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Preface
Mastering Linux Kernel Development looks at the Linux kernel, its internal
arrangement and design, and various core subsystems, helping you to gain
significant understanding of this open source marvel. You will look at how the Linux
kernel, which possesses a kind of collective intelligence thanks to its scores of contributors,
remains so elegant owing to its great design.

This book also looks at all the key kernel code, core data structures, functions, and macros,
giving you a comprehensive foundation of the implementation details of the kernel s core
services and mechanisms. You will also look at the Linux kernel as well-designed software,
which gives us insights into software design in general that are easily scalable yet
fundamentally strong and safe.

What this book covers
, , looks closely at one

of the principal abstractions of Linux called the process and the whole ecosystem, which
facilitate this abstraction. We will also spend time in understanding address space, process
creation, and threads.

, Deciphering the Process Scheduler, explains process scheduling, which is a vital
aspect of any operating system. Here we will build our understanding of the different
scheduling policies engaged by Linux to deliver effective process execution.

, Signal Management, helps in understanding all core aspects of signal usage, their
representation, data structures, and kernel routines for signal generation and delivery.

, Memory Management and Allocators, traverses us through one of the most crucial
aspects of the Linux kernel, comprehending various nuances of memory representations
and allocations. We will also gauge the efficiency of the kernel in maximizing resource
usage at minimal costs.
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, Filesystems and File I/O, imparts a generic understanding of a typical filesystem,
its fabric, design, and what makes it an elemental part of an operating system. We will also
look at abstraction, using the common, layered architecture design, which the kernel
comprehensively imbibes through the VFS.

, Interprocess Communication, touches upon the various IPC mechanisms offered
by the kernel. We will explore the layout and relationship between various data structures
for each IPC mechanism, and look at both the SysV and POSIX IPC mechanisms.

, Virtual Memory Management, explains memory management with details of
virtual memory management and page tables. We will look into the various aspects of the
virtual memory subsystem such as process virtual address space and its segments, memory
descriptor structure, memory mapping and VMA objects, page cache and address
translation with page tables.

, Kernel Synchronization and Locking, enables us to understand the various
protection and synchronization mechanisms provided by the kernel, and comprehend the
merits and shortcomings of these mechanisms. We will try and appreciate the tenacity with
which the kernel addresses these varying synchronization complexities.

, Interrupts and Deferred work , talks about interrupts, which are a key facet of any
operating system to get necessary and priority tasks done. We will look at how interrupts
are generated, handled, and managed in Linux. We will also look at various bottom halve
mechanisms.

, Clock and Time Management, reveals how kernel measures and manages time.
We will look at all key time-related structures, routines, and macros to help us gauge time
management effectively.

, Module Management, quickly looks at modules, kernel's infrastructure in
managing modules along with all the core data structures involved. This helps us
understand how kernel inculcates dynamic extensibility.

What you need for this book
Apart from a deep desire to understand the nuances of the Linux kernel and its design, you
need prior understanding of the Linux operating system in general, and the idea of an
open-source software to start spending time with this book. However, this is not binding,
and anyone with a keen eye to grab detailed information about the Linux system and its
working can grab this book.
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Who this book is for
This book is for system programming enthusiasts and professionals who would
like to deepen their understanding of the Linux kernel and its various integral
components.
This is a handy book for developers working on various kernel-related projects.
Students of software engineering can use this as a reference guide for
comprehending various aspects of Linux kernel and its design principles.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In the

 function, we read the value of the distance from the sensor and then display it on
the serial port."

A block of code is set as follows:

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go to Sketch | Include
Library | Manage Libraries and you will get a dialog."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email

, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to

 and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at  with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.
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Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.



11
Comprehending Processes,

Address Space, and Threads
When kernel services are invoked in the current process context, its layout throws open the
right path for exploring kernels in more detail. Our effort in this chapter is centered around
comprehending processes and the underlying ecosystem the kernel provides for them. We
will explore the following concepts in this chapter:

Program to process
Process layout
Virtual address spaces
Kernel and user space
Process APIs
Process descriptors
Kernel stack management
Threads
Linux thread API
Data structures
Namespace and cgroups
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Processes
Quintessentially, computing systems are designed, developed, and often tweaked for
running user applications efficiently. Every element that goes into a computing platform is
intended to enable effective and efficient ways for running applications. In other words,
computing systems exist to run diverse application programs. Applications can run either
as firmware in dedicated devices or as a "process" in systems driven by system software
(operating systems).

At its core, a process is a running instance of a program in memory. The transformation
from a program to a process happens when the program (on disk) is fetched into memory
for execution.

A program s binary image carries code (with all its binary instructions) and data (with all
global data), which are mapped to distinct regions of memory with appropriate access
permissions (read, write, and execute). Apart from code and data, a process is assigned
additional memory regions called stack (for allocation of function call frames with auto
variables and function arguments) and heap for dynamic allocations at runtime.

Multiple instances of the same program can exist with their respective memory allocations.
For instance, for a web browser with multiple open tabs (running simultaneous browsing
sessions), each tab is considered a process instance by the kernel, with unique memory
allocations.
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The following figure represents the layout of processes in memory:

The illusion called address space
Modern-day computing platforms are expected to handle a plethora of processes efficiently.
Operating systems thus must deal with allocating unique memory to all contending
processes within the physical memory (often finite) and also ensure their reliable execution.
With multiple processes contending and executing simultaneously (multi-tasking), the
operating system must ensure that the memory allocation of every process is protected from
accidental access by another process.

To address this issue, the kernel provides a level of abstraction between the process and the
physical memory called virtual address space. Virtual address space is the process' view of
memory; it is how the running program views the memory.
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Virtual address space creates an illusion that every process exclusively owns the whole
memory while executing. This abstracted view of memory is called virtual memory and is
achieved by the kernel's memory manager in coordination with the CPU's MMU. Each
process is given a contiguous 32 or 64-bit address space, bound by the architecture and
unique to that process. With each process caged into its virtual address space by the MMU,
any attempt by a process to access an address region outside its boundaries will trigger a
hardware fault, making it possible for the memory manger to detect and terminate violating
processes, thus ensuring protection.

The following figure depicts the illusion of address space created for every contending
process:

Kernel and user space
Modern operating systems not only prevent one process from accessing another but also
prevent processes from accidentally accessing or manipulating kernel data and services (as
the kernel is shared by all the processes).
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Operating systems achieve this protection by segmenting the whole memory into two
logical halves, the user and kernel space. This bifurcation ensures that all processes that are
assigned address spaces are mapped to the user space section of memory and kernel data
and services run in kernel space. The kernel achieves this protection in coordination with
the hardware. While an application process is executing instructions from its code segment,
the CPU is operating in user mode. When a process intends to invoke a kernel service, it
needs to switch the CPU into privileged mode (kernel mode), which is achieved through
special functions called APIs (application programming interfaces). These APIs enable user
processes to switch into the kernel space using special CPU instructions and then execute
the required services through system calls. On completion of the requested service, the
kernel executes another mode switch, this time back from kernel mode to user mode, using
another set of CPU instructions.

System calls are the kernel's interfaces to expose its services to application
processes; they are also called kernel entry points. As system calls are
implemented in kernel space, the respective handlers are provided
through APIs in the user space. API abstraction also makes it easier and
convenient to invoke related system calls.

The following figure depicts a virtualized memory view:
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Process context
When a process requests a kernel service through a system call, the kernel will execute on
behalf of the caller process. The kernel is now said to be executing in process context.
Similarly, the kernel also responds to interrupts raised by other hardware entities; here, the
kernel executes in interrupt context. When in interrupt context, the kernel is not running on
behalf of any process.

Process descriptors
Right from the time a process is born until it exits, it s the kernel's process management
subsystem that carries out various operations, ranging from process creation, allocating
CPU time, and event notifications to destruction of the process upon termination.

Apart from the address space, a process in memory is also assigned a data structure called
the process descriptor, which the kernel uses to identify, manage, and schedule the process.
The following figure depicts process address spaces with their respective process
descriptors in the kernel:
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In Linux, a process descriptor is an instance of type  defined in
, it is one of the central data structures, and contains all the attributes,

identification details, and resource allocation entries that a process holds. Looking at
 is like a peek into the window of what the kernel sees or works with

to manage and schedule a process.

Since the task structure contains a wide set of data elements, which are related to the
functionality of various kernel subsystems, it would be out of context to discuss the purpose
and scope of all the elements in this chapter. We shall consider a few important elements
that are related to process management.

Process attributes - key elements
Process attributes define all the key and fundamental characteristics of a process. These
elements contain the process's state and identifications along with other key values of
importance.

state
A process right from the time it is spawned until it exits may exist in various states, referred
to as process states--they define the process s current state:

TASK_RUNNING (0): The task is either executing or contending for CPU in the
scheduler run-queue.
TASK_INTERRUPTIBLE (1): The task is in an interruptible wait state; it remains
in wait until an awaited condition becomes true, such as the availability of
mutual exclusion locks, device ready for I/O, lapse of sleep time, or an exclusive
wake-up call. While in this wait state, any signals generated for the process are
delivered, causing it to wake up before the wait condition is met.
TASK_KILLABLE: This is similar to TASK_INTERRUPTIBLE, with the
exception that interruptions can only occur on fatal signals, which makes it a
better alternative to TASK_INTERRUPTIBLE.
TASK_UNINTERRUTPIBLE (2): The task is in uninterruptible wait state similar
to TASK_INTERRUPTIBLE, except that generated signals to the sleeping
process do not cause wake-up. When the event occurs for which it is waiting, the
process transitions to TASK_RUNNING. This process state is rarely used.
TASK_ STOPPED (4): The task has received a STOP signal. It will be back to
running on receiving the continue signal (SIGCONT).
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TASK_TRACED (8): A process is said to be in traced state when it is being
combed, probably by a debugger.
EXIT_ZOMBIE (32): The process is terminated, but its resources are not yet
reclaimed.
EXIT_DEAD (16): The child is terminated and all the resources held by it freed,
after the parent collects the exit status of the child using wait.

The following figure depicts process states:

pid
This field contains a unique process identifier referred to as PID. PIDs in Linux are of the
type  (integer). Though a PID is an integer, the default maximum number PIDs is
32,768 specified through the  interface. The value in this file
can be set to any value up to 222 ( , approximately 4 million).

To manage PIDs, the kernel uses a bitmap. This bitmap allows the kernel to keep track of
PIDs in use and assign a unique PID for new processes. Each PID is identified by a bit in the
PID bitmap; the value of a PID is determined from the position of its corresponding bit. Bits
with value 1 in the bitmap indicate that the corresponding PIDs are in use, and those with
value 0 indicate free PIDs. Whenever the kernel needs to assign a unique PID, it looks for
the first unset bit and sets it to 1, and conversely to free a PID, it toggles the corresponding
bit from 1 to 0.
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tgid
This field contains the thread group id. For easy understanding, let's say when a new
process is created, its PID and TGID are the same, as the process happens to be the only
thread. When the process spawns a new thread, the new child gets a unique PID but
inherits the TGID from the parent, as it belongs to the same thread group. The TGID is
primarily used to support multi-threaded process. We will delve into further details in the
threads section of this chapter.

thread info
This field holds processor-specific state information, and is a critical element of the task
structure. Later sections of this chapter contain details about the importance of

.

flags
The flags field records various attributes corresponding to a process. Each bit in the field
corresponds to various stages in the lifetime of a process. Per-process flags are defined in

:
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exit_code and exit_signal
These fields contain the exit value of the task and details of the signal that caused the
termination. These fields are to be accessed by the parent process through  on
termination of the child.

comm
This field holds the name of the binary executable used to start the process.

ptrace
This field is enabled and set when the process is put into trace mode using the 
system call.

Process relations - key elements
Every process can be related to a parent process, establishing a parent-child relationship.
Similarly, multiple processes spawned by the same process are called siblings. These fields 
establish how the current process relates to another process.

real_parent and parent
These are pointers to the parent's task structure. For a normal process, both these pointers
refer to the same ; they only differ for multi-thread processes, implemented
using  threads. For such cases,  refers to the parent thread task
structure and parent refers the process task structure to which SIGCHLD is delivered.
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children
This is a pointer to a list of child task structures.

sibling
This is a pointer to a list of sibling task structures.

group_leader
This is a pointer to the task structure of the process group leader.

Scheduling attributes - key elements
All contending processes must be given fair CPU time, and this calls for scheduling based
on time slices and process priorities. These attributes contain necessary information that the
scheduler uses when deciding on which process gets priority when contending.

prio and static_prio
 helps determine the priority of the process for scheduling. This field holds static

priority of the process within the range  to  (as specified by ) if
the process is assigned a real-time scheduling policy. For normal processes, this field holds
a dynamic priority derived from the nice value.

se, rt, and dl
Every task belongs to a scheduling entity (group of tasks), as scheduling is done at a per-
entity level.  is for all normal processes,  is for real-time processes, and  is for
deadline processes. We will discuss more on these attributes in the next chapter on
scheduling.

policy
This field contains information about the scheduling policy of the process, which helps in
determining its priority.
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cpus_allowed
This field specifies the CPU mask for the process, that is, on which CPU(s) the process is
eligible to be scheduled in a multi-processor system.

rt_priority
This field specifies the priority to be applied by real-time scheduling policies. For non-real-
time processes, this field is unused.

Process limits - key elements
The kernel imposes resource limits to ensure fair allocation of system resources among
contending processes. These limits guarantee that a random process does not monopolize
ownership of resources. There are 16 different types of resource limits, and the 

 points to an array of type , in which each offset holds the
current and maximum values for a specific resource.

include/uapi/asm-generic/resource.h
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File descriptor table - key elements
During the lifetime of a process, it may access various resource files to get its task done.
This results in the process opening, closing, reading, and writing to these files. The system
must keep track of these activities; file descriptor elements help the system know which
files the process holds.

fs
Filesystem information is stored in this field.

files
The file descriptor table contains pointers to all the files that a process opens to perform
various operations. The files field contains a pointer, which points to this file descriptor
table.

Signal descriptor - key elements
For processes to handle signals, the task structure has various elements that determine how
the signals must be handled.

signal
This is of type , which contains information on all the signals
associated with the process.
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sighand
This is of type , which contains all signal handlers associated
with the process.

sigset_t blocked, real_blocked
These elements identify signals that are currently masked or blocked by the process.

pending
This is of type , which identifies signals which are generated but not
yet delivered.

sas_ss_sp
This field contains a pointer to an alternate stack, which facilitates signal handling.

sas_ss_size
This filed shows the size of the alternate stack, used for signal handling.

Kernel stack
With current-generation computing platforms powered by multi-core hardware capable of
running simultaneous applications, the possibility of multiple processes concurrently
initiating kernel mode switch when requesting for the same process is built in. To be able to
handle such situations, kernel services are designed to be re-entrant, allowing multiple
processes to step in and engage the required services. This mandated the requesting process
to maintain its own private kernel stack to keep track of the kernel function call sequence,
store local data of the kernel functions, and so on.

The kernel stack is directly mapped to the physical memory, mandating the arrangement to
be physically in a contiguous region. The kernel stack by default is 8kb for x86-32 and most
other 32-bit systems (with an option of 4k kernel stack to be configured during kernel
build), and 16kb on an x86-64 system.
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When kernel services are invoked in the current process context, they need to validate the
process s prerogative before it commits to any relevant operations. To perform such
validations, the kernel services must gain access to the task structure of the current process
and look through the relevant fields. Similarly, kernel routines might need to have access to
the current  for modifying various resource structures such as signal
handler tables, looking for pending signals, file descriptor table, and memory descriptor
among others. To enable accessing the  at runtime, the address of the
current  is loaded into a processor register (register chosen is architecture
specific) and made available through a kernel global macro called  (defined in
architecture-specific kernel header  ):
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register struct task_struct *current asm ("r2");

However, in register-constricted architectures, where there are few registers to spare,
reserving a register to hold the address of the current task structure is not viable. On such
platforms, the  of the current process is directly made available at the top
of the kernel stack that it owns. This approach renders a significant advantage with respect
to locating the , by just masking the least significant bits of the stack
pointer.

With the evolution of the kernel, the  grew and became too large to be
contained in the kernel stack, which is already restricted in physical memory (8Kb). As a
result, the  was moved out of the kernel stack, barring a few key fields
that define the process's CPU state and other low-level processor-specific information.
These fields were then wrapped in a newly created structure called .
This structure is contained on top of the kernel stack and provides a pointer that refers to
the current , which can be used by kernel services.

The following code snippet shows  for x86 architecture (kernel 3.10):

/* linux-3.10/arch/x86/include/asm/thread_info.h */

struct task_struct *task
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With  containing process-related information, apart from ,
the kernel has multiple viewpoints to the current process structure: ,
an architecture-independent information block, and , an architecture-specific
one. The following figure depicts thread_info and task_struct:

For architectures that engage , the current macro's implementation is
modified to look into the top of kernel stack to obtain a reference to the current

 and through it the . The following code snippet
shows the implementation of current for an x86-64 platform:

#define get_current() (current_thread_info()->task)
#define current get_current()
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 return (struct thread_info *)
                (current_stack_pointer & ~(THREAD_SIZE - 1));

As use of  variables has increased in recent times, the process scheduler is tuned to
cache crucial current process-related information in the  area. This change enables
quick access to current process data over looking up the kernel stack. The following code
snippet shows the implementation of the current macro to fetch the current task data
through the  variable:

DECLARE_PER_CPU(struct task_struct *, current_task);

return this_cpu_read_stable(current_task);

#define current get_current()
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The use of  data led to a gradual reduction of information in . With
 shrinking in size, kernel developers are considering getting rid of
 altogether by moving it into the . As this involves changes

to low-level architecture code, it has only been implemented for the x86-64 architecture,
with other architectures planned to follow. The following code snippet shows the current
state of the  structure with just one element:

The issue of stack overflow
Unlike user mode, the kernel mode stack lives in directly mapped memory. When a process
invokes a kernel service, which may internally be deeply nested, chances are that it may 
overrun into immediate memory range. The worst part of it is the kernel will be oblivious to
such occurrences. Kernel programmers usually engage various debug options to track stack
usage and detect overruns, but these methods are not handy to prevent stack breaches on
production systems. Conventional protection through the use of guard pages is also ruled
out here (as it wastes an actual memory page).

Kernel programmers tend to follow coding standards--minimizing the use of local data,
avoiding recursion, and avoiding deep nesting among others--to cut down the probability
of a stack breach. However, implementation of feature-rich and deeply layered kernel
subsystems may pose various design challenges and complications, especially with the
storage subsystem where filesystems, storage drivers, and networking code can be stacked
up in several layers, resulting in deeply nested function calls.

The Linux kernel community has been pondering over preventing such breaches for quite
long, and toward that end, the decision was made to expand the kernel stack to 16kb
(x86-64, since kernel 3.15). Expansion of the kernel stack might prevent some breaches, but
at the cost of engaging much of the directly mapped kernel memory for the per-process
kernel stack. However, for reliable functioning of the system, it is expected of the kernel to
elegantly handle stack breaches when they show up on production systems.
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With the 4.9 release, the kernel has come with a new system to set up virtually mapped
kernel stacks. Since virtual addresses are currently in use to map even a directly mapped
page, principally the kernel stack does not actually require physically contiguous pages.
The kernel reserves a separate range of addresses for virtually mapped memory, and
addresses from this range are allocated when a call to  is made. This range of
memory is referred as the vmalloc range. Primarily this range is used when programs
require huge chunks of memory which are virtually contiguous but physically scattered.
Using this, the kernel stack can now be allotted as individual pages, mapped to the vmalloc
range. Virtual mapping also enables protection from overruns as a no-access guard page
can be allocated with a page table entry (without wasting an actual page). Guard pages
would prompt the kernel to pop an oops message on memory overrun and initiate a kill
against overrunning process.

Virtually mapped kernel stacks with guard pages are currently available only for the x86-64
architecture (support for other architectures seemingly to follow). This can be enabled by
choosing the  or  build-time options.

Process creation
During kernel boot, a kernel thread called  spawned, which in turn is configured to
initialize the first user-mode process (with the same name). The  (pid 1) process is then 
configured to carry out various initialization operations specified through configuration
files, creating multiple processes. Every child process further created (which may in turn
create its own child process(es)) are all descendants of the init process. Processes thus
created end up in a tree-like structure or a single hierarchy model. The , which is one
such process, becomes the interface for users to create user processes, when programs are
called for execution.

Fork, vfork, exec, clone, wait and exit are the core kernel interfaces for the creation and
control of new process. These operations are invoked through corresponding user-mode
APIs.
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fork()
 is one of the core "Unix thread APIs" available across *nix systems since the

inception of legacy Unix releases. Aptly named, it forks a new process from a running
process. When  succeeds, the new process is created (referred to as ) by
duplicating the caller's  and . On return from ,
both caller (parent) and new process (child) resume executing instructions from the same
code segment which was duplicated under copy-on-write.  is perhaps the only API
that enters kernel mode in the context of caller process, and on success returns to user mode
in the context of both caller and child (new process).

Most resource entries of the parent's  such as memory descriptor, file
descriptor table, signal descriptors, and scheduling attributes are inherited by the child,
except for a few attributes such as memory locks, pending signals, active timers, and file
record locks (for the full list of exceptions, refer to the fork(2) man page). A child process is
assigned a unique  and will refer to its parent's  through the  field of its 

; the child s resource utilization and processor usage entries are reset to zero.

The parent process updates itself about the child s state using the  system call and
normally waits for the termination of the child process. Failing to call , the child
may terminate and be pushed into a zombie state.

Copy-on-write (COW)
Duplication of parent process to create a child needs cloning of the user mode address space
( , , , and  segments) and task structure of the parent for the child; this
would result in execution overhead that leads to un-deterministic process-creation time. To
make matters worse, this process of cloning would be rendered useless if neither parent nor
child did not initiate any state-change operations on cloned resources.

As per COW, when a child is created, it is allocated a unique  with all
resource entries (including page tables) referring to the parent's , with
read-only access for both parent and child. Resources are truly duplicated when either of
the processes initiates a state change operation, hence the name copy-on-write (  in
COW implies a state change). COW does bring effectiveness and optimization to the fore,
by deferring the need for duplicating process data until write, and in cases where only read
happens, it avoids it altogether. This on-demand copying also reduces the number of swap
pages needed, cuts down the time spent on swapping, and might help reduce demand
paging.
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exec
At times creating a child process might not be useful, unless it runs a new program
altogether: the  family of calls serves precisely this purpose.  replaces the existing
program in a process with a new executable binary:

The  is the system call that executes the program binary file, passed as the first
argument to it. The second and third arguments are null-terminated arrays of arguments
and environment strings, to be passed to a new program as command-line arguments. This
system call can also be invoked through various  (library) wrappers, which are found
to be more convenient and flexible:

Command-line user-interface programs such as  use the  interface to launch
user-requested program binaries.

vfork()
Unlike ,  creates a child process and blocks the parent, which means that
the child runs as a single thread and does not allow concurrency; in other words, the parent
process is temporarily suspended until the child exits or call . The child shares the
data of the parent.
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Linux support for threads
The flow of execution in a process is referred to as a thread, which implies that every 
process will at least have one thread of execution. Multi-threaded means the existence of
multiple flows of execution contexts in a process. With modern many-core architectures,
multiple flows of execution in a process can be truly concurrent, achieving fair multitasking.

Threads are normally enumerated as pure user-level entities within a process that are
scheduled for execution; they share parent's virtual address space and system resources.
Each thread maintains its code, stack, and thread local storage. Threads are scheduled and
managed by the thread library, which uses a structure referred to as a thread object to hold
a unique thread identifier, for scheduling attributes and to save the thread context. User-
level thread applications are generally lighter on memory, and are the preferred model of
concurrency for event-driven applications. On the flip side, such user-level thread model is
not suitable for parallel computing, since they are tied onto the same processor core to
which their parent process is bound.

Linux doesn t support user-level threads directly; it instead proposes an alternate API to
enumerate a special process, called light weight process (LWP), that can share a set of
configured resources such as dynamic memory allocations, global data, open files, signal
handlers, and other extensive resources with the parent process. Each LWP is identified by
a unique PID and task structure, and is treated by the kernel as an independent execution
context. In Linux, the term thread invariably refers to LWP, since each thread initialized by
the thread library ( ) is enumerated as an LWP by the kernel.

clone()
 is a Linux-specific system call to create a new process; it is considered a generic

version of the  system call, offering finer controls to customize its functionality
through the  argument:

It provides more than twenty different  flags that control various aspects of the
 operation, including whether the parent and child process share resources such as

virtual memory, open file descriptors, and signal dispositions. The child is created with the
appropriate memory address (passed as the second argument) to be used as the  (for
storing the child's local data). The child process starts its execution with its start function
(passed as the first argument to the clone call).
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When a process attempts to create a thread through the  library,  is
invoked with the following flags:

The  can also be used to create a regular child process that is normally spawned
using  and :
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Kernel threads
To augment the need for running background operations, the kernel spawns threads
(similar to processes). These kernel threads are similar to regular processes, in that they are
represented by a task structure and assigned a PID. Unlike user processes, they do not have
any address space mapped, and run exclusively in kernel mode, which makes them non-
interactive. Various kernel subsystems use  to run periodic and asynchronous
operations.

All kernel threads are descendants of , which is spawned by the
 during boot. The  enumerates other kernel threads; it provides

interface routines through which other kernel threads can be dynamically spawned at
runtime by kernel services. Kernel threads can be viewed from the command line with the

 command--they are shown in [square brackets]:
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pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);

The previous code shows the kernel boot routine  invoking the
 routine with appropriate arguments to spawn both the 

thread (which then goes on to start the user-mode  process) and .

The  is a perpetually running thread that looks into a list called
 for data on new  to be created:

for (;;) {
 set_current_state(TASK_INTERRUPTIBLE);
 if (list_empty(&kthread_create_list))
 schedule();
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while (!list_empty(&kthread_create_list))

create_kthread(create); /* creates kernel threads with attributes enqueued
*/

Kernel threads are created by invoking either  or through its wrapper
 by passing appropriate arguments that define the  (start routine,

ARG data to start routine, and name). The following code snippet shows 
invoking , which by default creates threads on the current
Numa node:

 kthread_create - create a kthread on the current node
@threadfn: the function to run in the thread

 * @data: data pointer for @threadfn()
 * @namefmt: printf-style format string for the thread name
 * @...: arguments for @namefmt

#define kthread_create(threadfn, data, namefmt, arg...)
 kthread_create_on_node(threadfn, data, NUMA_NO_NODE, namefmt, ##arg)
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* Description: Convenient wrapper for kthread_create() followed by
 * wake_up_process(). Returns the kthread or ERR_PTR(-ENOMEM).

#define kthread_run(threadfn, data, namefmt, ...)
({
 struct task_struct *__k
 = kthread_create(threadfn, data, namefmt, ## __VA_ARGS__);
 if (!IS_ERR(__k))
 wake_up_process(__k);
 __k;
})

 instantiates details (received as arguments) of  to
be created into a structure of type  and queues it at the tail of

. It then wakes up  and waits for thread creation to
complete:

struct kthread_create_info *create = kmalloc(sizeof(*create),
 GFP_KERNEL);

create->threadfn = threadfn;
 create->data = data;
 create->node = node;
 create->done = &done;
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list_add_tail(&create->list, &kthread_create_list);

wake_up_process(kthreadd_task);

/*
 * kthreadd (or new kernel thread) will call complete()
 * shortly.
 */
 wait_for_completion(&done); // wakeup on completion of thread creation.

task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
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Recall that  invokes the  routine to start kernel threads as per
data queued into the list. This routine creates the thread and signals completion:

pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES |
 SIGCHLD);

complete(done); /* signal completion of thread creation */

do_fork() and copy_process()
All of the process/thread creation calls discussed so far invoke different system calls (except

) to step into kernel mode. All of those system calls in turn converge into
the common kernel , which is invoked with distinct  flags.

 internally falls back on  to complete the task. The following
figure sums up the call sequence for process creation:
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pid_t kernel_thread

return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
 (unsigned long)arg, NULL, NULL, 0);

SYSCALL_DEFINE0(fork)

return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);

SYSCALL_DEFINE0(vfork)

return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
 0, NULL, NULL, 0);
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return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);

Process status and termination
During the lifetime of a process, it traverses through many states before it ultimately
terminates. Users must have proper mechanisms to be updated with all that happens to a 
process during its lifetime. Linux provides a set of functions for this purpose.

wait
For processes and threads created by a parent, it might be functionally useful for the parent
to know the execution status of the child process/thread. This can be achieved using the

 family of system calls:
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These system calls update the calling process with the state change events of a child. The
following state change events are notified:

Termination of child
Stopped by a signal
Resumed by a signal

In addition to reporting the status, these APIs allow the parent process to reap a terminated
child. A process on termination is put into zombie state until the immediate parent engages
the  call to reap it.

exit
Every process must end. Process termination is done either by the process calling  or
when the main function returns. A process may also be terminated abruptly on receiving a
signal or exception that forces it to terminate, such as the  command, which sends a
signal to kill the process, or when an exception is raised. Upon termination, the process is
put into exit state until the immediate parent reaps it.

The  calls the  system call, which internally calls the  routine. The
 primarily performs the following tasks (  sets many values and makes

multiple calls to related kernel routines to complete its task):

Takes the exit code returned by the child to the parent.
Sets the  flag, indicating process exiting.
Cleans up and reclaims the resources held by the process. This includes releasing

, removal from the queue if it is waiting for an IPC semaphore, release
of filesystem data and files, if any, and calling  as the process is no
longer executable.

After , the process remains in zombie state and the process descriptor is still intact
for the parent to collect the status, after which the resources are reclaimed by the system.
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Namespaces and cgroups
Users logged into a Linux system have a transparent view of various system entities such as
global resources, processes, kernel, and users. For instance, a valid user can access PIDs of
all running processes on the system (irrespective of the user to which they belong). Users
can observe the presence of other users on the system, and they can run commands to view
the state of global system global resources such as memory, filesystem mounts, and devices.
Such operations are not deemed as intrusions or considered security breaches, as it is
always guaranteed that one user/process can never intrude into other user/process.

However, such transparency is unwarranted on a few server platforms. For instance,
consider cloud service providers offering PaaS (platform as a service). They offer an
environment to host and deploy custom client applications. They manage runtime, storage,
operating system, middleware, and networking services, leaving customers to manage their
applications and data. PaaS services are used by various e-commerce, financial, online
gaming, and other related enterprises.

For efficient and effective isolation and resource management for clients, PaaS service
providers use various tools. They virtualize the system environment for each client to
achieve security, reliability, and robustness. The Linux kernel provides low-level
mechanisms in the form of cgroups and namespaces for building various lightweight tools
that can virtualize the system environment. Docker is one such framework that builds on
cgroups and namespaces.

Namespaces fundamentally are mechanisms to abstract, isolate, and limit the visibility that
a group of processes has over various system entities such as process trees, network
interfaces, user IDs, and filesystem mounts. Namespaces are categorized into several
groups, which we will now see.

Mount namespaces
Traditionally, mount and unmount operations will change the filesystem view as seen by all
processes in the system; in other words, there is one global mount namespace seen by all
processes. The mount namespaces confine the set of filesystem mount points visible within
a process namespace, enabling one process group in a mount namespace to have an
exclusive view of the filesystem list compared to another process.
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UTS namespaces
These enable isolating the system's host and domain name within a uts namespace. This
makes initialization and configuration scripts able to be guided based on the respective
namespaces.

IPC namespaces
These demarcate processes from using System V and POSIX message queues. This prevents 
one process from an ipc namespace accessing the resources of another.

PID namespaces
Traditionally, *nix kernels (including Linux) spawn the  process with PID 1 during
system boot, which in turn starts other user-mode processes and is considered the root of
the process tree (all the other processes start below this process in the tree). The PID
namespace allows a process to spin off a new tree of processes under it with its own root
process (PID 1 process). PID namespaces isolate process ID numbers, and allow duplication
of PID numbers across different PID namespaces, which means that processes in different
PID namespaces can have the same process ID. The process IDs within a PID namespace are
unique, and are assigned sequentially starting with PID 1.

PID namespaces are used in containers (lightweight virtualization solution) to migrate a
container with a process tree, onto a different host system without any changes to PIDs.

Network namespaces
This type of namespace provides abstraction and virtualization of network protocol services
and interfaces. Each network namespace will have its own network device instances that
can be configured with individual network addresses. Isolation is enabled for other network
services: routing table, port number, and so on.

User namespaces
User namespaces allow a process to use unique user and group IDs within and outside a
namespace. This means that a process can use privileged user and group IDs (zero) within a
user namespace and continue with non-zero user and group IDs outside the namespace.
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Cgroup namespaces
A cgroup namespace virtualizes the contents of the  file. Processes
inside a cgroup namespace are only able to view paths relative to their namespace root.

Control groups (cgroups)
Cgroups are kernel mechanisms to restrict and measure resource allocations to each process
group. Using cgroups, you can allocate resources such as CPU time, network, and memory.

Similar to the process model in Linux, where each process is a child to a parent and
relatively descends from the  process thus forming a single-tree like structure, cgroups
are hierarchical, where child cgroups inherit the attributes of the parent, but what makes is
different is that multiple cgroup hierarchies can exist within a single system, with each
having distinct resource prerogatives.

Applying cgroups on namespaces results in isolation of processes into  within
a system, where resources are managed distinctly. Each container is a lightweight virtual
machine, all of which run as individual entities and are oblivious of other entities within the
same system.

The following are namespace APIs described in the Linux man page for :
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Summary
We understood one of the principal abstractions of Linux called the process, and the whole
ecosystem that facilitates this abstraction. The challenge now remains in running the scores
of processes by providing fair CPU time. With many-core systems imposing a multitude of
processes with diverse policies and priorities, the need for deterministic scheduling is
paramount.

In our next chapter, we will delve into process scheduling, another critical aspect of process
management, and comprehend how the Linux scheduler is designed to handle this
diversity.
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Deciphering the Process

Scheduler
Process scheduling is one of the most crucial executive jobs of any operating system, Linux
being no different. The heuristics and efficiency in scheduling processes is what make any
operating system tick and also give it an identity, such as a general-purpose operating
system, server, or a real-time system. In this chapter, we will get under the skin of the Linux
scheduler, deciphering concepts such as:

Linux scheduler design
Scheduling classes
Scheduling policies and priorities
Completely Fair Scheduler
Real-Time Scheduler
Deadline Scheduler
Group scheduling
Preemption
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Process schedulers
The effectiveness of any operating system is proportional to its ability to fairly schedule all
contending processes. The process scheduler is the core component of the kernel, which
computes and decides when and for how long a process gets CPU time. Ideally, processes
require a timeslice of the CPU to run, so schedulers essentially need to allocate slices of
processor time fairly among processes.

