DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

Exercice 1

 p_{our} tout $n \in \mathbb{N}^*$ on considère la fonction f_n définie $\sup \mathbb{R}$ par : $f_n(x) = x^3 + nx - 1$

- 1) Montrer que l'équation $f_n(x) = 0$ admet une solution unique x_n dans l'intervalle]0;1[.
- 2) a) Montrer que la suite $(x_n)_{n\geq 1}$ est décroissante.
 - b) En déduire que la suite $(x_n)_{n\geq 1}$ est convergente.
- 3) Montrer que pour tout $n \in \mathbb{N}^*$, $x_n < \frac{1}{n}$. Déterminer la limite de la suite $(x_n)_{n \ge 1}$.

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	K

 $\operatorname{Soit}ig(u_nig)$ la suite numérique définie par :

$$u_0 = 1$$
 et $u_{n+1} = 1 + \frac{1}{1 + u_n}$ $(\forall n \in \mathbb{N})$

- 1) Calculer u_1 , u_2 et u_3 .
- 2) Montrer que : $(\forall n \in \mathbb{N})$ $1 \le u_n \le \frac{3}{2}$
- 3) Montrer que : $(\forall n \in \mathbb{N}^*) |u_{n+1} u_n| \le \frac{1}{4} |u_n u_{n-1}|$
- 4) On considère les suites (α_n) et (β_n) définies par :

$$(\forall n \in \mathbb{N}) \ \alpha_n = u_{2n} \ \text{et} \ \beta_n = u_{2n+1}$$

- a) Vérifier que : $(\forall n \in \mathbb{N})$ $\beta_n = 1 + \frac{1}{1 + \alpha_n}$
- b) Montrer que: $(\forall n \in \mathbb{N})$ $\alpha_n \leq \beta_n$
- c) Montrer que la suite (α_n) est croissante et la
- d) Monter que les suites (α_n) et (β_n) convergent et vers la même limite.
- 5) a) Monter que : $(\forall n \in \mathbb{N}) \left| u_{n+1} \sqrt{2} \right| \le \frac{1}{4} \left| u_n \sqrt{2} \right|$
 - b) En déduire la limite de la suite (u_n) .
 - c) Déterminer un entier naturel N à partir duquel :

$$\left(\forall n \ge N\right) \left|u_n - \sqrt{2}\right| < 10^{-2}$$

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

On considère la suite numérique (u_n) définie par :

$$u_0 = a$$
 et $u_{n+1} = \frac{u_n^2}{1 - 2u_n^2}$ pour tout $n \in \mathbb{N}$

où a est un réel de l'intervalle $0; \frac{1}{4}$.

- 1) a) Montrer que : $(\forall n \in \mathbb{N}) \ 0 < u_n < \frac{1}{4}$
 - b) Montrer que la suite (u_n) est décroissante.
 - c) En déduire que la suite (u_n) est convergente et que $\lim_{n\to +\infty} u_n = 0$.
- 2) Soit (S_n) la suite définie sur \mathbb{N} par : $S_n = \sum_{k=0}^{n} (-1)^k u_k$ On pose pour tout $n \in \mathbb{N}$: $v_n = S_{2n}$ et $w_n = S_{2n+1}$
 - a) Montrer que les suites numériques (v_n) et (w_n) sont adjacentes. On note ℓ la limite commune de ces deux suites.
 - b) Montrer que : $(\forall n \in \mathbb{N}) u_{n+1} \le \frac{2}{7}u_n$
 - c) En déduire que pour tout $n \in \mathbb{N}$:

$$\left|S_n - v_n\right| \le a \sum_{k=n+1}^{k=2n} \left(\frac{2}{7}\right)^k$$

d) En déduire que : $\lim_{n\to+\infty} S_n = \ell$

(Remarquer que : $|S_n - \ell| \le |S_n - v_n| + |v_n - \ell|$)

Examen Normalisé Sc. Maths 1998

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

Exercice 4

Soit (u_n) la suite numérique définie par :

$$u_0 = 1$$
 et $u_{n+1} = \sqrt{u_n^2 + \frac{1}{(n+1)^2}}$ $(\forall n \in \mathbb{N})$

- 1) Montrer que pour tout $n \in \mathbb{N} : u_n > 0$
- 2) Montrer que la suite (u_n) est croissante.
- 3) On pose pour tout $n \in \mathbb{N}^*$: $v_n = \sum_{k=1}^n \frac{1}{k^2}$
 - a) Montrer que: $(\forall n \in \mathbb{N}^*)$ $v_n \le 2 \frac{1}{n}$
 - b) Montrer que : $(\forall n \in \mathbb{N}^*)$ $u_n = \sqrt{1 + v_n}$
 - c) En déduire que pour tout $n \in \mathbb{N}$: $u_n \le \sqrt{3}$ et que (u_n) est convergente.
 - 4) a) Montrer par récurrence que pour tout entier

$$k \ge 3: \quad 2^{k+1} \ge (k+1)^2$$

- b) En déduire que : $(\forall k \ge 3)$, $u_{k+1}^2 u_k^2 \ge \frac{1}{2^{k+1}}$
- c) En déduire que la limite ℓ de la suite (u_n) vérifie

les inégalités :
$$\sqrt{\frac{179}{72}} \le \ell \le \sqrt{3}$$

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

Le but de ce problème est l'étude de quelques exemples de suites adjacentes.

Les parties A, B, C et D sont indépendantes et peuvent être traitées séparément.

