
Catalyst

Objective

Understand the Catalyst query optimizer

For DataFrames, Datasets and Spark SQL

Catalyst

Catalyst query optimizer

When you run a SQL job
• Spark knows the DF dependencies in advance – unresolved logical transformation plan

• Catalyst resolves references and expression types – resolved logical plan
• Catalyst compresses and pattern matches on the plan tree – optimized logical plan

• Catalyst generates physical execution plans

Catalyst

Steps
• Analysis: unresolved plan => resolved plan

• use Catalog to find where DataFrames, columns are coming from
• resolves column types

• Optimization: resolved plan => optimized plan
• processes the transformation tree

• column pruning, predicate pushdown etc

• Physical planning: optimized (logical) plan => physical execution plans
• Code generation: generate Scala code from the execution plan

Catalyst

t1.join(t2, "id")
.where(col("id") > 50 * 1000)
.select(col("id"), (lit(1) + lit(2) + col("value")).alias("v"))
.agg(sum(col("v")))

SELECT sum(v)
FROM
SELECT t1.id, 1 + 2 + t1.value as v
FROM t1 join t2
WHERE t1.id = t2.id AND t1.id > 50 * 1000

t1 = (DF with numerical id and value)
t2 = (DF with numerical id) Aggregate

Project

Filter

Join

Scan t2 Scan t1

sum(v)

t1.id,
1+2+t2.value

t1.id = t2.id
t1.id > 50*1000

Logical plan: describes computations without how to execute them

Catalyst

+

+ t2.value

1 + 2 + t2.value

Optimization: pre-compute as much as possible

lit(1) lit(2)

+

lit(3) t2.value

Catalyst
Optimization: filter pushdown

Aggregate

Project

Filter

Join

Scan t2 Scan t1

sum(v)

t1.id,
1+2+t2.value

t1.id = t2.id
t1.id > 50*1000

Aggregate

Project

Join

Scan t2 Filter

sum(v)

t1.id,
1+2+t2.value

t1.id = t2.id

Scan t1

t1.id > 50*1000

Catalyst
Optimization: combining rules

Aggregate

Project

Join

Scan t2 Filter

sum(v)

t1.id,
1+2+t2.value

t1.id = t2.id

Scan t1

t1.id > 50*1000

Aggregate

Project

Join

Scan t2 Filter

sum(v)

t1.id,
3+t2.value

t1.id = t2.id

Scan t1

t1.id > 50000

Catalyst
Optimization: column pruning

Aggregate

Project

Join

Scan t2 Filter

sum(v)

t1.id,
3+t2.value

t1.id = t2.id

Scan t1

t1.id > 50000

Aggregate

Project

Join

Project Filter

sum(v)

t1.id,
3+t2.value

t1.id = t2.id

Project

t1.id > 50000

Scan t2

Scan t1

t1.id

t2.id
t2.value

Catalyst
Combine all:

Aggregate

Project

Join

Project Filter

sum(v)

t1.id,
3+t2.value

t1.id = t2.id

Project

t1.id > 50*1000

Scan t2

Scan t1

t1.id

t2.id

Aggregate

Project

Filter

Join

Scan t2 Scan t1

sum(v)

t1.id,
1+2+t2.value

t1.id = t2.id
t1.id > 50*1000

Catalyst
Physical plan: known implementation of all operations

HashAggregate

Project

SortMergeJoin

Project Filter

ProjectParquet Scan
t1

Parquet Scan
t2

Aggregate

Project

Join

Project Filter

ProjectScan t2

Scan t1

Catalyst
Results
• extra structure (SQL) limits what can be expressed (vs RDDs)

• however, we can express most computations
• expressions are more concise

• structure allows for optimizations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Spark SQL

Spark DFs

Scala RDDs

Spark SQL Spark DFs Scala RDDs

What Catalyst can't do
• can't optimize lambdas

Catalyst

The best part – it's free.

Spark rocks

