
Optimizing

Executors



Objective

Optimize CPU and memory allocation in a cluster

The Fat & Skinny Executors problem

Configure dynamic resource allocation

* assuming YARN & HDFS infra, but similar configs applicable



Resource Planning

Example: let's tune a Spark job running on a YARN & HDFS cluster with
• 4 nodes

• 64GB each
• 16 cores each

Fat & Skinny executors problem:
• Skinny executors = lots of executors with few resources

• Fat executors = few executors with lots of resources
• Fit executors = just right



Resource Planning

spark.executor.memory = 4g
spark.executor.cores = 1
spark.executor.instances = 64

Scenario 1: skinny executors
• 64 executors

• 1 core each
• 4GB each

spark-submit --num-executors 64 --executor-memory 4g --executor-cores 1

Cons
• each executor is single-threaded

• bigger tasks will OOM the executors
• managing so many incurs a large overhead

Pros
• good I/O throughput

• (maybe) good for lots of small tasks



Resource Planning

spark.executor.memory = 64g
spark.executor.cores = 16
spark.executor.instances = 4

Scenario 2: fat executors
• 4 executors, one per machine

• 16 cores each
• 64GB each

spark-submit --num-executors 4 --executor-memory 64g --executor-cores 16

Pros
• can accommodate enormous tasks

• can leverage executor parallelism

Cons
• bad for HDFS and concurrent I/O

• 64GB won't fit in the container mem
• one executor down = 25% of cluster down



Resource Planning
Scenario 3: fit executors
• allocate CPU & mem for YARN, OS and HDFS, e.g. 4GB and 4 cores per machine

• left: 60GB and 12 cores, x4 machines
• allocate ~1GB for ApplicationMaster (not significant for large clusters)

• keep <= 5 cores/executor for good HDFS throughput
• 48/5 = 9 executors

• memory/executor = (4 x 60 – 1) / 9 = 26GB

• keep 7-8% for executor overhead
• => net executor memory 24GB

spark-submit --num-executors 9 --executor-memory 24g --executor-cores 5

Pros
• good I/O throughput

• can handle large tasks
• can handle lots of tasks

• leverage executor parallelism

Cons
• 9 executors on 4 machines is not 100% even



Resource Planning
Exercise: an HDFS & YARN cluster with
• 10 machines 

• 64GB RAM and 16CPUs per machine

spark-submit --num-executors 24 --executor-memory 22g --executor-cores 5

Solution:
• keep 4 cores and 4GB RAM per machine => 40 CPUs and 40 GB RAM for YARN, OS, daemons

• remaining: 120 CPUs, 600 GB RAM
• AM is negligible, will take down from executor mem

• 5 cores / executor => 24 executors
• memory/executor = 600/24 = 25 GB

• minus ~8% overhead => net executor memory 22-23 GB



Resource Planning
Exercise: a large HDFS & YARN cluster on AWS with
• 1 master node r5.12xlarge

• 19 r5.12xlarge worker nodes
• 8 TB total RAM

• 960 total virtual CPUs

spark-submit --num-executors 176 --executor-memory 41g --executor-cores 5

Solution:
• leave the master node alone – will keep AM

• keep 4 cores and 4GB RAM per machine => 76 cores & 76GB
• remaining: ~7920 GB RAM, 884 cores

• 5 cores / executor => 176 executors
• memory/executor = 7920/176 = 45 GB

• minus 8% overhead => net executor memory ~41 GB



Dynamic Resource Allocation
Allows Spark to request/terminate executors as the job is running
• useful for multi-tenancy/cluster sharing/when cluster is idle

• maximize cluster utilization
• good for long-running jobs

• can impact performance for low-latency jobs

spark.dynamicAllocation.enabled
spark.dynamicAllocation.initialExecutors
spark.dynamicAllocation.minExecutors
spark.dynamicAllocation.maxExecutors
spark.dynamicAllocation.schedulerBacklogTimeout
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout
spark.dynamicAllocation.executorIdleTimeout

Configs:

requests new executor if task idle
for longer than this time

Spark allocates executors in rounds
• requests new executors if task queue still not empty after current round

• exponential increases



Spark rocks


