4 ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES

ﬂwbp
— m
)
et bt

Public IP Addresses:
63.204.134.177
63.203.72.138
71.141.244.213
70.231.159.254
70.231.136.162
70.231.128.151

PPP /Ethernet ~ 70-231.141.59

Test Connection 70.231.143.234
71.141.227.30

192.168.0.2
192.168.1.1
192.168.0.93

Wi-Fi
Access Point 192.168.0.1
W (())
Dynamic
IP Addresses Linux PC
10.0.0.{15-12
0.0.0.{15-126} (router, firewall, DHCP,

Dynamic
IP Addresses

10.0.1.{1-50}
10.0.0.14

10.0.0.{7-13}
10.0.0.3

Home

Coffee House

71.134.182.214

Router/

Firewall
10'212'2'%& 12.46.129.28
Internal 12.46.129.3
Network E t .
10.212.2.112 nterprise

Praise for the First Edition of TCP/IP lllustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking
up the text, I encountered several scenarios that had tripped up both my colleagues and
myself in the past. Stevens reveals many of the mysteries once held tightly by the ever-
elusive networking gurus. Having been involved in the implementation of TCP/IP for
some years now, I consider this by far the finest text to date.”

—Robert A. Ciampa, network engineer, Synernetics, division of 3COM

“While all of Stevens’ books are readable and technically excellent, this new opus is awe-
some. Although many books describe the TCP/IP protocols, Stevens provides a level of
depth and real-world detail lacking from the competition. He puts the reader inside
TCP/IP using a visual approach and shows the protocols in action.”

—Steven Baker, networking columnist, Unix Review

“TCP/IP Illustrated, Volume 1, is an excellent reference for developers, network admin-
istrators, or anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is
comprehensive in its coverage of TCP/IP topics, providing enough details to satisfy the
experts while giving enough background and commentary for the novice.”

—Bob Williams, vice president, Marketing, NetManage, Inc.

“... [T]he difference is that Stevens wants to show as well as tell about the protocols.
His principal teaching tools are straightforward explanations, exercises at the ends of
chapters, byte-by-byte diagrams of headers and the like, and listings of actual traffic as
examples.”

—Walter Zintz, UnixWorld

“Much better than theory only. . . . W. Richard Stevens takes a multihost-based configu-
ration and uses it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illus-
trated, Volume 1, is based on practical examples that reinforce the theory—distinguishing
this book from others on the subject, and making it both readable and informative.”

—Peter M. Haverlock, consultant, IBM TCP/IP Development

“The diagrams he uses are excellent and his writing style is clear and readable. In sum,
Stevens has made a complex topic easy to understand. This book merits everyone’s atten-
tion. Please read it and keep it on your bookshelf.”

—Elizabeth Zinkann, sys admin

“W. Richard Stevens has produced a fine text and reference work. It is well organized
and very clearly written with, as the title suggests, many excellent illustrations expos-
ing the intimate details of the logic and operation of IP, TCP, and the supporting cast of
protocols and applications.”

—Scott Bradner, consultant, Harvard University OIT/NSD

This page intentionally left blank

TCP/IP Illlustrated, Volume 1

Second Edition

This page intentionally left blank

TCP/IP Illlustrated, Volume 1

The Protocols

Second Edition

Kevin R. Fall
W. Richard Stevens

Originally written by Dr. W. Richard Stevens.
Revised by Kevin Fall.

vvAddison-Wesley

Upper Saddle River, NJ Boston ¢ Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich ® Paris ¢ Madrid
Capetown Sydney e Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Fall, Kevin R.
TCP/IP illustrated.—2nd ed. / Kevin R. Fall, W. Richard Stevens.
p- cm.
Stevens’ name appears first on the earlier edition.
Includes bibliographical references and index.
ISBN-13: 978-0-321-33631-6 (v. 1 : hardcover : alk. paper)
ISBN-10: 0-321-33631-3 (v. 1 : hardcover : alk. paper) 1. TCP/IP (Computer network protocol)
I. Stevens, W. Richard. II. Title.
TK5105.55.574 2012
004.6'2—dc23
2011029411

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-33631-6

ISBN-10: 0-321-33631-3

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, November 2011

To Vicki, George, Audrey, Maya, Dylan, and Jan,
for their insight, tolerance, and support
through the long nights and weekends.

—Kevin

This page intentionally left blank

Contents

Foreword

Preface to the Second Edition

Adapted Preface to the First Edition

Chapter 1
1.1

1.2

1.3

1.4
1.5

Introduction

Architectural Principles

1.1.1 Packets, Connections, and Datagrams

1.1.2 The End-to-End Argument and Fate Sharing

1.1.3 Error Control and Flow Control

Design and Implementation

1.21 Layering

1.2.2 Multiplexing, Demultiplexing, and Encapsulation in Layered
Implementations

The Architecture and Protocols of the TCP/IP Suite

1.3.1 The ARPANET Reference Model

1.3.2 Multiplexing, Demultiplexing, and Encapsulation in TCP/IP

1.3.3 Port Numbers

1.3.4 Names, Addresses, and the DNS

Internets, Intranets, and Extranets

Designing Applications

1.5.1 Client/Server

1.5.2 Peer-to-Peer

1.5.3 Application Programming Interfaces (APIs)

XXV

XXVii

xxxiii

0 00 N O WN

10
13
13
16
17
19
19
20
20
21
22

ix

X Contents

1.6 Standardization Process 22
1.6.1 Request for Comments (RFC) 23
1.6.2 Other Standards 24
1.7 Implementations and Software Distributions 24
1.8 Attacks Involving the Internet Architecture 25
1.9 Summary 26
1.10 References 28
Chapter 2 The Internet Address Architecture 31
2.1 Introduction 31
2.2 Expressing IP Addresses 32
2.3 Basic IP Address Structure 34
2.3.1 Classful Addressing 34
2.3.2 Subnet Addressing 36
2.3.3 Subnet Masks 39
2.3.4 Variable-Length Subnet Masks (VLSM) 4
2.3.5 Broadcast Addresses 42
2.3.6 IPv6 Addresses and Interface ldentifiers 43
2.4 CIDR and Aggregation 46
2.41 Prefixes 47
2.4.2 Aggregation 48
2.5 Special-Use Addresses 50
2.5.1 Addressing IPv4/IPv6 Translators 52
2.5.2 Multicast Addresses 53
2.5.3 IPv4 Multicast Addresses 54
2.5.4 IPv6 Multicast Addresses 57
2.5.5 Anycast Addresses 62
2.6 Allocation 62
2.6.1 Unicast 62
2.6.2 Multicast 65
2.7 Unicast Address Assignment 65
2.71 Single Provider/No Network/Single Address 66
2.7.2 Single Provider/Single Network/Single Address 67
2.7.3 Single Provider/Multiple Networks/Multiple Addresses 67

2.7.4 Multiple Providers/Multiple Networks/Multiple Addresses
(Multihoming) 68

Contents

xi

2.8
2.9
210

Chapter 3

3.1
3.2

3.3

3.4

3.5

3.6

3.7
3.8
3.9

Attacks Involving IP Addresses
Summary
References

Link Layer

Introduction

Ethernet and the IEEE 802 LAN/MAN Standards

3.2.1 The IEEE 802 LAN/MAN Standards

3.2.2 The Ethernet Frame Format

3.2.3 802.1p/q: Virtual LANs and QoS Tagging

3.2.4 802.1AX: Link Aggregation (Formerly 802.3ad)

Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control
3.3.1 Duplex Mismatch

3.3.2 Wake-on LAN (WolL), Power Saving, and Magic Packets
3.3.83 Link-Layer Flow Control

Bridges and Switches

3.4.1 Spanning Tree Protocol (STP)

3.4.2 802.1ak: Multiple Registration Protocol (MRP)
Wireless LANs—IEEE 802.11(Wi-Fi)

3.5.1 802.11 Frames

3.5.2 Power Save Mode and the Time Sync Function (TSF)
3.5.3 802.11 Media Access Control

3.5.4 Physical-Layer Details: Rates, Channels, and Frequencies
3.5.5 Wi-Fi Security

3.5.6 Wi-Fi Mesh (802.11s)

Point-to-Point Protocol (PPP)

3.6.1 Link Control Protocol (LCP)

3.6.2 Multilink PPP (MP)

3.6.3 Compression Control Protocol (CCP)

3.6.4 PPP Authentication

3.6.5 Network Control Protocols (NCPs)

3.6.6 Header Compression

3.6.7 Example

Loopback

MTU and Path MTU

Tunneling Basics

3.9.1 Unidirectional Links

70
71
72

79

79
80
82
84
89
92
94
96
96
98
98
102
111
111
113
119
120
123
129
130
130
131
137
139
140
141
142
143
145
148
149
153

xii Contents

3.10
3.1
3.12

Chapter 4

41
4.2

4.3
4.4
4.5

4.6
4.7
4.8
4.9
410
411
412
413

Chapter 5

5.1
5.2

5.3

5.4

Attacks on the Link Layer
Summary
References

ARP: Address Resolution Protocol

Introduction

An Example

4.2.1 Direct Delivery and ARP

ARP Cache

ARP Frame Format

ARP Examples

4.5.1 Normal Example

4.5.2 ARP Request to a Nonexistent Host

ARP Cache Timeout

Proxy ARP

Gratuitous ARP and Address Conflict Detection (ACD)
The arp Command

Using ARP to Set an Embedded Device’s IPv4 Address
Attacks Involving ARP

Summary

References

The Internet Protocol (IP)

Introduction

IPv4 and IPv6 Headers

5.21 IP Header Fields

5.2.2 The Internet Checksum

5.2.3 DS Field and ECN (Formerly Called the ToS Byte or IPv6 Traffic Class)

5.2.4 IP Options

IPv6 Extension Headers
5.3.1 IPv6 Options

5.3.2 Routing Header

5.3.3 Fragment Header

IP Forwarding

5.41 Forwarding Table
5.4.2 |P Forwarding Actions

154
156
157

165

165
166
167
169
170
171
171
173
174
174
175
177
178
178
179
179

181

181
183
183
186
188
192
194
196
200
203
208
208
209

Contents

xiii

5.5

5.6

5.7
5.8
5.9

Chapter 6

6.1
6.2

6.3

6.4
6.5
6.6
6.7
6.8

5.4.3 Examples

5.4.4 Discussion

Mobile IP

5.5.1 The Basic Model: Bidirectional Tunneling
5.5.2 Route Optimization (RO)
5.5.3 Discussion

Host Processing of IP Datagrams
5.6.1 Host Models

5.6.2 Address Selection

Attacks Involving IP

Summary

References

System Configuration: DHCP and Autoconfiguration

Introduction

Dynamic Host Configuration Protocol (DHCP)
6.2.1 Address Pools and Leases

6.2.2 DHCP and BOOTP Message Format
6.2.3 DHCP and BOOTP Options

6.2.4 DHCP Protocol Operation

6.2.5 DHCPv6

6.2.6 Using DHCP with Relays

6.2.7 DHCP Authentication

6.2.8 Reconfigure Extension

6.2.9 Rapid Commit

6.2.10 Location Information (LCI and LoST)
6.2.11 Mobility and Handoff Information (MoS and ANDSF)
6.2.12 DHCP Snooping

Stateless Address Autoconfiguration (SLAAC)
6.3.1 Dynamic Configuration of IPv4 Link-Local Addresses
6.3.2 IPv6 SLAAC for Link-Local Addresses
DHCP and DNS Interaction

PPP over Ethernet (PPPoE)

Attacks Involving System Configuration
Summary

References

210
215
215
216
217
220
220
220
222
226
226
228

233

233
234
235
236
238
239
252
267
271
273
273
274
275
276
276
276
276
285
286
292
292
293

xiv Contents

Chapter 7

71
7.2

7.3

7.4

75

7.6

7.7
7.8
7.9

Chapter 8
8.1

8.2

Firewalls and Network Address Translation (NAT)

Introduction

Firewalls

7.2.1 Packet-Filtering Firewalls

7.2.2 Proxy Firewalls

Network Address Translation (NAT)

7.3.1 Traditional NAT: Basic NAT and NAPT

7.3.2 Address and Port Translation Behavior

7.3.3 Filtering Behavior

7.3.4 Servers behind NATs

7.3.5 Hairpinning and NAT Loopback

7.3.6 NAT Editors

7.3.7 Service Provider NAT (SPNAT) and Service Provider IPv6
Transition

NAT Traversal

7.4.1 Pinholes and Hole Punching

7.4.2 UNilateral Self-Address Fixing (UNSAF)

7.4.3 Session Traversal Utilities for NAT (STUN)

7.4.4 Traversal Using Relays around NAT (TURN)

7.4.5 Interactive Connectivity Establishment (ICE)

Configuring Packet-Filtering Firewalls and NATs

7.5.1 Firewall Rules

7.5.2 NAT Rules

7.5.3 Direct Interaction with NATs and Firewalls: UPnP, NAT-PMP,
and PCP

NAT for IPv4/IPv6 Coexistence and Transition

7.6.1 Dual-Stack Lite (DS-Lite)

7.6.2 IPv4/IPv6 Translation Using NATs and ALGs

Attacks Involving Firewalls and NATs

Summary

References

ICMPv4 and ICMPv6: Internet Control Message Protocol

Introduction

8.1.1 Encapsulation in IPv4 and IPv6
ICMP Messages

8.2.1 ICMPv4 Messages

299

299
300
300
301
303
305
311
313
314
314
315

315
316
317
317
319
326
332
334
335
337

338
339
339
340
345
346
347

353

353
354
355
356

Contents

XV

8.3

8.4

8.5

8.6

8.7

8.2.2 ICMPv6 Messages

8.2.3 Processing of ICMP Messages

ICMP Error Messages

8.3.1 Extended ICMP and Multipart Messages

8.3.2 Destination Unreachable (ICMPv4 Type 3, ICMPv6 Type 1)
and Packet Too Big (ICMPv6 Type 2)

8.3.3 Redirect (ICMPv4 Type 5, ICMPv6 Type 137)

8.3.4 ICMP Time Exceeded (ICMPv4 Type 11, ICMPv6 Type 3)

8.3.5 Parameter Problem (ICMPv4 Type 12, ICMPv6 Type 4)

ICMP Query/Informational Messages

8.4.1 Echo Request/Reply (ping) (ICMPv4 Types 0/8, ICMPv6 Types
129/128)

8.4.2 Router Discovery: Router Solicitation and Advertisement
(ICMPv4 Types 9, 10)

8.4.3 Home Agent Address Discovery Request/Reply (ICMPv6 Types
144/145)

8.4.4 Mobile Prefix Solicitation/Advertisement (ICMPv6 Types 146/147)

8.4.5 Mobile IPv6 Fast Handover Messages (ICMPv6 Type 154)

8.4.6 Multicast Listener Query/Report/Done (ICMPv6 Types
130/131/132)

8.4.7 Version 2 Multicast Listener Discovery (MLDv2) (ICMPv6
Type 143)

8.4.8 Multicast Router Discovery (MRD) (IGMP Types 48/49/50,
ICMPv6 Types 151/152/153)

Neighbor Discovery in IPv6

8.5.1 ICMPv6 Router Solicitation and Advertisement (ICMPv6 Types
133, 134)

8.5.2 ICMPv6 Neighbor Solicitation and Advertisement (IMCPv6 Types
135, 136)

8.5.3 ICMPv6 Inverse Neighbor Discovery Solicitation/Advertisement
(ICMPv6 Types 141/142)

8.5.4 Neighbor Unreachability Detection (NUD)

8.5.5 Secure Neighbor Discovery (SEND)

8.5.6 ICMPv6 Neighbor Discovery (ND) Options

Translating ICMPv4 and ICMPv6

8.6.1 Translating ICMPv4 to ICMPv6

8.6.2 Translating ICMPv6 to ICMPv4

Attacks Involving ICMP

358
360
361
363

364
372
375
379
380

380

383

386
387
388

388

390

394
395

396

398

401
402
403
407
424
424
426
428

xvi Contents

8.8
8.9

Chapter 9

9.1
9.2

9.3

9.4

9.5
9.6
9.7

Chapter 10

10.1
10.2
10.3
10.4
10.5

Summary
References

Broadcasting and Local Multicasting (IGMP and MLD)

Introduction

Broadcasting

9.2.1 Using Broadcast Addresses

9.2.2 Sending Broadcast Datagrams

Multicasting

9.3.1 Converting IP Multicast Addresses to 802 MAC/Ethernet Addresses

9.3.2 Examples

9.3.3 Sending Multicast Datagrams

9.3.4 Receiving Multicast Datagrams

9.3.5 Host Address Filtering

The Internet Group Management Protocol (IGMP) and Multicast Listener

Discovery Protocol (MLD)

9.41 IGMP and MLD Processing by Group Members (“Group
Member Part”)

9.4.2 IGMP and MLD Processing by Multicast Routers (“Multicast
Router Part”)

9.4.3 Examples

9.4.4 Lightweight IGMPv3 and MLDv2

9.4.5 IGMP and MLD Robustness

9.4.6 IGMP and MLD Counters and Variables

9.4.7 IGMP and MLD Snooping

Attacks Involving IGMP and MLD

Summary

References

User Datagram Protocol (UDP) and IP Fragmentation

Introduction

UDP Header

UDP Checksum

Examples

UDP and IPv6

10.5.1 Teredo: Tunneling IPv6 through IPv4 Networks

430
430

435

435
436
437
439
441
442
444
446
447
449

451

454

457
459
464
465
467
468
469
470
471

473

473
474
475
478
481
482

Contents

xvii

10.6
10.7

10.8

10.9
10.10

10.11

10.12
10.13
10.14
10.15
10.16

Chapter 11

11.1
11.2

11.3
1.4
11.5

UDP-Lite

IP Fragmentation

10.7.1 Example: UDP/IPv4 Fragmentation
10.7.2 Reassembly Timeout

Path MTU Discovery with UDP

10.8.1 Example

Interaction between IP Fragmentation and ARP/ND
Maximum UDP Datagram Size

10.10.1 Implementation Limitations

10.10.2 Datagram Truncation

UDP Server Design

10.11.1 IP Addresses and UDP Port Numbers
10.11.2 Restricting Local IP Addresses

10.11.3 Using Multiple Addresses

10.11.4 Restricting Foreign IP Address

10.11.5 Using Multiple Servers per Port

10.11.6 Spanning Address Families: IPv4 and IPv6
10.11.7 Lack of Flow and Congestion Control
Translating UDP/IPv4 and UDP/IPv6 Datagrams
UDP in the Internet

Attacks Involving UDP and IP Fragmentation
Summary

References

Name Resolution and the Domain Name System (DNS)

Introduction

The DNS Name Space

11.2.1 DNS Naming Syntax

Name Servers and Zones

Caching

The DNS Protocol

11.5.1 DNS Message Format

11.5.2 The DNS Extension Format (EDNSO0)
11.5.3 UDP or TCP

11.5.4 Question (Query) and Zone Section Format

11.5.5 Answer, Authority, and Additional Information Section Formats

11.5.6 Resource Record Types

487
488
488
492
493
493
496
497
497
498
498
499
500
501
502
503
504
505
505
506
507
508
508

511

511
512
514
516
517
518
520
524
525
526
526
527

xviii Contents

11.6
1.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14

Chapter 12
1241

12.2

12.3
12.4
12.5

Chapter 13

13.1
13.2

13.3

11.5.7 Dynamic Updates (DNS UPDATE) 555
11.5.8 Zone Transfers and DNS NOTIFY 558
Sort Lists, Round-Robin, and Split DNS 565
Open DNS Servers and DynDNS 567
Transparency and Extensibility 567
Translating DNS from IPv4 to IPv6 (DNS64) 568
LLMNR and mDNS 569
LDAP 570
Attacks on the DNS 571
Summary 572
References 573

TCP: The Transmission Control Protocol (Preliminaries) 579

Introduction 579
12.1.1 ARQ and Retransmission 580
12.1.2 Windows of Packets and Sliding Windows 581
12.1.3 Variable Windows: Flow Control and Congestion Control 583
12.1.4 Setting the Retransmission Timeout 584
Introduction to TCP 584
12.2.1 The TCP Service Model 585
12.2.2 Reliability in TCP 586
TCP Header and Encapsulation 587
Summary 591
References 591
TCP Connection Management 595
Introduction 595
TCP Connection Establishment and Termination 595
13.2.1 TCP Half-Close 598
13.2.2 Simultaneous Open and Close 599
13.2.3 Initial Sequence Number (ISN) 601
13.2.4 Example 602
13.2.5 Timeout of Connection Establishment 604
13.2.6 Connections and Translators 605
TCP Options 605

13.3.1 Maximum Segment Size (MSS) Option 606

Contents

xix

13.4

13.5

13.6

13.7

13.8
13.9
13.10

Chapter 14

141
14.2
14.3

13.8.2 Selective Acknowledgment (SACK) Options
13.3.3 Window Scale (WSCALE or WSOPT) Option
13.3.4 Timestamps Option and Protection against Wrapped

Sequence Numbers (PAWS)
13.3.5 User Timeout (UTO) Option
13.3.6 Authentication Option (TCP-AO)
Path MTU Discovery with TCP
13.4.1 Example
TCP State Transitions
13.5.1 TCP State Transition Diagram
13.5.2 TIME_WAIT (2MSL Wait) State
13.5.3 Quiet Time Concept
13.5.4 FIN_WAIT_2 State
13.5.5 Simultaneous Open and Close Transitions
Reset Segments
13.6.1 Connection Request to Nonexistent Port
13.6.2 Aborting a Connection
13.6.3 Half-Open Connections
13.6.4 TIME-WAIT Assassination (TWA)
TCP Server Operation
13.7.1 TCP Port Numbers
13.7.2 Restricting Local IP Addresses
13.7.3 Restricting Foreign Endpoints
13.7.4 Incoming Connection Queue
Attacks Involving TCP Connection Management
Summary
References

TCP Timeout and Retransmission

Introduction

Simple Timeout and Retransmission Example
Setting the Retransmission Timeout (RTO)
14.3.1 The Classic Method

14.3.2 The Standard Method

14.3.3 The Linux Method

14.3.4 RTT Estimator Behaviors

14.3.5 RTTM Robustness to Loss and Reordering

607
608

608
611
612
612
613
616
617
618
624
625
625
625
626
627
628
630
631
632
634
635
636
640
642
643

647

647
648
651
651
652
657
661
662

XX Contents

14.4
14.5

14.6

14.7

14.8

14.9
14.10
14.11
14.12
14.13

Chapter 15

Timer-Based Retransmission

14.41 Example

Fast Retransmit

14.5.1 Example

Retransmission with Selective Acknowledgments
14.6.1 SACK Receiver Behavior

14.6.2 SACK Sender Behavior

14.6.3 Example

Spurious Timeouts and Retransmissions
14.7.1 Duplicate SACK (DSACK) Extension
14.7.2 The Eifel Detection Algorithm
14.7.3 Forward-RTO Recovery (F-RTO)
14.7.4 The Eifel Response Algorithm
Packet Reordering and Duplication
14.8.1 Reordering

14.8.2 Duplication

Destination Metrics

Repacketization

Attacks Involving TCP Retransmission
Summary

References

TCP Data Flow and Window Management

15.1Introduction 691

15.2
15.3
15.4

15.5

15.6

15.7

Interactive Communication
Delayed Acknowledgments
Nagle Algorithm

15.4.1 Delayed ACK and Nagle Algorithm Interaction

15.4.2 Disabling the Nagle Algorithm

Flow Control and Window Management

15.5.1 Sliding Windows

15.5.2 Zero Windows and the TCP Persist Timer
15.5.3 Silly Window Syndrome (SWS)

15.5.4 Large Buffers and Auto-Tuning

Urgent Mechanism

15.6.1 Example

Attacks Involving Window Management

664
665
667
668
671
672
673
673
677
677
679
680
680
682
682
684
685
686
687
688
689

691

692
695
696
699
699
700
701
704
708
715
719
720
723

Contents

xxi

15.8
15.9

Chapter 16
16.1

16.2

16.3

16.4
16.5

16.6
16.7
16.8

16.9

Summary
References

TCP Congestion Control

Introduction

16.1.1 Detection of Congestion in TCP

16.1.2 Slowing Down a TCP Sender

The Classic Algorithms

16.2.1 Slow Start

16.2.2 Congestion Avoidance

16.2.3 Selecting between Slow Start and Congestion Avoidance
16.2.4 Tahoe, Reno, and Fast Recovery

16.2.5 Standard TCP

Evolution of the Standard Algorithms

16.3.1 NewReno

16.3.2 TCP Congestion Control with SACK

16.3.3 Forward Acknowledgment (FACK) and Rate Halving
16.3.4 Limited Transmit

16.3.5 Congestion Window Validation (CWV)

Handling Spurious RTOs—the Eifel Response Algorithm

An Extended Example

16.5.1 Slow Start Behavior

16.5.2 Sender Pause and Local Congestion (Event 1)

16.5.3 Stretch ACKs and Recovery from Local Congestion
16.5.4 Fast Retransmission and SACK Recovery (Event 2)
16.5.5 Additional Local Congestion and Fast Retransmit Events
16.5.6 Timeouts, Retransmissions, and Undoing cwnd Changes
16.5.7 Connection Completion

Sharing Congestion State

TCP Friendliness

TCP in High-Speed Environments

16.8.1 HighSpeed TCP (HSTCP) and Limited Slow Start
16.8.2 Binary Increase Congestion Control (BIC and CUBIC)
Delay-Based Congestion Control

16.9.1 Vegas

16.9.2 FAST

723
724

727

727
728
729
730
732
734
736
737
738
739
739
740
41
742
742
744
745
749
750
754
757
759
762
766
767
768
770
770
772
777
777
778

xxii Contents

16.10
16.11
16.12
16.13
16.14

Chapter 17

1741
17.2

17.3
17.4
17.5

Chapter 18

18.1
18.2
18.3
18.4

18.5

16.9.3 TCP Westwood and Westwood+
16.9.4 Compound TCP

Buffer Bloat

Active Queue Management and ECN
Attacks Involving TCP Congestion Control
Summary

References

TCP Keepalive

Introduction

Description

17.2.1 Keepalive Examples
Attacks Involving TCP Keepalives
Summary

References

Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Introduction

Basic Principles of Information Security

Threats to Network Communication

Basic Cryptography and Security Mechanisms

18.4.1 Cryptosystems

18.4.2 Rivest, Shamir, and Adleman (RSA) Public Key Cryptography
18.4.3 Diffie-Hellman-Merkle Key Agreement (aka Diffie-Hellman or DH)
18.4.4 Signcryption and Elliptic Curve Cryptography (ECC)

18.4.5 Key Derivation and Perfect Forward Secrecy (PFS)

18.4.6 Pseudorandom Numbers, Generators, and Function Families
18.4.7 Nonces and Salt

18.4.8 Cryptographic Hash Functions and Message Digests

18.4.9 Message Authentication Codes (MACs, HMAC, CMAC, and GMAC)
18.4.10 Cryptographic Suites and Cipher Suites

Certificates, Certificate Authorities (CAs), and PKls

18.5.1 Public Key Certificates, Certificate Authorities, and X.509

18.5.2 Validating and Revoking Certificates

18.5.3 Attribute Certificates

779
779
781
782
785
786
788

793

793
795
797
802
802
803

805

805
806
807
809
809
812
813
814
815
815
816
817
818
819
821
822
828
831

Contents

xxiii

18.6
18.7

18.8

18.9

18.10

18.11

18.12
18.13
18.14

TCP/IP Security Protocols and Layering

Network Access Control: 802.1X, 802.1AE, EAP, and PANA
18.7.1 EAP Methods and Key Derivation

18.7.2 The EAP Re-authentication Protocol (ERP)

18.7.3 Protocol for Carrying Authentication for Network Access (PANA)
Layer 3 IP Security (IPsec)

18.8.1 Internet Key Exchange (IKEv2) Protocol

18.8.2 Authentication Header (AH)

18.8.3 Encapsulating Security Payload (ESP)

18.8.4 Multicast

18.8.5 L2TP/IPsec

18.8.6 IPsec NAT Traversal

18.8.7 Example

Transport Layer Security (TLS and DTLS)

18.9.1 TLS 1.2

18.9.2 TLS with Datagrams (DTLS)

DNS Security (DNSSEC)

18.10.1 DNSSEC Resource Records

18.10.2 DNSSEC Operation

18.10.3 Transaction Authentication (TSIG, TKEY, and SIG(0))
18.10.4 DNSSEC with DNS64

DomainKeys Identified Mail (DKIM)

18.11.1 DKIM Signatures

18.11.2 Example

Attacks on Security Protocols

Summary

References

Glossary of Acronyms

Index

832
833
837
839
839
840
842
854
858
864
865
865
867
876
877
891
894
896
902
911
915
915
916
916
918
919
922

933

963

This page intentionally left blank

Foreword

Rarely does one find a book on a well-known topic that is both historically and
technically comprehensive and remarkably accurate. One of the things I admire
about this work is the “warts and all” approach that gives it such credibility. The
TCP/IP architecture is a product of the time in which it was conceived. That it has
been able to adapt to growing requirements in many dimensions by factors of a
million or more, to say nothing of a plethora of applications, is quite remarkable.
Understanding the scope and limitations of the architecture and its protocols is a
sound basis from which to think about future evolution and even revolution.

During the early formulation of the Internet architecture, the notion of “enter-
prise” was not really recognized. In consequence, most networks had their own
IP address space and “announced” their addresses in the routing system directly.
After the introduction of commercial service, Internet Service Providers emerged
as intermediaries who “announced” Internet address blocks on behalf of their cus-
tomers. Thus, most of the address space was assigned in a “provider dependent”
fashion. “Provider independent” addressing was unusual. The net result (no pun
intended) led to route aggregation and containment of the size of the global rout-
ing table. While this tactic had benefits, it also created the “multi-homing” prob-
lem since users of provider-dependent addresses did not have their own entries
in the global routing table. The IP address “crunch” also led to Network Address
Translation, which also did not solve provider dependence and multi-homing
problems.

Reading through this book evokes a sense of wonder at the complexity that
has evolved from a set of relatively simple concepts that worked with a small num-
ber of networks and application circumstances. As the chapters unfold, one can
see the level of complexity that has evolved to accommodate an increasing number
of requirements, dictated in part by new deployment conditions and challenges, to
say nothing of sheer growth in the scale of the system.

The issues associated with securing “enterprise” users of the Internet also led
to firewalls that are intended to supply perimeter security. While useful, it has
become clear that attacks against local Internet infrastructure can come through

XXV

xxvi

Foreword

internal compromises (e.g., an infected computer is put onto an internal network
or an infected thumb-drive is used to infect an internal computer through its USB
port).

It has become apparent that, in addition to a need to expand the Internet
address space through the introduction of IP version 6, with its 340 trillion tril-
lion trillion addresses, there is also a strong need to introduce various security-
enhancing mechanisms such as the Domain Name System Security Extension
(DNSSEC) among many others.

What makes this book unique, in my estimation, is the level of detail and atten-
tion to history. It provides background and a sense for the ways in which solutions
to networking problems have evolved. It is relentless in its effort to achieve preci-
sion and to expose remaining problem areas. For an engineer determined to refine
and secure Internet operation or to explore alternative solutions to persistent prob-
lems, the insights provided by this book will be invaluable. The authors deserve
credit for a thorough rendering of the technology of today’s Internet.

Woodhurst Vint Cerf
June 2011

Preface to the Second Edition

Welcome to the second edition of TCP/IP Illustrated, Volume 1. This book aims
to provide a detailed, current look at the TCP/IP protocol suite. Instead of just
describing how the protocols operate, we show the protocols in operation using
a variety of analysis tools. This helps you better understand the design decisions
behind the protocols and how they interact with each other, and it simultaneously
exposes you to implementation details without your having to read through the
implementation’s software source code or set up an experimental laboratory. Of
course, reading source code or setting up a laboratory will only help to increase
your understanding.

Networking has changed dramatically in the past three decades. Originally a
research project and object of curiosity, the Internet has become a global commu-
nication fabric upon which governments, businesses, and individuals depend. The
TCP/IP suite defines the underlying methods used to exchange information by
every device on the Internet. After more than a decade of delay, the Internet and
TCP/IP itself are now undergoing an evolution, to incorporate IPv6. Throughout
the text we will discuss both IPv6 and the current IPv4 together, but we high-
light the differences where they are important. Unfortunately, they do not directly
interoperate, so some care and attention are required to appreciate the impact of
the evolution.

The book is intended for anyone wishing to better understand the current set
of TCP/IP protocols and how they operate: network operators and administrators,
network software developers, students, and users who deal with TCP/IP. We have
included material that should be of interest to both new readers as well as those
familiar with the material from the first edition. We hope you will find the cover-
age of the new and older material useful and interesting,.

Comments on the First Edition

Nearly two decades have passed since the publication of the first edition of TCP/IP
Hlustrated, Volume 1. Tt continues to be a valuable resource for both students and
professionals in understanding the TCP/IP protocols at a level of detail difficult to

xxvii

xxviii

Preface to the Second Edition

obtain in competing texts. Today it remains among the best references for detailed
information regarding the operation of the TCP/IP protocols. However, even the
best books concerned with information and communications technology become
dated after a time, and the TCP/IP Illustrated series is no exception. In this edition,
I hope to thoroughly update the pioneering work of Dr. Stevens with coverage of
new material while maintaining the exceptionally high standard of presentation
and detail common to his numerous books.

The first edition covers a broad set of protocols and their operation, ranging
from the link layer all the way to applications and network management. Today,
covering this breadth of material comprehensively in a single volume would
produce a very lengthy text indeed. For this reason, the second edition focuses
specifically on the core protocols: those relatively low-level protocols used most
frequently in providing the basic services of configuration, naming, data delivery,
and security for the Internet. Detailed discussions of applications, routing, Web
services, and other important topics are postponed to subsequent volumes.

Considerable progress has been made in improving the robustness and com-
pliance of TCP/IP implementations to their corresponding specifications since the
publication of the first edition. While many of the examples in the first edition
highlight implementation bugs or noncompliant behaviors, these problems have
largely been addressed in currently available systems, at least for IPv4. This fact
is not terribly surprising, given the greatly expanded use of the TCP/IP protocols
in the last 18 years. Misbehaving implementations are a comparative rarity, which
attests to a certain maturity of the protocol suite as a whole. The problems encoun-
tered in the operation of the core protocols nowadays often relate to intentional
exploitation of infrequently used protocol features, a form of security concern that
was not a primary focus in the first edition but one that we spend considerable
effort to address in the second edition.

The Internet Milieu of the Twenty-first Century

The usage patterns and importance of the Internet have changed considerably
since the publication of the first edition. The most obvious watershed event was
the creation and subsequent intense commercialization of the World Wide Web
starting in the early 1990s. This event greatly accelerated the availability of the
Internet to large numbers of people with various (sometimes conflicting) motiva-
tions. As such, the protocols and systems originally implemented in a small-scale
environment of academic cooperation have been stressed by limited availability of
addresses and an increase of security concerns.

In response to the security threats, network and security administrators have
introduced special control elements into the network. It is now common practice to
place a firewall at the point of attachment to the Internet, for both large enterprises
as well as small businesses and homes. As the demand for IP addresses and secu-
rity has increased over the last decade, Network Address Translation (NAT) is now
supported in virtually all current-generation routers and is in widespread use. It

Preface to the Second Edition XXix

has eased the pressure on Internet address availability by allowing sites to obtain
a comparatively small number of routable Internet addresses from their service
providers (one for each simultaneously online user), yet assign a very large num-
ber of addresses to local computers without further coordination. A consequence
of NAT deployment has been a slowing of the migration to IPv6 (which provides
for an almost incomprehensibly large number of addresses) and interoperability
problems with some older protocols.

As the users of personal computers began to demand Internet connectivity
by the mid-1990s, the largest supplier of PC software, Microsoft, abandoned its
original policy of offering only proprietary alternatives to the Internet and instead
undertook an effort to embrace TCP/IP compatibility in most of its products.
Since then, personal computers running their Windows operating system have
come to dominate the mix of PCs presently connected to the Internet. Over time,
a significant rise in the number of Linux-based systems means that such systems
now threaten to displace Microsoft as the frontrunner. Other operating systems,
including Oracle Solaris and Berkeley’s BSD-based systems, which once repre-
sented the majority of Internet-connected systems, are now a comparatively small
component of the mix. Apple’s OS X (Mach-based) operating system has risen as
a new contender and is gaining in popularity, especially among portable com-
puter users. In 2003, portable computer (laptop) sales exceeded desktop sales as
the majority of personal computer types sold, and their proliferation has sparked
a demand for widely deployed, high-speed Internet access supported by wire-
less infrastructure. It is projected that the most common method for accessing the
Internet from 2012 and beyond will be smartphones. Tablet computers also repre-
sent an important growing contender.

Wireless networks are now available at a large number of locations such as
restaurants, airports, coffeehouses, and other public places. They typically pro-
vide short-range free or pay-for-use (flat-rate) high-speed wireless Internet con-
nections using hardware compatible with commonly used office or home local
area network installations. A set of alternative “wireless broadband” technolo-
gies based on cellular telephone standards (e.g., LTE, HSPA, UMTS, EV-DO) are
becoming widely available in developed regions of the world (and some develop-
ing regions of the words that are “leapfrogging” to newer wireless technology),
offering longer-range operation, often at somewhat reduced bandwidths and with
volume-based pricing. Both types of infrastructure address the desire of users to
be mobile while accessing the Internet, using either portable computers or smaller
devices. In either case, mobile end users accessing the Internet over wireless net-
works pose two significant technical challenges to the TCP/IP protocol archi-
tecture. First, mobility affects the Internet’s routing and addressing structure by
breaking the assumption that hosts have addresses assigned to them based upon
the identity of their nearby router. Second, wireless links may experience outages
and therefore cause data to be lost for reasons other than those typical of wired
links (which generally do not lose data unless too much traffic is being injected
into the network).

XXX

Preface to the Second Edition

Finally, the Internet has fostered the rise of so-called peer-to-peer applica-
tions forming “overlay” networks. Peer-to-peer applications do not rely on a cen-
tral server to accomplish a task but instead determine a set of peer computers with
which they can communicate and interact to accomplish a task. The peer computers
are operated by other end users and may come and go rapidly compared to a fixed
server infrastructure. The “overlay” concept captures the fact that such interact-
ing peers themselves form a network, overlaid atop the conventional TCP/IP-based
network (which, one may observe, is itself an overlay above the underlying physi-
cal links). The development of peer-to-peer applications, while of intense interest
to those who study traffic flows and electronic commerce, has not had a profound
impact on the core protocols described in Volume 1 per se, but the concept of overlay
networks has become an important consideration for networking technology more
generally.

Content Changes for the Second Edition

Regarding content in the text, the most important changes from the first edition
are a restructuring of the scope of the overall text and the addition of significant
material on security. Instead of attempting to cover nearly all common protocols
in use at every layer in the Internet, the present text focuses in detail first on the
non-security core protocols in widespread use, or that are expected to be in wide-
spread use in the near future: Ethernet (802.3), Wi-Fi (802.11), PPP, ARP, IPv4, IPv6,
UDP, TCP, DHCP, and DNS. These protocols are likely to be encountered by sys-
tem administrators and users alike.

In the second edition, security is covered in two ways. First, in each appropriate
chapter, a section devoted to describing known attacks and their countermeasures
relating to the protocol described in the chapter is included. These descriptions
are not presented as a recipe for constructing attacks but rather as a practical indi-
cation of the kinds of problems that may arise when protocol implementations (or
specifications, in some cases) are insufficiently robust. In today’s Internet, incom-
plete specification or lax implementation practice can lead to mission-critical sys-
tems being compromised by even relatively unsophisticated attacks.

The second important discussion of security occurs in Chapter 18, where
security and cryptography are studied in some detail, including protocols such as
IPsec, TLS, DNSSEC, and DKIM. These protocols are now understood to be impor-
tant for implementing any service or application expected to maintain integrity
or secure operation. As the Internet has increased in commercial importance, the
need for security (and the number of threats to it) has grown proportionally.

Although IPv6 was not included in the first edition, there is now reason to
believe that the use of IPv6 may increase significantly with the exhaustion of
unallocated IPv4 address groups in February 2011. IPv6 was conceived largely
to address the problems of IPv4 address depletion and, and while not nearly as
common as IPv4 today, is becoming more important as a growing number of
small devices (such as cellular telephones, household devices, and environmental

Preface to the Second Edition xxxi

sensors) become attached to the Internet. Events such as the World IPv6 Day (June
8, 2011) helped to demonstrate that the Internet can continue to work even as the
underlying protocols are modified and augmented in a significant way.

A second consideration for the structure of the second edition is a deemphasis
of the protocols that are no longer commonly used and an update of the descrip-
tions of those that have been revised substantially since the publication of the
first edition. The chapters covering RARP, BOOTP, NFS, SMTP, and SNMP have
been removed from the book, and the discussion of the SLIP protocol has been
abandoned in favor of expanded coverage of DHCP and PPP (including PPPoE).
The function of IP forwarding (described in Chapter 9 in the first edition) has
been integrated with the overall description of the IPv4 and IPv6 protocols in
Chapter 5 of this edition. The discussion of dynamic routing protocols (RIP, OSPF,
and BGP) has been removed, as the latter two protocols alone could each conceiv-
ably merit a book-long discussion. Starting with ICMP, and continuing through IP,
TCP, and UDP, the impact of operation using IPv4 versus IPv6 is discussed in any
cases where the difference in operation is significant. There is no specific chapter
devoted solely to IPv6; instead, its impact relative to each existing core protocol is
described where appropriate. Chapters 15 and 25-30 of the first edition, which are
devoted to Internet applications and their supporting protocols, have been largely
removed; what remains only illustrates the operation of the underlying core pro-
tocols where necessary.

