2016 Mathematics

Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2016
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

This is a transcription error and so the mark is not awarded.	$x^{2}+5 x+7=9 x+4$
Eased as no longer a solution of a quadratic equation so mark is not awarded.	$\begin{aligned} -4 x+3 & =0 \\ x & =1 \end{aligned}$
Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.	$\begin{aligned} x-4 x+3 & =0 \\ (x-3)(x-1) & =0 \\ x & =1 \text { or } 3 \end{aligned}$

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet^{6} \\
\mathbf{. 5}^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot{ }^{6} x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/ or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/ algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Specific Marking Instructions for each question

Question			Generic Scheme	Illustrative Scheme	Max
1.	(a)	i	$\bullet{ }^{1}$ state the midpoint M	${ }^{1}(2,4)$	1
		ii	-2 calculate gradient of median - 3 determine equation of median	$\bullet^{2} 4$ ${ }^{3} y=4 x-4$	2

Notes:

1. \bullet^{3} is not available as a consequence of using a perpendicular gradient.
2. Accept any rearrangement of $y=4 x-4$ for \bullet^{3}.
3. On this occasion, accept $y-4=4(x-2)$ or $y-(-4)=4(x-0)$; however, in future candidates should expect that the final equation will only be accepted when it involves a single constant term.
4. \bullet^{3} is only available as a consequence of using points M and P, or any other point which lies on PM, for example the midpoint $(1,0)$.

Commonly Observed Responses:

Notes:

5. \bullet^{6} is only available as a consequence of using M and a perpendicular gradient.
6. Candidates who use a gradient perpendicular to QR cannot gain \bullet^{4} but \bullet^{5} and \bullet^{6} are still available. See Candidate A.
7. Beware of candidates who use the coordinates of P and Q to arrive at $m=-1$. See Candidate B.
8. On this occasion, accept $y-4=-1(x-2)$; however, in future candidates should expect that the final equation will only be accepted when it involves a single constant term.

Question	Generic Scheme	Illustrative Scheme	Max Mark
Commonly Observed Responses:			
Candidate $\begin{aligned} & m_{Q R}=\frac{1}{4} \\ & y=-4 x+ \end{aligned}$	$\begin{gathered} \bullet 4 \times m_{\text {perp }}=-4 \quad \bullet \sqrt[5]{\nabla_{1}} \\ \bullet^{6} \sqrt{ } 1 \end{gathered}$	Candidate B - BEWARE $\begin{aligned} m_{P Q} & =\frac{2-(-4)}{-6-0} \\ & =-1 \\ y-4 & =-1(x-2) \\ y & =-x+6 \end{aligned}$ Note: • ${ }^{4} \bullet{ }^{5}$ and $\bullet{ }^{6}$ may still be avail any candidate that demonstrates tha also perpendicular to PR.	e for PQ is
(c)	- ${ }^{1}$ find the midpoint of PR -2 substitute x-coordinate into equation of L . -3 verify y-coordinate and communicate conclusion	Method 1 $(5,1)$ - $2 y=-5+6(1=-x+6)$ - ${ }^{3} y=1(x=5) \therefore$ L passes through the midpoint of PR	3
	- ${ }^{7}$ find the midpoint of PR - ${ }^{8}$ substitute x and y coordinates into the equation of L - ${ }^{9}$ verify the point satisfies the equation and communicate conclusion	Method 2 - ${ }^{7} x+y=6$ $\operatorname{sub}(5,1)$ - $85+1=6$ - ${ }^{9} \quad \therefore$ point $(5,1)$ satisfies equation.	
	-7 find the midpoint of PR - 8 find equation of PR - ${ }^{9}$ use simultaneous equations and communicate conclusion	Method 3 - ${ }^{7}(5,1)$ $\bullet^{8} y=x-4$ - $9=1, x=5 \therefore$ L passes through the midpoint of PR	

9. A relevant statement is required for \bullet^{9} to be awarded.
10. Erroneous working accompanied by a statement such as " L does not pass through the midpoint." does NOT gain • ${ }^{9}$.
11. Beware of candidates substituting $(1,5)$ instead of $(5,1)$
12. On this occasion, for Method 3, at \bullet^{8} accept $y-1=1(x-5)$; however, in future candidates should expect that the final equation will only be accepted when it involves a single constant term.

Commonly Observed Responses:

Candidate C

(5,1) mid-point $\quad \bullet^{\top} \downarrow$
$y+x=6$
$\operatorname{Sub}(5,1) \quad{ }^{8} x$
$5+1=6$
\therefore point $(5,1)$ satisfies equation. $\bullet^{9} \times$
Candidate has substituted 5 for y and 1 for x.

