
Checkpointing



Objective

Different technique for saving RDDs/DataFrames for later

vs Caching

Checkpointing recommendations



Checkpointing vs Caching

Dependency graph is erased

No main memory used, only disk

Disk location is usually a cluster-available file system e.g. HDFS

Node failure with caching => partition is lost & needs to be recomputed

Node failure with checkpointing => partition is reloaded on another executor

Takes more space and is slower than caching



Checkpointing

Saves the RDD/DF to external storage and forgets its lineage

Takes more space and is slower than caching

Makes an intermediate RDD/DF available to other jobs

Does not use Spark memory

Does not force recomputation of a partition if a node fails



When to Use What
Use checkpointing if you can't afford a recomputation
• example: a huge incremental dataset

If a job is failing, use checkpointing
• OOMs are reduced as checkpoints don't use executor memory

• network/other errors are mitigated by breaking the job into several segments

If a job is slow, use caching

sc.setCheckpointDir("data/checkpoints/") config external location to store
checkpoints

mySuperExpensiveRDD.checkpoint()



Spark rocks


