
Partitioners



Objective

Customize partitioning logic on RDDs

Be aware of partitioning schemes used with DFs



Partitioners
Decide which record stays on which partition (key-value RDDs only)
• hash partitioning = same hash, same partition

• range partitioning = same range, same partition
• custom partitioning = you decide where each key stays, for custom computations

DFs cannot control partitioning logic, but follow rules
• sort/orderBy => RangePartitioning

• aggregation by key => HashPartitioning
• join => both DFs obey HashPartitioning

• repartition with a number => RoundRobinPartitioning
• repartition by column => HashPartitioning

Partitioning has advantages and does not incur shuffles
• hash partitioning for joins and by-key functions

• range partitioning for sorts



Joins Speedup

Make sure the same keys are on the same partition
• RDDs must have the same partitioner

• otherwise, Spark will pick one

Colocation: RDD partitions are already loaded in memory
• fastest join possible

Co-partitioning: RDDs share the same partitioner
• no shuffle involved for joins



Spark rocks