A scheduler typically has to:

Avoid process starvation
Manage priority scheduling
Maximize throughput of all processes
Ensure low turnaround time
Ensure even resource usage
Avoid CPU hogging
Consider process' behavioral patterns for prioritization
Elegantly subsidize under heavy load
Handle scheduling on multiple cores efficiently

Linux process scheduler design
Linux, which was primarily developed for desktop systems, has unassumingly evolved into
a multi-dimensional operating system with its usage spread across embedded devices,
mainframes, and supercomputers to room-sized servers. It has also seamlessly
accommodated the ever-evolving diverse computing platforms such as SMP, virtualization,
and real-time systems. The diversity of these platforms is brought forth by the kind of
processes that run on these systems. For instance, a highly interactive desktop system may
run processes that are I/O bound, and a real-time system thrives on deterministic processes.
Every kind of process thus calls for a different kind of heuristic when it needs to be fairly
scheduled, as a CPU-intensive process may require more CPU time than a normal process,
and a real-time process would require deterministic execution. Linux, which caters to a
wide spectrum of systems, is thus confronted with addressing the varying scheduling
challenges that come along when managing these diverse processes.
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The intrinsic design of Linux's process scheduler elegantly and deftly handles this challenge
by adopting a simple two-layered model, with its first layer, the Generic Scheduler,
defining abstract operations that serve as entry functions for the scheduler, and the second
layer, the scheduling class, implementing the actual scheduling operations, where each class
is dedicated to handling the scheduling heuristics of a particular kind of process. This
model enables the generic scheduler to remain abstracted from the implementation details
of every scheduler class. For instance, normal processes (I/O bound) can be handled by one
class, and processes that require deterministic execution, such as real-time processes, can be
handled by another class. This architecture also enables adding a new scheduling class
seamlessly. The previous figure depicts the layered design of the process scheduler.

The generic scheduler defines abstract interfaces through a structure called :
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Every scheduler class implements operations as defined in the  structure. As
of the 4.12.x kernel, there are three scheduling classes: the Completely Fair Scheduling
(CFS) class , Real-Time Scheduling class, and Deadline Scheduling class, with each class
handling processes with specific scheduling requirements. The following code snippets
show how each class populates its operations as per the  structure.

CFS class:

Real-Time Scheduling class:
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Deadline Scheduling class:

Runqueue
Conventionally, the runqueue contains all the processes that are contending for CPU time
on a given CPU core (a runqueue is per-CPU). The generic scheduler is designed to look
into the runqueue whenever it is invoked to schedule the next best runnable task.
Maintaining a common runqueue for all the runnable processes would not be a possible
since each scheduling class deals with specific scheduling policies and priorities.

The kernel addresses this by bringing its design principles to the fore. Each scheduling class
defined the layout of its runqueue data structure as best suitable for its policies. The generic
scheduler layer implements an abstract runqueue structure with common elements that
serves as the runqueue interface. This structure is extended with pointers that refer to class-
specific runqueues. In other words, all scheduling classes embed their runqueues into the
main runqueue structure. This is a classic design hack, which lets every scheduler class
choose an appropriate layout for its runqueue data structure.

The following code snippet of  (runqueue) will help us comprehend the concept
(elements related to SMP have been omitted from the structure to keep our focus on what's
relevant):
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struct cfs_rq cfs;
         struct rt_rq rt;
         struct dl_rq dl;
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You can see how the scheduling classes ( , , and ) embed themselves into the
runqueue. Other elements of interest in the runqueue are:

: This denotes the number of processes in the runqueue
: This denotes the current load on the queue (all runnable processes)
 and : These point to the task_struct of the current running task and the

idle task, respectively. The idle task is scheduled when there are no other tasks to
run.
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The scheduler's entry point
The process of scheduling starts with a call to the generic scheduler, that is, the

 function, defined in . This is perhaps one of the
most invoked routines in the kernel. The functionality of  is to pick the next
best runnable task. The  of the  function iterates through
all the corresponding functions contained in the scheduler classes and ends up picking the
next best task to run. Each scheduler class is linked using a single linked list, which enables
the  to iterate through these classes.

Considering that Linux was primarily designed to cater to highly interactive systems, the
function first looks for the next best runnable task in the CFS class if there are no higher-
priority runnable tasks in any of the other classes (this is done by checking whether the total
number of runnable tasks ( ) in the runqueue is equal to the total number of
runnable tasks in the CFS class's sub-runqueue); else, it iterates through all the other classes
and picks the next best runnable task. Finally, if no tasks are found, it invokes the idle,
background tasks (which always returns a non-null value).

The following code block shows the implementation of :
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Process priorities
The decision of which process to run depends on the priority of the process. Every process
is labelled with a priority value, giving it an immediate position in terms of when it will be
given CPU time. Priorities are fundamentally classified into dynamic and static priorities on
*nix systems. Dynamic priorities are basically applied to normal processes dynamically by
the kernel, considering various factors such as the nice value of the process, its historic
behavior (I/O bound or processor bound), lapsed execution, and waiting time. Static
priorities are applied to real-time processes by the user and the kernel does not change 
their priorities dynamically. Processes with static priorities are thus given higher priority
when scheduling.
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I/O bound process: When the execution of a process is heavily punctuated
with I/O operations (waiting for a resource or an event), for instance a text
editor, which almost alternates between running and waiting for a key
press, such processes are called I/O bound. Due to this nature, the
scheduler normally allocates short processor time slices to I/O-bound
processes and multiplexes them with other processes, adding the
overhead of context switching and the subsequent heuristics of computing
the next best process to run.
Processor bound process: These are processes that love to stick on to CPU
time slices, as they require maximum utilization of the processor's
computing capacity. Processes requiring heavy computations such as
complex scientific calculations, and video rendering codecs are processor
bound. Though the need for a longer CPU slice looks desirable, the
expectation to run them under fixed time periods is not often a
requirement. Schedulers on interactive operating systems tend to favor
more I/O-bound processes than processor-bound ones. Linux, which aims
for good interactive performance, is more optimized for faster response
time, inclining towards I/O bound processes, even though processor-
bound processes are run less frequently they are ideally given longer
timeslices to run.
Processes can also be multi-faceted, with an I/O-bound process needing to
perform serious scientific computations, burning the CPU.

The nice value of any normal process ranges between 19 (lowest priority) and -20 (highest
priority), with 0 being the default value. A higher nice value indicates a lower priority (the
process is being nicer to other processes). Real-time processes are prioritized between 0 and
99 (static priority). All these priority ranges are from the perspective of the user.

Kernel's perspective of priorities

Linux however looks at process priorities from its own perspective. It adds a lot more
computation for arriving at the priority of a process. Basically, it scales all priorities between
0 to 139, where 0 to 99 is assigned for real-time processes and 100 to 139 represents the nice
value range (-20 to 19).
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Scheduler classes
Let's now go deeper into each scheduling class and understand the operations, policies, and
heuristics it engages in managing scheduling operations adeptly and elegantly for its
processes. As mentioned earlier, an instance of  must be provided by
each scheduling class; let's look at some of the key elements from that structure:

: Basically adds a new process to the run queue
: When the process is taken off the runqueue

: When the process wants to relinquish CPU voluntarily
: The corresponding function of the pick_next_task called by

schedule(). It picks up the next best runnable task from its class.

Completely Fair Scheduling class (CFS)
All processes with dynamic priorities are handled by the CFS class, and as most processes
in general-purpose *nix systems are normal (non-realtime), CFS remains the busiest
scheduler class in the kernel.

CFS relies on maintaining balance in allocating processor time to tasks, based on policies and
dynamic priorities assigned per task. Process scheduling under CFS is implemented under
the premise that it has an "ideal, precise multi-tasking CPU," that equally powers all
processes at its peak capacity. For instance, if there are two processes, the perfectly multi-
tasking CPU ensures that both processes run simultaneously, each utilizing 50% of its
power. As this is practically impossible (achieving parallelism), CFS allocates processor
time to a process by maintaining proper balance across all contending processes. If a
process fails to receive a fair amount of time, it is considered out of balance, and thus goes
in next as the best runnable process.
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CFS does not rely on the traditional time slices for allocating processor time, but rather uses
a concept of virtual runtime (vruntime): it denotes the amount of time a process got CPU
time, which means a low  value indicates that the process is processor deprived
and a high  value denotes that the process acquired considerable processor time.
Processes with low  values get maximum priority when scheduling. CFS also
engages sleeper fairness for processes that are ideally waiting for an I/O request. Sleeper
fairness demands that waiting processes be given considerable CPU time when they
eventually wake up, post event. Based on the  value, CFS decides what amount of
time the process is to run. It also uses the nice value to weigh a process in relation to all
contending processes: a higher-value, low-priority process gets less weight, and a lower-
value, high-priority task gets more weight. Even handling processes with varying priorities
is elegant in Linux, as a lower-priority task gets considerable factors of delay compared to a
higher-priority task; this makes the time allocated to a low-priority task dissipate quickly.

Computing priorities and time slices under CFS
Priorities are assigned based on how long the process is waiting, how long the process ran,
the process's historical behavior, and its nice value. Normally, schedulers engage complex
algorithms to end up with the next best process to run.

In computing the timeslice every process gets, CFS not just relies on the nice value of the
process but also looks at the load weight of the process. For every jump in the nice value of
a process by 1, there will be a 10% reduction in the CPU timeslice, and for every decrease in
the nice value by 1, there will be a 10% addition in the CPU timeslice, indicating that nice
values are multiplicative by a 10% change for every jump. To compute the load weight for
corresponding nice values, the kernel maintains an array called , where
each nice value corresponds to a weight:

The load value of a process is stored in the  field of .
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Like a process's weight, the runqueue of CFS is also assigned a weight, which is the gross
weight of all the tasks in the runqueue. Now the timeslice is computed by factoring the
entity's load weight, the runqueue's load weight, and the  (scheduling
period).

CFS's runqueue
CFS sheds the need for a normal runqueue and uses a self-balancing, red-black tree instead
to get to the next best process to run in the shortest possible time. The RB tree holds all the
contending processes and facilitates easy and quick insertion, deletion, and searching of
processes. The highest-priority process is placed to its leftmost node. The

 function now just picks the leftmost node from the  to
schedule.

Group scheduling
To ensure fairness when scheduling, CFS is designed to guarantee that every runnable
process gets at least one run on the processor under a defined time duration, called the
scheduling period. Within a scheduling period, CFS rudimentarily ensures fairness or, in
other words, ensures that unfairness is kept at a minimum, as each process at least runs
once. CFS divides the scheduling period into timeslices among all threads of execution to
avoid process starvation; however, imagine a scenario where process A spawns 10 threads
of execution and process B spawns 5 threads of execution: here CFS divides timeslices to all
the threads equally, leading to process A and its spawned threads getting the maximum
time and process B to be dealt with unfairly. If process A keeps on spawning more threads,
the situation may become grave for process B and its spawned threads, as process B will
have to contend with the minimum scheduling granularity or timeslice (which is 1
millisecond). Fairness in this scenario demands process A and B getting equal timeslices
with spawned threads to share these timeslices internally. For instance, if process A and B
get 50% of the time each, then process A shall divide its 50% time among its spawned 10
threads, with each thread getting 5% time internally.
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To address this issue and to keep up the fairness, CFS introduced group scheduling, where
timeslices are allotted to groups of threads instead of individual threads. Continuing the
same example, under group scheduling, process A and its spawned threads belong to one
group and process B and its spawned threads belong to another. As scheduling granularity
is imposed at a group level and not at a thread level, it gives process A and B equal share of
processor time, with process A and B dividing the timeslice among its group members
internally. Here, a thread spawned under process A suffers as it is penalized for spawning
more threads of execution. To ensure group scheduling,  is to
be set when configuring the kernel. CFS task groups are represented by the structure

, and every group is referred as a scheduling entity. The following code
snippet shows key elements of the scheduling entity structure:

: Denotes the amount of load each entity bears on the total load of the queue
: Denotes the amount of time the process ran
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Scheduling entities under many-core systems
Task groups can in a many-core system run on any CPU core, but to facilitate this, creating 
only one scheduling entity will not suffice. Groups thus must create a scheduling entity for
every CPU core on the system. Scheduling entities across CPUs are represented by 

:
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Now every task group has a scheduling entity for every CPU core along with a CFS
runqueue associated with it. When a task from one task group migrates from one CPU core
(x) to another CPU core (y), the task is dequeued from the CFS runqueue of CPU x and
enqueued to the CFS runqueue of CPU y.

Scheduling policies
Scheduling policies are applied to processes, and help in determining scheduling decisions.
If you recall, in , Comprehending Processes, Address Space, and Threads, we described
the  field under the scheduling attributes of struct . The 

 contains the value indicating which policy is to be applied to the process when
scheduling. The CFS class handles all normal processes using the following two policies:

: This is used for all normal processes. All non-realtime
processes can be summarized as normal processes. As Linux aims to be a highly
responsive and interactive system, most of the scheduling activity and heuristics
are centered to fairly schedule normal processes. Normal processes are referred
to as  as per POSIX.

: Normally in servers, where processes are non-interactive,
CPU-bound batch processing is employed. These processes that are CPU
intensive are given less priority than a  process, and they do not
preempt normal processes, which are scheduled.
The CFS class also handles scheduling the idle process, which is specified by the
following policy:

: When there are no processes to run, the idle process (low-
priority background processes) is scheduled. The idle process is assigned the least
priority among all processes.
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Real-time scheduling class
Linux supports soft real-time tasks and they are scheduled by the real-time scheduling
class.  processes are assigned static priorities and are unchanged dynamically by the
kernel. As real-time tasks aim at deterministic runs and desire control over when and how
long they are to be scheduled, they are always given preference over normal tasks
( ). Unlike CFS, which uses  as its sub-runqueue, the  scheduler,
which is less complicated, uses a simple  per priority value (1 to 99). Linux
applies two real-time policies,  and , when scheduling static priority processes; these
are indicated by the  element of .

 (1): This uses the first in, first out method to schedule soft real-time
processes

 (2): This is the round-robin policy used to schedule soft real-time
processes

FIFO
FIFO is a scheduling mechanism applied to processes with priorities higher than 0 (0 is
assigned to normal processes). FIFO processes run sans any timeslice allocation; in other
words, they invariably run until they block for some event or explicitly yield to another
process. A FIFO process also gets preempted when the scheduler encounters a higher-
priority runnable FIFO, RR, or deadline task. When scheduler encounters more than one fifo
task with the same priority, it runs the processes in round robin, starting with the first
process at the head of the list. On preemption, the process is added back to the tail of the
list. If a higher-priority process preempts the FIFO process, it waits at the head of the list,
and when all other high-priority tasks are preempted, it is again picked up to run. When a
new fifo process becomes runnable, it is added to the tail of the list.

RR
The round-robin policy is similar to FIFO, with the only exception being that it is allocated a
timeslice to run. This is kind of an enhancement to FIFO (as a FIFO process may run until it
yields or waits). Similar to FIFO, the RR process at the head of the list is picked for
execution (if no other higher-priority task is available) and on completion of the timeslice
gets preempted and is added back to the tail end of the list. RR processes with the same
priority run round robin until preempted by a high-priority task. When a high-priority task
preempts an RR task, it waits at the head of the list, and on resumption runs for the
remainder of its timeslice only.
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Real-time group scheduling
Similar to group scheduling under CFS, real-time processes can also be grouped for
scheduling with  set. For group scheduling to succeed, each
group must be assigned a portion of CPU time, with a guarantee that the timeslice is
enough to run the tasks under each entity, or it fails. So "run time" (a portion of how much
time a CPU can spend running in a period) is allocated per group. The run time allocated to
one group will not be used by another group. CPU time that is not allocated for real-time
groups will be used by normal-priority tasks and any time unused by the real-time entities
will also be picked by the normal tasks. FIFO and RR groups are represented by 

:
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Deadline scheduling class (sporadic task model
deadline scheduling)
Deadline represents the new breed of RT processes on Linux (added since the 3.14 kernel).
Unlike FIFO and RR, where processes may hog CPU or be bound by timeslices, a deadline
process, which is based on GEDF (Global Earliest Deadline First) and CBS (Constant
Bandwidth Server) algorithms, predetermines its runtime requirements. A sporadic process
internally runs multiple tasks, with each task having a relative deadline within which it
must complete executing and a computation time, defining the time that the CPU needs to
complete process execution. To ensure that the kernel succeeds in executing deadline
processes, the kernel runs an admittance test based on the deadline parameters, and on
failure returns an error, . Processes with the deadline policy gets precedence over all
other processes. Deadline processes use  (6) as their policy element.

Scheduler related system calls
Linux provides an entire family of system calls that manage various scheduler parameters,
policies, and priorities and retrieve a multitude of scheduling-related information for the
calling threads. It also enables threads to yield CPU explicitly:

 takes an int parameter and adds it to the  value of the calling thread. On
success, it returns the new nice value of the thread. Nice values are within the range 19
(lowest priority) to -20 (highest priority). Nice values can be incremented only within this
range:

This returns the  value of the thread, group, user, or set of threads of a specified user as
indicated by its parameters. It returns the highest priority held by any of the processes:

The scheduling priority of the thread, group, user, or set of threads of a specified user as
indicated by its parameters is set by . It returns zero on success:
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This sets both the scheduling policy and parameters of a specified thread, indicated by its
. If the  is zero, the policy of the calling thread will be set. The  argument,

which specifies the scheduling parameters, points to a structure , which holds
.  must be zero for normal processes and a priority

value in the range 1 to 99 for FIFO and RR policies (mentioned in policy argument). It
returns zero on success:

sched_getscheduler(pid_t )

It returns the scheduling policy of a thread ( ). If the  is zero, the policy of the calling
thread will be retrieved:

sched_setparam(pid_t const struct sched_param )

It sets the scheduling parameters associated with the scheduling policy of the given thread
( ). If the  is zero, the parameters of the calling process are set. On success, it returns
zero:

sched_getparam(pid_t struct sched_param )

This sets the scheduling parameters for the specified thread ( ). If the  is zero, the
scheduling parameters of the calling thread will be retrieved. On success, it returns zero:

sched_setattr(pid_t struct sched_attr unsigned int )

It sets the scheduling policy and related attributes for the specified thread ( ). If the 
is zero, the policy and attributes of the calling process are set. This is a Linux-specific call
and is the superset of the functionality provided by  and

 calls. On success, it returns zero.

sched_getattr(pid_t struct sched_attr unsigned int
unsigned int )

It fetches the scheduling policy and related attributes of the specified thread ( ). If the
 is zero the scheduling policy and related attributes of the calling thread will be

retrieved. This is a Linux-specific call and is a superset of the functionality provided by
 and  calls. On success, it returns zero.

sched_get_priority_max int
sched_get_priority_min int
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This returns the max and min priority respectively for the specified . , ,
, , , and  are supported values of policy.

sched_rr_get_interval(pid_t struct timespec )

It fetches the time quantum of the specified thread ( ) and writes it into the 
, specified by . If the  is zero, the time quantum of the calling process is

fetched into . This is only applicable to processes with the rr policy. On success, it
returns zero.

sched_yield( )

This is called to relinquish the CPU explicitly. The thread is now added back to the queue.
On success, it returns zero.

Processor affinity calls
Linux-specific processor affinity calls are provided, which help the threads define on which
CPU(s) they want to run. By default, every thread inherits the processor affinity of its
parent, but it can define its affinity mask to determine its processor affinity. On many-core
systems, CPU affinity calls help in enhancing the performance, by helping the process stick
to one core (Linux however attempts to keep a thread on one CPU). The affinity bitmask
information is contained in the  field of . The affinity
calls are as follows:

sched_setaffinity(pid_t size_t const cpu_set_t )

It sets the CPU affinity mask of the thread ( ) to the value mentioned by . If the
thread ( ) is not running in one of the specified CPU's queues, it is migrated to the
specified . On success, it returns zero.

sched_getaffinity(pid_t size_t cpu_set_t )

This fetches the affinity mask of the thread ( ) into the  structure, pointed to
by mask. If the  is zero, the mask of the calling thread is returned. On success, it returns
zero.
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Process preemption
Understanding preemption and context switching is key to fully comprehending
scheduling and the impact it has on the kernel in maintaining low latency and consistency.
Every process must be preempted either implicitly or explicitly to make way for another
process. Preemption might lead to context switching, which requires a low-level
architecture-specific operation, carried out by the function . There are
two primary tasks that need to be done for a processor to switch its context: switch the
virtual memory mapping of the old process with the new one, and switch the processor
state from that of the old process to the new one. These two tasks are carried out by

 and .

Preemption can happen for any of the following reasons:

When a high-priority process becomes runnable. For this, the scheduler will have to
periodically check for a high-priority runnable thread. On return from interrupts and
system calls,  (kernel-provided flag that indicates the need for a
reschedule) is set, invoking the scheduler. Since there is a periodic timer interrupt that is
guaranteed to occur at regular intervals, invocation of the scheduler is guaranteed.
Preemption also happens when a process enters a blocking call or on occurrence of an
interrupt event.

The Linux kernel historically has been non-preemptive, which means a task in kernel mode
is non-preemptible unless an interrupt event occurs or it chooses to explicitly relinquish
CPU. Since the 2.6 kernel, preemption has been added (needs to be enabled during kernel
build). With kernel preemption enabled, a task in kernel mode is preemptible for all the
reasons listed, but a kernel-mode task is allowed to disable kernel preemption while
carrying out critical operations. This has been made possible by adding a preemption
counter ( ) to each process's  structure. Tasks can
disable/enable preemption through the kernel macros  and

, which in turn increment and decrement the . This
ensures that the kernel is preemptible only when the  is zero (indicating
no acquired locks).

Critical sections in the kernel code are executed by disabling preemption, which is enforced
by invoking  and  calls within kernel lock operations
(spinlock, mutex).

Linux kernels build with "preempt rt", supporting fully preemptible kernel option, which
when enabled makes all the kernel code including critical sections be fully preemptible.
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Summary
Process scheduling is an ever-evolving aspect of the kernel, and as Linux evolves and
diversifies further into many computing domains, finer tweaks and changes to the process
scheduler will be mandated. However, with our understanding established over this
chapter, gaining deeper insights or comprehending any new changes will be quite easy. We
are now equipped to go further and explore another important aspect of job control and
signal management. We will brush through basics of signals and move on into signal
management data structures and routines of the kernel.



33
Signal Management

Signals provide a fundamental infrastructure in which any process can be notified of a
system event asynchronously. They can also be engaged as communication mechanisms
between processes. Understanding how the kernel provides and manages smooth
throughput of the entire signal-handling mechanism lets us gain more grounding on the
kernel. In this chapter, we shall pile on our understanding of signals, right from how
processes can usher them to how the kernel deftly manages the routines to ensure signal
events tick. We shall look at the following topics in great detail:

Overview of signals and their types
Process-level signal-management calls
Signal data structures in process descriptors
Kernel's signal generation and delivery mechanisms

Signals
Signals are short messages delivered to a process or a process group. The kernel uses
signals to notify processes about the occurrence of a system event; signals are also used for
communication between processes. Linux categorizes signals into two groups, namely
general-purpose POSIX (classic Unix signals) and real-time signals. Each group consists of
32 distinct signals, identified by a unique ID:
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Signals in the general-purpose category are bound to a specific system event and are named
appropriately through macros. Those in the real-time category aren't bound to a specific
event, and are free for applications to engage for process communication; the kernel refers
to them with generic names:  and .
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Upon generation of a signal, the kernel delivers the signal event to the destination process,
which in turn can respond to the signal as per the configured action, called signal
disposition.

The following is the list of actions that a process can set up as its signal disposition. A
process can set up any one of the actions as its signal disposition at a point in time, but it
can switch between these actions any number of times without any restrictions.

Kernel handler: The kernel implements a default handler for each signal. These
handlers are available to a process through the signal handler table of its task
structure. Upon reception of a signal, a process can request execution of the
appropriate signal handler. This is the default disposition.

Process defined handler: A process is allowed to implement its own signal
handlers, and set them up to be executed in response to a signal event. This is
made possible through the appropriate system call interface, which allows the
process to bind its handler routine with a signal. On occurrence of a signal, the
process handler would be invoked asynchronously.

Ignore: A process is also allowed to ignore the occurrence of a signal, but it needs
to announce its intent to ignore by invoking the appropriate system call.

Kernel-defined default handler routines can execute any of the following actions:

Ignore: Nothing happens.
Terminate: Kill the process, that is, all threads in the group (similar to

). The group leader (only) reports the  status to its
parent.
Coredump: Write a core dump file describing all threads using the same  and
then kill all those threads
Stop: Stop all the threads in the group, that is, the  state.

Following is the summarized table that lists out actions executed by default handlers:
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Signal-management APIs
Applications are provided with various APIs for managing signals; we shall take a look at
few of the important ones:

: User-mode processes use the POSIX API  to1.
examine or change the disposition of a signal. This API provides a variety of
attribute flags that can further define the behavior of a signal:
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 is the identifier number of a recognized . 
examines and sets the action to be associated with this signal.

 can be assigned with the address of a 
 instance. The action specified in this structure becomes the new

action bound to the signal. When the act pointer is left uninitialized (NULL), the
current disposition is left unchanged.

 is an outparam and needs to be initialized with
the address of an uninitialized  instance;  returns the
action currently associated with the signal through this argument.
Following are the various  options:

: This flag is relevant only while binding the handler for .
It's used to disable  notifications for stop ( ) and resume
( ) events on the child process.

: This flag is relevant only while binding the handler for the
 or setting its disposition to . Setting this flag causes the child

process to be instantly destroyed on termination rather than having it in a zombie
state.

: Setting this flag causes the generated signal to be delivered even if
the corresponding handler is in execution.

: This flag is relevant only while binding a signal handler. Setting
this flag causes the signal handler to use an alternate stack; the alternate stack
must be set up by the caller process through the  API. In the
absence of an alternate stack, the handler will be invoked on the current stack.

: When this flag is applied with , it makes the signal
handler one-shot, that is, the action for the specified signal is reset to  for
subsequent occurrences of this signal.

: This flag enables the re-entry of system call operations, interrupted
by the current signal handler.
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: This flag is used to indicate to the system that the signal handler is
assigned--the  pointer of the  structure instead of

. Handlers assigned to  receive two additional
arguments:

The first argument is , to which the handler is bound. The second
argument is an outparam that is a pointer to an object of type ,
which provides additional information about the source of the signal.
Following is the full definition of :
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: Apart from changing the signal disposition, which specifies the2.
action to be executed on receipt of a signal, applications are also allowed to block
or unblock signal delivery. Applications might need to carry out such operations
while executing critical code blocks without preemption by an asynchronous
signal handler. For instance, a network communication application might not
want to handle signals while entering a code block that initiates a connection
with its peers:

 is a POSIX API, used to examine, block, and unblock
signals.

Any occurrence of blocked signals is queued in a per-process pending signals
list. The pending queue is designed to hold one occurrence of a blocked
general-purpose signal while it queues every occurrence of a real-time signal.
User-mode processes can probe for pending signals using the 
and  APIs. These routines return a list of pending signals
into an instance pointed to by the  pointer.

The operations are applicable for all signals except  and ;
in other words, processes are not allowed to alter the default disposition
or block  and  signals.

Raising signals from a program
 and  are POSIX APIs through which a process can raise a signal for

another process or process group. These APIs facilitate utilization of signals as process-
communication mechanisms:
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While both APIs provide arguments to specify the receiver  and  to be raised,
 provides an additional argument (union signal) through which data can be

sent to the receiver process along with the signal. The destination process can access the
data through  ( ) instances. Linux extends these functions
with native APIs that can queue the signal to a thread group, or even to a lightweight
process (LWP) in a thread group:

Waiting for queued signals
When applying signals for process communication, it might be more appropriate for a
process to suspend itself until the occurrence of a specific signal, and resume execution on
the arrival of a signal from another process. The POSIX calls ,

, and  provide this functionality:

While all of these APIs allow a process to wait for a specified signal to occur,
 provides additional data about the signal through the  instance

returned through the  pointer.  extends the functionality by
providing an additional argument that allows the operation to time out, making it a
bounded wait call. The Linux kernel provides an alternate API that allows the process to be
notified about the occurrence of a signal through a special file descriptor called

:

On success,  returns a file descriptor, on which the process needs to invoke
, which blocks until any of the signals specified in the mask occur.
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Signal data structures
The kernel maintains per-process signal data structures to keep track of, signal disposition,
blocked signals, and pending signal queues. The process task structure contains appropriate
references to these data structures:

Signal descriptors
Recall from our earlier discussions in the first chapter that Linux supports multi-threaded
applications through lightweight processes. All LWPs of a threaded application are part of a
process group and share signal handlers; each LWP (thread) maintains its own pending, and
blocked signal queues.

The signal pointer of the task structure refers to the instance of type ,
which is the signal descriptor. This structure is shared by all LWPs of a thread group and
maintains elements such as a shared pending signal queue (for signals queued to a thread
group), which is common to all threads in a process group.
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The following figure represents the data structures involved in maintaining shared pending
signals:

Following are a few important fields of :

struct sigpending shared_pending;
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Blocked and pending queues
 and  instances in the task structure are bit masks of blocked

signals; these queues are per-process. Each LWP in a thread group thus has its own blocked
signal mask. The  instance of the task structure is used to queue private pending
signals; all signals queued to a normal process and a specific LWP in a thread group are
queued into this list:

The following figure represents the data structures involved in maintaining private pending
signals:
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Signal handler descriptor
The  pointer of the task structure refers to an instance of the struct

, which is the signal handler descriptor shared by all processes in a thread
group. This structure is also shared by all processes created using  with the

 flag. This structure holds an array of  instances, each
wrapping an instance of  that describes the current disposition of each signal:

struct k_sigaction

struct k_sigaction action[_NSIG];

The following figure represents the signal handler descriptor:
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Signal generation and delivery
A signal is said to be generated when its occurrence is enqueued, to list of pending signals
in the task structure of the receiver process or processes. The signal is generated (on a
process or a group) upon request from a user-mode process, kernel, or any of the kernel
services. A signal is considered to be delivered when the receiver process or processes are
made aware of its occurrence and are forced to execute the appropriate response handler; in
other words, signal delivery is equal to initialization of the corresponding handler. Ideally,
every signal generated is assumed to be instantly delivered; however, there is a possibility
of delay between signal generation, and it eventual delivery. To facilitate possible deferred
delivery, the kernel provides separate functions for signal generation and delivery.

Signal-generation calls
The kernel provides two separate group of functions for signal generation: one set for
generating signals on individual process and another for process thread groups.

Following is the list of important functions to generate signals on a process:
: Generates a specified signal on a process; this function is used

widely by kernel services
: Extends  with additional  instances

: Used to generate priority non-maskable signals which cannot be
ignored or blocked

: Extends  with additional 
instances.

All of these routines eventually invoke the core kernel function  which is
programmed to generate a specified signal.

Following is the list of important functions to generate signals on a process group:

: Generates the specified signal on all thread groups in a process
group

: Generates the specified signal to a thread group identified by a PID
: Extends  with additional  instances
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All of these routines invoke a function  which eventually invokes
 with appropriate parameters.

The  function is the core signal-generation function; it invokes the
 routine with appropriate arguments:

 __send_signal(sig, info, t, group, from_ancestor_ns)

Following are important steps executed by :

Check for the source of the signal from the  argument. If signal generation1.
was initiated by the kernel for non-maskable  or , it
immediately sets the appropriate bit of the sigpending bitmask, sets the

 flag, and initiates the delivery process by waking up the target
thread:
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Invoke the  function, which checks if the number of2.
pending signals for the receiver process is less than the resource limit. If true, it
increments the pending signal counter and returns the address of the 

 instance:

Enqueue the  instance into the pending list and fill out the signal3.
information into :

Set the appropriate signal bit in the pending signal's bitmask, and attempt signal4.
delivery by invoking  which in turn sets the

 flag:
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Signal delivery
After a signal is generated by updating appropriate entries in the receiver's task structure,
through any of the previously mentioned signal-generation calls, the kernel moves into
delivery mode. The signal is instantly delivered if the receiver process was on CPU and has
not blocked the specified signal. Priority signals  and  are delivered even
if the receiver is not on CPU by waking up the process; however, for the rest of the signals,
delivery is deferred until the process is ready to receive signals. To facilitate deferred
delivery, the kernel checks for nonblocked pending signals of a process on return from
interrupt and system calls before allowing a process to resume user-mode execution. When
the process scheduler (invoked on return from interrupt and exceptions) finds the

 flag set, it invokes the kernel function  to initiate delivery
of the pending signal before resuming the user-mode context of the process.
Upon entry into kernel mode, the user-mode register state of the process is stored in the
process kernel stack in a structure called  (architecture specific):
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The  routine is invoked with the address of  in the kernel stack.
Though  is meant to deliver nonblocked pending signals, its implementation
is architecture specific.

Following is the x86 version of :

struct ksignal ksig
get_signal(&ksig

handle_signal(&ksig, regs)
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 invokes the  function with the address of an instance of type
 (we shall briefly consider important steps of this routine, skipping other

details). This function contains a loop that invokes  until all non-
blocked pending signals from both private and shared pending lists are dequeued. It begins
with lookup into the private pending signal queue, starting from the lowest-numbered
signal, and follows into pending signals in the shared queue, and then updates the data
structures to indicate that the signal is no longer pending and returns its number:

For each pending signal returned by ,  retrieves the
current signal disposition through a pointer of type :

If signal disposition is set to , it silently ignores the current signal and continues
iteration to retrieve another pending signal:

If disposition is not equal to , it retrieves the address of sigaction and initializes it
into arguments  for further execution of the user-mode handler. It further checks
for the  flag in the user's sigaction and, if set, resets the
signal disposition to , breaks out of the loop, and returns to the caller.

 now invokes the  routine to execute the user-mode
handler (we shall discuss this in detail in the next section).