Several chapters covering new material have been added. The first chapter
begins with a general introduction to networking issues and architecture, followed
by a more Internet-specific orientation. The Internet’s addressing architecture is
covered in Chapter 2. A new chapter on host configuration and how a system “gets
on” the network appears as Chapter 6. Chapter 7 describes firewalls and Network
Address Translation (NAT), including how NATs are used in partitioning address
space between routable and nonroutable portions. The set of tools used in the first
edition has been expanded to include Wireshark (a free network traffic monitor
application with a graphical user interface).

The target readership for the second edition remains identical to that of the
first edition. No prior knowledge of networking concepts is required for approach-
ing it, although the advanced reader should benefit from the level of detail and
references. A rich collection of references is included in each chapter for the inter-
ested reader to pursue.

Editorial Changes for the Second Edition

The general flow of material in the second edition remains similar to that of the
first edition. After the introductory material (Chapters 1 and 2), the protocols are
presented in a bottom-up fashion to illustrate how the goal of network communi-
cation presented in the introduction is realized in the Internet architecture. As in
the first edition, actual packet traces are used to illustrate the operational details
of the protocols, where appropriate. Since the publication of the first edition, freely

xxxii

Preface to the Second Edition

available packet capture and analysis tools with graphical interfaces have become
available, extending the capabilities of the tcpdump program used in the first
edition. In the present text, tcpdump is used when the points to be illustrated
are easily conveyed by examining the output of a text-based packet capture tool.
In most other cases, however, screen shots of the Wireshark tool are used. Please
be aware that some output listings, including snapshots of tcpdump output, are
wrapped or simplified for clarity.

The packet traces shown typically illustrate the behavior of one or more parts
of the network depicted on the inside of the front book cover. It represents a broad-
band-connected “home” environment (typically used for client access or peer-to-
peer networking), a “public” environment (e.g., coffee shop), and an enterprise
environment. The operating systems used for examples include Linux, Windows,
FreeBSD, and Mac OS X. Various versions are used, as many different OS versions
are in use on the Internet today.

The structure of each chapter has been slightly modified from the first edi-
tion. Each chapter begins with an introduction to the chapter topic, followed in
some cases by historical notes, the details of the chapter, a summary, and a set of
references. A section near the end of most chapters describes security concerns
and attacks. The per-chapter references represent a change for the second edition.
They should make each chapter more self-contained and require the reader to
perform fewer “long-distance page jumps” to find a reference. Some of the refer-
ences are now enhanced with WWW URLs for easier access online. In addition,
the reference format for papers and books has been changed to a somewhat more
compact form that includes the first initial of each author’s last name followed by
the last two digits of the year (e.g., the former [Cerf and Kahn 1974] is now short-
ened to [CK74]). For the numerous RFC references used, the RFC number is used
instead of the author names. This follows typical RFC conventions and has the
side benefit of grouping all the RFC references together in the reference lists.

On a final note, the typographical conventions of the TCP/IP Illustrated series
have been maintained faithfully. However, the present author elected to use an
editor and typesetting package other than the Troff system used by Dr. Stevens
and some other authors of the Addison-Wesley Professional Computing Series col-
lection. Thus, the particular task of final copyediting could take advantage of the
significant expertise of Barbara Wood, the copy editor generously made available
to me by the publisher. We hope you will be pleased with the results.

Berkeley, California Kevin R. Fall
September 2011

Adapted Preface
to the First Edition

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective
than other texts on TCP/IP. Instead of just describing the protocols and what they
do, we’ll use a popular diagnostic tool to watch the protocols in action. Seeing how
the protocols operate in varying circumstances provides a greater understanding
of how they work and why certain design decisions were made. It also provides
a look into the implementation of the protocols, without having to wade through
thousands of lines of source code.

When networking protocols were being developed in the 1960s through
the 1980s, expensive, dedicated hardware was required to see the packets going
“across the wire.” Extreme familiarity with the protocols was also required to
comprehend the packets displayed by the hardware. Functionality of the hard-
ware analyzers was limited to that built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous work-
station to monitor a local area network [Mogul 1990]. Just attach a workstation to
your network, run some publicly available software, and watch what goes by on
the wire. While many people consider this a tool to be used for diagnosing network
problems, it is also a powerful tool for understanding how the network protocols
operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP pro-
tocols operate: programmers writing network applications, system administrators
responsible for maintaining computer systems and networks utilizing TCP/IP,
and users who deal with TCP/IP applications on a daily basis.

xxxiii

XXXiv

Adapted Preface to the First Edition

Typographical Conventions

When we display interactive input and output we’ll show our typed input in a
bold font, and the computer output 1ike this. Comments are added in italics.

bsdi % telnet svr4 discard connect to the discard server
Trying 140.252.13.34... this line and next output by Telnet client
Connected to svr4.

Also, we always include the name of the system as part of the shell prompt (bsdi
in this example) to show on which host the command was run.

Note

Throughout the text we’ll use indented, parenthetical notes such as this to
describe historical points or implementation details.

We sometimes refer to the complete description of a command on the Unix man-
ual as in ifconfig(8). This notation, the name of the command followed by a
number in parentheses, is the normal way of referring to Unix commands. The
number in parentheses is the section number in the Unix manual of the “manual
page” for the command, where additional information can be located. Unfortu-
nately not all Unix systems organize their manuals the same, with regard to the
section numbers used for various groupings of commands. We’ll use the BSD-
style section numbers (which is the same for BSD-derived systems such as SunOS
4.1.3), but your manuals may be organized differently.

Acknowledgments

Although the author’s name is the only one to appear on the cover, the combined
effort of many people is required to produce a quality text book. First and fore-
most is the author’s family, who put up with the long and weird hours that go into
writing a book. Thank you once again, Sally, Bill, Ellen, and David.

The consulting editor, Brian Kernighan, is undoubtedly the best in the busi-
ness. He was the first one to read various drafts of the manuscript and mark it up
with his infinite supply of red pens. His attention to detail, his continual prodding
for readable prose, and his thorough reviews of the manuscript are an immense
resource to a writer.

Technical reviewers provide a different point of view and keep the author
honest by catching technical mistakes. Their comments, suggestions, and (most
importantly) criticisms add greatly to the final product. My thanks to Steve Bel-
lovin, Jon Crowcroft, Pete Haverlock, and Doug Schmidt for comments on the
entire manuscript. Equally valuable comments were provided on portions of the
manuscript by Dave Borman for his thorough review of all the TCP chapters, and
to Bob Gilligan who should be listed as a coauthor for Appendix E.

Adapted Preface to the First Edition XXXV

An author cannot work in isolation, so I would like to thank the following per-
sons for lots of small favors, especially by answering my numerous e-mail ques-
tions: Joe Godsil, im Hogue, Mike Karels, Paul Lucchina, Craig Partridge, Thomas
Skibo, and Jerry Toporek.

This book is the result of my being asked lots of questions on TCP/IP for which
I could find no quick, immediate answer. It was then that I realized that the easi-
est way to obtain the answers was to run small tests, forcing certain conditions to
occur, and just watch what happens. I thank Peter Haverlock for asking the prob-
ing questions and Van Jacobson for providing so much of the publicly available
software that is used in this book to answer the questions.

A book on networking needs a real network to work with along with access
to the Internet. My thanks to the National Optical Astronomy Observatories
(NOAOQ), especially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing
access to their networks and hosts. A special thanks to Steve Grandi for answer-
ing lots of questions and providing accounts on various hosts. My thanks also to
Keith Bostic and Kirk McKusick at the U.C. Berkeley CSRG for access to the latest
4.4BSD system.

Finally, it is the publisher that pulls everything together and does whatever is
required to deliver the final product to the readers. This all revolves around the
editor, and John Wait is simply the best there is. Working with John and the rest
of the professionals at Addison-Wesley is a pleasure. Their professionalism and
attention to detail show in the end result.

Camera-ready copy of the book was produced by the author, a Troff die-hard,
using the Groff package written by James Clark.

Tucson, Arizona W. Richard Stevens
October 1993

This page intentionally left blank

Introduction

Effective communication depends on the use of a common language. This is true
for humans and other animals as well as for computers. When a set of common
behaviors is used with a common language, a protocol is being used. The first defi-
nition of a protocol, according to the New Oxford American Dictionary, is

The official procedure or system of rules governing affairs of state or diplomatic
occasions.

We engage in many protocols every day: asking and responding to questions,
negotiating business transactions, working collaboratively, and so on. Computers
also engage in a variety of protocols. A collection of related protocols is called a
protocol suite. The design that specifies how various protocols of a protocol suite
relate to each other and divide up tasks to be accomplished is called the architec-
ture or reference model for the protocol suite. TCP/IP is a protocol suite that imple-
ments the Internet architecture and draws its origins from the ARPANET Reference
Model (ARM) [RFC0871]. The ARM was itself influenced by early work on packet
switching in the United States by Paul Baran [B64] and Leonard Kleinrock [K64],
in the UK. by Donald Davies [DBSW66], and in France by Louis Pouzin [P73].
Other protocol architectures have been specified over the years (e.g., the ISO pro-
tocol architecture [Z80], Xerox’s XNS [X85], and IBM’s SNA [196]), but TCP/IP has
become the most popular. There are several interesting books that focus on the
history of computer communications and the development of the Internet, such as
[PO7] and [WO02].

It is worth mentioning that the TCP/IP architecture evolved from work that
addressed a need to provide interconnection of multiple different packet-switched
computer networks [CK74]. This was accomplished using a set of gateways (later
called routers) that provided a translation function between each otherwise incom-
patible network. The resulting “concatenated” network or catenet (later called inter-
network) would be much more useful, as many more nodes offering a wide variety
of services could communicate. The types of uses that a global network might
offer were envisioned years before the protocol architecture was fully developed.

Introduction

1.1

In 1968, for example, J. C. R. Licklider and Bob Taylor foresaw the potential uses
for a global interconnected communication network to support “supercommuni-
ties” [LT68]:

Today the on-line communities are separated from one another functionally as
well as geographically. Each member can look only to the processing, storage and
software capability of the facility upon which his community is centered. But
now the move is on to interconnect the separate communities and thereby trans-
form them into, let us call it, a supercommunity. The hope is that interconnection
will make available to all members of all the communities the programs and data
resources of the entire supercommunity . . . The whole will constitute a labile net-
work of networks—ever-changing in both content and configuration.

Thus, it is apparent that the global network concept underpinning the ARPA-
NET and later the Internet was designed to support many of the types of uses we
enjoy today. However, getting to this point was neither simple nor obvious. The
success resulted from paying careful attention to design and engineering, innova-
tive users and developers, and the availability of sufficient resources to move from
concept to prototype and, eventually, to commercial networking products.

This chapter provides an overview of the Internet architecture and TCP/IP
protocol suite, to provide some historical context and to establish an adequate
background for the remaining chapters. Architectures (both protocol and physi-
cal) really amount to a set of design decisions about what features should be sup-
ported and where such features should be logically implemented. Designing an
architecture is more art than science, yet we shall discuss some characteristics of
architectures that have been deemed desirable over time. The subject of network
architecture has been undertaken more broadly in the text by Day [D08], one of
few such treatments.

Architectural Principles

The TCP/IP protocol suite allows computers, smartphones, and embedded devices
of all sizes, supplied from many different computer vendors and running totally
different software, to communicate with each other. By the turn of the twenty-first
century it has become a necessity for modern communication, entertainment, and
commerce. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms
the basis for what is called the global Internet, or the Internet, a wide area network
(WAN) of about two billion users that literally spans the globe (as of 2010, about
30% of the world’s population). Although many people consider the Internet and
the World Wide Web (WWW) to be interchangeable terms, we ordinarily refer to
the Internet in terms of its ability to provide basic communication of messages
between computers. We refer to WWW as an application that uses the Internet for

Section 1.1 Architectural Principles 3

1141

communication. It is perhaps the most important Internet application that brought
Internet technology to world attention in the early 1990s.

Several goals guided the creation of the Internet architecture. In [C88], Clark
recounts that the primary goal was to “develop an effective technique for mul-
tiplexed utilization of existing interconnected networks.” The essence of this
statement is that the Internet architecture should be able to interconnect multiple
distinct networks and that multiple activities should be able to run simultane-
ously on the resulting interconnected network. Beyond this primary goal, Clark
provides a list of the following second-level goals:

¢ Internetcommunication must continue despite loss of networks or gateways.
¢ The Internet must support multiple types of communication services.
¢ The Internet architecture must accommodate a variety of networks.

* The Internet architecture must permit distributed management of its
resources.

¢ The Internet architecture must be cost-effective.

¢ The Internet architecture must permit host attachment with a low level of
effort.

¢ The resources used in the Internet architecture must be accountable.

Many of the goals listed could have been supported with somewhat different
design decisions from those ultimately selected. However, a few design options
were gaining momentum when these architectural principles were being formu-
lated that influenced the designers in the particular choices they made. We will
mention some of the more important ones and their consequences.

Packets, Connections, and Datagrams

Up to the 1960s, the concept of a network was based largely on the telephone net-
work. It was developed to connect telephones to each other for the duration of a
call. A call was normally implemented by establishing a connection from one party
to another. Establishing a connection meant that a circuit (initially, a physical elec-
trical circuit) was made between one telephone and another for the duration of a
call. When the call was complete, the connection was cleared, allowing the circuit
to be used by other users’ calls. The call duration and identification of the connec-
tion endpoints were used to perform billing of the users. When established, the
connection provided each user a certain amount of bandwidth or capacity to send
information (usually voice sounds). The telephone network progressed from its
analog roots to digital, which greatly improved its reliability and performance.
Data inserted into one end of a circuit follows some preestablished path through
the network switches and emerges on the other side in a predictable fashion,

Introduction

usually with some upper bound on the time (latency). This gives predictable ser-
vice, as long as a circuit is available when a user needs one. Circuits allocate a
pathway through the network that is reserved for the duration of a call, even if
they are not entirely busy. This is a common experience today with the phone
network—as long as a call is taking place, even if we are not saying anything, we
are being charged for the time.

One of the important concepts developed in the 1960s (e.g., in [B64]) was the
idea of packet switching. In packet switching, “chunks” (packets) of digital informa-
tion comprising some number of bytes are carried through the network somewhat
independently. Chunks coming from different sources or senders can be mixed
together and pulled apart later, which is called multiplexing. The chunks can be
moved around from one switch to another on their way to a destination, and
the path might be subject to change. This has two potential advantages: the net-
work can be more resilient (the designers were worried about the network being
physically attacked), and there can be better utilization of the network links and
switches because of statistical multiplexing.

When packets are received at a packet switch, they are ordinarily stored in buf-
fer memory or queue and processed in a first-come-first-served (FCFS) fashion. This
is the simplest method for scheduling the way packets are processed and is also
called first-in-first-out (FIFO). FIFO buffer management and on-demand schedul-
ing are easily combined to implement statistical multiplexing, which is the pri-
mary method used to intermix traffic from different sources on the Internet. In
statistical multiplexing, traffic is mixed together based on the arrival statistics or
timing pattern of the traffic. Such multiplexing is simple and efficient, because if
there is any network capacity to be used and traffic to use it, the network will be
busy (high utilization) at every bottleneck or choke point. The downside of this
approach is limited predictability—the performance seen by any particular appli-
cation depends on the statistics of other applications that are sharing the network.
Statistical multiplexing is like a highway where the cars can change lanes and
ultimately intersperse in such a way that any point of constriction is as busy as it
can be.

Alternative techniques, such as time-division multiplexing (TDM) and static mul-
tiplexing, typically reserve a certain amount of time or other resources for data on
each connection. Although such techniques can lead to more predictability, a fea-
ture useful for supporting constant bit rate telephone calls, they may not fully uti-
lize the network capacity because reserved bandwidth may go unused. Note that
while circuits are straightforwardly implemented using TDM techniques, virtual
circuits (VCs) that exhibit many of the behaviors of circuits but do not depend on
physical circuit switches can be implemented atop connection-oriented packets.
This is the basis for a protocol known as X.25 that was popular until about the
early 1990s when it was largely replaced with Frame Relay and ultimately digital
subscriber line (DSL) technology and cable modems supporting Internet connectiv-
ity (see Chapter 3).

Section 1.1 Architectural Principles 5

The VC abstraction and connection-oriented packet networks such as X.25
required some information or state to be stored in each switch for each connec-
tion. The reason is that each packet carries only a small bit of overhead informa-
tion that provides an index into a state table. For example, in X.25 the 12-bit logical
channel identifier (LCI) or logical channel number (LCN) serves this purpose. At each
switch, the LCI or LCN is used in conjunction with the per-flow state in each switch
to determine the next switch along the path for the packet. The per-flow state is
established prior to the exchange of data on a VC using a signaling protocol that
supports connection establishment, clearing, and status information. Such net-
works are consequently called connection-oriented.

Connection-oriented networks, whether built on circuits or packets, were the
most prevalent form of networking for many years. In the late 1960s, another option
was developed known as the datagram. Attributed in origin to the CYCLADES
[P73] system, a datagram is a special type of packet in which all the identify-
ing information of the source and final destination resides inside the packet itself
(instead of in the packet switches). Although this tends to require larger packets,
per-connection state at packet switches is no longer required and a connectionless
network could be built, eliminating the need for a (complicated) signaling proto-
col. Datagrams were eagerly embraced by the designers of the early Internet, and
this decision had profound implications for the rest of the protocol suite.

One other related concept is that of message boundaries or record markers. As
shown in Figure 1-1, when an application sends more than one chunk of infor-
mation into the network, the fact that more than one chunk was written may or

Application Writes to Application Reads from
Network Network
Protocol That
‘ w2 ‘ ‘ W1 bytes — Preserves Message —» ‘ w2 H W1 bytes ‘
N y Boundaries N y
4 4
Application invokes Application “read”
“write” function 3 times functions return same
with sizes W1, W2, W3 size as corresponding
/\ writes (W1, W2, W3)
s Protocol That Does Not
[wa] [w2 [[wi — Preserve Message — [rR[rR[R] [R]R]R]
Boundaries N Y,
~

Application “read” functions return
however much application requests
(e.g., 6 reads, R bytes each)

Figure 1-1 Applications write messages that are carried in protocols. A message boundary is the position or
byte offset between one write and another. Protocols that preserve message boundaries indicate
the position of the sender’s message boundaries at the receiver. Protocols that do not preserve
message boundaries (e.g., streaming protocols like TCP) ignore this information and do not make
it available to a receiver. As a result, applications may need to implement their own methods to
indicate a sender’s message boundaries if this capability is required.

Introduction

1.1.2

may not be preserved by the communication protocol. Most datagram protocols
preserve message boundaries. This is natural because the datagram itself has a
beginning and an end. However, in a circuit or VC network, it is possible that an
application may write several chunks of data, all of which are read together as one
or more different-size chunks by a receiving application. These types of protocols
do not preserve message boundaries. In cases where an underlying protocol fails
to preserve message boundaries but they are needed by an application, the appli-
cation must provide its own.

The End-to-End Argument and Fate Sharing

When large systems such as an operating system or protocol suite are being
designed, a question often arises as to where a particular feature or function
should be placed. One of the most important principles that influenced the design
of the TCP/IP suite is called the end-to-end argument [SRC84]:

The function in question can completely and correctly be implemented only with
the knowledge and help of the application standing at the end points of the com-
munication system. Therefore, providing that questioned function as a feature of
the communication itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful as a performance
enhancement.)

This argument may seem fairly straightforward upon first reading but can
have profound implications for communication system design. It argues that cor-
rectness and completeness can be achieved only by involving the application or
ultimate user of the communication system. Efforts to correctly implement what
the application is “likely” to need are doomed to incompleteness. In short, this
principle argues that important functions (e.g., error control, encryption, delivery
acknowledgment) should usually not be implemented at low levels (or layers; see
Section 1.2.1) of large systems. However, low levels may provide capabilities that
make the job of the endpoints somewhat easier and consequently may improve
performance. A nuanced reading reveals that this argument suggests that low-
level functions should not aim for perfection because a perfect guess at what the
application may require is unlikely to be possible.

The end-to-end argument tends to support a design with a “dumb” network
and “smart” systems connected to the network. This is what we see in the TCP/IP
design, where many functions (e.g., methods to ensure that data is not lost, con-
trolling the rate at which a sender sends) are implemented in the end hosts where
the applications reside. The selection of which functions are implemented together
in the same computer or network or software stack is the subject of another related
principle known as fate sharing [C88].

Fate sharing suggests placing all the necessary state to maintain an active
communication association (e.g., virtual connection) at the same location with

Section 1.1 Architectural Principles 7

113

the communicating endpoints. With this reasoning, the only type of failure that
destroys communication is one that also destroys one or more of the endpoints,
which obviously destroys the overall communication anyhow. Fate sharing is one
of the design philosophies that allows virtual connections (e.g., those implemented
by TCP) to remain active even if connectivity within the network has failed for a
(modest) period of time. Fate sharing also supports a “dumb network with smart
end hosts” model, and one of the ongoing tensions in today’s Internet is what
functions reside in the network and what functions do not.

Error Control and Flow Control

There are some circumstances where data within a network gets damaged or lost.
This can be for a variety of reasons such as hardware problems, radiation that
modifies bits while being transmitted, being out of range in a wireless network,
and other factors. Dealing with such errors is called error control, and it can be
implemented in the systems constituting the network infrastructure, or in the sys-
tems that attach to the network, or some combination. Naturally, the end-to-end
argument and fate sharing would suggest that error control be implemented close
to or within applications.

Usually, if a small number of bit errors are of concern, a number of mathemati-
cal codes can be used to detect and repair the bit errors when data is received or
while it is in transit [LC04]. This task is routinely performed within the network.
When more severe damage occurs in a packet network, entire packets are usu-
ally resent or retransmitted. In circuit-switched or VC-switched networks such as
X.25, retransmission tends to be done inside the network. This may work well for
applications that require strict in-order, error-free delivery of their data, but some
applications do not require this capability and do not wish to pay the costs (such
as connection establishment and potential retransmission delays) to have their
data reliably delivered. Even a reliable file transfer application does not really care
in what order the chunks of file data are delivered, provided it is eventually satis-
fied that all chunks are delivered without errors and can be reassembled back into
the original order.

As an alternative to the overhead of reliable, in-order delivery implemented
within the network, a different type of service called best-effort delivery was
adopted by Frame Relay and the Internet Protocol. With best-effort delivery, the
network does not expend much effort to ensure that data is delivered without
errors or gaps. Certain types of errors are usually detected using error-detecting
codes or checksums, such as those that might affect where a datagram is directed,
but when such errors are detected, the errant datagram is merely discarded with-
out further action.

If best-effort delivery is successful, a fast sender can produce information at
a rate that exceeds the receiver’s ability to consume it. In best-effort IP networks,
slowing down a sender is achieved by flow control mechanisms that operate out-
side the network and at higher levels of the communication system. In particular,

Introduction

1.2

1.241

TCP handles this type of problem, and we shall discuss it in detail in Chapters 15
and 16. This is consistent with the end-to-end argument: TCP, which resides at the
end hosts, handles rate control. It is also consistent with fate sharing: the approach
allows some elements of the network infrastructure to fail without necessarily
affecting the ability of the devices outside the network to communicate (as long as
some communication path continues to operate).

Design and Implementation

Although a protocol architecture may suggest a certain approach to implemen-
tation, it usually does not include a mandate. Consequently, we make a distinc-
tion between the protocol architecture and the implementation architecture, which
defines how the concepts in a protocol architecture may be rendered into exis-
tence, usually in the form of software.

Many of the individuals responsible for implementing the protocols for the
ARPANET were familiar with the software structuring of operating systems, and
an influential paper describing the “THE” multiprogramming system [D68] advo-
cated the use of a hierarchical structure as a way to deal with verification of the
logical soundness and correctness of a large software implementation. Ultimately,
this contributed to a design philosophy for networking protocols involving mul-
tiple layers of implementation (and design). This approach is now called layering
and is the usual approach to implementing protocol suites.

Layering

With layering, each layer is responsible for a different facet of the communica-
tions. Layers are beneficial because a layered design allows developers to evolve
different portions of the system separately, often by different people with some-
what different areas of expertise. The most frequently mentioned concept of pro-
tocol layering is based on a standard called the Open Systems Interconnection (OSI)
model [Z80] as defined by the International Organization for Standardization
(ISO). Figure 1-2 shows the standard OSI layers, including their names, numbers,
and a few examples. The Internet’s layering model is somewhat simpler, as we
shall see in Section 1.3.

Although the OSI model suggests that seven logical layers may be desirable
for modularity of a protocol architecture implementation, the TCP/IP architec-
ture is normally considered to consist of five. There was much debate about the
relative benefits and deficiencies of the OSI model, and the ARPANET model that
preceded it, during the early 1970s. Although it may be fair to say that TCP/IP
ultimately “won,” a number of ideas and even entire protocols from the ISO pro-
tocol suite (protocols standardized by ISO that follow the OSI model) have been
adopted for use with TCP/IP (e.g., IS-IS [RFC3787]).

Section 1.2 Design and Implementation 9

Number Name Description/Example
7 Application Specifies methods for accomplishing some user-initiated task. Application-layer protocols tend to
pp be devised and implemented by application developers. Examples include FTP, Skype, etc.
. Specifies methods for expressing data formats and translation rules for applications. A standard
6 Presentation example would be conversion of EBCDIC to ASCII coding for characters (but of little concern
o today). Encryption is sometimes associated with this layer but can also be found at other layers.
[%]
o
T . Specifies methods for multiple connections constituting a communication session. These may
5 Session include closing connections, restarting connections, and checkpointing progress. ISO X.225 is a
session-layer protocol.
Specifies methods for connections or associations between multiple programs running on the
4 Transport same computer system. This layer may also implement reliable delivery if not implemented
elsewhere (e.g., Internet TCP, ISO TP4).
Network or Specifies methods for communicating in a multihop fashion across potentially different types of
3 3 link networks. For packet networks, describes an abstract packet format and its standard
< Internetwork addressing structure (.g., IP datagram, X.25 PLP, ISO CLNP).
]
o
o) Specifies methods for communication across a single link, including “media access” control
g 2 L|nk protocols when multiple systems share the same media. Error detection is commonly included at
g this layer, along with link-layer address formats (e.g., Ethernet, Wi-Fi, ISO 13239/HDLC).
°
E X Specifies connectors, data rates, and how bits are encoded on some media. Also describes low-
< 1 PhyS|Ca| level error detection and correction, plus frequency assignments. We mostly stay clear of this
layer in this text. Examples include V.92, Ethernet 1000BASE-T, SONET/SDH.

Figure 1-2 The standard seven-layer OSI model as specified by the ISO. Not all protocols are implemented by
every networked device (at least in theory). The OSI terminology and layer numbers are widely
used.

As described briefly in Figure 1-2, each layer has a different responsibility.
From the bottom up, the physical layer defines methods for moving digital infor-
mation across a communication medium such as a phone line or fiber-optic cable.
Portions of the Ethernet and Wireless LAN (Wi-Fi) standards are here, although
we do not delve into this layer very much in this text. The link or data-link layer
includes those protocols and methods for establishing connectivity to a neighbor
sharing the same medium. Some link-layer networks (e.g., DSL) connect only two
neighbors. When more than one neighbor can access the same shared network, the
network is said to be a multi-access network. Wi-Fi and Ethernet are examples of
such multi-access link-layer networks, and specific protocols are used to mediate
which stations have access to the shared medium at any given time. We discuss
these in Chapter 3.

Moving up the layer stack, the network or internetwork layer is of great interest
to us. For packet networks such as TCP/IP, it provides an interoperable packet for-
mat that can use different types of link-layer networks for connectivity. The layer
also includes an addressing scheme for hosts and routing algorithms that choose
where packets go when sent from one machine to another. Above layer 3 we find
protocols that are (at least in theory) implemented only by end hosts, including
the transport layer. Also of great interest to us, it provides a flow of data between
sessions and can be quite complex, depending on the types of services it provides

10

Introduction

1.2.2

(e.g., reliable delivery on a packet network that might drop data). Sessions rep-
resent ongoing interactions between applications (e.g., when “cookies” are used
with a Web browser during a Web login session), and session-layer protocols may
provide capabilities such as connection initiation and restart, plus checkpointing
(saving work that has been accomplished so far). Above the session layer we find
the presentation layer, which is responsible for format conversions and standard
encodings for information. As we shall see, the Internet protocols do not include a
formal session or presentation protocol layer, so these functions are implemented
by applications if needed.

The top layer is the application layer. Applications usually implement their
own application-layer protocols, and these are the ones most visible to users.
There is a wide variety of application-layer protocols, and programmers are con-
stantly inventing new ones. Consequently, the application layer is where there is
the greatest amount of innovation and where new capabilities are developed and
deployed.

Multiplexing, Demultiplexing, and Encapsulation in Layered
Implementations

One of the major benefits of a layered architecture is its natural ability to perform
protocol multiplexing. This form of multiplexing allows multiple different protocols
to coexist on the same infrastructure. It also allows multiple instantiations of the
same protocol object (e.g., connections) to be used simultaneously without being
confused.

Multiplexing can occur at different layers, and at each layer a different sort of
identifier is used for determining which protocol or stream of information belongs
together. For example, at the link layer, most link technologies (such as Ethernet
and Wi-Fi) include a protocol identifier field value in each packet to indicate which
protocol is being carried in the link-layer frame (IP is one such protocol). When
an object (packet, message, etc.), called a protocol data unit (PDU), at one layer is
carried by a lower layer, it is said to be encapsulated (as opaque data) by the next
layer down. Thus, multiple objects at layer N can be multiplexed together using
encapsulation in layer N - 1. Figure 1-3 shows how this works. The identifier at
layer N -1 is used to determine the correct receiving protocol or program at layer
N during demultiplexing.

In Figure 1-3, each layer has its own concept of a message object (a PDU) corre-
sponding to the particular layer responsible for creating it. For example, if a layer
4 (transport) protocol produces a packet, it would properly be called a layer 4 PDU
or transport PDU (TPDU). When a layer is provided a PDU from the layer above it,
it usually “promises” to not look into the contents of the PDU. This is the essence
of encapsulation—each layer treats the data from above as opaque, uninterpre-
table information. Most commonly a layer prepends the PDU with its own header,
although trailers are used by some protocols (not TCP/IP). The header is used for
multiplexing data when sending, and for the receiver to perform demultiplexing,

Section 1.2 Design and Implementation 11

Layer Number Encapsulated Object
N Layer N PDU
))
))
(] (]
: :
y y
Layer PDU from Layer N Layer
N-1 N-1 Treated as Opaque Data at Layer N - 1 N-1
Header paq Y Trailer
:
‘ Q
N-2 Layer N -2 PDU from Layer N - 1
° Header Treated as Opaque Data at Layer N - 2
B — Front of PDU

Figure 1-3 Encapsulation is usually used in conjunction with layering. Pure encapsulation involves
taking the PDU of one layer and treating it as opaque (uninterpreted) data at the layer
below. Encapsulation takes place at each sender, and decapsulation (the reverse opera-
tion) takes place at each receiver. Most protocols use headers during encapsulation; a few
also use trailers.

based on a demultiplexing (demux) identifier. In TCP/IP networks such identifiers
are commonly hardware addresses, IP addresses, and port numbers. The header
may also include important state information, such as whether a virtual circuit is
being set up or has already completed setup. The resulting object is another PDU.

One other important feature of layering suggested by Figure 1-2 is that in pure
layering not all networked devices need to implement all the layers. Figure 1-4
shows that in some cases a device needs to implement only a few layers if it is
expected to perform only certain types of processing.

In Figure 1-4, a somewhat idealized small internet includes two end systems, a
switch, and a router. In this figure, each number corresponds to a type of protocol
at a particular layer. As we can see, each device implements a different subset of
the layer stack. The host on the left implements three different link-layer protocols
(D, E, and F) with corresponding physical layers and three different transport-
layer protocols (A, B, and C) that run on a single type of network-layer protocol.
End hosts implement all the layers, switches implement up to layer 2 (this switch
implements D and G), and routers implement up to layer 3. Routers are capable
of interconnecting different types of link-layer networks and must implement the
link-layer protocols for each of the network types they interconnect.

12

Introduction

Layer
Number

IS

N

Application, Application, Application,
Presentation, Presentation, Presentation,
Session Session ° ° Session
Layers Layers]] Layers
(in Application) (in application) : : (in Application)

Transport Transport Transport § L cceccccccecceccccecececcccccacmeaans H
Layer C Layer B Layer A Transport Layer A
Network Layer = = fpeececccccccccccccccccccccd Network Layer P Network Layer

Link Layer F | Link Layer E | Link LayerD peea LinkLayerD | LinkLayer G p==a LinkLayer G | LinkLayerD f==- Link Layer D

Phy F Phy E Phy D p—{ PhyD Phy G et PhyG Phy D — Phy D
Switch
Host . Router Host
(Bridge)

Figure 1-4 Different network devices implement different subsets of the protocol stack. End hosts tend to

implement all the layers. Routers implement layers below the transport layer, and switches imple-
ment link-layer protocols and below. This idealized structure is often violated because routers and
switches usually include the ability to act as a host (e.g., to be managed and set up) and therefore
need an implementation of all of the layers even if they are rarely used.

The internet of Figure 1-4 is somewhat idealized because today’s switches and
routers often implement more than the protocols they are absolutely required to
implement for forwarding data. This is for a number of reasons, including man-
agement. In such circumstances, devices such as routers and switches must some-
times act as hosts and support services such as remote login. To do this, they
usually must implement transport and application protocols.

Although we show only two hosts communicating, the link- and physical-
layer networks (labeled as D and G) might have multiple hosts attached. If so,
then communication is possible between any pair of systems that implement the
appropriate higher-layer protocols. In Figure 1-4 we can differentiate between an
end system (the two hosts on either side) and an intermediate system (the router in
the middle) for a particular protocol suite. Layers above the network layer use end-
to-end protocols. In our picture these layers are needed only on the end systems.
The network layer, however, provides a hop-by-hop protocol and is used on the two
end systems and every intermediate system. The switch or bridge is not ordinarily
considered an intermediate system because it is not addressed using the internet-
working protocol’s addressing format, and it operates in a fashion that is largely
transparent to the network-layer protocol. From the point of view of the routers
and end systems, the switch or bridge is essentially invisible.

A router, by definition, has two or more network interfaces (because it con-
nects two or more networks). Any system with multiple interfaces is called multi-
homed. A host can also be multihomed, but unless it specifically forwards packets
from one interface to another, it is not called a router. Also, routers need not be

Section 1.3 The Architecture and Protocols of the TCP/IP Suite 13

1.3

1.3.1

special hardware boxes that only move packets around an internet. Most TCP/IP
implementations, for example, allow a multihomed host to act as a router also,
if properly configured to do so. In this case we can call the system either a host
(when an application such as File Transfer Protocol (FTP) [RFC0959] or the Web is
used) or a router (when it is forwarding packets from one network to another). We
will use whichever term makes sense given the context.

One of the goals of an internet is to hide all of the details of the physical lay-
out (the topology) and lower-layer protocol heterogeneity from the applications.
Although this is not obvious from our two-network internet in Figure 1-4, the
application layers should not care (and do not care) that even though each host
is attached to a network using link-layer protocol D (e.g., Ethernet), the hosts are
separated by a router and switch that use link-layer G. There could be 20 rout-
ers between the hosts, with additional types of physical interconnections, and the
applications would run without modification (although the performance might be
somewhat different). Abstracting the details in this way is what makes the con-
cept of an internet so powerful and useful.

The Architecture and Protocols of the TCP/IP Suite

So far we have discussed architecture, protocols, protocol suites, and implemen-
tation techniques in the abstract. In this section, we discuss the architecture and
particular protocols that constitute the TCP/IP suite. Although this has become the
established term for the protocols used on the Internet, there are many protocols
beyond TCP and IP in the collection or family of protocols used with the Inter-
net. We begin by noting how the ARPANET reference model of layering, which
ultimately formed the basis for the Internet’s protocol layering, differs somewhat
from the OSI layering discussed earlier.

The ARPANET Reference Model

Figure 1-5 depicts the layering inspired by the ARPANET reference model, which
was ultimately adopted by the TCP/IP suite. The structure is simpler than the OSI
model, but real implementations include a few specialized protocols that do not fit
cleanly into the conventional layers.

Starting from the bottom of Figure 1-5 and working our way up the stack,
the first layer we see is 2.5, an “unofficial” layer. There are several protocols that
operate here, but one of the oldest and most important is called the Address Reso-
lution Protocol (ARP). It is a specialized protocol used with IPv4 and only with
multi-access link-layer protocols (such as Ethernet and Wi-Fi) to convert between
the addresses used by the IP layer and the addresses used by the link layer. We
examine this protocol in Chapter 4. In IPv6 the address-mapping function is part
of ICMPv6, which we discuss in Chapter 8.

14 Introduction
Number Name Description / Example
. f Virtually any Internet-compatible application, including the Web
° 7 Application (HTTP), DNS (Chapter 11), DHCP (Chapter 6).
Provides exchange of data between abstract “ports” managed by
4 Transport applications. May include error and flow control. Examples: TCP
(Chapters 13-17), UDP (Chapter 10), SCTP, DCCP.
Network Unofficial “layer” that helps accomplish setup, management, and
®» 3.5 . security for the network layer. Examples: ICMP (Chapter 8) and
] (Adjunct) IGMP (Chapter 9), IPsec (Chapter 18). .
2 Network
D . - - Layer”
(=] Defines abstract datagrams and provides routing. Examples
D 3 Network include IP (32-bit addresses, 64KB maximum size) and IPv6
g (128-bit addresses, up to 4GB maximum size). Chapters 2,5.
<
<=(Link Unofficial “layer” used to map addresses used at the network to
2.5 . those used at the link layer on multi-access link-layer networks. “Driver”
(AdenCt) Example: ARP (Chapter 4).

Figure 1-5 Protocol layering based on the ARM or TCP/IP suite used in the Internet. There are no official ses-

sion or presentation layers. In addition, there are several “adjunct” or helper protocols that do not
fit well into the standard layers yet perform critical functions for the operation of the other proto-
cols. Some of these protocols are not used with IPv6 (e.g., IGMP and ARP).

At layer number 3 in Figure 1-5 we find IP, the main network-layer protocol
for the TCP/IP suite. We discuss it in detail in Chapter 5. The PDU that IP sends to
link-layer protocols is called an IP datagram and may be as large as 64KB (and up
to 4GB for IPv6). In many cases we shall use the simpler term packet to mean an
IP datagram when the usage context is clear. Fitting large packets into link-layer
PDUs (called frames) that may be smaller is handled by a function called fragmenta-
tion that may be performed by IP hosts and some routers when necessary. In frag-
mentation, portions of a larger datagram are sent in multiple smaller datagrams
called fragments and put back together (called reassembly) when reaching the des-
tination. We discuss fragmentation in Chapter 10.

Throughout the text we shall use the term IP to refer to both IP versions 4 and
6. We use the term IPv6 to refer to IP version 6, and IPv4 to refer to IP version 4,
currently the most popular version. When discussing architecture, the details of
IPv4 versus IPv6 matter little. When we delve into the way particular addressing
and configuration functions work (Chapter 2 and Chapter 6), for example, these
details will become more important.

Because IP packets are datagrams, each one contains the address of the layer
3 sender and recipient. These addresses are called IP addresses and are 32 bits long
for IPv4 and 128 bits long for IPv6; we discuss them in detail in Chapter 2. This
difference in IP address size is the characteristic that most differentiates IPv4 from
IPv6. The destination address of each datagram is used to determine where each
datagram should be sent, and the process of making this determination and send-
ing the datagram to its next hop is called forwarding. Both routers and hosts per-
form forwarding, although routers tend to do it much more often. There are three

Section 1.3 The Architecture and Protocols of the TCP/IP Suite 15

types of IP addresses, and the type affects how forwarding is performed: unicast
(destined for a single host), broadcast (destined for all hosts on a given network),
and multicast (destined for a set of hosts that belong to a multicast group). Chapter
2 looks at the types of addresses used with IP in more detail.

The Internet Control Message Protocol (ICMP) is an adjunct to IP, and we label
it as a layer 3.5 protocol. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. There are two
versions of ICMP: ICMPv4, used with IPv4, and ICMPv6, used with IPv6. ICMPv6
is considerably more complex and includes functions such as address autocon-
figuration and Neighbor Discovery that are handled by other protocols (e.g., ARP)
on IPv4 networks. Although ICMP is used primarily by IP, it is also possible for
applications to use it. Indeed, we will see that two popular diagnostic tools, ping
and traceroute, use ICMP. ICMP messages are encapsulated within IP data-
grams in the same way transport layer PDUs are.

The Internet Group Management Protocol (IGMP) is another protocol adjunct to
IPv4. It is used with multicast addressing and delivery to manage which hosts are
members of a multicast group (a group of receivers interested in receiving traffic for
a particular multicast destination address). We describe the general properties of
broadcasting and multicasting, along with IGMP and the Multicast Listener Discov-
ery protocol (MLD, used with IPv6), in Chapter 9.