Partie A : étude de suites adjacentes et détermination de leur limite commune

On pose pour tout entier $n \ge 2$:

$$u_n = \sum_{k=1}^n \frac{1}{k^2 - 1}$$
 et $v_n = u_n + \frac{1}{n}$

- 1) Montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ sont adjacentes. Que peut-on en conclure ?
- 2) En remarquant que pour tout $k \ge 2$:

$$\frac{1}{k^2 - 1} = \frac{1}{2} \left(\frac{1}{k - 1} - \frac{1}{k + 1} \right)$$

donner une expression simplifiée de u_n .

En déduire $\lim_{n\to+\infty} u_n$.

Partie B : étude de suites adjacentes et caractérisation de la limite d'une suite

Soit $(S_n)_{n\geq 1}$ la suite définie par :

$$S_n = \sum_{k=1}^n \frac{\left(-1\right)^{k+1}}{k} = 1 - \frac{1}{2} + \dots + \frac{\left(-1\right)^{n+1}}{n}$$

On note pour tout entier $n \ge 1$: $a_n = S_{2n}$ et $b_n = S_{2n+1}$

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

- 1) Montrer que les suites $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ sont adjacentes.
- 2) Conclure sur la nature de la suite $(S_n)_{n>1}$.

Partie C : étude de suites croisées

On se propose d'étudier les deux suites (x_n) et (y_n) définies par $x_0 = a$, $y_0 = b$ et pour tout $n \in \mathbb{N}$:

$$x_{n+1} = \frac{px_n + qy_n}{p+q}$$
 et $y_{n+1} = \frac{qx_n + py_n}{p+q}$

Où a,b,p,q sont des réels strictement positifs tels que 0 < a < b et 0 < q < p

- 1) a) Déterminer pour tout $n \in \mathbb{N}$, $x_n y_n$ et $x_n + y_n$, et en déduire une expression de x_n et y_n en fonction de a, b, p, q et n.
 - b) Déduire du 1)a) que les suites (x_n) et (y_n) convergent vers une limite commune $\ell = \frac{a+b}{2}$
- 2) Retrouver le résultat du 1)b) en établissant que les suites (x_n) et (y_n) sont adjacentes.

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

On considère la suite numérique $\left(u_{_{n}}
ight)$ définie par :

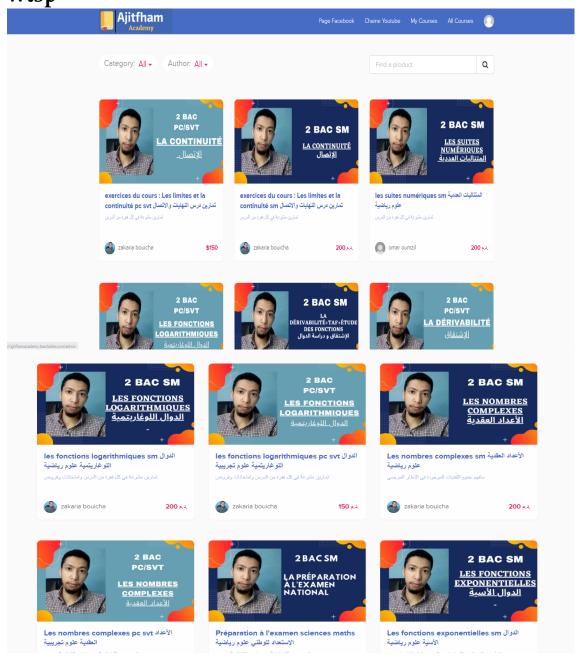
$$u_0 = \frac{1}{2}$$
 et $u_1 = 1$ et $\frac{1}{u_{n+2}} = \frac{1}{2} \left(\frac{1}{u_{n+1}} + \frac{1}{u_n} \right) \ (\forall n \in \mathbb{N})$

- 1) Calculer u_2 et u_3 .
- 2) Montrer par récurrence que : $(\forall n \in \mathbb{N}) u_{n+1} = \frac{2u_n}{4u_n 1}$
- 3) Montrer que: $(\forall n \in \mathbb{N})$ $\frac{1}{2} \le u_n \le 1$
- 4) On considère les suites (a_n) et (b_n) définies pour tout $n \in \mathbb{N}$ par : $a_n = u_{2n}$ et $b_n = u_{2n+1}$
 - a) On pose pour tout $x \in \left[\frac{1}{2};1\right]$: $f(x) = \frac{2x}{-1+4x}$ Montrer que $f\left(\left[\frac{1}{2};1\right]\right) \subset \left[\frac{1}{2};1\right]$
 - b) Montrer par récurrence que la suite (a_n) est croissante et que (b_n) est décroissante.
 - c) En déduire que les suites (a_n) et (b_n) convergent et déterminer la limite de chacune d'elles.
- 5) On pose pour tout $n \in \mathbb{N}$: $v_n = \frac{1}{u_n} \frac{4}{3}$
 - a) Montrer que la suite (v_n) est géométrique.
 - b) Exprimer v_n et u_n en fonction de n. Préciser $\lim_{n\to+\infty} u_n$

Examen Normalisé Sc. Maths 1997

DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

Pour s'inscrire dans la plateforme et avoir la correction sous forme de videos il suffit de contacter 0617074062 sur wtsp



DEVOIR 1 2BSM	Pr Zakaria Bouicha	2-BAC SM
Les limites et la continuité	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