If disposition is set to , it invokes a set of macros to check for the default action of
the kernel handler. Possible default actions are:

Term: Default action is to terminate the process
Ign: Default action is to ignore the signal
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Core: Default action is to terminate the process and dump core
Stop: Default action is to stop the process
Cont: Default action is to continue the process if it is currently stopped

Following is a code snippet from  that initiates the default action as per the
set disposition:

sig_kernel_ignore(signr)

sig_kernel_only(signr)

sig_kernel_stop(signr)
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do_signal_stop(ksig->info.si_signo)

sig_kernel_coredump(signr)

 do_coredump

 do_group_exit(ksig->info.si_signo)
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First, the macro  checks for the default action ignore. If true, it
continues loop iteration to look for the next pending signal. The second macro

 checks for the default action stop; if true, it invokes the
 routine, which puts each thread in the process group into the

state. The third macro  checks for the default action
dump; if true, it invokes the  routine, which generates the coredump binary
file and terminates all the processes in the thread group. Next, for signals with default
action terminate, all threads in the group are killed by invoking the 
routine.

Executing user-mode handlers
Recall from our discussion in the previous section that  invokes the

 routine for delivery of pending signals whose disposition is set to user
handler. The user-mode signal handler resides in the process code segment and requires
access to the user-mode stack of the process; therefore, the kernel needs to switch to the
user-mode stack for executing the signal handler. Successful return from the signal handler
requires a switch back to the kernel stack to restore the user context for normal user-mode
execution, but such an operation would fail since the kernel stack would no longer contain
the user context ( ) since it is emptied on each entry of the process from
user to kernel mode.

To ensure smooth transition of the process for its normal execution in user mode (on return
from the signal handler),  moves the user-mode hardware context
( ) in the kernel stack into the user-mode stack ( ) and
sets up the handler frame to invoke the  routine during return;
this function copies the hardware context back into the kernel stack and restores the user-
mode context for resuming normal execution of the current process.
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The following figure depicts the execution of a user-mode signal handler:

Setting up user-mode handler frames
To set up a stack frame for a user-mode handler,  invokes

 with the address of the instance of , which contains the
 associated with the signal and the pointer to  in the kernel

stack of the current process.
Following is x86 implementation of :

ia32_setup_rt_frame(usig, ksig, cset, regs); // for 32bit systems
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with SA_SIGINFO

ia32_setup_frame(usig, ksig, cset, regs); for 32bit systems
without SA_SIGINFO

x32_setup_rt_frame(ksig, cset, regs);// for systems with x32 ABI

__setup_rt_frame(ksig->sig, ksig, set, regs); Other variants of
x86

It checks for the specific variant of x86 and invokes the appropriate frame setup routine. For
further discussion, we shall focus on , which applies for x86-64. This
function populates an instance of a structure called  with
information needed to handle the signal, sets up a return path (through the

 function), and pushes it into the user-mode stack:

/*arch/x86/kernel/signal.c */

struct rt_sigframe __user *frame

* setup frame with Floating Point state */
frame = get_sigframe(&ksig->ka, regs, sizeof(*frame), &fpstate);
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 /* Set up to return from userspace. */
 restorer = current->mm->context.vdso +
 vdso_image_32.sym___kernel_rt_sigreturn;
 if (ksig->ka.sa.sa_flags & SA_RESTORER)
 restorer = ksig->ka.sa.sa_restorer;
 put_user_ex(restorer, &frame->pretcode);

 err |= copy_siginfo_to_user(&frame->info, &ksig->info);
 err |= setup_sigcontext(&frame->uc.uc_mcontext, fpstate,
 regs, set->sig[0]);

__copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));

 /* Set up registers for signal handler */
 regs->sp = (unsigned long)frame;
 regs->ip = (unsigned long)ksig->ka.sa.sa_handler;
 regs->ax = (unsigned long)sig;
 regs->dx = (unsigned long)&frame->info;
 regs->cx = (unsigned long)&frame->uc;

 regs->ds = __USER_DS;
 regs->es = __USER_DS;
 regs->ss = __USER_DS;
 regs->cs = __USER_CS;
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The  field of the  structure is assigned the return address of the
signal-handler function, which is the  routine. 

 is initialized with , which contains the user-mode context copied
from  of the kernel stack, bit array of regular blocked signals, and floating point
state. After setting up and pushing the  instance to the user-mode stack,

 alters  of the process in the kernel stack to hand over
control to the signal handler when the current process resumes execution. The instruction
pointer (ip) is set to the base address of the signal handler and the stack pointer (sp) is set
to the top address of the frame pushed earlier; these changes cause the signal handler to
execute.

Restarting interrupted system calls
We understood in , Comprehending Processes, Address Space, and Threads that user-
mode processes invoke system calls to switch into kernel mode for executing kernel services.
When a process enters a kernel service routine, there is a possibility of the routine being
blocked for availability of resources (for example, wait on exclusion lock) or occurrence of
an event (such as interrupts). Such blocking operations require the caller process to be put
into the  , or  state. The
specific state effected depends on the choice of blocking call invoked in the system calls.

If the caller task is put into the  state, occurrences of signals on
that task are generated, causing them to enter the pending list, and are delivered to the
process only after completion of the service routine (on its return path to user mode).
However, if the task was put into the  state, occurrences of signals
on that task are generated and an immediate delivery is attempted by altering its state to

, which causes the task to wake up on a blocked system call even before the
system call is completed (resulting in the system call operation to fail). Such interruptions
are indicated by returning the appropriate failure code. The effect of signals on a task in the

 state is similar to , except that wake-up is only
effected on occurrence of the fatal  signal.
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, , , , or 
are various kernel-defined failure codes; system calls are programmed to return appropriate
error flags on failure. Choice of error code determines whether failed system call operations
are restarted after the interrupting signal is handled:

#define EINTR 4

#define ERESTARTSYS 512
#define ERESTARTNOINTR 513
#define ERESTARTNOHAND 514 /

#define ERESTART_RESTARTBLOCK 516
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On return from an interrupted system call, the user-mode API always returns the 
error code, irrespective of the specific error code returned by the underlying kernel service
routine. The remaining error codes are used by the signal-delivery routines of the kernel to
determine whether interrupted system calls can be restarted on return from the signal
handler.
The following table shows the error codes for when system call execution gets interrupted
and the effect it has for various signal dispositions:

This is what they mean:

No Restart: The system call will not be restarted. The process will resume
execution in user mode from the instruction that follows the system call (int
$0x80 or sysenter).
Auto Restart: The kernel forces the user process to re-initiate the system call
operation by loading the corresponding syscall identifier into eax and executing
the syscall instruction (int $0x80 or sysenter).
Explicit Restart: The system call is restarted only if the process has enabled the

 flag while setting up the handler (through sigaction) for the
interrupting signal.
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Summary
Signals, though a rudimentary form of communication engaged by processes and kernel
services, provide an easy and effective way to get asynchronous responses from a running
process on occurrence of various events. By understanding all core aspects of signal usage,
their representation, data structures and kernel routines for signal generation and delivery,
we are now more kernel aware and also better prepared to look at more sophisticated
means of communication between processes, in a later part of this book. After having spent
the first three chapters on processes and their related aspects, we shall now delve into other
subsystems of the kernel to notch up our visibility. In the next chapter, we will build our
understanding of one of the core aspects of the kernel, the memory subsystem.

Throughout the next chapter, we will go through comprehending step by step many critical
aspects of memory management such as memory initialization, paging and protection, and
kernel memory allocation algorithms, among others.



44
Memory Management and

Allocators
The efficiency of memory management broadly sets the efficiency of the whole kernel.
Casually managed memory systems can seriously impact the performance of other
subsystems, making memory a critical component of the kernel. This subsystem sets all
processes and kernel services in motion by virtualizing physical memory and managing all
dynamic allocation requests initiated by them. The memory subsystem also handles a wide
spectrum of operations in sustaining operational efficiency and optimizing resources. The
operations are both architecture specific and independent, which mandates the overall
design and implementation to be just and tweakable. We will closely look at the following
aspects in this chapter in our effort to comprehend this colossal subsystem:

Physical memory representation
Concepts of nodes and zones
Page allocator
Buddy system
Kmalloc allocations
Slab caches
Vmalloc allocations
Contiguous memory allocations
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Initialization operations
In most architectures, on reset, processor is initialized in normal or physical address mode
(also called real mode in x86) and begins executing the platform's firmware instructions
found at the reset vector. These firmware instructions (which can be single binary or multi-
stage binary) are programmed to carry out various operations, which include initialization
of the memory controller, calibration of physical RAM, and loading the binary kernel image
into a specific region of physical memory, among others.

When in real mode, processors do not support virtual addressing, and Linux, which is
designed and implemented for systems with protected mode, requires virtual addressing
to enable process protection and isolation, a crucial abstraction provided by the kernel
(recall from , Comprehending Processes, Address Space, and Threads). This mandates
the processor to be switched into protected mode and turn on virtual address support
before the kernel kicks in and begins its boot operations and initialization of subsystems.
Switching to protected mode requires the MMU chipset to be initialized, by setting up
appropriate core data structures, in the process enabling paging. These operations are
architecture specific and are implemented in arch branch of the kernel source tree. During
kernel build these sources are compiled and linked as a header to protected mode kernel
image; this header is referred as the kernel bootstrap or real mode kernel.
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Following is the  routine of x86 architecture's boot strap; this function is executed in
real mode and is responsible for allocating appropriate resources before stepping into
protected mode by invoking :
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 go_to_protected_mode()

Real mode kernel routines that are invoked for setting up MMU and handle transition into
protected mode are architecture specific (we will not be touching on those routines here).
Irrespective of the architecture-specific code engaged, the primary objective is to enable
support for virtual addressing by turning on paging. With paging enabled, system begins
to perceive physical memory (RAM) as an array of blocks of fixed size, called page frames.
Size of a page frame is configured by programming the paging unit of MMU appropriately;
most MMUs support 4k, 8k, 16k, 64k up to 4MB options for frame size configuration.
However, Linux kernel's default build configuration for most architectures chooses 4k as its
standard page frame size.

Page descriptor
Page frames are the smallest possible allocation units of memory and kernel needs to utilize
them for all its memory needs. Some page frames would be required for mapping physical
memory to virtual address spaces of user mode processes, some for kernel code and its data
structures, and some for processing dynamic allocation requests raised by process or a
kernel service. For efficient management of such operations, kernel needs to distinguish
between page frames currently in use from those which are free and available. This purpose
is achieved through an architecture-independent data structure called , which
is defined to hold all meta data pertaining to a page frame, including its current state. An
instance of  is allocated for each physical page frame found, and kernel has to
maintain a list of page instances in main memory all the time.

Page structure is one of the heavily used data structures of the kernel, and is referred from
various kernel code paths. This structure is populated with diverse elements, whose
relevance is entirely based on the state of the physical frame. For instance, specific members
of page structure specify if corresponding physical page is mapped to virtual address space
of a process, or a group of process. Such fields are not considered valid when the physical
page has been reserved for dynamic allocations. To ensure that page instance in memory is
allocated only with relevant fields, unions are heavily used to populate member fields. This
is a prudent choice, since it enables cramming more information into the page structure
without increasing its size in memory:
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Following is a brief description of important members of page structure. Note that a lot of
the details here assume your familiarity with other aspects of memory subsystem which we
discuss in further sections of this chapter, such as memory allocators, page tables, and so
forth. I recommend new readers to skip and revisit this section after you get acquainted
with the necessary prerequisites.

Flags
This is an  bit-field that holds flags which describe state of the physical
page. Flag constants are defined through an  in kernel header 

. The following table lists out important flag constants:

Flag Description

Used to indicate if page is locked; this bit is set while initiating I/O
operations on page and cleared on completion.

Used to indicate an error page. Set on occurrence of an I/O error on the
page.

Set to indicate page reclaim for page cache.

Set to indicate if page is valid after read operation from disk.

Set when file backed page is modified and is out-of-sync with disk image
of the same.
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Used to indicate that the least recently used bit is set which helps handle 
page reclaim.

Used to indicate if page is in active list.

Used to indicate that the page is managed by slab allocator.

Used to indicate reserved pages which are not swappable.

Used to indicate that the page is used by a filesystem to hold its private
data.

Set while commencing write-back operation on a file-backed page

Used to indicate head page of a compound page.

Used to indicate if page is in swapcache.

Used to indicate that page is mapped to blocks on storage.

Page is backed by swap.

Used to indicate that page is in unevictable list; generally, this bit is set
for pages owned by ramfs and  shared memory pages.

Used to indicate that VMA lock is enabled on the page.

A number of macros exist to , , and  individual page bits; these operations
are guaranteed to be  and are declared in kernel header 

. They are invoked to manipulate page flags from various kernel code paths:
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....

....

Mapping
Another important element of the page descriptor is a pointer  of type 

. However, this is one of the tricky pointers which might either refer to an
instance of , or to an instance of . Before we get
into details of how this is achieved, let's first understand the importance of those structures
and the resources they represent.

Filesystems engage free pages( from page cache) to cache data of recently accessed disk
files. This mechanism helps minimize disk I/O operations: when file data in the cache is
modified, the appropriate page is marked dirty by setting the  bit; all dirty pages
are written to the corresponding disk block by scheduling disk I/O at strategic intervals.

 is an abstraction that represents a set of pages engaged for a file
cache. Free pages of the page cache can also be mapped to a process or process group for
dynamic allocations, pages mapped for such allocations are referred to as anonymous page
mappings. An instance of  represents a memory block created with
anonymous pages, that are mapped to the virtual address space (through VMA instance) of
a process or processes.

The tricky dynamic initialization of the pointer with address to either of the data structures
is achieved by bit manipulations. If low bit of pointer  is clear, then it is an
indication that the page is mapped to an  and the pointer refers to 

. If low bit is set, it is an indication for anonymous mapping, which means
the pointer refers to an instance of . This is made possible by ensuring
allocation of  instances aligned to , which makes the least
significant bit of a pointer to  be unset (that is, set to 0).
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Zones and nodes
Principal data structures that are elementary for entire memory management framework
are zones and nodes. Let's familiarize ourselves with core concepts behind these data
structures.

Memory zones
For efficient management of memory allocations, physical pages are organized into groups
called zones. Pages in each zone are utilized for specific needs like DMA, high memory, and
other regular allocation needs. An  in kernel header  declares zone constants:

:
Pages in this zone are reserved for devices which cannot initiate DMA on all addressable
memory. Size of this zone is architecture specific:

Architecture Limit

parsic, ia64, sparc <4G

s390 <2G

ARM variable

alpha unlimited or <16MB

alpha, i386, x86-64 <16MB
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: This zone is used for supporting 32-bit devices which can perform DMA on
<4G of memory. This zone is only present on x86-64 platforms.

: All addressable memory is considered to be normal zone. DMA operations
can be initiated on these pages, provided DMA devices support all addressable memory.

: This zone contains pages that are only accessible by kernel through explicit
mapping into its address space; in other words, all physical memory pages beyond kernel
segment fall into this zone. This zone exists only for 32-bit platforms with 3:1 virtual address
split (3G for user mode and 1G address space for kernel); for instance on i386, allowing the
kernel to address memory beyond 900 MB will require setting up special mappings (page
table entries) for each page that the kernel needs to access.

: Memory fragmentation is one of the challenges for modern operating
systems to handle, and Linux is no exception to this. Right from the moment kernel boots,
throughout its runtime, pages are allocated and deallocated for an array of tasks, resulting
in small regions of memory with physically contiguous pages. Considering Linux support
for virtual addressing, fragmentation might not be an obstacle for smooth execution of
various processes, since physically scattered memory can always be mapped to virtually
contiguous address space through page tables. Yet, there are a few scenarios like DMA
allocations and setting up caches for kernel data structures that have a stringent need for
physically contiguous regions.

Over the years, kernel developers have been evolving numerous anti-fragmentation
techniques to alleviate fragmentation. Introduction of  is one of those
attempts. The core idea here is to track movable pages in each zone and represent them under
this pseudo zone, which helps prevent fragmentation (we discuss more on this in the next
section on the buddy system).

The size of this zone is to be configured at boot time through one of the kernel parameters
; note that the value assigned specifies the amount of memory considered non-

movable, and the rest, movable. As a general rule, the memory manager is configured to
consider migration of pages from the highest populated zone to , which is
probably going to be  for x86 32-bit machines and  on x86_64.
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: This zone has been carved out to support hotplug memories, like large
capacity persistent-memory arrays. Persistent memories are very similar to DRAM in many
ways; specifically, CPUs can directly address them at byte level. However, characteristics
such as persistence, performance (slower writes), and size (usually measured in terabytes)
separate them from normal memory. For the kernel to support such memories with 4 KB
page size, it would need to enumerate billions of page structures, which would consume
significant percent of main memory or not be fit at all. As a result, it was chosen by kernel
developers to consider persistent memory a device, rather than like memory; which means
that the kernel can fall back on appropriate drivers to manage such memories.

The  routine of the persistent memory driver maps a region of
persistent memory into kernel's address space with relevant page structures set up in
persistent device memory. All pages under these mappings are grouped under

. Having a distinct zone to tag such pages allows the memory manager to
distinguish them from regular uniform memory pages.

Memory nodes
Linux kernel is implemented to support multi-processor machine architectures for a long
time now. Kernel implements various resources such as per-CPU data caches, mutual
exclusion locks, and atomic operation macros, which are used across various SMP-aware
subsystems, such as process scheduler and device management, among others. In
particular, the role of memory management subsystem is crucial for kernel to tick on such
architectures, since it needs to virtualize memory as viewed by each processor. Multi-
processor machine architectures are broadly categorized into two types based on each
processor's perception, and access latency to memory on the system.
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Uniform Memory Access Architecture (UMA): These are multi-processor architecture
machines, where processors are joined through an interconnect and share physical memory
and I/O ports. They are named as UMA systems due to memory access latency, which is
uniform and fixed irrespective of the processor from which they were initiated. Most
symmetric multi-processor systems are UMA.

Non-Uniform Memory Access Architecture (NUMA): These are multi-processor machines 
with a contrasting design to that of UMA. These systems are designed with dedicated
memory for each processor with fixed time access latencies. However, processors can
initiate access operations on local memory of other processors through appropriate
interconnects, and such operations render variable time access latencies.
Machines of this model are appropriately named NUMA due to non-uniform (non-
contiguous) view of systems memory for each processor:
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To extend support for NUMA machines, kernel views each non uniform memory partition
(local memory) as a . Each node is identified by a descriptor of  ,
which refers to pages under that node as per zoning policy, discussed earlier. Each zone is
represented through an instance of . UMA machines would contain one node
descriptor under which the entire memory is represented, and on NUMA machines, a list of
node descriptors are enumerated, each representing a contiguous memory node. The
following diagram illustrates the relationship between these data structures:

We shall follow on with node and zone descriptor data structure definitions. Note that we do
not intend to describe every element of these structures as they are related to various
aspects of memory management which are out of scope of this chapter.

Node descriptor structure
Node descriptor structure  is declared in kernel header :

struct zone node_zones[MAX_NR_ZONES];
  struct zonelist node_zonelists[MAX_ZONELISTS];
  int nr_zones;
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 struct bootmem_data *bdata;

 unsigned long node_start_pfn;
 unsigned long node_present_pages; /* total number of physical pages */
 unsigned long node_spanned_pages;
int node_id;

 unsigned long totalreserve_pages;
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pg_data_t

Depending on the type of machine and kernel configuration chosen, various elements are
compiled into this structure. We'll look at few important elements:

Field Description

An array that holds zone instances for pages in this node.

An array that specifies preferred allocation order for zones in the
node.

Count of zones in the current node.

Pointer to list of page descriptors in the current node.

Pointer to boot memory descriptor (discussed in later section)

Holds frame number of the first physical page in this node; this
value would be zero for UMA systems.

Total count of pages in the node

Total size of physical page range, including holes if any.

Holds unique node identifier (nodes are numbered from zero)

Wait queue of  kernel thread

Pointer to task structure of  kernel thread

Count of reserve pages not used for user space allocations

Zone descriptor structure
The  header also declares , which serves as zone descriptor.
Following is a code snippet of structure definition and is well commented. We shall follow
on with descriptions of a few important fields:

 unsigned long watermark[NR_WMARK];
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 unsigned long nr_reserved_highatomic;

long lowmem_reserve[MAX_NR_ZONES];

 struct pglist_data *zone_pgdat;
 struct per_cpu_pageset __percpu *pageset;

 unsigned long zone_start_pfn;
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 const char *name;// 

 ZONE_PADDING(_pad1_)
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struct free_area free_area[MAX_ORDER];

 unsigned long flags;

 ZONE_PADDING(_pad2_)

 ZONE_PADDING(_pad3_)

 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
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Following is the summarized table of important fields, with short descriptions for each of
them:

Field Description

An array of unsigned long with ,
and  offsets. Values in these offsets impact swap
operations carried out by  kernel thread.

Holds count of reserved high order atomic pages

Array that specifies count of pages for each zone that are
reserved for critical allocations

Pointer to node descriptor for this zone.

Pointer to per-CPU hot-and-cold page lists.

An array of instances of type , each 
abstracting contiguous free pages made available for buddy
allocator. More on buddy allocator in a later section.

Unsigned long variable used to store current status of the zone.

Index of first page frame in the zone

Statistical information of the zone

Memory allocators
Having looked at how physical memory is organized, and represented through core data
structures, we will now shift our attention to management of physical memory for
processing allocation and deallocation requests. Memory allocation requests can be raised
by various entities in the system, such as usermode process, drivers, and filesystems.
Depending on the type of entity and context from which allocation is being requested,
allocations returned might need to meet certain characteristics, such as page-aligned
physically contiguous large blocks or physically contiguous small blocks, hardware cache
aligned memory, or physically fragmented blocks that are mapped to virtually contiguous
address space.

To efficiently manage physical memory, and cater to memory as per chosen priority and
pattern, the kernel engages with a group of memory allocators. Each allocator has a distinct
set of interface routines, which are backed by precisely designed algorithms optimized for a
specific allocation pattern.
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Page frame allocator
Also called the zoned page frame allocator, this serves as an interface for physically 
contiguous allocations in multiples of page size. Allocation operations are carried out by
looking into appropriate zones for free pages. Physical pages in each zone are managed by
Buddy System, which serves as the backend algorithm for the page frame allocator:

Kernel code can initiate memory allocation/deallocation operations on this algorithm
through interface inline functions and macros provided in the kernel header

:

The first parameter  serves as a means to specify attributes as per which
allocations are to be fulfilled; we will look into details of the attribute flags in coming
sections. The second parameter  is used to specify size of the allocation; the value
assigned is considered 2order. On success, it returns the address of the first page structure,
and NULL on failure. For single page allocations an alternate macro is made available,
which again falls back on :
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Allocated page(s) are mapped on to contiguous kernel address space, through appropriate
page table entries (for paged address translation during access operations). Addresses
generated after page table mapping, for use in kernel code, are referred to as linear
addresses. Through another function interface , the caller code can
retrieve the start linear address of the allocated block.

Allocations can also be initiated through a set of wrapper routines and macros to
, which marginally extend functionality and return the start linear address

for the allocated chunk, instead of pointer to page structure. The following code snippet
shows a list of wrapper functions and macros:

/* allocates 2order pages and returns start linear address */

/* Returns start linear address to zero initialized page */

/* Allocates a page */

/* Allocate page/pages from DMA zone */
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Following are the interfaces for releasing memory back to the system. We need to invoke an
appropriate one that matches the allocation routine; passing an incorrect address will cause
corruption:

Buddy system
While the page allocator serves as an interface for memory allocations (in multiples of page
size), the buddy system operates at the back-end to administer physical page management.
This algorithm manages all physical pages for each zone. It is optimized to accomplish
allocations of large physically contiguous blocks (pages), by minimizing external
fragmentation. Let's explore its operational details.

The zone descriptor structure contains an array of , and the size of the
array is defined through a kernel macro  whose default value is :

Each offset contains an instance of  structure. All free pages are split into 11
( ) lists, each containing a list of blocks of 2order pages, with order values in the
range of 0 to 11 (that is, a list of of 22 would contain 16 KB sized blocks, and 23 to be 32 KB
sized blocks, and so on). This strategy ensures each block to be naturally aligned. Blocks in
each list are exactly double in size to that of blocks in lower lists, resulting in faster
allocation and deallocation operations. It also provides the allocator with the capability to
handle contiguous allocations, of upto 8 MB block size (211 list):
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When an allocation request is made for a particular size, the buddy system looks into the
appropriate list for a free block, and returns its address, if available. However, if it cannot
find a free block, it moves to check in the next high-order list for a larger block, which if
available it splits the higher-order block into equal parts called buddies, returns one for the
allocator, and queues the second into a lower-order list. When both buddy blocks become
free at some future time, they are coalesced to create a larger block. Algorithm can identify
buddy blocks through their aligned address, which makes it possible to coalesce them.

Let's consider an example to comprehend this better, assuming there were a request to
allocate an 8k block (through page allocator routines). Buddy system looks for free blocks in
an 8k list of the  array(first offset containing 21 sized blocks), and returns the
start linear address of the block if available; however, if there are no free blocks in the 8k
list, it moves on to the next higher-order list, which is of 16k blocks (second offset of the

 array) to find a free block. Let's further assume that there were no free block in
this list as well. It then moves ahead into the next high-order list of size 32k(third offset in
the free_pages array) to find a free block; if available, it splits the 32k block into two equal
halves of 16k each (buddies). The first 16k chunk is further split into two halves of 8k
(buddies) of which one is allocated for the caller and other is put into the 8k list. The second
chunk of 16k is put into the 16k free list, when lower order (8k) buddies become free at
some future time, they are coalesced to form a higher-order 16k block. When both 16k
buddies become free, they are again coalesced to arrive at a 32k block which is put back into
the free list.

When a request for allocation from a desired zone cannot be processed, the buddy system
uses a fallback mechanism to look for other zones and nodes:
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The buddy system has a long history with extensive implementations across various *nix
operating systems with appropriate optimizations. As discussed earlier, it helps faster
memory allocation and deallocations, and it also minimizes external fragmentation to some
degree. With the advent of huge pages, which provide much-needed performance benefits, it
has become all the more important to further efforts toward anti-fragmentation. To
accomplish this, the Linux kernel's implementation of the buddy system is equipped with
anti-fragmentation capability through page migration.

Page migration is a process of moving data of a virtual page from one physical memory
region to another. This mechanism helps create larger blocks with contiguous pages. To
realize this, pages are categorized into the following types:

1. Unmovable pages: Physical pages which are pinned and reserved for a specific allocation
are considered unmovable. Pages pinned for the core kernel fall into this category. These
pages are non reclaimable.

2. Reclaimable pages: Physical pages mapped to a dynamic allocation that can be evicted to
a backstore, and those which can be regenerated are considered reclaimable. Pages held for
file caching, anonymous page mappings, and those held by the kernel's slab caches fall into
this category. Reclaim operations are carried out in two modes: periodic and direct reclaim,
the former is achieved through a kthread called . When system runs exceedingly
short of memory, kernel enters into direct reclaim.

3. Movable pages: Physical pages that can be moved to different regions through page
migration mechanism. Pages mapped to virtual address space of user-mode process are
considered movable, since all the VM subsystem needs to do is copy data and change
relevant page table entries. This works, considering all access operations from the user
mode process are put through page table translations.

The buddy system groups pages on the basis of movability into independent lists, and uses
them for appropriate allocations. This is achieved by organizing each 2n list in 

 as a group of autonomous lists based on mobility of pages. Each 
instance holds an array of lists of size . Each offset holds  of a
respective group of pages:
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 is a counter that holds the total number of free pages for this  (all
migration lists put together). The following diagram depicts free lists for each migration
type:

The following enum defines page migration types:

We have discussed key migration types , , and
 types.  is a special type introduced to improve

systems performance; each zone maintains a list of cache-hot pages in a per-CPU page cache.
These pages are used to serve allocation requests raised by the local CPU. The zone
descriptor structures  element points to pages in the per-CPU cache:
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 struct list_head lists[MIGRATE_PCPTYPES];

struct per_cpu_pageset
 struct per_cpu_pages pcp;

struct per_cpu_pageset __percpu *pageset;

 is an abstraction that represents unmovable, reclaimable, and
movable page lists.  is a count of per-CPU page lists sorted as per page
mobility.  is list of pages for the contiguous memory allocator, which we shall
discuss in further sections:
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The buddy system is implemented to fall back on the alternate list, to process an allocation
request when pages of desired mobility are not available. The following array defines the
fallback order for various migration types; we will not go into further elaboration as it is self
explanatory:

GFP mask
Page allocator and other allocator routines (which we'll discuss in the following sections)
need the  flag as an argument, which is of type :

Gfp flags are used to supply two vital attributes for the allocator functions: the first is the
mode of the allocation, which controls the behavior of the allocator function, and the second
is the source of the allocation, which indicates the zone or list of zones from which memory
can be sourced. The kernel header  defines various flag constants that are categorized
into distinct groups, called zone modifiers, mobility and placement flags, watermark
modifiers, reclaim modifiers, and action modifiers.
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Zone modifiers
Following is a summarized list of modifiers used to specify the zone from which memory is
to be sourced. Recall our discussions on zones in an earlier section; for each of them, a 
flag is defined:

Page mobility and placement
The following code snippet defines page mobility and placement flags:

Following is a list of page mobility and placement flags:

: Most kernel subsystems are designed to engage memory
caches for caching frequently needed resources such as data structures, memory
blocks, persistent file data, and so on. The memory manager maintains such
caches and allows them to dynamically expand on demand. However, such
caches cannot be allowed to expand boundlessly, or they will eventually consume
all memory. The memory manager handles this issue through the shrinker
interface, a mechanism by which the memory manager can shrink a cache, and
reclaim pages when needed. Enabling this flag while allocating pages (for the
cache) is an indication to the shrinker that the page is reclaimable. This flag is used
by the slab allocator, which is discussed in a later section.

: When this flag is used, it indicates to the kernel that the caller
intends to dirty the page. The memory manager allocates the appropriate page as
per the fair-zone allocation policy, which round-robins the allocation of such
pages across local zones of the node to avoid all the dirty pages being in one zone.
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: This flag ensures that allocation is carried out on same node or
nodes to which the caller is bound; in other words, it enforces the CPUSET
memory allocation policy.

: This flag forces the allocation to be satisfied from the
requested node with no fallbacks or placement policy enforcements.

: This flag causes allocations to be accounted for the kmem
control group.

Watermark modifiers
The following code snippet defines the watermark modifiers:

Following is list of watermark modifiers, which provide control over emergency reserve
pools of memory:

: This flag indicates that allocation is high priority and the caller
context cannot be put into wait.

: This flag indicates that the caller is high priority and granting
allocation request is necessary for the system to make progress. Setting this flag
will cause the allocator to access the emergency pool.

: This flag allows access to all memory. This should only be
used when the caller guarantees the allocation will allow more memory to be
freed very shortly, for example, process exiting or swapping.

: This flag is used to forbid access to all reserved emergency
pools.
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Page reclaim modifiers
As systems load increases, the amount of free memory in zones might fall below the low
watermark, resulting in memory crunch that will acutely impact overall performance of the
system. To handle such eventuality, the memory manager is equipped with page reclaim
algorithms, which are implemented to identify and reclaim pages. Kernel memory allocator
routines, engage reclaim algorithms when invoked with appropriate GFP constants called
page reclaim modifiers:

Following is a list of reclaim modifiers that can be passed as arguments to allocation
routines; each flag enables reclaim operations on a specific region of memory:

: This flag indicates that the allocator can start physical I/O (swap) to
reclaim memory.

: This flag indicates that the allocator may call down to the low-level FS
for reclaim.

: This flag indicates that the caller is willing to enter
direct reclaim. This might cause the caller to block.

: This flag indicates that the allocator can wake the
 kernel thread to initiate reclaim, when the low watermark is reached.

: This flag is used to enable direct and  reclaim.
: This flag indicates to try hard to allocate the memory, but the

allocation attempt might fail.
: This flag forces the virtual memory manager to retry until the

allocation request. succeeds. This might cause the VM to trigger the OOM killer
to reclaim memory.

: This flag will cause the allocator to return appropriate failure
status when the request cannot be served.
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Action modifiers
The following code snippet defines action modifiers:

Following is a list of action modifier flags; these flags specify additional attributes to be
considered by the allocator routines while processing a request:

: To enable quick access, a few pages in each zone are cached into
per-CPU caches; pages held in cache are referred to as hot, and uncached pages
are referred to as cold. This flag indicates that the allocator should serve memory
requests through cache cold page(s).

: This flag causes the allocator to run in silent mode, which results
in warning and error conditions to go unreported.

: This flag is used to allocate a compound page with appropriate
metadata. A compound page is a group of two or more physically contiguous
pages, which are treated as a single large page. Metadata makes a compound
page distinct from other physically contiguous pages. The first physical page of a
compound page is called the head page with the  flag set in its page
descriptor, and the rest of the pages are referred to as tail pages.

: This flag causes the allocator to return zero filled page(s).
: kmemcheck is one of the in-kernel debuggers which is used

detect and warn about uninitialized memory access. Nonetheless, such checks
cause memory access operations to be delayed. When performance is a criteria,
the caller might want to allocate memory which is not tracked by kmemcheck.
This flag causes the allocator to return such memory.

: This flag is an alias of .
: This flag is used for allocation of transparent huge pages

(THP).
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Type flags
With so many categories of modifier flags (each addressing different attributes),
programmers exercise extreme care when choosing flags for corresponding allocations. To
make the process easier and quicker, type flags were introduced, which enable
programmers to make quick allocation choices. Type flags are derived from combinations
of various modifier constants (listed previously) for specific allocation use cases.
Programmers however can further customize type flags if required:

The following is the list of type flags:

: This flag is specified for non blocking allocations that cannot fail.
This flag will cause allocations from emergency reserves. This is generally used
while invoking the allocator from an atomic context.

: This flag is used while allocating memory for kernel use. These
requests are processed from normal zone. This flag might cause the allocator to
enter direct reclaim.

: Same as  with an addition that allocation is
tracked by the kmem control group.

: This flag is used for kernel allocations that are non-blocking.
: This flag allows the allocator to begin direct reclaim on clean pages

that do not require physical I/O(swap).
: This flag allows the allocator to begin direct reclaim but prevents

invocation of filesystem interfaces.
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: This flag is used while allocating pages for kernel caches, which
are reclaimable through the appropriate shrinker interface. This flag sets the

 flag we discussed earlier.
: This flag is used for user-space allocations. Memory allocated is

mapped to a user process and can also be accessed by kernel services or
hardware for DMA transfers from device into buffer or vice versa.

: This flag causes allocation from the lowest zone, called . This
flag is still supported for backward compatibility.

: This flag causes allocation to be processed from  which
contains pages in < 4G memory.