At layer 4, the two most common Internet transport protocols are vastly dif-
ferent. The most widely used, the Transmission Control Protocol (TCP), deals with
problems such as packet loss, duplication, and reordering that are not repaired
by the IP layer. It operates in a connection-oriented (VC) fashion and does not
preserve message boundaries. Conversely, the User Datagram Protocol (UDP) pro-
vides little more than the features provided by IP. UDP allows applications to send
datagrams that preserve message boundaries but imposes no rate control or error
control.

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received packets,
and setting timeouts to make certain the other end acknowledges packets that
are sent, and because this reliable flow of data is provided by the transport layer,
the application layer can ignore all these details. The PDU that TCP sends to IP is
called a TCP segment.

UDP, on the other hand, provides a much simpler service to the application
layer. It allows datagrams to be sent from one host to another, but there is no
guarantee that the datagrams reach the other end. Any desired reliability must
be added by the application layer. Indeed, about all that UDP provides is a set
of port numbers for multiplexing and demultiplexing data, plus a data integrity
checksum. As we can see, UDP and TCP differ radically even though they are at
the same layer. There is a use for each type of transport protocol, which we will
see when we look at the different applications that use TCP and UDP.

16

Introduction

1.3.2

There are two additional transport-layer protocols that are relatively new
and available on some systems. As they are not yet very widespread, we do not
devote much discussion to them, but they are worth being aware of. The first is the
Datagram Congestion Control Protocol (DCCP), specified in [RFC4340]. It provides a
type of service midway between TCP and UDP: connection-oriented exchange of
unreliable datagrams but with congestion control. Congestion control comprises
a number of techniques whereby a sender is limited to a sending rate in order to
avoid overwhelming the network. We discuss it in detail with respect to TCP in
Chapter 16.

The other transport protocol available on some systems is called the Stream
Control Transmission Protocol (SCTP), specified in [RFC4960]. SCTP provides reli-
able delivery like TCP but does not require the sequencing of data to be strictly
maintained. It also allows for multiple streams to logically be carried on the same
connection and provides a message abstraction, which differs from TCP. SCTP
was designed for carrying signaling messages on IP networks that resemble those
used in the telephone network.

Above the transport layer, the application layer handles the details of the par-
ticular application. There are many common applications that almost every imple-
mentation of TCP/IP provides. The application layer is concerned with the details
of the application and not with the movement of data across the network. The
lower three layers are the opposite: they know nothing about the application but
handle all the communication details.

Multiplexing, Demultiplexing, and Encapsulation in TCP/IP

We have already discussed the basics of protocol multiplexing, demultiplexing,
and encapsulation. At each layer there is an identifier that allows a receiving sys-
tem to determine which protocol or data stream belongs together. Usually there is
also addressing information at each layer. This information is used to ensure that
a PDU has been delivered to the right place. Figure 1-6 shows how demultiplexing
works in a hypothetical Internet host.

Although it is not really part of the TCP/IP suite, we shall begin bottom-up
and mention how demultiplexing from the link layer is performed, using Ethernet
as an example. We discuss several link-layer protocols in Chapter 3. An arriving
Ethernet frame contains a 48-bit destination address (also called a link-layer or
MAC—Media Access Control—address) and a 16-bit field called the Ethernet type.
A value of 0x0800 (hexadecimal) indicates that the frame contains an IPv4 data-
gram. Values of 0x0806 and 0x86DD indicate ARP and IPv6, respectively. Assum-
ing that the destination address matches one of the receiving system’s addresses,
the frame is received and checked for errors, and the Ethernet Type field value is
used to select which network-layer protocol should process it.

Assuming that the received frame contains an IP datagram, the Ethernet
header and trailer information is removed, and the remaining bytes (which con-
stitute the frame’s payload) are given to IP for processing. IP checks a number of
items, including the destination IP address in the datagram. If the destination

Section 1.3 The Architecture and Protocols of the TCP/IP Suite 17

1.3.3

DNS Web
Server Server
\ \ /)emux on Port Number
ICMP IGMP SCTP DCCP

x f/v/' Demux on IPv4 Protocol Field

(Next Protocol Field in IPv6)
ARP IPv4 IPv6 Checks Destination Network-Layer
Address
4
Demux on Type Field
Ethernet Checks Destination Link-Layer Address

Incoming Frame

Figure 1-6 The TCP/IP stack uses a combination of addressing information and protocol demul-
tiplexing identifiers to determine if a datagram has been received correctly and, if so,
what entity should process it. Several layers also check numeric values (e.g., checksums)
to ensure that the contents have not been damaged in transit.

address matches one of its own and the datagram contains no errors in its header
(IP does not check its payload), the 8-bit IPv4 Protocol field (called Next Header
in IPv6) is checked to determine which protocol to invoke next. Common values
include 1 (ICMP), 2 (IGMP), 4 (IPv4), 6 (TCP), and 17 (UDP). The value of 4 (and
41, which indicates IPv6) is interesting because it indicates the possibility that an
IP datagram may appear inside the payload area of an IP datagram. This violates
the original concepts of layering and encapsulation but is the basis for a powerful
technique known as tunneling, which we discuss more in Chapter 3.

Once the network layer (IPv4 or IPv6) determines that the incoming datagram
is valid and the correct transport protocol has been determined, the resulting data-
gram (reassembled from fragments if necessary) is passed to the transport layer
for processing. At the transport layer, most protocols (including TCP and UDP)
use port numbers for demultiplexing to the appropriate receiving application.

Port Numbers

Port numbers are 16-bit nonnegative integers (i.e., range 0-65535). These numbers
are abstract and do not refer to anything physical. Instead, each IP address has
65,536 associated port numbers for each transport protocol that uses port numbers

18

Introduction

(most do), and they are used for determining the correct receiving application. For
client/server applications (see Section 1.5.1), a server first “binds” to a port num-
ber, and subsequently one or more clients establish connections to the port num-
ber using a particular transport protocol on a particular machine. In this sense,
port numbers act more like telephone number extensions, except they are usually
assigned by standards.

Standard port numbers are assigned by the Internet Assigned Numbers
Authority (IANA). The set of numbers is divided into special ranges, including the
well-known port numbers (0-1023), the registered port numbers (1024-49151), and
the dynamic/private port numbers (49152-65535). Traditionally, servers wishing to
bind to (i.e., offer service on) a well-known port require special privileges such as
administrator or “root” access.

The range of well-known ports is used for identifying many well-known ser-
vices such as the Secure Shell Protocol (SSH, port 22), FTP (ports 20 and 21), Telnet
remote terminal protocol (port 23), e-mail/Simple Mail Transfer Protocol (SMTP,
port 25), Domain Name System (DNS, port 53), the Hypertext Transfer Protocol or Web
(HTTP and HTTPS, ports 80 and 443), Interactive Mail Access Protocol IMAP and
IMAPS, ports 143 and 993), Simple Network Management Protocol (SNMP, ports 161
and 162), Lightweight Directory Access Protocol (LDAP, port 389), and several others.
Protocols with multiple ports (e.g., HTTP and HTTPS) often have different port
numbers depending on whether Transport Layer Security (TLS) is being used with
the base application-layer protocol (see Chapter 18).

Note

If we examine the port numbers for these standard services and other standard
TCP/IP services (Telnet, FTP, SMTP, etc.), we see that most are odd numbers.
This is historical, as these port numbers are derived from the NCP port numbers.
(NCP, the Network Control Protocol, preceded TCP as a transport-layer protocol
for the ARPANET.) NCP was simplex, not full duplex, so each application required
two connections, and an even-odd pair of port numbers was reserved for each
application. When TCP and UDP became the standard transport layers, only a
single port number was needed per application, yet the odd port numbers from
NCP were used.

The registered port numbers are available to clients or servers with special
privileges, but IANA keeps a reserved registry for particular uses, so these port
numbers should generally be avoided when developing new applications unless
an IANA allocation has been procured. The dynamic/private port numbers are
essentially unregulated. As we will see, in some circumstances (e.g., on clients)
the value of the port number matters little because the port number being used
is transient. Such port numbers are also called ephemeral port numbers. They are
considered to be temporary because a client typically needs one only as long as the
user running the client needs service, and the client does not need to be found by

Section 1.4 Internets, Intranets, and Extranets 19

134

1.4

the server in order to establish a connection. Servers, conversely, generally require
names and port numbers that do not change often in order to be found by clients.

Names, Addresses, and the DNS

With TCP/IP, each link-layer interface on each computer (including routers) has
at least one IP address. IP addresses are enough to identify a host, but they are
not very convenient for humans to remember or manipulate (especially the long
addresses used with IPv6). In the TCP/IP world, the DNS is a distributed database
that provides the mapping between host names and IP addresses (and vice versa).
Names are set up in a hierarchy, ending in domains such as .com, .org, .gov, .in,
.uk, and .edu. Perhaps surprisingly, DNS is an application-layer protocol and
thus depends on the other protocols in order to operate. Although most of the
TCP/IP suite does not use or care about names, typical users (e.g., those using Web
browsers) use names frequently, so if the DNS fails to function properly, normal
Internet access is effectively disabled. Chapter 11 looks into the DNS in detail.
Applications that manipulate names can call a standard API function (see
Section 1.5.3) to look up the IP address (or addresses) corresponding to a given
host’s name. Similarly, a function is provided to do the reverse lookup—given an
IP address, look up the corresponding host name. Most applications that take a host
name as input also take an IP address. Web browsers support this capability. For
example, the Uniform Resource Locators (URLs) http://131.243.2.201/index.
html and http://[2001:400:610:102::c9]/index.html can be typed into a Web
browser and are both effectively equivalent tohttp://ee.1bl.gov/index.html (at
the time of writing; the second example requires IPv6 connectivity to be successful).

Internets, Intranets, and Extranets

As suggested previously, the Internet has developed as the aggregate network
resulting from the interconnection of constituent networks over time. The lower-
case internet means multiple networks connected together, using a common proto-
col suite. The uppercase Internet refers to the collection of hosts around the world
that can communicate with each other using TCP/IP. The Internet is an internet,
but the reverse is not true.

One of the reasons for the phenomenal growth in networking during the
1980s was the realization that isolated groups of stand-alone computers made
little sense. A few stand-alone systems were connected together into a network.
Although this was a step forward, during the 1990s we realized that separate
networks that could not interoperate were not as valuable as a bigger network
that could. This notion is the basis for the so-called Metcalfe’s Law, which states
roughly that the value of a computer network is proportional to the square of the
number of connected endpoints (e.g., users or devices). The Internet idea, and its
supporting protocols, would make possible the interconnection of different net-
works. This deceptively simple concept turns out to be remarkably powerful.

http://ee.lbl.gov/index.html

20

Introduction

1.5

1.51

The easiest way to build an internet is to connect two or more networks with
a router. A router is often a special-purpose device for connecting networks. The
nice thing about routers is that they provide connections to many different types
of physical networks: Ethernet, Wi-Fi, point-to-point links, DSL, cable Internet ser-
vice, and so on.

Note

These devices are also called /P routers, but we will use the term router. Historically
these devices were called gateways, and this term is used throughout much of the
older TCP/IP literature. Today the term gateway is used for an application-layer
gateway (ALG), a process that connects two different protocol suites (say, TCP/IP
and IBM’s SNA) for one particular application (often electronic mail or file transfer).

In recent years, other terms have been adopted for different configurations of
internets using the TCP/IP protocol suite. An intranet is the term used to describe a
private internetwork, usually run by a business or other enterprise. Most often, the
intranet provides access to resources available only to members of the particular
enterprise. Users may connect to their (e.g., corporate) intranet using a virtual private
network (VPN). VPN help to ensure that access to potentially sensitive resources in
an intranet is made available only to authorized users, usually using the tunneling
concept we mentioned previously. We discuss VPNs in more detail in Chapter 7.

In many cases an enterprise or business wishes to set up a network containing
servers accessible to certain partners or other associates using the Internet. Such
networks, which also often involve the use of a VPN, are known as extranets and
consist of computers attached outside the serving enterprise’s firewall (see Chap-
ter 7). Technically, there is little difference between an intranet, an extranet, and
the Internet, but the usage cases and administrative policies are usually different,
and therefore a number of these more specific terms have evolved.

Designing Applications

The network concepts we have touched upon so far provide a fairly simple service
model [RFC6250]: moving bytes between programs running on different (or, occa-
sionally, the same) computers. To do anything useful with this capability, we need
networked applications that use the network for providing services or perform-
ing computations. Networked applications are typically structured according to a
small number of design patterns. The most common of these are client/server and
peer-to-peer.

Client/Server

Most network applications are designed so that one side is the client and the other
side is the server. The server provides some type of service to clients, such as

Section 1.5 Designing Applications 21

1.5.2

access to files on the server host. We can categorize servers into two classes: itera-
tive and concurrent. An iterative server iterates through the following steps:

I1. Wait for a client request to arrive.

I2. Process the client request.

I3. Send the response back to the client that sent the request.
14. Go back to step I1.

The problem with an iterative server occurs when step 12 takes a long time.
During this time no other clients are serviced. A concurrent server, on the other
hand, performs the following steps:

C1. Wait for a client request to arrive.

C2. Start a new server instance to handle this client’s request. This may involve
creating a new process, task, or thread, depending on what the underly-
ing operating system supports. This new server handles one client’s entire
request. When the requested task is complete, the new server terminates.
Meanwhile, the original server instance continues to C3.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other
server instances to handle the client requests. Each client has, in essence, its own
server. Assuming that the operating system allows multiprogramming (essen-
tially all do today), multiple clients are serviced concurrently. The reason we cat-
egorize servers, and not clients, is that a client normally cannot tell whether it is
talking to an iterative server or a concurrent server. As a general rule, most servers
are concurrent.

Note that we use the terms client and server to refer to applications and not
to the particular computer systems on which they run. The very same terms are
sometimes used to refer to the pieces of hardware that are most often used to exe-
cute either client or server applications. Although the terminology is thus some-
what imprecise, it works well enough in practice. As a result, it is common to find
a server (in the hardware sense) running more than one server (in the application
sense).

Peer-to-Peer

Some applications are designed in a more distributed fashion where there is no
single server. Instead, each application acts both as a client and as a server, some-
times as both at once, and is capable of forwarding requests. Some very popular
applications (e.g., Skype [SKYPE], BitTorrent [BT]) are of this form. These applica-
tions are called peer-to-peer or p2p applications. A concurrent p2p application may

22

Introduction

1.5.3

1.6

receive an incoming request, determine if it is able to respond to the request, and
if not forward the request on to some other peer. Thus, the set of p2p applications
together form a network among applications, also called an overlay network. Such
overlays are now commonplace and can be extremely powerful. Skype, for exam-
ple, has grown to be the largest carrier of international telephone calls. According
to some estimates, BitTorrent was responsible for more than half of all Internet
traffic in 2009 [IPIS].

One of the primary problems in p2p networks is called the discovery problem.
That is, how does one peer find which other peer(s) can provide the data or service
it wants in a network where peers may come and go? This is usually handled by
a bootstrapping procedure whereby each client is initially configured with the
addresses and port numbers of some peers that are likely to be operating. Once
connected, the new participant learns of other active peers and, depending on the
protocol, what services or files they provide.

Application Programming Interfaces (APIs)

Applications, whether p2p or client/server, need to express their desired network
operations (e.g., make a connection, write or read data). This is usually supported
by a host operating system using a networking application programming interface
(API). The most popular APl is called sockets or Berkeley sockets, indicating where it
was originally developed [LJFK93].

This text is not a programming text, but occasionally we refer to a feature of
TCP/IP and whether that feature is provided by the sockets API or not. All of the
programming details with examples for sockets can be found in [SFR04]. Modi-
fications to sockets intended for use with IPv6 are also described in a number
of freely available online documents [RFC3493][RFC3542][RFC3678][RFC4584]
[RFC5014].

Standardization Process

Newcomers to the TCP/IP suite often wonder just who is responsible for specify-
ing and standardizing the various protocols and how they operate. A number
of organizations represent the answer to this question. The group with which
we will most often be concerned is the Internet Engineering Task Force (IETF)
[RFC4677]. This group meets three times each year in various locations around
the world to develop, discuss, and agree on standards for the Internet’s “core”
protocols. Exactly what constitutes “core” is subject to some debate, but common
protocols such as IPv4, IPv6, TCP, UDP, and DNS are clearly in the purview of
IETE. Attendance at IETF meetings is open to anyone, but it is not free.

IETF is a forum that elects leadership groups called the Internet Architec-
ture Board (IAB) and the Internet Engineering Steering Group (IESG). The IAB is
chartered to provide architectural guidance to activities in IETF and to perform a

Section 1.6 Standardization Process 23

1.6.1

number of other tasks such as appointing liaisons to other standards-defining orga-
nizations (SDOs). The IESG has decision-making authority regarding the creation
and approval of new standards, along with modifications to existing standards.
The “heavy lifting” or detailed work is generally performed by IETF working
groups that are coordinated by working group chairs who volunteer for this task.

In addition to the IETF, there are two other important groups that interact
closely with the IETF. The Internet Research Task Force (IRTF) explores protocols,
architectures, and procedures that are not deemed mature enough for standard-
ization. The chair of the IRTF is a nonvoting member of IAB. The IAB, in turn,
works with the Internet Society (ISOC) to help influence and promote worldwide
policies and education regarding Internet technologies and usage.

Request for Comments (RFC)

Every official standard in the Internet community is published as a Request for
Comments, or RFC. RFCs can be created in a number of ways, and the publisher of
RFCs (called the RFC editor) recognizes multiple document streams corresponding
to the way an RFC has been developed. The current streams (as of 2010) include
the IETE IAB, IRTF, and independent submission streams. Prior to being accepted
and published (permanently) as an RFC, documents exist as temporary Internet
drafts while they receive comments and progress through the editing and review
process.

All RFCs are not standards. Only so-called standards-track category RFCs
are considered to be official standards. Other categories include best current prac-
tice (BCP), informational, experimental, and historic. It is important to realize that
just because a document is an RFC does not mean that the IETF has endorsed it
as any form of standard. Indeed, there exist RFCs on which there is significant
disagreement.

The RFCs range in size from a few pages to several hundred. Each is identi-
fied by a number, such as RFC 1122, with higher numbers for newer RFCs. They
are all available for free from a number of Web sites, including http://www.rfc
editor.org. For historical reasons, RFCs are generally delivered as basic text files,
although some RFCs have been reformatted or authored using more advanced file
formats.

A number of RFCs have special significance because they summarize, clarify,
or interpret particular sets of other standards. For example, [REC5000] defines
the set of all other RFCs that are considered official standards as of mid-2008 (the
most recent such RFC at the time of writing). An updated list is available at the
current standards Web site [OIPSW]. The Host Requirements RFCs ([RFC1122] and
[RFC1123]) define requirements for protocol implementations in Internet IPv4
hosts, and the Router Requirements RFC [RFC1812] does the same for routers. The
Node Requirements REC [RFC4294] does both for IPv6 systems.

http://www.rfc-editor.org
http://www.rfc-editor.org

24

Introduction

1.6.2

1.7

Other Standards

Although the IETF is responsible for standardizing most of the protocols we dis-
cuss in this text, other SDOs are responsible for defining protocols that merit our
attention. The most important of these groups include the Institute of Electrical
and Electronics Engineers (IEEE), the World Wide Web Consortium (W3C), and
the International Telecommunication Union (ITU). In their activities relevant to
this text, IEEE is concerned with standards below layer 3 (e.g., Wi-Fi and Ethernet),
and W3C is concerned with application-layer protocols, specifically those related
to Web technologies (e.g., HTML-based syntax). ITU, and more specifically ITU-T
(formerly CCITT), standardizes protocols used within the telephone and cellular
networks, which is becoming an ever more important component of the Internet.

Implementations and Software Distributions

The historical de facto standard TCP/IP implementations were from the Computer
Systems Research Group (CSRG) at the University of California, Berkeley. They
were distributed with the 4.x BSD (Berkeley Software Distribution) system and
with the BSD Networking Releases until the mid-1990s. This source code has been
the starting point for many other implementations. Today, each popular operating
system has its own implementation. In this text, we tend to draw examples from
the TCP/IP implementations in Linux, Windows, and sometimes FreeBSD and
Mac OS (both of which are derived from historical BSD releases). In most cases,
the particular implementation matters little.

Figure 1-7 shows a chronology of the various BSD releases, indicating the
important TCP/IP features we cover in later chapters. It also shows the years when
Linux and Windows began supporting TCP/IP. The BSD Networking Releases
shown in the second column were freely available public source code releases con-
taining all of the networking code, both the protocols themselves and many of the
applications and utilities (e.g., the Telnet remote terminal program and FTP file
transfer program).

By the mid-1990s, the Internet and TCP/IP were well established. All subse-
quent popular operating systems support TCP/IP natively. Research and devel-
opment of new TCP/IP features, previously found first in BSD releases, are now
typically found first in Linux releases. Windows has recently implemented a new
TCP/IP stack (starting with Windows Vista) with many new features and native
IPv6 capability. Linux, FreeBSD, and Mac OS X also support IPv6 without setting
any special configuration options.

Section 1.8 Attacks Involving the Internet Architecture 25

Required Licenses

4.1aBSD (1981)
Contained Experimental
Version of BBN's TCP/IP

4.2BSD (1983)
First Widely Available
Release of TCP/IP

4.3BSD (1986)
TCP Performance
Improvements

License Free
4.3BSD Tahoe (1988)

: TCP Fast Retransmit
BS%;\II:;\Aéergg(f;;gA)/are 4/and Congestion Control

Net/1 L

4.3BSD Reno (1990)
TCP Fast Recovery,

Winsock (1992) _Linux 0.98 (1992) BSD Networking Software 4—— Header Prediction, Header
TCP/IP from Third Parties Initial Version of TCP/IP Release 2.0 (1991) Compression in
Net/2 SLIP(Precursor to PPP),

Routing Table Changes

Linux 0.99 (1992-9)
TCP/IP Bug Fixes
4.4BSD(-Encumbered) (1993)

. Multicast Support,
Windows for Workgroups 3.11 (1994) Linux 1.0.0 (1994) 4.4BSD-Lite (1994) 4— “Long Fat Pipe” Mods
Initial Version of TCP/IP Supplied More TCP/IP Bug Fixes Net/3
by Microsoft (Wolverine) as Add-on

Windows 95 (1995)
Initial Integrated Version of TCP/IP
Supplied by Microsoft

Figure 1-7 The history of software releases supporting TCP/IP up to 1995. The various BSD releases pioneered
the availability of TCP/IP. In part because of legal uncertainties regarding the BSD releases in the
early 1990s, Linux was developed as an alternative that was initially tailored for PC users. Micro-
soft began supporting TCP/IP in Windows a couple of years later.

1.8 Attacks Involving the Internet Architecture

Throughout the text we shall briefly describe attacks and vulnerabilities that
have been discovered in the design or implementation of the topic we are dis-
cussing. Few attacks target the Internet architecture as a whole. However, it is
worth observing that the Internet architecture delivers IP datagrams based on
destination IP addresses. As a result, malicious users are able to insert whatever
IP address they choose into the source IP address field of each IP datagram they
send, an activity called spoofing. The resulting datagrams are delivered to their

26

Introduction

1.9

destinations, but it is difficult to perform attribution. That is, it may be difficult or
impossible to determine the origin of a datagram received from the Internet.

Spoofing can be combined with a variety of other attacks seen periodically on
the Internet. Denial-of-service (DoS) attacks usually involve using so much of some
important resource that legitimate users are denied service. For example, sending
so many IP datagrams to a server that it spends all of its time just processing the
incoming packets and performing no other useful work is a type of DoS attack.
Other DoS attacks may involve clogging the network with so much traffic that
no other packets can be sent. This is often accomplished by using many sending
computers, forming a distributed DoS (DDoS) attack.

Unauthorized access attacks involve accessing information or resources in an
unauthorized fashion. This can be accomplished with a variety of techniques such
as exploiting protocol implementation bugs to take control of a system (called
Owning the system and turning it into a zombie or bot). It can also involve vari-
ous forms of masquerading such as an attacker’s agent impersonating a legitimate
user (e.g., by running with the user’s credentials). Some of the more pernicious
attacks involve taking control of many remote systems using malicious software
(malware) and using them in a coordinated, distributed fashion (called botnets).
Programmers who intentionally develop malware and exploit systems for (illegal)
profit or other malicious purposes are generally called black hats. So-called white
hats do the same sorts of technical things but notify vulnerable parties instead of
exploit them.

One other concern with the Internet architecture is that the original Internet
protocols did not perform any encryption in support of authentication, integrity,
or confidentiality. Consequently, malicious users could usually ascertain private
information by merely observing packets in the network. Those with the ability
to modify packets in transit could also impersonate users or alter the contents of
messages. Although these problems have been reduced significantly thanks to
encryption protocols (see Chapter 18), old or poorly designed protocols are still
sometimes used that are vulnerable to simple eavesdropping attacks. Given the
prevalence of wireless networks, where it is relatively easy to “sniff” the packets
sent by others, such older or insecure protocols should be avoided. Note that while
encryption may be enabled at one layer (e.g., on a link-layer Wi-Fi network), only
host-to-host encryption (IP layer or above) protects information across the mul-
tiple network segments an IP datagram is likely to traverse on its way to its final
destination.

Summary

This chapter has been a whirlwind tour of concepts in network architecture and
design in general, plus the TCP/IP protocol suite in particular that we discuss in
detail in later chapters. The Internet architecture was designed to interconnect
different existing networks and provide for a wide range of services and protocols

Section 1.9 Summary 27

operating simultaneously. Packet switching using datagrams was chosen for its
robustness and efficiency. Security and predictable delivery of data (e.g., bounded
latency) were secondary concerns.

Based on their understanding of layered and modular software design in
operating systems, the early implementers of the Internet protocols adopted a
layered design that employs encapsulation. The three main layers in the TCP/IP
protocol suite are the network layer, transport layer, and application layer, and we
mentioned the different responsibilities of each. We also mentioned the link layer
because it relates so closely with the TCP/IP suite. We shall discuss each in more
detail in subsequent chapters.

In TCP/IP, the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides an unreliable datagram service and must
be implemented by all systems addressable on the Internet, whereas the transport
layers (TCP and UDP) provide an end-to-end service to applications running on
end hosts. The primary transport layers differ radically. TCP provides in-ordered
reliable stream delivery with flow control and congestion control. UDP provides
essentially no capabilities beyond IP except port numbers for demultiplexing and
an error detection mechanism. Unlike TCP, however, it supports multicast delivery.

Addresses and demultiplexing identifiers are used by each layer to avoid con-
fusing protocols or different associations/connections of the same protocol. Link-
layer multi-access networks often use 48-bit addresses; IPv4 uses 32-bit addresses
and IPv6 uses 128-bit addresses. The TCP and UDP transport protocols use dis-
tinct sets of port numbers. Some port numbers are assigned by standards, and oth-
ers are used temporarily, usually by client applications when communicating with
servers. Port numbers do not represent anything physical; they are merely used as
a way for applications that want to communicate to rendezvous.

Although port numbers and IP addresses are usually enough to identify the
location of a service on the Internet, they are not very convenient for humans to
remember or use (especially IPv6 addresses). Consequently, the Internet uses
a hierarchical system of host names that can be converted to IP addresses (and
back) using DNS, a distributed database application running on the Internet. DNS
has become an essential component of the Internet infrastructure, and efforts are
under way to make it more secure (see Chapter 18).

An internet is a collection of networks. The common building block for an
internet is a router that connects the networks at the IP layer. The “capital-1” Inter-
net is an internet that spans the globe and interconnects nearly two billion users
(as of 2010). Private internets are called intranets and are usually connected to the
Internet using special devices (firewalls, discussed in Chapter 10) that attempt to
prevent unauthorized access. Extranets usually consist of a subset of an institu-
tion’s intranet that is designed to be accessed by partners or affiliates in a limited
way.

Networked applications are usually designed using a client/server or peer-
to-peer design pattern. Client/server is more popular and traditional, but peer-
to-peer designs have also seen tremendous success. Whatever the design pattern,

28

Introduction

1.10

applications invoke APIs to perform networking tasks. The most common API for
TCP/IP networks is called sockets. It was provided with BSD UNIX distributions,
software releases that pioneered the use of TCP/IP. By the late 1990s the TCP/IP
protocol suite and sockets API were available on every popular operating system.

Security was not a major design goal for the Internet architecture. Determin-
ing where packets originate can be difficult for a receiver, as end hosts can easily
spoof source IP addresses in unsecured IP datagrams. Distributed DoS attacks
also remain an ongoing challenge because victim end hosts can be collected
together to form botnets that can carry out DDoS and other attacks, sometimes
without the system owners” knowledge. Finally, early Internet protocols did little
to ensure privacy of sensitive information, but most of those protocols are now
deprecated, and modern replacements use encryption to provide confidential and
authenticated communications between hosts.

References

[B64] P. Baran, “On Distributed Communications: 1. Introduction to Distributed
Communications Networks,” RAND Memorandum RM-3420-PR, Aug. 1964.
[BT]http://www.bittorrent.com

[C88] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” Proc.
ACM SIGCOMM, Aug. 1988.

[CK74] V. Cerf and R. Kahn, “A Protocol for Packet Network Intercommunica-
tion,” IEEE Transactions on Communications, COM-22(5), May 1974.

[DO08] J. Day, Patterns in Network Architecture: A Return to Fundamentals (Prentice
Hall, 2008).

[D68] E. Dijkstra, “The Structure of the ‘THE’-Multiprogramming System,” Com-
munications of the ACM, 11(5), May 1968.

[DBSW66] D. Davies, K. Bartlett, R. Scantlebury, and P. Wilkinson, “A Digital
Communications Network for Computers Giving Rapid Response at Remote
Terminals,” Proc. ACM Symposium on Operating System Principles, Oct. 1967.

[196] IBM Corporation, Systems Network Architecture—APPN Architecture Reference,
Document SC30-3422-04, 1996.

[IPIS] Ipoque, Internet Study 2008/2009, http://www.ipoque.com/resources/
internet-studies/internet-study-2008_2009

[K64] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay
(McGraw-Hill, 1964).

[LCO4] S. Lin and D. Costello Jr., Error Control Coding, Second Edition (Prentice
Hall, 2004).

http://www.bittorrent.com
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009

Section 1.10 References 29

[LJFK93] S. Leffler, W. Joy, R. Fabry, and M. Karels, “Networking Implementation
Notes—4.4BSD Edition,” June 1993.

[LT68] J. C. R. Licklider and R. Taylor, “The Computer as a Communication
Device,” Science and Technology, Apr. 1968.

[OIPSW]http://www.rfc-editor.org/rfcxx00.html

[P07] J. Pelkey, Entrepreneurial Capitalism and Innovation: A History of Computer
Communications 1968—-1988, available at http://historyofcomputercommunica-
tions.info

[P73] L. Pouzin, “Presentation and Major Design Aspects of the CYCLADES
Computer Network,” NATO Advanced Study Institute on Computer Communi-
cation Networks, 1973.

[REC0871] M. Padlipsky, “A Perspective on the ARPANET Reference Model,”
Internet RFC 0871, Sept. 1982.

[REC0959]]. Postel and J. Reynolds, “File Transfer Protocol,” Internet RFC 0959/
STD 0009, Oct. 1985.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1123] R. Braden, ed., “Requirements for Internet Hosts—Application and
Support,” Internet RFC 1123/STD 0003, Oct. 1989.

[RFC1812] F. Baker, ed., “Requirements for IP Version 4 Routers,” Internet RFC
1812, June 1995.

[RFC3493] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, “Basic
Socket Interface Extensions for IPv6,” Internet RFC 3493 (informational), Feb.
2003.

[RFC3542] W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei, “Advanced
Sockets Application Program Interface (API) for IPv6,” Internet RFC 3542 (infor-
mational), May 2003.

[REC3678] D. Thaler, B. Fenner, and B. Quinn, “Socket Interface Extensions for
Multicast Source Filters,” Internet RFC 3678 (informational), Jan. 2004.

[REFC3787] J. Parker, ed., “Recommendations for Interoperable IP Networks Using
Intermediate System to Intermediate System (IS-IS),” Internet RFC 3787 (informa-
tional), May 2004.

[REC4294]]. Loughney, ed., “IPv6 Node Requirements,” Internet RFC 4294 (infor-
mational), Apr. 2006.

[RFC4340] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” Internet RFC 4340, Mar. 2006.

http://www.rfc-editor.org/rfcxx00.html
http://historyofcomputercommunications.info
http://historyofcomputercommunications.info

30

Introduction

[REC4584] S. Chakrabarti and E. Nordmark, “Extension to Sockets API for
Mobile IPv6,” Internet REC 4584 (informational), July 2006.

[REC4677] P. Hoffman and S. Harris, “The Tao of IETF—A Novice’s Guide to the
Internet Engineering Task Force,” Internet RFC 4677 (informational), Sept. 2006.

[REC4960] R. Stewart, ed., “Stream Control Transmission Protocol,” Internet RFC
4960, Sept. 2007.

[REC5000] RFC Editor, “Internet Official Protocol Standards,” Internet RFC 5000/
STD 0001 (informational), May 2008.

[RFC5014] E. Nordmark, S. Chakrabarti, and J. Laganier, “IPv6 Socket API for
Source Address Selection,” Internet RFC 5014 (informational), Sept. 2007.

[RFC6250] D. Thaler, “Evolution of the IP Model,” Internet RFC 6250 (informa-
tional), May 2011.

[SFR04] W. R. Stevens, B. Fenner, and A. Rudoff, UNIX Network Programming,
Volume 1, Third Edition (Prentice Hall, 2004).

[SKYPE]http://www.skype.com

[SRC84]]. Saltzer, D. Reed, and D. Clark, “End-to-End Arguments in System
Design,” ACM Transactions on Computer Systems, 2(4), Nov. 1984.

[W02] M. Waldrop, The Dream Machine: J. C. R. Licklider and the Revolution That
Made Computing Personal (Penguin Books, 1992).

[X85] Xerox Corporation, Xerox Network Systems Architecture—General Information
Manual, XNSG 068504, 1985.

[Z80] H. Zimmermann, “OSI Reference Model—The ISO Model of Architecture
for Open Systems Interconnection,” IEEE Transactions on Communications, COM-
28(4), Apr. 1980.

http://www.skype.com

2.1

2

The Internet Address
Architecture

Introduction

This chapter deals with the structure of network-layer addresses used in the Inter-
net, also known as IP addresses. We discuss how addresses are allocated and
assigned to devices on the Internet, the way hierarchy in address assignment aids
routing scalability, and the use of special-purpose addresses, including broadcast,
multicast, and anycast addresses. We also discuss how the structure and use of
IPv4 and IPv6 addresses differ.

Every device connected to the Internet has at least one IP address. Devices
used in private networks based on the TCP/IP protocols also require IP addresses.
In either case, the forwarding procedures implemented by IP routers (see Chapter
5) use IP addresses to identify where traffic is going. IP addresses also indicate
where traffic has come from. IP addresses are similar in some ways to telephone
numbers, but whereas telephone numbers are often known and used directly by
end users, IP addresses are often shielded from a user’s view by the Internet’s DNS
(see Chapter 11), which allows most users to use names instead of numbers. Users
are confronted with manipulating IP addresses when they are required to set up
networks themselves or when the DNS has failed for some reason. To understand
how the Internet identifies hosts and routers and delivers traffic between them,
we must understand the role of IP addresses. We are therefore interested in their
administration, structure, and uses.

When devices are attached to the global Internet, they are assigned addresses
that must be coordinated so as to not duplicate other addresses in use on the net-
work. For private networks, the IP addresses being used must be coordinated to
avoid similar overlaps within the private networks. Groups of IP addresses are
allocated to users and organizations. The recipients of the allocated addresses then

31

32

The Internet Address Architecture

2.2

assign addresses to devices, usually according to some network “numbering plan.”
For global Internet addresses, a hierarchical system of administrative entities helps
in allocating addresses to users and service providers. Individual users typically
receive address allocations from Internet service providers (ISPs) that provide both
the addresses and the promise of routing traffic in exchange for a fee.

Expressing IP Addresses

The vast majority of Internet users who are familiar with IP addresses understand
the most popular type: IPv4 addresses. Such addresses are often represented in
so-called dotted-quad or dotted-decimal notation, for example, 165.195.130.107.
The dotted-quad notation consists of four decimal numbers separated by periods.
Each such number is a nonnegative integer in the range [0, 255] and represents
one-quarter of the entire IP address. The dotted-quad notation is simply a way of
writing the whole IPv4 address—a 32-bit nonnegative integer used throughout
the Internet system—using convenient decimal numbers. In many circumstances
we will be concerned with the binary structure of the address. A number of Inter-
net sites, such as http://www.subnetmask.info and http://www.subnet-
calculator.com, now contain calculators for converting between formats of
IP addresses and related information. Table 2-1 gives a few examples of IPv4
addresses and their corresponding binary representations, to get started.

Table 2-1 Example IPv4 addresses written in dotted-quad and binary notation

Dotted-Quad Representation Binary Representation

0.0.0.0 00000000 00000000 00000000 00000000
1.2.34 00000001 00000010 00000011 00000100
10.0.0.255 00001010 00000000 00000000 11111111
165.195.130.107 10100101 11000011 10000010 01101011
255.255.255.255 11111111 11111111 111211111 11111111

In IPv6, addresses are 128 bits in length, four times larger than IPv4 addresses,
and generally speaking are less familiar to most users. The conventional notation
adopted for IPv6 addresses is a series of four hexadecimal (“hex,” or base-16) num-
bers called blocks or fields separated by colons. An example IPv6 address containing
eight blocks would be written as 5f05:2000:80ad:5800:0058:0800:2023:1d71. Although
not as familiar to users as decimal numbers, hexadecimal numbers make the task
of converting to binary somewhat simpler. In addition, a number of agreed-upon
simplifications have been standardized for expressing IPv6 addresses [RFC4291]:

http://www.subnetmask.info
http://www.subnet-calculator.com
http://www.subnet-calculator.com

Section 2.2 Expressing IP Addresses 33

1. Leading zeros of a block need not be written. In the preceding example, the
address could have been written as 5£05:2000:80ad:5800:58:800:2023:1d71.

2. Blocks of all zeros can be omitted and replaced by the notation ::. For exam-
ple, the IPv6 address 0:0:0:0:0:0:0:1 can be written more compactly as ::1.
Similarly, the address 2001:0db8:0:0:0:0:0:2 can be written more compactly
as 2001:db8::2. To avoid ambiguities, the :: notation may be used only once
in an IPv6 address.

3. Embedded IPv4 addresses represented in the IPv6 format can use a form
of hybrid notation in which the block immediately preceding the IPv4 por-
tion of the address has the value ffff and the remaining part of the address
is formatted using dotted-quad. For example, the IPv6 address ::ffff:10.0.0.1
represents the IPv4 address 10.0.0.1. This is called an IPv4-mapped IPv6
address.

4. A conventional notation is adopted in which the low-order 32 bits of the
IPv6 address can be written using dotted-quad notation. The IPv6 address
::0102:£001 is therefore equivalent to the address ::1.2.240.1. This is called
an [Pv4-compatible IPv6 address. Note that IPv4-compatible addresses are
not the same as IPv4-mapped addresses; they are compatible only in the
sense that they can be written down or manipulated by software in a way
similar to IPv4 addresses. This type of addressing was originally required
for transition plans between IPv4 and IPv6 but is now no longer required
[RFC4291].

Table 2-2 presents some examples of IPv6 addresses and their binary representa-
tions.

Table 2-2 Examples of IPv6 addresses and their binary representations

Hex Notation Binary Representation

5{05:2000:80ad:5800:58:800:2023:1d71

0101111100000101
1000000010101101

0000000001011000
0010000000100011

0010000000000000
0101100000000000

0000100000000000
0001110101110001

0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000001

::1.2.240.1 or ::102:f001

0000000000000000
0000000000000000
0000000000000000
0000000100000010

0000000000000000
0000000000000000
0000000000000000
1111000000000001

34

The Internet Address Architecture

2.3

2.31

In some circumstances (e.g., when expressing a URL containing an address)
the colon delimiter in an IPv6 address may be confused with another separator
such as the colon used between an IP address and a port number. In such circum-
stances, bracket characters, [and], are used to surround the IPv6 address. For
example, the URL

http://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]:443/

refers to port number 443 on IPv6 host 2001:0db8:85a3:08d3:1319:8a2e:0370:7344
using the HTTP/TCP/IPv6 protocols.

The flexibility provided by [RFC4291] resulted in unnecessary confusion due
to the ability to represent the same IPv6 address in multiple ways. To remedy this
situation, [RFC5952] imposes some rules to narrow the range of options while
remaining compatible with [RFC4291]. They are as follows:

1. Leading zeros must be suppressed (e.g., 2001:0db8::0022 becomes
2001:db8::22).

2. The :: construct must be used to its maximum possible effect (most zeros
suppressed) but not for only 16-bit blocks. If multiple blocks contain equal-
length runs of zeros, the first is replaced with ::.

3. The hexadecimal digits a through f should be represented in lowercase.

In most cases, we too will abide by these rules.

Basic IP Address Structure

IPv4 has 4,294,967,296 possible addresses in its address space, and IPv6 has 340,282,3
66,920,938,463,463,374,607,431,768,211,456. Because of the large number of addresses
(especially for IPv6), it is convenient to divide the address space into chunks. IP
addresses are grouped by type and size. Most of the IPv4 address chunks are even-
tually subdivided down to a single address and used to identify a single network
interface of a computer attached to the Internet or to some private intranet. These
addresses are called unicast addresses. Most of the IPv4 address space is unicast
address space. Most of the IPv6 address space is not currently being used. Beyond
unicast addresses, other types of addresses include broadcast, multicast, and
anycast, which may refer to more than one interface, plus some special-purpose
addresses we will discuss later. Before we begin with the details of the current
address structure, it is useful to understand the historical evolution of IP addresses.

