 (retrained 1 block) +0.0 +0.01 +0.0
Inception (retrained 1 block) -0.06 -0.05 -0.05

TABLE III
IMAGE CLASSIFICATION PERFORMANCE FOR FOR T-Shirts

Technique Precision Recall F1-Score
VGG19 + shallow network x x x
Resnet50 + shallow network +0.0 +0.0 +0.0
Inception + shallow network -0.03 -0.03 -0.03
Resnet50 (retrained 1 block) +0.0 +0.0 +0.0
Inception (retrained 1 block) -0.01 -0.01 -0.01

Accuracy of this classifier for a category largely depends on
the quality of the data. Hence, even if it is possible to develop
highly accurate classifiers for a few categories, it is worthwhile
to study how the performances of these classifiers hold across
categories, or at a higher level, across verticals such as fashion
or electronics. A vertical encompasses a number of categories
falling into the same business domain. Figure 9 presents the
average performance of the classifiers from four major areas.
For each vertical, the plot shows the min, max, and the median
accuracy of the classifiers from within the vertical. If a vertical
(such as furniture in this case) trails behind the rest, it indicates
some potential issue with the data, or it may indicate that the
categories under that vertical are not lending themselves well
to the model chosen. In that case, we plan targeted model
tuning for that vertical.

Fig. 9. Average Performance of classifiers in different segments (verticals)
of the catalog: The min, max, and median accuracy of image type classifiers
from four distinct areas of the catalog

Image Pair De-duplicator Performance: We measure
the performance of the image pair comparator (described
in Section II-D) on a benchmark dataset that incorporates
the standard cases and the specific examples that are more
common in our dataset. The dataset consists of 4400 image
pairs with labels different or duplicate. About half of the
duplicate pairs are synthetically generated and the rest are real
examples hand-picked from the catalog. We have randomly
incorporated geometric transformations of the main object
(translation, rotation, shear etc.) or color-space transformations



Technique Optimal
Threshold

Precision Recall F1-Score

Cosine Similarity 0.99 +0.0 -0.18 -0.1
Avg. Hash 10 -0.07 -0.05 -0.01

Perception Hash 10 -0.07 +0.0 -0.04
Difference Hash 20 -0.09 +0.01 -0.03

Wavelet Hash 15 -0.12 -0.04 -0.09
Hash Ensemble 20 x x x
VGG19 + cosine 0.85 -0.09 -0.15 -0.12

Inception + cosine 0.85 -0.23 -0.2 -0.21
Resnet50 + cosine 0.85 -0.10 -0.21 -0.15

TABLE IV
PERFORMANCE OF PAIRWISE DE-DUPLICATION

(such as sharpness and contrast) to real images to produce their
near-duplicate counterparts.

The image pair comparator first computes the distance
between two images. Then it applies a threshold to the distance
to generate the final label. We have attempted this in a few
different ways:

• Compute cosine similarity directly on the images
• Compute cosine similarity between deep embeddings

generated by standard deep learning models
• Convert the images into image hashes and then compute

Hamming distance between the hashes
For each method, we determine the most optimal threshold by
testing a range of thresholds on the benchmark dataset. In a
way, the benchmark dataset serves as an indirect way to learn
the threshold.

Table IV presents a range of techniques starting from
computing cosine similarity on the images to a number of
hash based techniques to using cosine similarity on deep
embeddings. It turns out that the Hash ensemble technique
proposed by us addresses our business-specific use cases the
best whereas deep learning based embeddings tend to ignore
the fine differences and focus on the central object.

B. Qualitative Results

The final outcome of our system is an ordered list of product
images. Accuracy of the individual models discussed so far are
intermediate steps that help create a more meaningful final
result. We present a few actual final results produced by our
system in Table V to enable side-to-side comparison of the
current product images and the recommended ones.

Case Study 1: The top row of Table V shows an example
of a laptop which originally had 5 images. Our smart image
system recommends a list of 8 images by aggregating 3 new
images from other suppliers. One of the new images is the side
view of the laptop (6th from left) that shows the available inlets
and outlets. Also, in the e-commerce domain, the first image
(also called the hero image) conveys very high importance to
the customer experience. For this product, our system identifies
that a front view of the laptop is available, but it is being shown
as the 3rd image. Since it is a better candidate for the hero
image compared to the side-facing views, it moves it up to
make it the first image.

