
Deploying &

Configuring



Objective

Packaging and shipping a Spark application to a cluster

Cluster deploy modes

3 ways of configuring Spark applications



Spark App Execution

Some command line arguments to pass:
--executor-memory: allocate a certain amount of RAM/executor (we'll learn later how to choose values)

--driver-memory: allocate a certain amount of RAM for the driver
--jars: add additional JVM libraries for Spark to have access to

--packages: add additional libraries as Maven coordinates
--conf (configName) (configValue): other configurations to the Spark application (including JVM options)

--help: show all options

/spark/bin/spark-submit \
--class par1foundation.TestApp \
--master spark://(dockerID):7077 \
--deploy-mode client \
--verbose \
--supervise \
spark_playground.jar data/movies.json data/goodMovies



The Anatomy of a Cluster
Spark cluster manager
• one node manages the state of the cluster

• the others do the work
• communicate via driver/worker processes

Spark executors
• run the tasks assigned by the Spark driver

• report their state and results to the driver

Spark driver
• manages the state of the stages/tasks of the application

• interfaces with the cluster manager

"driver" node

"worker" nodeStandalone, YARN, Mesos, Kubernetes



The Anatomy of a Cluster
Execution mode
• cluster

• client
• local

Client mode
• the Spark driver is on the client machine

• the client is responsible for the Spark processes and state management

Cluster mode
• the Spark driver is launched on a worker node

• the cluster manager is responsible for Spark processes

client machine

Local mode
• the entire application runs on the same machine



Spark Cluster mode
Driver is a dedicated JVM container on the cluster

Pros
• (usually) more memory availability for the driver

• faster communication between driver and executors
• faster perf overall

Cons
• failure of node with the driver means application failed

• fewer resources allocated to the executors



Spark Client mode
Driver is created on the machine which submits the job

Pros
• more resources to the executors

• node failure doesn't crash the application
• results are immediately available on the machine

Cons
• (usually) fewer resources available to the driver

• communication overhead between the driver and the executors
• (very likely) slower perf

client machine



Spark rocks


