
Stage & Task

Decomposition



Objective

Understand how Spark splits jobs into computational chunks

Understand shuffles

Make the distinction between narrow and wide transformations



Stages & Tasks

val employees = sc.textFile("/tmp/employees.csv")
val empTokens = employees.map(line => line.split(","))
val empDetails = empTokens.map(tokens => (tokens(4), tokens(7)))
val empGroups = empDetails.groupByKey(2)
val avgSalaries = empGroups.mapValues(salaries => salaries.map(_.toInt).sum / salaries.size)

Example: compute average salaries of employees by department

Storage

employees empTokens empDetails empGroups avgSalaries



Overview

val employees = sc.textFile("/tmp/employees.csv")

Step 1: read the text file as a DF, into 6 partitions

Storage

employees



Overview

val employees = sc.textFile("/tmp/employees.csv")
val empTokens = employees.map(line => line.split(","))

Step 2: split the records into lines

Storage

employees empTokens

Narrow transformation: partitions don't need to know about each other



Stages & Tasks

val employees = sc.textFile("/tmp/employees.csv")
val empTokens = employees.map(line => line.split(","))
val empDetails = empTokens.map(tokens => (tokens(4), tokens(7)))

Step 3: tuple the relevant information

Storage

employees empTokens empDetails

maps are narrow transformations



Stages & Tasks

val employees = sc.textFile("/tmp/employees.csv")
val empTokens = employees.map(line => line.split(","))
val empDetails = empTokens.map(tokens => (tokens(4), tokens(7)))
val empGroups = empDetails.groupByKey(2)

Step 4: group the data by department

Storage

employees empTokens empDetails empGroups

wide transformation: all partitions need to be considered

shuffle: data is
moved in between
executors
(VERY EXPENSIVE)



Stages & Tasks

val employees = sc.textFile("/tmp/employees.csv")
val empTokens = employees.map(line => line.split(","))
val empDetails = empTokens.map(tokens => (tokens(4), tokens(7)))
val empGroups = empDetails.groupByKey(2)
val avgSalaries = empGroups.mapValues(salaries => salaries.map(_.toInt).sum / salaries.size)

Step 5: average the values in each group

Storage

employees empTokens empDetails empGroups avgSalaries

narrow transformation



Stages & Tasks
val employees = sc.textFile("/tmp/employees.csv")
val empTokens = employees.map(line => line.split(","))
val empDetails = empTokens.map(tokens => (tokens(4), tokens(7)))

val empGroups = empDetails.groupByKey(2)
val avgSalaries = empGroups.mapValues(salaries => salaries.map(_.toInt).sum / salaries.size)

Storage

stage 1 stage 2

employees empTokens empDetails empGroups avgSalaries



Stages & Tasks
Task
• the smallest unit of computation

• executed once, for one partition, by one executor

Stage
• contains tasks

• enforces no exchange of data = no partitions need data from other partitions
• depends on the previous stage = previous stage must complete before this one starts

A job contains stages

A stage contains tasks

An application contains jobs

Shuffle
• exchange of data between executors

• happens in between stages
• must complete before next stage starts



Dependencies
Narrow dependencies
• one input (parent) partition influences a single output (child) partition

• fast to compute
• examples: map, flatMap, filter, projections

Wide dependencies
• one input partition influences more than one output partitions

• involve a shuffle = data transfer between Spark executors
• are costly to compute

• examples: grouping, joining, sorting

parent child

parent child



Dependencies
Narrow dependencies
• given a parent partition, a single child partition depends on it

• fast to compute
• examples: map, flatMap, filter, projections

Wide dependencies
• given a parent partition, more than one child partitions depend on it

• involve a shuffle = data transfer between Spark executors
• are costly to compute

• examples: grouping, joining, sorting

parent child

parent child

Expressed differently in terms of "depends on":



Shuffles
Data exchanges between executors in the cluster

Expensive because of
• transferring data

• serialization/deserialization 
• loading new data from shuffle files

Shuffles are performance bottlenecks because
• exchanging data takes time

• they need to be fully completed before next computations start

Shuffles limit parallelization



Spark rocks


