
First Principles



Objective

Spark terminology & concepts

Optimization goals



Spark Layered Architecture

RDDs Distributed variables

DataFrames Datasets Spark SQL

Streaming ML GraphX Other libraries

Cluster manager e.g. YARN

Storage layer e.g. HDFS

libraries

core

infrastructure



Spark Layered Architecture
Storage
• files, HDFS, S3, databases

Cluster manager
• standalone (bundled with Spark)

• YARN
• Mesos

• Kubernetes

Spark Core
• RDDs are the "first citizens" of Spark and have changed little since the beginning

• DataFrames & SQL: lots of optimizations out of the box

High-level libs
• Streaming: infinite data at sub-second latency

• ML: process machine learning models on big data at scale
• GraphX: process links between data

• all other libraries based on Spark Core (and RDDs in particular)



Spark Architecture
A cluster of worker nodes performs the work/data processing

Executor = worker logical node (JVM)
• performs work for a single application

• usually more than one per application
• launched in JVM containers with their own memory/CPU resources

• can be 0 or more deployed on the same physical machine

Driver = Spark application main JVM 
• one per application

• starts the application and sends work to the executors

Cluster manages the deployment of the executors
• driver requests executors & resources from the cluster manager

For performance
• driver is close to the worker nodes (same physical rack or at least same LAN)

• worker nodes close to each other – otherwise shuffle* operations are expensive



RDDs
Distributed typed collections of JVM objects

The "first citizens" of Spark: all higher-level APIs reduce to RDDs

Pros: can be highly customized
• distribution can be controlled

• order of elements can be controlled
• arbitrary computation hard/impossible to express with SQL

Cons: hard to work with
• for complex operations, need to know the internals of Spark

• poor APIs for quick data processing



DataFrames
High-level distributed data structures
• contain Rows

• have a schema
• have additional API for querying

• support SQL directly on top of them
• generate RDDs after Spark SQL planning & optimizing

Pros
• easy to work with, support SQL

• already heavily optimized by Spark

Cons
• type-unsafe

• unable to compute everything
• hard to optimize further



Dataset[T]
Distributed typed collections of JVM objects
• support SQL functions of DataFrames

• support functional operators like RDDs

Pros
• easy to work with, support for both SQL and functional programming

• some Spark optimizations out of the box
• type-safe

Cons
• memory and CPU expensive to create JVM objects

• unable to optimize lambdas

DataFrame = Dataset[Row]



Performance Tips

Use DataFrames most of the time
• express almost anything with SQL

• Spark already optimizes most SQL functions

Use RDDs only in custom processing

Do not switch types
• DFs ⇄ RDD[YourType] or Dataset[YourType] is expensive

• In Python switching types is disastrous



Computing Anything
Lazy evaluation
• Spark waits until the last moment to execute the DF/RDD transformations

Planning
• Spark compiles DF/SQL transformations to RDD transformations (if necessary)

• Spark compiles RDD transformations into a graph before running any code
• logical plan = RDD dependency graph + narrow/wide transformations sequence

• physical plan = optimized sequence of steps for nodes in the cluster
• optimizations*

Transformations vs Actions
• transformations describe how new DFs are obtained

• actions start executing Spark code

Transformations vs Actions
• transformations return RDDs/DFs

• actions return something else e.g. Unit, a number etc.



Spark App Execution
An action triggers a job

A job is split into stages
• each stage is dependent on the stage before it

• a stage must fully complete before the next stage can start
• for performance: (usually) minimize the number of stages

A stage has tasks
• task = smallest unit of work

• tasks are run by executors

An RDD/DataFrame/Dataset has partitions



Concepts Relationships
App decomposition
• 1 job = 1 or more stages

• 1 stage = 1 or more tasks

Tasks & Executors
• 1 task is run by 1 executor

• each executor can run 0 or more tasks

Partitions & Tasks
• processing one partition = one task

Partitions & Executors
• 1 partition stays on 1 executor

• each executor can load 0 or more partitions in memory or on disk

Executors & Nodes
• 1 executor = 1 JVM on 1 physical node

• each physical node can have 0 or more executors



Optimization Goals
Optimize the TIME it takes for a job to run
• understanding how Spark works internally

• writing efficient code

We will not optimize*
• memory usage

• cluster resource (CPU, mem, bandwidth) usage
• compute time via configs

Write good code first

Impossible to squeeze perf out of bad code



Spark rocks


