

The Mole The Basics

Presented by Amelia McCutcheon

www.zenofchemistry.com

The mole

"A mole is defined as the amount of substance that contains the same number of specified particles as there are atoms in 12 g of carbon-12."

From Heineman Chemistry 1 (Lukins et al)

Avogadro's number (N_A) :

1 mole contains 6.02 x 10²³ particles

The mole

"A mole is defined as the amount of substance that contains the same number of specified particles as there are atoms in 12 g of carbon-12."

From Heineman Chemistry 1 (Lukins et al)

Avogadro's number (N_A) :

1 mole contains 6.02 x 10²³ particles

The mole

Molar Mass

Relative molecular mass (r.m.m.) Relative formula mass (r.f.m.)

Molecular Weight (MW)

Relative atomic mass (r.a.m.)

Molar Mass (M_r)

Formula Weight (FW)

Molar mass

Egg Masses

...for the purposes of the example, let's assume that all eggs came in dozens (i.e. 12 eggs)

Egg Masses

1 dozen atoms have different masses depending on the element

mass = 12.0 units

mass = 144 units

6

 \mathbf{C}

12.0

12.0

12.0

Carbon

 \mathbf{C}

12.0

12.0

Carbon

12.0

Carbon

mass = 1647.6 units

Molar Mass

- The mass of 1 mol of atoms/molecules/particles
 1 mol is NOT a dozen particles but 6.02 x 10²³ particles!!
 602,000,000,000,000,000,000
- Units: grams per mol (g/mol)

The mole	m		m	mass of substance, in grams (g)
		M	n	number of moles (mol)
		M _r	relative molecular mass (g/mol)	

How to use equation triangles:

- 1. Write down the term you wish to calculate (e.g. n =).
- 2. Cover the term you wish to calculate with your hand.
- 3. What remains is your equation on the other side of the = sign, working from the top down and/or left to right, and include all multiplication/division signs linking the two remaining terms.
- 4. The three equations derived from this triangle are:
 - $n = m \div M_r$
 - $m = n \times M_r$
 - $M_r = m \div n$

The horizontal line corresponds to division; the vertical line corresponds to multiplication.

Avogadro's Number

Eggs

- 1 dozen eggs = 12 eggs
- ½ dozen eggs = 6 eggs
- 2 dozen eggs = 24 eggs
- 3 dozen eggs = 36 eggs

Moles

- 1 mole atoms = 6.02×10^{23} atoms
- $\frac{1}{2}$ mole atoms = 3.01 x 10^{23} atoms
- 2 moles atoms = 12.04 x 10²³ atoms
- 3 moles atoms = 18.06×10^{23} atoms

number of

≥		IN	particles	
o's La	N	J	n	number of moles (mol)
Avogadro's Law	n	N _A	N _A	Avogadro's number =6.02 x 10 ²³ particles per mol

Empirical & Molecular Formulae

Molecular formula:

Exact number of atoms in a molecule

Empirical formula:

Lowest whole number ratio of atoms in a molecule

e.g. Ethane: C₂H₆

M = 30 g/mol

e.g. glucose: C₆H₁₂O₆

M = 180 g/mol

e.g. Ethane: CH₃

M = 15 g/mol

e.g. glucose: CH₂O

M = 30 g/mol

Percentage by mass

% by mass = mass of one component x 100% mass of the total

This can be used for:

- % w/w
- % yield
- % by mass of one element in a compound
- by mass of water

The Mole The Basics

Presented by Amelia McCutcheon

www.zenofchemistry.com