A: PHYSICAL CHEMISTRY SPIRAL 1

Methanol is formed when carbon dioxide and hydrogen react.

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$

Table 5 contains enthalpy of formation and entropy data for these substances.

Table 5

	CO ₂ (g)	H₂(g)	CH₃OH(g)	H₂O(g)
Δ _f H / kJ mol ⁻¹	-394	0	-201	-242
S / J K ⁻¹ mol ⁻¹	214	131	238	189

. 1	Use the equation and the data in Table 5 to calculate the				
	Gibbs free-energy change (ΔG), in kJ mol ⁻¹ , for this reaction at 890 K				

[6 marks]

Figure 4 shows how the Gibbs free-energy change varies with temperature in a different gas phase reaction.

The straight line graph for this gas phase reaction has been extrapolated to zero Kelvin.

Figure 4

A: PHYSICAL CHEMISTRY SPIRAL 1

. 2	Use the values of the intercept and gradient from the graph in Figure 4 to calculate the enthalpy change (ΔH), in kJ mol ⁻¹ , and the entropy change (ΔS), in J K ⁻¹ mol ⁻¹ , for this reaction.				
		[4 marks]			
	ΔΗ	kJ mol⁻¹			
	ΔS	J K ⁻¹ mol ⁻¹			
. 3	State what Figure 4 shows about the feasibility of the reaction.	[1 mark]			

A: PHYSICAL CHEMISTRY SPIRAL 1

A mixture of 1.0 mol of nitrogen and 3.0 mol of hydrogen is left to reach equilibrium at 700 K.

Calculate the total pressure, in atmospheres, needed to produce a yield of 0.30 mol of ammonia at 700 K.

Give your answer to an appropriate number of significant figures.

You must show your working.

$$[K_p = 7.76 \times 10^{-5} \text{ atm}^{-2} \text{at } 700 \text{ K}]$$

(5)