Classful Addressing

When the Internet’s address structure was originally defined, every unicast IP
address had a network portion, to identify the network on which the interface using

Section 2.3 Basic IP Address Structure 35

the IP address was to be found, and a host portion, used to identify the particular host
on the network given in the network portion. Thus, some number of contiguous bits
in the address became known as the net number, and remaining bits were known as
the host number. At the time, most hosts had only a single network interface, so the
terms interface address and host address were used somewhat interchangeably.

With the realization that different networks might have different numbers of
hosts, and that each host requires a unique IP address, a partitioning was devised
wherein different-size allocation units of IP address space could be given out to
different sites, based on their current and projected number of hosts. The parti-
tioning of the address space involved five classes. Each class represented a differ-
ent trade-off in the number of bits of a 32-bit IPv4 address devoted to the network
number versus the number of bits devoted to the host number. Figure 2-1 shows
the basic idea.

Class
0 15 16 31

ﬁ Net Number :
(8 bits; 7 free) Host (24 bits)

B f Net Number (16 bits; 14 free) Host (16 bits)

C fita Net Number (24 bits; 21 free) Host (8 bits)
D 10 Multicast Address (32 bits; 28 free)

E it Reserved (32 bits; 28 free)

Figure 2-1 The IPv4 address space was originally divided into five classes. Classes A, B, and C were
used for assigning addresses to interfaces on the Internet (unicast addresses) and for
some other special-case uses. The classes are defined by the first few bits in the address:
0 for class A, 10 for class B, 110 for class C, and so on. Class D addresses are for multicast
use (see Chapter 9), and class E addresses remain reserved.

Here we see that the five classes are named A, B, C, D, and E. The A, B, and
C class spaces were used for unicast addresses. If we look more carefully at this
addressing structure, we can see how the relative sizes of the different classes and
their corresponding address ranges really work. Table 2-3 gives this class struc-
ture (sometimes called classful addressing structure).

36

The Internet Address Architecture

Table 2-3 The original (“classful”) IPv4 address space partitioning

Class

High-
Order Fraction |Number |Number
Address Range Bits Use of Total |of Nets |of Hosts

0.0.0.0-127.255.255.255 0 Unicast/special |1/2 128 16,777,216

128.0.0.0-191.255.255.255 10 Unicast/special |1/4 16,384 65,536

192.0.0.0-223.255.255.255 | 110 Unicast/special |1/8 2,097,152 | 256

224.0.0.0-239.255.255.255 | 1110 Multicast 1/16 N/A N/A

ool

240.0.0.0-255.255.255.255 | 1111 Reserved 1/16 N/A N/A

2.3.2

The table indicates how the classful addressing structure was used primar-
ily to have a way of allocating unicast address blocks of different sizes to users.
The partitioning into classes induces a trade-off between the number of available
network numbers of a given size and the number of hosts that can be assigned
to the given network. For example, a site allocated the class A network number
18.0.0.0 (MIT) has 2* possible addresses to assign as host addresses (i.e., using
IPv4 addresses in the range 18.0.0.0-18.255.255.255), but there are only 127 class A
networks available for the entire Internet. A site allocated a class C network num-
ber, say, 192.125.3.0, would be able to assign only 256 hosts (i.e., those in the range
192.125.3.0-192.125.3.255), but there are more than two million class C network
numbers available.

Note

These numbers are not exact. Several addresses are not generally available for
use as unicast addresses. In particular, the first and last addresses of the range
are not generally available. In our example, the site assigned address range
18.0.0.0 would really be able to assign as many as 2%- 2 = 16,777,214 unicast IP
addresses.

The classful approach to Internet addressing lasted mostly intact for the first
decade of the Internet’s growth (to about the early 1980s). After that, it began to
show its first signs of scaling problems—it was becoming too inconvenient to cen-
trally coordinate the allocation of a new class A, B, or C network number every time
a new network segment was added to the Internet. In addition, assigning class A
and B network numbers tended to waste too many host numbers, whereas class C
network numbers could not provide enough host numbers to many new sites.

Subnet Addressing

One of the earliest difficulties encountered when the Internet began to grow was
the inconvenience of having to allocate a new network number for any new net-
work segment that was to be attached to the Internet. This became especially

Section 2.3 Basic IP Address Structure 37

cumbersome with the development and increasing use of local area networks
(LANS) in the early 1980s. To address the problem, it was natural to consider a
way that a site attached to the Internet could be allocated a network number cen-
trally that could then be subdivided locally by site administrators. If this could be
accomplished without altering the rest of the Internet’s core routing infrastruc-
ture, so much the better.

Implementing this idea would require the ability to alter the line between the
network portion of an IP address and the host portion, but only for local purposes
at a site; the rest of the Internet would “see” only the traditional class A, B, and C
partitions. The approach adopted to support this capability is called subnet address-
ing [RFC0950]. Using subnet addressing, a site is allocated a class A, B, or C net-
work number, leaving some number of remaining host bits to be further allocated
and assigned within a site. The site may further divide the host portion of its base
address allocation into a subnetwork (subnet) number and a host number. Essen-
tially, subnet addressing adds one additional field to the IP address structure, but
without adding any bits to its length. As a result, a site administrator is able to
trade off the number of subnetworks versus the number of hosts expected to be on
each subnetwork without having to coordinate with other sites.

In exchange for the additional flexibility provided by subnet addressing, a
new cost is imposed. Because the definition of the Subnet and Host fields is now
site-specific (not dictated by the class of the network number), all routers and hosts
at a site require a new way to determine where the Subnet field of the address and
the Host field of the address are located within the address. Before subnets, this
information could be derived directly by knowing whether a network number
was from class A, B, or C (as indicated by the first few bits in the address). As an
example, using subnet addressing, an IPv4 address might have the form shown in
Figure 2-2.

Centrally Locally Managed
Allocated at Site
Class
0 15 16 31
B @ Net Number (16 bits; 14 free) Subnet ID (8 bits) | Host ID (8 bits)
Subnet/Host
Partition

Figure 2-2 An example of a subnetted class B address. Using 8 bits for the subnet ID provides for
256 subnets with 254 hosts on each of the subnets. This partitioning may be altered by
the network administrator.

38

The Internet Address Architecture

Figure 2-2 is an example of how a class B address might be “subnetted.”
Assume that some site in the Internet has been allocated a class B network num-
ber. The first 16 bits of every address the site will use are fixed at some particular
number because these bits have been allocated by a central authority. The last 16
bits (which would have been used only to create host numbers in the class B net-
work without subnets) can now be divided by the site network administrator as
needs may dictate. In this example, 8 bits have been chosen for the subnet number,
leaving 8 bits for host numbers. This particular configuration allows the site to
support 256 subnetworks, and each subnetwork may contain up to 254 hosts (now
the first and last addresses for each subnetwork are not available, as opposed to
losing only the first and last addresses of the entire allocated range). Recall that
the subnetwork structure is known only by hosts and routers where the subnet-
ting is taking place. The remainder of the Internet still treats any address associ-
ated with the site just as it did prior to the advent of subnet addressing. Figure 2-3
shows how this works.

All Traffic to or

137.164.23.30 from 128.32.x.x

128.32.2.9
Site Border
128.32.1. Router 128.32.2.x
\ | \ \ |
(0D 128.32.1.1 (0)
\ | \ \
@ Site-Wide Subnet Mask:
S
255.255.255.0
128.32.1.14 128.32.2.122

Figure 2-3 A site is allocated the classical class B network number 128.32. The network administra-
tor decides to apply a site-wide subnet mask of 255.255.255.0, giving 256 subnetworks
where each subnetwork can hold 256 — 2 = 254 hosts. The IPv4 address of each host on
the same subnet has the subnetwork number in common. All of the IPv4 addresses of
hosts on the left-hand LAN segment start with 128.32.1, and all of those on the right start
with 128.32.2.

Section 2.3 Basic IP Address Structure 39

233

This figure shows a hypothetical site attached to the Internet with one border
router (i.e., one attachment point to the Internet) and two internal local area net-
works. The value of x could be anything in the range [0, 255]. Each of the Ethernet
networks is an IPv4 subnetwork of the overall network number 128.32, a class B
address allocation. For other sites on the Internet to reach this site, all traffic with
destination addresses starting with 128.32 is directed by the Internet routing sys-
tem to the border router (specifically, its interface with IPv4 address 137.164.23.30).
At this point, the border router must distinguish among different subnetworks
within the 128.32 network. In particular, it must be able to distinguish and sepa-
rate traffic destined for addresses of the form 128.32.1.x from those destined for
addresses of the form 128.32.2.x. These represent subnetwork numbers 1 and 2,
respectively, of the 128.32 class B network number. In order to do this, the router
must be aware of where the subnet ID is to be found within the addresses. This is
accomplished by a configuration parameter we will discuss next.

Subnet Masks

The subnet mask is an assignment of bits used by a host or router to determine how
the network and subnetwork information is partitioned from the host information
in a corresponding IP address. Subnet masks for IP are the same length as the cor-
responding IP addresses (32 bits for IPv4 and 128 bits for IPv6). They are typically
configured into a host or router in the same way as IP addresses—either statically
(typical for routers) or using some dynamic system such as the Dynamic Host Con-
figuration Protocol (DHCP; see Chapter 6). For IPv4, subnet masks may be written
in the same way an IPv4 address is written (i.e., dotted-decimal). Although not
originally required to be arranged in this manner, today subnet masks are struc-
tured as some number of 1 bits followed by some number of 0 bits. Because of this
arrangement, it is possible to use a shorthand format for expressing masks that
simply gives the number of contiguous 1 bits in the mask (starting from the left).
This format is now the most common format and is sometimes called the prefix
length. Table 2-4 presents some examples for IPv4.

Table 2-4 IPv4 subnet mask examples in various formats

Dotted-Decimal | Shorthand

Representation (Prefix Length) |Binary Representation

128.0.0.0 /1 10000000 00000000 00000000 00000000
255.0.0.0 /8 11111111 00000000 00000000 00000000
255.192.0.0 /10 11111111 11000000 00000000 00000000
255.255.0.0 /16 11111111 11111111 00000000 00000000
255.255.254.0 /23 11111111 11111111 11111110 00000000
255.255.255.192 /27 11111121 11111111 11111111 11100000
255.255.255.255 /32 111111711 11111111 11117111171 11111111

40

The Internet Address Architecture

Table 2-5 IPv6 subnet mask examples in various formats

Hex Notation

Shorthand

(Prefix Length)

Binary Representation

e fEEE£EEEEEEE:

/64

1111111111111111
1111111111111111
0000000000000000
0000000000000000

1111111111111111
1111111111111111
0000000000000000
0000000000000000

ff00::

/8

1111111100000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000

Table 2-5 presents some examples for IPvé6.

Masks are used by routers and hosts to determine where the network/sub-
network portion of an IP address ends and the host part begins. A bit set to 1 in
the subnet mask means the corresponding bit position in an IP address should be
considered part of a combined network/subnetwork portion of an address, which
is used as the basis for forwarding datagrams (see Chapter 5). Conversely, a bit
set to 0 in the subnet mask means the corresponding bit position in an IP address
should be considered part of the host portion. For example, in Figure 2-4 we can
see how the IPv4 address 128.32.1.14 is treated when a subnet mask of 255.255.255.0
is applied to it.

=]

15 16 31

Address ‘ 10000000 0000000 00000007 00001110 ‘ 128.32.1.14

Mask \ 11111111 11111111 1111111ft oooooooo\ 255.255.255.0 (124)

Resut | 10000000 0000000 0000000/ 00000000 | 1283210

Figure 2-4 An IP address can be combined with a subnet mask using a bitwise AND operation in
order to form the network/subnetwork identifier (prefix) of the address used for routing.
In this example, applying a mask of length 24 to the IPv4 address 128.32.1.14 gives the
prefix 128.32.1.0/24.

Here we see how each bit in the address is ANDed with each corresponding
bit in the subnet mask. Recalling the bitwise AND operation, a result bit is only
ever a 1 if the corresponding bits in both the mask and the address are 1. In this
example, we see that the address 128.32.1.14 belongs to the subnet 128.32.1.0/24.
In Figure 2-3, this is precisely the information required by the border router to

Section 2.3 Basic IP Address Structure 41

2.3.4

determine to which subnetwork a datagram destined for the system with address
128.32.1.14 should be forwarded. Note again that the rest of the Internet routing
system does not require knowledge of the subnet mask because routers outside
the site make routing decisions based only on the network number portion of
an address and not the combined network/subnetwork or host portions. Conse-
quently, subnet masks are purely a local matter at the site.

Variable-Length Subnet Masks (VLSM)

So far we have discussed how a network number allocated to a site can be sub-
divided into ranges assigned to multiple subnetworks, each of the same size and
therefore able to support the same number of hosts, based on the operational expec-
tations of the network administrator. We now observe that it is possible to use a
different-length subnet mask applied to the same network number in different por-
tions of the same site. Although doing this complicates address configuration man-
agement, it adds flexibility to the subnet structure because different subnetworks
may be set up with different numbers of hosts. Variable-length subnet masks (VLSM)
are now supported by most hosts, routers, and routing protocols. To understand
how VLSM works, consider the network topology illustrated in Figure 2-5, which
extends Figure 2-3 with two additional subnetworks using VLSM.

Internet

All Traffic to or from 128.32.x.x

137.164.23.30/32 (128.32.0.0/16)
- 128.32.2.9/24
128.32.1.1/24 Site Border
128.32.1.x Router 128.32.2.x
(128.32.1.0/24) ba (128.32.2.0/24)
\) ()
| 128.32.230.129/26 ! !
Internal Rovu&
128.32.1.14/24 \128,32,2,126/24
128.32.230.{128-191}
(128.32.230.128/26) \128.32.2.129/25
128.32.2.130/25 128.32.2.{128-255)

(128.32.2.128/25)

Figure 2-5 VLSM can be used to partition a network number into subnetworks with a differing
number of hosts on each subnet. Each router and host is configured with a subnet mask
in addition to its IP address. Most software supports VLSM, except for some older rout-
ing protocols (e.g., RIP version 1).

42

The Internet Address Architecture

2.3.5

In the more complicated and realistic example shown in Figure 2-5, three dif-
ferent subnet masks are used within the site to subnet the 128.32.0.0/16 network:
/24, /25, and /26. Doing so provides for a different number of hosts on each sub-
net. Recall that the number of hosts is constrained by the number of bits remain-
ing in the IP address that are not used by the network/subnet number. For IPv4
and a /24 prefix, this allows for 32 — 24 = 8 bits (256 hosts); for /25, half as many
(128 hosts); and for /26, half further still (64 hosts). Note that each interface on
each host and router depicted is now given both an IP address and a subnet mask,
but the mask differs across the network topology. With an appropriate dynamic
routing protocol running among the routers (e.g., OSPF, IS-IS, RIPv2), traffic is
able to flow correctly among hosts at the same site or to/from the outside of the
site across the Internet.

Although it may not seem obvious, there is a common case where a subnet-
work contains only two hosts. When routers are connected together by a point-
to-point link requiring an IP address to be assigned at each end, it is common
practice to use a /31 network prefix with IPv4, and it is now also a recommended
practice to use a /127 prefix for IPv6 [RFC6164].

Broadcast Addresses

In each IPv4 subnetwork, a special address is reserved to be the subnet broadcast
address. The subnet broadcast address is formed by setting the network/subnet-
work portion of an IPv4 address to the appropriate value and all the bits in the Host
field to 1. Consider the left-most subnet from Figure 2-5. Its prefix is 128.32.1.0/24.
The subnet broadcast address is constructed by inverting the subnet mask (i.e.,
changing all the 0 bits to 1 and vice versa) and performing a bitwise OR opera-
tion with the address of any of the computers on the subnet (or, equivalently, the
network/subnetwork prefix). Recall that the result of a bitwise OR operation is 1
if either input bit is 1. Using the IPv4 address 128.32.1.14, this computation can be
written as shown in Figure 2-6.

0 15 16 31

Address | 10000000 00100000 00000001 |00001110|| 128.32.1.14

Complement 0000000 00000000 00000000 [11111111]| 000zss

ORResult | 10000000 00100000 00000001 (11111111 | 128.32.1.255

Figure 2-6 The subnet broadcast address is formed by ORing the complement of the subnet mask
with the IPv4 address. In this case of a /24 subnet mask, all of the remaining 32 — 24
= 8 bits are set to 1, giving a decimal value of 255 and the subnet broadcast address of
128.32.1.255.

Section 2.3 Basic IP Address Structure 43

2.3.6

As shown in the figure, the subnet broadcast address for the subnet
128.32.1.0/24 is 128.32.1.255. Historically, a datagram using this type of address as
its destination has also been known as a directed broadcast. Such a broadcast can,
at least theoretically, be routed through the Internet as a single datagram until
reaching the target subnetwork, at which point it becomes a collection of broad-
cast datagrams that are delivered to all hosts on the subnetwork. Generalizing
this idea further, we could form a datagram with the destination IPv4 address
128.32.255.255 and launch it into the Internet attached to the network depicted in
Figure 2-3 or Figure 2-5. This would address all hosts at the target site.

Note

Directed broadcasts were found to be such a big problem from a security point of
view that they are effectively disabled on the Internet today. [RFC0919] describes
the various types of broadcasts for IPv4, and [RFC1812] suggests that support
for forwarding directed broadcasts by routers should not only be available but
enabled by default. This policy was reversed by [RFC2644] so that by default
routers must now disable the forwarding of directed broadcasts and are even free
to omit support for the capability altogether.

In addition to the subnet broadcast address, the special-use address
255.255.255.255 is reserved as the local net broadcast (also called limited broadcast),
which is never forwarded by routers. (See Section 2.5 for more detail on special-
use addresses.) Note that although routers may not forward broadcasts, subnet
broadcasts and local net broadcasts destined for the same network to which a
computer is attached should be expected to work unless explicitly disabled by
end hosts. Such broadcasts do not require action by a router; link-layer broadcast
mechanisms, if available, are used for supporting them (see Chapter 3). Broadcast
addresses are typically used with protocols such as UDP/IP (Chapter 10) or ICMP
(Chapter 8) because these protocols do not involve two-party conversations as in
TCP/IP. IPv6 lacks any broadcast addresses; for places where broadcast addresses
might be used in IPv4, IPv6 instead uses exclusively multicast addresses (see
Chapter 9).

IPv6 Addresses and Interface Identifiers

In addition to being longer than IPv4 addresses by a factor of 4, IPv6 addresses
also have some additional structure. Special prefixes used with IPv6 addresses
indicate the scope of an address. The scope of an IPv6 address refers to the portion
of the network where it can be used. Important examples of scopes include node-
local (the address can be used only for communication on the same computer),
link-local (used only among nodes on the same network link or IPv6 prefix), or
global (Internet-wide). In IPv6, most nodes have more than one address in use,
often on the same network interface. Although this is supported in IPv4 as well, it

44

The Internet Address Architecture

is not nearly as common. The set of addresses required in an IPv6 node, including
multicast addresses (see Section 2.5.2), is given in [RFC4291].

Note

Another scope level called site-local using prefix fec0::/10 was originally sup-
ported by IPv6 but was deprecated for use with unicast addressing by [RFC3879].
The primary problems include how to handle such addresses given that they may
be reused in more than one site and a lack of clarity on precisely how to define
a “site.”

Link-local IPv6 addresses (and some global IPv6 addresses) use interface iden-
tifiers (IIDs) as a basis for unicast IPv6 address assignment. IIDs are used as the
low-order bits of an IPv6 address in all cases except where the address begins with
the binary value 000, and as such they must be unique within the same network
prefix. IIDs are ordinarily 64 bits long and are formed either directly from the
underlying link-layer MAC address of a network interface using a modified EUI-64
format [EUI64], or by another process that randomizes the value in hopes of pro-
viding some degree of privacy against address tracking (see Chapter 6).

In IEEE standards, EUI stands for extended unique identifier. EUI-64 identifi-
ers start with a 24-bit Organizationally Unique Identifier (OUI) followed by a 40-bit
extension identifier assigned by the organization, which is identified by the first 24
bits. The OUIs are maintained and allocated by the IEEE registration authority
[IEEERA]. EUIs may be “universally administered” or “locally administered.” In
the Internet context, such addresses are typically of the universally administered
variety.

Many IEEE standards-compliant network interfaces (e.g., Ethernet) have used
shorter-format addresses (48-bit EUls) for years. The only significant difference
between the EUI-48 and EUI-64 formats is their length (see Figure 2-7).

° 5
EUI-48
u: Universal/Local g: Individual/Group ,
EUI-64
(2? linIts) Assigned by Organization

Figure 2-7 The EUI-48 and EUI-64 formats defined by the IEEE. These are used within IPv6 to form
interface identifiers by inverting the u bit.

Section 2.3 Basic IP Address Structure 45

The OUl is 24 bits long and occupies the first 3 bytes of both EUI-48 and EUI-
64 addresses. The low-order 2 bits of the first bytes of these addresses are desig-
nated the u and g bits, respectively. The u bit, when set, indicates that the address
is locally administered. The g bit, when set, indicates that the address is a group or
multicast-type address. For the moment, we are concerned only with cases where
the g bit is not set.

An EUI-64 can be formed from an EUI-48 by copying the 24-bit OUI value from
the EUI-48 address to the EUI-64 address, placing the 16-bit value 1111111111111110
(hex FFFE) in the fourth and fifth bytes of the EUI-64 address, and then copying
the remaining organization-assigned bits. For example, the EUI-48 address 00-11-
22-33-44-55 would become 00-11-22-FF-FE-33-44-55 in EUI-64. This mapping is the
first step used by IPv6 in constructing its interface identifiers when such under-
lying EUI-48 addresses are available. The modified EUI-64 used to form IIDs for
IPv6 addresses simply inverts the u bit.

When an IPv6 interface identifier is needed for a type of interface that does not
have an EUI-48-bit address provided by its manufacturer, but has some other type
of underlying address (e.g., AppleTalk), the underlying address is left-padded with
zeros to form the interface identifier. Interface identifiers created for interfaces
that lack any form of other identifier (e.g., tunnels, serial links) may be derived
from some other interface on the same node (that is not on the same subnet) or
from some identifier associated with the node. Lacking any other options, manual
assignment is a last resort.

2.3.6.1 Examples

Using the Linux ifconfig command, we can investigate the way a link-local IPv6
address is formed:

Linux% ifconfig ethl

ethl Link encap:Ethernet HWaddr 00:30:48:2A:19:89
inet addr:12.46.129.28 Bcast:12.46.129.127
Mask:255.255.255.128
inet6 addr: fe80::230:48ff:fe2a:1989/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1359970341 errors:0 dropped:0 overruns:0 frame:0
TX packets:1472870787 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgqueuelen:1000
RX bytes:4021555658 (3.7 GiB) TX bytes:3258456176 (3.0 GiB)
Base address:0x3040 Memory:£8220000-£8240000

Here we can see how the Ethernet’s hardware address 00:30:48:2A:19:89 is
mapped to an IPv6 address. First, it is converted to EUI-64, forming the address
00:30:48:ff:fe:2a:19:89. Next, the u bit is inverted, forming the IID value
02:30:48:ff:fe:2a:19:89. To complete the link-local IPv6 address, we use
the reserved link-local prefix fe80::/10 (see Section 2.5). Together, these form
the complete address, £e80::230:48ff:fe2a:1989. The presence of /64 is the

46

The Internet Address Architecture

24

standard length used for identifying the subnetwork/host portion of an IPv6
address derived from an IID as required by [RFC4291].

Another interesting example is from a Windows system with IPv6. In this
case, we see a special tunnel endpoint, which is used to carry IPv6 traffic through
networks that otherwise support only IPv4:

c:\> ipconfig /all
Tunnel adapter Automatic Tunneling Pseudo-Interface:

Connection-specific DNS Suffix . : foo
Description : Automatic Tunneling
Pseudo-Interface

Physical Address. : 0A-99-8D-87

Dhcp Enabled. : No

IP Address. . . . « « « « « . . . : fe80::5efe:10.153.141.135%2

Default Gateway . Coe e .

DNS Servers : fec0:0:0:££f££::1%2
fec0:0:0:££££::2%2
fec0:0:0:ffff::3%2

NetBIOS over Tcpip. : Disabled

o0

o©

In this case, we can see a special tunneling interface called ISATAP [RFC5214].
The so-called physical address is really the hexadecimal encoding of an IPv4
address: 0A-99-8D-87 is the same as 10.153.141.135. Here, the OUI used (00-
00-5E) is the one assigned to the IANA [IANA]. It is used in combination with
the hex value fe, indicating an embedded IPv4 address. This combination is
then combined with the standard link-local prefix £e80::/10 to give the address
fe80::5efe:10.153.141.135. The $2 appended to the end of the address is called
a zone ID in Windows and indicates the interface index number on the computer
corresponding to the IPv6 address. IPv6 addresses are often created by a process
of automatic configuration, a process we discuss in more detail in Chapter 6.

CIDR and Aggregation

In the early 1990s, after the adoption of subnet addressing to ease one form of
growing pains, the Internet started facing a serious set of scaling problems. Three
particular issues were considered so important as to require immediate attention:

1. By 1994, over half of all class B addresses had already been allocated. It was
expected that the class B address space would be exhausted by about 1995.

2. The 32-bit IPv4 address was thought to be inadequate to handle the size of
the Internet anticipated by the early 2000s.

Section 2.4 CIDR and Aggregation 47

2.441

3. The number of entries in the global routing table (one per network num-
ber), about 65,000 in 1995, was growing. As more and more class A, B, and
C routing entries appeared, routing performance would suffer.

These three issues were attacked by a group in the IETF called ROAD (for
ROuting and ADdressing), starting in 1992. They considered problems 1 and 3 to
be of immediate concern, and problem 2 as requiring a long-term solution. The
short-term solution they proposed was to effectively remove the class breakdown
of IP addresses and also promote the ability to aggregate hierarchically assigned
IP addresses. These measures would help problems 1 and 3. IPv6 was envisioned
to deal with problem 2.

Prefixes

In order to help relieve the pressure on the availability of IPv4 addresses (espe-
cially class B addresses), the classful addressing scheme was generalized using a
scheme similar to VLSM, and the Internet routing system was extended to support
Classless Inter-Domain Routing (CIDR) [RFC4632]. This provided a way to conve-
niently allocate contiguous address ranges that contained more than 255 hosts but
fewer than 65,536. That is, something other than single class B or multiple class
C network numbers could be allocated to sites. Using CIDR, any address range
is not predefined as being part of a class but instead requires a mask similar to a
subnet mask, sometimes called a CIDR mask. CIDR masks are not limited to a site
but are instead visible to the global routing system. Thus, the core Internet routers
must be able to interpret and process masks in addition to network numbers. This
combination of numbers, called a network prefix, is used for both IPv4 and IPv6
address management.

Eliminating the predefined separation of network and host number within an
IP address makes finer-grain allocation of IP address ranges possible. As with class-
ful addressing, dividing the address spaces into chunks is most easily achieved by
grouping numerically contiguous addresses for use as a type or for some particu-
lar special purpose. Such groupings are now commonly expressed using a prefix
of the address space. An n-bit prefix is a predefined value for the first bits of an
address. The value of n (the length of the prefix) is typically expressed as an inte-
ger in the range 0-32 for IPv4 and 0-128 for IPv6. It is generally appended to the
base IP address following a / character. Table 2-6 gives some examples of prefixes
and their corresponding IPv4 or IPv6 address ranges.

In the table, the bits defined and fixed by the prefix are enclosed in a box.
The remaining bits may be set to any combination of 0s and 1s, thereby cover-
ing the possible address range. Clearly, a smaller prefix length corresponds to a
larger number of possible addresses. In addition, the earlier classful addressing
approach is easily generalized by this scheme. For example, the class C network
number 192.125.3.0 can be written as the prefix 192.125.3.0/24 or 192.125.3/24.
Classful A and B network numbers can be expressed using /8 and /16 prefix
lengths, respectively.

48

The Internet Address Architecture

Table 2-6 Examples of prefixes and their corresponding IPv4 or IPv6 address range

Prefix Prefix (Binary) Address Range
0.0.0.0/0 00000000 00000000 00000000 00000000 0.0.0.0-255.255.255.255
128.0.0.0/1 000000 00000000 00000000 00000000 128.0.0.0-255.255.255.255
128.0.0.0/24 10000000 00000000 00000000/00000000 128.0.0.0-128.0.0.255
198.128.128.192/27 | (11000110 10000000 10000000 11000000 198.128.128.192-198.128.128.223
165.195.130.107/32 (10100101 11000011 10000010 01101011 165.195.130.107
2001:db8::/32 0010000000000001 0000110110111000 2001:db8::—2001:db8:ffff:ffff
0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000
2.4.2 Aggregation

Removing the classful structure of IP addresses made it possible to allocate IP
address blocks in a wider variety of sizes. Doing so, however, did not address
the third concern from the list of problems; it did not help to reduce the number
of routing table entries. A routing table entry tells a router where to send traffic.
Essentially, the router inspects the destination IP address in an arriving datagram,
finds a matching routing table entry, and from the entry extracts the “next hop”
for the datagram. This is somewhat like driving to a particular address in a car
and in every intersection along the way finding a sign indicating what direction
to take to get to the next intersection on the way to the destination. If you consider
the number of signs that would have to be present at every intersection for every
possible destination neighborhood, you get some sense of the problem facing the
Internet in the early 1990s.

At the time, few techniques were known to dramatically reduce the number
of routing table entries while maintaining shortest-path routes to all destinations
in the Internet. The best-known approach was published in a study of hierarchical
routing [KK77] in the late 1970s by Kleinrock and Kamoun. They observed that if
the network topology were arranged as a tree' and addresses were assigned in a
way that was “sensitive” to this topology, very small routing tables could be used
while still maintaining shortest-path routes to all destinations. Consider Figure 2-8.

In this figure, circles represent routers and lines represent network links
between them. The left-hand and right-hand sides of the diagram show tree-
shaped networks. The difference between them is the way addresses have been
assigned to the routers. In the left-hand (a) side, addresses are essentially ran-
dom—there is no direct relationship between the addresses and the location of

1. In graph theory, a tree is a connected graph with no cycles. For a network of routers and links, this
means that there is only one simple (nonduplicative) path between any two routers.

Section 2.4 CIDR and Aggregation 49

3 Entries

9 Entries (Table Fixed as Tree Grows)

(Table Grows as Tree Grows) Other Parts of the Network

19.12.4.8

190.16.11.2()

66.103.2.19

159.66.2.231 19.12.4.9 203.44.23.198 19.1.1.65 19.2.1.65 19.2.3.254
(a) Random (Location Independent) (b) Topology Sensitive (Location Dependent)
Addressing Addressing

Figure 2-8 Inanetwork with a tree topology, network addresses can be assigned in a special way so as to limit
the amount of routing information (“state”) that needs to be stored in a router. If addresses are
not assigned in this way (left side), shortest-path routes cannot be guaranteed without storing an
amount of state proportional to the number of nodes to be reached. While assigning addresses in
a way that is sensitive to the tree topology saves state, if the network topology changes, a reassign-
ment of addresses is generally required.

the routers in the tree. On the right-hand (b) side of the diagram, the addresses
are assigned based upon where the router is located in the tree. If we consider
the number of entries each top router requires, we see that there is a significant
difference.

The root (top) of the tree on the left is the router labeled 19.12.4.8. In order to
know a next hop for every possible destination, it needs an entry for all the routers
“below” it in the tree: 190.16.11.2, 86.12.0.112, 159.66.2.231, 133.17.97.12, 66.103.2.19,
18.1.1.1,19.12.4.9, and 203.44.23.198. For any other destination, it simply routes to the
cloud labeled “Other Parts of the Network.” This results in a total of nine entries.
In contrast, the root of the right-hand tree is labeled 19.0.0.1 and requires only three
entries in its routing table. Note that all of the routers on the left side of the right
tree begin with the prefix 19.1 and all to the right begin with 19.2. Thus, the table
in router 19.0.0.1 need only show 19.1.0.1 as the next hop for any destination start-
ing with 19.1, whereas 19.2.0.1 is the next hop for any destination starting with 19.2.
Any other destination goes to the cloud labeled “Other Parts of the Network.” This
results in a total of three entries. Note that this behavior is recursive—any router
in the (b) side of the tree never requires more entries than the number of links it
has. This is a direct result of the special method used to assign the addresses. Even

50

The Internet Address Architecture

2.5

if more routers are added to the (b)-side tree, this nice property is maintained.
This is the essence of the hierarchical routing idea from [KK77].

In the Internet context, the hierarchical routing idea can be used in a specific
way to reduce the number of Internet routing entries that would be required other-
wise. This is accomplished by a procedure known as route aggregation. It works by
joining multiple numerically adjacent IP prefixes into a single shorter prefix (called
an aggregate or summary) that covers more address space. Consider Figure 2-9.

190.154.27.0/26
190.154.27.0/25
190.154.27.64126 = / 190.154.27.0125) 190.154.27.0/24

190.154.27.192/26
190.154.27.128/25 .154.26.
190.154.27.192/26 190.154.27.128/26|:> 190.154.26.0/24

190.154.26.0/23

Figure 2-9 In this example, the arrows indicate aggregation of two address prefixes to form one;
the underlined prefixes are additions in each step. In the first step, 190.154.27.0/26
and 190.154.27.64.0/26 can be aggregated because they are numerically adjacent, but
190.154.27.192/26 cannot. With the addition of 190.154.27.128/26, they can all be aggre-
gated together in two steps to form 190.154.27.0/24. With the final addition of the adjacent
190.154.26.0/24, the aggregate 190.154.26.0/23 is produced.

We start with three address prefixes on the left in Figure 2-9. The first two,
190.154.27.0/26 and 190.154.27.64/26, are numerically adjacent and can therefore
be combined (aggregated). The arrows indicate where aggregation takes place.
The prefix 190.154.27.192/26 cannot be aggregated in the first step because it is not
numerically adjacent. When a new prefix, 190.154.27.128/26, is added (underlined),
the 190.154.27.192/26 and 190.154.27.128/26 prefixes may be aggregated, forming
the 190.154.27.128/25 prefix. This aggregate is now adjacent to the 190.154.27.0/25
aggregate, so they can be aggregated further to form 190.154.27.0/24. When the
prefix 190.154.26.0/24 (underlined) is added, the two class C prefixes can be aggre-
gated to form 190.154.26.0/23. In this way, the original three prefixes and the two
that were added can be aggregated into a single prefix.

Special-Use Addresses

Both the IPv4 and IPv6 address spaces include a few address ranges that are used
for special purposes (and are therefore not used in assigning unicast addresses).
For IPv4, these addresses are given in Table 2-7 [RFEC5735].

Section 2.5 Special-Use Addresses 51

Table 2-7 [Pv4 special-use addresses (defined January 2010)

Prefix Special Use Reference

0.0.0.0/8 Hosts on the local network. May be used only as a source IP | [RFC1122]
address.

10.0.0.0/8 Address for private networks (intranets). Such addresses [RFC1918]
never appear on the public Internet.

127.0.0.0/8 Internet host loopback addresses (same computer). Typically | [RFC1122]
only 127.0.0.1 is used.

169.254.0.0/16 “Link-local” addresses—used only on a single link and [RFC3927]
generally assigned automatically. See Chapter 6.

172.16.0.0/12 Address for private networks (intranets). Such addresses [RFC1918]
never appear on the public Internet.

192.0.0.0/24 IETF protocol assignments (IANA reserved). [RFC5736]

192.0.2.0/24 TEST-NET-1 addresses approved for use in documentation. [RFC5737]
Such addresses never appear on the public Internet.

192.88.99.0/24 Used for 6to4 relays (anycast addresses). [RFC3068]

192.168.0.0/16 Address for private networks (intranets). Such addresses [RFC1918]
never appear on the public Internet.

198.18.0.0/15 Used for benchmarks and performance testing. [RFC2544]

198.51.100.0/24 TEST-NET-2. Approved for use in documentation. [RFC5737]

203.0.113.0/24 TEST-NET-3. Approved for use in documentation. [RFC5737]

224.0.0.0/4 IPv4 multicast addresses (formerly class D); used only as [RFC5771]
destination addresses.

240.0.0.0/4 Reserved space (formerly class E), except 255.255.255.255. [RFC1112]

255.255.255.255/32 | Local network (limited) broadcast address. [RFC0919]

[RFC0922]

In IPv6, a number of address ranges and individual addresses are used for
specific purposes. They are listed in Table 2-8 [RFC5156].
For both IPv4 and IPv6, address ranges not designated as special, multicast, or

reserved are available to be assigned for unicast use. Some unicast address space
(prefixes 10/8, 172.16/12, and 192.168/16 for IPv4 and fc00::/7 for IPv6) is reserved
for building private networks. Addresses from these ranges can be used by coop-
erating hosts and routers within a site or organization, but not across the global
Internet. Thus, these addresses are sometimes called nonroutable addresses. That
is, they will not be routed by the public Internet.

The management of private, nonroutable address space is entirely a local deci-
sion. The IPv4 private addresses are very common in home networks and for the
internal networks of moderately sized and large enterprises. They are frequently
used in combination with network address translation (NAT), which rewrites IP
addresses inside IP datagrams as they enter the Internet. We discuss NAT in detail
in Chapter 7.

52

The Internet Address Architecture

Table 2-8 IPv6 special-use addresses (defined April 2008)

Prefix Special Use Reference

/0 Default route entry. Not used for addressing. [RFC5156]

/128 The unspecified address; may be used as a source IP address. |[RFC4291]

::1/128 The IPv6 host loopback address; not used in datagrams sent | [RFC4291]
outside the local host.

::f£f£:0:0/96 IPv4-mapped addresses. Such addresses never appear in [RFC4291]
packet headers. For internal host use only.

::{lipv4-address}/96 | IPv4-compatible addresses. Deprecated; not to be used. [RFC4291]

2001::/32 Teredo addresses. [RFC4380]

2001:10::/28 Overlay Routable Cryptographic Hash Identifiers. Such [RFC4843]
addresses never appear on the public Internet.

2001:db8::/32 Address range used for documentation and for examples. [REC3849]
Such addresses never appear on the public Internet.

2002::/16 6to4 addresses of 6to4 tunnel relays. [RFC3056]

3ffe::/16 Used by 6bone experiments. Deprecated; not to be used. [RFC3701]

5f00::/16 Used by 6bone experiments. Deprecated; not to be used. [RFC3701]

fc00::/7 Unique, local unicast addresses; not used on the global [RFC4193]
Internet.

fe80::/10 Link-local unicast addresses. [RFC4291]

£f00::/8 IPv6 multicast addresses; used only as destination addresses. |[RFC4291]

2.51 Addressing IPv4/IPv6 Translators

In some networks, it may be attractive to perform translation between IPv4 and
IPv6 [RFC6127]. A framework for this has been developed for unicast translations
[RFC6144], and one is currently under development for multicast translations [IDv-
4vomc]. One of the basic functions is to provide automated, algorithmic translation
of addresses. Using the “well-known” IPv6 prefix 64:ff9b::/96 or another assigned
prefix, [REC6052] specifies how this is accomplished for unicast addresses.

The scheme makes use of a specialized address format called an IPv4-embed-
ded IPv6 address. This type of address contains an IPv4 address inside an IPv6
address. It can be encoded using one of six formats, based on the length of the IPv6
prefix, which is required to be one of the following: 32, 40, 48, 56, 64, or 96. The
formats available are shown in Figure 2-10.

In the figure, the prefix is either the well-known prefix or a prefix unique to
the organization deploying translators. Bits 64—71 must be set to 0 to maintain
compatibility with identifiers specified in [RFC4291]. The suffix bits are reserved
and should be set to 0. The method to produce an IPv4-embedded IPv6 address
is then simple: concatenate the IPv6 prefix with the 32-bit IPv4 address, ensur-
ing that the bits 63-71 are set to 0 (inserting if necessary). Append the suffix as
0 bits until a 128-bit address is produced. IPv4-embedded IPv6 addresses using

Section 2.5 Special-Use Addresses 53

2.5.2

Prefix
Length 0 31 39 47 63 71 79 87 95 103 127
IPv6 Prefix IPv4 Address X .
32 (32 bits) (32 bits) u Suffix (56 bits)
IPv6 Prefix IPv4 Address 1Pvd N .
40 (40 bits) (first 24 bits) U | pdrese Suffix (48 bits)
IPv6 Prefix IPv4 Address IPv4 Address) .
48 (48 bits) (first 16 bits) | Y | (last 16 bits) Suffix (40 bits)
IPv6 Prefix 1Pv4 IPv4 Address) .
56 (56 bits) fddress | U (last 24 bits) Suffix (32 bits)
IPv6 Prefix |Pv4 Address) .
64 (64 bits) u (32 bits) Suffix (24 bits)
96 IPv6 Prefix IPv4 Address
(96 bits) (32 bits)

Figure 2-10 IPv4 addresses can be embedded within IPv6 addresses, forming an IPv4-embedded
IPv6 address. Six different formats are available, depending on the IPv6 prefix length in
use. The well-known prefix 64:ff9b::/96 can be used for automatic translation between
IPv4 and IPv6 unicast addresses.

the 96-bit prefix option may be expressed using the convention for IPv6-mapped
addresses mentioned previously (Section 2.2(3) of [RFC4291]). For example,
embedding the IPv4 address 198.51.100.16 with the well-known prefix produces
the address 64:ff9b::198.51.100.16.

