A: PHYSICAL CHEMISTRY SPIRAL 1 Methanol is formed when carbon dioxide and hydrogen react. $$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$ Table 5 contains enthalpy of formation and entropy data for these substances. Table 5 | | CO ₂ (g) | H₂(g) | CH₃OH(g) | H₂O(g) | |---|---------------------|-------|----------|--------| | Δ _f H / kJ mol ⁻¹ | -394 | 0 | -201 | -242 | | S / J K ⁻¹ mol ⁻¹ | 214 | 131 | 238 | 189 | | . 1 | Use the equation and the data in Table 5 to calculate the | | | | | |-----|---|--|--|--|--| | | Gibbs free-energy change (ΔG), in kJ mol ⁻¹ , for this reaction at 890 K | | | | | [6 marks] **Figure 4** shows how the Gibbs free-energy change varies with temperature in a different gas phase reaction. The straight line graph for this gas phase reaction has been extrapolated to zero Kelvin. Figure 4 ## A: PHYSICAL CHEMISTRY SPIRAL 1 | . 2 | Use the values of the intercept and gradient from the graph in Figure 4 to calculate the enthalpy change (ΔH), in kJ mol ⁻¹ , and the entropy change (ΔS), in J K ⁻¹ mol ⁻¹ , for this reaction. | | | | | |-----|--|-------------------------------------|--|--|--| | | | [4 marks] | ΔΗ | kJ mol⁻¹ | | | | | | ΔS | J K ⁻¹ mol ⁻¹ | | | | | | | | | | | | . 3 | State what Figure 4 shows about the feasibility of the reaction. | [1 mark] | ## A: PHYSICAL CHEMISTRY SPIRAL 1 A mixture of 1.0 mol of nitrogen and 3.0 mol of hydrogen is left to reach equilibrium at 700 K. Calculate the total pressure, in atmospheres, needed to produce a yield of 0.30 mol of ammonia at 700 K. Give your answer to an appropriate number of significant figures. You must show your working. $$[K_p = 7.76 \times 10^{-5} \text{ atm}^{-2} \text{at } 700 \text{ K}]$$ (5)