
Executor Memory

Architecture



Objective

Overview of the executor memory layout

Prerequisite for caching

Configuration tuning



Executor Memory Architecture
2 kinds of memory allocated to executors
• execution: joins, sorts, groups - usually for shuffles

• storage: caching RDDs in memory for reuse and fast retrieval

From Spark 1.6 memory is unified and shared between storage/execution

Storage memory can be used for execution
• LRU algorithm used to evict unused cached RDDs from memory

Fractions of storage vs execution can be configured at application start
• 300MB reserved

• spark.memory.fraction = executor-reserved memory (0 to 1)
• spark.memory.storageFraction = which memory ratio from the executor is reserved for storage (0 to 1)

• rest is available to user e.g. locally-allocated collections etc



Executor Memory Architecture

reserved (300MB) executor memory
(spark.memory.fraction)

storage memory
(spark.memory.storageFraction)

user-available

execution memory



Executor Memory Architecture

RDD1

RDD2

Example 1: assume we have 2 RDDs cached in the Storage area



Executor Memory Architecture

RDD1

RDD2

Massive computation

Example 1: assume we have 2 RDDs cached in the Storage area

A massive computation (e.g. shuffle) can use the unused Storage if needed



Executor Memory Architecture

RDD1

RDD2

Example 2: assume we have many RDDs cached, overflowing Storage
• it's possible if the compute zone is available

• a big computation would need to evict the LRU RDDs until at least the green area is free
• assume RDD1 and RDD4 are LRU

RDD3

RDD4



Executor Memory Architecture

RDD2

Example 2: assume we have many RDDs cached, overflowing Storage
• it's possible if the compute zone is available

• a big computation would need to evict the LRU RDDs until at least the green area is free
• assume RDD1 and RDD4 are LRU

RDD3

Massive computation

A massive computation (e.g. shuffle) must have at least the Execution area free
• if some of the Storage area is free, that's a bonus



Configurations cheatsheet

User300MB

spark.memory.fraction

spark.memory.storageFraction

spark.executor.memory

+big guns
--spark.memory.offHeap.size: for off-heap allocation (e.g. Tungsten)

--spark.yarn.executor.memoryOverhead: to request slightly more memory from the cluster manager

+driver configs
--spark.driver.memory: total allocated to driver

--spark.yarn.executor.memoryOverhead: works for driver as well



Spark rocks