Notes:

1. At the \bullet^{1} stage, treat $(-2)^{2}-4(1) 3-p$ and $-2^{2}-4(1)(3-p)$ as bad form only if the candidate deals with the 'bad form' term correctly in the inequation at \bullet^{2}.
2. If candidates have the condition 'discriminant $=0$ ', then \bullet ' and $\bullet{ }^{3}$ are unavailable.
3. If candidates have the condition 'discriminant >0 ', 'discriminant ≥ 0 ' or ' discriminant ≤ 0 ' then \bullet^{2} is lost, but \bullet^{3} is available provided the discriminant has been simplified correctly at \bullet^{2}.
4. If a candidate works with an equation, then \bullet^{2} and \bullet^{3} are unavailable. However, see Candidate D.
Commonly Observed Responses:

Candidate A

$(-2)^{2}-4(1) 3-p$	$\bullet^{1} \checkmark$
$-8+4 p<0$	$\bullet^{2} \checkmark$
$p<2$	$\bullet^{3} \checkmark$

Candidate B

$(-2)^{2}-4(1)(3-p)$	$\bullet^{1} \checkmark$
$-8-4 p<0$	$\bullet^{2} x$
$p>-2$	$\bullet^{3} \boxed{ } 1$

Candidate C

$(-2)^{2}-4(1) 3-p$	$\bullet x$
$-8-p<0$	$\bullet \sqrt{ } 2$
$p>-8$	$\bullet^{3} \sqrt{ } 2$
eased	

Candidate D - Special Case

$b^{2}-4 a c<0$	
$(-2)^{2}-4(1)(3-p)=0$	$\bullet^{1} \checkmark$
$-8+4 p=0$	$\bullet^{2} \checkmark$
$p=2$	$\bullet^{3} \sqrt{ } 2$

$\bullet 2$ is awarded since the condition (first line), its application (final line) and the simplification of the discriminant all appear.

Candidate E		Candidate F		Candidate G	
$-2^{2}-4(1)(3-p)$	- ${ }^{1}$	$-2^{2}-4(1)(3-p)$	- ${ }^{1} \times$	$-2^{2}-4(1)$	
$-8+4 p<0$	- ${ }^{2}$	$-16+4 p<0$	- ${ }^{2}$	$-8+4 p=0$	
$p<2$	- ${ }^{3}$	$p<4$	$\bullet^{3} \sqrt{ } 1$	$p=2$	

Question			Generic Scheme	Illustrative Scheme	
3.	(a)	i	- ${ }^{1}$ know to substitute $x=-1$ - ${ }^{2}$ complete evaluation, interpret result and state conclusion	Method 1 - ${ }^{1} 2(-1)^{3}-9 \times(-1)^{2}+3 \times(-1)+14$ - ${ }^{2}=0 \quad \therefore(x+1)$ is a factor	2
			- ${ }^{1}$ know to use $x=-1$ in synthetic division -2 complete division, interpret result and state conclusion	Method 2 $\left.\cdot \bullet^{1}-1 \left\lvert\, \begin{array}{llll}2 & -9 & 3 & 14 \\ -2\end{array}\right.\right]$ $\bullet \bullet^{2}-1 \|$2 -9 3 14 -2 11 -14 2 -11 14 0 remainder $=0 \quad \therefore(x+1)$ is a factor	
			- ${ }^{1}$ start long division and find leading term in quotient -2 complete division, interpret result and state conclusion	Method 3 -1 $\begin{aligned} & 2 x^{2} \\ & \\ & 2 x^{3}-9 x^{2}+3 x+14\end{aligned}$ \bullet^{2} $\begin{aligned} & \begin{array}{l} (x+1) \\ \begin{array}{l} 2 x^{3}-9 x^{2}+3 x+14 \\ \hline \end{array} \\ \frac{2 x^{3}+2 x^{2}}{-11 x^{2}+3 x} \\ \frac{-11 x^{2}-11 x}{14 x+14} \\ \frac{14 x+14}{0} \end{array} \\ & \text { remainder }=0 \quad \therefore(x+1) \text { is a } \\ & \text { factor } \end{aligned}$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
Notes:			

1. Communication at \bullet^{2} must be consistent with working at that stage ie a candidate's working must arrive legitimately at 0 before \bullet^{2} can be awarded.
2. Accept any of the following for \bullet^{2} :

- ' $f(-1)=0$ so $(x+1)$ is a factor'
- 'since remainder $=0$, it is a factor'
- the 0 from any method linked to the word 'factor' by eg 'so', 'hence', ' \therefore ', ' \rightarrow ', ' \Rightarrow '

3. Do not accept any of the following for \bullet^{2} :

- double underlining the zero or boxing the zero without comment
- ' $x=1$ is a factor', ' $(x-1)$ is a factor', ' $(x-1)$ is a root', ' $x=-1$ is a root', ' $(x+1)$ is a root'
- the word 'factor' only with no link

Commonly Observed Responses:

| | ii | $\bullet 3$ state quadratic factor
 \bullet^{4}find remaining linear factors
 or substitute into quadratic
 formula $\bullet^{4} \ldots .(2 x-7)(x-2)$
 or | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |

4. On this occasion, the appearance of " $=0$ " is not required for \bullet^{5} to be awarded.
5. Be aware that the solution, $x=-1,2,3 \cdot 5$, may not appear until part (b).