: This flag is used for user space allocations from 
(relevant only on 32-bit platforms).

: This flag is similar to , with an addition
that allocations are carried out from movable pages, which enables page
migration and reclaim.

: This causes the allocation of transparent huge
allocations (THP), which are compound allocations. This type flag sets

, which we discussed earlier.

Slab allocator
As discussed in earlier sections, the page allocator (in coordination with buddy system)
does an efficient job of handling memory allocation requests in multiples of page size.
However, most allocation requests initiated by kernel code for its internal use are for
smaller blocks (usually less than a page); engaging the page allocator for such allocations
results in internal fragmentation, causing wastage of memory. The slab allocator is
implemented precisely to address this; it is built on top of the buddy system and is used to
allocate small memory blocks, to hold structure objects or data used by kernel services.

Design of the slab allocator is based on an idea of object cache. The concept of an object
cache is quite simple: it involves reserving a set of free page frames, dividing and organize
them into independent free lists (with each list containing a few free pages) called slab
caches, and using each list for allocation of a pool of objects or memory blocks of a fixed
size, called a unit. This way, each list is assigned a unique unit size, and would contain a
pool of objects or memory blocks of that size. When an allocation request arrives for a block
of memory of a given size, the allocator algorithm selects an appropriate slab cache whose
unit size is the best fit for the requested size, and returns the address of a free block.
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However, at a low level, there is fair bit of complexity involved in terms of initialization and
management of slab caches. The algorithm needs to consider various issues such as object
tracking, dynamic expansion, and safe reclaim through the shrinker interface. Addressing
all these issues and achieving a proper balance between enhanced performance and
optimum memory footprint is quite a challenge. We shall explore more on these challenges
in subsequent sections, but for now we will continue our discussion with allocator function
interfaces.

Kmalloc caches
Slab allocator maintains a set of generic slab caches to cache memory blocks of unit sizes in
multiples of 8. It maintains two sets of slab caches for each unit size, one to maintain a pool
of memory blocks allocated from  pages and another from  pages.
These caches are global and shared by all kernel code. Users can track the status of these
caches through a special file . Kernel services can allocate and release
memory blocks from these caches through the  family of routines. They are
referred to as  caches:
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 and  are caches used to maintain memory blocks aligned with
the level 1 hardware cache. For allocations above 8k (large blocks), the slab allocator falls
back on buddy system.
Following are the kmalloc family of allocator routines; all of these need appropriate GFP
flags:

 void *kmalloc(size_t size, gfp_t flags)

 inline void *kzalloc(size_t size, gfp_t flags)

 inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)

 inline void *kcalloc(size_t n, size_t size, gfp_t flags)
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 void *krealloc(const void *p, size_t new_size, gfp_t flags)

 void *kmalloc_node(size_t size, gfp_t flags, int node)

 void *kzalloc_node(size_t size, gfp_t flags, int node)

Following routines return the allocated block to the free pool. Callers need to ensure that
address passed as argument is of a valid allocated block:

void kfree(const void *objp)
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void kzfree(const void *p)

Object caches
The slab allocator provides function interfaces for setting up slab caches, which can be
owned by a kernel service or a subsystem. Such caches are considered private since they are
local to kernel services (or a kernel subsystem) like device drivers, file systems, process
scheduler, and so on. This facility is used by most kernel subsystems to set up object caches
and pool intermittently needed data structures. Most data structures we've encountered so
far (since , Comprehending Processes, Address Space, and Threads) including process
descriptor, signal descriptor, page descriptor, and so on are maintained in such object pools.
The pseudo file  shows the status of object caches:

sigqueue

inode_cache

signal_cache
sighand_cache
task_struct

The kmem_cache_create() routine sets up a new cache as per the parameter passed. On
success, it returns the address to the cache descriptor structure of type kmem_cache:
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The cache is created by allocating free page frames (from buddy system), and data objects of
size specified (second argument) are populated. Though each cache starts by hosting a fixed
number of data objects during creation, they can grow dynamically when required to
accommodate more number of data objects. Data structures can be complicated (we have
encountered a few), and can contain varied elements such as list headers, sub-objects,
arrays, atomic counters, bit-fields, and so on. Setting up each object might require all its
fields to be initialized to the default state; this can be achieved through an initializer routine
assigned to a  function pointer (last argument). The initializer is called for each new
object allocated, both during cache creation and when it grows to add more free objects.
However, for simple objects, a cache can be created without an initializer.

Following is a sample code snippet that shows the usage of :

Flags are used to enable debug checks, and enhance the performance of access operations
on cache by aligning objects with the hardware cache. The following flag constants are
supported:
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Subsequently, objects can be allocated and released through relevant functions. Upon
release, objects are put back into the free list of the cache, making them available for reuse;
this results in a possible performance boost, particularly when objects are cache hot:

void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags);

void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int
nodeid);

void kmem_cache_free(struct kmem_cache *cachep, void *objp);

kmem caches can be destroyed when all hosted data objects are free (not in use), by calling
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Cache management
All slab caches are managed internally by slab core, which is a low-level algorithm. It
defines various control structures that describe the physical layout for each cache list, and
implements core cache-management operations which are invoked by interface routines.
The slab allocator was originally implemented in Solaris 2.4 kernels, and used by most other
*nix kernels, based on a paper by Bonwick.

Traditionally, Linux was used on uniprocessor desktop and server systems with moderate
memories, and the kernel adopted the classic model of Bonwick with appropriate
performance improvements. Over the years, due to diversity of the platforms with distinct
priorities for which the Linux kernel is ported and used, it turns out that the classic
implementation of the slab core algorithm is inefficient to cater to all the needs. While
memory-constrained embedded platforms cannot afford the higher footprint of the
allocator (space used to manage metadata and density of allocator operations), SMP
systems with huge memories need consistent performance, scalability, and better
mechanisms to generate trace and debug information on allocations.

To cater to these dissimilar requirements, current versions of the kernel provide three
distinct implementations of the slab algorithm: slob, a classic K&R type list allocator,
designed for low-memory systems with scarce allocation needs, and was default object
allocator for Linux during its initial years(1991-1999); slab, a classic Solaris-style slab
allocator that has been around in Linux since 1999; and slub, improved for current
generation SMP hardware with huge memories, and delivers consistent performance with
better control and debug mechanisms. The default kernel configuration for most
architectures enables slub as default slab allocator; this can be changed during kernel build
through kernel configuration options.

: The regular slab allocator that is established and known to
work well in all environments. It organizes cache hot objects in per-CPU
and per node queues.

: SLUB is a slab allocator that minimizes cache line usage
instead of managing queues of cached objects (SLAB approach). per-CPU
caching is realized using slabs of objects instead of queues of objects. SLUB
can use memory efficiently and has enhanced diagnostics. SLUB is the
default choice for a slab allocator.

: SLOB replaces the stock allocator with a drastically
simpler allocator. SLOB is generally more space efficient but does not
perform as well on large systems.
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Irrespective of the type of allocator chosen, the programming interface remains unchanged.
In fact, at low level, all three allocators share some common code base:

We shall now look into physical layout of a cache and its control structures.

Cache layout - generic
Each cache is represented by a cache descriptor structure ; this structure
contains all crucial metadata of the cache. It includes a list of slab descriptors, each hosting a
page or a group of page frames. Pages under slabs contain objects or memory blocks, which
are the allocation units of the cache. The slab descriptor points to a list of objects contained
in the pages and tracks their state. A slab may be in one of three possible states--full, partial
or empty--based on the state of the objects it is hosting. A slab is considered full when all its
objects are in use with no free objects left for allocation. A slab with at least one free object is
considered to be in partial state, and those with all objects in free state are considered empty.
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This arrangement enables quick object allocations, since allocator routines can look up to
the partial slab for a free object, and possibly move on to an empty slab if required. It also
helps easier expansion of the cache with new page frames to accommodate more objects
(when required), and facilitates safe and quick reclaims (slabs in empty state can be
reclaimed).

Slub data structures
Having looked at the layout of a cache and descriptors involved at a generic level, let's push
further to view specific data structures used by the slub allocator and explore the
management of free lists. A slub defines its version of cache descriptor, 

, in kernel header :

struct kmem_cache_cpu __percpu *cpu_slab;



Memory Management and Allocators

[ 136 ]

 struct list_head list; /* List of slab caches */

struct kmem_cache_node *node[MAX_NUMNODES];

The  element refers to a list of slab caches. When a new slab is allocated, it is stored on
a list in the cache descriptor, and is considered empty, since all its objects are free and
available. Upon allocation of an object, the slab turns into partial state. Partial slabs are the
only type of slabs that the allocator needs to keep track of and are connected in a list inside
the  structure. The SLUB allocator has no interest in tracking full slabs whose
objects have all been allocated, or empty slabs whose objects are free. SLUB tracks partial
slabs for each node through an array of pointers of type 

, which encapsulates a list of partial slabs:

unsigned long nr_partial;
struct list_head partial

All free objects in a slab form a linked list; when allocation requests arrive, the first free
object is removed from the list and its address is returned to the caller. Tracking free objects
through a linked list requires significant metadata; while the traditional SLAB allocator
maintained metadata for all pages of a slab within the slab header (causing data alignment
issues), SLUB maintains per-page metadata for pages in a slab by cramming more fields
into the page descriptor structure, thereby eliminating metadata from the slab head. SLUB
metadata elements in the page descriptor are only valid when the corresponding page is
part of a slab. Pages engaged for slab allocations have the  flag set.
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The following are fields of the page descriptor relevant to SLUB:
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The  pointer refers to the first free object in the list. Each free object is composed
of a metadata area that contain a pointer to the next free object in the list.  holds the
offset to the metadata area of the first free object (contains a pointer to next free object). The
metadata area of last free object would contain the next free object pointer set to NULL.

 contains the total count of allocated objects, and  contains the total number
of objects.  is a flag that is used as a page lock: if a page has been frozen by a CPU
core, only that core can retrieve free objects from the page.  is a pointer to the
kmem cache currently using this page:

When an allocation request arrives, the first free object is located through the 
pointer, and is removed from the list by returning its address to the caller. The 
counter is also incremented to indicate an increase in the number of allocated objects. The

 pointer is then updated with the address of the next free object in the list.

For achieving enhanced allocation efficiency, each CPU is assigned a private active-slab list,
which comprises a partial/free slab list for each object type. These slabs are referred to as
CPU local slabs, and are tracked by struct :
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When an allocation request arrives, the allocator takes the fast path and looks into the
 of the per-CPU cache, and it then returns free objects. This is referred as the fast

path since allocations are carried out through interrupt-safe atomic instructions that does
not require lock contention. When the fast path fails, the allocator takes the slow path and
looks through page and partial lists of the cpu cache sequentially. If no free objects are
found, the allocator moves into the partial lists of nodes; this operation requires the allocator
to contend for appropriate exclusion lock. On failure, the allocator gets a new slab from the
buddy system. Fetching from either node lists or acquiring a new slab from buddy system
are considered very slow paths, since both of these operations are not deterministic.

The following diagram depicts the relationship between slub data structures and free lists:
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Vmalloc
Page and slab allocators both allocate physically contiguous blocks of memory, mapped to
contiguous kernel address space. Most of the time, kernel services and subsystems prefer to
allocate physically contiguous blocks for exploiting caching, address translation, and other
performance-related benefits. Nonetheless, allocation requests for very large blocks might
fail due to fragmentation of physical memory, and there are few situations that necessitate
allocation of large blocks, such as support for dynamically loadable modules, swap
management operations, large file caches and so on.

As a solution, the kernel provides vmalloc, a fragmented memory allocator that attempts to
allocate memory, by joining physically scattered memory regions through virtually
contiguous address space. A range of virtual addresses within the kernel segment are
reserved for vmalloc mappings, called vmalloc address space. Total memory that can be
mapped through the vmalloc interface depends on the size of the vmalloc address space,
which is defined by architecture-specific kernel macros  and ;
for x86-64 systems, the total range of vmalloc address space is a staggering 32 TB. However,
on the flip side, this range is too little for most 32-bit architectures (a mere 12o MB). Recent
kernel versions use the vmalloc range for setting up a virtually mapped kernel stack (x86-64
only), which we discussed in the first chapter.

Following are interface routines for vmalloc allocations and deallocations:

void *vmalloc(unsigned long size)

    void *vzalloc(unsigned long size)
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void *vmalloc_user(unsigned long size)

void *vmalloc_node(unsigned long size, int node)

    void vfree(const void *addr)

void vfree_atomic(const void *addr)

Most kernel developers avoid vmalloc allocations due to allocation overheads (since those
are not identity mapped and require specific page table tweaks, resulting in TLB flushes)
and performance penalties involved during access operations.
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Contiguous Memory Allocator (CMA)
Albeit with significant overheads, virtually mapped allocations solve the problem of large
memory allocations to a greater extent. However, there are a few scenarios that mandate the
allocation of physically contiguous buffers. DMA transfers are one such case. Device drivers
often find a stringent need for physically contiguous buffer allocations (for setting up DMA
transfers), which are carried out through any of the physically contiguous allocators
discussed earlier.

However, drivers dealing with specific classes of devices such as multimedia often find
themselves searching for huge blocks of contiguous memory. To meet this end, over the
years, such drivers have been reserving memory during system boot through the kernel
parameter , which allows setting aside enough contiguous memory at boot, which can
be remapped into linear address space during driver runtime. Though valuable, this strategy
has its limitations: first, such reserved memories lie momentarily unused when the
corresponding device is not initiating access operations, and second, depending on the
number of devices to be supported, the size of reserved memories might increase
substantially, which might severely impact system performance due to cramped physical
memory.

A contiguous Memory Allocator (CMA) is a kernel mechanism introduced to effectively
manage reserved memories. The crux of CMA is to bring in reserved memories under the
allocator algorithm, and such memory is referred to as CMA area. CMA allows allocations
from the CMA area for both devices' and system's use. This is achieved by building a page
descriptor list for pages in reserve memory, and enumerating it into the buddy system,
which enables allocation of CMA pages through the page allocator for regular needs (kernel
subsystems) and through DMA allocation routines for device drivers.

However, it must be ensured that DMA allocations do not fail due to the usage of CMA
pages for other purposes, and this is taken care through the  attribute, which
we discussed earlier. Pages enumerated by CMA into buddy system are assigned the

 property, which indicates that pages are movable. While allocating memory
for non-DMA purposes , the page allocator can use CMA pages only for movable
allocations (recall that such allocations can be made through the  flag).
When a DMA allocation request arrives, CMA pages held by kernel allocations are moved
out of the reserved region (through a page-migration mechanism), resulting in the
availability of memory for the device driver's use. Further, when pages are allocated for
DMA, their migratetype is changed from  to , making them
invisible to the buddy system.

The size of the CMA area can be chosen during kernel build through its configuration
interface; optionally, it can also be passed through the kernel parameter .
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Summary
We have traversed through one of the most crucial aspects of the Linux kernel,
comprehending various nuances of memory representations and allocations. By
understanding this subsystem, we have also succinctly captured the design acumen and
implementation efficiency of the kernel, and more importantly understood the kernel's
dynamism in accommodating finer and newer heuristics and mechanisms for continuous
enhancements. Apart from the specifics of memory management, we also gauged the
efficiency of the kernel in maximizing resource usage at minimal costs, ushering all classical
mechanisms of code reuse and modular code structures.

Though the specifics of memory management may vary in correspondence to the
underlying architecture, the generalities of design and implementation styles would mostly
remain the same to achieve code stability and sensitivity to change.

In the next chapter, we will go further and look at another fundamental abstraction of the
kernel: files. We will look through file I/O and explore its architecture and implementation
details.
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Filesystems and File I/O

Thus far we have traversed across the elemental resources of the kernel, such as address
spaces, processor time, and physical memory. We have built an empirical understanding of
process management, CPU scheduling, and memory management and the crucial abstractions
they provide. We shall continue to build our understanding in this chapter by looking at
another key abstraction provided by the kernel, the file I/O architecture. We will look in
detail at aspects such as:

Filesystem implementation
File I/O
VFS
VFS data structures
Special filesystems

Computing systems exist for the sole purpose of processing data. Most algorithms are
designed and programmed to extract desired information from acquired data. Data which
fuels this process must be stored persistently for continuous access, mandating storage
systems to be engineered to contain information safely for longer periods of time. For users
however it's the operating system which fetches data from these storage devices and makes
it available for processing. The kernel's filesystem is the component that serves this
purpose.
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Filesystem - high-level view
Filesystems abstract the physical view of storage devices from users, and virtualize storage
area on a disk for each valid user of the system through abstract containers called files and
directories. Files serve as containers for user data and directories act as containers to a 
group of user files. In simple words, operating systems virtualize a view of a storage device
for each user as a set of directories and files. Filesystem services implement routines to
create, organize, store, and retrieve files, and these operations are invoked by user
applications through appropriate system call interfaces.

We will begin this discussion by looking at the layout of a simple filesystem, designed to
manage a standard magnetic storage disk. This discussion will help us comprehend key
terms and concepts related to disk management in general. A typical filesystem
implementation however involves appropriate data structures which describe the
organization of file data on disk, and operations which enable applications to execute file
I/O.

Metadata
A storage disk typically is composed of physical blocks of identical size called sectors; size
of a sector is usually 512 bytes or in multiples, depending on type and capacity of storage. A
sector is the minimal unit of I/O on the disk. When a disk is presented to the filesystem for
management, it perceives storage area as an array of blocks of fixed size, where each block
is identical to a sector or multiples of sector size. Typical default block size is 1024 bytes and
can vary as per disk capacity and filesystem type. Block size is considered the minimal unit
of I/O by a filesystem:
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Inode (index node)
The filesystem needs to maintain metadata to identify and track various attributes for each
file and directory created by user. There are several elements of metadata that describe a file
such as filename, type of file, last access timestamp, owner, access privileges, last
modification timestamp, creation time, size of file data, and references to disk blocks
containing file data. Conventionally, filesystems define a structure called inode to contain
all metadata of a file. The size and type of information contained in inode is filesystem
specific and may largely vary based on the functionalities it supports. Each inode is
identified by a unique number referred to as an index, which is considered a low-level
name of the file:

Filesystems reserve a few disk blocks for storing inode instances and the rest for storing
corresponding file data. The number of blocks reserved for storing inodes depend on the
storage capacity of the disk. The on-disk list of nodes held in inode blocks is referred to as
the inode table. Filesystems would need to track the status of the inode and data blocks to
identify free blocks. This is generally achieved through bitmaps, a bitmap for tracking free
inodes and another to track free data blocks. The following diagram shows the typical
layout with bitmap, inode, and data blocks:
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Data block map
As mentioned before, each inode should record the locations of data blocks in which
corresponding file data is stored. Depending on the length of file data, each file might
occupy n number of data blocks. There are various methods used to track data block details
in an inode; the simplest being direct references, which involves the inode containing direct
pointers to data blocks of the file. The number of such direct pointers would depend on
filesystem design, and most implementations choose to engage fewer bytes for such
pointers. This method is productive for small files which span across a few data blocks
(usually < 16k), but lacks support for large files spread across numerous data blocks:
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To support large files, filesystems engage an alternate method called multi-level indexing
which involves indirect pointers. The simplest implementation would have an indirect
pointer along with a few direct pointers in an inode structure. An indirect pointer refers to
a block containing direct pointers to data blocks of the file. When a file grows too large to
be referred through direct pointers of the inode, a free data block is engaged with direct
pointers and the indirect pointer of the inode is referred to it. The data block referred to by
an indirect pointer is called indirect block. The number of direct pointers in an indirect
block can be determined by block size divided by the size of block addresses; for instance,
on a 32-bit filesystem with 4-byte (32 bits) wide block addresses and 1024 block size, each
indirect block can contain up to 256 entries, whereas in a 64-bit filesystem with 8-byte (64
bits) wide block addresses, each indirect block can contain up to 128 direct pointers:
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This technique can be furthered to support even larger files by engaging a double-indirect
pointer, which refers to a block containing indirect pointers with each entry referring to a
block containing direct pointers. Assuming a 64-bit filesystem with 1024 block size, with
each block accommodating 128 entries, there would be 128 indirect pointers each pointing
to a block holding 128 direct pointers; thus with this technique a filesystem can support a
file that can span up to 16,384 (128 x 128) data blocks, which is 16 MB.

Further, this technique can be extended with a triple-indirection pointer, resulting in even
more metadata to be managed by filesystems. However, despite of multi-level indexing,
increasing filesystem block size with reduction in block address size is the most
recommended and efficient solution to support larger files. Users will need to choose the
appropriate block size while initializing a disk with a filesystem, to ensure proper support
for larger files.

Some filesystems use a different approach called extents to store data block information in
an inode. An extent is a pointer that refers to the start data block (similar to that of a direct
pointer) with added length bits that specify the count of contiguous blocks where file data is
stored. Depending on file size and disk fragmentation levels, a single extent might not be
sufficient to refer to all data blocks of the file, and to handle such eventualities, filesystems
build extent lists with each extent referring to the start address and length of one region of
contiguous data blocks on disk.

The extents approach reduces metadata that filesystems need to manage to store data block
maps by a significant volume, but this is realized at the cost of flexibility in filesystem
operations. For instance, consider a read operation to be performed at a specific file position
of a large file: to locate a data block of specified file offset position, the filesystem must
begin with the first extent and scan through the list until it finds the extent that covers the
required file offset.
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Directories
Filesystems consider a directory as a special file. They represent a directory or a folder with
an on-disk inode. They are differentiated from normal file inodes through the type field,
which is marked as directory. Each directory is assigned data blocks where it holds
information about files and subdirectories it contains. A directory maintains records of files,
and each record includes the filename, which is a name string not exceeding a specific
length as defined by the filesystem's naming policy, and the inode number associated with
the file. For efficient management, filesystem implementations define the layout of file
records contained in a directory through appropriate data structures such as binary trees,
lists, radix trees, and hash tables:

Superblock
Apart from storing inodes that captures metadata of individual files, filesystems also need
to maintain metadata pertaining to disk volume as a whole, such as size of the volume, total
block count, current state of filesystem, count of inode blocks, count of inodes, count of data
blocks, start inode block number, and filesystem signature (magic number) for identity.
These details are captured in a data structure called superblock. During initialization of
filesystem on disk volume, the superblock is organized at start of disk storage. The
following diagram illustrates the complete layout of disk storage with superblocks:
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Operations
While data structures make up elementary constituents of a filesystem design, the
operations possible on those data structures to render file access and manipulation
operations makes the core feature set. The number of operations and type of functionalities
supported are filesystem implementation specific. Following is a generic description of a
few common operations that most filesystems provide.

Mount and unmount operations
Mount is an operation of enumerating an on-disk superblock and metadata into memory
for the filesystem's use. This process creates in-memory data structures that describe file
metadata and present the host operating system with a view of the directory and file layout
in the volume. The mount operation is implemented to check consistency of disk volume.
As discussed earlier, the superblock contains the state of the filesystem; it indicates whether
the volume is consistent or dirty. If the volume is clean or consistent, a mount operation
would succeed, and if the volume is marked as dirty or inconsistent, it returns with the
appropriate failure status.

An abrupt shutdown causes filesystem state to be dirty, and requires consistency check
before it can be marked for use again. Mechanisms adopted for consistency checks are
complex and time consuming; such operations are filesystem implementation specific, and
most simple ones provide specific tools for consistency and checks, and other modern
implementations use journaling.

Unmount is an operation of flushing the in-memory state of filesystem data structures back
to disk. This operation causes all metadata and file caches to be synchronized with disk
blocks. Unmount marks the filesystem state in the superblock as consistent, indicating
graceful shutdown. In other words, the on-disk superblock state remains dirty until
unmount is executed.
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File creation and deletion operations
Creation of a file is an operation that requires instantiation of a new inode with appropriate
attributes. User programs invoke the file creation routine with chosen attributes such as
filename, directory under which file is to be created, access permissions for various users,
and file modes. This routine also initializes other specific fields of inode such as creation
timestamp and file ownership information. This operation writes a new file record into the
directory block, describing the filename and inode number.

When a user application initiates a  operation on a valid file, the filesystem removes
the corresponding file record from the directory and checks the file's reference count to
determine the number of processes currently using the file. Deletion of a file record from a
directory prevents other processes from opening the file that is marked for deletion. When
all current references to a file are closed, all resources assigned to the file are released by
returning its data blocks to the list of free data blocks, and inode to list of free inodes.

File open and close operations
When a user process attempts to open a file, it invokes the  operation of the filesystem
with appropriate arguments, which include path and name of the file. The filesystem
traverses through directories specified in the path until it reaches the immediate parent
directory that contains the requested file's record. Lookup into the file record produces the
inode number of the specified file. However, specific logic and efficiency of lookup
operation depends on the data structure chosen by the particular filesystem implementation
for organizing file records in a directory block.

Once the filesystem retrieves the related inode number of the file, it initiates appropriate
sanity checks to enforce access control validation on the calling context. If the caller process
is cleared for file access, the filesystem then instantiates an in-memory structure called file
descriptor to maintain file access state and attributes. Upon successful completion, the open
operation returns the reference of the file descriptor structure to the caller process, which
serves as a handle to the file for the caller process to initiate other file operations such as

, , and .

Upon initiating a  operation, the file descriptor structure is destroyed and the file's
reference count is decremented. The caller process will no longer be able to initiate any
other file operation until it can open the file all over again.
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File read and write operations
When user applications initiate read on a file with appropriate arguments, the underlying
filesystem's  routine is invoked. Operations begin with a lookup into the file's data
block map to locate the appropriate data disk sector to be read; it then allocates a page from
the page cache and schedules disk I/O. On completion of I/O transfer, the filesystem moves
requested data into the application's buffer and updates the file offset position in the caller's
file descriptor structure.

Similarly, the  operation of the filesystem retrieves data passed from user buffer and
writes it into the appropriate offset of file buffer in the page cache, and marks the page with
the _  flag. However, when the  operation is invoked to append data at the
end of the file, new data blocks might be required for the file to grow. The filesystem looks
for free data blocks on disk, and allocates them for this file, before proceeding with write.
Allocating new data blocks would need changes to the inode structure's data block map and
allocation of new page(s) from page cache mapped to the new data blocks allocated.

Additional features
Though the fundamental components of a filesystem remain similar, the way data is
organized and the heuristics to access data is implementation dependent. Designers 
consider factors such as reliability, security, type and capacity of storage volume, and I/O
efficiency to identify and support features that enhance capabilities of a filesystem.
Following are few extended features that are supported by modern filesystems.

Extended file attributes
General file attributes tracked by a filesystem implementation are maintained in an inode
and interpreted by appropriate operations. Extended file attributes are a feature that
enables users to define custom metadata for a file, which is not interpreted by the
filesystem. Such attributes are often used to store various types of information which
depend on the type of data the file contains. For instance, document files can define the
author name and contact details, web files can specify URL of the file and other security-
related attributes such as digital certificates and crypto hash keys. Similar to normal
attributes, each extended attribute is identified by a name and a value. Ideally, most
filesystems do not impose restrictions on the number of such extended attributes.
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Some filesystems also provide a facility of indexing the attributes, which aids in quick
lookup for required type of data without having to navigate file hierarchy. For instance,
assume that files are assigned with an extended attribute called Keywords, which records
keyword values that describe file data. With indexing, the user could issue queries to find
the list of files matching specific keywords through appropriate scripts, regardless of the
file's location. Thus, indexing offers a powerful alternative interface to the filesystem.

Filesystem consistency and crash recovery
Consistency of an on-disk image is critical for reliable functioning of a filesystem. While the
filesystem is in the process of updating its on-disk structures, there is every possibility for a
catastrophic error to occur (power down, OS crash, and so on), causing interruption of a
partially committed critical update. This results in corruption of on-disk structures and
leaves the filesystem in an inconsistent state. Dealing with such eventualities, by engaging
an effective strategy for crash recovery, is one of the major challenges faced by most 
filesystem designers.

Some filesystems handle crash recovery through a specially designed filesystem consistency
check tool like fsck (a widely used Unix tool). It is run at system boot before mount and
scans through on-disk filesystem structures looking for inconsistencies, and fixes them
when found. Once finished, the on-disk filesystem state is reverted to a consistent state and
the system proceeds with the  operation, thus making the disk accessible to users.
The tool executes its operations in a number of phases, closely checking for consistency of
each on-disk structure such as superblock, inode block, free blocks, checking individual
inodes for valid state, directory checks, and bad block check in each phase. Though it
provides much-needed crash recovery, it has its downsides: such phased operations can
consume a lot of time to complete on a large disk volume, which directly impacts the
system's boot time.

Journaling is another technique engaged by most modern filesystem implementations for
quick and reliable crash recovery. This method is enforced by programming appropriate
filesystem operations for crash recovery. The idea is to prepare a log (note) listing out
changes to be committed to the on-disk image of the filesystem, and writing the log to a
special disk block called a journal block, before beginning the actual update operation. This
ensures that on a crash during actual update, the filesystem can easily detect inconsistencies
and fix them by looking through information recorded in the log. Thus, an implementation
of journaling filesystem eliminates the need for the tedious and expensive task of disk scan,
by marginally extending work done during an update.
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Access control lists (ACLs)
The default file and directory access permissions that specify access rights for the owner,
the group to which owner belongs, and others users does not offer fine-grained control
required in some situations. ACLs are a feature that enable an extended mechanism to
specify file access permissions for various processes and users. This feature considers all
files and directories as objects, and allows system administrators to define a list of access
permissions for each. ACLs include operations valid on an object with access privileges, and
restrictions for each user and system process on a specified object.

Filesystems in the Linux kernel
Now that we are familiar with fundamental concepts related to filesystem implementations,
we will explore filesystem services supported by Linux systems. The kernel's filesystem
branch has implementations of numerous filesystem services, which support diverse file
types. Based on the type of files they manage, the kernel's filesystems can be broadly
categorized into:

Storage filesystems1.
Special filesystems2.
Distributed filesystems or network filesystems3.

We shall discuss special filesystems in a later section of this chapter.

Storage filesystems: Kernel supports various persistent storage filesystems,
which can be broadly categorized into various groups based on the type of
storage device they are designed to manage.
Disk filesystems: This category includes various standard storage disk
filesystems supported by the kernel, which includes the Linux native ext family
of disk filesystems, such as Ext2, Ext3, Ext4, ReiserFS, and Btrfs; Unix variants
such as the sysv filesystem, UFS, and MINIX filesystem; Microsoft filesystems
such as MS-DOS, VFAT, and NTFS; other proprietary filesystems such as IBM's
OS/2 (HPFS), Qnx based filesystems such as qnx4 and qnx6, Apple's Macintosh
HFS and HFS2, Amiga's Fast Filesystem (AFFS), and Acorn Disk Filing System
(ADFS); and journaling filesystems like IBM's JFS and SGI's XFS.
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Removable media filesystems: This category includes filesystems designed for
CD, DVD, and other movable storage media devices, such as the ISO9660 CD-
ROM filesystem and Universal Disk Format (UDF) DVD filesystem, and squashfs
used in live CD images for Linux distributions.
Semiconductor storage filesystems: This category includes filesystems designed
and implemented for raw flash and other semiconductor storage devices that
require support of wear-leveling and erase operations. The current set of
filesystems supported include UBIFS, JFFS2, CRAMFS, and so on.

We shall discuss in brief a few native disk filesystems in the kernel, which are used across
various distributions of Linux as default.

Ext family filesystems
The initial release of the Linux kernel used MINIX as the default native filesystem, which
was designed for use in the Minix kernel for educational purposes and hence had many
usage limitations. As the kernel matured, kernel developers built a new native filesystem
for disk management called the extended filesystem. The design of ext was heavily
influenced by the standard Unix filesystem UFS. Due to various implementation limitations
and lack of efficiency, the original ext was short lived and was soon replaced by an
improved, stable, and efficient version named second extended filesystem (Ext2). The Ext2
filesystem continued to be the default native filesystem for quite a long period of time (until
2001, with the 2.4.15 release of the Linux kernel).

Later, rapid evolution in disk storage technologies led to a massive increase in storage
capacity and efficiency of storage hardware. To exploit features provided by storage
hardware, the kernel community evolved forks of ext2 with appropriate design
improvements and added features that are best suitable for a specific class of storage.
Current versions of the Linux kernel contain three versions of extended filesystems, called
Ext2, Ext3, and Ext4.
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Ext2
The Ext2 filesystem was first introduced in kernel version 0.99.7 (1993). It retains the core
design of classic UFS (Unix filesystem) with write-back caching, which enables short
turnaround time and improved performance. Although it was implemented to support disk
volumes in the range of 2 TB to 32 TB and file sizes in the range of 16 GB to 2 TB, its usage
was restricted for up to 4 TB disk volumes and 2 GB max file sizes due to block device and
application imposed restrictions in 2.4 kernels. It also includes support for ACLs, file
memory maps, and crash recovery through the consistency checker tool fsck. Ext2 divides
physical disk sectors into fixed-size block groups. A filesystem layout is constructed for
each block group, with each having a complete superblock, free block bitmap, inode
bitmap, inode, and data blocks. Thus, each block group appears as a miniature filesystem.
This design assists fsck with faster consistency checks on a large disk.

Ext3
Also called third extended filesystem, it extends the functionality of Ext2 with journaling.
It retains the entire structure of Ext2 with block groups, which enables seamless conversion
of an Ext2 partition into an Ext3 type. As discussed earlier, journaling causes the filesystem
to log details of an update operation into specific regions of disk called journal blocks; these
logs help expedite crash recovery and ensure consistency and reliability of the filesystem.
However, on journaling filesystems, disk update operations can turn expensive due to
slower or variable-time write operations (due to journal log) which would directly impact
performance of regular file I/O. As a solution, Ext3 provides journal configuration options
through which system administrators or users can select specific types of information to be
logged to a journal. These configuration options are referred to as journaling modes.

Journal mode: This mode causes the filesystem to record both file data and1.
metadata changes into the journal. This results in maximized filesystem
consistency with increased disk access, causing slower updates. This mode causes
the journal to consume additional disk blocks and is the slowest Ext3 journaling
mode.
Ordered mode: This mode records only filesystem metadata into the journal, but2.
it guarantees that related file data is written to disk before associated metadata is
committed to the journal block. This ensures that file data is valid; if a crash
occurs while executing write to a file, the journal will indicate that the appended
data has not been committed, resulting in a purge operation on such data by the
cleanup process. This is the default journaling mode of Ext3.
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Writeback mode: This is similar to ordered mode with only metadata journaling,3.
but with an exception that the related file contents might be written to disk before
or after the metadata is committed to journal. This can result in corruption of
filedata. For example, consider a file being appended to may be marked in the
journal as committed before actual file write: if a crash occurs during the file
append operation, then the journal suggests the file being larger than it actually
is. This mode is fastest but minimizes file data reliability. Many other journaling
filesystems such as JFS uses this mode of journaling, but ensure that any garbage
due to unwritten data is zeroed out on reboot.