Multicast Addresses

Multicast addressing is supported by IPv4 and IPv6. An IP multicast address (also
called group or group address) identifies a group of host interfaces, rather than a
single one. Generally speaking, the group could span the entire Internet. The
portion of the network that a single group covers is known as the group’s scope
[REC2365]. Common scopes include node-local (same computer), link-local (same
subnet), site-local (applicable to some site), global (entire Internet), and administra-
tive. Administrative scoped addresses may be used in an area of the network that
has been manually configured into routers. A site administrator may configure
routers as admin-scope boundaries, meaning that multicast traffic of the associated
group is not forwarded past the router. Note that the site-local and administrative
scopes are available for use only with multicast addressing.

Under software control, the protocol stack in each Internet host is able to join
or leave a multicast group. When a host sends something to a group, it creates a
datagram using one of its own (unicast) IP addresses as the source address and
a multicast IP address as the destination. All hosts in scope that have joined the

54

The Internet Address Architecture

253

group should receive any datagrams sent to the group. The sender is not generally
aware of the hosts receiving the datagram unless they explicitly reply. Indeed, the
sender does not even know in general how many hosts are receiving its datagrams.

The original multicast service model, described so far, has become known as
any-source multicast (ASM). In this model, any sender may send to any group; a
receiver joins the group by specifying only the group address. A newer approach,
called source-specific multicast (SSM) [REC3569][RFC4607], uses only a single sender
per group (also see the errata to [RFC4607]). In this case, when joining a group,
a host specifies the address of a channel, which comprises both a group address
and a source IP address. SSM was developed to avoid some of the complexities in
deploying the ASM model. Although neither form of multicast is widely available
throughout the Internet, it seems that SSM is now the more likely candidate for
adoption.

Understanding and implementing wide area multicasting has been an ongo-
ing effort within the Internet community for more than a decade, and a large
number of protocols have been developed to support it. Full details of how global
Internet multicasting works are therefore beyond the scope of this text, but the
interested reader is directed to [IMRO02]. Details of how local IP multicast operates
are given in Chapter 9. For now, we shall discuss the format and meaning of IPv4
and IPv6 multicast addresses.

IPv4 Multicast Addresses

For IPv4, the class D space (224.0.0.0-239.255.255.255) has been reserved for
supporting multicast. With 28 bits free, this provides for the possibility of 2% =
268,435,456 host groups (each host group is an IP address). This address space is
divided into major sections based on the way they are allocated and handled with
respect to routing [IPAMA]. Those major sections are presented in Table 2-9.

The blocks of addresses up to 224.255.255.255 are allocated for the exclusive
use of certain application protocols or organizations. These are allocated as the
result of action by the IANA or by the IETFE. The local network control block is
limited to the local network of the sender; datagrams sent to those addresses are
never forwarded by multicast routers. The All Hosts group (224.0.0.1) is one group
in this block. The internetwork control block is similar to the local network control
range but is intended for control traffic that needs to be routed off the local link.
An example from this block is the Network Time Protocol (NTP) multicast group
(224.0.1.1) [RFC5905].

The first ad hoc block was constructed to hold addresses that did not fall into
either the local or internetwork control blocks. Most of the allocations in this range
are for commercial services, some of which do not (or never will) require global
address allocations; they may eventually be returned in favor of GLOP? address-
ing (see the next paragraphs). The SDP/SAP block contains addresses used by

2. GLOP is not an acronym but instead simply a name for a portion of address space.

Section 2.5 Special-Use Addresses 55

Table 2-9 Major sections of IPv4 class D address space used for supporting multicast

Range (Inclusive) Special Use Reference
224.0.0.0-224.0.0.255 Local network control; not forwarded [RFC5771]
224.0.1.0-224.0.1.255 Internetwork control; forwarded normally [REC5771]
224.0.2.0-224.0.255.255 Ad hoc block I [REC5771]
224.1.0.0-224.1.255.255 Reserved [REC5771]
224.2.0.0-224.2.255.255 SDP/SAP [RFC4566]
224.3.0.0-224.4.255.255 Ad hoc block IT [RFC5771]
224.5.0.0-224.255.255.255 Reserved [IPAMA]
225.0.0.0-231.255.255.255 Reserved [IPAMA]
232.0.0.0-232.255.255.255 Source-specific multicast (SSM) [RFC4607]
[RFC4608]
233.0.0.0-233.251.255.255 GLOP [RFC3180]
233.252.0.0-233.255.255.255 Ad hoc block IIT [RFC5771]
(233.252.0.0/24 is reserved for documentation)
234.0.0.0-234.255.255.255 Unicast-prefix-based IPv4 multicast addresses [REC6034]
235.0.0.0-238.255.255.255 Reserved [IPAMA]
239.0.0.0-239.255.255.255 Administrative scope [REC2365]

applications such as the session directory tool (SDR) [H96] that send multicast
session announcements using the Session Announcement Protocol (SAP) [RFC2974].
Originally a component of SAP, the newer Session Description Protocol (SDP)
[RFC4566] is now used not only with IP multicast but also with other mechanisms
to describe multimedia sessions.

The other major address blocks were created somewhat later in the evolution of
IP multicast. The SSM block is used by applications employing SSM in combination
with their own unicast source IP address in forming SSM channels, as described
previously. In the GLOP block, multicast addresses are based on the autonomous
system (AS) number of the host on which the application allocating the address
resides. AS numbers are used by Internet-wide routing protocols among ISPs in
order to aggregate routes and apply routing policies. Each such AS has a unique
AS number. Originally, AS numbers were 16 bits but have now been extended to
32 bits [RFC4893]. GLOP addresses are generated by placing a 16-bit AS number in
the second and third bytes of the IPv4 multicast address, leaving room for 1 byte to
represent the possible multicast addresses (i.e., up to 256 addresses). Thus, it is pos-
sible to map back and forth between a 16-bit AS number and the GLOP multicast
address range associated with an AS number. Although this computation is simple,
several online calculators have been developed to do it, too.?

3. For example, http://gigapop.uoregon.edu/glop/.

http://gigapop.uoregon.edu/glop/

56

The Internet Address Architecture

The most recent of the IPv4 multicast address allocation mechanisms associates
anumber of multicast addresses with an IPv4 unicast address prefix. This is called
unicast-prefix-based multicast addressing (UBM) and is described in [RFC6034]. It is
based on a similar structure developed earlier for IPv6 that we discuss in Section
2.54. The UBM IPv4 address range is 234.0.0.0 through 234.255.255.255. A unicast
address allocation with a /24 or shorter prefix may make use of UBM addresses.
Allocations with fewer addresses (i.e., a /25 or longer prefix) must use some other
mechanism. UBM addresses are constructed as a concatenation of the 234/8 pre-
fix, the allocated unicast prefix, and the multicast group ID. Figure 2-11 shows the
format.

0 78 N 31

234 Unicast Prefix Group ID
(8 bits) (up to 24 bits) (up to 16 bits)

Figure 2-11 The IPv4 UBM address format. For unicast address allocations of /24 or shorter, associ-
ated multicast addresses are allocated based on a concatenation of the prefix 234/8, the
assigned unicast prefix, and the multicast group ID. Allocations with shorter unicast
prefixes therefore contain more unicast and multicast addresses.

To determine the set of UBM addresses associated with a unicast allocation,
the allocated prefix is simply prepended with the 234/8 prefix. For example, the
unicast IPv4 address prefix 192.0.2.0/24 has a single associated UBM address,
234.192.0.2. 1t is also possible to determine the owner of a multicast address by
simply “left-shifting” the multicast address by 8 bit positions. We know that the
multicast address range 234.128.32.0/24 is allocated to UC Berkeley, for example,
because the corresponding unicast IPv4 address space 128.32.0.0/16 (the “left-
shifted” version of 234.128.32.0) is owned by UC Berkeley (as can be determined
using a WHOIS query; see Section 2.6.1.1).

UBM addresses may offer advantages over the other types of multicast
address allocations. For example, they do not carry the 16-bit restriction for AS
numbers used by GLOP addressing. In addition, they are allocated as a conse-
quence of already-existing unicast address space allocations. Thus, sites wishing
to use multicast addresses already know which addresses they can use without
further coordination. Finally, UBM addresses are allocated at a finer granular-
ity than GLOP addresses, which correspond to AS number allocations. In today’s
Internet, a single AS number may be associated with multiple sites, frustrating the
simple mapping between address and owner supported by UBM.

The administratively scoped address block can be used to limit the distribu-
tion of multicast traffic to a particular collection of routers and hosts. These are
the multicast analogs of private unicast IP addresses. Such addresses should not
be used for distributing multicast into the Internet, as most of them are blocked at
enterprise boundaries. Large sites sometimes subdivide administratively scoped

Section 2.5 Special-Use Addresses 57

254

multicast addresses to cover specific useful scopes (e.g., work group, division, and
geographical area).

IPv6 Multicast Addresses

For IPv6, which is considerably more aggressive in its use of multicast, the prefix
ff00::/8 has been reserved for multicast addresses, and 112 bits are available for
holding the group number, providing for the possibility of

212 = 5192,296,858,534,827,628,530,496,329,220,096

groups. Its general format is as shown in Figure 2-12.

0 16

1111111 1orP T Group ID (112 bits) ...
N N

Flags Scope
(4 bits) (4 bits)

o

Figure 2-12 The base IPv6 multicast address format includes 4 flag bits (0, reserved; R, contains ren-
dezvous point; P, uses unicast prefix; T, is transient). The 4-bit Scope value indicates the
scope of the multicast (global, local, etc.). The Group ID is encoded in the low-order 112
bits. If the P or R bit is set, an alternative format is used.

The second byte of the IPv6 multicast address includes a 4-bit Flags field and a
4-bit Scope ID field in the second nibble. The Scope field is used to indicate a limit
on the distribution of datagrams addressed to certain multicast addresses. The
hexadecimal values 0, 3, and f are reserved. The hex values 6, 7, and 9 through d

are unassigned. The values are given in Table 2-10, which is based on Section 2.7
of [RFC4291].

Table 2-10 Values of the IPv6 Scope field

Value Scope

0 Reserved

1 Interface-/machine-local
2 Link-/subnet-local

3 Reserved

4 Admin

5 Site-local

67 Unassigned

8 Organizational-local
9-d Unassigned

e Global

f Reserved

58

The Internet Address Architecture

Many IPv6 multicast addresses allocated by the IANA for permanent use
intentionally span multiple scopes. Each of these is defined with a certain offset
relative to every scope (such addresses are called scope-relative or variable-scope
for this reason). For example, the variable-scope multicast address ffOx::101 is
reserved for NTP servers by [IP6MA]. The x indicates variable scope; Table 2-11
shows some of the addresses defined by this reservation.

Table 2-11 Example permanent variable-scope IPv6 multicast address reservations for NTP (101)

Address Meaning

£f01::101 All NTP servers on the same machine

££02::101 All NTP servers on the same link/subnet

£f04::101 All NTP servers within some administratively defined scope
f£05::101 All NTP servers at the same site

££08::101 All NTP servers at the same organization

ff0e::101 All NTP servers in the Internet

In IPv6, the multicast address format given in Figure 2-12 is used when the
P and R bit fields are set to 0. When P is set to 1, two alternative methods exist
for multicast addresses that do not require global agreement on a per-group basis.
These are described in [RFC3306] and [RFC4489]. In the first, called unicast-prefix-
based IPv6 multicast address assignment, a unicast prefix allocation provided by an
ISP or address allocation authority also effectively allocates a collection of multicast
addresses, thereby limiting the amount of global coordination required for avoid-
ing duplicates. With the second method, link-scoped IPv6 multicast, interface identi-
fiers are used, and multicast addresses are based on a host’s IID. To understand
how these various formats work, we need to first understand the use of the bit
fields in the IPv6 multicast address in more detail. They are defined in Table 2-12.

Table 2-12 IPv6 multicast address flags

Bit Field

(Flag) Meaning Reference
R Rendezvous point flag (0, regular; 1, RP address included) [RFC3956]
P Prefix flag (0, regular; 1, address based on unicast prefix) [RFC3306]
T Transient flag (0, permanently assigned; 1, transient) [RFC4291]

The T bit field, when set, indicates that the included group address is tempo-
rary or dynamically allocated; it is not one of the standard addresses defined in
[IP6MA]. When the P bit field is set to 1, the T bit must also be set to 1. When this
happens, a special format of IPv6 multicast addresses based on unicast address
prefixes is enabled, as shown in Figure 2-13.

Section 2.5 Special-Use Addresses 59

0 16
11111111 |00 1 1 00000000 | 0 for SSM <9-f-°-'--SSM>L ------
H_)w_)\ A)H_)ﬁ_)
g g
Flags Scope Reserved Prefix Length Prefix Group ID
(4 bits) (4 bits) (8 bits) (8 bits) (64 bits) (32 bits)

Figure 2-13 IPv6 multicast addresses can be created based upon unicast IPv6 address assignments
[RFC3306]. When this is done, the P bit field is set to 1, and the unicast prefix is carried
in the address, along with a 32-bit group ID. This form of multicast address allocation
eases the need for global address allocation agreements.

We can see here how using unicast-prefix-based addressing changes the for-
mat of the multicast address to include space for a unicast prefix and its length,
plus a smaller (32-bit) group ID. The purpose of this scheme is to provide a way
of allocating globally unique IPv6 multicast addresses without requiring a new
global mechanism for doing so. Because IPv6 unicast addresses are already allo-
cated globally in units of prefixes (see Section 2.6), it is possible to use bits of this
prefix in multicast addresses, thereby leveraging the existing method of unicast
address allocation for multicast use. For example, an organization receiving a uni-
cast prefix allocation of 3ffe:ffff:1::/48 would also consequently receive a unicast-
based multicast prefix allocation of ff3x:30:3ffe:ffff:1::/96, where x is any valid
scope. SSM is also supported using this format by setting the prefix length and
prefix fields to 0, effectively requiring the prefix ff3x::/32 (where x is any valid
scope value) for use in all such IPv6 SSM multicast addresses.

To create unique multicast addresses of link-local scope, a method based on
IIDs can be used [RFC4489], which is preferred to unicast-prefix-based allocation
when only link-local scope is required. In this case, another form of IPv6 multicast
address structure is used (see Figure 2-14).

0 16
11111111 [oi01i1 <=2 00000000 | 11111111 | - L ------
W\ A)H—M—)
g g
Flags Scope Reserved Prefix Length 1ID Group ID
(4 bits) (4 bits) (8 bits) (8 bits) (64 bits) (32 bits)

Figure 2-14 The IPv6 link-scoped multicast address format. Applicable only to link- (or smaller)
scoped addresses, the multicast address can be formed by combining an IPv6 interface
ID and a group ID. The mapping is straightforward, and all such addresses use prefixes
of the form ff3x:0011/32, where x is the scope ID and is less than 3.

The address format shown in Figure 2-14 is very similar to the format in Fig-
ure 2-13, except that the Prefix Length field is set to 255, and instead of a prefix
being carried in the subsequent field, an IPv6 IID is instead. The advantage of

60

The Internet Address Architecture

this structure over the previous one is that no prefix need be supplied in forming
the multicast address. In ad hoc networks where no routers may be available, an
individual machine can form unique multicast addresses based on its own IID
without having to engage in a complex agreement protocol. As stated before, this
format works only for link- or node-local multicast scoping, however. When larger
scopes are required, either unicast-prefix-based addressing or permanent multi-
cast addresses are used. As an example of this format, a host with IID 02-11-22-33-
44-55-66-77 would use multicast addresses of the form ff3x:0011:0211:2233:4455:66
77:gggg:ggeg, where x is a scope value of 2 or less and gggg:gggg is the hexadeci-
mal notation for a 32-bit multicast group ID.

The bit field we have yet to discuss is the R bit field. It is used when unicast-
prefix-based multicast addressing is used (the P bit is set) along with a multicast
routing protocol that requires knowledge of a rendezvous point.

Note

A rendezvous point (RP) is the IP address of a router set up to handle multicast
routing for one or more multicast groups. RPs are used by the PIM-SM proto-
col [RFC4601] to help senders and receivers participating in the same multicast
group to find each other. One of the problems encountered in deploying Internet-
wide multicast has been locating rendezvous points. This scheme overloads the
IPv6 multicast address to include an RP address. Therefore, it is simple to find an
RP from a group address by just selecting the appropriate subset of bits.

When the P bit is set, the modified format for a multicast address shown in
Figure 2-15 is used.

0 16
11111111 |oi111 0000 >0 & <=64 | - L ------
H—)H/—)H/—)H/—)%/—)ﬁ—)ﬁ—)
Flags Scope Reserved RIID Prefix Length Prefix Group ID
(4 bits) (4 bits) (4 bits) (4 bits) (8 bits) (64 bits) (32 bits)

Figure 2-15 The unicast IPv6 address of an RP can be embedded inside an IPv6 multicast address
[REC3956]. Doing so makes it straightforward to find an RP associated with an address
for routing purposes. An RP is used by the multicast routing system in order to coordi-
nate multicast senders with receivers when they are not on the same subnetwork.

The format shown in Figure 2-15 is similar to the one shown in Figure 2-13,
but SSM is not used (so the prefix length cannot be zero). In addition, a new 4-bit
field called the RIID is introduced. To form the IPv6 address of an RP based on
a multicast address of the form in Figure 2-15, the number of bits indicated in
the Prefix Length field are extracted from the Prefix field and placed as the upper
bits in a fresh IPv6 address. Then, the contents of the RIID field are used as the

Section 2.5 Special-Use Addresses

low-order 4 bits of the RP address. The rest is filled with zeros. As an example,
consider a multicast address ff75:940:2001:db8:dead:beef:f00d:face. In this case,
the scope is 5 (site-local), the RIID field has the value 9, and the prefix length is
0x40 = 64 bits. The prefix itself is therefore 2001:db8:dead:beef, so the RP address
is 2001:db8:dead:beef::9. More examples are given in [RFC3956].

As with IPv4, there are a number of reserved IPv6 multicast addresses. These
addresses are grouped by scope, except for the variable-scope addresses men-
tioned before. Table 2-13 gives a list of the major reservations from the IPv6 multi-

cast space. Consult [[P6MA] for additional information.

Table 2-13 Reserved addresses within the IPv6 multicast address space

Address Scope Special Use Reference
ff01::1 Node All nodes [REC4291]
ff01::2 Node All routers [RFC4291]
ff01::fb Node mDNSv6 [IDChes]
ff02::1 Link All nodes [RFC4291]
f£02::2 Link All routers [REC4291]
ff02::4 Link DVMRP routers [REC1075]
££02::5 Link OSPFIGP [RFC2328]
££02::6 Link OSPFIGP designated routers [RFC2328]
f£02::9 Link RIPng routers [RFC2080]
£f02::a Link EIGRP routers [EIGRP]
ff02::d Link PIM routers [RFC5059]
ff02::16 Link MLDv2-capable routers [RFC3810]
ff02::6a Link All snoopers [RFC4286]
ff02::6d Link LL-MANET-routers [RFC5498]
ff02::fb Link mDNSv6 [IDChes]
££02::1:2 Link All DHCP agents [RFC3315]
££02::1:3 Link LLMNR [RFC4795]
££02::1:fFxx:xxxx Link Solicited-node address range [RFC4291]
ff05::2 Site All routers [REC4291]
ff05::fb Site mDNSv6 [IDChes]
ff05::1:3 Site All DHCP servers [RFC3315]
ff0x:: Variable Reserved [RFC4291]
ffOx::fb Variable mDNSv6 [IDChes]
ff0x::101 Variable NTP [RFC5905]
ff0x::133 Variable Aggregate Server Access Protocol [RFC5352]
£f0x::18¢ Variable All ACs address (CAPWAP) [REC5415]
ff3x::/32 (Special) SSM block [RFC4607]

62

The Internet Address Architecture

2.5.5

2.6

2.6.1

Anycast Addresses

An anycast address is a unicast IPv4 or IPv6 address that identifies a different host
depending on where in the network it is used. This is accomplished by configur-
ing Internet routers to advertise the same unicast routes from multiple locations in
the Internet. Thus, an anycast address refers not to a single host in the Internet, but
to the “most appropriate” or “closest” single host that is responding to the anycast
address. Anycast addressing is used most frequently for finding a computer that
provides a common service [RFC4786]. For example, a datagram sent to an anycast
address could be used to find a DNS server (see Chapter 11), a 6to4 gateway that
encapsulates IPv6 traffic in IPv4 tunnels [RFC3068], or RPs for multicast routing
[RFC4610].

Allocation

IP address space is allocated, usually in large chunks, by a collection of hierarchi-
cally organized authorities. The authorities are generally organizations that allo-
cate address space to various owners—usually ISPs or other smaller authorities.
Authorities are most often involved in allocating portions of the global unicast
address space, but other types of addresses (multicast and special-use) are also
sometimes allocated. The authorities can make allocations to users for an undeter-
mined amount of time, or for a limited time (e.g., for running experiments). The
top of the hierarchy is the IANA [TANA], which has wide-ranging responsibil-
ity for allocating IP addresses and other types of numbers used in the Internet
protocols.

Unicast

For unicast IPv4 and IPv6 address space, the IANA delegates much of its allocation
authority to a few regional Internet registries (RIRs). The RIRs coordinate with each
other through an organization formed in 2003 called the Number Resource Orga-
nization (NRO) [NRO]. At the time of writing (mid-2011), the set of RIRs includes
those shown in Table 2-14, all of which participate in the NRO. Note in addition
that, as of early 2011, all the remaining unicast IPv4 address space held by IANA
for allocation had been handed over to these RIRs.

These entities typically deal with relatively large address blocks [IP4AS]
[IP6AS]. They allocate address space to smaller registries operating in countries
(e.g., Australia and Singapore) and to large ISPs. ISPs, in turn, provide address
space to their customers and themselves. When users sign up for Internet ser-
vice, they are ordinarily provided a (typically small) fraction or range of their
ISP’s address space in the form of an address prefix. These address ranges are
owned and managed by the customer’s ISP and are called provider-aggregatable
(PA) addresses because they consist of one or more prefixes that can be aggregated
with other prefixes the ISP owns. Such addresses are also sometimes called non-
portable addresses. Switching providers typically requires customers to change the

Section 2.6 Allocation

63

Table 2-14 Regional Internet registries that participate in the NRO

Information Center

RIR Name Area of Responsibility Reference
AfriNIC—African Network Africa http://www.afrinic.net
Information Center

APNIC—Asia Pacific Network Asia/Pacific Area http://www.apnic.net

ARIN—American Registry for
Internet Numbers

North America

http://www.arin.net

LACNIC—Regional Latin
America and Caribbean IP
Address Registry

Latin America and some
Caribbean islands

http://lacnic.net/en/index.html

RIPE NCC—Réseaux IP
Européens

Europe, Middle East,
Central Asia

http://www.ripe.net

IP prefixes on all computers and routers they have that are attached to the Internet
(an often unpleasant operation called renumbering).

An alternative type of address space is called provider-independent (PI) address
space. Addresses allocated from PI space are allocated to the user directly and
may be used with any ISP. However, because such addresses are owned by the
customer, they are not numerically adjacent to the ISP’s own addresses and are
therefore not aggregatable. An ISP being asked to provide routing for a customer’s
PI addresses may require additional payment for service or simply not agree to
support such a configuration. In some sense, an ISP that agrees to provide routing
for a customer’s PI addresses is taking on an extra cost relative to other customers
by having to increase the size of its routing tables. On the other hand, many sites
prefer to use PI addresses, and might be willing to pay extra for them, because
it helps to avoid the need to renumber when switching ISPs (avoiding what has
become known as provider lock).

2.6.1.1 Examples

It is possible to use the Internet WHOIS service to determine how address space
has been allocated. For example, we can form a query for information about the
IPv4 address 72.1.140.203 by accessing the corresponding URL http://whois.
arin.net/rest/ip/72.1.140.203.txt:

NetRange: 72.1.140.192 - 72.1.140.223

CIDR: 72.1.140.192/27

OriginAS:

NetName: SPEK-SEA5-PART-1

NetHandle: NET-72-1-140-192-1

Parent: NET-72-1-128-0-1

NetType: Reassigned

RegDate: 2005-06-29

Updated: 2005-06-29

Ref: http://whois.arin.net/rest/net/NET-72-1-140-192-1

http://whois.arin.net/rest/net/NET-72-1-140-192-1
http://www.afrinic.net
http://www.apnic.net
http://www.arin.net
http://lacnic.net/en/index.html
http://www.ripe.net
http://whois.arin.net/rest/ip/72.1.140.203.txt
http://whois.arin.net/rest/ip/72.1.140.203.txt

64

The Internet Address Architecture

Here we see that the address 72.1.140.203 is really part of the network called
SPEK-SEA5-PART-1, whichhasbeenallocated theaddressrange 72.1.140.192/27.
Furthermore, we can see that SPEK-SEA5-PART-1’s address range is a portion of
the PA address space called NET-72-1-128-0-1. We can formulate a query for
information about this network by visiting the URL http://whois.arin.net/
rest/net/NET-72-1-128-0-1.txt:

NetRange: 72.1.128.0 - 72.1.191.255

CIDR: 72.1.128.0/18

OriginAS:

NetName: SPEAKEASY-6

NetHandle: NET-72-1-128-0-1

Parent: NET-72-0-0-0-0

NetType: Direct Allocation

RegDate: 2004-09-09

Updated: 2009-05-19

Ref: http://whois.arin.net/rest/net/NET-72-1-128-0-1

This record indicates that the address range 72.1.128.0/18 (called by the “han-
dle” or name NET-72-1-128-0-1) has been directly allocated out of the address
range 72.0.0.0/8 managed by ARIN. More details on data formats and the vari-
ous methods ARIN supports for WHOIS queries can be found at [WRWS].

We can look at a different type of result using one of the other RIRs. For exam-
ple, if we search for information regarding the IPv4 address 193.5.93.80 using
the Web query interface at http://www.ripe.net/whois, we obtain the follow-
ing result:

o0

This is the RIPE Database query service.

% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.

% See http://www.ripe.net/db/support/db-terms-conditions.pdf
%

% Note: This output has been filtered.

% To receive output for a database update, use the "-B" flag.
% Information related to '193.5.88.0 - 193.5.95.255"
inetnum: 193.5.88.0 - 193.5.95.255

netname: WIPONET

descr: World Intellectual Property Organization
descr: UN Specialized Agency

descr: Geneva

country: CH

admin-c: AM4504-RIPE

tech-c: AMA504-RIPE

status: ASSIGNED PT

mnt-by: CH-UNISOURCE-MNT

mnt-by: DE-COLT-MNT

source: RIPE # Filtered

http://whois.arin.net/rest/net/NET-72-1-128-0-1.txt:
http://whois.arin.net/rest/net/NET-72-1-128-0-1.txt:
http://whois.arin.net/rest/net/NET-72-1-128-0-1
http://www.ripe.net/whois

Section 2.7 Unicast Address Assignment 65

2.6.2

2.7

Here, we can see that the address 193.5.93.80 is a portion of the 193.5.88.0/21
block allocated to WIPO. Note that the status of this block is ASSIGNED PI, mean-
ing that this particular block of addresses is of the provider-independent variety.
The reference to RPSL indicates that the database records are in the Routing Policy
Specification Language [RFC2622][RFC4012], used by ISPs to express their routing
policies. Such information allows network operators to configure routers to help
minimize Internet routing instabilities.

Multicast

InIPv4 and IPv6, multicast addresses (i.e., group addresses) can be described based
on their scope, the way they are determined (statically, dynamically by agreement,
or algorithmically), and whether they are used for ASM or SSM. Guidelines have
been constructed for allocation of these groups ([RFC5771] for IPv4; [RFC3307] for
IPv6) and the overall architecture is detailed in [RFC6308]. The groups that are
not of global scope (e.g., administratively scoped addresses and IPv6 link-scoped
multicast addresses) can be reused in various parts of the Internet and are either
configured by a network administrator out of an administratively scoped address
block or selected automatically by end hosts. Globally scoped addresses that are
statically allocated are generally fixed and may be hard-coded into applications.
This type of address space is limited, especially in IPv4, so such addresses are
really intended for uses applicable to any Internet site. Algorithmically deter-
mined globally scoped addresses can be created based on AS numbers, as in
GLOP, or an associated unicast prefix allocation. Note that SSM can use globally
scoped addresses (i.e., from the SSM block), administratively scoped addresses, or
unicast-prefix-based IPv6 addresses where the prefix is effectively zero.

As we can see from the relatively large number of protocols and the complex-
ity of the various multicast address formats, multicast address management is a
formidable issue (not to mention global multicast routing [RFC5110]). From a typi-
cal user’s point of view, multicasting is used rarely and may be of limited concern.
From a programmer’s point of view, it may be worthwhile to support multicast
in application designs, and some insight has been provided into how to do so
[REFC3170]. For network administrators faced with implementing multicast, some
interaction with the service provider is likely necessary. In addition, some guide-
lines for multicast address allocation have been developed by vendors [CGEMA].

Unicast Address Assignment

Once a site has been allocated a range of unicast IP addresses, typically from its
ISP, the site or network administrator must determine how to assign addresses in
the address range to each network interface and how to set up the subnet structure.
If the site has only a single physical network segment (e.g., most private homes),
this process is relatively straightforward. For larger enterprises, especially those

66

The Internet Address Architecture

2.71

receiving service from multiple ISPs and that use multiple physical network seg-
ments distributed over a large geographical area, this process can be complicated.
We shall begin to see how this works by looking at the case where a home user
uses a private address range and a single IPv4 address provided by an ISP. This is
a common scenario today. We then move on to provide some introductory guid-
ance for more complicated situations.

Single Provider/No Network/Single Address

The simplest type of Internet service that can be obtained today is to receive a single
IP address (typically IPv4 only in the United States) from an ISP to be used with a
single computer. For services such as DSL, the single address might be assigned as
the end of a point-to-point link and might be temporary. For example, if a user’s
computer connects to the Internet over DSL, it might be assigned the address
63.204.134.177 on a particular day. Any running program on the computer may send
and receive Internet traffic, and any such traffic will carry the source IPv4 address
63.204.134.177. Even a host this simple has other active IP addresses as well. These
include the local “loopback” address (127.0.0.1) and some multicast addresses, includ-
ing, at a minimum, the All Hosts multicast address (224.0.0.1). If the host is running
IPv6, at a minimum it is using the All Nodes IPv6 multicast address (ff02::1), any
IPv6 addresses it has been assigned by the ISP, the IPv6 loopback address (::1), and a
link-local address for each network interface configured for IPv6 use.

To see a host’s active multicast addresses (groups) on Linux, we can use the
ifconfigand netstat commands to see the IP addresses and groups in use:

Linux% ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol
inet addr:71.141.244.213
P-t-P:71.141.255.254 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1492 Metric:1
RX packets:33134 errors:0 dropped:0 overruns:0 frame:0
TX packets:41031 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:3
RX bytes:17748984 (16.9 MiB) TX bytes:9272209 (8.8 MiB)

Linux% netstat -gn
IPv6/IPv4 Group Memberships

Interface RefCnt Group

lo 1 224.0.0.1
jjsjsly 1 224.0.0.251
jsjsjely 1 224.0.0.1
lo 1 £f£f02::1

Here we see that the point-to-point link associated with the device ppp0
has been assigned the IPv4 address 71.141.244.213; no IPv6 address has been
assigned. The host system does have IPv6 enabled, however, so when we inspect

Section 2.7 Unicast Address Assignment 67

2.7.2

2.7.3

its group memberships we see that it is subscribed to the IPv6 All Nodes multicast
group on its local loopback (1o) interface. We can also see that the IPv4 All Hosts
group is in use, in addition to the mDNS (multicast DNS) service [IDChes]. The
mDNS protocol uses the static IPv4 multicast address 224.0.0.251.

Single Provider/Single Network/Single Address

Many Internet users who own more than one computer find that having only a
single computer attached to the Internet is not an ideal situation. As a result, they
have home LAN or WLAN networks and use either a router or a computer acting
as a router to provide connectivity to the Internet. Such configurations are very
similar to the single-computer case, except the router forwards packets from the
home network to the ISP and also performs NAT (see Chapter 7; also called Inter-
net Connection Sharing (ICS) in Windows) by rewriting the IP addresses in packets
being exchanged with the customer’s ISP. From the ISP’s point of view, only a
single IP address has been used. Today, much of this activity is automated, so the
need for manual address configuration is minimal. The routers provide automatic
address assignment to the home clients using DHCP. They also handle address
assignment for the link set up with the ISP if necessary. Details of DHCP operation
and host configuration are given in Chapter 6.

Single Provider/Multiple Networks/Multiple Addresses

Many organizations find that the allocation of a single unicast address, especially
if it is only temporarily assigned, is insufficient for their Internet access needs.
In particular, organizations intending to run Internet servers (such as Web sites)
generally wish to have an IP address that does not change over time. These sites
also often have multiple LANs; some of them are internal (separated from the
Internet by firewalls and NAT devices), and others may be external (providing
services to the Internet). For such networks, there is typically a site or network
administrator who must decide how many IP addresses the site requires, how
to structure subnets at the site, and which subnets should be internal and which
external. The arrangement shown in Figure 2-16 is typical for small and medium-
size enterprises.

In this figure, a site has been allocated the prefix 128.32.2.64/26, providing
up to 64 (minus 2) routable IPv4 addresses. The “DMZ” network (“demilitarized
zone” network, outside the primary firewall; see Chapter 7) is used to attach serv-
ers that can be accessed by users on the Internet. Such computers typically pro-
vide Web access, login servers, and other services. These servers are assigned IP
addresses from a small subset of the prefix range; many sites have only a few
public servers. The remaining addresses from the site prefix are given to the NAT
router as the basis for a “NAT pool” (see Chapter 7). This router can rewrite data-
grams entering and leaving the internal network using any of the addresses in
its pool. The network setup in Figure 2-16 is convenient for two primary reasons.

68

The Internet Address Architecture

274

All Traffic to or from 128.32.2.{64-127}

137 164.23.30/32 (128.32.2.64/26)

Enterprise
“DMZ” Border Router

| l |‘w\ 128.32.2.65/26

|
/T nternal NAT

128.32.2.66/26 [|
10.0.0.116 ~ ()

10.0.{0-255}.{0-255} @ 10.0.0.123

(10.0.0.0/16)

Figure 2-16 A typical small to medium-size enterprise network. The site has been allocated 64
public (routable) IPv4 addresses in the range 128.32.2.64/26. A “DMZ” network holds
servers that are visible to the Internet. The internal router provides Internet access for
computers internal to the enterprise using NAT.

First, the separation of the internal network from the DMZ helps protect internal
computers from damage should the DMZ servers be compromised. In addition,
this setup partitions the IP address assignment. Once the border router, DMZ, and
internal NAT router have been set up, any address structure can be used inter-
nally, where many (private) IP addresses are available. Of course, this example
is only one way of setting up small enterprise networks, and other factors such
as cost might ultimately drive the way routers, networks, and IP addresses are
deployed for any particular small or medium-size enterprise.

Multiple Providers/Multiple Networks/Multiple Addresses (Multihoming)

Some organizations that depend on Internet access for their continued operations
attach to the Internet using more than one provider (called multihoming) in order
to provide for redundancy in case of failure, or for other reasons. Because of CIDR,

Section 2.7 Unicast Address Assignment 69

organizations with a single ISP tend to have PA IP addresses associated with that
ISP. If they obtain a second ISP, the question arises as to what IP addresses should
be used in each of the hosts. Some guidance has been developed for operating
with multiple ISPs, or when transitioning from one to another (which raises some
similar concerns). For IPv4, [RFC4116] discusses how either PI or PA addresses can
be used for multihoming. Consider the situation shown in Figure 2-17.

Other Parts of the
Internet

ISP P1

(12/8)

ISP P2

(137.164/16)

PA: 12.46.129.0/25 Pl: 198.134.135.0/24

Figure 2-17 Provider-aggregatable and provider-independent IPv4 addresses used in a hypothetical
multihomed enterprise. Site operators tend to prefer using PI space if it is available. ISPs
prefer PA space because it promotes prefix aggregation and reduces routing table size.

Here, a (somewhat) fictitious site S has two ISPs, P1 and P2. If it uses PA address
space from P1’s block (12.46.129.0/25), it advertises this prefix at points C and D to
P1 and P2, respectively. The prefix can be aggregated by P1 into its 12/8 block in
advertisements to the rest of the Internet at point A, but P2 is not able to aggregate
it at point B because it is not numerically adjacent to its own prefix (137.164/16).
In addition, from the point of view of some host in the other parts of the Internet,
traffic for 12.46.129.0/25 tends to go through ISP P2 rather than ISP P1 because the
prefix for site S is longer (“more specific”) than when it goes through P1. This is
a consequence of the way the longest matching prefix algorithm works for Internet
routing (see Chapter 5 for more details). In essence, a host in the other parts of the
Internet could reach the address 12.46.129.1 via either a matching prefix 12.0.0.0/8
at point A or the prefix 12.46.129.0/25 at point B. Because each prefix matches (i.e.,
contains a common set of prefix bits with the destination address 12.46.129.1), the
one with the larger or longer mask (larger number of matching bits) is preferred,

70

The Internet Address Architecture

2.8

which in this case is P2. Thus, P2 is in the position of being unable to aggregate the
prefix from S and also winds up carrying most of S’s traffic.

If site S decides to use Pl space instead of PA space, the situation is more symmet-
ric. However, no aggregation is possible. In this case, the PI prefix 198.134.135.0/24
is advertised to P1 and P2 at points C and D, respectively, but neither ISP is able
to aggregate it because it is not numerically adjacent to either of the ISPs” address
blocks. Thus, both ISPs advertise the identical prefix 198.134.135.0/24 at points A
and B. In this fashion the “natural” shortest-path computations in Internet rout-
ing can take place, and site S can be reached by whichever ISP is closer to the host
sending to it. In addition, if site S decides to switch ISPs, it does not have to change
its assigned addresses. Unfortunately, the inability to aggregate such addresses
can be a concern for future scalability of the Internet, so PI space is in relatively
short supply.

Multihoming for IPv6 has been the subject of study within the IETF for
some time, resulting in the Multi6 architecture [RFC4177] and the Shim6 proto-
col [REC5533]. Multi6 outlines a number of approaches that have been proposed
for handling the issue. Broadly, the options mentioned include using a routing
approach equivalent to IPv4 multihoming mentioned previously, using the capa-
bilities of Mobile IPv6 [RFC6275], and creating a new method that splits the iden-
tification of nodes away from their locators. Today, IP addresses serve as both
identifiers (essentially a form of name) and locators (an address understood by the
routing system) for a network interface attached to the Internet. Providing a sepa-
ration would allow the network protocol implementation to function even if the
underlying IP address changes. Protocols that provide this separation are some-
times called identifier/locator separating or id/loc split protocols.

Shimé6 introduces a “shim” network-layer protocol that separates the “upper-
layer protocol identifier” used by the transport protocols from the IP address.
Multihoming is achieved by selecting which IP address (locator) to use based
on dynamic network conditions and without requiring PI address allocations.
Communicating hosts (peers) agree on which locators to use and when to switch
between them. Separation of identifiers from locators is the subject of several other
efforts, including the experimental Host Identity Protocol (HIP) [RFC4423], which
identifies hosts using cryptographic host identifiers. Such identifiers are effec-
tively the public keys of public/private key pairs associated with hosts, so HIP
traffic can be authenticated as having come from a particular host. Security issues
are discussed in more detail in Chapter 18.

Attacks Involving IP Addresses

Given that IP addresses are essentially numbers, few network attacks involve only
them. Generally, attacks can be carried out when sending “spoofed” datagrams (see
Chapter 5) or with other related activities. That said, IP addresses are now being
used to help identify individuals suspected of undesirable activities (e.g., copyright

Section 2.9 Summary 71

2.9

infringement in peer-to-peer networks or distribution of illegal materials). Doing
this can be misleading for several reasons. For example, in many circumstances
IP addresses are only temporary and are reassigned to different users at different
times. Therefore, any errors in accurate timekeeping can easily cause databases
that map IP addresses to users to be incorrect. Furthermore, access controls are not
widely and securely deployed; it is often possible to attach to the Internet through
some public access point or some unintentionally open wireless router in some-
one’s home or office. In such circumstances, the unsuspecting home or business
owner may be targeted based on IP address even though that person was not the
originator of traffic on the network. This can also happen when compromised hosts
are used to form botnets. Such collections of computers (and routers) can now be
leased on what has effectively become an Internet-based black market for carrying
out attacks, serving illicit content, and other misdeeds [RFC4948].

Summary

The IP address is used to identify and locate network interfaces on devices
throughout the Internet system (unicast addresses). It may also be used for iden-
tifying more than one such interface (multicast, broadcast, or anycast addresses).
Each interface has a minimum of one 32-bit IPv4 address (when IPv4 is being
used) and usually has several 128-bit addresses if using IPv6. Unicast addresses
are allocated in blocks by a hierarchically structured set of administrative entities.
Prefixes allocated by such entities represent a chunk of unicast IP address space
typically given to ISPs that in turn provide addresses to their users. Such prefixes
are usually a subrange of the ISP’s address block (called provider-aggregatable or
PA addresses) but may instead be owned by the user (called provider-indepen-
dent or PI addresses). Numerically adjacent address prefixes (PA addresses) can
be aggregated to save routing table space and improve scalability of the Internet.
This approach arose when the Internet’s “classful” network structure consist-
ing of class A, B, and C network numbers was abandoned in favor of classless
inter-domain routing (CIDR). CIDR allows for different sizes of address blocks to
be assigned to organizations with different needs for address space; essentially,
CIDR enables more efficient allocation of address space. Anycast addresses are
unicast addresses that refer to different hosts depending on where the sender is
located; such addresses are often used for discovering network services that may
be present in multiple locations.

