
Shuffle

Partitioning



Objective

Shuffling as something good that can increase parallelism

Deciding optimal shuffling based on cluster size



Partitioning

Small partitions
• data I/O overhead

• large task launch overhead
• easy to recompute if executor dies

Determines the degree of parallelism in a job
• each task processes one partition

Large partitions
• more CPU usage for actual data processing

• few tasks/parallelism
• long time to process

• large amount of memory needed
• hard to recompute if executor dies

Determines the degree of I/O parallelism



Shuffle Partitioning
How do we choose the optimal shuffle partitions?

Recommendations
• if intermediate data is large, increase shuffle partitions

• if you have idle cores, increase shuffle partitions
• if intermediate partitions are very small (<1MB), decrease shuffle partitions

• minimize shuffles altogether

Short answer: no silver bullet

Optimal partition size = 10 – 100MB of uncompressed data

spark.sql.shuffle.partitions = 1000
spark.default.parallelism = 100



Exercises

Thought experiments with a cluster
• a dataset X GB in size is being shuffled for a complex job

• shuffle is required, but job taking too long
• optimize the shuffle: pick the correct number of partitions to use

Things to keep in mind
• optimal partition size 10-100MB

• largest desired partition size 200MB
• CPU cores must not be idle

spark.sql.shuffle.partitions = ?



Exercise 1
Scenario
• you see a shuffle write of 210GB in the Spark UI

• job takes a long time
• you have 4 executors with 4 cores each

Recommendation
• your parallelism is 16, so at least 16 partitions

• largest partition recommended size 200MB, so at least 1050 partitions

spark.sql.shuffle.partitions = 1050

Result
• optimal time/task as partition is of optimal size

• 100% cluster utilization

Recommendation: allocate more CPU cores



Exercise 2
Scenario
• you see a shuffle write of 210GB in the Spark UI

• job takes a long time
• you have 200 executors with 8 cores each

Recommendation
• your parallelism is 1600, so at least 1600 partitions

• largest partition recommended size 200MB, so at least 1050 partitions

spark.sql.shuffle.partitions = 1600

Result
• partition size ~134MB, roughly perfect size

• 100% cluster utilization and high parallelism



Exercise 3
Scenario
• you see a shuffle write of ~1GB in the Spark UI

• job takes a long time
• you have 2 executors with 4 cores each

Recommendation
• your parallelism is 8, so at least 8 partitions

• smallest partition recommended size 10MB, so at most 100 partitions

spark.sql.shuffle.partitions = 10

Result
• partition size ~100MB, roughly perfect size

• 100% cluster utilization
• 100x overhead reduction from task creation compared to 10000 partitions => 3-10x perf boost



Spark rocks