All of these modes have a similar effect with respect to the consistency of metadata, but
differ in consistency of file and directory data, with journal mode ensuring maximum safety
with minimal chance of file data corruption, and writeback mode offering minimal safety
with high risk of corruption. Administrators or users can tune the appropriate mode during
mount operation on an Ext3 volume.

Ext4
Implemented as a replacement to Ext3 with enhanced features, Ext4 first appeared in kernel
2.6.28 (2008). It is fully backward compatible with Ext2 and Ext3, and a volume of either
type can be mounted as Ext4. This is the default ext filesystem on most current Linux
distributions. It extends journaling capabilities of Ext3 with journal checksums which
increases its reliability. It also adds checksums for filesystem metadata and supports
transparent encryption, resulting in enhanced filesystem integrity and security. Other
features include support for extents, which help reduce fragmentation, persistent
preallocation of disk blocks, which enables allocation of contiguous blocks for media files,
and support for disk volumes with storage capacities up to 1 exbibyte (EiB  and files with
sizes up to 16 tebibytes (TiB).

Common filesystem interface
Presence of diverse filesystems and storage partitions results in each filesystem maintaining
its tree of files and data structures that are distinct from others. Upon mount, each
filesystem will require to manage its in-memory file trees in isolation from others, resulting
in an inconsistent view of the file tree for system users and applications. This complicates
kernel support for various file operations such as open, read, write, copy, and move. As a
solution, the Linux kernel (like many other Unix systems) engages an abstraction layer
called virtual file system (VFS) that hides all filesystem implementations with a common
interface.
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The VFS layer builds a common file tree called rootfs, under which all filesystems can
enumerate their directories and files. This enables all filesystem-specific subtrees with
distinct on-disk representations to be unified and presented as a single filesystem. System
users and applications have a consistent, homogeneous view of the file tree, resulting in
flexibility for the kernel to define a simplified set of common system calls that applications
can engage for file I/O, regardless of underlying filesystems and their representations. This
model ensures simplicity in application design due to limited and flexible APIs and enables
seamless copy or movement of files from one disk partition or filesystem tree to another,
irrespective of underlying dissimilarities.

The following diagram depicts the virtual filesystem:

VFS defines two sets of functions: first, a set of generic filesystem-independent routines that
serve as common entry functions for all file access and manipulation operations, and
second, a set of abstract operation interfaces that are filesystem specific. Each filesystem
defines its operations (as per its notion of files and directories) and maps them to an
abstract interface provided, and with the virtual filesystem, this enables VFS to handle file
I/O requests by dynamically switching into underlying filesystem-specific functions.
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VFS structures and operations
Deciphering the key objects and data structures of VFS lets us gain clarity on how the VFS
internally works with filesystems and enables the all-important abstraction. Following are
four elemental data structures around which the entire web of abstraction is weaved:

--which contains information on specific filesystems that
have been mounted

--which represents a specific file
--representing a directory entry

--representing the file which has been opened and linked to a
process

All of these data structures are bound to appropriate abstract operation interfaces that are
defined by filesystems.

struct superblock
VFS defines a generic layout for the superblock through this structure. Each filesystem
would need to instantiate an object of this structure to fill in its superblock details during
mount. In other words, this structure abstracts the filesystem-specific superblock from the
rest of the kernel, and helps VFS track all mounted filesystems through a list of 

. Pseudo filesystems, which do not have persistent superblock structure, will
dynamically generate superblocks. The superblock structure ( ) is
defined in :
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The superblock structure contains other structures which define and extend the information
and functionalities of the superblock. Following are some of the elements of :

 is of type  and contains pointers to the list of
mounted superblocks

 is the device identifier
 contains the maximum file size

 is a pointer of type , which describes the
filesystem type

 is a pointer of type , containing operations on
the superblock

 is of type  and helps the filesystem
be exportable for remote systems to access, using network filesystems

 is a pointer of type  and points to the dentry object of the
filesystem's root directory

Each enumerated superblock instance contains a pointer to an abstract structure of function
pointers that define the interface for superblock operations. Filesystems will need to
implement their superblock operations and assign them to appropriate function pointers.
This helps each filesystem implement superblock operations as per its layout of on-disk
superblock and hide that logic under a common interface.  is
defined in :
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All elements in this structure point to functions that operate on the superblock object. All
these operations are only called from a process context and without any locks being held,
unless specified. Let's look at few important ones here:

: This method is used to create and allocate space for the new inode
object and initialize it under the superblock.

: This destroys the given inode object and frees resources
allocated for the inode. This is only used if  was defined.

: This is called by the VFS to mark a dirty inode (when inode is
modified).

: VFS invokes this method when it needs to write an inode on to the
disk. The second argument points to , a structure
that tells the writeback code what to do.

: This is invoked when VFS needs to free the superblock.
: This is invoked to synchronize filesystem data with that of the

underlying block device.
: Invoked to get filesystem statistics for the VFS.

: Invoked when the filesystem needs to be remounted.
: Invoked when the VFS is unmounting a filesystem.
: Invoked by VFS to show mount options.

: Invoked by VFS to read from the filesystem quota file.
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struct inode
Each instance of  represents a file in . VFS defines this structure as an
abstraction for filesystem-specific inodes. Irrespective of the type of inode structure and its
representation on disk, each filesystem needs to enumerate its files as  into

 for a common file view. This structure is defined in :
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Note that all fields are not mandatory and applicable to all filesystems; they are free to
initialize appropriate fields that are relevant as per their definition of an inode. Each inode
is bound to two important groups of operations defined by the underlying filesystem: first,
a set of operations to manage inode data. These are represented through an instance of type

 that is referred to by the  pointer of the inode. Second is
a group of operations for accessing and manipulating underlying file data that the inode
represents; these operations are encapsulated in an instance of type 

 and bound to the  pointer of inode instance.

In other words, each inode is bound to metadata operations represented by an instance of
type struct , and file data operations represented by an instance of type

. However, user-mode applications access file data operations
from a valid  object created to represent an open file for the caller process (we will
discuss more on file object in next section):
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Following is a brief description of few important operations:

: Used to locate inode instance of the file specified; this operation returns
a dentry instance.

: This routine is invoked by VFS to construct an inode object for dentry
specified as an argument.

: Used to support hard links. Called by the  system call.
: Used to support deleting inodes. Called by the  system call.

: Used to support creation of subdirectories. Called by the 
system call.

: Invoked by the  system call to create a device, named pipe,
inode, or socket.

: Invoked by the VFS to list all extended attributes of a file.
: Invoked by the VFS to update a specific time or the  of

the inode.

The following is VFS-defined , which encapsulates filesystem-
defined operations on the underlying file data. Since this is declared to serve as a common
interface for all filesystems, it contains function pointer interfaces suitable to support
operations on various types of filesystems with distinct definitions of file data. Underlying
filesystems are free to choose appropriate interfaces and leave the rest, depending on their
notion of file and file data:
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Following is a brief description of a few important operations:

: Invoked when the VFS needs to move the file position index.
: Invoked by  and other related system calls.

: Invoked by the  and other related system calls.
: Invoked when VFS needs to read directory contents.

: This is invoked by the VFS when a process needs to check for activity on
the file. Called by  and  system calls.

: The operation assigned to this pointer is invoked when the
user-mode process calls the  system call on the file descriptor. This
function is used to support special operations. Device drivers use this interface to
support configuration operations on the target device.

: Similar to ioctl with an exception that it is used to convert
arguments passed from a 32-bit process to be used with a 64-bit kernel.
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: The routine assigned to this pointer is invoked when the user-mode
process calls the  system call. Functionality supported by this function is
underlying filesystem dependent. For regular persistent files, this function is
implemented to map the caller-specified data region of the file into the virtual
address space of the caller process. For device files that support , this routine
maps underlying device address space into the caller's virtual address space.

: The function assigned to this interface is invoked by VFS when the user-
mode process initiates the  system call to create a file descriptor.

: Invoked by the  system call to flush a file.
: A function assigned to this interface is invoked by VFS when a user-

mode process executes the close(2) system call to destroy a file descriptor.
: Invoked by the  system call when asynchronous mode is

enabled for a file.
: Invoked by the VFS to splice data from a pipe to a file.

: Invoked by the VFS to set or release a file lock lease.
: Invoked by the VFS to pre-allocate a block.

Struct dentry
In our earlier discussion, we gained an understanding on how a typical disk filesystem
represents each directory through an  structure, and how a directory block on disk
represents information of files under that directory. When user-mode applications initiate
file access operations such as  with a complete path such as  , the
VFS will need to perform directory lookup operations to decode and validate each
component specified in the path.

For efficient lookup and translation of components in a file path, VFS enumerates a special
data structure, called . A dentry object contains a string  of the file or directory,
a pointer to its , and a pointer to the parent . An instance of dentry is
generated for each component in the file lookup path; for instance, in the case of

, a dentry is enumerated for , another for , and finally for file
.

 is defined in kernel header :
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 is pointer to the parent dentry instance.
 holds the name of the file.

 is a pointer to the inode instance of the file.
 contains several flags defined in 

 points to the structure containing function pointers to various operations
for the dentry object.

Let's now look at , which describes how a filesystem can
overload the standard dentry operations:
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Following is a brief description of a few important dentry operations:

: Invoked when VFS needs to revalidate a dentry. Whenever a
name lookup returns a dentry in the dcache, this is called.

: Invoked when VFS needs to revalidate a jumped dentry.
This is invoked if a path-walk ends at a dentry that wasn't found on a lookup on
the parent directory.

: Invoked when VFS adds a dentry to the hash table.
: Invoked to compare the filenames of two dentry instances. It

compares a dentry name with a given name.
: Invoked when the last reference to a dentry is removed.

: Invoked when a dentry is allocated.
: Invoked when a dentry is deallocated.

: Invoked when an inode is released from the dentry.
: Invoked when the pathname of the dentry must be generated. Handy 

for special filesystems to delay pathname generation (whenever the path is
needed).

struct file
An instance of e represents an open file. This structure is created when a user
process successfully opens a file, and contains the caller application's file access attributes
such as offset into file data, access mode, and special flags, among others. This object is
mapped to the caller's file descriptor table, and serves as the caller application's handle to
the file. This structure is local to the process and is retained by a process until the relevant
file is closed. A  operation on the file descriptor destroys the  instance.
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The  pointer refers to the inode instance of the file. When a file object is constructed
by VFS, the  pointer is initialized with the address of 
associated with the file's inode, as we discussed earlier.
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Special filesystems
Unlike regular filesystems, which are designed to manage persistent file data backed on to a
storage device, the kernel implements various special filesystems that manage a specific
class of kernel in-core data structures. Since these filesystems do not deal with persistent
data, they do not consume disk blocks, and the entire filesystem structure is maintained in-
core. Presence of such filesystems enables simplified application development, debugging,
and easier error detection. There are many filesystems in this category, each deliberately
designed and implemented for a specific purpose. Following is brief description of a few
important ones.

Procfs
Procfs is a special filesystem that enumerates kernel data structures as files. This filesystem
serves as a debugging resource for kernel programmers, since it allows users to view the
state of data structures through the virtual file interface. Procfs is mounted to the 
directory (mount point) of rootfs.

Data in procfs files is not persistent, and is always constructed on the run; each file is an
interface through which users can trigger associated operations. For instance, a read
operation on a proc file invokes the associated read callback function bound to the file
entry, and that function is implemented to populate the user buffer with appropriate data.

The number of files enumerated depends on the configuration and architecture for which
the kernel was built. Following is a list of a few important files with useful data enumerated
under :

File name Description

Provides low-level cpu details such as vendor, model, clock speed,
cache size, number of siblings, cores, CPU flags, and bogomips.

Provides a summarized view of physical memory state.

Provides details on current usage of port I/O address space supported
by the x86 class of machines. This file is not present on other
architectures.

Shows a detailed layout describing current usage of memory address
space.

Shows a view of the IRQ descriptor table that contains details of IRQ
lines and interrupt handlers bound to each.
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Shows a detailed listing of slab caches and their current state.

Shows the current state of buddy lists managed by the buddy system.

Shows virtual memory management statistics.

Shows per-node memory zone statistics.

Shows boot arguments passed to the kernel.

Shows a list of active pending timers, with details of clock source.

Provides detailed statistics on active timers, used for tracking timer
usage and debugging.

Presents a list of filesystem services currently active.

Shows currently mounted devices with their mountpoints.

Presents details of current storage partitions detected with associated
/dev file enumerations.

Lists out active swap partitions with status details.

Lists out names and status of kernel modules currently deployed.

Shows length of time kernel has been running since boot and spent in
idle mode.

Shows contents of kernel's message log buffer.

Presents kernel symbol table.

Presents a list of registered block and character devices with their
major numbers.

Presents a list of devices registered through the misc interface with
their misc identifiers.

Presents system statistics.

Directory that contains various network stack-related pseudo files.

Subdirectory containing pseudo files that show the status of System V
IPC objects, message queues, semaphores, and shared memory.
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 also lists out a number of subdirectories that provide a detailed view of elements in
process PCB or task structure. These folders are named by the PID of the process that they
represent. Following is a list of important files that present process-related information:

File name Description

Command-line name of the process.

A symbolic link to the executable file.

Lists out environmental variables accessible to the process.

A symbolic link to the current working directory of the process.

A binary image that shows the virtual memory of the process.

Lists out virtual memory mappings for the process.

A directory that lists out open file descriptors' current status and flags.

Directory that contains symlink to open file descriptors.

Lists out current status of the process, including its memory usage.

Lists out scheduling statistics.

Lists out the cpu affinity mask for this process.

Shows cgroup details for the process.

Shows backtrace of the process-owned kernel stack.

Shows memory consumed for each mapping into its address space.

Shows the physical mapping status for each virtual page of the
process.

Exposes the system call number and arguments for the system call
currently being executed by the process.

Directory containing child process/thread details.

These listings were drawn up to familiarize you with proc files and their
use. You are advised to visit the manual page of procfs for a detailed
description of each of these files.
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All of the files we listed so far are read-only; procfs also contains a branch  that
holds read-write files, which are referred to as kernel parameters. Files under 
are further classified as per the subsystems to which they apply. Listing out all those files is
out of scope.

Sysfs
Sysfs is another pseudo filesystem that is introduced to export unified hardware and driver
information to user mode. It enumerates information about devices and associated device
drivers from the kernel's device model perspective to user space through virtual files. Sysfs
is mounted to the /sys directory (mount point) of the . Similar to procfs, underlying
drivers and kernel subsystems can be configured for power management and other
functionalities through virtual file interfaces of sysfs. Sysfs also enables hotplug event
management by Linux distros through appropriate daemons such as udev, which is
configured to listen and respond to hotplug events.

Following is a brief description of important subdirectories of sysfs:

Devices: One of the objectives behind the introduction of sysfs is to present a
unified list of devices currently enumerated and managed by respective driver
subsystems. The devices directory contains the global device hierarchy, which
contains information for each physical and virtual device that has been
discovered by the driver subsystems and registered with the kernel.
BUS: This directory contains a listing of subdirectories, each representing the
physical bus type that has support registered in the kernel. Each bus type
directory contains two subdirectories:  and . The 
directory contains a listing of devices currently discovered or bound to that bus
type. Each file in the listing is a symbolic link to the device file in device's
directory in the global device tree. The  directory contains directories
describing each device driver registered with the bus manager. Each of the driver
directories lists out attributes that show the current configuration of driver
parameters, which can be modified, and symbolic links that point to the physical
device directory that the driver is bound to.
Class: The  directory contains representations of device classes that are
currently registered with the kernel. A device class describes a functional type of
device. Each device class directory contains subdirectories representing devices
currently allocated and registered under this class. For most of the class device
objects, their directories contain symbolic links to the device and driver
directories in the global device hierarchy and the bus hierarchy that are
associated with that class object.
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Firmware: The  directory contains interfaces for viewing and
manipulating platform-specific firmware that is run during power on/reset, such
as BIOS or UEFI on x86 and OpenFirmware for PPC platforms.
Modules: This directory contains subdirectories that represent each kernel
module currently deployed. Each directory is enumerated with the name of the
module it is representing. Each module directory contains information about a
module such as refcount, modparams, and its core size.

Debugfs
Unlike procfs and sysfs, which are implemented to present specific information through the
virtual file interface, debugfs is a generic memory filesystem that allows kernel developers to
export any arbitrary information that is deemed useful for debugging. Debugfs provides
function interfaces used to enumerate virtual files and is generally mounted to the

 directory. Debugfs is used by tracing mechanisms such as ftrace to present
function and interrupt traces.

There are many other special filesystems such as pipefs, mqueue, and sockfs; we shall touch
upon a few of them in later chapters.

Summary
Through this chapter, we have gained a generic understanding of a typical filesystem, its
fabric and design, and what makes it an elemental part of an operating system. This chapter
also emphasizes the importance and elegance of abstraction, using the common, layered
architecture design which the kernel comprehensively imbibes. We have also stretched our
understanding of the VFS and its common file interface that facilitates the common file API
and its internal structures. In the next chapter, we will shall explore another facet of
memory management called a virtual memory manager that deals with process virtual
address spaces and page tables.
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Interprocess Communication

A complex application-programming model might include a number of processes, each
implemented to handle a specific job, which contribute to the end functionality of the
application as a whole. Depending on the objective, design, and environment in which such
applications are hosted, processes involved might be related (parent-child, siblings) or
unrelated. Often, such processes need various resources to communicate, share data, and
synchronize their execution to achieve desired results. These are provided by the operating
system's kernel as services called interprocess communication (IPC). We have already
discussed the usage of signals as an IPC mechanism; in this chapter, we shall begin to
explore various other resources available for process communication and data sharing.

In this chapter we will cover the following topics:

Pipes and FIFOs as messaging resources
SysV IPC resources
POSX IPC mechanisms

Pipes and FIFOs
Pipes form a basic unidirectional, self-synchronous means of communication between
processes. As the name suggests, they have two ends: one where a process writes and the
opposite end from where another process reads the data. Presumably what goes in first will
be read out first in this kind of a setup. Pipes innately result in communication
synchronization due to their limited capacity: if the writing process writes much faster than 
the reading process reads, the pipe s capacity will fail to hold excess data and invariably
block the writing process until the reader reads and frees up data. Similarly, if the reader
reads data faster than the writer, it will be left with no data to read, thus being blocked until
data becomes available.
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Pipes can be used as a messaging resource for both cases of communication: between
related processes and between unrelated processes. When applied between related
processes, pipes are referred to as unnamed pipes, since they are not enumerated as files
under the  tree. An unnamed pipe can be allocated through the  API.

API invokes a corresponding system call, which allocates appropriate data structures and
sets up pipe buffers. It maps a pair of file descriptors, one for reading on the pipe buffer and
another for writing on the pipe buffer. These descriptors are returned to the caller. The
caller process normally forks the child process, which inherits the pipe file descriptors that
can be used for messaging.

The following code excerpt shows the pipe system call implementation:

Communication between unrelated processes requires the pipe file to be enumerated into
rootfs. Such pipes are often called named pipes, and can be created either from the
command line ( ) or from a process using the  API.
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A named pipe is created with the name specified and with appropriate permissions as
specified by the mode argument. The  system call is invoked for creating a FIFO,
which internally invokes VFS routines to set up the named pipe. Processes with access
permissions can initiate operations on FIFOs through common VFS file APIs , ,

, and .

pipefs
Pipes and FIFOs are created and managed by a special filesystem called . It registers 
with VFS as a special filesystem. The following is a code excerpt from :

It integrates pipe files into VFS by enumerating an  instance representing each pipe;
this allows applications to engage common file APIs  and . The  structure
contains a union of pointers that are relevant for special files such as pipes and device files.
For pipe file , one of the pointers, , is initialized to , defined as an
instance of type :
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struct pipe_inode_info *i_pipe;

 contains all pipe-related metadata as defined by ,
which includes information of the pipe buffer and other important management data. This
structure is defined in :
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The  pointer refers to the pipe buffer; each pipe is by default assigned a total buffer of
65,535 bytes (64k) arranged as a circular array of 16 pages. User processes can alter the total
size of the pipe buffer via a  operation on the pipe descriptor. The default
maximum limit for the pipe buffer is 1,048,576 bytes, which can be changed by a privileged
process via the  file interface. Following is a summarized
table that describes the rest of the important elements:

Name Description

Exclusion lock protecting the pipe

Wait queue for readers and writers

Count of non-empty pipe buffers for this pipe

Current pipe buffer

Total number of buffers

Number of current readers

Number of current writers

Number of struct file instances currently referring to this pipe

Number of writers currently blocked on the pipe

Reader counter (relevant for FIFO)

Writer counter (relevant for FIFO)

Reader side fasync

Writer side fasync

Pointer to circular array of pipe buffers

Pointer to the  instance that represents the user who
created this pipe

Reference to each page of the pipe buffer is wrapped into a circular array of instances of type
. This structure is defined in :
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 is a pointer to the page descriptor of the page buffer, and the  and  fields
contain the offset to the data contained in the page buffer and its length.  is a pointer to
a structure of type , which encapsulates pipe buffer operations
implemented by . It also implements file operations that are bound to pipe and FIFO
inodes:
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Message queues
Message queues are lists of message buffers through which an arbitrary number of
processes can communicate. Unlike pipes, the writer does not have to wait for the reader to
open the pipe and listen for data. Similar to a mailbox, writers can drop a fixed-length
message wrapped in a buffer into the queue, which the reader can pick whenever it is
ready. The message queue does not retain the message packet after it is picked by the
reader, which means that each message packet is assured to be process persistent. Linux
supports two distinct implementations of message queues: classic Unix SYSV message
queues and contemporary POSIX message queues.

System V message queues
This is the classic AT&T message queue implementation suitable for messaging between an
arbitrary number of unrelated processes. Sender processes wrap each message into a packet
containing message data and a message number. The message queue implementation does
not define the meaning of the message number, and it is left to the application designers to
define appropriate meanings for message numbers and program readers and writers to
interpret the same. This mechanism provides flexibility for programmers to use message
numbers as message IDs or receiver IDs. It enables reader processes to selectively read
messages that match specific IDs. However, messages with the same ID are always read in
FIFO order (first in, first out).

Processes can create and open a SysV message queue with:

The  parameter is a unique constant that serves as a magic number to identify the
message queue. All programs that are required to access this message queue will need to
use the same magic number; this number is usually hard-coded into relevant processes at
compile time. However, applications need to ensure that the key value is unique for each
message queue, and there are alternate library functions available through which unique
keys can be dynamically generated.
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The unique key and  parameter values, if set to , will cause a new
message queue to be set up. Valid processes that have access to the queue can read or write
messages into the queue using  and  routines (we will not discuss them in
detail here; refer to Linux system programming manuals):

Data structures
Each message queue is created by enumerating a set of data structures by the underlying
SysV IPC subsystem.  is the core data structure, and an instance of this
is enumerated for each message queue:

The  field represents the head node of a double-linked circular list that contains
all messages currently in the queue. Each message begins with a header followed by
message data; each message can consume one of more pages depending on length of
message data. The message header is always at the start of the first page and is represented
by an instance of :
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The  field contains pointers to previous and next messages in the queue. The 
pointer refers to an instance of type , which contains the address of
the next page of message data. This pointer is relevant only when message data exceeds the
first page. The second page frame starts with a descriptor , which further
contains a pointer to a subsequent page, and this order continues until the last page of the
message data is reached:

POSIX message queues
POSIX message queues implement priority-ordered messages. Each message written by a
sender process is associated with an integer number which is interpreted as message
priority; messages with a higher number are considered higher in priority. The message
queue orders current messages as per priority and delivers them to the reader process in
descending order (highest priority first). This implementation also supports a wider API
interface with facilities of bounded wait send and receive operations and asynchronous
message arrival notifications for receivers through signals or threads.
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This implementation provides a distinct API interface to , , , , and
 message queues. Following is a summarized description of APIs (we will not

discuss usage semantics here, refer to system programming manuals for more details):

API interface Description

Create or open a POSIX message queue

Write a message to the queue

Similar to , but with a timeout parameter for bounded
operations

Fetch a message from the queue; this operation is possible on
unbounded blocking calls

Similar to  but with a timeout parameter that limits
possible blocking for bounded time

Close a message queue

Destroy message queue

Customize and set up message arrival notifications

Get attributes associated with a message queue

Set attributes specified on a message queue

POSIX message queues are managed by a special filesystem called . Each message
queue is identified by a filename. Metadata for each queue is described by an instance of
struct , which symbolizes the inode object associated with the
message queue file in the  filesystem:
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The  pointer refers to the  descriptor that contains the
header to a linked list of message nodes, in which each message is represented by a
descriptor of type :

struct list_head msg_list

Shared memory
Unlike message queues, which offer a process-persistent messaging infrastructure, the
shared memory service of IPC provides kernel-persistent memory that can be attached by
an arbitrary number of processes that share common data. A shared memory infrastructure
provides operation interfaces to allocate, attach, detach, and destroy shared memory
regions. A process that needs access to shared data will attach or map a shared memory
region into its address space; it can then access data in shared memory through the address
returned by the mapping routine. This makes shared memory one of the fastest means of
IPC since from a process's perspective it is akin to accessing local memory, which does not
involve switch into kernel mode.

System V shared memory
Linux supports legacy SysV shared memory implementation under the IPC subsystem.
Similar to SysV message queues, each shared memory region is identified by a unique IPC
identifier.
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Operation interfaces
The kernel provides distinct system call interfaces for initiating shared memory operations
as follows:

 system call is invoked by a process to get an IPC identifier for a shared memory
region; if the region does not exists, it creates one:

This function returns the identifier of the shared memory segment corresponding to the
value contained in the key parameter. If other processes intend to use an existing segment,
they can use the segment's key value when looking for its identifier. A new segment is
however created if the key parameter is unique or has the value .

 indicates the number of bytes that needs to be allocated, as segments are allocated as
memory pages. The number of pages to be allocated is obtained by rounding off the size
value to the nearest multiple of a page size.\
The  flag specifies how the segment needs to be created. It can contain two values:

: This indicates creating a new segment. If this flag is unused, the
segment associated with the key value is found, and if the user has the access
permissions, the segment's identifier is returned.

: This flag is always used with , to ensure that the call fails
if the key value exists.

The shared memory region must be attached to its address space for a process to access it.
 is invoked to attach the shared memory to the address space of the calling process:
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The segment indicated by  is attached by this function.  specifies a pointer
indicating the location in the process's address space where the segment is to be mapped.
The third argument  is a flag, which can be one of the following:

: This is specified when  isn't a NULL value, indicating the
function to attach the segment at the address, computed by rounding off the

 value to the nearest multiple of page size; otherwise, the user must take
care that  be page-aligned so that the segment gets attached correctly.

: This is to specify that the segment will only be read if the user has
the necessary read permissions. Otherwise, both read and write access for the
segment is given (the process must have the respective permissions).

: This is a Linux-specific flag that indicates that any existing mapping
at the address specified by  be replaced with the new mapping.

Likewise, to detach the shared memory from the process address space,  is
invoked. As IPC shared memory regions are persistent in the kernel, they continue to exist
even after the processes detach:

The segment at the address specified by  is detached from the address space of the
calling process.

Each of these interface operations invoke relevant system calls implemented in the
 source file.

Data structures
Each shared memory segment is represented by a  descriptor. This
structure contains all metadata relevant to the management of SysV shared memory:
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For reliability and ease of management, the kernel's IPC subsystem manages shared
memory segments through a special file system called . This filesystem is not
mounted on to the rootfs tree; its operations are only accessible through SysV shared
memory system calls. The  pointer refers to the  object of 
that represents a shared memory block. When a process initiates an attach operation, the
underlying system call invokes  to create relevant mapping into the caller's
address space (through ) and steps into the shmfs-defined

 operation to map corresponding shared memory:
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POSIX shared memory
The Linux kernel supports POSIX shared memory through a special filesystem called

, which is mounted on to  of the . This implementation offers a
distinct API which is consistent with the Unix file model, resulting in each shared memory
allocation to be represented by a unique filename and inode. This interface is considered
more flexible by application programmers since it allows standard POSIX file-mapping
routines  and  for attaching and detaching memory segments into the caller
process address space.

Following is a summarized description of interface routines:

API Description

Create and open a shared memory segment identified by a filename

POSIX standard file mapping interface for attaching shared memory to caller's
address space

Destroy specified shared memory block

Detach specified shared memory map from caller address space

The underlying implementation is similar to that of SysV shared memory with the
difference that the mapping implementation is handled by the  filesystem.

Although shared memory is the easiest way of sharing common data or resources, it dumps
the burden of implementing synchronization on the processes, as a shared memory
infrastructure does not provide any synchronization or protection mechanism for the data
or resources in the shared memory region. An application designer must consider
synchronization of shared memory access between contending processes to ensure
reliability and validity of shared data, for instance, preventing a possible write by two
processes on the same region at a time, restricting a reading process to wait until a write is
completed by another process, and so on. Often, to synchronize such race conditions
another IPC resource called semaphores is used.
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Semaphores
Semaphores are synchronization primitives provided by the IPC subsystem. They deliver a
protective mechanism for shared data structures or resources against concurrent access by
processes in a multithreaded environment. At its core, each semaphore is composed of an
integer counter that can be atomically accessed by a caller process. Semaphore
implementations provide two operations, one for waiting on a semaphore variable and
another to signal the semaphore variable. In other words, waiting on the semaphore
decreases the counter by 1 and signaling the semaphore increases the counter by 1.
Typically, when a process wants to access a shared resource, it tries to decrease the
semaphore counter. This attempt is however handled by the kernel as it blocks the
attempting process until the counter yields a positive value. Similarly, when a process
relinquishes the resource, it increases the semaphore counter, which wakes up any process
that is waiting for the resource.

Semaphore versions

Traditionally all  systems implement the System V semaphore mechanism; however,
POSIX has its own implementation of semaphores aiming at portability and leveling a few
clumsy issues which the System V version carries. Let s begin by looking at System V
semaphores.

System V semaphores
Semaphores in System V are not just a single counter as you might think, but rather a set of
counters. This implies that a semaphore set can contain single or multiple counters (0 to n)
with an identical semaphore ID. Each counter in the set can protect a shared resource, and a
single semaphore set can protect multiple resources. The system call that helps create this
kind of semaphore is as follows:

 is used to identify the semaphore. If the key value is , a new set
of semaphores is created.

 indicates the semaphore set with the number of counters needed in the set
 dictates how the semaphore should be created. It can contain two values:

 If the key does not exist, it creates a new semaphore
: If the key exists, it throws an error and fails
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On success, the call returns the semaphore set identifier (a positive value).

A semaphore thus created contains uninitialized values and requires the initialization to be
carried out using the  function. After initialization, the semaphore set can be used
by the processes:

The  function lets the process initiate operations on the semaphore set. This
function offers a facility unique to the SysV semaphore implementation called undoable
operations through a special flag called . When this flag is set, the kernel allows a
semaphore to be restored to a consistent state if a process aborts before completing the
relevant shared data access operation. For instance, consider a case where one of the
processes locks the semaphore and begins its access operations on shared data; during this
time if the process aborts before completion of shared data access, the semaphore will be
left in an inconsistent state, making it unavailable for other contending processes. However,
if the process had acquired a lock on the semaphore by setting the  flag with

, its termination would allow the kernel to revert the semaphore to a consistent
state (unlocked state) making it available for other contending processes in wait.

Data structures
Each SysV semaphore set is represented in the kernel by a descriptor of type 

:
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Each semaphore in the array is enumerated as an instance of  defined in
; the  pointer refers to the first semaphore object in the set. ;Each

semaphore set contains a list of pending queue per process waiting;  is the
head node for this pending queue of type . Each semaphore set also
contains per-semaphore undoable operations.  is a head node to a list of 

 instances; there is one instance in the list for each semaphore in the set. The
following diagram sums up the semaphore set data structure and its lists:

POSIX semaphores
POSIX semaphore semantics are rather simple when compared to System V. Each
semaphore is a simple counter that can never be less than zero. The implementation
provides function interfaces for initialization, increment, and decrement operations. They
can be used for synchronizing threads by allocating the semaphore instance in memory
accessible to all the threads. They can also be used for synchronizing processes by placing
the semaphore in shared memory. Linux implementation of POSIX semaphores is
optimized to deliver better performance for non-contending synchronization scenarios.
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POSIX semaphores are available in two variants: named semaphores and unnamed
semaphores. A named semaphore is identified by a filename and is suitable for use between
unrelated processes. An unnamed semaphore is just a global instance of type ; this
form is generally preferred for use between threads. POSIX semaphore interface operations
are part of the POSIX threads library implementation.

Function interfaces Description

Opens an existing named semaphore file or creates a new named 
semaphore and returns its descriptor

Initializer routine for an unnamed semaphore

Operation to increment semaphore

Operation to decrement semaphore, blocks if invoked when semaphore
value is zero

Extends  with a timeout parameter for bounded wait

Returns the current value of the semaphore counter

Removes a named semaphore identified with a file

Summary
In this chapter, we touched on various IPC mechanisms offered by the kernel. We explored
the layout and relationship between various data structures for each mechanism, and also
looked at both SysV and POSIX IPC mechanisms.

