
Caching



Objective

Leverage fast memory access of intermediate computations

Understand cache mechanics

Compare different caching strategies

Make the correct tradeoffs for caching



Why
Spark applications have jobs
• each action triggers a job

• a job executes the query plan
• all dependencies in the query plan are evaluated

Save expensive computations
• the same RDD can be evaluated multiple times

• if RDD is expensive – job is expensive multiple times

Cache expensive RDDs
• the RDD lineage is kept

• the RDD data is kept in memory
• subsequent dependencies will fetch the cached data

RDD1

RDD2

RDD3 RDD4

expensive
compute

cache this



Caching Mechanics
Can cache into
• memory in heap

• memory off heap (with Tungsten)
• disk

• memory + disk

Caching is done by executors on worker nodes

Beware of JVM limits
• min JVM memory 4-8GB

• max JVM memory 40GB
• the more JVM memory, the more time needed for GC

• large JVM heap may lead to decrease in perf



Caching Mechanics
Persistence levels
• memory-only, deserialized

• memory and disk
• memory-only, serialized

• memory and disk, serialized
• disk only

• memory-only 2 (replicated)

• memory and disk 2 (replicated)
• off-heap

mySuperRDD.cache() can also use persist()

mySuperRDD.unpersist() can't use uncache()



Caching Recap
Memory-only storage
• very CPU efficient

• can increase the risk of memory failures

mySuperRDD.cache(StorageLevel.MEMORY_ONLY)

Disk storage
• memory efficient

• slow to access

mySuperRDD.cache(StorageLevel.DISK_ONLY)

Replication
• 2x memory/disk usage

• fault tolerance

mySuperRDD.cache(StorageLevel.MEMORY_ONLY_2)

Off-heap
• free executor memory

• needs to be configured

mySuperRDD.cache(StorageLevel.OFF_HEAP)

spark.memory.offHeap.enabled = true
spark.memory.offHeap.size = 10485760

Serialization
• more CPU intensize

• 3x – 5x memory saving

mySuperRDD.cache(StorageLevel.MEMORY_ONLY_SER)



Caching Tradeoffs
Raw objects
• consume 3x-5x more memory (either RAM or disk)

• take 20x less time to process in RAM
• take more time to read from disk

Serialized objects
• max memory efficiency

• CPU intensive
• take less time to read from disk

Fault tolerance
• failed nodes will lose cached partitions

• cached partitions will be recomputed by other nodes
(unless replicated)



Caching Recommendations

Only cache what's being reused a lot
• don't cache too much or you risk OOMing the executors

• the LRU data will be evicted

If data fits in memory, use MEMORY_ONLY (default)
• most CPU efficient

If data is larger, use MEMORY_ONLY_SER
• more CPU intensive, but still faster than anything else

Use disk caching only for really expensive computations
• simple filters take just as much (or even less) to recompute than reread from disk



Spark rocks


