
Repartition

and

Coalesce



Objective

Change parallelism level of data processing

Repartition vs coalesce comparison



Repartition vs Coalesce
Repartition redistributes the data 
evenly across partitions

original repartitioned

Coalesce "stitches" existing partitions

original coalesced



Dependencies
Narrow dependencies
• one input (parent) partition influences a single output (child) partition

• fast to compute
• examples: map, flatMap, filter, projections

Wide dependencies
• one input partition influences more than one output partitions

• involve a shuffle = data transfer between Spark executors
• are costly to compute

• examples: grouping, joining, sorting

parent child

parent child



Coalesce

Coalesce is a narrow dependency
• one input (parent) partition influences a single output (child) partition

original coalesced

Coalesce will still move some data
• not a full shuffle

• almost always faster than a shuffle



Repartition & Coalesce
Repartition
• returns a new RDD with the specified number of partitions

• will always involve a shuffle
• prioritizes even distribution of data

• necessary to control the number of partitions & partition size

Coalesce
• returns a new RDD with the specified number of partitions

• used to decrease the number of partitions
• in this case

• coalesce is a narrow transformation
• cannot guarantee uniform data distribution

• can also be used to increase number of partitions

• essentially a repartition



When to Use What
Use repartition when
• you want to increase parallelism/number of partitions

• you want to control partition size
• you want to redistribute the data evenly

Use coalesce when
• you want to reduce the number of partitions & improve perf

• you don't care how data is distributed



Spark rocks