In the next chapter, we will take this discussion further into locking and kernel-
synchronization mechanisms.
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Virtual Memory Management

In the first chapter, we had brief discussion about an important abstraction called a process.
We had discussed the process virtual address space and its isolation, and also have
traversed thorough the memory management subsystem and gained a thorough
understanding of various data structures and algorithms that go into physical memory
management. In this chapter, let's extend our discussion on memory management with
details of virtual memory management and page tables. We will look into the following
aspects of the virtual memory subsystem:

Process virtual address space and its segments
Memory descriptor structure
Memory mapping and VMA objects
File-backed memory mappings
Page cache
Address translation with page tables
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Process address space
The following diagram depicts the layout of a typical process address space in Linux
systems, which is composed of a set of virtual memory segments:
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Each segment is physically mapped to one or more linear memory blocks (made out of one
or more pages), and appropriate address translation records are placed in a process page
table. Before we get into the complete details of how the kernel manages memory maps and
constructs page tables, let's understand in brief each segment of the address space:

Stack is the topmost segment, which expands downward. It contains stack
frames that hold local variables and function parameters; a new frame is created
on top of the stack upon entry into a called function, and is destroyed when the
current function returns. Depending on the level of nesting of the function calls,
there is always a need for the stack segment to dynamically expand to
accommodate new frames. Such expansion is handled by the virtual memory
manager through page faults: when the process attempts to touch an unmapped
address at the top of the stack, the system triggers a page fault, which is handled
by the kernel to check whether it is appropriate to grow the stack. If the current
stack utilization is within , then it is considered appropriate and
the stack is expanded. However, if the current utilization is maximum with no
further scope to expand, then a segmentation fault signal is delivered to the
process.
Mmap is a segment below the stack; this segment is primarily used for mapping
file data from page cache into process address space. This segment is also used
for mapping shared objects or dynamic libraries. User-mode processes can
initiate new mappings through the  API. The Linux kernel also supports
anonymous memory mapping through this segment, which serves as an
alternative mechanism for dynamic memory allocations to store process data.
Heap segment provides address space for dynamic memory allocation that
allows a process to store runtime data. The kernel provides the  family of
APIs, through which user-mode processes can expand or shrink the heap at
runtime. However, most programming-language-specific standard libraries
implement heap management algorithms for efficient utilization of heap
memory. For instance, GNU glibc implements heap management that offers the

 family of functions for allocations.
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The lower segments of the address space--BSS, Data, and Text--are related to the binary
image of the process:

The BSS stores uninitialized static variables, whose values are not initialized in
the program code. The BSS is set up through anonymous memory mapping.
The data segment contains global and static variables initialized in program
source code. This segment is enumerated by mapping part of the program binary
image that contains initialized data; this mapping is created of type private
memory mapping, which ensures that changes to data variables' memory are not
reflected on the disk file.
The text segment is also enumerated by mapping the program binary file from
memory; this mapping is of type , resulting in a segmentation fault to be
triggered on an attempt to write into this segment.

The kernel supports the address space randomization facility, which if enabled during build
allows the VM subsystem to randomize start locations for stack, mmap, and heap segments
for each new process. This provides processes with much-needed security from malicious
programs that are capable of injecting faults. Hacker programs are generally hard-coded
with fixed start addresses of memory segments of a valid process; with address space
randomization, such malicious attacks would fail. However, text segments enumerated
from the binary file of the application program are mapped to a fixed address as per the
definition of the underlying architecture; this is configured into the linker script, which is
applied while constructing the program binary file.

Process memory descriptor
The kernel maintains all information on process memory segments and the corresponding
translation table in a memory descriptor structure, which is of type .
The process descriptor structure  contains a pointer  to the memory
descriptor for the process. We shall discuss a few important elements of the memory
descriptor structure:
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 refers to the start of the mmap segment in the virtual address space, and
 contains the total size of the task in the virtual memory space.  is an

atomic counter that holds the count of LWPs that share this memory descriptor, 
holds the count of the number of processes currently using this descriptor, and the VM
subsystem ensures that a memory descriptor structure is only released when  is
zero. The  and  fields contain the start and end virtual addresses for
the code block mapped from the program's binary file. Similarly,  and

 mark the beginning and end of the initialized data region mapped from the
program's binary file.

The  and  fields represent the start and current end addresses of the heap
segment; while  remains constant throughout the process lifetime,  is re-
positioned while allocating and releasing heap memory. Therefore, the total size of the
active heap at a given moment in time is the size of the memory between the 
and  fields. The elements  and  contain locations of the command-
line argument list, and  and  contain the start and end locations for
environment variables:
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Each linear memory region mapped to a segment in virtual address space is represented
through a descriptor of type . Each VM area region is mapped
with a virtual address interval that contains a start and end virtual addresses along with
other attributes. The VM subsystem maintains a linked list of 
nodes representing current regions; this list is sorted in ascending order, with the first node
representing the start virtual address interval and the node that follows containing the next
address interval, and so on. The memory descriptor structure includes a pointer ,
which refers to this list of VM areas currently mapped.

The VM subsystem will need to scan the  list while performing various operations
on VM regions such as looking for a specific address within mapped address intervals, or
appending a new VMA instance representing a new mapping. Such operations could be
time consuming and inefficient especially for cases where a large number of regions are
mapped into the list. As a workaround, the VM subsystem maintains a red-black tree for
efficient access of  objects. The memory descriptor structure includes the root node
of the red-black tree . With this arrangement, new VM regions can be quickly
appended by searching the red-black tree for the region preceding the address interval for
the new region; this eliminates the need to explicitly scan the linked list.
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 is defined in the kernel header :
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 contains the start virtual address (lower address) of the region, which is the
address of the first valid byte of the mapping, and  contains the virtual address of
the first byte beyond the mapped region (higher address). Thus, the length of the mapped
memory region can be computed by subtracting  from . The pointers

 and  refer to the next and previous VMA list, while the  element
is for representing this VMA under the red-black tree. The  pointer refers back to the
process memory descriptor structure.

 contains access permissions for the pages in the region.  is a bit
field that contains properties for memory in the mapped region. Flag bits are defined in the
kernel header .

Flag bits Description

Indicates inactive mapping.

If set, pages in the mapped area are readable.

If set, pages in the mapped area are writable.

This is set to mark a memory region as executable. Memory blocks
containing executable instructions are set with this flag along with

.
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If set, pages in the mapped region are shared.

Flag to indicate that  can be set on a currently mapped region.
This flag is for use with the  system call.

Flag to indicate that  can be set on a currently mapped region.
This flag is for use with the  system call.

Flag to indicate that  can be set on currently mapped region.
This flag is for use with the  system call.

Mapping can grow downward; the stack segment is assigned this flag.

This flag is set to indicate to VM subsystem that  is
enabled for this mapping, and is set to track page missing faults.

This flag is set to indicate that the memory region is mapped though
PFN tracked pages, unlike regular page frames with page descriptors.

Set to indicate that the current file mapping is not writable.

This flag is set to indicate to the VM subsystem that  is
enabled for this mapping, and is set to track write-protect faults.

Set when corresponding pages in the mapped memory region are locked.

Set when the device I/O area is mapped.

Set when a process declares its intention to access the memory area
within the mapped region sequentially.

Set when a process declares its intention to access the memory area
within the mapped region at random.

Set to indicate to the VM to disable copying this VMA on .

Set to indicate that the current mapping cannot expand on .

Lock pages in the memory map when they are faulted in. This flag is set
when a process enables  with the  system
call.

The VM subsystem performs additional checks to ensure there is
memory available when performing operations on VMAs with this flag.

Whether the VM should suppress accounting.

Indicates that the current mapping contains huge TLB pages.

If set, the current VMA is not included in the core dump.
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Set when the VMA mapping contains both traditional page frames
(managed through the page descriptor) and PFN-managed pages.

Set when the VMA is marked with  to instruct the VM
that pages under this mapping must be of type Transparent Huge Pages
(THP). This flag works only with private anonymous mappings.

Set when the VMA is marked with .

Set when the VMA is marked with , which enables the
kernel same-page merging (KSM) facility.

Architecture-specific extensions.

Architecture-specific extensions.

The following figure depicts the typical layout of a  list as pointed to by the
memory descriptor structure of the process:
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As depicted here, some memory regions mapped into the address space are file-backed
(code regions form the application binary file, shared library, shared memory mappings,
and so on). File buffers are managed by the kernel's page cache framework, which
implements its own data structures to represent and manage file caches. The page cache
tracks mappings to file regions by various user-mode process through an 
data structure. The  element of the  object enumerates this VMA 
into a red-black tree associated with the address space. We'll discuss more about the page
cache and  objects in the next section.

Regions of the virtual address space such as heap, stack, and mmap are allocated through
anonymous memory mappings. The VM subsystem groups all VMA instances of the
process that represent anonymous memory regions into a list and represents them through
a descriptor of type . This structure enables quick access to all of the
process VMAs that map anonymous pages; the  pointer of each anonymous
VMA structure refers to the  object.

However, when a process forks a child, all anonymous pages of the caller address space are
shared with the child process under copy-on-write (COW). This causes new VMAs to be
created (for the child) that represent the same anonymous memory regions of the parent.
The memory manager would need to locate and track all VMAs that refer to the same
regions for it to be able to support unmap and swap-out operations. As a solution, the VM
subsystem uses another descriptor called  that links all

 structures of a process group. The  element of the VMA
structure is a list element of the anonymous VMA chain.

Each VMA instance is bound to a descriptor of type , which
contains operations performed on the current VMA. The  pointer of the VMA
instance refers to the operations object:
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The routine assigned to the  function pointer is invoked when the VMA is
enumerated into the address space. Similarly, the routine assigned to the 
function pointer is invoked when the VMA is detached from the virtual address space. The
function assigned to the  interface is executed when the memory area mapped
by the VMA is to be resized. When the physical region mapped by the VMA is inactive, the
system triggers a page fault exception, and the function assigned to the  pointer is
invoked by the kernel's page-fault handler to read corresponding data of the VMA region
into the physical page.

The kernel supports direct access operations (DAX) for files on storage devices that are
similar to memory, such as nvrams, flash storage, and other persistent memory devices.
Drivers for such storage devices are implemented to perform all read and write operations
directly on storage, without any caching. When a user process attempts to map a file from a
DAX storage device, the underlying disk driver directly maps the corresponding file pages
to process the virtual address space. For optimal performance, user-mode processes can
map large files from DAX storage by enabling . Due to the large page sizes
supported, page faults on DAX file maps cannot be handled through regular page fault
handlers, and filesystems supporting DAX need to assign appropriate fault handlers to the

 pointer of the VMA.
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Managing virtual memory areas
The kernel's VM subsystem implements various operations to manipulate the virtual
memory regions of a process; these include functions to create, insert, modify, locate,
merge, and delete VMA instances. We will discuss a few of the important routines.

The  routine locates the first region in the VMA list that satisfies the condition
for a given address ( ).
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The function first checks for the requested address in the recently accessed  found in the
per-thread  cache. On a match, it returns the address of the VMA, else it steps into the
red-black tree to locate the appropriate VMA. The root node of the tree is located in

. Through the helper function , each node is verified for
the address within the virtual address interval of the VMA. If the target VMA with a lower
start address and higher end address than the specified address is located, the function
returns the address of the VMA instance. If the appropriate VMA is still not found, the
search continues its lookup into the left or right child nodes of the . When a suitable
VMA is found, a pointer to it is updated to the  cache (anticipating the next call to

 to locate the neighboring address in the same region), and it returns the
address of the VMA instance.

When a new region is added immediately before or after an existing region (and therefore
also between two existing regions), the kernel merges the data structures involved into a
single structure but, of course, only if the access permissions for all the regions involved
are identical and contiguous data is mapped from the same backing store.

When a new VMA is mapped immediately before or after an existing VMA with identical
access attributes and data from a file-backed memory region, it is more optimal to merge
them into a single VMA structure.  is a helper function that is invoked to
merge surrounding VMAs with identical attributes:

 refers to the memory descriptor of the process whose VMAs are to be merged; 
refers to a VMA whose address interval precedes the new region; and the , , and

 contain the start, end, and flags of the new region.  refers to the file
instance whose memory region is mapped to the new region, and  specifies the offset
of the mapping within the file data.
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This function first checks if the new region can be merged with the predecessor:

For this, it invokes a helper function , which checks if the end
address of the predecessor corresponds to the start address of the new region, and if access
flags are identical for both regions, it also checks offsets of file mappings to ensure that they
are contiguous in file region, and that both regions do not contain any anonymous
mappings:

 OK, it can. Can we now merge in the successor as well?

__vma_adjust(prev, prev->vm_start,
                                         end, prev->vm_pgoff, NULL, prev)
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It then checks if merging is a possibility with the successor region; for this it invokes the
helper function . This function carries out similar checks as
before and if both the predecessor and the successor regions are found identical, then

 is invoked to check if any anonymous mappings of the
predecessor can be merged with those of the successor. Finally, another helper function

 is invoked to perform the final merging, which manipulates the VMA
instances appropriately.

Similar types of helper functions exist for creating, inserting, and deleting memory regions,
which are invoked as helper functions from  and , called when
user-mode applications attempt to  and  memory regions, respectively. We
will not discuss details of these helper routines any further.

struct address_space
Memory caches are an integral part of modern memory management. In simple words, a
cache is a collection of pages used for specific needs. Most operating systems implement a
buffer cache, which is a framework that manages a list of memory blocks for caching
persistent storage disk blocks. The buffer cache allows filesystems to minimize disk I/O
operations by grouping and deferring disk sync until appropriate time.

The Linux kernel implements a page cache as a mechanism for caching; in simple words,
the page cache is a collection of page frames that are dynamically managed for caching disk
files and directories, and support virtual memory operations by providing pages for
swapping and demand paging. It also handles pages allocated for special files, such as IPC
shared memory and message queues. Application file I/O calls such as read and write cause
the underlying filesystem to perform the relevant operation on pages in the page cache.
Read operations on an unread file cause the requested file data to be fetched from disk into
pages of the page cache, and write operations update the relevant file data in cached pages,
which are then marked dirty and flushed to disk at specific intervals.

Groups of pages in cache that contain data of a specific disk file are represented through a
descriptor of type , so each  instance serves as an
abstraction for a set of pages owned by either a file  or block device file :
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The  pointer refers to the owner  whose data is contained in the pages
represented by the current  object. For instance, if a page in the cache
contains data of a file managed by the Ext4 filesystem, the corresponding VFS  of the
file stores the  object in its  field. The  of the file and the
corresponding  object is stored in the  field of the VFS  object.
The  field contains the count of pages under this .

For efficient management of file pages in cache, the VM subsystem needs to track all virtual
address mappings to regions of the same ; for instance, a number of user-
mode processes might map pages of a shared library into their address space through

 instances. The  field of the  object is the root
element of a red-black tree that contains all  instances currently mapped
to this ; since each  instance refers back to the memory
descriptor of the respective process, it would always be possible to track process references.

All physical pages containing file data under the  object are organized
through a radix tree for efficient access; the  field is an instance of 

 that serves a root element for the radix tree of pages. This structure is
defined in the kernel header :
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Each node of the radix tree is of type ; the  pointer of
the previous structure refers to the first node element of the tree:

The  field specifies the node slot offset in the parent,  holds the total count of
child nodes, and  is a pointer to the parent node. Each node can refer to 64 tree
nodes (specified by the macro ) through the slots array, where
unused slot entries are initialized with NULL.

For efficient management of pages under an address space, it is important for the memory
manager to set a clear distinction between clean and dirty pages; this is made possible
through tags assigned for pages of each node of the  tree. The tagging information is
stored in the  field of the node structure, which is a two-dimensional array . The first
dimension of the array distinguishes between the possible tags, and the second contains a
sufficient number of elements of unsigned longs so that there is a bit for each page that can
be organized in the node. Following is the list of tags supported:
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The Linux  tree API provides various operation interfaces to ,  and 
tags:

The following diagram depicts the layout of pages under the  object:
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Each address space object is bound to a set of functions that implement various low-level
operations between address space pages and the back-store block device. The 
pointer of the  structure refers to the descriptor containing address space
operations. These operations are invoked by VFS to initiate data transfers between pages in
cache associated with an address map and back-store block device:

Page tables
All access operations on process virtual address regions are put through address translation
before reaching the appropriate physical memory regions. The VM subsystem maintains
page tables to translate linear page addresses into physical addresses. Even though the page
table layout is architecture specific, for most architectures, the kernel uses a four-level
paging structure, and we will consider the x86-64 kernel page table layout for this
discussion.
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The following diagram depicts the layout of the page table for x86-64:

The address of the page global directory, which is the top-level page table, is initialized into
control register cr3. This is a 64-bit register following bit break-up:

Bits Description

2:0 Ignored

4:3 Page level write-through and page-level cache disable

11:5 Reserved

51:12 Address of page global directory

63:52 Reserved
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Out of 64 bit-wide linear addresses supported by x86-64, Linux currently uses 48 bits that
enable 256 TB of linear address space, which is considered large enough for current use.
This 48-bit linear address is split into five parts, with the first 12 bits containing the offset of
the memory location in the physical frame and rest of the parts containing offsets into
appropriate page table structures:

Linear address bits Description

11:0 (12 bits) Index of physical page

20:12 (9 bits) Index of page table

29:21 (9 bits) Index of page middle directory

38:30 (9 bits) Index of page upper directory

47:39 (9 bits) Index of page global directory

Each of the page table structures can support 512 records, of which each record provides the
base address of the next-level page structure. During translation of a given linear address,
MMU extracts the top 9 bits containing the index into the page global directory (PGD),
which is then added to the base address of PGD (found in cr3); this lookup results in the
discovery of the base address for page upper directory (PUD). Next, MMU retrieves the
PUD offset (9 bits) found in the linear address, and adds it to the base address of PUD
structure to reach the PUD entry (PUDE) that yields the base address of page middle
directory (PMD). The PMD offset found in the linear address is then added to the base
address of PMD to reach the relevant PMD entry (PMDE), which yields the base address of
the page table. The page table offset (9 bits) found in the linear address is then added to the
base address discovered from the PMD entry to reach the page table entry (PTE), which in
turn yields the start address of the physical frame of the requested data. Finally, the page
offset (12 bits) found in the linear address is added to the PTE discovered base address to
reach the memory location to be accessed.
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Summary
In this chapter, we focused on specifics of virtual memory management with respect to
process virtual address space and memory maps. We discussed critical data structures of
the VM subsystem, memory descriptor structure ( ), and VMA
descriptor ( ). We looked at the page cache and its data structures
( ) used in reverse mapping of file buffers into various process
address spaces. Finally, we explored the page table layout of Linux, which is widely used in
many architectures. Having gained a thorough understanding of filesystems and virtual
memory management, in the next chapter, we will extend this discussion into the IPC
subsystem and its resources.
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Kernel Synchronization and

Locking
Kernel address space is shared by all user-mode processes, which enables concurrent access
to kernel services and data structures. For reliable functioning of the system, it is imperative
that kernel services be implemented to be re-entrant. Kernel code paths accessing global
data structures need to be synchronized to ensure consistency and validity of shared data.
In this chapter, we will get into details of various resources at the disposal of kernel
programmers for synchronization of kernel code paths and protection of shared data from
concurrent access.

This chapter will cover the following topics:

Atomic operations
Spinlocks
Standard mutexes
Wait/wound mutex
Semaphores
Sequence locks
Completions
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Atomic operations
A computation operation is considered to be atomic if it appears to the rest of the system to
occur instantaneously. Atomicity guarantees indivisible and uninterruptible execution of
the operation initiated. Most CPU instruction set architectures define instruction opcodes
that can perform atomic read-modify-write operations on a memory location. These
operations have a succeed-or-fail definition, that is, they either successfully change the state
of the memory location or fail with no apparent effect. These operations are handy for
manipulation of shared data atomically in a multi-threaded scenario. They also serve as
foundational building blocks for implementation of exclusion locks, which are engaged to
protect shared memory locations from concurrent access by parallel code paths.

Linux kernel code uses atomic operations for various use cases, such as reference counters
in shared data structures (which are used to track concurrent access to various kernel data
structures), wait-notify flags, and for enabling exclusive ownership of data structures to a
specific code path. To ensure portability of kernel services that directly deal with atomic
operations, the kernel provides a rich library of architecture-neutral interface macros and
inline functions that serve as abstractions to processor-dependent atomic instructions.
Relevant CPU-specific atomic instructions under these neutral interfaces are implemented
by the architecture branch of the kernel code.

Atomic integer operations
Generic atomic operation interfaces include support for integer and bitwise operations.
Integer operations are implemented to operate on special kernel-defined types called

 (32-bit integer) and  (64-bit integer). Definitions for these types can
be found in the generic kernel header :
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The implementation provides two groups of integer operations; one set applicable on 32 bit
and the other group for 64 bit atomic variables. These interface operations are implemented
as a set of macros and inline functions. Following is a summarized list of operations
applicable on  type variables:

Interface macro/Inline function Description

Macro to initialize an atomic counter

Read value of the atomic counter 

Atomically set counter  to value specified in 

Atomically add  to counter 

Atomically subtract  from counter 

Atomically increment counter 

Atomically decrement counter 

Following is a list of functions that perform relevant read-modify-write (RMW) operations 
and return the result (that is, they return the value that was written to the memory address
after the modification):

Operation Description

Atomically subtracts  from  and
returns  if the result is zero, or

 otherwise

Atomically decrements  by 1 and
returns  if the result is 0, or

 for all other cases

Atomically adds  to  and returns
 if the result is 0, or  for

all other cases

Atomically adds  to  and returns
 if the result is negative, or

 when result is greater than or
equal to zero

Atomically adds  to  and returns
the result
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Atomically subtracts  from  and
returns the result

Atomically adds  to  and return
pre-addition value at 

Atomically subtracts  from , and
return pre-subtract value at 

int new)
Reads the value at location , and
checks if it is equal to ; if ,
swaps value at  with new, and
always returns value read at 

Swaps the old value stored at
location  with , and returns old
value 

For all of these operations, 64-bit variants exist for use with ; these functions
have the naming convention .

Atomic bitwise operations
Kernel-provided generic atomic operation interfaces also include bitwise operations. Unlike
integer operations, which are implemented to operate on the  type, these bit
operations can be applied on any memory location. The arguments to these operations are
the position of the bit or bit number, and a pointer with a valid address. The bit range is
0-31 for 32-bit machines and 0-63 for 64-bit machines. Following is a summarized list of
bitwise operations available:

Operation interface Description

Atomically set the bit  in location
starting from 

Atomically clear the bit  in location
starting from 

Atomically flip the bit  in the
location starting from 
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Atomically set the bit  in the
location starting from , and
return old value at the  bit

Atomically clear the bit  in the
location starting from , and
return old value at the  bit

Atomically flip the bit  in the
location starting from , and
return old value at the  bit

For all the operations with a return type, the value returned is the old state of the bit that
was read out of the memory address before the specified modification happened. Non-
atomic versions of these operations also exist; they are efficient and useful for cases that
might need bit manipulations, initiated from code statements in a mutually exclusive
critical block. These are declared in the kernel header .

Introducing exclusion locks
Hardware-specific atomic instructions can operate only on CPU word- and doubleword-
size data; they cannot be directly applied on shared data structures of custom size. For most
multi-threaded scenarios, often it can be observed that shared data is of custom sizes, for
example, a structure with n elements of various types. Concurrent code paths accessing
such data usually comprise a bunch of instructions that are programmed to access and
manipulate shared data; such access operations must be executed atomically to prevent
races. To ensure atomicity of such code blocks, mutual exclusion locks are used. All multi-
threading environments provide implementation of exclusion locks that are based on
exclusion protocols. These locking implementations are built on top of hardware-specific
atomic instructions.

The Linux kernel implements operation interfaces for standard exclusion mechanisms such
as mutual and reader-writer exclusions. It also contains support for various other
contemporary lightweight and lock-free synchronization mechanisms. Most kernel data
structures and other shared data elements such as shared buffers and device registers are
protected from concurrent access through appropriate exclusion-locking interfaces offered
by the kernel. In this section we will explore available exclusions and their implementation
details.
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Spinlocks
Spinlocks are one of the simplest and lightweight mutual exclusion mechanisms widely
implemented by most concurrent programming environments. A spinlock implementation
defines a lock structure and operations that manipulate the lock structure. The lock
structure primarily hosts an atomic lock counter among other elements, and operations
interfaces include:

An initializer routine, that initializes a spinlock instance to the default (unlock)
state
A lock routine, that attempts to acquire spinlock by altering the state of the lock
counter atomically
An unlock routine, that releases the spinlock by altering counter into unlock state

When a caller context attempts to acquire spinlock while it is locked (or held by another
context), the lock function iteratively polls or spins for the lock until available, causing the
caller context to hog the CPU until lock is acquired. It is due to this fact that this exclusion
mechanism is aptly named spinlock. It is therefore advised to ensure that code within
critical sections is atomic or non-blocking, so that lock can be held for a short, deterministic
duration, as it is apparent that holding a spinlock for a long duration could prove
disastrous.

As discussed, spinlocks are built around processor-specific atomic operations; the
architecture branch of the kernel implements core spinlock operations (assembly
programmed). The kernel wraps the architecture-specific implementation through a generic
platform-neutral interface that is directly usable by kernel service; this enables portability of
the service code which engages spinlocks for protection of shared resources.

Generic spinlock interfaces can be found in the kernel header  while
architecture-specific definitions are part of . The generic interface
provides a bunch of  and  operations, each implemented for a specific use
case. We will discuss each of these interfaces in the sections to follow; for now, let's begin
our discussion with the standard and most basic variants of  and 
operations offered by the interface. The following code sample shows the usage of a basic
spinlock interface:
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Let's examine the implementation of these functions under the hood:

Kernel code implements two variants of spinlock operations; one suitable for SMP
platforms and the other for uniprocessor platforms. Spinlock data structure and operations
related to the architecture and type of build (SMP and UP) are defined in various headers of
the kernel source tree. Let's familiarize ourselves with the role and importance of these
headers:

 contains generic spinlock/rwlock declarations.

The following headers are related to SMP platform builds:

 contains  and
initializers

 defines the generic type and initializers
 contains the  and similar low-level

operation implementations
 contains the prototypes for the 

APIs
 builds the final  APIs

The following headers are related to uniprocessor (UP) platform builds:

 contains the generic, simplified UP spinlock
type

 defines the generic type and initializers
 contains the  and similar version of

UP builds (which are NOPs on non-debug, non-preempt builds)
 builds the  APIs

 builds the final  APIs
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The generic kernel header  contains a conditional directive to decide
on the appropriate (SMP or UP) API to pull.

The  and  macros dynamically expand to the
appropriate version of spinlock operations based on the type of platform (SMP or UP)
chosen in the build configuration. For SMP platforms,  expands to the

 operation implemented in the kernel source file
. Following is the locking operation code defined with a

macro:

preempt_disable();
do_raw_##op##_trylock(lock)

break;
preempt_enable();

raw_##op##_can_lock(lock)
arch_##op##_relax(&lock->raw_lock)
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This routine is composed of nested loop constructs, an outer  loop construct, and an
inner  loop that spins until the specified condition is satisfied. The first block of code
in the outer loop attempts to acquire lock atomically by invoking the architecture-specific

 routine. Notice that this function is invoked with kernel preemption
disabled on the local processor. If lock is acquired successfully, it breaks out of the loop
construct and the call returns with preemption turned off. This ensures that the caller
context holding the lock is not preemptable during execution of a critical section. This
approach also ensures that no other context can contend for the same lock on the local CPU
until the current owner releases it.

However, if it fails to acquire lock, preemption is enabled through the 
call, and the caller context enters the inner loop. This loop is implemented through a
conditional  that spins until lock is found to be available. Each iteration of the loop
checks for lock, and when it detects that the lock is not available yet, it invokes an
architecture-specific relax routine (which executes a CPU-specific nop instruction) before
spinning again to check for lock. Recall that during this time preemption is enabled; this
ensures that the caller context is preemptable and does not hog CPU for long duration,
which can happen especially when lock is highly contended. It also allows the possibility of
two or more threads scheduled on the same CPU to contend for the same lock, possibly by
preempting each other.

When a spinning context detects that lock is available through , it
breaks out of the  loop, causing the caller to iterate back to the beginning of the outer
loop (  loop) where it again attempts to grab lock through  by disabling
preemption:
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Unlike the SMP variant, spinlock implementation for UP platforms is quite simple; in fact,
the lock routine just disables kernel preemption and puts the caller into a critical section.
This works since there is no possibility of another context to contend for the lock with
preemption suspended.

Alternate spinlock APIs
Standard spinlock operations that we discussed so far are suitable for the protection of
shared resources that are accessed only from the process context kernel path. However,
there might be scenarios where a specific shared resource or data might be accessed from
both the process and interrupt context code of a kernel service. For instance, think of a
device driver service that might contain both process context and interrupt context routines,
both programmed to access the shared driver buffer for execution of appropriate I/O
operations.

Let's presume that a spinlock was engaged to protect the driver's shared resource from
concurrent access, and all routines of the driver service (both process and interrupt context)
seeking access to the shared resource are programmed with appropriate critical sections
using standard  and  operations. This strategy would ensure
protection of the shared resource by enforcing exclusion, but can cause a hard lock condition
on the CPU at random times, due to lock contention by the interrupt path code on the same
CPU where the lock was held by a process context path. To further understand this, let's
assume the following events occur in the same order:

Process context routine of the driver acquires lock (using the standard1.
 call).

While the critical section is in execution, an interrupt occurs and is driven to the2.
local CPU, causing the process context routine to preempt and give away the
CPU for interrupt handlers.
Interrupt context path of the driver (ISR) starts and tries to acquire lock (using the3.
standard  call), which then starts to spin for lock to be available.

For the duration of the ISR, the process context is preempted and can never resume
execution, resulting in a lock that can never be released, and the CPU is hard locked with a
spinning interrupt handler that never yields.
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To prevent such occurrences, the process context code needs to disable interrupts on the
current processor while it takes the lock. This will ensure that an interrupt can never
preempt the current context until the completion of the critical section and lock release.
Note that interrupts can still occur but are routed to other available CPUs, on which the
interrupt handler can spin until lock becomes available. The spinlock interface provides an
alternate locking routine , which disables interrupts on the current
processor along with kernel preemption. The following snippet shows the routine's
underlying code:

 local_irq_save(flags);

  local_irq_restore(flags);

 is invoked to disable hard interrupts for the current processor; notice
how on failure to acquire the lock, interrupts are enabled by calling

. Note that a  taken by the caller using
 needs to be unlocked using , which

enables both kernel preemption and interrupts for the current processor before releasing
lock.

Similar to hard interrupt handlers, it is also possible for soft interrupt context routines such
as softirqs, tasklets, and other such bottom halves to contend for a lock held by the process
context code on the same processor. This can be prevented by disabling the execution of
bottom halves while acquiring lock in the process context.  is another
variant of the locking routine that takes care of suspending the execution of interrupt
context bottom halves on the local CPU.
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  local_bh_disable();

 suspends bottom half execution for the local CPU. To release a lock
acquired by , the caller context will need to invoke ,
which releases spinlock and BH lock for the local CPU.

Following is a summarized list of the kernel spinlock API interface:

Function Description

Initialize spinlock

Acquire lock, spins on contention

Attempt to acquire lock, returns error on contention

Acquire lock by suspending BH routines on the local
processor, spins on contention

Acquire lock by suspending interrupts on the local processor
by saving current interrupt state, spins on contention

Acquire lock by suspending interrupts on the local
processor, spins on contention

Release the lock

Release lock and enable bottom half for the local processor

Release lock and restore local interrupts to previous state

Release lock and restore interrupts for the local processor

Return state of the lock, nonzero if lock is held or zero if lock
is available
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Reader-writer spinlocks
Spinlock implementation discussed until now protects shared data by enforcing standard
mutual exclusion between concurrent code paths racing for shared data access. This form of
exclusion is not suitable for the protection of shared data which is often read by concurrent
code paths, with infrequent writers or updates. Reader-writer locks enforce exclusion
between reader and writer paths; this allows concurrent readers to share lock and a reader
task will need to wait for the lock while a writer owns the lock. Rw-locks enforce standard
exclusion between concurrent writers, which is desired.

Rw-locks are represented by  declared in kernel header
:

rwlocks can be initialized statically through the macro  or
dynamically at runtime through .

Reader code paths will need to invoke the  routine.

Writer code paths use the following:

Both read and write lock routines spin when lock is contended. The interface also offers
non-spinning versions of lock functions called  and . It
also offers interrupt-disabling versions of the locking calls, which are handy when either the
read or write path happens to execute in interrupt or bottom-half context.
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Following is a summarized list of interface operations:

Function Description

Standard read lock interface, spins on contention

Attempts to acquire lock, returns error if lock is unavailable

Attempts to acquire lock by suspending BH execution for
the local CPU, spins on contention

Attempts to acquire lock by suspending interrupts for the
current CPU by saving current state of local interrupts,
spins on contention

Releases read lock

Releases lock held and restores local interrupts to the
previous state

Releases read lock and enables BH on the local processor

Standard write lock interface, spins on contention

Attempts to acquire lock, returns error on contention

Attempts to acquire write lock by suspending bottom
halves for the local CPU, spins on contention

Attempts to acquire write lock by suspending interrupts for
the local CPU by saving current state of local interrupts,.
spins on contention

Releases write lock

Releases lock and restores local interrupts to the previous
state

Releases write lock and enables BH on the local processor

Underlying calls for all of these operations are similar to that of spinlock implementations
and can be found in headers specified in the aforementioned spinlock section.
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Mutex locks
Spinlocks by design are better suited for scenarios where lock is held for short, fixed
intervals of time, since busy-waiting for an indefinite duration would have a dire impact on
performance of the system. However, there are ample situations where a lock is held for
longer, non-deterministic durations; sleeping locks are precisely designed to be engaged
for such situations. Kernel mutexes are an implementation of sleeping locks: when a caller
task attempts to acquire a mutex that is unavailable (already owned by another context), it
is put into sleep and moved out into a wait queue, forcing a context switch allowing the
CPU to run other productive tasks. When the mutex becomes available, the task in the wait
queue is woken up and moved by the unlock path of the mutex, which can then attempt to
lock the mutex.

Mutexes are represented by , defined in  and
corresponding operations implemented in the source file :

In its basic form, each mutex contains a 64-bit  counter ( ), which is
used both for holding lock state, and to store a reference to the task structure of the current
task owning the lock. Each mutex contains a wait-queue ( ), and a spin
lock( ) that serializes access to .

The mutex API interface provides a set of macros and functions for initialization, lock,
unlock, and to access the status of the mutex. These operation interfaces are defined in

.

A mutex can be declared and initialized with the macro .
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There is also an option of initializing a valid mutex dynamically through
.