Case Study 2: The middle row of Table V shows an exam-
ple of a tablet computer for which the smart image selection

system removes one image. The 3rd and the 4th images of the
item (in the middle column) are clearly duplicates, hence our
system removes one. It also identifies the current 2nd image
as a front view and a better candidate to be the hero image.
Hence, it moves it to the first spot. The new order of images
is front-back-multiview (from left to right). Since multiview is
anyway a composite of front and back views, it is not offering
a lot of new information to the customer. Hence, it is pushed
down.

Case Study 3: The bottom row of Table V presents an
example from a different domain - furniture. In this example,
our system keeps the number of images intact, but moves the
2nd picture, which is a clear front view of the sofa with a pure
white background, to the 1st spot.

C. Measurement of Impact on Customers

A/B testing is the right method for measuring customer im-
pact of such a system. However, performing it at a large-scale
in a production environment is often not feasible. Network
effects impact the test, and a segment of the customers are
actually impacted by the test. Hence, choose to estimate the
impact using counterfactual analysis, a form of causal impact
analysis [6], that generates similar results without having to
create a real control set. At a very high level, the method
estimates the impact of a change or intervention on a set of
items (in our case changing the image set is the intervention)
compared to another set of items (known as a synthetic control
set) with similar behavioral history (in our case items with
similar search and browse history).

We have used this technique to obtain a statistical estimate
of the impact of our system on two metrics: add-to-cart (ATC)
and conversion (or actual purchase). We studies these metrics
for a period of 3 weeks after the intervention. We have
observed an overall positive impact of this system on most of
the categories. Table VI presents the results for 4 categories.
The table shows the estimated average relative causal effect
in the second column (performance of the intervened items
compared to the control items) along with a posterior proba-
bility (the third column). As the table suggests, most estimates
are positive except a mild negative impact on ATC of laptops.
However, it may be noted that the posterior probability of that
estimate is significantly low, suggesting that the effect may be
spurious and would generally not be considered statistically
significant. On the other hand, the positive effects associated
with 99% probability indicates that the probability of obtaining
this effect by chance is very small and the effect can be
considered statistically significant.

Another consistent observation from this analysis is that for
a given category, the effect on conversion is usually stronger
than the effect on ATC. Our hypothesis is that as we provide
a more informative and complete image set, the customer
behavior shows more certainty. If a customer adds a product to
the cart, they are more likely to purchase it. On the other hand,
poor or incomplete imagery often weakens the customer’s
confidence, leading to indecision or change of mind even after
adding an item to cart.



Product Category Existing product images in order (from left to right) Recommended product images in order (from left to right)

Laptop

Tablet

Sofa
TABLE V

BEFORE-AFTER SCENARIOS FROM THREE PRODUCTS OF DIFFERENT TYPES. SECOND COLUMN SHOWS THE IMAGES THAT ARE CURRENTLY BEING
DISPLAYED IN ORDER (FROM LEFT TO RIGHT). THIRD COLUMN DISPLAYS THE IMAGES RECOMMENDED BY OUR SYSTEM IN ORDER (FROM LEFT TO

RIGHT) TOP ROW: OUR SYSTEM ADDS NEW IMAGES TO THIS PRODUCT. MIDDLE ROW: OUR SYSTEM REMOVES DUPLICATES AND HENCE REDUCES
THE NUMBER OF IMAGES. BOTTOM ROW: OUR SYSTEM SUGGESTS A NEW ORDER OF THE IMAGES.

TABLE VI
COUNTERFACTUAL ANALYSIS OF CUSTOMER METRICS

Category Relative effect on
Add-to-Cart (%)

Probability of
causal effect (%)

Laptops -1.6 64
Tablets 24 99

Televisions 9 93
Monitors 27 99
Category Relative effect on

Conversion(%)
Probability of
causal effect (%)

Laptops 5.6 79
Tablets 34 99

Televisions 20 99
Monitors 39 99

TABLE VII
EFFECT OF TIME ON CAUSAL EFFECT

Number of weeks Relative effect on
Add-to-Cart (%)

Probability of
causal effect (%)

