
Tungsten



Objective

Understand Project Tungsten principles

Simple performance demos



Tungsten - Motivation
Many big data infrastructures are CPU-bound
• large 10Gbps bandwidth

• fast SSDs: GB/s transfers
• CPUs still ~4GHz

Spark is already quite fast
• column/partition/bucket pruning & making data transfers smaller

• smaller & faster storage formats e.g. Parquet
• new shuffle implementations are much faster than before



Tungsten Efficiency
Memory management
• leverage memory directly: CPU registers, cache, RAM

• bypass the JVM and garbage collection

Cache-aware computation
• leverage modern CPUs and memory hierarchy

• cache-friendly data structures – 8byte-aligned
• equality and hashing performed at the byte level

Code generation
• leverage modern CPUs

• e.g. generated sort is 3x as fast
• operate directly on binary



Tungsten Details
Off-heap storage
• bypasses the JVM with "unsafe" objects (not eligible for GC)

• cache-aligned data structures: strings, UnsafeRows, ByteToByteMap
• internal "memory paging"

• plain memory pointers

Code generation (WholeStageCodegen)
• avoid virtual function calls

• avoid primitive type boxing
• avoid branches based on object type

• generate custom bytecode with Janino

Who benefits from Tungsten
• Spark SQL

• some RDD transformations



Tungsten
How we see it
• in the query plans

• tasks called SerializeFromObject – serialize the data from the beginning
• tasks with asterisk (*) use Tungsten

== Physical plan ==
*HashAggregate(keys=[name#45], functions=[count(1)])
+- Exchange hashpartitioning(name#45, 200)
+- *HashAggregate(keys=[name#45], functions=[partial_count(1)])
+- *Project [lower(name#76) as name#45]
+- Generate explode(split(value#555, \s+)), false, false, [name#76])
+- *SerializeFromObject[staticinvoke(class org.apache.spark.unsafe.types.UTF8String, 

StringType, fromString, input[0, java.lang.String, true], true) AS value#555]
+- Scan ExternalRDDScan[obj#554]

custom bytecode!



Tungsten
Benefits
• faster serialization than Kryo and >>>> Java

• much smaller object size than Java
• supports off-heap allocation

• supports Spark operations without serialization
e.g. you can sort the data while in binary

• avoids the JVM's GC

• much faster, less memory, less CPU
• can process much larger datasets



Tungsten
How do we enable it?
• it's enabled and free!

spark.sql.tungsten.enabled = true



Spark rocks