As discussed earlier, on contention, lock operations put the caller thread into sleep, which
requires the caller thread to be put into , ,
or  states, before moving it into the mutex wait list. To support this, the
mutex implementation offers two variants of lock operations, one for uninterruptible and
other for interruptible sleep. Following is a list of standard mutex operations with a short
description for each:

 void mutex_lock(struct mutex *lock);

    int __must_check mutex_lock_interruptible(struct mutex *lock);

    int __must_check mutex_lock_killable(struct mutex *lock);
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int mutex_trylock(struct mutex *lock);

int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);

    static inline int mutex_is_locked(struct mutex *lock);

    void mutex_unlock(struct mutex *lock);

Despite being possible blocking calls, mutex locking functions have been greatly optimized
for performance. They are programmed to engage fast and slow path approaches while
attempting lock acquisition. Let's explore the code under the hood of the locking calls to
better understand fast path and slow path. The following code excerpt is of the

 routine from :
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Lock acquisition is first attempted by invoking a non-blocking fast path call
. If it fails to acquire lock through due to contention, it enters

slow path by invoking :

__mutex_trylock_fast

This function is programmed to acquire lock atomically if available. It invokes the
 macro, which attempts to assign the current thread as

the owner of the mutex; this operation will succeed if the mutex is available, in which case
the function returns . Should some other thread own the mutex, this function will fail
and return . On failure, the caller thread will enter the slow path routine.

Conventionally, the concept of slow path has always been to put the caller task into sleep
while waiting for the lock to become available. However, with the advent of many-core
CPUs, there is a growing need for scalability and improved performance, so with an
objective to achieve scalability, the mutex slow path implementation has been reworked
with an optimization called optimistic spinning, a.k.a. midpath, which can improve
performance considerably.

The core idea of optimistic spinning is to push contending tasks into poll or spin instead of
sleep when the mutex owner is found to be running. Once the mutex becomes available
(which is expected to be sooner, since the owner is found to be running) it is assumed that a
spinning task could always acquire it quicker as compared to a suspended or sleeping task
in the mutex wait list. However, such spinning is only a possibility when there are no other
higher-priority tasks in ready state. With this feature, spinning tasks are more likely to be
cache-hot, resulting in deterministic execution that yields noticeable performance
improvement:

__mutex_lock

__mutex_lock_common
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__mutex_lock_slowpath(struct mutex *lock)

__mutex_lock

__mutex_lock_killable_slowpath

__mutex_lock

__mutex_lock_interruptible_slowpath

__mutex_lock

The  function contains a slow path implementation with
optimistic spinning; this routine is invoked by all sleep variants of mutex locking functions
with appropriate flags as argument. This function first attempts to acquire mutex through
optimistic spinning implemented through cancellable mcs spinlocks (  field in mutex
structure) associated with the mutex. When the caller task fails to acquire mutex with
optimistic spinning, as a last resort this function switches to conventional slow path,
resulting in the caller task to be put into sleep and queued into the mutex  until
woken up by the unlock path.

Debug checks and validations
Incorrect use of mutex operations can cause deadlocks, failure of exclusion, and so on. To
detect and prevent such possible occurrences, the mutex subsystem is equipped with
appropriate checks or validations instrumented into mutex operations. These checks are by 
default disabled, and can be enabled by choosing the configuration option

 during kernel build.
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Following is a list of checks enforced by instrumented debug code:

Mutex can be owned by one task at a given point in time
Mutex can be released (unlocked) only by the valid owner, and an attempt to
release mutex by a context that does not own the lock will fail
Recursive locking or unlocking attempts will fail
A mutex can only be initialized via the initializer call, and any attempt to memset
mutex will never succeed
A caller task may not exit with a mutex lock held
Dynamic memory areas where held locks reside must not be freed
A mutex can be initialized once, and any attempt to re-initialize an already
initialized mutex will fail
Mutexes may not be used in hard/soft interrupt context routines

Deadlocks can trigger due to many reasons, such as the execution pattern of the kernel code
and careless usage of locking calls. For instance, let's consider a situation where concurrent
code paths need to take ownership of L1 and L2 locks by nesting the locking functions. It
must be ensured that all the kernel functions that require these locks are programmed to
acquire them in the same order. When such ordering is not strictly imposed, there is always
a possibility of two different functions trying to lock L1 and L2 in opposite order, which
could trigger lock inversion deadlock, when these functions execute concurrently.

The kernel lock validator infrastructure has been implemented to check and prove that none
of the locking patterns observed during kernel runtime could ever cause deadlock. This
infrastructure prints data pertaining to locking pattern such as:

Point-of-acquire tracking, symbolic lookup of function names, and list of all locks
held in the system
Owner tracking
Detection of self-recursing locks and printing out all relevant info
Detection of lock inversion deadlocks and printing out all affected locks and tasks

The lock validator can be enabled by choosing  during kernel
build.
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Wait/wound mutexes
As discussed in the earlier section, unordered nested locking in the kernel functions could
pose a risk of lock-inversion deadlocks, and kernel developers avoid this by defining rules
for nested lock ordering and perform runtime checks through the lock validator
infrastructure. Yet, there are situations where lock ordering is dynamic, and nested locking
calls cannot be hardcoded or imposed as per preconceived rules.

One such use case is to do with GPU buffers; these buffers are to be owned and accessed by
various system entities such as GPU hardware, GPU driver, user-mode applications, and
other video-related drivers. User mode contexts can submit the dma buffers for processing
in an arbitrary order, and the GPU hardware may process them at arbitrary times. If locking
is used to control the ownership of the buffers, and if multiple buffers must be manipulated
at the same time, deadlocks cannot be avoided. Wait/wound mutexes are designed to
facilitate dynamic ordering of nested locks, without causing lock-inversion deadlocks. This
is achieved by forcing the context in contention to wound, meaning forcing it to release the
holding lock.

For instance, let's presume two buffers, each protected with a lock, and further consider two
threads, say  and , seek ownership of the buffers by attempting locks in opposite order:

Execution of  and  concurrently might result in each thread waiting for the lock held by
the other, causing deadlock. Wait/wound mutex prevents this by letting the thread that
grabbed the lock first to remain in sleep, waiting for nested lock to be available. The other
thread is wound, causing it to release its holding lock and start over again. Suppose  got to
lock on  before  could acquire lock on .  would be considered as the thread
that got there first and is put to sleep for lock on , and  would be wound, causing it to
release lock on  and start all over. This avoids deadlock and  would start all over
when  releases locks held.
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Wait/wound mutexes are represented through  defined in the header
:

The first step to use wait/wound mutex is to define a class, which is a mechanism to
represent a group of locks. When concurrent tasks contend for the same locks, they must do
so by specifying this class.

A class can be defined using a macro:

Each class declared is an instance of type  and contains an atomic
counter , which is used to hold a sequence number that records which one of the
contending tasks got there first. Other fields are used by the kernel's lock validator to verify
correct usage of the wait/wound mechanism.

Each contending thread must invoke  before attempting nested
locking calls. This sets up the context by assigning a sequence number to track locks.
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void ww_acquire_init(struct ww_acquire_ctx *ctx, struct ww_clas
*ww_class);

Once the context is set up and initialized, tasks can begin acquiring locks with either
 or  calls:
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int ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx);

int  ww_mutex_lock_interruptible(struct ww_mutex *lock,
                                             struct  ww_acquire_ctx *ctx);

When a task grabs all nested locks (using any of these locking routines) associated with a
class, it needs to notify acquisition of ownership using the function .
This call marks the end of the acquisition phase, and the task can proceed to process shared
data:

    void ww_acquire_done(struct ww_acquire_ctx *ctx);

When a task completes its processing of shared data, it can begin releasing all of the locks
held, with calls to the ) routine. Once all of the locks are released, the
context must be released with a call to :

void ww_acquire_fini(struct ww_acquire_ctx *ctx);



Kernel Synchronization and Locking

[ 247 ]

Semaphores
Until early versions of 2.6 kernel releases, semaphores were the primary form of sleep locks.
A typical semaphore implementation comprises a counter, wait queue, and set of operations
that can increment/decrement the counter atomically.

When a semaphore is used to protect a shared resource, its counter is initialized to a
number greater than zero, which is considered to be unlocked state. A task seeking access to
a shared resource begins by invoking the decrement operation on the semaphore. This call
checks the semaphore counter; if it is found to be greater than zero, the counter is
decremented and the function returns success. However, if the counter is found to be zero,
the decrement operation puts the caller task to sleep until the counter is found to have
increased to a number greater than zero.

This simple design offers great flexibility, which allows adaptability and application of
semaphores for different situations. For instance, for cases where a resource needs to be
accessible to a specific number of tasks at any point in time, the semaphore count can be
initialized to the number of tasks that require access, say 10, which allows a maximum of 10
tasks access to shared resource at any time. For yet other cases, such as a number of tasks
that require mutually exclusive access to a shared resource, the semaphore count can be
initialized to 1, resulting in a maximum of one task to access the resource at any given point
in time.

Semaphore structure and its interface operations are declared in the kernel header
:

Spinlock (the  field) serves as a protection for , that is, semaphore operations
(inc/dec) are programmed to acquire  before manipulating .  is used
to queue tasks to sleep while they wait for the semaphore count to increase beyond zero.

Semaphores can be declared and initialized to 1 through a macro: .

A semaphore can also be initialized dynamically to any positive number through the
following:
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Following is a list of operation interfaces with a brief description of each. Routines with
naming convention  attempt to decrement the semaphore, and are possible
blocking calls (except ), while routine  increments the semaphore
and always succeeds:

   int down_interruptible(struct semaphore *sem);

    int down_killable(struct semaphore *sem);

    int down_trylock(struct semaphore *sem);



Kernel Synchronization and Locking

[ 249 ]

    int down_timeout(struct semaphore *sem, long timeout);

    void up(struct semaphore *sem);

Unlike mutex implementation, semaphore operations do not support debug checks or
validations; this constraint is due to their inherent generic design which allows them to be
used as exclusion locks, event notification counters, and so on. Ever since mutexes made
their way into the kernel (2.6.16), semaphores are no longer the preferred choice for
exclusion, and the use of semaphores as locks has considerably reduced, and for other
purposes, the kernel has alternate interfaces. Most of the kernel code using semaphores has
be converted into mutexes with a few minor exceptions. Yet semaphores still exist and are
likely to remain at least until all of the kernel code using them is converted to mutex or
other suitable interfaces.

Reader-writer semaphores
This interface is an implementation of sleeping reader-writer exclusion, which serves as an
alternative for spinning ones. Reader-writer semaphores are represented by 

, declared in the kernel header :



Kernel Synchronization and Locking

[ 250 ]

This structure is identical to that of a mutex, and is designed to support optimistic spinning
with ; it also includes debug support through the kernel's lockdep.  serves as an
exclusion counter, which is set to 1, allowing a maximum of one writer to own the lock at a
point in time. This works since mutual exclusion is only enforced between contending
writers, and any number of readers can concurrently share the read lock.  is a
spinlock which protects the semaphore .

An  can be instantiated and initialized statically through
, and alternatively, it can be dynamically initialized through

.

As with the case of rw-spinlocks, this interface too offers distinct routines for lock
acquisition in reader and writer paths. Following is a list of interface operations:

reader interfaces

writer Interfaces

These operations are implemented in the source file ; the
code is quite self explanatory and we will not discuss it any further.
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Sequence locks
Conventional reader-writer locks are designed with reader priority, and they might cause a
writer task to wait for a non-deterministic duration, which might not be suitable on shared
data with time-sensitive updates. This is where sequential lock comes in handy, as it aims at
providing a quick and lock-free access to shared resources. Sequential locks are best when
the resource that needs to be protected is small and simple, with write access being quick
and non-frequent, as internally sequential locks fall back on the spinlock primitive.

Sequential locks introduce a special counter that is incremented every time a writer acquires
a sequential lock along with a spinlock. After the writer completes, it releases the spinlock
and increments the counter again and opens the access for other writers. For read, there are
two types of readers: sequence readers and locking readers. The sequence reader checks for
the counter before it enters the critical section and then checks again at the end of it without
blocking any writer. If the counter remains the same, it implies that no writer had accessed
the section during read, but if there is an increment of the counter at the end of the section,
it is an indication that a writer had accessed, which calls for the reader to re-read the critical
section for updated data. A locking reader, as the name implies, will get a lock and block
other readers and writers when it is in progress; it will also wait when another locking
reader or writer is in progress.

A sequence lock is represented by the following type:

We can initialize a sequence lock statically using the following macro:

Actual initialization is done using the , which is defined here:
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To dynamically initialize sequence lock, we need to use the  macro, which is
defined as follows:

API
Linux provides many APIs for using sequence locks, which are defined in

. Some of the important ones are listed here:
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The following two functions are used for reading by starting and finalizing a read section:

Completion locks
Completion locks are an efficient way to achieve code synchronization if you need one or
multiple threads of execution to wait for completion of some event, such as waiting for
another process to reach a point or state. Completion locks may be preferred over a
semaphore for a couple of reasons: multiple threads of execution can wait for a completion,
and using , they can all be released at once. This is way better than a
semaphore waking up to multiple threads. Secondly, semaphores can lead to race
conditions if a waiting thread deallocates the synchronization object; this problem doesn t
exist when using completion.

Completion can be used by including  and by creating a variable
of type , which is an opaque structure for maintaining the state of
completion. It uses a FIFO to queue the threads waiting for the completion event:
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Completion basically consists of initializing the completion structure, waiting through any
of the variants of  call, and finally signalling the completion
through  or the  call. There are also functions to check the
state of completions during its lifetime.

Initialization
The following macro can be used for static declaration and initialization of a completion
structure:

The following inline function will initialize a dynamically created completion structure:

The following inline function will be used to reinitialize a completion structure if you need
to reuse it. This can be used after :

Waiting for completion
If any thread needs to wait for a task to complete, it will call  on
the initialized completion structure. If the  operation happens after
the call to  or , the thread simply continues, as the reason it
wanted to wait for has been satisfied; else, it waits till  is signalled. There are
variants available for the  calls:
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Signalling completion
The execution thread that wants to signal the completion of the intended task calls

 to a waiting thread so that it can continue. Threads will be awakened in the
same order in which they were queued. In the case of multiple waiters, it calls

:
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Summary
Throughout this chapter, we not only understood the various protection and
synchronization mechanisms provided by the kernel, but also made an underlying attempt
at appreciating the effectiveness of these options, with their varied functionalities and
shortcomings. Our takeaway from this chapter has to be the tenacity with which the kernel
addresses these varying complexities for providing protection and synchronization of data.
Another notable fact remains in the way the kernel maintains ease of coding along with
design panache when tackling these issues.

In our next chapter, we will look at another crucial aspect of how interrupts are handled by
the kernel.
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Interrupts and Deferred Work

An interrupt is an electrical signal delivered to the processor indicating occurrence of a
significant event that needs immediate attention. These signals can originate either from
external hardware (connected to the system) or from circuits within the processor. In this
chapter we will look into the kernel's interrupt management subsystem and explore the
following:

Programmable interrupt controllers
Interrupt vector table
IRQs
IRQ chip and IRQ descriptors
Registering and unregistering interrupt handlers
IRQ line-control operations
IRQ stacks
Need for deferred routines
Softirqs
Tasklets
Workqueues
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Interrupt signals and vectors
When an interrupt originates from an external device, it is referred to as a hardware
interrupt. These signals are generated by external hardware to seek the attention of the
processor on occurrence of a significant external event, for instance a key hit on the
keyboard, a click on a mouse button, or moving the mouse trigger hardware interrupts
through which the processor is notified about the availability of data to be read. Hardware
interrupts occur asynchronously with respect to the processor clock (meaning they can
occur at random times), and hence are also termed as asynchronous interrupts.

Interrupts triggered from within the CPU due to events generated by program instructions
currently in execution are referred to as software interrupts. A software interrupt is caused
either by an exception triggered by program instructions currently in execution or on
execution of a privileged instruction that raises an interrupt. For instance, when a program
instruction attempts to divide a number by zero, the arithmetic logic unit of the processor
raises an interrupt called a divide-by-zero exception. Similarly, when a program in
execution intends to invoke a kernel service call, it executes a special instruction (sysenter)
that raises an interrupt to shift the processor into privileged mode, which paves the path for
the execution of the desired service call. These events occur synchronously with respect to
the processor's clock and hence are also called synchronous interrupts.

In response to the occurrence of an interrupt event, CPUs are designed to preempt the
current instruction sequence or thread of execution, and execute a special function called
interrupt service routine (ISR). To locate the appropriate ISR that corresponds to an
interrupt event, interrupt vector tables are used. An interrupt vector is an address in
memory that contains a reference to a software-defined interrupt service to be executed in
response to an interrupt. Processor architectures define the total count of interrupt vectors
supported, and describe the layout of each interrupt vector in memory. In general, for most
processor architectures, all supported vectors are set up in memory as a list called an
interrupt vector table, whose address is programmed into a processor register by the
platform software.
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Let's consider specifics of the x86 architecture as an example for better understanding. The
x86 family of processors supports a total of 256 interrupt vectors, of which the first 32 are
reserved for processor exceptions and the rest used for software and hardware interrupts.
Implementation of a vector table by x86 is referred to as an interrupt descriptor table (IDT),
which is an array of descriptors of either 8 byte (for 32-bit machines) or 16 byte (for 64-bit
x86 machines) sizes. During early boot, the architecture-specific branch of the kernel code
sets up the IDT in memory and programs the IDTR register (special x86 register) of the
processor with the physical start address and length of the IDT. When an interrupt occurs,
the processor locates relevant vector descriptors by multiplying the reported vector number
by the size of the vector descriptor (vector number x 8 on x86_32 machines, and vector no x 16
on x86_64 machines) and adding the result to the base address of the IDT. Once a valid
vector descriptor is reached, the processor continues with the execution of actions specified
within the descriptor.

On x86 platforms, each vector descriptor implements a gate (interrupt, task,
or trap), which is used to transfer control of execution across segments.
Vector descriptors representing hardware interrupts implement an
interrupt gate, which refers to the base address and offset of the segment
containing interrupt handler code. An interrupt gate disables all maskable
interrupts before passing control to a specified interrupt handler. Vector
descriptors representing exceptions and software interrupts implement a
trap gate, which also refers to the location of code designated as a handler
for the event. Unlike an interrupt gate, a trap gate does not disable maskable
interrupts, which makes it suitable for execution of soft interrupt handlers.
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Programmable interrupt controller
Now let's focus on external interrupts and explore how processors identify the occurrence
of an external hardware interrupt, and how they discover the vector number associated
with the interrupt. CPUs are designed with a dedicated input pin (intr pin) used to signal
external interrupts. Each external hardware device capable of issuing interrupt requests
usually consists of one or more output pins called Interrupt Request lines (IRQ), used to
signal an interrupt request on the CPU. All computing platforms use a hardware circuit
called a programmable interrupt controller (PIC) to multiplex the CPU's interrupt pin
across various interrupt request lines. All of the existing IRQ lines originating from on-
board device controllers are routed to input pins of the interrupt controller, which monitors
each IRQ line for an interrupt signal, and upon arrival of an interrupt, converts the request
into a cpu-understandable vector number and relays the interrupt signal on to the CPU's
interrupt pin. In simple words, a programmable interrupt controller multiplexes multiple
device interrupt request lines into a single interrupt line of the processor:

Design and implementation of interrupt controllers is platform specific. Intel x86
multiprocessor platforms use Advanced Programmable Interrupt Controller (APIC). The
APIC design splits interrupt controller functionality into two distinct chipsets: the first
component is an I/O APIC that resides on the system bus. All shared peripheral hardware
IRQ lines are routed to the I/O APIC; this chip translates an interrupt request into vector
code. The second is a per-CPU controller called Local APIC (usually integrated into the
processor core) which delivers hardware interrupts to specific CPU cores. I/O APIC routes
the interrupt events to a Local APIC of the chosen CPU core. It is programmed with a
redirection table, which is used for making interrupt routing decisions. CPU Local APICs
manage all external interrupts for a specific CPU core; additionally, they deliver events
from CPU local hardware such as timers and can also receive and generate inter-processor
interrupts (IPIs) that can occur on an SMP platform.
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The following diagram depicts the split architecture of APIC. The flow of events now
begins with individual devices raising IRQ on the I/O APIC, which routes the request to a
specific Local APIC, which in turn delivers the interrupt to a specific CPU core:

Similar to the APIC architecture, multicore ARM platforms split the generic interrupt
controller (GIC) implementation into two. The first component is called a distributor,
which is global to the system and has several peripheral hardware interrupt sources
physically routed to it. The second component is replicated per-CPU and is called the cpu
interface. The distributor component is programmed with distribution logic of shared
peripheral interrupts(SPI) to known CPU interfaces.

Interrupt controller operations
The architecture-specific branch of the kernel code implements interrupt controller specific
operations for management of IRQ lines such as masking/unmasking individual interrupts,
setting priorities, and SMP affinity. These operations are required to be invoked from
architecture-independent code paths of the kernel for manipulation of individual IRQ lines,
and to facilitate such calls, the kernel defines an architecture-independent abstraction layer
through a structure called . This structure can be found in the kernel
header :
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The structure declares a set of function pointers to account for all peculiarities of IRQ chips
found across various hardware platforms. Thus, a particular instance of the structure
defined by board-specific code usually supports only a subset of possible operations.
Following are x86 multicore platform versions of  instances defining operations
of I/O APIC and LAPIC.
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IRQ descriptor table
Another important abstraction is with respect to IRQ numbers associated with hardware
interrupts. Interrupt controllers identify each IRQ source with a unique hardware IRQ
number. The kernel's generic interrupt-management layer maps each hardware IRQ to a
unique identifier called Linux IRQ; these numbers abstract hardware IRQs, thereby
ensuring portability of kernel code. All of the peripheral device drivers are programmed to
use the Linux IRQ number to bind or register their interrupt handlers.

Linux IRQs are represented by IRQ descriptor structure, which is defined by 
; for each IRQ source, an instance of this structure is enumerated during early

kernel boot. A list of IRQ descriptors is maintained in an array indexed by the IRQ number,
called the IRQ descriptor table:
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 is an instance of , and this contains low-level information that
is relevant for interrupt management, such as Linux IRQ number, hardware IRQ number,
and a pointer to interrupt controller operations ( ) among other important fields:
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The  element of the  structure is a function pointer of type
, which refers to a high-level function that deals with flow

management on the line. The generic irq layer provides as set of predefined irq flow
functions; an appropriate routine is assigned to each interrupt line based on its type.

: Generic implementation for level-triggered interrupts
: Generic implementation for edge-triggered interrupts

: Generic implementation for interrupts that only need
an EOI at the end of the handler

: Generic implementation for simple interrupts
: Generic implementation for per-CPU interrupts

: Used for spurious interrupts

The  element of the  structure is a pointer to one or a chain of action
descriptors, which contain driver-specific interrupt handlers among other important
elements. Each action descriptor is an instance of  defined in the kernel
header :
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High-level interrupt-management interfaces
The generic IRQ layer provides a set of function interfaces for device drivers to grab IRQ
descriptors and bind interrupt handlers, release IRQs, enable or disable interrupt lines, and
so on. We will explore all of the generic interfaces in this section.

Registering an interrupt handler

 instantiates an  object with values passed as parameters and 
binds it to the  specified as the first ( ) parameter. This call allocates interrupt
resources and enables the interrupt line and IRQ handling.  is a function pointer of
type , which takes the address of a driver-specific interrupt handler
routine.  is a bitmask of options related to interrupt management. Flag bits are
defined in the kernel header 

: Used while binding an interrupt handler to a shared IRQ line.
: Set by callers when they expect sharing mismatches to

occur.
: Flag to mark this interrupt as a timer interrupt.

: Interrupt is per CPU.
: Flag to exclude this interrupt from IRQ balancing.
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: Interrupt is used for polling (only the interrupt that is registered
first in a shared interrupt is considered for performance reasons).

: Do not disable this IRQ during suspend. Does not guarantee
that this interrupt will wake the system from a suspended state.

: Force-enable it on resume even if  is
set.

: Resume IRQ early during syscore instead of at device
resume time.

: If the IRQ is shared with a  user, execute this
interrupt handler after suspending interrupts. For system wakeup devices, users
need to implement wakeup detection in their interrupt handlers.

Since each flag value is a bit, a logical OR (that is, |) of a subset of these can be passed, and
if none apply, then a value 0 for the  parameter is valid. The address assigned to 
is considered as a unique cookie and serves as an identifier for the action instance in a
shared IRQ case. The value of this parameter can be NULL while registering interrupt
handlers without the  flag.

On success,  returns zero; a nonzero return value indicates failure to
register the specified interrupt handler. The return error code  denotes failure to
register or bind the handler to a specified IRQ that is already in use.

Interrupt handler routines have the following prototype:

 specifies the IRQ number, and  is the unique cookie used while registering the
handler.  is a typedef to an enumerated integer constant:

The interrupt handler should return  to indicate that the interrupt was not
handled. It is also used to indicate that the source of the interrupt was not from its device in
a shared IRQ case. When interrupt handling has completed normally, it must return

 to indicate success.  is a special flag, returned to wake up
the threaded handler; we elaborate on it in the next section.
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Deregistering an interrupt handler
A driver's interrupt handlers can be deregistered through a call to the  routine:

 is the unique cookie (assigned while registering the handler) to identify the handler
to be deregistered in a shared IRQ case; this argument can be NULL for other cases. This
function is a potential blocking call, and must not be invoked from an interrupt context: it
blocks calling context until completion of any interrupt handler currently in execution, for
the specified IRQ line.

Threaded interrupt handlers
Handlers registered through  are executed by the interrupt-handling path
of the kernel. This code path is asynchronous, and runs by suspending scheduler
preemption and hardware interrupts on the local processor, and so is referred to as a hard
IRQ context. Thus, it is imperative to program the driver's interrupt handler routines to be
short (do as little work as possible) and atomic (non blocking), to ensure responsiveness of
the system. However, not all hardware interrupt handlers can be short and atomic: there are
a magnitude of convoluted devices generating interrupt events, whose responses involve
complex variable-time operations.
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Conventionally, drivers are programmed to handle such complications with a split-handler
design for the interrupt handler, called top half and bottom half. Top half routines are
invoked in hard interrupt context, and these functions are programmed to execute interrupt
critical operations, such as physical I/O on the hardware registers, and schedule the bottom
half for deferred execution. Bottom half routines are usually programmed to deal with the
rest of the interrupt non-critical and deferrable work, such as processing of data generated by
the top half, interacting with process context, and accessing user address space. The kernel
offers multiple mechanisms for scheduling and execution of bottom half routines, each with
a distinct interface API and policy of execution. We'll elaborate on the design and usage
details of formal bottom half mechanisms in the next section.

As an alternative to using formal bottom-half mechanisms, the kernel supports setting up
interrupt handlers that can execute in a thread context, called threaded interrupt handlers.
Drivers can set up threaded interrupt handlers through an alternate interface routine called

:
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The function assigned to  serves as the primary interrupt handler that executes in a
hard IRQ context. The routine assigned to  is executed in a thread context, and is
scheduled to run when the primary handler returns . With this split
handler setup, there are two possible use cases: the primary handler can be programmed to
execute interrupt-critical work and defer non-critical work to the thread handler for later
execution, similar to that of the bottom half. The alternative is a design that defers the entire
interrupt-handling code into the thread handler and restricts the primary handler only for
verification of the interrupt source and waking up thread routine. This use case might
require the corresponding interrupt line to be masked until completion of the thread
handler, to avoid the nesting of interrupts. This can be accomplished either by
programming the primary handler to turn off the interrupt at source before waking up the
thread handler or through a flag bit  assigned while registering the threaded
interrupt handler.

The following are  related to threaded interrupt handlers:

: The interrupt is not re-enabled after the hard IRQ handler is
finished. This is used by threaded interrupts that need to keep the IRQ line
disabled until the threaded handler has been run.

: The interrupt cannot be threaded. This is used in shared IRQs
to restrict the use of threaded interrupt handlers.

A call to this routine with NULL assigned to  will cause the kernel to use the
default primary handler, which simply returns . And a call to this
function with NULL assigned to  is synonymous with :

Another alternate interface for setting up an interrupt handler is
. This routine has a similar signature to that of

 but slightly varies in its functionality:
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This function differs from  in that it looks into the IRQ descriptor for
properties of the interrupt line as set up by the architecture-specific code, and decides
whether to establish the function assigned as a traditional hard IRQ handler or as a
threaded interrupt handler. On success,  is returned if the handler was
established to run in hard IRQ context, or  otherwise.

Control interfaces
The generic IRQ layer provides routines to carry out control operations on IRQ lines.
Following is the list of functions for masking and unmasking specific IRQ lines:

This disables the specified IRQ line by manipulating the counter in the IRQ descriptor
structure. This routine is a possible blocking call, as it waits until any running handlers for
this interrupt complete. Alternatively, the function  can also be
used to disable the given IRQ line; this call does not check and wait for any running handlers
for the given interrupt line to complete:

Disabled IRQ lines can be enabled with a call to:

Note that IRQ enable and disable operations nest, that is, multiple calls to disable an IRQ line
require the same number of enable calls for that IRQ line to be reenabled. This means that

 will enable the given IRQ only when a call to it matches the last disable
operation.
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By choice, interrupts can also be disabled/enabled for the local CPU; the following pairs of 
macros can be used for the same:

: To disable interrupts on the local processor.
: Enables interrupts for the local processor.

: Disables interrupts on the local
CPU by saving current interrupt state in flags.

: Enables interrupts on the local
CPU by restoring interrupts to a previous state.

IRQ stacks
Historically, for most architectures, interrupt handlers shared the kernel stack of the
running process that was interrupted. As discussed in the first chapter, the process kernel
stack is typically 8 KB for 32-bit architectures and 16 KB for 64-bit architectures. A fixed
kernel stack might not always be enough for kernel work and IRQ processing routines,
resulting in judicious allocation of data both by kernel code and interrupt handlers. To
address this, the kernel build (for a few architectures) is configured by default to set up an
additional per-CPU hard IRQ stack for use by interrupt handlers, and a per-CPU soft IRQ
stack for use by software interrupt code. Following are the x86-64 bit architecture-specific
stack declarations in kernel header :

Apart from these, x86-64-bit builds also include special stacks; more details can be found in
the kernel source documentation :

Double fault stack
Debug stack
NMI stack
Mce stack
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Deferred work
As introduced in an earlier section, bottom halves are kernel mechanisms for executing
deferred work, and can be engaged by any kernel code to defer execution of non-critical
work until some time in the future. To support implementation and for management of
deferred routines, the kernel implements special frameworks, called softirqs, tasklets, and
work queues. Each of these frameworks constitute a set of data structures, and function
interfaces, used for registering, scheduling, and queuing of the bottom half routines. Each
mechanism is designed with a distinct policy for management and execution of bottom halfs.
Drivers and other kernel services that require deferred execution will need to bind and
schedule their BH routines through the appropriate framework.

Softirqs
The term softirq loosely translates to soft interrupt, and as the name suggests, deferred 
routines managed by this framework are executed at a high priority but with hard interrupt
lines enabled. Thus, softirq bottom halves (or softirqs) can preempt all other tasks except
hard interrupt handlers. However, usage of softirqs is restricted to static kernel code and
this mechanism is not available for dynamic kernel modules.

Each softirq is represented through an instance of type  declared
in the kernel header . This structure contains a function pointer that
can hold the address of the bottom half routine:

Current versions of the kernel have 10 softirqs, each indexed through an enum in the kernel
header . These indexes serve as an identity and are treated as the
relative priority of the softirq, and entries with lower indexes are considered higher in
priority, with index 0 being the highest priority softirq:
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The kernel source file  declares an array called  of size
, with each offset containing a  instance of the

corresponding softirq indexed in the enum:

Framework provides a function  used for initializing the softirq instance
with the corresponding bottom-half routine:

 is the index of the softirq to be initialized and  is a function pointer to be
initialized with the address of the bottom-half routine. The following code excerpt is taken
from the timer service, and shows the invocation of  to register a softirq:

Kernel services can signal the execution of softirq handlers using a function
. This function takes the index of the softirq as an argument:



Interrupts and Deferred Work

[ 275 ]

The following code excerpt is from :

raise_softirq(TIMER_SOFTIRQ)

The kernel maintains a per-CPU bitmask for keeping track of softirqs raised for execution,
and the function  sets the corresponding bit (index mentioned as
argument) in the local CPUs softirq bitmask to mark the specified softirq as pending.

Pending softirq handlers are checked and executed at various points in the kernel code.
Principally, they are executed in the interrupt context, immediately after the completion of
hard interrupt handlers with IRQ lines enabled. This guarantees swift processing of softirqs
raised from hard interrupt handlers, resulting in optimal cache usage. However, the kernel
allows an arbitrary task to suspend execution of softirq processing on a local processor
either through  or  calls. Pending softirq handlers
are executed in the context of an arbitrary task that re-enables softirq processing by
invoking either  or  calls. And lastly, softirq
handlers can also be executed by a per-CPU kernel thread , which is woken up
when a softirq is raised by any process-context kernel routine. This thread is also woken up
from the interrupt context when too many softirqs accumulate due to high load.

Softirqs are most suitable for completion of priority work deferred from hard interrupt
handlers since they run immediately on completion of hard interrupt handlers. However,
softirqs handlers are reentrant, and must be programmed to engage appropriate protection
mechanisms while accessing data structures, if any. The reentrant nature of softirqs may
cause unbounded latencies, impacting the efficiency of the system as a whole, which is why
their usage is restricted, and new ones are almost never added, unless it is absolute
necessity for the execution of high-frequency threaded deferred work. For all other types of
deferred work, tasklets and work queues are suggested.
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Tasklets
The tasklet mechanism is a sort of wrapper around the softirq framework; in fact, tasklet
handlers are executed by softirqs. Unlike softirqs, tasklets are not reentrant, which
guarantees that the same tasklet handler can never run concurrently. This helps minimize
overall latencies, provided programmers examine and impose relevant checks to ensure
that work done in a tasklet is non-blocking and atomic. Another difference is with respect to
their usage: unlike softirqs (which are restricted), any kernel code can use tasklets, and this
includes dynamically linked services.

Each tasklet is represented through an instance of type  declared
in kernel header :

Upon initialization,  holds the address of the handler routine and  is used to
pass a data blob as a parameter to the handler routine during invocation. Each tasklet
carries a , which can be either , which indicates that it is
scheduled for execution, or , which indicates it is in execution. An
atomic counter is used to enable or disable a tasklet; when  equals a non-zero value, it
indicates that the tasklet is disabled, and zero indicates that it is enabled. A disabled tasklet
cannot be executed even if scheduled, until it is enabled at some future time.

Kernel services can instantiate a new tasklet statically through any of the following macros:

New tasklets can be instantiated dynamically at runtime through the following:
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The kernel maintains two per-CPU tasklet lists for queuing scheduled tasklets, and the
definitions of these lists can be found in the source file :

 is considered normal list, and all queued tasklets present in this list are run
by  (one of the 10 softirqs).  is a high-priority tasklet
list, and all queued tasklets present in this list are executed by , which happens
to be the highest priority softirq. A tasklet can be queued for execution into the appropriate
list by invoking  or .