2 6.9 99
4 4.2 99
6 1.7 96

In another experiment run on a set of tires (Table VII),
we verify an assumption that the initial effect of improving
the images wears out with time and eventually stabilizes.
This highlights the importance of periodic re-evaluation of
product images as new images become available. All the
inferences from causal impact analysis depend critically on the
assumption that the covariates (factors other than images for
a product) were not themselves affected by the intervention.
This definitely holds in our case. However, the model also
assumes that the relationship between covariates and treated
time series, as established during the pre-intervention period,
remains stable throughout the post-intervention period. This

may not hold strictly in the real world where various events
may impact the time series behavior. Even after considering a
margin of error in the analysis, the overall trend observed is
positive in most cases.

D. Performance of the Deployed System

The image selection system is currently deployed as a web
service to our distributed environment. The web service is
hosted as a python+Apache+Flask framework. It exposes a
REST end point that is accessible to various product process-
ing pipelines.

It may be noted that the time that our system takes to process
a single item is a factor of how many images are found by
the image aggregation module. The entire processing (image
download + classification + de-duplication + ranking) takes
1 to several seconds depending on the number of images.
The downloading of the images from URLs to the memory
is parallelized. Inference on deep learning models are run in
batches, whenever possible.

Even with these optimizations, processing image workloads
is often not real time. However, it is acceptable if the improved
images appear after a few seconds of a product’s appearance
on the website. Hence, the recommendations made by our
system are asynchronously merged with the product data and
the images get updated in a few seconds. Also, not every
item in the product catalog is a candidate for this system. For
example, we can safely bypass items with no or just one image,
items that have already been manual curated etc. For any new
category, we first perform a mock run on a small sample of
items to obtain an estimate of the average number of images
per item and the average percentage of items that benefit from
our algorithms. Then, compute resources are allocated based
on that estimate.



IV. RELATED WORK

The importance of images in e-commerce is a well-studied
problem. A study by Chen et al. [7] establishes a link between
images and purchase intentions. The results presented by Di
et al. [8] show positive evidence that better images can lead
to increase in buyer’s attention, trust and conversion rate. A
recent study by Zakrewsky et al. [9] shows correlation between
popular items and images with high quality images. Our
system addresses a number of image-related problems using
concepts from image classification and similarity detection.

Image quality assessment (IQA) is an well-established
area [10]. Our scenario falls in the domain of with-reference
quality assessment because in most cases the low quality
images are well defined.

We leverage the recent advances in deep learning research
for image classification. Starting from Alexnet [11], deep
neural net models have been established as the state-of-the-art
for image classification and object recognition. A number of
deep learning architectures such as VGG16 and VGG19 [12],
residual network [13], Inception v1 [14], v2, and v3 [15] have
been proposed since then. More recently, B. Zoph et al. [16]
have proposed Nasnet that is able to learn the best suited
architecture by itself. In this paper we start with one of VGG,
Resnet or Inception architectures pre-trained on Imagenet [3]
dataset, and fine tune the weights with our dataset.

Our image de-duplication module determines if two images
are near duplicates or have significant differences between
them. Hashes or similar image signatures are sometimes used
to rank visual search results [17]. In the deep learning domain,
Siamese networks [18] are often used for this purpose. Such
networks learn latent feature representations of two images
using shared model weights and compare the representations.
If a positive and a negative match for each image is available,
such networks can be trained to minimize triplet loss [19].

The problem of non-compliant image detection suffers from
sparsity of training data. One-shot learning [20] addresses this
by comparing a new image against a set of known examples.

V. CONCLUSION

In this paper we present a machine-learning driven system
that delivers superior online shopping experience by selecting
optimal product images. We outline the solution framework
and explain the core technical steps in detail. Most importantly,
we highlight the challenges of working with large and noisy
datasets, describe the adjustments and tweaks made to the data
and the modeling techniques to address the scale.

The presented system is already deployed in production and
it has processed hundreds of thousands of products. However,
as the data and customer behavior keep evolving and new
technologies arrive, we constantly try to leverage them to
improve our system. For example, we plan to learn the most
optimal order of images from customer behavior. We plan to
enhance the analysis of the system by tracking image-specific
customer metrics such as number of clicks on an image, or the
time spent on an image. We also plan to quantify the relevance
of an image by understanding the product title and description.
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