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Spark Layered Architecture
Storage
• files, HDFS, S3, databases

Cluster manager
• standalone (bundled with Spark)

• YARN
• Mesos

• Kubernetes

Spark Core
• RDDs are the "first citizens" of Spark and have changed little since the beginning

• DataFrames & SQL: lots of optimizations out of the box

High-level libs
• Streaming: infinite data at sub-second latency

• ML: process machine learning models on big data at scale
• GraphX: process links between data

• all other libraries based on Spark Core (and RDDs in particular)



Spark Architecture
A cluster of worker nodes performs the work/data processing

Executor = worker logical node (JVM)
• performs work for a single application

• usually more than one per application
• launched in JVM containers with their own memory/CPU resources

• can be 0 or more deployed on the same physical machine

Driver = Spark application main JVM 
• one per application

• starts the application and sends work to the executors

Cluster manages the deployment of the executors
• driver requests executors & resources from the cluster manager

For performance
• driver is close to the worker nodes (same physical rack or at least same LAN)

• worker nodes close to each other – otherwise shuffle* operations are expensive



RDDs
Distributed typed collections of JVM objects

The "first citizens" of Spark: all higher-level APIs reduce to RDDs

Pros: can be highly customized
• distribution can be controlled

• order of elements can be controlled
• arbitrary computation hard/impossible to express with SQL

Cons: hard to work with
• for complex operations, need to know the internals of Spark

• poor APIs for quick data processing



DataFrames
High-level distributed data structures
• contain Rows

• have a schema
• have additional API for querying

• support SQL directly on top of them
• generate RDDs after Spark SQL planning & optimizing

Pros
• easy to work with, support SQL

• already heavily optimized by Spark

Cons
• type-unsafe

• unable to compute everything
• hard to optimize further



Dataset[T]
Distributed typed collections of JVM objects
• support SQL functions of DataFrames

• support functional operators like RDDs

Pros
• easy to work with, support for both SQL and functional programming

• some Spark optimizations out of the box
• type-safe

Cons
• memory and CPU expensive to create JVM objects

• unable to optimize lambdas

DataFrame = Dataset[Row]



Performance Tips

Use DataFrames most of the time
• express almost anything with SQL

• Spark already optimizes most SQL functions

Use RDDs only in custom processing

Do not switch types
• DFs ⇄ RDD[YourType] or Dataset[YourType] is expensive

• In Python switching types is disastrous



Computing Anything
Lazy evaluation
• Spark waits until the last moment to execute the DF/RDD transformations

Planning
• Spark compiles DF/SQL transformations to RDD transformations (if necessary)

• Spark compiles RDD transformations into a graph before running any code
• logical plan = RDD dependency graph + narrow/wide transformations sequence

• physical plan = optimized sequence of steps for nodes in the cluster
• optimizations*

Transformations vs Actions
• transformations describe how new DFs are obtained

• actions start executing Spark code

Transformations vs Actions
• transformations return RDDs/DFs

• actions return something else e.g. Unit, a number etc.



Spark App Execution
An action triggers a job

A job is split into stages
• each stage is dependent on the stage before it

• a stage must fully complete before the next stage can start
• for performance: (usually) minimize the number of stages

A stage has tasks
• task = smallest unit of work

• tasks are run by executors

An RDD/DataFrame/Dataset has partitions



Concepts Relationships
App decomposition
• 1 job = 1 or more stages

• 1 stage = 1 or more tasks

Tasks & Executors
• 1 task is run by 1 executor

• each executor can run 0 or more tasks

Partitions & Tasks
• processing one partition = one task

Partitions & Executors
• 1 partition stays on 1 executor

• each executor can load 0 or more partitions in memory or on disk

Executors & Nodes
• 1 executor = 1 JVM on 1 physical node

• each physical node can have 0 or more executors



Optimization Goals
Optimize the TIME it takes for a job to run
• understanding how Spark works internally

• writing efficient code

We will not optimize*
• memory usage

• cluster resource (CPU, mem, bandwidth) usage
• compute time via configs

Write good code first

Impossible to squeeze perf out of bad code



Spark rocks


