Catalyst

Objective

Understand the Catalyst query optimizer

For DataFrames, Datasets and Spark SQL

Catalyst

Analysis Logical Physical Code

SQL Optimization Planning Generation
Query |\ -

Ived imized 3 Selected

. Unr.eso el |, Logical Plan Op.tlmlze Physical £ - —— RDDs

/ Logical Plan Logical Plan Plans - Physical Plan

DataFrame I S
Catalog

1
Catalyst query optimizer

When you run a SQL job

Spark knows the DF dependencies in advance — unresolved logical transformation plan

Catalyst resolves references and expression types — resolved logical plan

Catalyst compresses and pattern matches on the plan tree — optimized logical plan
+ Catalyst generates physical execution plans

Catalyst

[
: o
imi ‘ : 2] Selected
Unr.esclﬂvled »| Logical Plan |+ Opfumllzied t U4l Physical | E = LT
Logical Plan Logical Plan Plans g ysical Plan
] 8
Catalog

Steps

* Analysis: unresolved plan => resolved plan

use Catalog to find where DataFrames, columns are coming from
* resolves column types

* Optimization: resolved plan => optimized plan
* processes the transformation tree

* column pruning, predicate pushdown etc

Physical planning: optimized (logical) plan => physical execution plans
Code generation: generate Scala code from the execution plan

Catalyst

(DF with numerical id and value)
(DF with numerical id) sum(v)
v
.join(t2, "id") tl.id,
.where(col("id") > 50 * 1000) 1+2+t2.value
.select(col("id"), (1lit(1) + 1it(2) + col("value")).alias("v")) ¥
-agg(sum(col("v"))) t1.id = t2.id
tl.id > 50*1000
v
SELECT sum(v)

FROM
SELECT t1.id, 1 + 2 + tl.value as v

FROM t1 join t2
WHERE tl1.id = t2.id AND ti1.id > 50 * 1000

Logical plan: describes computations without how to execute them

Catalyst

Optimization: pre-compute as much as possible

1+ 2 + t2.value

Catalyst

Optimization: filter pushdown

Aggregate sum(v) Aggregate sum(v)

tl.id,

1+2+t2.value # Project

t1.4id = t2 1id

tl.id > 50*1000

tl.id,

el 1+2+t2.value

tl.id = t2.id

Scan t2 Filter t1l.id > 50*1000

Scan tl

Catalyst

Optimization: combining rules

Aggregate sum(v)

t1.id
1+2+t2.value

Project

tl.id = t2.id

tl.id

50*1000

Aggregate

Project

sum(v)

t1.id,
3+t2.value

tl.id = t2.id

tl.id > 50000

Catalyst

Optimization: column pruning

Aggregate sum(v) Aggregate sum(v)

: t1.id, : t1.id,
e 3+t2.value I el 3+t2.value
t1.id = t2.id t1.id = t2.id

t2.1id

t1.id > 50000 Project t2.value

tl.id > 50000

Project tl.id

Scan tl

Catalyst

Combine all:

Agdregate I Aggregate EIUIEY)

. ; tl.id
q tl.id, Project ’
Project 142+t2.value — ’ 3+t2.value
tl.id = t2.id tl.id = t2.id

Filter
tl.id > 50*1000

Project

Scan t2 Project
Scan t2 Scan tl)

Scan tl

tl.id > 50*1000

tl.id

Catalyst

Physical plan: known implementation of all operations

Aggregate HashAggregate

Project Project

SortMergeJoin

Project Project

Parquet Scan

Project 1

Project

Parquet Scan
12

Catalyst

Results

e extra structure (SQL) limits what can be expressed (vs RDDs)
* however, we can express most computations

e expressions are more concise

» structure allows for optimizations

ScalaRDDs |
Spark DFs [
SparksQL I

0 0.5 1 1.5 2 2.5 3 31 4

mSparkSQL mSpark DFs m Scala RDDs

What Catalyst can't do

* can't optimize lambdas

4.5

Catalyst

The best part - it's free.

Spark rocks

