Repartition
and

Coalesce

Objective

Change parallelism level of data processing

Repartition vs coalesce comparison

Repartition vs Coalesce

Repartition redistributes the data
evenly across partitions

N

original repartitioned

Coalesce "stitches" existing partitions

NV

original coalesced

Dependencies

—)
—)
Narrow dependencies B
* oneinput (parent) partition influences a single output (child) partition R
+ fast to compute —_—
+ examples: map, flatMap, filter, projections
parent child

Wide dependencies

* oneinput partition influences more than one output partitions

« involve a shuffle = data transfer between Spark executors
* are costly to compute

* examples: grouping, joining, sorting

parent child

Coalesce

Coalesce is a narrow dependency

* oneinput (parent) partition influences a single output (child) partition

Coalesce will still move some data

. not a full shuffle

* almost always faster than a shuffle

original coalesced

Repartition & Coalesce

Repartition

* returns a new RDD with the specified number of partitions

« will always involve a shuffle

* prioritizes even distribution of data

* necessary to control the number of partitions & partition size

Coalesce

* returns a new RDD with the specified number of partitions
* used to decrease the number of partitions

* inthiscase

. coalesce is a narrow transformation

« cannot guarantee uniform data distribution
e can also be used to increase number of partitions

+ essentially a repartition

When to Use What

Use repartition when

+ you want to increase parallelism/number of partitions
+ you want to control partition size

+ you want to redistribute the data evenly

Use coalesce when
+ you want to reduce the number of partitions & improve perf

* you don't care how data is distributed

Spark rocks