The following code shows the implementation of ; this function is
invoked with the address of the tasklet instance to be queued as a parameter:

The conditional construct checks if the specified tasklet is already scheduled; if not, it
atomically sets the state to  and invokes  to
enqueue the tasklet instance into the pending list. If the specified tasklet is already found to
be in the  state, it is not rescheduled:

 t->next = NULL;
        *__this_cpu_read(tasklet_vec.tail) = t;
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        __this_cpu_write(tasklet_vec.tail, &(t->next));
raise_softirq_irqoff(TASKLET_SOFTIRQ);

This function silently enqueues the specified tasklet to the tail of the  and
raises the  on the local processor.

Following is the code for the  routine:

Actions executed in this routine are similar to that of , with an
exception that it invokes  to enqueue the specified tasklet into
the tail of :

 t->next = NULL;
        *__this_cpu_read(tasklet_hi_vec.tail) = t;
        __this_cpu_write(tasklet_hi_vec.tail, &(t->next));
        raise_softirq_irqoff(HI_SOFTIRQ);

This call raises  on the local processor, which turns all tasklets queued in
 into the highest-priority bottom halves (higher in priority over the rest of

the softirqs).

Another variant is , which inserts the specified tasklet to
the head of  and raises :
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t->next = __this_cpu_read(tasklet_hi_vec.head);
        __this_cpu_write(tasklet_hi_vec.head, t);

Other interface routines exist that are used to enable, disable, and kill scheduled tasklets.

This function disables the specified tasklet by incrementing its disable count. The tasklet may
still be scheduled, but it is not executed until it has been enabled again. If the tasklet is
currently running when this call is invoked, this function busy-waits until the tasklet
completes.

This attempts to enable a tasklet that had been previously disabled by decrementing its
disable count. If the tasklet has already been scheduled, it will run soon:

This function is called to kill the given tasklet, to ensure that the it cannot be scheduled to
run again. If the tasklet specified is already scheduled by the time this call is invoked, then
this function waits until its execution completes:

This function is called to kill an already scheduled tasklet. It immediately removes the
specified tasklet from the list even if the tasklet is in the  state.



Interrupts and Deferred Work

[ 280 ]

Workqueues
Workqueues (wqs) are mechanisms for the execution of asynchronous process context
routines. As the name aptly suggests, a workqueue (wq) is a list of work items, each
containing a function pointer that takes the address of a routine to be executed
asynchronously. Whenever some kernel code (that belongs to a subsystem or a service)
intends to defer some work for asynchronous process context execution, it must initialize
the work item with the address of the handler function, and enqueue it onto a workqueue.
The kernel uses a dedicated pool of kernel threads, called kworker threads, to execute
functions bound to each work item in the queue, sequentially.

Interface API
The workqueue API offers two types of functions interfaces: first, a set of interface routines
to instantiate and queue work items onto a global workqueue, which is shared by all kernel
subsystems and services, and second, a set of interface routines to set up a new workqueue,
and queue work items onto it. We will begin to explore workqueue interfaces with macros
and functions related to the global shared workqueue.

Each work item in the queue is represented by an instance of type ,
which is declared in the kernel header :

 is a pointer that takes the address of the deferred routine; a new struct work object can
be created and initialized through macro :

 is the name of the instance to be created and  is the address of the function to be
assigned. A work instance can be scheduled into the workqueue through

:
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This function enqueues the given work item on the local CPU workqueue, but does not
guarantee its execution on it. It returns true if the given work is successfully enqueued, or
false if the given work is already found in the workqueue. Once queued, the function
associated with the work item is executed on any of the available CPUs by the relevant

 thread. Alternatively, a work item can be marked for execution on a specific CPU,
while scheduling it into the queue (which might yield better cache utilization); this can be
done with a call to :

 is the identifier to which the work task is to be bound. For instance, to schedule a work
task onto a local CPU, the caller can invoke:

 is a kernel macro (defined in ) that returns the local
CPU identifier.

The interface API also offers a variant of scheduling calls, which allow the caller to queue
work tasks whose execution is guaranteed to be delayed at least until a specified timeout.
This is achieved by binding a work task with a timer, which can be initialized with an expiry
timeout, until which time the work task is not scheduled into the queue:

 is an instance of a dynamic timer descriptor, which is initialized with the expiry
interval and armed while scheduling a work task. We'll discuss kernel timers and other
time-related concepts more in the next chapter.

Callers can instantiate  and initialize it statically through a macro:



Interrupts and Deferred Work

[ 282 ]

Similar to normal work tasks, delayed work tasks can be scheduled to run on any of the
available CPUs or be scheduled to execute on a specified core. To schedule delayed work
that can run on any of the available processors, callers can invoke

, and to schedule delayed work onto specific CPUs, use the
function :

Note that if the delay is zero, then the specified work item is scheduled for immediate
execution.

Creating dedicated workqueues
Timing of the execution of work items scheduled onto the global workqueue is not
predictable: one long-running work item can always cause indefinite delays for the rest.
Alternatively, the workqueue framework allows the allocation of dedicated workqueues,
which can be owned by a kernel subsystem or a service. Interface APIs used to create and
schedule work into these queues provide control flags, through which owners can set
special attributes such as CPU locality, concurrency limits, and priority, which have an
influence on the execution of work items queued.

A new workqueue can be set up through a call to ; the following
excerpt taken from  shows sample usage:

This call takes three arguments: the first is a string constant to  the workqueue. The
second argument is the bitfield of , and the third an integer called . The
last two are used to specify control attributes of the queue. On success, this function returns
the address of the workqueue descriptor.



Interrupts and Deferred Work

[ 283 ]

The following is a list of flag options:

: Workqueues created with this flag are managed by kworker-pools
that are not bound to any specific CPU. This causes all work items scheduled to
this queue to run on any available processor. Work items in this queue are
executed as soon as possible by kworker pools.

: A workqueue of this type is freezable, which means that it is
affected by system suspend operations. During suspend, all current work items 
are drained and no new work item can run until the system is unfreezed or
resumed.

: This flag is used to mark a workqueue that contains work
items involved in memory reclaim paths. This causes the framework to ensure
that there is always a worker thread available to run work items on this queue.

: This flag is used to mark a workqueue as high priority. Work items
in high-priority workqueues have a higher precedence over normal ones, in that
these are executed by a high-priority pool of kworker threads. The kernel
maintains a dedicated pool of high-priority kworker threads for each CPU, which
are distinct from normal kworker pools.

: This flag marks work items on this workqueue to be CPU
intensive. This helps the system scheduler to regulate the execution of work items
that are expected to hog the CPU for long intervals. This means runnable CPU-
intensive work items will not prevent other work items in the same kworker-pool
from starting. A runnable non-CPU-intensive work item can always delay the
execution of work items marked as CPU intensive. This flag is meaningless for an
unbound wq.

: Workqueues marked with this flag are per-CPU by
default, but become unbound if the system was booted with the

 kernel param set. Per-CPU workqueues that are
identified to contribute significantly to power consumption are identified and
marked with this flag, and enabling the power_efficient mode leads to noticeable
power savings at the cost of a slight performance penalty.

The final argument  is an integer, which must specify the count of work items
that can be executed simultaneously from this workqueue on any given CPU.

Once a dedicated workqueue is set up, work items can be scheduled through any of the
following calls:
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 is a pointer to a queue; it enqueues the specified work item on the local CPU, but does not
guarantee execution on local processor. This call returns true if the given work item is
successfully queued, and false if the given work item is already scheduled.

Alternatively, callers can enqueue a work item bound to a specific CPU with a call to:

Once a work item is enqueued into a workqueue of the specified , it returns true if the
given work item is successfully queued and false if the given work item is already found in
the queue.

Similar to shared workqueue APIs, delayed scheduling options also are available for
dedicated workqueues. The following calls are to be used for delayed scheduling of work
items:

Both calls delay scheduling of the given work until the timeout specified by the  has
elapsed, with the exception that  enqueues the given work item
on the specified CPU and guarantees its execution on it. Note that if the delay specified is
zero and the workqueue is idle, then the given work item is scheduled for immediate
execution.

Summary
Through this chapter, we have touched base with interrupts, the various components that
fabricate the whole infrastructure, and how the kernel manages it efficiently. We
understood how the kernel engages abstraction to smoothly handle varied interrupt signals
routed from various controllers. The kernel's effort in simplifying complex programming
approaches is again brought to the fore through the high-level interrupt-management
interfaces. We also stretched our understanding on all the key routines and important data
structures of the interrupt subsystem. We also explored kernel mechanisms for handling
deferred work.

In the next chapter, we will explore the kernel's timekeeping subsystem to understand key
concepts such as time measurement, interval timers, and timeout and delay routines.
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The Linux time management subsystem manages various time-related activities and keeps
track of timing data such as current time and date, time elapsed since system boot up
(system uptime) and timeouts, for example, how long to wait for a particular event to be
initiated or terminated, locking the system after a timeout period has elapsed, or raising a
signal to kill an unresponsive process.

There are two types of timing activities handled by the Linux time management subsystem:

Keeping the current time and date
Maintaining timers

Time representation
Depending on the use cases, time is represented in three different ways in Linux:

Wall time (or real time): This is the actual time and date in the real world, such1.
as 07:00 AM, 10 Aug 2017, and is used for timestamps on files and packets sent
through the network.
Process time: This is the time consumed by a process in its life span. It includes2.
the time consumed by the process in user mode and the time consumed by the
kernel code when executing on behalf of the process. This is useful for statistical
purposes, auditing, and profiling.
Monotonic time: This is the time elapsed since system bootup. It's ever3.
incrementing and monotonic in nature (system uptime).
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These three times are measured in either of the following ways:

Relative time: This is the time relative to some specific event, such as 7 minutes1.
since system bootup, or 2 minutes since last input from user.
Absolute time: This is a unique point in time without any reference to a previous2.
event, such as 10:00 AM, 12 Aug 2017. In Linux, absolute time is represented as
the number of elapsed seconds since 00:00:00 midnight of 1 January 1970 (UTC)

Wall time is ever incrementing (unless it has been modified by the user), even between
reboots and shutdowns, but process time and system uptime start from some predefined
point in time (usually zero) every time a new process is created or when the system starts.

Timing hardware
Linux relies on appropriate hardware devices to maintain time. These hardware devices can
be categorized broadly into two types: system clock and timers.

Real-time clock (RTC)
Keeping track of the current time and date is very crucial, not just to let the user know
about it but to use it as a timestamp for various resources in the system, specifically, files
present in secondary storage. Every file has metadata information such as the date of
creation and last modification date, and every time a file is created or modified, these two
fields are updated with the current time in the system. These fields are used by several apps
to manage files such as to sort, group, or even delete them (if the file hasn't been accessed a
for long time). The make tool uses this timestamp to determine whether a source file has
been edited since the last time it accessed it; only then is it compiled, otherwise left
untouched.

The system clock RTC keeps track of the current time and date; backed by an additional
battery, it continues to tick even when the system is turned off.

RTC can raise interrupts on IRQ8 periodically. This feature can be used as an alarm facility,
by programming the RTC to raise interrupt on IRQ8 when it reaches a specific time. In IBM-
compatible PCs, the RTC is mapped to the 0x70 and 0x71 I/O ports. It can be accessed
through the  device file.
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Timestamp counter (TSC)
This is a counter implemented in every x86 microprocessor by means of a 64-bit register
called TSC the register. It counts the number of clock signals arriving on the CLK pin of the
processor. The current counter value can be read by accessing the TSC register. The number
of ticks counted per second can be calculated as 1/(clock frequency); for a 1 GHz clock it
translates to once every nanosecond.

Knowing the duration between two consecutive ticks is very crucial. The fact that one
processor clock's frequency might not be the same as others makes it vary across processors.
CPU clock frequency is calculated during system boot by the  callback
routine of the x86_platform_ops structure defined in the

 header file:

This data structure manages other timing operations too, such as getting time from the RTC
through  or setting time on the RTC through the 
callback.
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Programmable interrupt timer (PIT)
There are certain tasks that need to be carried out by the kernel at regular intervals, such as:

Updating the current time and date (at midnight)
Updating the system running time (uptime)
Keeping track of the time consumed by each process so that they don't exceed the
time allotted to run on the CPU
Keeping track of various timer activities

In order to carry out these tasks, interrupts must be periodically raised. Every time this
periodic interrupt is raised, the kernel knows it's time to update the aforementioned timing
data. The PIT is the piece of hardware responsible for issuing this periodic interrupt, called
timer interrupt. The PIT keeps on issuing timer interrupts on IRQ0 periodically at
approximately 1000 Hz frequency, once every millisecond. This periodic interrupt is called
the tick and the frequency at which it's issued is called the tick rate. The tick rate frequency
is defined by the kernel macro HZ and is measured in hertz.

System responsiveness depends on the tick rate: the shorter the ticks, the more responsive a
system would be, and vice versa. With shorter ticks,  and  system calls
will have a faster response time. However, the considerable drawback of a shorter tick rate
is that the CPU will be working in kernel mode (executing the interrupt handler for the
timer interrupt) most of the time, leaving less time for user-mode code (programs) to
execute on it. In a high-performance CPU, it wouldn't be much of an overhead, but in
slower CPUs, the overall system performance would be affected considerably.

To reach a balance between response time and system performance, a tick rate of 100 Hz is
used in most machines. Except for Alpha and m68knommu, which use a 1000 Hz tick rate, the
rest of the common architectures, including x86 (arm, powerpc, sparc, mips, and so on) use
a 100 Hz tick rate. Common PIT hardware found in x86 machines is Intel 8253. It's I/O
mapped and accessed through addresses 0x40  0x43. The PIT is initialized by

, defined in the  file:

This calls  internally, defined in
:
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CPU local timer
PIT is a global timer, and interrupts raised by it that can be handled by any CPU in an SMP
system. In some cases, having such a common timer is beneficial, whereas in other cases, a
per-CPU timer is more desirable. In an SMP system, keeping process time and monitoring
allotted time slices to a process in each CPU would be much easier and efficient with a local
timer.

Local APIC in recent x86 microprocessors embeds such a CPU local timer. A CPU local
timer can issue interrupts either once or periodically. It uses a 32-bit timer and can issue
interrupts at a very low frequency (this wider counter allows more ticks to occur before an
interrupt is raised). The APIC timer works with the bus clock signal. The APIC timer is
quite similar to PIT except that it's local to the CPU, has a 32-bit counter (PIT has a 16-bit
one), and works with the bus clock signal (PIT uses its own clock signal).

High-precision event timer (HPET)
The HPET works with clock signals in excess of 10 Mhz, issuing interrupts once every 100
nano seconds, hence the name high-precision. HPET implements a 64-bit main counter to
count at such a high frequency. It was co-developed by Intel and Microsoft for the need of a
new high-resolution timer. HPET embeds a collection of timers. Each of them is capable of
issuing interrupts independently, and can be used by specific applications as assigned by
the kernel. These timers are managed as groups of timers, where each group can have a
maximum of 32 timers in it. An HPET can implement maximum of 8 such groups. Each
timer has a set of comparator and match register. A timer issues an interrupt when the value
in its match register matches the value of the main counter. Timers can be programmed to
generate interrupts either once or periodically.
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Registers are memory mapped and have relocatable address space. During system bootup,
the BIOS sets up the registers' address space and passes it to the kernel. Once the BIOS
maps the address, it's seldom remapped by the kernel.

ACPI power management timer (ACPI PMT)
The ACPI PMT is a simple counter that has a fixed frequency clock at 3.58 Mhz. It
increments on each tick. The PMT is port mapped; the BIOS takes care of address mapping
in the hardware initialization phase during bootup. The PMT is more reliable than the TSC,
as it works with a constant clock frequency. The TSC depends on the CPU clock, which can
be underclocked or overclocked as per the current load, resulting in time dilation and
inaccurate measurements. Among all, the HPET is preferable since it allows very short time
intervals if present in the system.

Hardware abstraction
Every system has at least one clock counter. As with any hardware device in a machine, this
counter too is represented and managed by a structure. Hardware abstraction is provided
by , defined in the  header file.
This structure provides callbacks to access and handle power management on the counter
through the , , , , and  routines:
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Members  and  are useful in obtaining elapsed time in relevant units.

Calculating elapsed time
Until this point we know that in every system there is a free-running, ever-incrementing
counter, and all time is derived from it, be it wall time or any duration. The most natural
idea here to calculate the time (seconds elapsed since the start of counter) would be
dividing the number of cycles provided by this counter with the clock frequency, as
expressed in the following formula:

Time (seconds) = (counter value)/(clock frequency)

There is a catch with this approach, however: it involves division (which works on an
iterative algorithm, making it the slowest among the four basic arithmetic operations) and
floating point calculations, which might be slower on certain architectures. While working
with embedded platforms, floating point calculations are evidently slower than they are on
PC or server platforms.

So how do we overcome this issue? Instead of division, time is calculated using
multiplication and bitwise shift operations. The kernel provides a helper routine that
derives the time this way. , defined in

, converts the clocksource cycles to nanoseconds:

Here, the parameter cycles is the number of elapsed cycles from the clock source,  is
the cycle-to-nanosecond multiplier, while  is the cycle-to-nanosecond divisor (power
of two). Both these parameters are clock source dependent. These values are provided by
the clock source kernel abstraction discussed earlier.
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Clock source hardware are not accurate all the time; their frequency might vary. This clock
variation causes time drift (making the clock run faster or slower). In such cases, the
variable mult can be adjusted to make up for this time drift.

The helper routine , defined in
, helps evaluate  and  factors:

Time duration between two events can be calculated as shown in the following code
snippet:
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Linux timekeeping data structures, macros,
and helper routines
We will now broaden our awareness by looking at some key timekeeping structures,
macros, and helper routines that can assist programmers in extracting specific time-related
data.

Jiffies
The  variable holds the number of ticks elapsed since system bootup. Every time a
tick occurs, jiffies is incremented by one. It's a 32-bit variable, meaning for a tick rate of 100
Hz, overflow will occur in approximately 497 days (and in 49 days, 17 hours for a 1000 Hz
tick rate).

To overcome this issue, a 64-bit variable  is used instead, which allows for
thousands of millions of years before the overflow occurs. The  variable is equated
to the 32 least significant bits of . The reason for having both  and

 variables is that in 32-bit machines, a 64-bit variable can not be accessed
atomically; some synchronization is required in order to avoid any counter update while
these two 32-bit halves are processed. The function  defined in the

 source file returns the current value of :

While working with , it's crucial to take into account the possibility of wraparound,
because it leads to unpredictable results while comparing two time events. There are four
macros that serve this purpose, defined in :
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All these macros return Boolean values; parameters a and b are time events to be compared.
If a happens to be the time after b,  returns true, otherwise false. Conversely,
if a happens to be before b,  returns true, else false. Both

 and  return true if both a and b are equal. Jiffies can
be converted to other time units such as milliseconds, microseconds, and nanoseconds
using routines , , defined in

, and , in :
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Other conversion routines can be explored in the  file.

Timeval and timespec
In Linux, the current time is maintained by keeping the number of seconds elapsed since
midnight of January 01, 1970 (called epoch); the second elements in each of these represent
the time elapsed since the last second in microseconds and nanoseconds, respectively:

Time (counter value) read from the clock source needs to be accumulated and tracked
somewhere; the structure , defined in

 serves this purpose:
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The structure , defined in
 keeps various timekeeping values. It's the

primary data structure to maintain and manipulate the timekeeping data for different
timelines, such as monotonic and raw:

Tracking and maintaining time
Timekeeping helper routines  and  help
get the correction factor (delta t) between universal time and terrestrial time in
nanoseconds:
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The routine  updates mono, raw, and xtime timelines; it
accumulates shifted intervals of cycles into a shifted interval of nanoseconds. The routine

 accumulates the nanoseconds in the  field of
 into  of . These routines help

keep track of the current time in the system, and are defined in
:
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Another routine , defined in  is
responsible for maintaining the wall time. It increments the wall time using the current
clock source as reference.

Tick and interrupt handling
To provide the programming interface, the clock device generating the ticks is abstracted
through the structure , defined in

:
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Here,  is the appropriate routine, assigned by the framework to be called
by the low-level handler to run the tick. Depending on the configuration, this

 could be ,  or  based. Out of these three,
the appropriate operating mode for the tick device is set through the 

 field, using any of these macros:

Periodic mode configures the hardware generate the tick once every 1/HZ seconds, while
one-shot mode makes the hardware generate the tick after the passage of a specific number
of cycles from the current time.

Depending on the use cases and the operating mode, event_handler could be any of these
three routines:

, which is the default handler for periodic ticks and is
defined in .

 is the low-resolution interrupt handler, used in low res
mode. It's defined in .

 is used in high res mode and is defined in
. Interrupts are disabled when it's called.

A clock event device is configured and registered through the routine
, defined in 
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Tick devices
The  abstraction is for the core timing framework; we need a 
separate abstraction for tick devices per CPU; this is achieved through the structure 

 and macro , defined in 
and , respectively:

A  could be either periodic or one shot. It's set through the 
.

Software timers and delay functions
A software timer allows a function to be invoked on expiry of a time duration. There are
two types of timers: dynamic timers used by the kernel and interval timers used by the
user-space processes. Apart from software timers, there is another type of commonly used
timing function called delay functions. Delay functions implement a precise loop, which is
executed as per (usually as many times as the) delay function's argument.

Dynamic timers
Dynamic timers can be created and destroyed at any time, hence the name dynamic timers.
Dynamic timers are represented by the  object, defined in

:
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All timers in a system are managed by a doubly linked list, and are sorted in order of their
expiry time, represented by the expires field. The expires field specifies the time duration,
after which the timer expires. As soon as the current  value matches or exceeds this
field's value, the timer decays. Through the entry field, a timer is added into this timer
linked list. The function field points to the routine to be invoked on expiry of the timer and
the data field holds the parameter to be passed to the function, if needed. The expires field
is constantly compared with  values to determine whether the timer has
expired or not.

A dynamic timer can be created and activated as follows:

Create a new  object, let's say .
Initialize this timer object using macro , defined in

Initialize the function field with the function's address to be invoked on expiry of
the timer. If the function requires a parameter, initialize the data field too.
If the timer object is already added to a timer list, update the expires field by
calling the function ,
defined in .
If not, initialize the expires field and add the timer object into the timer list using

, defined in .

The kernel removes a decayed timer from its timer list automatically, but there are other
methods too to remove a timer from its list. The  and 
routines and the macro  defined in

 help in doing so:
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 removes both active and inactive timers. Particularly useful in SMP systems,
 deactivates the timer and waits until the handler has finished

executing on other CPUs.

Race conditions with dynamic timers
While removing a timer, special care must be taken as the timer function might be
manipulating some dynamically de-allocatable resources. If the resource is released before
deactivating the timer, there is a possibility of the timer function being invoked when the
resources it operates on do not exist at all, causing data corruption. So to avoid such
scenarios, the timer must be stopped before releasing any resources. The following code
snippet replicates this situation;  here could be any relevant
resource deallocation routine:

This approach, however, is applicable to uni-processor systems only. In an SMP system, it's
quite possible that when the timer is stopped, its function might already be running on
another CPU. In such a scenario, resources will be released as soon as the 
returns, while the timer function is still manipulating them on other CPU; not a desirable
situation at all.  fixes this problem: after stopping the timer, it waits
until the timer function completes its execution on the other CPU.  is
useful in cases where the timer function can reactivate itself. If the timer function doesn't
reactivate the timer, a much simpler and faster macro, ,
should be used instead.

Dynamic timer handling
Software timers are complex and time consuming, and therefore should not be handled by 
the timer ISR. Rather they should be performed by a deferrable bottom-half softirq routine
called  , and its routine is defined in :
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Delay functions
Timers are useful when the timeout period is relatively long; in all other use cases where a
shorter duration is desired, delay functions are used instead. While working with hardware
such as storage devices (namely flash memory and EEPROM), it's is very crucial for the
device driver to wait until the device finishes the hardware operations such as writing and
erasing, which in most cases is in the range of a few microseconds to milliseconds. Going
ahead and executing other instructions without waiting for the hardware to complete such
operations would result in unpredictable read/write operations and data corruption. In
cases such as these, delay functions come in handy. The kernel provides such short delays
by means of the , , and  routines and macro, which receive
arguments in nanoseconds, microseconds, and milliseconds, respectively.

The following functions can be found in :

These functions can be found in :
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POSIX clocks
POSIX provides software timers to multithreaded and real-time user space applications,
known as POSIX timers. POSIX provides the following clocks:

: This clock represents the real time in the system. Also known
as the wall time, it's similar to the time from a wall clock and used for
timestamping as well as providing actual time to the user. This clock is
modifiable.

: This clock keeps the time elapsed since the system bootup.
It's ever increasing and non modifiable by any process or user. Due to its
monotonic nature, it's the the preferred clock to determine the time difference
between two time events.

: This clock is identical to CLOCK_MONOTONIC; however, it
includes time spent in suspend.

These clocks can be accessed and modified (if the selected clock allows it) through the
following POSIX clock routines, defined in the  header:

The function  gets the resolution (precision) of the clock specified by
clk_id. And if the resolution is non-null, it stores it in the  pointed to by
the resolution. Functions  and  read and set the time
of the clock specified by clk_id. clk_id could be any of the POSIX clocks: ,

, and so on.
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Each of these POSIX routines has corresponding system calls, namely
, and . So every

time any of these routines is invoked, a context switching occurs from user mode to kernel
mode. If calls to these routines are frequent, context switching can result in low system
performance. To avoid context switching, two coarse variants of the POSIX clock were
implemented as the vDSO (virtual Dynamic Shared Object) library:

vDSO is a small shared library with selected kernel space routines that the kernel maps into
the address space of user-space applications so that these kernel-space routines can be
called by them in process from user space directly. The C library calls the vDSOs, so the
user space applications can be programmed in the usual way through standard functions
and the C library will utilize the functionalities available through vDSO without engaging
any syscall interface, thus avoiding any user mode-kernel mode context switching and
syscall overhead. Being an vDSO implementation, these coarse variants are faster and have
a resolution of 1 milliseconds.

Summary
In this chapter, we looked in detail at most of the routines that the kernel provides to drive
time-based events, in addition to comprehending the fundamental aspects of Linux time, its
infrastructure, and its measurement. We also briefly looked at POSIX clocks and some of
their key time access and modification routines. Effective time-driven programs however
rest on careful and calculated use of these routines.

In the next chapter, we will briefly look at the management of dynamic kernel modules.
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Kernel modules (also referred as LKMs) have accentuated the development of kernel
services owing to their ease of use. Our focus through this chapter will be to understand
how the kernel seamlessly facilitates this entire process, making loading and unloading of
modules dynamic and easy, as we look through all core concepts, functions and important
data structures involved in module management. We assume readers are familiar with the
basic usage of modules.

In this chapter, we will cover the following topics:

Key elements of a kernel module
Module layout
Module load and unload interfaces
Key data structures

Kernel modules
Kernel module is an easy and effective mechanism to extend the functionality of a running
system without the baggage of rebuilding the whole kernel, they have been vital in
ushering dynamism and scalability to the Linux operating system. Kernel modules not only
satiate the extendable nature of the kernel but also usher the following functionalities:

Allowing kernel the ability to only keep features which are necessary, in-turn
boosting capacity utilization
Allowing proprietary/non-GPL compliant services to load and unload
The bottom-line feature of extensibility of the kernel
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Elements of an LKM
Each module object comprises of the init(constructor) and exit(destructor) routines. The init
routine is invoked when a module is deployed into kernel address space, and the exit
routine is called while the module is being removed. As the name innately suggests, the init
routine is usually programmed to carry out operations and actions which are essential to set
up the module body: such as registering with a specific kernel subsystem or allocating
resources that are essential for the functionality being loaded. However, specific operations
programmed within the init and exit routines depend on what the module is designed for
and the functionality it brings to the kernel. The following code excerpt shows template of
the init and exit routines:

Notice that the init routine returns an integer a zero is returned if the module is
committed to the kernel address space and a negative number is returned if it fails. This
additionally provides flexibility for programmers to commit a module only when it
succeeds in registering with the required subsystem.

The default names for the init and exit routines are  and
, respectively. Modules can optionally change names for the init and

exit routines to improve code readability. However, they will have to declare them using the
 and  macros:
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Comment macros form another key element of a module code. These macros are used to
provide usage, licence, and author information of the module. This is important as modules
are sourced from various vendors:

: This macro is used to specify the general description
of the module

: This is used to provide author information
: This is used to specify legal licence for the code in the

module

All the information specified through these macros is retained into the module binary and
can be accessed by users through a utility called modinfo.  is the only
mandatory macro that a module must mention. This serves a very handy purpose, as it
informs users about proprietary code in a module, which is susceptible to debugging and
support issues (kernel community in all probability ignores issues arising out of proprietary
modules).

Another useful feature available for modules is of dynamic initialization of module data
variables using module parameters. This allows data variables declared in a module to be
initialized either during module deployment or when module is live in memory (through
the sysfs interface). This can be achieved by setting up selected variables as module
parameters through the appropriate  family of macros (found in kernel
header ). Values passed to module parameters during
deployment of the module are initialized before the init function is invoked.

Code in modules can access global kernel functions and data as needed. This enables the
code of the module to make use of existing kernel functionality. It is through such function
calls a module can perform required operations such as printing messages into kernel log
buffer, allocation and de-allocation of memory, acquiring and releasing of exclusion locks,
and registering and unregistering module code with appropriate subsystem.
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Similarly, a module can also export its symbols into the global symbol table of the kernel,
which can then be accessed from code in other modules. This facilitates granular design and
implementation of kernel services by organizing them across a set of modules, instead of
having the whole service implemented as a single LKM. Such stacking up of related services
leads to module dependency, for instance: if module A is using the symbols of module B,
then A has dependency on B, in that case, module B must be loaded before module A and
and module B cannot be unloaded until module A is unloaded.

Binary layout of a LKM
Modules are built using kbuild makefiles; once the build process completes, an ELF binary
file with a .ko (kernel object) extension is generated. Module ELF binaries are appropriately
tweaked to add new sections, to differentiate them from other ELF binaries, and to store
module-related metadata. The following are the sections in a kernel module:

Module structure

Information about the module (Licenses and so on)

Expected versions of symbols that the module depends on
during compile time

The table of symbols exported by this module

The table of versions of symbols exported by this module

Sections used when initializing

Code and data sections

Load and unload operations
Modules can be deployed through special tools that are part of an application package
called modutils, of which insmod and rmmod are widely used. insmod is used to deploy the
module into kernel address space and rmmod is used for unloading a live module. These
tools initiate load/unload operations by invoking appropriate system calls:
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Here,  is invoked (by ) with the file descriptor of the specified
module binary file (.ko) and other relevant arguments. This function steps into kernel mode
by invoking the underlying system call:

load_module(&info, uargs, flags)

Here,  is called to verify the  privilege of the calling
context; this function returns a negative number on failure and zero on success. If the caller
has the required privilege, a specified module image is accessed through fd using the

 routine that returns address of the module image, which
is populated into an instance of . Finally, the  core
kernel routine is invoked with address to instance of  and other user arguments
passed down from the  call:
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Here,  is a core kernel routine that attempts to link module image into
kernel address space. This function initiates a series of sanity checks, and finally commits
the module by initializing module parameters to values provided by the caller, and invokes
the init function of the module. The following steps detail these operations with names of
the relevant helper functions invoked:

Checking for the signature ( )
Checking for the ELF header ( )
Checking the module layout and allocate the necessary memory
( )
Appending the module to the modules list ( )
Allocate per-cpu areas used in the module ( )
As module is in final location, finding the optional sections
( )
Checking for module license and versions
( )
Resolving the symbols ( )
Setting up the module parameters as per values passed in the args list
Checking for duplication of symbols ( )
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Setting up the sysfs ( )
Freeing the copy in the load_info structure ( )
Calling to the init function of the module ( )

The unloading process is quite similar to the loading process; the only thing different is that
there are certain sanity checks to ensure the safe removal of the module from kernel without
affecting the system stability. A module's unloading is initialized with the call to the rmmod
utility, which calls the  routine, which steps into the underlying system
call:
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free_module(mod);
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On invocation, the system call checks whether the caller has the requisite permissions, then
it checks for any module dependencies. If there are none, the module is good to be removed
(else, an error is returned). After this, the module state is verified (live). Finally, the exit
routine of the module is called and at last the  routine is called:
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This call removes the module from the various lists where it was placed during loading
(sysfs, module list, and so on) to initiate the cleanup. An architecture-specific cleanup
routine is invoked (can be found in ). All
dependent modules are iterated and the module is removed from their lists. As soon as the
cleanup is over, all resources and the memory that was allocated to the module are freed.

Module data structures
Every module that is deployed in the kernel is as usual represented through a descriptor,
called . Kernel maintains a list of module instances, with each representing
a specific module in memory:
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Let's now look at some of the key fields of this structure:

: This is the double linked list that contains all the loaded modules in the
kernel.

: This specifies the name of the module. This must be an unique name as the
module is referenced with this name.

: This indicates the current state of the module. A module can be in either
of the states specified in  under <linux/module.h>:

While loading or removing a module, it's important to know its current state; for instance,
we need not insert an existing module if its state specifies that it is already present.

: These are used to manage symbols that are exported by the
module code.

: This is the pointer to a function which is called when the module is initialized.

: This represents the architecture specific structure which shall be populated with
architecture-specific data, needed for the modules to run. However, this structure mostly
remains empty as most architectures do not need any additional information.

: This is used if the module is tainting the kernel. It could mean that the kernel
suspects a module to do something harmful or a non-GPL complaint code.

: This points to per-CPU data belonging to the module. It is initialized at the module
load time.

: This carries details on module dependencies.

: This simply is the opposite of init. It points to the function that is called to perform
the cleanup process of the module. It releases memory held by the module and does other
cleanup specific tasks.
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A module's memory layout is shown through an object, , defined
in <linux/module.h>:

Summary
In this chapter, we briefly covered all the core elements of modules, its implications, and
management details. Our attempt has remained to give you a quick and comprehensive
view of how kernel facilitates its extensibility through modules. You also understood the
core data structures that facilitate module management. Kernel's attempt at remaining safe
and steady in this dynamic environment is also a notable feature.

I really hope this book serves as a means for you to go out there and experiment more with
Linux kernel!
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