IPv6 unicast addresses differ somewhat from IPv4 addresses. Most important,
IPv6 addresses have a scope concept, for both unicast and multicast addresses,
that specifically indicates where an address is valid. Typical scopes include node-
local, link-local, and global. Link-local addresses are often created based on a stan-
dard prefix in combination with an IID that can be based on addresses provided
by lower-layer protocols (such as hardware/MAC addresses) or random values.
This approach aids in autoconfiguration of IPv6 addresses.

72

The Internet Address Architecture

210

Both IPv4 and IPv6 support addressing formats that refer to more than one
network interface at a time. Broadcast and multicast addresses are supported in
IPv4, but only multicast addresses are supported in IPv6. Broadcast allows for one-
to-all communication, whereas multicast allows for one-to-many communication.
Senders send to multicast groups (IP addresses) that act somewhat like television
channels; the sender has no direct knowledge of the recipients of its traffic or
how many receivers there are on a channel. Global multicast in the Internet has
evolved over more than a decade and involves many protocols—some for routing,
some for address allocation and coordination, and some for signaling that a host
wishes to join or leave a group. There are also many types and uses of IP multi-
cast addresses, both in IPv4 and (especially) in IPv6. Variants of the IPv6 multi-
cast address format provide ways for allocating groups based on unicast prefixes,
embedding routing information (RP addresses) in groups, and creating multicast
addresses based on IIDs.

The development and deployment of CIDR was arguably the last fundamen-
tal change made to the Internet’s core routing system. CIDR was successful in
handling the pressure to have more flexibility in allocating address space and
for promoting routing scalability through aggregation. In addition, IPv6 was pur-
sued at the time (early 1990s) with much energy, based on the belief that a much
larger number of addresses would be required soon. Unforeseen at the time, the
widespread use of NAT (see Chapter 7) has since significantly delayed adoption of
IPv6 by not requiring every host attached to the Internet to have a unique address.
Instead, large networks using private address space are now commonplace. Ulti-
mately, however, the number of available routable IP addresses will eventually
dwindle to zero, so some change will be required. In February 2011 the last five /8
IPv4 address prefixes were allocated from the IANA, one to each of the five RIRs.
On April 15, 2011, APNIC exhausted all of its allocatable prefixes. The remain-
ing prefixes held by various RIRs are expected to remain unallocated for only a
few years at most. A current snapshot of IPv4 address utilization can be found at
[IP4R].

References

[CGEMA] Cisco Systems, “Guidelines for Enterprise IP Multicast Address
Allocation,” 2004, http://www.cisco.com/warp/public/cc/techno/tity/prodlit/
ipmlt_wp.pdf

[EIGRP] B. Albrightson, J. J. Garcia-Luna-Aceves, and]. Boyle, “EIGRP—A Fast
Routing Protocol Based on Distance Vectors,” Proc. Infocom, 2004.

[EUI64] Institute for Electrical and Electronics Engineers, “Guidelines for 64-Bit
Global Identifier (EUI-64) Registration Authority,” Mar. 1997 http://standards.
ieee.org/regauth/oui/tutorials/EUI64.html

http://www.cisco.com/warp/public/cc/techno/tity/prodlit/ipmlt_wp.pdf
http://www.cisco.com/warp/public/cc/techno/tity/prodlit/ipmlt_wp.pdf
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

Section 2.10 References 73

[H96] M. Handley, “The SDR Session Directory: An Mbone Conference Schedul-
ing and Booking System,” Department of Computer Science, University College
London, Apr. 1996,http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/sdr/
intro.html

[TANA] Internet Assigned Numbers Authority, http://www.iana.org

[IDChes] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet draft-
cheshire-dnsext-multicastdns, work in progress, Oct. 2010.

[IDv4vémc] S. Venaas, X. Li, and C. Bao, “Framework for IPv4/IPv6 Multicast
Translation,” Internet draft-venaas-behave-v4dvémc-framework, work in progress,
Dec. 2010.

[IEEERA] IEEE Registration Authority, http://standards.ieee.org/regauth

[IMRO02] B. Edwards, L. Giuliano, and B. Wright, Interdomain Multicast Routing:
Practical Juniper Networks and Cisco Systems Solutions (Addison-Wesley, 2002).

[IP4AS] http://www.iana.org/assignments/ipv4-address-space
[[P4MA]http://www.iana.org/assignments/multicast-addresses
[IP4R] IPv4 Address Report, http://www.potaroo.net/tools/ipv4
[IP6AS] http://www.iana.org/assignments/ipv6-address-space
[IP6MA] http://www.iana.org/assignments/ipv6-multicast-addresses

[KK77] L. Kleinrock and F. Kamoun, “Hierarchical Routing for Large Networks,
Performance Evaluation and Optimization,” Computer Networks, 1(3), 1977.

[NRO] Number Resource Organization, http://www.nro.net

[REC0919] J. C. Mogul, “Broadcasting Internet Datagrams,” Internet RFC 0919/
BCP 0005, Oct. 1984.

[RFC0922]]. C. Mogul, “Broadcasting Internet Datagrams in the Presence of Sub-
nets,” Internet RFC 0922/STD 0005, Oct. 1984.

[REC0950] J. C. Mogul and]. Postel, “Internet Standard Subnetting Procedure,”
Internet RFC 0950/STD 0005, Aug. 1985.

[RFC1075] D. Waitzman, C. Partridge, and S. E. Deering, “Distance Vector Multi-
cast Routing Protocol,” Internet RFC 1075 (experimental), Nov. 1988.

[RFC1112] S. E. Deering, “Host Extensions for IP Multicasting,” Internet RFC
1112/STD 0005, Aug. 1989.

[REC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/sdr/intro.html
http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/sdr/intro.html
http://www.iana.org
http://standards.ieee.org/regauth
http://www.iana.org/assignments/ipv4-address-space
http://www.iana.org/assignments/multicast-addresses
http://www.potaroo.net/tools/ipv4
http://www.iana.org/assignments/ipv6-address-space
http://www.iana.org/assignments/ipv6-multicast-addresses
http://www.nro.net

74

The Internet Address Architecture

[RFC1812] F. Baker, ed., “Requirements for IP Version 4 Routers,” Internet RFC
1812/STD 0004, June 1995.

[RFC1918] Y. Rekhter, B. Moskowitz, D. Karrenberg, G.]. de Groot, and E. Lear,
“Address Allocation for Private Internets,” Internet REC 1918/BCP 0005, Feb.
1996.

[RFC2080] G. Malkin and R. Minnear, “RIPng for IPv6,” Internet RFC 2080, Jan.
1997.

[REC2328] J. Moy, “OSPF Version 2,” Internet RFC 2328/STD 0054, Apr. 1988.

[RFC2365] D. Meyer, “Administratively Scoped IP Multicast,” Internet RFC 2365/
BCP 0023, July 1998.

[RFC2544] S. Bradner and J. McQuaid, “Benchmarking Methodology for Net-
work Interconnect Devices,” Internet RFC 2544 (informational), Mar. 1999.

[REC2622] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T.
Bates, D. Karrenberg, and M. Terpstra, “Routing Policy Specification Language
(RPSL),” Internet RFC 2622, June 1999.

[RFC2644] D. Senie, “Changing the Default for Directed Broadcasts in Routers,”
Internet RFC 2644/BCP 0034, Aug. 1999.

[RFC2974] M. Handley, C. Perkins, and E. Whelan, “Session Announcement Pro-
tocol,” Internet RFC 2974 (experimental), Oct. 2000.

[RFC3056] B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4
Clouds,” Internet RFC 3056, Feb. 2001.

[RFC3068] C. Huitema, “An Anycast Prefix for 6to4 Relay Routers,” Internet RFC
3068, June 2001.

[RFC3170] B. Quinn and K. Almeroth, “IP Multicast Applications: Challenges
and Solutions,” Internet RFC 3170 (informational), Sept. 2001.

[RFC3180] D. Meyer and P. Lothberg, “GLOP Addressing in 233/8,” Internet RFC
3180/BCP 0053, Sept. 2001.

[REC3306] B. Haberman and D. Thaler, “Unicast-Prefix-Based IPv6 Multicast
Addresses,” Internet RFC 3306, Aug. 2002.

[REC3307] B. Haberman, “Allocation Guidelines for IPv6 Multicast Addresses,”
Internet REC 3307, Aug. 2002.

[RFC3315] R. Droms, ed., J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney,
“Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” Internet RFC 3315,
July 2003.

[REC3569] S. Bhattacharyya, ed., “An Overview of Source-Specific Multicast
(SSM),” Internet RFC 3569 (informational), July 2003.

Section 2.10 References 75

[RFC3701] R. Fink and R. Hinden, “6bone (IPv6 Testing Address Allocation)
Phaseout,” Internet RFC 3701 (informational), Mar. 2004.

[RFC3810] R. Vida and L. Costa, eds., “Multicast Listener Discovery Version 2
(MLDv2) for IPv6,” Internet RFC 3810, June 2004.

[RFC3849] G. Huston, A. Lord, and P. Smith, “IPv6 Address Prefix Reserved for
Documentation,” Internet RFC 3849 (informational), July 2004.

[REC3879] C. Huitema and B. Carpenter, “Deprecating Site Local Addresses,”
Internet RFC 3879, Sept. 2004.

[RFC3927] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of
IPv4 Link-Local Addresses,” Internet RFC 3927, May 2005.

[RFC3956] P. Savola and B. Haberman, “Embedding the Rendezvous Point (RP)
Address in an IPv6 Multicast Address,” Internet RFC 3956, Nov. 2004.

[RFC4012] L. Blunk, J. Damas, F. Parent, and A. Robachevsky, “Routing Policy
Specification Language Next Generation (RPSLng),” Internet RFC 4012, Mar.
2005.

[RFC4116] J. Abley, K. Lindqvist, E. Davies, B. Black, and V. Gill, “IPv4 Multihom-
ing Practices and Limitations,” Internet RFC 4116 (informational), July 2005.

[REC4177] G. Huston, “Architectural Approaches to Multi-homing for IPv6,”
Internet RFC 4177 (informational), Sept. 2005.

[RFC4193] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,”
Oct. 2005.

[RFC4286] B. Haberman and J. Martin, “Multicast Router Discovery,” Internet
RFC 4286, Dec. 2005.

[RFC4291] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,”
Internet RFC 4291, Feb. 2006.

[RFC4380] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs),” Internet REC 4380, Feb. 2006.

[RFC4423] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Archi-
tecture,” Internet RFC 4423 (informational), May 2006.

[RFC4489]].-S. Park, M.-K. Shin, and H.-]. Kim, “A Method for Generating Link-
Scoped IPv6 Multicast Addresses,” Internet REC 4489, Apr. 2006.

[REC4566] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description
Protocol,” Internet RFC 4566, July 2006.

[RFC4601] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol Inde-
pendent Multicast-Sparse Mode (PIM-SM): Protocol Specification (Revised),”
Internet RFC 4601, Aug. 2006.

76

The Internet Address Architecture

[RFC4607] H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” Internet
RFC 4607, Aug. 2006.

[RFC4608] D. Meyer, R. Rockell, and G. Shepherd, “Source-Specific Protocol Inde-
pendent Multicast in 232/8,” Internet RFC 4608/BCP 0120, Aug. 2006.

[RFC4610] D. Farinacci and Y. Cai, “Anycast-RP Using Protocol Independent Mul-
ticast (PIM),” Internet RFC 4610, Aug. 2006.

[RFC4632] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The Inter-
net Address Assignment and Aggregation Plan,” Internet RFC 4632/BCP 0122,
Aug. 2006.

[RFC4786] J. Abley and K. Lindqvist, “Operation of Anycast Services,” Internet
RFC 4786/BCP 0126, Dec. 2006.

[REC4795] B. Aboba, D. Thaler, and L. Esibov, “Link-Local Multicast Name Reso-
lution (LLMNR),” Internet RFC 4795 (informational), Jan. 2007.

[RFC4843] P. Nikander,]. Laganier, and F. Dupont, “An IPv6 Prefix for Overlay
Routable Cryptographic Hash Identifiers (ORCHID),” Internet RFC 4843 (experi-
mental), Apr. 2007.

[RFC4893] Q. Vohra and E. Chen, “BGP Support for Four-Octet AS Number
Space,” Internet RFC 4893, May 2007.

[RFC4948] L. Andersson, E. Davies, and L. Zhang, eds., “Report from the IAB
Workshop on Unwanted Traffic March 9-10, 2006,” Internet RFC 4948 (informa-
tional), Aug. 2007.

[REC5059] N. Bhaskar, A. Gall, J. Lingard, and S. Venaas, “Bootstrap Router (BSR)
Mechanism for Protocol Independent Multicast (PIM),” Internet RFC 5059, Jan.
2008.

[REC5110] P. Savola, “Overview of the Internet Multicast Routing Architecture,”
Internet RFC 5110 (informational), Jan. 2008.

[RFC5156] M. Blanchet, “Special-Use IPv6 Addresses,” Internet RFC 5156 (infor-
mational), Apr. 2008.

[RFC5214] F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP),” Internet RFC 5214 (informational), Mar. 2008.

[REC5352] R. Stewart, Q. Xie, M. Stillman, and M. Tuexen, “Aggregate Server
Access Protocol (ASAP),” Internet RFC 5352 (experimental), Sept. 2008.

[RFC5415] P. Calhoun, M. Montemurro, and D. Stanley, eds., “Control and Pro-
visioning of Wireless Access Points (CAPWAP) Protocol Specification,” Internet
RFC 5415, Mar. 2009.

Section 2.10 References 77

[REC5498] I. Chakeres, “TANA Allocations for Mobile Ad Hoc Network
(MANET) Protocols,” Internet RFC 5498, Mar. 2009.

[RFC5533] E. Nordmark and M. Bagnulo, “Shimé6: Level 3 Multihoming Shim
Protocol for IPv6,” Internet RFC 5533, June 2009.

[REC5735] M. Cotton and L. Vegoda, “Special Use IPv4 Addresses,” Internet RFC
5735/BCP 0153, Jan. 2010.

[REC5736] G. Huston, M. Cotton, and L. Vegoda, “IANA IPv4 Special Purpose
Address Registry,” Internet RFC 5736 (informational), Jan. 2010.

[REC5737] J. Arkko, M. Cotton, and L. Vegoda, “IPv4 Address Blocks Reserved
for Documentation,” Internet RFC 5737 (informational), Jan. 2010.

[REC5771] M. Cotton, L. Vegoda, and D. Meyer, “IANA Guidelines for IPv4 Mul-
ticast Address Assignments,” Internet RFC 5771/BCP 0051, Mar. 2010.

[REC5952] S. Kawamura and M. Kawashima, “A Recommendation for IPv6
Address Text Representation,” Internet RFC 5952, Aug. 2010.

[RFC5905] D. Mills, J. Martin, ed.,]. Burbank, and W. Kasch, “Network Time
Protocol Version 4: Protocol and Algorithms Specification,” Internet RFC 5905,
June 2010.

[REC6034] D. Thaler, “Unicast-Prefix-Based IPv4 Multicast Addresses,” Internet
RFC 6034, Oct. 2010.

[REC6052] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li, “IPv6
Addressing of IPv4/IPv6 Translators,” Internet RFC 6052, Oct. 2010.

[REC6217] J. Arkko and M. Townsley, “IPv4 Run-Out and IPv4-IPv6 Co-Existence
Scenarios,” Internet RFC 6127 (experimental), May 2011.

[REC6144] E. Baker, X. Li, C. Bao, and K. Yin, “Framework for IPv4/IPv6 Transla-
tion,” Internet RFC 6144 (informational), Apr. 2011.

[REC6164] M. Kohno, B. Nitzan, R. Bush, Y. Matsuzaki, L. Colitti, and T. Narten,
“Using 127-Bit IPv6 Prefixes on Inter-Router Links,” Internet RFC 6164, Apr. 2011.

[REC6275] C. Perkins, ed., D. Johnson, and J. Arkko, “Mobility Support in IPv6,”
Internet RFC 3775, July 2011.

[REC6308] P. Savola, “Overview of the Internet Multicast Addressing Architec-
ture,” Internet RFC 6308 (informational), June 2011.

[WRWS]http://www.arin.net/resources/whoisrws

http://www.arin.net/resources/whoisrws

This page intentionally left blank

3.1

3

Link Layer

Introduction

In Chapter 1, we saw that the purpose of the link layer in the TCP/IP protocol suite
is to send and receive IP datagrams for the IP module. It is also used to carry a
few other protocols that help support IP, such as ARP (see Chapter 4). TCP/IP sup-
ports many different link layers, depending on the type of networking hardware
being used: wired LANs such as Ethernet, metropolitan area networks (MANs) such
as cable TV and DSL connections available through service providers, and wired
voice networks such as telephone lines with modems, as well as the more recent
wireless networks such as Wi-Fi (wireless LAN) and various wireless data ser-
vices based on cellular technlology such as HSPA, EV-DO, LTE, and WiMAX. In
this chapter we shall look at some of the details involved in using the Ethernet and
Wi-Hi link layers, how the Point-to-Point Protocol (PPP) is used, and how link-layer
protocols can be carried inside other (link- or higher-layer) protocols, a technique
known as tunneling. Covering the details of every link technology available today
would require a separate text, so we instead focus on some of the most commonly
used link-layer protocols and how they are used by TCP/IP.

Most link-layer technologies have an associated protocol format that describes
how the corresponding PDUs must be constructed in order to be carried by the
network hardware. When referring to link-layer PDUs, we usually use the term
frame, so as to distinguish the PDU format from those at higher layers such as
packets or segments, terms used to describe network- and transport-layer PDUs,
respectively. Frame formats usually support a variable-length frame size ranging
from a few bytes to a few kilobytes. The upper bound of the range is called the
maximum transmission unit (MTU), a characteristic of the link layer that we shall
encounter numerous times in the remaining chapters. Some network technolo-
gies, such as modems and serial lines, do not impose their own maximum frame
size, so they can be configured by the user.

79

80

Link Layer

3.2

Ethernet and the IEEE 802 LAN/MAN Standards

The term Ethernet generally refers to a set of standards first published in 1980 and
revised in 1982 by Digital Equipment Corp., Intel Corp., and Xerox Corp. The first
common form of Ethernet is now sometimes called “10Mb/s Ethernet” or “shared
Ethernet,” and it was adopted (with minor changes) by the IEEE as standard number
802.3. Such networks were usually arranged like the network shown in Figure 3-1.

Stations

Shared Ethernet

("Stations Send When Medium Is Available(])/ Segment (LAN)

53

Figure 3-1 A basic shared Ethernet network consists of one or more stations (e.g., workstations,
supercomputers) attached to a shared cable segment. Link-layer PDUs (frames) can be
sent from one station to one or more others when the medium is determined to be free.
If multiple stations send at the same time, possibly because of signal propagation delays,
a collision occurs. Collisions can be detected, and they cause sending stations to wait a
random amount of time before retrying. This common scheme is called carrier sense,
multiple access with collision detection.

Because multiple stations share the same network, this standard includes a
distributed algorithm implemented in each Ethernet network interface that con-
trols when a station gets to send data it has. The particular method, known as
carrier sense, multiple access with collision detection (CSMA/CD), mediates which
computers can access the shared medium (cable) without any other special agree-
ment or synchronization. This relative simplicity helped to promote the low cost
and resulting popularity of Ethernet technology.

With CSMA/CD, a station (e.g., computer) first looks for a signal currently
being sent on the network and sends its own frame when the network is free.
This is the “carrier sense” portion of the protocol. If some other station happens
to send at the same time, the resulting overlapping electrical signal is detected as
a collision. In this case, each station waits a random amount of time before try-
ing again. The amount of time is selected by drawing from a uniform probability
distribution that doubles in length each time a subsequent collision is detected.

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 81

Eventually, each station gets its chance to send or times out trying after some
number of attempts (16 in the case of conventional Ethernet). With CSMA/CD,
only one frame is traveling on the network at any given time. Access methods such
as CSMA/CD are more formally called Media Access Control (MAC) protocols.
There are many types of MAC protocols; some are based on having each station
try to use the network independently (contention-based protocols like CSMA/
CD), and others are based on prearranged coordination (e.g., by allocating time
slots for each station to send).

Since the development of 10Mb/s Ethernet, faster computers and infrastruc-
ture have driven the need for ever-increasing speeds in LANs. Given the popu-
larity of Ethernet, significant innovation and effort have managed to increase its
speed from 10Mb/s to 100Mb/s to 1000Mb/s to 10Gb/s, and now to even more.
The 10Gb/s form is becoming popular in larger data centers and large enterprises,
and speeds as high as 100Gb/s have been demonstrated. The very first (research)
Ethernet ran at 3Mb/s, but the DIX (Digital, Intel, Xerox) standard ran at 10Mb/s
over a shared physical cable or set of cable segments interconnected by electri-
cal repeaters. By the early 1990s, the shared cable had largely been replaced by
twisted-pair wiring (resembling telephone wires and often called “10BASE-T”).
With the development of 100Mb/s (also called “fast Ethernet,” the most popular
version of which is known as “100BASE-TX”), contention-based MAC protocols
have become less popular. Instead, the wiring between each LAN station is often
not shared but instead provides a dedicated electrical path in a star topology. This
can be accomplished with Ethernet switches, as shown in Figure 3-2.

Stations

Ethernet
Switch

Ports “Uplink” Port
(to Other Switches)

Figure 3-2 A switched Ethernet network consists of one or more stations, each of which is attached
to a switch port using a dedicated wiring path. In most cases where switched Ethernet is
used, the network operates in a full-duplex fashion and the CSMA/CD algorithm is not
required. Switches may be cascaded to form larger Ethernet LANs by interconnecting
switch ports, sometimes called “uplink” ports.

82

Link Layer

3.21

At present, switches are commonly used, providing each Ethernet station with
the ability to send and receive data simultaneously (called “full-duplex Ethernet”).
Although half-duplex (one direction at a time) operation is still supported even by
1000Mb/s Ethernet (1000BASE-T), it is rarely used relative to full-duplex Ethernet.
We shall discuss how switches process PDUs in more detail later.

One of the most popular technologies used to access the Internet today is
wireless networking, the most common for wireless local area networks (WLANS5)
being an IEEE standard known as Wireless Fidelity or Wi-Fi, and sometimes
called “wireless Ethernet” or 802.11. Although this standard is distinct from the
802 wired Ethernet standards, the frame format and general interface are largely
borrowed from 802.3, and all are part of the set of IEEE 802 LAN standards. Thus,
most of the capabilities used by TCP/IP for Ethernet networks are also used for
Wi-Fi networks. We shall explore each of these in more detail. First, however, it
is useful to get a bigger picture of all of the IEEE 802 standards that are relevant
for setting up home and enterprise networks. We also include references to those
IEEE standards governing MAN standards, including IEEE 802.16 (WiMAX) and
the standard for media-independent handoffs in cellular networks (IEEE 802.21).

The IEEE 802 LAN/MAN Standards

The original Ethernet frame format and operation were described by industry
agreement, mentioned earlier. This format was known as the DIX format or Eth-
ernet II format. This type of Ethernet network, with slight modification, was later
standardized by the IEEE as a form of CSMA/CD network, called 802.3. In the
world of IEEE standards, standards with the prefix 802 define the operations of
LANs and MANSs. The most popular 802 standards today include 802.3 (essen-
tially Ethernet) and 802.11 (WLAN/Wi-Fi). These standards have evolved over
time and have changed names as freestanding amendments (e.g., 802.11g) are
ultimately incorporated in revised standards. Table 3-1 shows a fairly complete
list of the IEEE 802 LAN and MAN standards relevant to supporting the TCP/IP
protocols, as of mid-2011.

Table 3-1 LAN and MAN IEEE 802 standards relevant to the TCP/IP protocols (2011)

Name Description Official Reference
802.1ak Multiple Registration Protocol (MRP) [802.1AK-2007]

802.1AE MAC Security (MACSec) [802.1AE-2006]

802.1AX Link Aggregation (formerly 802.3ad) [802.1AX-2008]

802.1d MAC Bridges [802.1D-2004]

802.1p Traffic classes/priority/QoS [802.1D-2004]

802.1q Virtual Bridged LANs/Corrections to MRP [802.1Q-2005/Cor1-2008]
802.1s Multiple Spanning Tree Protocol (MSTP) [802.1QQ-2005]

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 83

Table 3-1 LAN and MAN IEEE 802 standards relevant to the TCP/IP protocols (2011) (continued)
Name Description Official Reference
802.1w Rapid Spanning Tree Protocol (RSTP) [802.1D-2004]
802.1X Port-Based Network Access Control (PNAC) [802.1X-2010]
802.2 Logical Link Control (LLC) [802.2-1998]
802.3 Baseline Ethernet and 10Mb/s Ethernet [802.3-2008] (Section One)
802.3u 100Mb/s Ethernet (“Fast Ethernet”) [802.3-2008] (Section Two)
802.3x Full-duplex operation and flow control [802.3-2008]
802.3z/802.3ab | 1000Mb/s Ethernet (“Gigabit Ethernet”) [802.3-2008] (Section
Three)
802.3ae 10Gb/s Ethernet (“Ten-Gigabit Ethernet”) [802.3-2008] (Section Four)
802.3ad Link Aggregation [802.1AX-2008]
802.3af Power over Ethernet (PoE) (to 15.4W) [802.3-2008] (Section Two)
802.3ah Access Ethernet (“Ethernet in the First Mile [802.3-2008] (Section Five)
(EFM)”)
802.3as Frame format extensions (to 2000 bytes) [802.3-2008]
802.3at Power over Ethernet enhancements (“PoE+”, to [802.3at-2009]
30W)
802.3ba 40/100Gb/s Ethernet [802.3ba-2010]
802.11a 54Mb/s Wireless LAN at 5GHz [802.11-2007]
802.11b 11Mb/s Wireless LAN at 24GHz [802.11-2007]
802.11e QoS enhancement for 802.11 [802.11-2007]
802.11g 54Mb/s Wireless LAN at 24GHz [802.11-2007]
802.11h Spectrum/power management extensions [802.11-2007]
802.11i Security enhancements/replaces WEP [802.11-2007]
802.11j 4.9-5.0GHz operation in Japan [802.11-2007]
802.11n 6.5-600Mb/s Wireless LAN at 2.4 and 5GHz [802.11n-2009]
using optional MIMO and 40MHz channels
802.11s (draft) Mesh networking, congestion control Under development
802.11y 54Mb/s wireless LAN at 3.7GHz (licensed) [802.11y-2008]
802.16 Broadband Wireless Access Systems (WiMAX) [802.16-2009]
802.16d Fixed Wireless MAN Standard (WiMAX) [802.16-2009]
802.16e Fixed/Mobile Wireless MAN Standard (WiMAX) | [802.16-2009]
802.16h Improved Coexistence Mechanisms [802.16h-2010]
802.16j Multihop Relays in 802.16 [802.16j-2009]
802.16k Bridging of 802.16 [802.16k-2007]
802.21 Media Independent Handovers [802.21-2008]

84 Link Layer

Other than the specific types of LAN networks defined by the 802.3, 802.11,
and 802.16 standards, there are some related standards that apply across all of
the IEEE standard LAN technologies. Common to all three of these is the 802.2
standard that defines the Logical Link Control (LLC) frame header common among
many of the 802 networks” frame formats. In IEEE terminology, LLC and MAC
are “sublayers” of the link layer, where the LLC (mostly frame format) is generally
common to each type of network and the MAC layer may be somewhat different.
While the original Ethernet made use of CSMA/CD, for example, WLANSs often
make use of CSMA/CA (CA is “collision avoidance”).

Note

Unfortunately the combination of 802.2 and 802.3 defined a different frame format

from Ethernet Il until 802.3x finally rectified the situation. It has been incorpo-

rated into [802.3-2008]. In the TCP/IP world, the encapsulation of IP datagrams

is defined in [RFC0894] and [RFC2464] for Ethernet networks, although the older

LLC/SNAP encapsulation remains published as [RFC1042]. While this is no lon-

ger much of an issue, it was once a source of concern, and similar issues occa-

sionally arise [RFC4840].

The frame format has remained essentially the same until fairly recently. To
get an understanding of the details of the format and how it has evolved, we now
turn our focus to these details.

3.2.2 The Ethernet Frame Format

All Ethernet (802.3) frames are based on a common format. Since its original speci-
fication, the frame format has evolved to support additional functions. Figure 3-3
shows the current layout of an Ethernet frame and how it relates to a relatively new
term introduced by IEEE, the IEEE packet (a somewhat unfortunate term given its
uses in other standards).

The Ethernet frame begins with a Preamble area used by the receiving inter-
face’s circuitry to determine when a frame is arriving and to determine the amount
of time between encoded bits (called clock recovery). Because Ethernet is an asyn-
chronous LAN (i.e., precisely synchronized clocks are not maintained in each Eth-
ernet interface card), the space between encoded bits may differ somewhat from
one interface card to the next. The preamble is a recognizable pattern (OxAA typi-
cally), which the receiver can use to “recover the clock” by the time the start frame
delimiter (SFD) is found. The SED has the fixed value OxAB.

Note

The original Ethernet encoded bits using a Manchester Phase Encoding (MPE)
with two voltage levels. With MPE, bits are encoded as voltage transitions rather
than absolute values. For example, the bit 0 is encoded as a transition from -0.85
to +0.85V, and a 1 bit is encoded as a +0.85 to -0.85V transition (OV indicates

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 85

that the shared wire is idle). The 10Mb/s Ethernet specification required network
hardware to use an oscillator running at 20MHz, because MPE requires two clock
cycles per bit. The bytes OxAA (10101010 in binary) present in the Ethernet pre-
amble would be a square wave between +0.85 and -0.85V with a frequency of
10MHz. Manchester encoding was replaced with different encodings in other Eth-
ernet standards to improve efficiency.

This basic frame format includes 48-bit (6-byte) Destination (DST) and Source
(SRC) Address fields. These addresses are sometimes known by other names such
as “MAC address,” “link-layer address,” “802 address,” “hardware address,” or
“physical address.” The destination address in an Ethernet frame is also allowed
to address more than one station (called “broadcast” or “multicast”; see Chap-
ter 9). The broadcast capability is used by the ARP protocol (see Chapter 4) and
multicast capability is used by the ICMPv6 protocol (see Chapter 8) to convert
between network-layer and link-layer addresses.

Following the source address is a Type field that doubles as a Length field. Ordi-
narily, it identifies the type of data that follows the header. Popular values used
with TCP/IP networks include IPv4 (0x0800), IPv6 (0x86DD), and ARP (0x0806).
The value 0x8100 indicates a Q-tagged frame (i.e, one that can carry a “virtual
LAN” or VLAN ID according to the 802.1q standard). The size of a basic Ethernet
frame is 1518 bytes, but the more recent standard extended this size to 2000 bytes.

- IEEE “Packet” »
- Frame >
-<«+—— MACClientData ——»
S tenatn | P/Q i oth Upper-Layer Protocol Payload PIF Carrier Extensi
en(er - arrier extension
Preamble II::) DST | SRC T;’;e Tag Tags (typically up to 1500 bytes) 3 (S: (%2 Duplex Only)
»
’ (0—1982) (0+) (4) (variable)

(Tbytes) 1 (6) 6 (27 (0/2)

Basic Frames: 64—1518 bytes
Q-Tagged Frames: 64—1522 bytes
Envelope Frames: 64—2000 bytes

" 802.1 p/q Tag
(If Present)

C Up to 482 bytes of tags allowed in envelope frames
Tag/Protocol ID |Prio [F| VLAN ID (Q-tagged frames are envelope frames)
|
16 bits 3 1 12

Figure 3-3 The Ethernet (IEEE 802.3) frame format contains source and destination addresses, an overloaded
Length/Type field, a field for data, and a frame check sequence (a CRC32). Additions to the basic
frame format provide for a tag containing a VLAN ID and priority information (802.1p/q) and
more recently for an extensible number of tags. The preamble and SFD are used for synchroniz-
ing receivers. When half-duplex operation is used with Ethernet running at 100Mb/s or more,
additional bits may be appended to short frames as a carrier extension to ensure that the collision
detection circuitry operates properly.

86

Link Layer

Note

The original IEEE (802.3) specification treats the Length/Type field as a Length
field instead of a Type field. The field is thereby overloaded (used for more than
one purpose). The trick is to look at the value of the field. Today, if the value in the
field is greater than or equal to 1536, the field must contain a type value, which
is assigned by standards to have values exceeding 1536. If the value of the field
is 1500 or less, the field indicates the length. The full list of types is given by
[ETHERTYPES].

Following the Destination and Source Address fields, [802.3-2008] provides for
a variable number of tags that contain various protocol fields defined by other
IEEE standards. The most common of these are the tags used by 802.1p and 802.1q,
which provide for virtual LANs and some quality-of-service (QoS) indicators. These
are discussed in Section 3.2.3.

Note

The current [802.3-2008] standard incorporates the frame format modifications
of 802.3 as that provides for a maximum of 482 bytes for holding “tags” to be car-
ried with each Ethernet frame. These larger frames, called envelope frames, may
be up to 2000 bytes in length. Frames containing 802.1p/q tags, called Q-tagged
frames, are also envelope frames. However, not all envelope frames are neces-
sarily Q-tagged frames.

Following the fields discussed so far is the data area or payload portion of the
frame. This is the area where higher-layer PDUs such as IP datagrams are placed.
Traditionally, the payload area for Ethernet has always been 1500 bytes, represent-
ing the MTU for Ethernet. Most systems today use the 1500-byte MTU size for
Ethernet, although it is generally possible to configure a smaller value if this is
desired. The payload sometimes is padded (appended) with 0 bytes to ensure that
the overall frame meets the minimum length requirements we discuss in Section
3.222.

3.2.2.1 Frame Check Sequence/Cyclic Redundancy Check (CRC)

The final field of the Ethernet frame format follows the payload area and provides
an integrity check on the frame. The Cyclic Redundancy Check (CRC) field at the
end includes 32 bits and is sometimes known as the IEEE/ANSI standard CRC32
[802.3-2008]. To use an n-bit CRC for detection of data transmission in error, the
message to be checked is first appended with # 0 bits, forming the augmented mes-
sage. Then, the augmented message is divided (using modulo-2 division) by an (n
+ 1)-bit value called the generator polynomial, which acts as the divisor. The value
placed in the CRC field of the message is the one’s complement of the remainder of
this division (the quotient is discarded). Generator polynomials are standardized

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 87

for a number of different values of n. For Ethernet, which uses n = 32, the CRC32
generator polynomial is the 33-bit binary number 100000100110000010001110110
110111. To get a feeling for how the remainder is computed using long (mod-2)
binary division, we can examine a simpler case using CRC4. The ITU has stan-
dardized the value 10011 for the CRC4 generator polynomial in a standard called
G.704 [G704]. If we wish to send the 16-bit message 1001111000101111, we first
begin with the long (mod-2) binary division shown in Figure 3-4.

100001100000/0101 Quotient (Discarded)

10011 | 1001111000101111{0000 Message
10011

00001
00000

00011
00000

00110
00000

01100
00000

11000
10011

10111
10011

01000
00000

10001
10011

00101
00000

01011
00000

10111
10011

0100
0000

100
100[11

01{110
00[000

1100
0011

1111 Remainder

o [O O
o

| =

Figure 3-4 Long (mod-2) binary division demonstrating the computation of a CRC4

88

Link Layer

In this figure, we see that the remainder after division is the 4-bit value 1111.
Ordinarily, the one’s complement of this value (0000) would be placed in a CRC or
Frame Check Sequence (FCS) field in the frame. Upon receipt, the receiver performs
the same division and checks whether the value in the FCS field matches the com-
puted remainder. If the two do not match, the frame was likely damaged in transit
and is usually discarded. The CRC family of functions can be used to provide a
strong indicator of corrupted messages because any change in the bit pattern is
highly likely to cause a change in the remainder term.

3.2.2.2 Frame Sizes

There is both a minimum and a maximum size of Ethernet frames. The minimum
is 64 bytes, requiring a minimum data area (payload) length of 48 bytes (no tags).
In cases where the payload is smaller, pad bytes (value 0) are appended to the end
of the payload portion to ensure that the minimum length is enforced.

Note

The minimum was important for the original 10Mb/s Ethernet using CSMA/CD.
In order for a transmitting station to know which frame encountered a collision, a
limit of 2500m (five 500m cable segments with four repeaters) was placed upon
the length of an Ethernet network. Given that the propagation rate for electrons
in copper is about .77c or 231M m/s, and given the transmission time of 64 bytes
to be (64 * 8/10,000,000) = 51.2us at 10Mb/s, a minimum-size frame could con-
sume about 11,000m of cable. With a maximum of 2500m of cable, the maximum
round-trip distance from one station to another is 5000m. The designers of Eth-
ernet included a factor of 2 overdesign in fixing the minimum frame size, so in all
compliant cases (and many noncompliant cases), the last bit of an outgoing frame
would still be in the process of being transmitted after the time required for its sig-
nal to arrive at a maximally distant receiver and return. If a collision is detected,
the transmitting station thus knows with certainty which frame collided—the one
it is currently transmitting. In this case, the station sends a jamming signal (high
voltage) to alert other stations, which then initiate a random binary exponential
backoff procedure.

The maximum frame size of conventional Ethernet is 1518 bytes (including
the 4-byte CRC and 14-byte header). This value represents a sort of trade-off: if
a frame contains an error (detected on receipt by an incorrect CRC), only 1.5KB
need to be retransmitted to repair the problem. On the other hand, the size limits
the MTU to not more than 1500 bytes. In order to send a larger message, multiple
frames are required (e.g., 64KB, a common larger size used with TCP/IP networks,
would require at least 44 frames).

The unfortunate consequence of requiring multiple Ethernet frames to hold a
larger upper-layer PDU is that each frame contributes a fixed overhead (14 bytes
header, 4 bytes CRC). To make matters worse, Ethernet frames cannot be squished
together on the network without any space between them, in order to allow the

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 89

3.2.3

Ethernet hardware receiver circuits to properly recover data from the network and
to provide the opportunity for other stations to interleave their traffic with the
existing Ethernet traffic. The Ethernet II specification, in addition to specifying a
7-byte preamble and 1-byte SFD that precedes any Ethernet frame, also specifies
an inter-packet gap (IPG) of 12 byte times (9.6ps at 10Mb/s, 960ns at 100Mb/s, 96ns
at 1000Mb/s, and 9.6ns at 10,000Mb/s). Thus, the per-frame efficiency for Ethernet
II is at most 1500/(12 + 8 + 14 + 1500 + 4) = 0.975293, or about 98%. One way to
improve efficiency when moving large amounts of data across an Ethernet would
be to make the frame size larger. This has been accomplished using Ethernet jumbo
frames [JF], a nonstandard extension to Ethernet (in 1000Mb/s Ethernet switches
primarily) that typically allows the frame size to be as large as 9000 bytes. Some
environments make use of so-called super jumbo frames, which are usually under-
stood to carry more than 9000 bytes. Care should be taken when using jumbo
frames, as these larger frames are not interoperable with the smaller 1518-byte
frame size used by most legacy Ethernet equipment.

802.1p/q: Virtual LANs and QoS Tagging

With the growing use of switched Ethernet, it has become possible to interconnect
every computer at a site on the same Ethernet LAN. The advantage of doing this
is that any host can directly communicate with any other host, using IP and other
network-layer protocols, and requiring little or no administrator configuration. In
addition, broadcast and multicast traffic (see Chapter 9) is distributed to all hosts
that may wish to receive it without having to set up special multicast routing proto-
cols. While these represent some of the advantages of placing many stations on the
same Ethernet, having broadcast traffic go to every computer can create an unde-
sirable amount of network traffic when many hosts use broadcast, and there may
be some security reasons to disallow complete any-to-any station communication.

To address some of these problems with running large, multiuse switched
networks, IEEE extended the 802 LAN standards with a capability called virtual
LANs (VLANS) in a standard known as 802.1q [802.1Q-2005]. Compliant Ethernet
switches isolate traffic among hosts to common VLANSs. Note that because of this
isolation, two hosts attached to the same switch but operating on different VLANs
require a router between them for traffic to flow. Combination switch/router
devices have been created to address this need, and ultimately the performance of
routers has been improved to match the performance of VLAN switching. Thus,
the appeal of VLANs has diminished somewhat, in favor of modern high-perfor-
mance routers. Nonetheless, they are still used, remain popular in some environ-
ments, and are important to understand.

Several methods are used to specify the station-to-VLAN mapping. Assign-
ing VLANSs by port is a simple and common method, whereby the switch port
to which the station is attached is assigned a particular VLAN, so any station so
attached becomes a member of the associated VLAN. Other options include MAC-
address-based VLANSs that use tables within Ethernet switches to map a station’s

90

Link Layer

MAC address to a corresponding VLAN. This can become difficult to manage if
stations change their MAC addresses (which they do sometimes, thanks to the
behavior of some users). IP addresses can also be used as a basis for assigning
VLANS.

