Catalyst




Objective

Understand the Catalyst query optimizer

For DataFrames, Datasets and Spark SQL
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Catalyst query optimizer

When you run a SQL job

Spark knows the DF dependencies in advance — unresolved logical transformation plan

Catalyst resolves references and expression types — resolved logical plan

Catalyst compresses and pattern matches on the plan tree — optimized logical plan
+ Catalyst generates physical execution plans
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Catalog

Steps

* Analysis: unresolved plan => resolved plan

use Catalog to find where DataFrames, columns are coming from
* resolves column types

*  Optimization: resolved plan => optimized plan
*  processes the transformation tree

*  column pruning, predicate pushdown etc

Physical planning: optimized (logical) plan => physical execution plans
Code generation: generate Scala code from the execution plan
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(DF with numerical id and value)
(DF with numerical id) sum(v)
v
.join(t2, "id") tl.id,
.where(col("id") > 50 * 1000) 1+2+t2.value
.select(col("id"), (1lit(1) + 1it(2) + col("value")).alias("v")) ¥
-agg(sum(col("v"))) t1.id = t2.id
tl.id > 50*1000
v
SELECT sum(v)

FROM
SELECT t1.id, 1 + 2 + tl.value as v

FROM t1 join t2
WHERE tl1.id = t2.id AND ti1.id > 50 * 1000

Logical plan: describes computations without how to execute them
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Optimization: pre-compute as much as possible

1+ 2 + t2.value
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Optimization: filter pushdown

Aggregate sum(v) Aggregate sum(v)

tl.id,

1+2+t2.value # Project

t1.4id = t2 1id

tl.id > 50*1000

tl.id,

el 1+2+t2.value

tl.id = t2.id

Scan t2 Filter t1l.id > 50*1000

Scan tl
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Optimization: combining rules

Aggregate sum(v)

t1.id
1+2+t2.value

Project

tl.id = t2.id

tl.id

50*1000

Aggregate

Project

sum(v)

t1.id,
3+t2.value

tl.id = t2.id

tl.id > 50000
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Optimization: column pruning

Aggregate sum(v) Aggregate sum(v)

: t1.id, : t1.id,
e 3+t2.value I el 3+t2.value
t1.id = t2.id t1.id = t2.id

t2.1id

t1.id > 50000 Project t2.value

tl.id > 50000

Project tl.id

Scan tl
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Combine all:

Agdregate I Aggregate  EIUIEY)

. ; tl.id
q tl.id, Project ’
Project 142+t2.value — ’ 3+t2.value
tl.id = t2.id tl.id = t2.id

Filter
tl.id > 50*1000

Project

Scan t2 Project
Scan t2 Scan tl )

Scan tl

tl.id > 50*1000

tl.id
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Physical plan: known implementation of all operations

Aggregate HashAggregate

Project Project

SortMergeJoin

Project Project

Parquet Scan

Project 1

Project

Parquet Scan
12




Catalyst

Results

e extra structure (SQL) limits what can be expressed (vs RDDs)
*  however, we can express most computations

e expressions are more concise

»  structure allows for optimizations

ScalaRDDs |
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What Catalyst can't do

* can't optimize lambdas

4.5



Catalyst

The best part - it's free.




Spark rocks