When stations in different VLANSs are attached to the same switch, the switch
ensures that traffic does not leak from one VLAN to another, irrespective of the
types of Ethernet interfaces being used by the stations. When multiple VLANs
must span multiple switches (trunking), it becomes necessary to label Ethernet
frames with the VLAN to which they belong before they are sent to another
switch. Support for this capability uses a tag called the VLAN tag (or header),
which holds 12 bits of VLAN identifier (providing for 4096 VLANSs, although VLAN
0 and VLAN 4095 are reserved). It also contains 3 bits of priority for supporting
QoS, defined in the 802.1p standard, as indicated in Figure 3-3. In many cases, the
administrator must configure the ports of the switch to be used to send 802.1p/q
frames by enabling trunking on the appropriate ports. To make this job somewhat
easier, some switches support a native VLAN option on trunked ports, meaning
that untagged frames are by default associated with the native VLAN. Trunking
ports are used to interconnect VLAN-capable switches, and other ports are typi-
cally used to attach stations. Some switches also support proprietary methods for
VLAN trunking (e.g., the Cisco Inter-Switch Link (ISL) protocol).

802.1p specifies a mechanism to express a QoS identifier on each frame. The
802.1p header includes a 3-bit-wide Priority field indicating a QoS level. This
standard is an extension of the 802.1q VLAN standard. The two standards work
together and share bits in the same header. With the 3 available bits, eight classes
of service are defined. Class 0, the lowest priority, is for conventional, best-effort
traffic. Class 7 is the highest priority and might be used for critical routing or net-
work management functions. The standards specify how priorities are encoded in
packets but leave the policy that governs which packets should receive which class,
and the underlying mechanisms implementing prioritized services, to be defined
by the implementer. Thus, the way traffic of one priority class is handled relative to
another is implementation- or vendor-defined. Note that 802.1p can be used inde-
pendently of VLANS if the VLAN ID field in the 802.1p/q header is set to 0.

The Linux command for manipulating 802.1p/q information is called vcon-
fig. It can be used to add and remove virtual interfaces associating VLAN IDs to
physical interfaces. It can also be used to set 802.1p priorities, change the way vir-
tual interfaces are identified, and influence the mapping between packets tagged
with certain VLAN IDs and how they are prioritized during protocol processing
in the operating system. The following commands add a virtual interface to inter-
face ethl with VLAN ID 2, remove it, change the way such virtual interfaces are
named, and add a new interface:

Linux# vconfig add ethl 2
Added VLAN with VID == 2 to IF -:ethl:-
Linux# ifconfig ethl.2

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 91

ethl.2 Link encap:Ethernet HWaddr 00:04:5A:9F:9E:80
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Linux# vconfig rem ethl.2

Removed VLAN -:ethl.2:-

Linux# vconfig set_name_type VLAN_ PLUS_VID

Set name-type for VLAN subsystem. Should be visible in
/proc/net/vlan/config

Linux# vconfig add ethl 2

Added VLAN with VID == 2 to IF -:ethl:-

Linux# ifconfig v1an0002

v1an0002 Link encap:Ethernet HWaddr 00:04:5A:9F:9E:80
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Here we can see that the default method of naming virtual interfaces in Linux
is based on concatenating the associated physical interface with the VLAN ID. For
example, VLAN ID 2 associated with the interface ethl is called ethl.2. This
example also shows how an alternative naming method can be used, whereby the
VLANSs are enumerated by the names vlan<n> where <n> is the identifier of the
VLAN. Once this is set up, frames sent on the VLAN device are tagged with the
VLAN ID, as expected. We can see this using Wireshark, as shown in Figure 3-5.

'l ylan2-arp2.td - Wireshark
File Edit Wew Go Capture Analyee Statistics Telephony Tools Help

BeRee BEXRE AersnTL(EE QAR #ED % B

Fo. Time YLAN | Source Dest Protocol Info

1 0.000000 2 00:04:5a:9F:9e:80 i ffiff £ fF:ff ARP who has 10.0.0.%97 Tell 10.0.0.15
2 0.999628 2 00:04:5a:9F:9e:80 ff:ff:fF:Ff:FF:Ff arP who has 10.0.0.397 Tell 10.0.0.15
31.998317 2 00:04:5a:8f:0e:80 ff:Ff:ff:£F:FF:FF arp who has 10.0.0.997 Tell 10.0.0.15

£

Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
= Ethernet II, Src: 00:04:53:9F:9e:80 (00:04:5a:9F:9e:80), Dst: fr:ff:iff:ff:ff:ff (ff:ff:ff:ff:Ff:ff)
pestination: ff:FfF:Ff:FF:FF:FF (Ff:ff:FF:FfF:FF:FF)
source: 00:04:5a:9F:9e:80 (00:04:5a:9F 081800
Type: 802,10 wirtual LAM (0x8100)
al y

| [= L AR CFI: 0O, ID: 2
priority: Best effort (default) (0
el i e e = CFI: Canonical (00

ce.. 0000 0000 0010 = ID: 2

Type: ARP {0x0B806)

Trailer: 0000000000000000000000000000
Address Resolution Protocol (request)

|

0000 5a Of Se 80 8L 00

0010 00 01 00 04 5a 9f Se 80
0020 00 0a 00 00 63 [ENN
0030 500 00 00

Figure 3-5 Frames tagged with the VLAN ID as shown in Wireshark. The default columns and set-
tings have been changed to display the VLAN ID and raw Ethernet addresses.

92

Link Layer

3.24

This figure shows an ARP packet (see Chapter 4) carried on VLAN 2. We can
see that the frame size is 60 bytes (not including CRC). The frame is encapsulated
using the Ethernet II encapsulation with type 0x8100, indicating a VLAN. Other
than the VLAN header, which indicates that this frame belongs to VLAN 2 and
has priority 0, this frame is unremarkable. All the other fields are as we would
expect with a regular ARP packet.

802.1AX: Link Aggregation (Formerly 802.3ad)

Some systems equipped with multiple network interfaces are capable of bonding or
link aggregation. With link aggregation, two or more interfaces are treated as one in
order to achieve greater reliability through redundancy or greater performance by
splitting (striping) data across multiple interfaces. The IEEE Amendment 802.1AX
[802.1AX-2008] defines the most common method for performing link aggregation
and the Link Aggregation Control Protocol (LACP) to manage such links. LACP uses
IEEE 802 frames of a particular format (called LACPDUs).

Using link aggregation on Ethernet switches that support it can be a cost-
effective alternative to investing in switches with high-speed network ports. If
more than one port can be aggregated to provide adequate bandwidth, higher-
speed ports may not be required. Link aggregation may be supported not only on
network switches but across multiple network interface cards (NICs) on a host com-
puter. Often, aggregated ports must be of the same type, operating in the same
mode (i.e., half- or full-duplex).

Linux has the capability to implement link aggregation (bonding) across dif-
ferent types of devices using the following commands:

Linux# modprobe bonding
Linux# ifconfig bond0 10.0.0.111 netmask 255.255.255.128
Linux# ifenslave bond0 eth0 wlanO

This set of commands first loads the bonding driver, which is a special type
of device driver supporting link aggregation. The second command creates the
bond0 interface with the IPv4 address information provided. Although providing
the IP-related information is not critical for creating an aggregated interface, it is
typical. Once the ifenslave command executes, the bonding device, bondo, is
labeled with the MASTER flag, and the eth0 and wlan0 devices are labeled with
the SLAVE flag:

bond0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A
inet addr:10.0.0.111 Bcast:10.0.0.127 Mask:255.255.255.128
inet6 addr: fe80::211:a3ff:fel00:2c2a/64 Scope:Link
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
RX packets:2146 errors:0 dropped:0 overruns:0 frame:0
TX packets:985 errors:0 dropped:0 overruns:0 carrier:0
collisions:18 txqueuelen:0
RX bytes:281939 (275.3 KiB) TX bytes:141391 (138.0 KiB)

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 93

eth0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:1882 errors:0 dropped:0 overruns:0 frame:0
TX packets:961 errors:0 dropped:0 overruns:0 carrier:0
collisions:18 txqueuelen:1000
RX bytes:244231 (238.5 KiB) TX bytes:136561 (133.3 KiB)
Interrupt:20 Base address:0x6c00

wlan0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A
UP BROADCAST SLAVE MULTICAST MTU:1500 Metric:1
RX packets:269 errors:0 dropped:0 overruns:0 frame:0
TX packets:24 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:38579 (37.6 KiB) TX bytes:4830 (4.7 KiB)

In this example, we have bonded together a wired Ethernet interface with
a Wi-Fi interface. The master device, bond0, is assigned the IPv4 address infor-
mation we would typically assign to either of the individual interfaces, and it
receives the first slave’s MAC address by default. When IPv4 traffic is sent out of
the bondo0 virtual interface, there are a number of possibilities as to which of the
slave interfaces will carry it. In Linux, the options are selected using arguments
provided when the bonding driver is loaded. For example, a mode option deter-
mines whether round-robin delivery is used between the interfaces, one interface
acts as a backup to the other, the interface is selected based on performing an XOR
of the MAC source and destination addresses, frames are copied to all interfaces,
802.3ad standard link aggregation is performed, or more advance load-balancing
options are used. The second mode is used for high-availability systems that can
fail over to a redundant network infrastructure if one link has ceased function-
ing (detectable by MII monitoring; see [BOND] for more details). The third mode
is intended to choose the slave interface based on the traffic flow. With enough
different destinations, traffic between the two stations is pinned to one interface.
This can be useful when trying to minimize reordering while also trying to load-
balance traffic across multiple slave interfaces. The fourth mode is for fault toler-
ance. The fifth mode is for use with 802.3ad-capable switches, to enable dynamic
aggregation over homogeneous links.

The LACP protocol is designed to make the job of setting up link aggregation
simpler by avoiding manual configuration. Typically the LACP “actor” (client) and
“partner” (server) send LACPDUs every second once enabled. LACP automati-
cally determines which member links can be aggregated into a link aggregation
group (LAG) and aggregates them. This is accomplished by sending a collection of
information (MAC address, port priority, port number, and key) across the link. A
receiving station can compare the values it sees from other ports and perform the
aggregation if they match. Details of LACP are covered in [802.1AX-2008].

94

Link Layer

3.3

Full Duplex, Power Save, Autonegotiation, and 802.1X
Flow Control

When Ethernet was first developed, it operated only in half-duplex mode using
a shared cable. That is, data could be sent only one way at one time, so only one
station was sending a frame at any given point in time. With the development of
switched Ethernet, the network was no longer a single piece of shared wire, but
instead many sets of links. As a result, multiple pairs of stations could exchange
data simultaneously. In addition, Ethernet was modified to operate in full duplex,
effectively disabling the collision detection circuitry. This also allowed the physi-
cal length of the Ethernet to be extended, because the timing constraints associ-
ated with half-duplex operation and collision detection were removed.

In Linux, the ethtool program can be used to query whether full duplex is
supported and whether it is being used. This tool can also display and set many
other interesting properties of an Ethernet interface:

Linux# ethtool ethO
Settings for ethO:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 10Mb/s

Duplex: Half

Port: MII

PHYAD: 24

Transceiver: internal

Auto-negotiation: on

Current message level: 0x00000001 (1)

Link detected: yes

Linux# ethtool ethl
Settings for ethl:

Supported ports: [TP]

Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: Twisted Pair

PHYAD: O

Transceiver: internal

Auto-negotiation: on

Section 3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control 95

Supports Wake-on: umbg

Wake-on: g

Current message level: 0x00000007 (7)
Link detected: yes

In this example, the first Ethernet interface (eth0) is attached to a half-duplex
10Mb/s network. We can see that it is capable of autonegotiation, which is a mecha-
nism originating with 802.3u to enable interfaces to exchange information such
as speed and capabilities such as half- or full-duplex operation. Autonegotiation
information is exchanged at the physical layer using signals sent when data is
not being transmitted or received. We can see that the second Ethernet interface
(ethl) also supports autonegotiation and has set its rate to 100Mb/s and operation
mode to full duplex. The other values (Port, PHYAD, Transceiver) identify the
physical port type, its address, and whether the physical-layer circuitry is internal
or external to the NIC. The current message-level value is used to configure log
messages associated with operating modes of the interface; its behavior is spe-
cific to the driver being used. We discuss the wake-on values after the following
example.

In Windows, details such as these are available by navigating to Control Panel
| Network Connections and then right-clicking on the interface of interest, select-
ing Properties, and then clicking the Configure box and selecting the Advanced
tab. This brings up a menu similar to the one shown in Figure 3-6 (this particular
example is from an Ethernet interface on a Windows 7 machine).

Intel{R) 82577LM Gigabit Network Connection Prope ll
"General Advanced | Driver I Details I Power Management I

The following properties are available for this network adapter. Click
the property you want to change on the left, and then select its value

on the right.
Property: Value:
Adaptive Inter-Frame Spacing - Auto Negotiation j
Enable PME
1.0 Gbps Full Duplex

Flow Cortrol 10 Mbps Ful Dupl
Gigabit Master Slave Mode ps Tl LUpieX

N 10 Mbps Half Duplex
Intermupt Moderation 100 Mbns Full Dupl
Intermupt Moderation Rate 100 Mbps Hulf DUDTX
IPv4 Checksum Offload s

Jumbo Packet

Large Send Cffload {IPv4]
Large Send Cffload (IPv
Link Speed & Duplex
Link Speed Battery Saver
Locally Administered Address

Log Link State Event LI

ok | Cancel |

Figure 3-6 Advanced tab of network interface properties in Windows (7). This control allows the
user to supply operating parameters to the network device driver.

96

Link Layer

3.3.1

3.3.2

In Figure 3-6, we can see the special features that can be configured using the
adapter’s device driver. For this particular adapter and driver, 802.1p/q tags can
be enabled or disabled, as can flow control and wake-up capabilities (see Section
3.3.2). The speed and duplex can be set by hand, or to the more typical autonego-
tiation option.

Duplex Mismatch

Historically, there have been some interoperability problems using autonegotia-
tion, especially when a computer and its associated switch port are configured
using different duplex configurations or when autonegotiation is disabled at one
end of the link but not the other. In this case, a so-called duplex mismatch can occur.
Perhaps surprisingly, when this happens the connection does not completely fail
but instead may suffer significant performance degradation. When the network
has moderate to heavy traffic in both directions (e.g., during a large data trans-
fer), a half-duplex interface can detect incoming traffic as a collision, triggering
the exponential backoff function of the CSMA/CD Ethernet MAC. At the same
time, the data triggering the collision is lost and may require higher-layer proto-
cols such as TCP to retransmit. Thus, the performance degradation may be noticed
only when there is sufficient traffic for the half-duplex interface to be receiving
data at the same time it is sending, a situation that does not generally occur under
light load. Some researchers have attempted to build analysis tools to detect this
unfortunate situation [SC05].

Wake-on LAN (WoL), Power Saving, and Magic Packets

In both the Linux and Windows examples, we saw some indication of power man-
agement capabilities. In Windows the Wake-Up Capabilities and in Linux the Wake-
On options are used to bring the network interface and/or host computer out of
a lower-power (sleep) state based on the arrival of certain kinds of packets. The
kinds of packets used to trigger the change to full-power state can be configured.
In Linux, the Wake-On values are zero or more bits indicating whether receiv-
ing the following types of frames trigger a wake-up from a low-power state: any
physical-layer (PHY) activity (p), unicast frames destined for the station (u), mul-
ticast frames (m), broadcast frames (b), ARP frames (a), magic packet frames (g),
and magic packet frames including a password. These can be configured using
options to ethtool. For example, the following command can be used:

Linux# ethtool -s eth0 wol umgb

This command configures the eth0 device to signal a wake-up if any of the
frames corresponding to the types u, m, g, or b is received. Windows provides a
similar capability, but the standard user interface allows only magic packet frames
and a predefined subset of the u, m, b, and a frame types. Magic packets contain

Section 3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control 97

a special repeated pattern of the byte value OxFF. Often, such frames are sent as a
form of UDP packet (see Chapter 10) encapsulated in a broadcast Ethernet frame.
Several tools are available to generate them, including wol [WOL]:

Linux# wol 00:08:74:93:C8:3C
Waking up 00:08:74:93:C8:3C...

The result of this command is to construct a magic packet, which we can view
using Wireshark (see Figure 3-7).

'4! magic-pkt.td - Wireshark

File Edit ¥iew Go Capture Analyze Statistics Telephony Tools Help

BWYAM BEEXEE Aes0TL (EE QR #BNB% B
{8 Time: Source Dest Protocol | Info
1 0.000000 LinksysG_9F:9e:80 Intel_14:a%:cl woL MagicPacket for Dellcomp_93:c8:3C (00:08:74:93:C8:3C)
| B

® Frame 1: 144 hytes on wire (1152 bits), 144 bytes captured (1152 bits)

Ethernet II, src: LinksysG_9f:9e:80 (00:04:53:9F:92:80), Dst: Intel_14:a9:cl (00:0F:e9:14:39:c1)

Internet Protocol, Src: 10.0.0.10, Dst: 10.0.0.13 (10.0.0.13)

er patagram Protocol, 11, 1 40000 (400000

On LAN, MAC: Dellcom

sync stream: FEFFFFFFFFFT

2 Mac: DellComp_93:c8:3c (00:08:74:93:c8:3C)
MAC: DellComp_93:cB:3c (00:08:74:93:¢8:3c)
mac: Dellcomp_93:c8:3c (00:08:74:93:C8:3C)
MaC: Dellcomp_93:c8:3¢ (00:08:74:93:c8:3c)
mac: Dellcomp_93:c8:3c (00:08:74:93:C8:3C)
Mac: Dellcomp_93:c8:3c (00:08:74:83:c8:3cC)
mMac: Dellcomp_93:c8:3c (00:08:74:93:1C8:3C)
Mac: Dellcomp_93:c8:3c (00:08:74:83:c8:3cC)
MAC: DellComp_93:cB:3c (00:08:74:93:¢8:3c)
Mac: Dellcomp_93:c8:3c (00:08:74:83:c8:3cC)
MaAC: Dellcomp_93:c8:3¢ (00:08:74:83:CB:3cC)
mac: Dellcomp_93:c8:3c (00:08:74:93:C8:3C)
Mac: Dellcomp_93:c8:3c (00:08:74:93:Cc8:3cC)
mac: Dellcomp_93:c8:3c (00:08:74:93:C8:3C)
Mac: Dellcomp_93:c8:3c (00:08:74:83:c8:3cC)
MAC: DellComp_93:cB:3c (00:08:74:93:¢8:3c)
Mac: Dellcomp_93:c8:3c (00:08:74:83:c8:3cC)

Qoog 00 07 29 14 ay <1 00 04 ha 9T Ye 80 08 00 45 00
00lo 00 52 00 00 40 00 40 11 26 58 0a 00 00 01l 0a 00
0020 04 65 GC 40 00 il T T

B

Figure 3-7 A magic packet frame in Wireshark begins with 6 OxFF bytes and then repeats the MAC
address 16 times.

The packet shown in Figure 3-7 is mostly a conventional UDP packet, although
the port numbers (1126 and 40000) are arbitrary. The most unusual part of the
packet is the data area. It contains an initial 6 bytes with the value OxFF. The rest
of the data area includes the destination MAC address 00:08:74:93:C8:3C repeated
16 times. This data payload pattern defines the magic packet.

98

Link Layer

3.3.3

3.4

Link-Layer Flow Control

Operating an extended Ethernet LAN in full-duplex mode and across segments of
different speeds may require the switches to buffer (store) frames for some period
of time. This happens, for example, when multiple stations send to the same des-
tination (called output port contention). If the aggregate traffic rate headed for a
station exceeds the station’s link rate, frames start to be stored in the intermediate
switches. If this situation persists for a long time, frames may be dropped.

One way to mitigate this situation is to apply flow control to senders (i.e., slow
them down). Some Ethernet switches (and interfaces) implement flow control by
sending special signal frames between switches and NICs. Flow control signals to
the sender that it must slow down its transmission rate, although the specification
leaves the details of this to the implementation. Ethernet uses an implementation
of flow control called PAUSE messages (also called PAUSE frames), specified by
802.3x [802.3-2008].

PAUSE messages are contained in MAC control frames, identified by the
Ethernet Length/Type field having the value 0x8808 and using the MAC control
opcode of 0x0001. A receiving station seeing this is advised to slow its rate. PAUSE
frames are always sent to the MAC address 01:80:C2:00:00:01 and are used only
on full-duplex links. They include a hold-off time value (specified in quantas equal
to 512 bit times), indicating how long the sender should pause before continuing
to transmit.

The MAC control frame is a frame format using the regular encapsulation
from Figure 3-3, but with a 2-byte opcode immediately following the Length/Type
field. PAUSE frames are essentially the only type of frames that uses MAC control
frames. They include a 2-byte quantity encoding the hold-off time. Implementation
of the “entire” MAC control layer (basically, just 802.3x flow control) is optional.

Using Ethernet-layer flow control may have a significant negative side effect,
and for this reason it is typically not used. When multiple stations are sending
through a switch (see the next section) that is becoming overloaded, the switch
may naturally send PAUSE frames to all hosts. Unfortunately, the utilization of
the switch’s memory may not be symmetric with respect to the sending hosts, so
some may be penalized (flow-controlled) even though they were not responsible
for much of the traffic passing through the switch.

Bridges and Switches

The IEEE 802.1d standard specifies the operation of bridges, and thus switches,
which are essentially high-performance bridges. A bridge or switch is used to join
multiple physical link-layer networks (e.g., a pair of physical Ethernet segments) or
groups of stations. The most basic setup involves connecting two switches to form
an extended LAN, as shown in Figure 3-8.

Section 3.4 Bridges and Switches 99

Switch B
00:0d:66:4f:02:04

00:17:f2:22:10:3d

. 00:30:48:2b:19:82
00:c0:19:33:0a:2¢ Switch A

00:0d:66:4f:02:03
00:30:48:2b:19:86

Figure 3-8 A simple extended Ethernet LAN with two switches. Each switch port has a number for
reference, and each station (including each switch) has its own MAC address.

Switches A and B in the figure have been interconnected to form an extended
LAN. In this particular example, client systems are connected to A and servers
to B, and ports are numbered for reference. Note that every network element,
including each switch, has its own MAC address. Nonlocal MAC addresses are
“learned” by each bridge over time so that eventually every switch knows the port
upon which every station can be reached. These lists are stored in tables (called
filtering databases) within each switch on a per-port (and possibly per-VLAN) basis.
As an example, after each switch has learned the location of every station, these
databases would contain the information shown in Figure 3-9.

Station Port Station Port
00:17:£f2:22:10:3d 2 00:17:f2:a22:10:3d 9
00:c0:19:33:0a:2e 1 00:c0:19:33:0a:2e | 9
00:0d4:66:4£:02:03 00:0d:66:4£:02:03 9
00:0d4:66:4£:02:04 3 00:0d4:66:4f£:02:04
00:30:48:2b:19:82 3 00:30:48:2b:19:82 10
00:30:48:2b:19:86 3 00:30:48:2b:19:86 11
Switch A's Database Switch B’s Database

Figure 3-9 Filtering databases on switches A and B from Figure 3-8 are created over time (“learned”)
by observing the source address on frames seen on switch ports.

When a switch (bridge) is first turned on, its database is empty, so it does
not know the location of any stations except itself. Whenever it receives a frame
destined for a station other than itself, it makes a copy for each of the ports other
than the one on which the frame arrived and sends a copy of the frame out of each

100

Link Layer

one. If switches (bridges) never learned the location of stations, every frame would
be delivered across every network segment, leading to unwanted overhead. The
learning capability reduces overhead significantly and is a standard feature of
switches and bridges.

Today, most operating systems support the capability to bridge between net-
work interfaces, meaning that a standard computer with multiple interfaces can
be used as a bridge. In Windows, for example, interfaces may be bridged together
by navigating to the Network Connections menu from the Control Panel, high-
lighting the interfaces to bridge, right-clicking the mouse, and selecting Bridge
Connections. When this is done, a new icon appears that represents the bridging
function itself. Most of the normal network properties associated with the inter-
faces are gone and instead appear on the bridge device (see Figure 3-10).

@ Network Bridge Properties ll
MNetworking |

— Adant,

Select the adapters you want to use to connect to computers
on your local networl.

O JiWimless Metwork Connection (2)

"% |ocal Area Connection

"8 Wireless Network Connection

Configure... |

This connection uses the following items:

.Q File and Printer Sharing for Microsoft Networks

<& Intemet Protocol Version & (TCP/IPvE)

<& Intemet Protocol Version 4 (TCP/IPvd)

& Link-Layer Topology Discovery Mapper 1/0 Driver
& Link-Layer Topology Discovery Responder

Install... Uningtall | Froperties |

ok | Cancel |

Figure 3-10 In Windows, the bridge device is created by highlighting the network interfaces to be
bridged, right-clicking, and selecting the Bridge Network Interfaces function. Once the
bridge is established, further modifications are made to the bridge device.

Figure 3-10 shows the Properties panels for the network bridge virtual device
on Windows 7. The bridge device’s properties include a list of the underlying
devices being bridged and the set of services running on the bridge (e.g., the
Microsoft Networks client, File and Printer Sharing, etc.). Linux works in a similar
way, using command-line arguments. We use the topology shown in Figure 3-11
for this example.

Section 3.4 Bridges and Switches 101

eth1: 00:07:€9:14:a9:c1 eth0: 00:08:74:93:¢8:3c
00:04:5a:9f:9e:80
J R\, \ //Z To Internet
1 [
Switch Router

PC-Based Bridge

\ 2
Laptop

00:14:22:f4:19:5f

Figure 3-11 In this simple topology, a Linux-based PC is configured to operate as a bridge between
the two Ethernet segments it interconnects. As a learning bridge, it accumulates tables
of which port should be used to reach the various other systems on the extended LAN.

The simple network in Figure 3-11 uses a Linux-based PC with two Ethernet
ports as a bridge. Attached to port 2 is a single station, and the rest of the network
is attached to port 1. The following commands enable the bridge:

Linux# brctl addbr br0
Linux# brctl addif br0 ethoO
Linux# brctl addif br0 ethl
Linux# ifconfig ethO0 up
Linux# ifconfig ethl up
Linux# ifconfig br0 up

This series of commands creates a bridge device br0 and adds the interfaces
ethO and ethl to the bridge. Interfaces can be removed using the brctl delif
command. Once the interfaces are established, the brctl showmacs command
can be used to inspect the filter databases (called forwarding databases or fdbs in
Linux terminology):

Linux# brctl show
bridge name bridge id STP enabled interfaces
bro 8000.0007e914a9cl no ethO ethl

Linux# brctl showmacs br0
port no mac addr is local? ageing timer
1 00:04:5a:9f:9e:80 no 0.79
00:07:e9:14:a9:cl yes 0.00
00:08:74:93:¢c8:3¢c yes 0.00
00:14:22:£f4:19:5f no 0.81
00:17:£f2:e7:6d:91 no 2.53
00:90:£8:00:90:b7 no 17.13

N S)

The output of this command reveals one other detail about bridges. Because
stations may move around, have their network cards replaced, have their MAC
address changed, or other things, once the bridge discovers that a MAC address

102

Link Layer

3.4.1

is reachable via a certain port, this information cannot be assumed to be correct
forever. To deal with this issue, each time an address is learned, a timer is started
(commonly defaulted to 5 minutes). In Linux, a fixed amount of time associated
with the bridge is applied to each learned entry. If the address in the entry is not
seen again within the specified “ageing” time, the entry is removed, as indicated
here:

Linux# brctl setageing br0 1

Linux# brctl showmacs br0

port no mac addr is local? ageing timer
1 00:04:5a:9f:9e:80 no 0.76

00:07:e9:14:a9:cl yes 0.00

00:08:74:93:c8:3c yes 0.00

00:14:22:£f4:19:5f no 0.78

00:17:£f2:e7:6d:91 no 0.00

PN PN

Here, we have set the ageing value unusually low for demonstration pur-
poses. When an entry is removed because of aging, subsequent frames for the
removed destination are once again sent out of every port except the receiving one
(called flooding), and the entry is placed anew into the filtering database. The use
of filtering databases and learning is really a performance optimization—if the
tables are empty, the network experiences more overhead but still functions. Next
we turn our attention to the case where more than two bridges are interconnected
with redundant links. In this situation, flooding of frames could lead to a sort of
flooding catastrophe with frames looping forever. Obviously, we require a way of
dealing with this problem.

Spanning Tree Protocol (STP)

Bridges may operate in isolation, or in combination with other bridges. When more
than two bridges are in use (or in general when switch ports are cross-connected),
the possibility exists for a cascading, looping set of frames to be formed. Consider
the network shown in Figure 3-12.

Assume that the switches in Figure 3-12 have just been turned on and their
filtering databases are empty. When station S sends a frame, switch B replicates
the frame on ports 7, 8, and 9. So far, the initial frame has been “amplified” three
times. These frames are received by switches A, D, and C. Switch A produces cop-
ies of the frame on ports 2 and 3. Switches D and C produce more copies on ports
20, 22 and 13, 14, respectively. The amplification factor has grown to 6, with copies
of the frames traveling in both directions among switches A, C, and D. Once these
frames arrive, the forwarding databases begin to oscillate as the bridge attempts to
figure out which port is really the one through which station S should be reached.
Obviously, this situation is intolerable. If it were allowed to occur, bridges used in
such configurations would be useless. Fortunately, there is a protocol that is used
to avoid this situation called the Spanning Tree Protocol (STP). We describe STP in

Section 3.4 Bridges and Switches 103

Switch A
&

X

20
Switch D

Switch C

Figure 3-12 An extended Ethernet network with four switches and multiple redundant links. If
simple flooding were used in forwarding frames through this network, a catastrophe
would occur because of excess multiplying traffic (a so-called broadcast storm). This
type of situation requires the use of the STP.

some detail to explain why some approach to duplicate suppression is needed for
bridges and switches. In the current standard [802.1D-2004], conventional STP is
replaced with the Rapid Spanning Tree Protocol (RSTP), which we describe after the
conventional STP preliminaries.

STP works by disabling certain ports at each bridge so that topological loops
are avoided (i.e,, no duplicate paths between bridges are permitted), yet the topol-
ogy is not partitioned—all stations can be reached. Mathematically, a spanning
tree is a collection of all of the nodes and some of the edges of a graph such that
there is a path or route from any node to any other node (spanning the graph), but
there are no loops (the edge set forms a tree). There can be many spanning trees on
a graph. STP finds one of them for the graph formed by bridges as nodes and links
as edges. Figure 3-13 illustrates the idea.

22

Station S Switch D

Switch C

Figure 3-13 Using STP, the B-A, A-C, and C-D links have become active on the spanning tree. Ports
6,7,1,2,13, 14, and 20 are in the forwarding state; all other ports are blocked (i.e., not
forwarding). This keeps frames from looping and avoids broadcast storms. If a configu-
ration change occurs or a switch fails, the blocked ports are changed to the forwarding
state and the bridges compute a new spanning tree.

104

Link Layer

In this figure, the dark lines represent the links in the network selected by STP
for forwarding frames. None of the other links are used—ports 8, 9, 12, 21, 22, and
3 are blocked. With STP, the various problems raised earlier do not occur, as frames
are created only as the result of another frame arriving. There is no amplification.
Furthermore, looping is avoided because there is only one path between any two
stations. The spanning tree is formed and maintained by bridges using a distrib-
uted algorithm running in each bridge.

As with forwarding databases, STP must deal with the situation where bridges
are turned off and on, interface cards are replaced, or MAC addresses are changed.
Clearly, such changes could affect the operation of the spanning tree, so the STP
adapts to these changes. The adaptation is implemented using an exchange of
special frames called Bridge Protocol Data Units (BPDUs). These frames are used
for forming and maintaining the spanning tree. The tree is “grown” from a bridge
elected by the others and known as the “root bridge.”

As mentioned previously, there are many possible spanning trees for a given
network. Determining which one might be the best to use for forwarding frames
depends on a set of costs that can be associated with each link and the location of
the root bridge. Costs are simply integers that are (recommended to be) inversely
proportional to the link speeds. For example, a 10Mb/s link has a recommended
cost of 100, and 100Mb/s and 1000Mb/s links have recommended cost values of 19
and 4, respectively. STP operates by computing least-cost paths to the root bridge
using these costs. If multiple links must be traversed, the corresponding cost is
simply the sum of the link costs.

3.4.1.1 Port States and Roles

To understand the basic operation of STP, we need to understand the operation of
the state machine for each port at each bridge, as well as the contents of BPDUs.
Each port in each bridge may be in one of five states: blocking, listening, learning,
forwarding, and disabled. The relationship among them can be seen in the state
transition diagram shown in Figure 3-14.

The normal transitions for ports on the spanning tree are indicated in Figure
3-14 by solid arrows, and the smaller arrows with dashed lines indicate changes
due to administrative configuration. After initialization, a port enters the blocking
state. In this state, it does not learn addresses, forward frames, or transmit BPDU,
but it does monitor received BPDUs in case it needs to be included in the future on
a path to the root bridge, in which case the port transitions to the listening state. In
the listening state, the port is now permitted to send as well as receive BPDUs but
not learn addresses or forward data. After a typical forwarding delay timeout of
15s, a port enters the learning state. Here it is permitted to do all procedures except
forward data. It waits another forwarding delay before entering the forwarding
state and commencing to forward frames.

Related to the port state machine, each port is said to have a role. This termi-
nology becomes more important with RSTP (see Section 3.4.1.6). A port may have
the role of root port, designated port, alternate port, or backup port. Root ports are those

Section 3.4 Bridges and Switches 105

TERRRGES
.—}lnitialize)
- Blocking Max Listening Forw

ﬁ (Discarding) c-Age* (Discarding) c-DeIa» Learning

(15s)

Forw Delay
(15s)

Forwarding o NG‘EY

Disabled

k (Discarding)

Figure 3-14 Ports transition among four major states in normal STP operation. In the blocking state,
frames are not forwarded, but a topology change or timeout may cause a transition to
the listening state. The forwarding state is the normal state for active switch ports car-
rying data traffic. The state names in parentheses indicate the port states according to
the RSTP.

ports at the end of an edge on the spanning tree headed toward the root. Desig-
nated ports are ports in the forwarding state acting as the port on the least-cost
path to the root from the attached segment. Alternate ports are other ports on an
attached segment that could also reach the root but at higher cost. They are not in
the forwarding state. A backup port is a port connected to the same segment as a
designated port on the same bridge. Thus, backup ports could easily take over for
a failing designated port without disrupting any of the rest of the spanning tree
topology but do not offer an alternate path to the root should the entire bridge fail.

3.4.1.2 BPDU Structure

To determine the links in the spanning tree, STP uses BPDUs that adhere to the
format shown in Figure 3-15.

The format shown in Figure 3-15 applies to both the original STP as well as
the newer RSTP (see Section 3.4.1.6). BPDUs are always sent to the group address
01:80:C2:00:00:00 (see Chapter 9 for details of link-layer group and Internet multi-
cast addressing) and are not forwarded through a bridge without modification. In
the figure, the DST, SRC, and L/T (Length/Type) fields are part of the conventional
Ethernet (802.3) header of the frame carrying the example BPDU. The 3-byte LLC/
SNAP header is defined by 802.1 and for BPDUs is set to the constant 0x424203.
Not all BPDUs are encapsulated using LLC/SNAP, but this is a common option.

106 Link Layer

- Frame >

- BPDU ——»
P F

S L r VT, Root P ':l ’: (I:T E 2

Preamble |F| DST SRC |/ | & e(Yla| Root ID Path | Bridge ID | | rif 1| FCS
D) T o |r|P g Cost D g(X||m wa
t |S|® s AlA o€| VY

(7 bytes) (1) (6) (6) (2)) @) (1) (8) (4) (8) (2) 2) 2 2 2 @)

Defined by
802.1w

Figure 3-15 BPDUs are carried in the payload area of 802 frames and exchanged between bridges to estab-
lish the spanning tree. Important fields include the source, root node, cost to root, and topol-
ogy change indication. With 802.1w and [802.1D-2004] (including Rapid STP or RSTP), additional
fields indicate the state of the ports.

The Protocol (Prot) field gives the protocol ID number, set to 0. The Version
(Vers) field is set to 0 or 2, depending on whether STP or RSTP is in use. The Type
field is assigned similarly. The Flags field contains Topology Change (TC) and Topol-
ogy Change Acknowledgment (TCA) bits, defined by the original 802.1d standard.
Additional bits are defined for Proposal (P), Port Role (00, unknown; 01, alternate;
10, root; 11, designated), Learning (L), Forwarding (F), and Agreement (A). These are
discussed in the context of RSTP in Section 3.4.1.6. The Root ID field gives the iden-
tifier of the root bridge in the eyes of the sender of the frame, whose MAC address
is given in the Bridge ID field. Both of these ID fields are encoded in a special way
that includes a 2-byte Priority field immediately preceding the MAC address. The
priority values can be manipulated by management software in order to force the
spanning tree to be rooted at any particular bridge (Cisco, for example, uses a
default value of 0x8000 in its Catalyst switches).

The root path cost is the computed cost to reach the bridge specified in the
Root ID field. The PID field is the port identifier and gives the number of the port
from which the frame was sent appended to a 1-byte configurable Priority field
(default 0x80). The Message A (MsgA) field gives the message age (see the next
paragraph). The Maximum Age (MaxA) field gives the maximum age before time-
out (default: 20s). The Hello Time field gives the time between periodic transmis-
sions of configuration frames. The Forward Delay (Forw Delay) field gives the time
spent in the learning and listening states. All of the age and time fields are given
in units of 1/256s.

Section 3.4 Bridges and Switches 107

The Message Age field is not a fixed value like the other time-related fields.
When the root bridge sends a BPDU, it sets this field to 0. Any bridge receiving the
frame emits frames on its non-root ports with the Message Age field incremented by
1. In essence, the field acts as a hop count, giving the number of bridges by which
the BPDU has been processed before being received. When a BPDU is received on
a port, the information it contains is kept in memory and participates in the STP
algorithm until it is timed out, which happens at time (MaxA — MsgA). Should
this time pass on a root port without receipt of another BPDU, the root bridge is
declared “dead” and the bridge starts the root bridge election process over again.

3.4.1.3 Building the Spanning Tree

The first job of STP is to elect the root bridge. The root bridge is discovered as
the bridge in the network (or VLAN) with the smallest identifier (priority com-
bined with MAC address). When a bridge initializes, it assumes itself to be the
root bridge and sends configuration BPDUs with the Root ID field matching its
own bridge ID, but if it detects a bridge with a smaller ID, it ceases sending its own
frames and instead adopts the frame it received containing the smaller ID to be the
basis for further BPDUs it sends. The port where the BPDU with the smaller root
ID was received is then marked as the root port (i.e., the port on the path to the root
bridge). The remaining ports are placed in either blocked or forwarding states.

3.4.1.4 Topology Changes

The next important job of STP is to handle topology changes. Although we could
conceivably use the basic database aging mechanism described earlier to adapt to
changing topologies, this is a poor approach because the aging timers can take a
long time (5 minutes) to delete incorrect entries. Instead, STP incorporates a way
to detect topology changes and inform the network about them quickly. In STF, a
topology change occurs when a port has entered the blocking or forwarding states.
When a bridge detects a connectivity change (e.g., a link goes down), the bridge noti-
fies its parent bridges on the tree to the root by sending topology change notification
(TCN) BPDUs out of its root port. The next bridge on the tree to the root acknowl-
edges the TCN BPDUs to the notifying bridge and also forwards them on toward
the root. Once informed of the topology change, the root bridge sets the TC bit field
in subsequent periodic configuration messages. Such messages are relayed by every
bridge in the network and are received by ports in either the blocking or forwarding
states. The setting of this bit field allows bridges to reduce their aging time to that of
the forward delay timer, on the order of seconds instead of the 5 minutes normally
recommended for the aging time. This allows database entries that may now be
incorrect to be purged and relearned more quickly, yet it also allows stations that
are actively communicating to not have their entries deleted erroneously.

3.4.1.5 Example

In Linux, the bridge function disables STP by default, on the assumption that
topologies are relatively simple in most cases where a regular computer is being

108

Link Layer

used as a bridge. To enable STP on the example bridge we are using so far, we can
do the following;:

Linux# brctl stp br0 on
The consequences of executing this command can be inspected as follows:

Linux# brctl showstp br0

bro

bridge id 8000.0007e914a9c1

designated root 8000.0007e914a9c1

root port 0 path cost 0
max age 19.99 bridge max age 19.99
hello time 1.99 bridge hello time 1.99
forward delay 14.99 bridge forward delay 14.99
ageing time 0.99

hello timer 1.26 ten timer 0.00
topology change timer 3.37 gc timer 3.26
flags TOPOLOGY_CHANGE TOPOLOGY_CHANGE_DETECTED

eth0 (0)

port id 0000 state forwarding
designated root 8000.0007e914a9cl path cost 100
designated bridge 8000.0007e914a9c1 message age timer 0.00
designated port 8001 forward delay timer 0.00
designated cost 0 hold timer 0.26
flags
ethl (0)

port id 0000 state forwarding
designated root 8000.0007e914a9cl path cost 19
designated bridge 8000.0007e914a9cl message age timer 0.00
designated port 8002 forward delay timer 0.00
designated cost 0 hold timer 0.26
flags

Here we can see the STP setup for a simple bridged network. The bridge
device, br0, holds information for the bridge as a whole. This includes the bridge
ID (8000.0007e914a9c1), derived from the smallest MAC address on the PC-
based bridge (port 1) of Figure 3-11. The major configuration parameters (e.g., hello
time, topology change timer, etc.) are given in seconds. The flags values indicate
a recent topology change, which is expected given the fact that the network was
recently connected. The rest of the output describes per-port information for eth0

Section 3.4 Bridges and Switches 109

(bridge port 1) and eth1l (bridge port 2). Note that the path cost for eth0 is about
ten times greater than the cost of eth1. This is consistent with the observation that
eth0 is a 10Mb/s Ethernet network and ethl is a full-duplex 100Mb/s network.

We can use Wireshark to look at a BPDU. In Figure 3-16 we see the contents
of a 52-byte BPDU. The length of 52 bytes (less than the Ethernet minimum of 64
bytes because the Linux capture facility removed the padding) is derived from
the Length/Type field of the Ethernet header by adding 14, in this case giving the
length of 52. The destination address is the group address, 01:80:C2:00:00:00, as
expected. The payload length is 38 bytes, the value contained in the Length field.
The SNAP/LLC field contains the constant 0x424243, and the encapsulated frame
is a spanning tree (version 0) frame. The rest of the protocol fields indicate that the
station 00:07:€9:14:a9:c1 believes it is the root of the spanning tree, using priority
32768 (a low priority), and the BPDU has been sent from port 2 with priority 0x80.
It also indicates a maximum age of 20s, a hello time of 2s, and a forwarding delay
of 15s.

"l stp.tr - Wirashark

File Edt View Go Capture Analyze Statistics Telephony Tools Help

Budegn PEXEE GesnTL|EHE QR §ET % O

Mo, | Time Source Dest Protocal ' Info

1 0.000000 00:07:e9:14:a9:cl 01:80:c2:00:00:00 STPR conf. RooL = 32768/0/00:07:e59:14:a%9:c1 Cost = 0 Port = Ox8002
2 1.889940 00:07:e9:14:a9:c1l 01:80:c2:00:00:00 STP conf. RooOT = 32768/0/00:07:e9:14:a%:c]1 Cost = 0 PoOrt = Ox800Z2 =
3 3.09990952 00:07:e29:14:a9:c1 01:80:c2:00:00:00 STP Conf. RooL = 32768/70/00:07:259:14:2%:¢1 Cost = 0 Port = OxX8002
4 5.5899940 00:07:e9:14:a9:cl 0L:B0:c2:00:00:00 STP Conf. RooT = 32768/0/00:07:e9:14:a%:c1 Cost = 0 PoOrt = Ox8002 ~

@ Frame 1: 52 bytes on wire (416 hits), 52 hytes captured (416 bits)
= IEEE 802.3 Ethernet
= Destination: 01:80:c2:00:00:00 (OLl:80:C2:00:00:00)
Address: 01:80:c2:00:00:00 (01:80:c2:00:00:000
....... 1 .iet vvee e wvw. = IG bit: Group address (multicast/broadcast)
vern od vies wees e aaes = LG BT Globally unigue address (Factory default)
@ Source: 00:07:89:14:a9:c1 (00:07:89:14:a8:c1)

IG Bit: Individual
SSaP: spanning Tree BPDU (0x42)
CRr Bit: Command
= Control field: u, func=ur (0x03)
000. 00.. = Command: Unnumbered Information (0x00)
...... 11 = Frame type: Unnumbered frame (0x03)
= spanning Tree Protocol
protocol Identifier: Spanning Tree Protocol (0x0000)
protocol version Identifier: spanning Tree (0)
BPDU Type: configuration (0x00)
@ BEPDU flags: 0x00
= Root Identifier: 32768 / 0 / Q0:07:e9:l4:a9:c1
Root Bridge Priority: 32768
ROOL Bridge System ID Extension: O
root Bridge System ID: 00:07:89:14:a9:cl
Root Path Cost: O
= Bridge Identifier: 32768 / 0 / 00:07:e9:14:a9:c1
Bridge Priority: 32768
Bridge System ID Extension: O
Bridge System ID: 00:07:e9:14:a9:cl
Port identifier: 0x8002
Message Age: O
Max age: 20
Hello Time: 2
Forward pelay: 15

Figure 3-16 Wireshark showing a BPDU. The Ethernet destination is a group address for bridges
(01:80:¢2:00:00:00).

110

Link Layer

3.4.1.6 Rapid Spanning Tree Protocol (RSTP) (Formerly 802.1w)

One of the perceived problems with conventional STP is that a change in topology
is detected only by the failure to receive a BPDU in a certain amount of time. If
the timeout is large, the convergence time (time to reestablish data flow along the
spanning tree) could be larger than desired. The IEEE 802.1w standard (now part
of [802.1D-2004]) specifies enhancements to the conventional STP and adopts the
new name Rapid Spanning Tree Protocol (RSTP). The main improvement in RSTP
over STP is to monitor the status of each port and upon indication of failure to
immediately trigger a topology change indication. In addition, RSTP uses all 6 bits
in the Flag field of the BPDU format to support agreements between bridges that
avoid some of the need for timers to initiate protocol operations. It reduces the
normal STP five port states to three (discarding, learning, and forwarding, as
indicated by the state names in parentheses in Figure 3-14). The discarding state
in RSTP absorbs the disabled, blocking, and listening states in conventional STP.
RSTP also creates a new port role called an alternate port, which acts as an immedi-
ate backup should a root port cease to operate.

RSTP uses only one type of BPDU, so there are no special topology change
BPDUs, for example. RSTP BPDUs, as they are called, use version and type num-
ber 2 instead of 0. In RSTP, any switch detecting a topology change sends BPDUs
indicating a topology change, and any switch receiving them clears its filtering
databases immediately. This change can significantly affect the protocol’s con-
vergence time. Instead of waiting for the topology change to migrate to the root
bridge and back followed by the forwarding delay wait time, entries are cleared
immediately. Overall, convergence time can be cut from tens of seconds down to a
fraction of a second in most cases.

RSTP makes a distinction between edge ports (those attached only to end sta-
tions) and normal spanning tree ports and also between point-to-point links and
shared links. Edge ports and ports on point-to-point links do not ordinarily form
loops, so they are permitted to skip the listening and learning states and move
directly to the forwarding state. Of course, the assumption of being an edge port
could be violated if, for example, two ports were cross-connected, but this is han-
dled by reclassifying ports as spanning tree ports if they ever carry any form of
BPDUs (simple end stations do not normally generate BPDUs). Point-to-point links
are inferred from the operating mode of the interface; if the interface is running in
full-duplex mode, the link is classified as a point-to-point link.

In regular STP, BPDUs are ordinarily relayed from a notifying or root bridge.
In RSTP, BPDUs are sent periodically by all bridges as “keepalives” to determine
if connections to neighbors are operating properly. This is what most higher-layer
routing protocols do also. If a bridge fails to receive an updated BPDU within
three times the hello interval, the bridge concludes that it has lost its connection
with its neighbor. Note that in RSTP, topology changes are not induced as a result
of edge ports being connected or disconnected as they are in regular STP. When
a topology change is detected, the notifying bridge sends BPDUs with the TC bit

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 111

3.4.2

3.5

field set, not only to the root but also to all other bridges. Doing so allows the
entire network to be notified of the topology change much faster than with con-
ventional STP. When a bridge receives these messages, it flushes all table entries
except those associated with edge ports and restarts the learning process.

Many of RSTP’s features were developed by Cisco Systems and other compa-
nies that had for some time provided proprietary enhancements to regular STP in
their products. The IEEE committee incorporated many of these enhancements into
the updated 802.1d standard, which covers both types of STP, so extended LANs
can run regular STP on some segments and RSTP on others (although the RSTP
benefits are lost). RSTP has been extended to include VLANs [802.1Q-2005]—a
protocol called the Multiple Spanning Tree Protocol (MSTP). This protocol retains
the RSTP (and hence STP) BPDU format, so backward compatibility is possible,
but it also supports the formation of multiple spanning trees (one for each VLAN).

802.1ak: Multiple Registration Protocol (MRP)

The Multiple Registration Protocol (MRP) provides a general method for registering
attributes among stations in a bridged LAN environment. [802.1ak-2007] defines
two particular “applications” of MRP called MVRP (for registering VLANSs) and
MMRP (for registering group MAC addresses). MRP replaces the earlier GARP
framework; MVRP and MMRP replace the older GVRP and GMRP protocols,
respectively. All were originally defined by 802.1q.

With MVRP, once an end station is configured as a member of a VLAN, this
information is communicated to its attached switch, which in turn propagates
the fact of the station’s participation in the VLAN to other switches. This allows
switches to augment their filtering tables based on station VLAN IDs and allows
changes of VLAN topology without necessarily triggering a recalculation of the
existing spanning tree via STP. Avoiding STP recalculation was one of the reasons
for migrating from GVRP to MVRP.

MMRP is a method for stations to register their interest in group MAC
addresses (multicast addresses). This information may be used by switches to
establish the ports through which multicast traffic must be delivered. Without
such a facility, switches would have to broadcast all multicast traffic, potentially
leading to unwanted overhead. MMRP is a layer 2 protocol with similarities to
IGMP and MLD, layer 3 protocols, and the “IGMP/MLD snooping” capability sup-
ported in many switches. We discuss IGMP, MLD and snooping in Chapter 9.

Wireless LANs—IEEE 802.11(Wi-Fi)

One of the most popular technologies being used to access the Internet today is
wireless fidelity (Wi-Fi), also known by its IEEE standard name 802.11, effectively
a wireless version of Ethernet. Wi-Fi has developed to become an inexpensive,
highly convenient way to provide connectivity and performance levels acceptable

112

Link Layer

for most applications. Wi-Fi networks are easy to set up, and most portable com-
puters and smartphones now include the necessary hardware to access Wi-Fi
infrastructure. Many coffee shops, airports, hotels, and other facilities include
Wi-Fi “hot spots,” and Wi-Fi is even seeing considerable advancement in develop-
ing countries where other infrastructure may be difficult to obtain. The architec-
ture of an IEEE 802.11 network is shown in Figure 3-17.

Basic Service Set

"Qi\ Access Point
@) (AP)

Distribution Service
(DS)

Extended Service Set
(ESS)

Figure 3-17 The IEEE 802.11 terminology for a wireless LAN. Access points (APs) can be connected
using a distribution service (DS, a wireless or wired backbone) to form an extended
WLAN (called an ESS). Stations include both APs and mobile devices communicating
together that form a basic service set (BSS). Typically, an ESS has an assigned ESSID that
functions as a name for the network.

The network in Figure 3-17 includes a number of stations (STAs). Typically
stations are organized with a subset operating also as access points (APs). An AP
and its associated stations are called a basic service set (BSS). The APs are generally
connected to each other using a wired distribution service (called a DS, basically a
“backbone”), forming an extended service set (ESS). This setup is commonly termed
infrastructure mode. The 802.11 standard also provides for an ad hoc mode. In this
configuration there is no AP or DS; instead, direct station-to-station (peer-to-peer)
communication takes place. In IEEE terminology, the STAs participating in an
ad hoc network form an independent basic service set (IBSS). A WLAN formed from
a collection of BSSs and/or IBSSs is called a service set, identified by a service set
identifier (SSID). An extended service set identifier (ESSID) is an SSID that names a
collection of connected BSSs and is essentially a name for the LAN that can be up
to 32 characters long. Such names are ordinarily assigned to Wi-Fi APs when a
WLAN is first installed.

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 113

3.5.1

802.11 Frames

There is one common overall frame format for 802.11 networks but multiple types
of frames. Not all the fields are present in every type of frame. Figure 3-18 shows
the format of the common frame and a (maximal-size) data frame.

Physical-Layer PDU >

(variable) (variable) (variable)
Preamble PLCP Header MAC PDU (MPDU)
//,”/ - Optional - \\“~\\\
Eame ?‘u”/a Address 1 Address 2 Address 3 e Address 4 oS s Frame FCS
cul Iﬁ; ctrl cti | Control Body
@ @ (6 bytes) ®) ®) @ ®) @ @ (0-7995) @
- MAC Header -

Figure 3-18 The 802.11 basic data frame format (as of [802.11n-2009]). The MPDU format resembles that of

Ethernet but has additional fields depending on the type of DS being used among access points,
whether the frame is headed to the DS or from it, and if frames are being aggregated. The QoS
Control field is used for special performance features, and the HT Control field is used for control
of 802.11n’s “high-throughput” features.

The frame shown in Figure 3-18 includes a preamble for synchronization,
which depends on the particular variant of 802.11 being used. Next, the Physical
Layer Convergence Procedure (PLCP) header provides information about the spe-
cific physical layer in a somewhat PHY-independent way. The PLCP portion of the
frame is generally transmitted at a lower data rate than the rest of the frame. This
serves two purposes: to improve the probability of correct delivery (lower speeds
tend to have better error resistance) and to provide compatibility with and protec-
tion from interference from legacy equipment that may operate in the same area at
slower rates. The MAC PDU (MPDU) corresponds to a frame similar to Ethernet,
but with some additional fields.

At the head of the MPDU is the Frame Control Word, which includes a 2-bit
Type field identifying the frame type. There are three types of frames: management
frames, control frames, and data frames. Each of these can have various subtypes,
depending on the type. The full table of types and subtypes is given in [802.11n-
2009, Table 7-1]. The contents of the remaining fields, if present, are determined by
the frame type, which we discuss individually.

3.5.1.1 Management Frames

Management frames are used for creating, maintaining, and ending associations
between stations and access points. They are also used to determine whether
encryption is being used, what the name (SSID or ESSID) of the network is, what

114

Link Layer

transmission rates are supported, and a common time base. These frames are used
to provide the information necessary when a Wi-Fi interface “scans” for nearby
access points.

Scanning is the procedure by which a station discovers available networks
and related configuration information. This involves switching to each available
frequency and passively listening for traffic to identify available access points. Sta-
tions may also actively probe for networks by transmitting a particular manage-
ment frame (“probe request”) while scanning. There are some limitations on such
probe requests to ensure that 802.11 traffic is not transmitted on a frequency that
is being used for non-802.11 purposes (e.g., medical services). Here is an example
of initiating a scan by hand on a Linux system:

Linux# iwlist wlanO scan
wlan0 Scan completed :
Cell 01 - Address: 00:02:6F:20:B5:84
ESSID:"Grizzly-5354-Aries-802.11b/g"
Mode:Master
Channel:4
Frequency:2.427 GHz (Channel 4)
Quality=5/100 Signal level=47/100
Encryption key:on
IE: WPA Version 1
Group Cipher : TKIP
Pairwise Ciphers (2) : CCMP TKIP
Authentication Suites (1) : PSK
Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s;
6 Mb/s; 12 Mb/s; 24 Mb/s; 36 Mb/s; 9 Mb/s;
18 Mb/s; 48 Mb/s; 54 Mb/s
Extra:tsf=0000009d832££037

Here we see the result of a hand-initiated scan using wireless interface wlan0.
An AP with MAC address 00:02:6F:20:B5:84 is acting as a master (i.e., is act-
ing as an AP in infrastructure mode). It is broadcasting the ESSID "Grizzly-
5354-Aries-802.11b/g" on channel 4 (2.427GHz). (See Section 3.5.4 on channels
and frequencies for more details on channel selection.) The quality and signal
level give indications of how well the scanning station is receiving a signal from
the AP, although the meaning of these values varies among manufacturers. WPA
encryption is being used on this link (see Section 3.5.5), and bit rates from 1Mb/s
to 54Mb/s are available. The tsf (time sync function) value indicates the AP’s
notion of time, which is used for synchronizing various features such as power-
saving mode (see Section 3.5.2).

When an AP broadcasts its SSID, any station may attempt to establish an
association with the AP. When an association is established, most Wi-Fi networks
today also set up the necessary configuration information to provide Internet
access to the station (see Chapter 6). However, an AP’s operator may wish to con-
trol which stations make use of the network. Some operators intentionally make
this more difficult by having the AP not broadcast its SSID, as a security measure.

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 115

This approach provides little security, as the SSID may be guessed. More robust
security is provided by link encryption and passwords, which we discuss in Sec-
tion 3.5.5.

3.5.1.2 Control Frames: RTS/CTS and ACKs

Control frames are used to handle a form of flow control as well as acknowl-
edgments for frames. Flow control helps ensure that a receiver can slow down a
sender that is too fast. Acknowledgments help a sender know what frames have
been received correctly. These concepts also apply to TCP at the transport layer
(see Chapter 15). 802.11 networks support optional request-to-send (RTS)/clear-to-
send (CTS) moderation of transmission for flow control. When these are enabled,
prior to sending a data frame a station transmits an RTS frame, and when the
recipient is willing to receive additional traffic, it responds with a CTS. After the
RTS/CTS exchange, the station has a window of time (identified in the CTS frame)
to transmit data frames that are acknowledged when successfully received. Such
transmission coordination schemes are common in wireless networks and mimic
the flow control signaling that has been used on wired serial lines for years (some-
times called hardware flow control).

The RTS/CTS exchange helps to avoid the hidden terminal problem by instruct-
ing each station when it is permitted to transmit, so as to avoid simultaneous
transmissions from stations that cannot hear each other. Because RTS and CTS
frames are short, they do not use the channel for long. An AP generally initiates
an RTS/CTS exchange for a packet if the size of the packet is large enough. Typi-
cally, an AP has a configuration option called the packet size threshold (or similar).
Frames larger than the threshold cause an RTS to be sent prior to transmission of
the data. Most vendors use a default setting for this value of approximately 500
bytes if RTS/CTS exchanges are desired. In Linux, the RTS/CTS threshold can be
set in the following way:

Linux# iwconfig wlan0 rts 250
wlan0 IEEE 802.11g ESSID:"Grizzly-5354-Aries-802.11b/g"
Mode :Managed
Frequency:2.427 GH
Access Point: 00:02:6F:20:B5:84
Bit Rate=24 Mb/s Tx-Power=0 dBm
Retry min limit:7 RTS thr=250 B Fragment thr=2346 B
Encryption key:xxxx- ... -xxxXxX [3]
Link Quality=100/100 Signal level=46/100
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

The iwconfig command can be used to set many variables, including the RTS
and fragmentation thresholds (see Section 3.5.1.3). It can also be used to determine
statistics such as the number of frame errors due to wrong network ID (ESSID) or
wrong encryption key. It also gives the number of excessive retries (i.e.,, the num-
ber of retransmission attempts), a rough indicator of the reliability of the link that

116

Link Layer

is popular for guiding routing decisions in wireless networks [ETX]. In WLANSs
with limited coverage, where hidden terminal problems are unlikely to occur, it
may be preferable to disable RTS/CTS by adjusting the stations” RTS thresholds to
be a high value (1500 or larger). This avoids the overhead imposed by requiring
RTS/CTS exchanges for each packet.

In wired Ethernet networks, the absence of a collision indicates that a frame
has been received correctly with high probability. In wireless networks, there is
a wider range of reasons a frame may not be delivered correctly, such as insuffi-
cient signal or interference. To help address this potential problem, 802.11 extends
the 802.3 retransmission scheme with a retransmission/acknowledgment (ACK)
scheme. An acknowledgment is expected to be received within a certain amount
of time for each unicast frame sent (802.11a/b/g) or each group of frames sent
(802.11n or 802.11e with “block ACKs”). Multicast and broadcast frames do not
have associated ACKs to avoid “ACK implosion” (see Chapter 9). Failure to receive
an ACK within the specified time results in retransmission of the frame(s).

With retransmissions, it is possible to have duplicate frames formed within
the network. The Retry bit field in the Frame Control Word is set when any frame
represents a retransmission of a previously transmitted frame. A receiving station
can use this to help eliminate duplicate frames. Stations are expected to keep a
small cache of entries indicating addresses and sequence/fragment numbers seen
recently. When a received frame matches an entry, the frame is discarded.

The amount of time necessary to send a frame and receive an ACK for it
relates to the distance of the link and the slot time (a basic unit of time related to
the 802.11 MAC protocol; see Section 3.5.3). The time to wait for an ACK (as well as
the slot time) can be configured in most systems, although the method for doing
so varies. In most cases such as home or office use, the default values are adequate.
When using Wi-Fi over long distances, these values may require adjusting (see, for
example, [MWLD]).

3.5.1.3 Data Frames, Fragmentation, and Aggregation

Most frames seen on a busy network are data frames, which do what one would
expect—carry data. Typically, there is a one-to-one relationship between 802.11
frames and the link-layer (LLC) frames made available to higher-layer proto-
cols such as IP. However, 802.11 supports frame fragmentation, which can divide
frames into multiple fragments. With the 802.11n specification, it also supports
frame aggregation, which can be used to send multiple frames together with less
overhead.

When fragmentation is used, each fragment has its own MAC header and trail-
ing CRC and is handled independently of other fragments. For example, fragments
to different destinations can be interleaved. Fragmentation can help improve per-
formance when the channel has significant interference. Unless block ACKs are
used, each fragment is sent individually, producing one ACK per fragment by the
receiver. Because fragments are smaller than full-size frames, if a retransmission
needs to be invoked, a smaller amount of data will need to be repaired.

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 117

Fragmentation is applied only to frames with a unicast (non-broadcast or
multicast) destination address. To enable this capability, the Sequence Control field
contains a fragment number (4 bits) and a sequence number (12 bits). If a frame is frag-
mented, all fragments contain a common sequence number value, and each adja-
cent fragment has a fragment number differing by 1. A total of 15 fragments for the
same frame is possible, given the 4-bit-wide field. The More Frag field in the Frame
Control Word indicates that further fragments are yet to come. Terminal fragments
have this bit set to 0. A destination defragments the original frame from fragments
it receives by assembling the fragments in order based on fragment number order
within the frame sequence number. Provided that all fragments constituting a
sequence number have been received and the last fragment has a More Frag field of
0, the frame is reconstructed and passed to higher-layer protocols for processing.

Fragmentation is not often used because it does require some tuning. If used
without tuning, it can worsen performance slightly. When smaller frames are
used, the chance of having a bit error (see the next paragraph) can be reduced.
The fragment size can usually be set from 256 bytes to 2KB as a threshold (only
those frames that exceed the threshold in size are fragmented). Many APs default
to not using fragmentation by setting the threshold high (such as 2437 bytes on a
Linksys-brand AP).

The reason fragmentation can be useful is a fairly simple exercise in prob-
ability. If the bit error rate (BER) is P, the probability of a bit being successfully
delivered is (1 - P) and the probability that N bits are successfully delivered is
(1 - P). As N grows, this value shrinks. Thus, if we can shorten a frame, we can
in principle improve its error-free delivery probability. Of course, if we divide a
frame of size N bits into K fragments, we have to send at least [N/K] fragments. As
a concrete example, assume that we wish to send a 1500-byte (12,000-bit) frame.
If we assume P = 10" (a relatively high BER), the probability of successful deliv-
ery without fragmentation would be (1 - 10)'2%° = 301. So we have only about a
30% chance of such a frame being delivered without errors the first time, and on
average we would have to send the frame three or four times for it to be received
successfully.

If we use fragmentation for the same example and set the fragmentation thresh-
old to 500, we produce three fragments of about 4000 bits each. The probability of
one such fragment being delivered without error is about (1 - 104)*% = .670. Thus,
each fragment has about a 67% chance of being delivered successfully. Of course,
we have to have three of them delivered successfully to reconstruct the whole
frame. The probabilities of 3, 2, 1, and 0 fragments being delivered successfully
are (.67)* = 0.30, 3(.67)%(.33) = 0.44, 3(0.67)(.33)* = .22, and (.33)* = .04, respectively.
So, although the chances that all three are delivered successfully without retries
are about the same as for the nonfragmented frame being delivered successfully,
the chances that two or three fragments are delivered successfully are fairly good.
If this should happen, at most a single fragment would have to be retransmit-
ted, which would take significantly less time (about a third) than sending the
original 1500-byte unfragmented frame. Of course, each fragment consumes some

118 Link Layer

overhead, so if the BER is effectively 0, fragmentation only decreases performance
by creating more frames to handle.

One of the enhancements provided by 802.11n is the support of frame
aggregation, in two forms. One form, called the aggregated MAC service data unit
(A-MSDU), allows for multiple complete 802.3 (Ethernet) frames to be aggregated
within an 802.11 frame. The other form, called the aggregated MAC protocol data unit
(A-MPDU), allows multiple MPDUs with the same source, destination, and QoS
settings to be aggregated by being sent in short succession. The two aggregation
types are depicted in Figure 3-19.

0-2304 bytes

802.11 MSDU P MSDU p MSDU E
AMSDU | Preamble HPeLaCer MAC 023 Subf1rame 20238 Subfzrame al . |22 Subfrr,ame c
Header Data d Data d Data S
MSDU Aggregation
(max size: 7935 bytes) 0-4095 bytes 4 bytes
o N Y
D D D
PLCP 802.11 e Ple P e
A-MPDU | Preamble MAC | MPDU 1 all| MPDU2 |a| .. [! MPDU 3
Header ;
Header |! df! d |
m m m
MPDU Aggregation 7 AN
(max size: 64K bytes) A
802.11 F
WAC | D | C e e
Header S P y

Figure 3-19 Frame aggregation in 802.11n includes A-MSDU and A-MPDU. A-MSDU aggregates frames using
a single FCS. A-MPDU aggregation uses a 4-byte delimiter between each aggregated 802.11 frame.
Each A-MPDU subframe has its own FCS and can be individually acknowledged using block
ACKs and retransmitted if necessary.

For a single aggregate, the A-MSDU approach is technically more efficient.
Each 802.3 header is ordinarily 14 bytes, which is relatively small compared to
an 802.11 MAC header that could be as long as 36 bytes. Thus, with only a single
802.11 MAC header for multiple 802.3 frames, a savings of up to 22 bytes per extra
aggregated frame could be achieved. An A-MSDU may be up to 7935 bytes, which
can hold over 100 small (e.g.,, 50-byte) packets, but only a few (5) larger (1500-
byte) data packets. The A-MSDU is covered by a single FCS. This larger size of an
A-MSDU frame increases the chances it will be delivered with errors, and because
there is only a single FCS for the entire aggregate, the entire frame would have to
be retransmitted on error.

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 119

3.5.2

A-MPDU aggregation is a different form of aggregation whereby multiple (up
to 64) 802.11 frames, each with its own 802.11 MAC header and FCS and up to 4095
bytes each, are sent together. A-MPDUs may carry up to 64KB of data—enough
for more than 1000 small packets and about 40 larger (1.5KB) packets. Because
each constituent frame (subframe) carries its own FCS, it is possible to selectively
retransmit only those subframes received with errors. This is made possible by the
block acknowledgment facility in 802.11n (originating in 802.11e), which is a form of
extended ACK that provides feedback to a transmitter indicating which particular
A-MPDU subframes were delivered successfully. This capability is similar in pur-
pose, but not in its details, to the selective acknowledgments we will see in TCP
(see Chapter 14). So, although the type of aggregation offered by A-MSDUs may
be more efficient for error-free networks carrying large numbers of small packets,
in practice it may not perform as well as A-MPDU aggregation [S08].

Power Save Mode and the Time Sync Function (TSF)

The 802.11 specification provides a way for stations to enter a limited power state,
called power save mode (PSM). PSM is designed to save power by allowing an STA’s
radio receive circuitry to be powered down some of the time. Without PSM, the
receiver circuitry would always be running, draining power. When in PSM, an
STA's outgoing frames have a bit set in the Frame Control Word. A cooperative
AP noticing this bit being set buffers any frames for the station until the station
requests them. APs ordinarily send out beacon frames (a type of management
frame) indicating various things like SSID, channel, and authentication informa-
tion. When supporting stations that use PSM, APs can also indicate the presence
of buffered frames to a station by setting an indication in the Frame Control Word
of frames it sends. When stations enter PSM, they do so until the next AP beacon
time, when they wake up and determine if there are pending frames stored at the
AP for them.

PSM should be used with care and understanding. Although it may extend bat-
tery life, the NIC is not the only module drawing power in most wireless devices.
Other parts of the system such as the screen and hard drive can be significant con-
sumers of power, so overall battery life may not be extended much. Furthermore,
using PSM can affect throughput performance significantly as idle periods are
added between frame transmissions and time is spent switching modes [SHK07].

The ability to awaken an STA to check for pending frames at exactly the cor-
rect time (i.e, when an AP is about to send a beacon frame) depends on a common
sense of time at the AP and the PSM stations it serves. Wi-Fi synchronizes time
using the time synchronization function (TSF). Each station maintains a 64-bit coun-
ter reference time (in microseconds) that is synchronized with other stations in the
network. Synchronization is maintained to within 4us plus the maximum propa-
gation delay of the PHY (for PHYs of rate IMb/s or more). This is accomplished
by having any station that receives a TSF update (basically, a copy of the 64-bit
counter sent from another station) check to see if the provided value is larger than

120

Link Layer

3.5.3

its own. If so, the receiving station updates its own notion of time to be the larger
value. This approach ensures that clocks always move forward, but it also raises
some concern that, given stations with slightly differing clock rates, the slower
ones will tend to be synced to the fastest one.

With the incorporation of 802.11e (QoS) features into 802.11, the basic PSM of
802.11 has been extended to include the ability to schedule periodic batch process-
ing of buffered frames. The frequency is expressed in terms of the number of bea-
con frames. The capability, called automatic power save delivery (APSD), uses some
of the subfields of the QoS control word. APSD may be especially useful for small
power-constrained devices, as they need not necessarily awaken at each beacon
interval as they do in conventional 802.11 PSM. Instead, they may elect to power
down their radio transceiver circuitry for longer periods of their own choosing.
802.11n also extends the basic PSM by allowing an STA equipped with multiple
radio circuits operating together (see MIMO, Section 3.5.4.2) to power down all but
one of the circuits until a frame is ready. This is called spatial multiplexing power
save mode. The specification also includes an enhancement to APSD called Power
Save Multi-Poll (PSMP) that provides a way to schedule transmissions of frames in
both directions (e.g., to and from AP) at the same time.

802.11 Media Access Control

In wireless networks, it is much more challenging to detect a “collision” than in
wired networks such as 802.3 LANSs. In essence, the medium is effectively sim-
plex, and multiple simultaneous transmitters must be avoided, by coordinating
transmissions in either a centralized or a distributed manner. The 802.11 stan-
dard has three approaches to control sharing of the wireless medium, called the
point coordination function (PCF), the distributed coordinating function (DCF), and
the hybrid coordination function (HCF). HCF was brought into the 802.11 specifica-
tion [802.11-2007] with the addition of QoS support in 802.11e and is also used by
802.11n. Implementation of the DCF is mandatory for any type of station or AP, but
implementation of the PCF is optional and not widespread (so we shall not discuss
it in detail). HCF is found in relatively new QoS-capable Wi-Fi equipment, such as
802.11n APs and earlier APs that support 802.11e. We turn our attention to DCF for
now and describe HCF in the context of QoS next.

DCEF is a form of CSMA/CA for contention-based access to the medium. It is
used for both infrastructure and ad hoc operation. With CSMA /CA, stations listen
to see if the medium is free and, if so, may have an opportunity to transmit. If not,
they avoid sending for a random amount of time before checking again to see if
the medium is free. This behavior is similar to how a station sensing a collision
backs off when using CSMA/CD on wired LANs. Channel arbitration in 802.11 is
based on CSMA/CA with enhancements to provide priority access to certain sta-
tions or frame types.

802.11 carrier sense is performed in both a physical and a virtual way. Gener-
ally, stations wait for a period of time when ready to send (called the distributed

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 121

inter-frame space or DIFS) to allow higher-priority stations to access the channel.
If the channel becomes busy during the DIFS period, a station starts the waiting
period again. When the medium appears idle, a would-be transmitter initiates
the collision avoidance/backoff procedure described in Section 3.5.3.3. This pro-
cedure is also initiated after a successful (unsuccessful) transmission is indicated
by the receipt (lack of receipt) of an ACK. In the case of unsuccessful transmission,
the backoff procedure is initiated with different timing (using the extended inter-
frame space or EIFS). We now discuss the implementation of DCF in more detail,
including the virtual and physical carrier sense mechanisms.

3.5.8.1 Virtual Carrier Sense, RTS/CTS, and the Network Allocation Vector (NAV)

In the 802.11 MAC protocol, a virtual carrier sense mechanism operates by observ-
ing the Duration field present in each MAC frame. This is accomplished by a sta-
tion listening to traffic not destined for it. The Duration field is present in both
RTS and CTS frames optionally exchanged prior to transmission, as well as con-
ventional data frames, and provides an estimate of how long the medium will be
busy carrying the frame.

The transmitter sets the Duration field based on the frame length, transmit
rate, and PHY characteristics (e.g., rate, etc.). Each station keeps a local counter
called the Network Allocation Vector (NAV) that estimates how long the medium
will be busy carrying the current frame, and consequently how long it will need to
wait before attempting its next transmission. A station overhearing traffic with a
Duration field greater than its NAV updates its NAV to the new value. Because the
Duration field is present in both RTS and CTS frames, if used, any station in range
of either the sender or the receiver is able to ascertain the Duration field value. The
NAV is maintained in time units and decremented based on a local clock. The
medium is considered busy when the local NAV is nonzero. It is reset to 0 upon
receipt of an ACK.

3.5.3.2 Physical Carrier Sense (CCA)

Each 802.11 PHY specification (e.g., for different frequencies and radio technology)
is required to provide a function for assessing whether the channel is clear based
upon energy and waveform recognition (usually recognition of a well-formed
PLCP). This function is called clear channel assessment (CCA) and its implementa-
tion is PHY-dependent. The CCA capability represents the physical carrier sense
capability for the 802.11 MAC to understand whether the medium is currently
busy. It is used in conjunction with the NAV to determine when a station must
defer (wait) prior to transmission.

3.5.3.3 DCF Collision Avoidance/Backoff Procedure

Upon determining that the channel is likely to be free (i.e., because the NAV dura-
tion has been met and CCA does not indicate a busy channel), a station defers
access prior to transmission. Because many stations may have been waiting for
the channel to become free, each station computes and waits for a backoff time prior

122

Link Layer

to sending. The backoff time is equal to the product of a random number and the
slot time (unless the station attempting to transmit already has a nonzero backoff
time, in which case it is not recomputed). The slot time is PHY-dependent but is
generally a few tens of microseconds. The random number is drawn from a uni-
form distribution over the interval [0, CW], where the contention window (CW) is
an integer containing a number of time slots to wait, with limits aCWmin < CW
< aCWmax defined by the PHY. The set of CW values increases by powers of 2
(minus 1) beginning with the PHY-specific constant aCWmin value and continu-
ing up to and including the constant aCWmax value for each successive trans-
mission attempt. This is similar in effect to Ethernet’s backoff procedure initiated
during a collision detection event.

In a wireless environment, collision detection is not practical because it is dif-
ficult for a transmitter and receiver to operate simultaneously in the same piece of
equipment and hear any transmissions other than its own, so collision avoidance
is used instead. In addition, ACKSs are generated in response to unicast frames to
determine whether a frame has been delivered successfully. A station receiving
a correct frame begins transmitting an ACK after waiting a small period of time
(called the Short Interframe Space or SIFS), without regard to the busy/idle state of
the medium. This should not cause a problem because the SIFS value is always
smaller than DIFS, so in effect stations generating ACKs get priority access to the
channel to complete their transactions. The source station waits a certain amount
of time without receiving an ACK frame before concluding that a transmission
has failed. Upon failure, the backoff procedure discussed previously is initiated
and the frame is retried. The same procedure is initiated if a CTS is not received in
response to an earlier RTS within a certain (different) amount of time (a constant
called CTStimeout).

3.5.3.4 HCF and 802.11e/n QoS

Clauses 5, 6, 7, and 9 of the 802.11 standard [802.11-2007] are based in part on the
work of the 802.11e group within IEEE, and the terms 802.11e, Wi-Fi QoS, and
WMM (for Wi-Fi Multimedia) are often used. They cover the QoS facility—changes
to the 802.11 MAC-layer and system interfaces in support of multimedia applica-
tions such as voice over IP (VoIP) and streaming video. Whether the QoS facility
is really necessary or not often depends on the congestion level of the network
and the types of applications to be supported. If utilization of the network tends
to be low, the QoS MAC support may be unnecessary, although some of the other
802.11e capabilities may still be useful (e.g., block ACKs and APSD). In situations
where utilization and congestion are high and there is a need to support a low-
jitter delivery capability for services such as VoIP, QoS support may be desirable.
These specifications are relatively new, so QoS-capable Wi-Fi equipment is likely
to be more expensive and complex than non-QoS equipment.

The QoS facility introduces new terminology such as QoS stations (QSTAs),
QoS access points (QAPs), and the QoS BSS (QBSS, a BSS supporting QoS). In gen-
eral, any of the devices supporting QoS capabilities also support conventional

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 123

3.5.4

non-QoS operation. 802.11n “high-throughput” stations (called HT STAs) are
also QSTAs. A new form of coordination function, the hybrid coordination function
(HCF), supports both contention-based and controlled channel access, although
the controlled channel variant is seldom used. Within the HCF, there are two spec-
ified channel access methods that can operate together: HFCA-controlled channel
access (HCCA) and the more popular enhanced DCF channel access (EDCA), cor-
responding to reservation-based and contention-based access, respectively. There
is also some support for admission control, which may deny connectivity entirely
under high load.

EDCA builds upon the basic DCF access. With EDCA, there are eight user
priorities (UPs) that are mapped to four access categories (ACs). The user priorities
use the same structure as 802.1d priority tags and are numbered 1 through 7, with
7 being the highest priority. (There is also a 0 priority between 2 and 3.) The four
ACs are nominally intended for background, best-effort, video, and audio traffic.
Priorities 1 and 2 are intended for the background AC, priorities 0 and 3 are for
the best-effort AC, 4 and 5 are for the video AC, and 6 and 7 are for the voice AC.
For each AC, a variant of DCF contends for channel access credits called transmit
opportunities (TXOPs), using alternative MAC parameters that tend to favor the
higher-priority traffic. In EDCA, many of the various MAC parameters from DCF
(e.g., DIFS, aCWmin, aCWmax) become adjustable as configuration parameters.
These values are communicated to QSTAs using management frames.

HCCA builds loosely upon PCF and uses polling-controlled channel access.
It is designed for synchronous-style access control and takes precedence ahead of
the contention-based access of EDCA. A hybrid coordinator (HC) is located within
an AP and has priority to allocate channel accesses. Prior to transmission, a station
can issue a traffic specification (TSPEC) for its traffic and use UP values between 8
and 15. The HC can allocate reserved TXOPs to such requests to be used during
short-duration controlled access phases of frame exchange that take place before
EDCA-based frame transmission. The HC can also deny TXOPs to TSPECs based
on admission control policies set by the network administrator. The HCF exploits
the virtual carrier sense mechanism discussed earlier with DCF to keep conten-
tion-based stations from interfering with contention-free access. Note that a single
network comprising QSTAs and conventional stations can have both HCF and
DCF running simultaneously by alternating between the two, but ad hoc networks
do not support the HC and thus do not handle TSPECs and do not perform admis-
sion control. Such networks might still run HCF, but TXOPs are gained through
EDCA-based contention.

Physical-Layer Details: Rates, Channels, and Frequencies

The [802.11-2007] standard now includes the following earlier amendments:
802.11a, 802.11b, 802.11d, 802.11g, 802.11h, 802.11i, 802.11j, and 802.11e. The 802.11n
standard was adopted as an amendment to 802.11 in 2009 [802.11n-2009]. Most
of these amendments provide additional modulation, coding, and operating

124

Link Layer

frequencies for 802.11 networks, but 802.11n also adds multiple data streams and
a method for aggregating multiple frames (see Section 3.5.1.3). We will avoid
detailed discussion of the physical layer, but to appreciate the breadth of options,
Table 3-2 includes those parts of the 802.11 standard that describe this layer in
particular.

Table 3-2 Parts of the 802.11 standard that describe the physical layer

Standard
(Clause) Speeds (Mb/s) Frequency Range; Modulation |Channel Set
802.11a 6,9,12,18, 24, 36, 5.16-5.35 and 5.725-5.825GHz; 34-165 (varies by country)
(Clause 17) [48,54 OFDM 20MHz/10MHz/5MHz
channel width options
802.11b 1,2,55,11 2.401-2.495GHz; DSSS 1-14 (varies by country)
(Clause 18)
802.11g 1,2,55,6,9,11,12, |2.401-2.495GHz; OFDM 1-14 (varies by country)
(Clause 19) |18, 24, 36, 48, 54
(plus 22, 33)
802.11n 6.5-600 with many |2.4 and 5GHz modes with 1-13 (2.4GHz band);
options (up to 4 20MHz- or 40MHz-wide 36-196 (5GHz band)
MIMO streams) channels; OFDM (varies by country)
802.11y (Same as 3.650-3.700GHz (licensed); 1-25, 36—-64, 100-161
802.11-2007) OFDM (varies by country)

The first column gives the original standard name and its present location in
[802.11-2007], plus details for the 802.11n and 802.11y amendments. It is important
to note from this table that 802.11b/g operate in the 2.4GHz Industrial, Scientific, and
Medical (ISM) band, 802.11a operates only in the higher 5GHz Unlicensed National
Information Infrastructure (U-NII) band, and 802.11n can operate in both. The
802.11y amendment provides for licensed use in the 3.65-3.70GHz band within
the United States. An important practical consequence of the data in this table is
that 802.11b/g equipment does not interoperate or interfere with 802.11a equip-
ment, but 802.11n equipment may interfere with either if not deployed carefully.

3.5.4.1 Channels and Frequencies

Regulatory bodies (e.g., the Federal Communications Commission in the United
States) divide the electromagnetic spectrum in