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
	Candidate C $\int \ldots=-27$ cannot be negative so $=27 \bullet^{10} \times$ However, $\int \ldots=-27$ so Area $=27 \bullet^{10} \checkmark$		
Notes:			
8. \bullet^{7} is not available to candidates who omit ' $d x$ 9. Do not penalise the absence of brackets at the \bullet^{7} stage 10. Where a candidate differentiates one or more terms at \bullet^{8}, then \bullet^{8}, \bullet^{9} and \bullet^{10} are not available. 11. Candidates who substitute limits without integrating do not gain \bullet^{8}, \bullet^{9} or \bullet^{10}. 12. For candidates who make an error in (a), \bullet^{9} is available only if the lower limit is negative and the upper limit is positive. 13. Do not penalise the inclusion of ' +C '.			
Commonly Observed Responses:			

Question	Generic Scheme	Illustrative Scheme	Max Mark
Notes:			

3. Accept $\sqrt{324}$ at \bullet^{4} and \bullet^{5}.
4. \bullet^{5} is not available to candidates who simply state the formula $\cos \theta=\frac{\mathrm{a} \cdot \mathrm{b}}{|\mathrm{a}||\mathrm{b}|}$.

However $\cos \theta=\frac{-80}{18 \times 18}$ is acceptable. Similarly for Method 2.
5. Accept correct answers rounded to 104° or $1 \cdot 8$ radians.
6. Due to $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ having equal magnitude, \bullet^{4} is not available unless both $|\overrightarrow{\mathrm{AB}}|$ and $|\overrightarrow{\mathrm{AC}}|$ have been stated.
7. \bullet is only available as a result of using a valid strategy.
8. \bullet^{6} is only available for a single angle.
9. For a correct answer with no working award $0 / 4$.

Commonly Observed Responses:

Candidate A

$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{AC}}=-16+128-32=80$

- ${ }^{3} x$
$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AC}}|=18$
- $\sqrt{4}$
$\cos \theta=\frac{80}{18 \times 18}$
- $\sqrt{\sqrt{ } 1}$
- ${ }^{6} x$
$75 \cdot 7$ or $1 \cdot 32$ radians

Question		Generic Scheme	Illustrative Scheme	
6.	(a)	${ }^{1}{ }^{1}$ state the number	- ${ }^{1} 200$	1
Notes:				
Commonly Observed Responses:				
	(b)	\bullet^{2} interpret context and form equation - ${ }^{3}$ knowing to use logarithms appropriately. - ${ }^{4}$ simplify - ${ }^{5}$ evaluate t	- $22=e^{0.107 t}$ - ${ }^{3} \ln 2=\ln \left(e^{0.107 t}\right)$ - ${ }^{4} \ln 2=0 \cdot 107 t$ - $t=6.478 \ldots$	4
Notes:				
1. Accept $400=200 e^{0.107 t}$ or equivalent for \bullet^{2} 2. Any base may be used at the \bullet^{3} stage. 3. \bullet^{3} may be assumed by \bullet^{4}. 4. Accept $t=6 \cdot 5$. 5. At \bullet^{5} ignore incorrect units. However, see Candidates B and C. 6. The calculation at \bullet must involve the evaluation of a logarithm within a valid strategy for ${ }^{5}$ to be awarded. 7. Candidates who take an iterative approach to arrive at $t=6 \cdot 5$ gain \bullet^{2} only. However, if, in the iterations, $B(t)$ is evaluated for $t=6.45$ and $t=6.55$ then award $4 / 4$.				
Commonly Observed Responses:				
Candidate A$\begin{aligned} & 2=e^{0.107 t} \\ & \log _{10} 2=\log _{10}\left(e^{0.107 t}\right) \\ & \log _{10} 2=0 \cdot 107 t \log _{10} e \\ & t=6 \cdot 478 \ldots \end{aligned}$			Candidate B $t=6 \cdot 48$ hours $t=6$ hours 48 minutes	
Candidate C$\begin{array}{ll} \ln (2)=0 \cdot 107 t & \bullet^{4} \checkmark \\ t=6 \text { hours } 48 \text { minutes } & \bullet^{5} x \end{array}$			$\begin{array}{\|lc\|} \hline \text { Candidate D } & \\ 400=200 e^{0.107 t} & \bullet^{2} \checkmark \\ e^{0.107 t}=2 & \bullet^{3 \wedge} \\ t=6.48 \text { hours } & \boxed{\checkmark} \cdot \bullet^{4} \checkmark_{1} \bullet^{5} \end{array}$	

Question		Generic Scheme	Illustrative Scheme	
7.	(a)	- ${ }^{1}$ expression for length in terms of x and y $\bullet 2$ obtain an expression for y - ${ }^{3}$ demonstrate result	- $19 x+8 y$ - $2 y=\frac{108}{6 x}$ - ${ }^{3} \mathrm{~L}(x)=9 x+8\left(\frac{108}{6 x}\right)$ leading to $\mathrm{L}(x)=9 x+\frac{144}{x}$	3

1. The substitution for y at \bullet^{3} must be clearly shown for \bullet^{3} to be available.
2. For candidates who omit some, or all, of the internal fencing, only \bullet^{2} is available.

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
Notes:			
3. For candidates who integrate at the \bullet^{4} stage $\bullet^{5}, \bullet^{6}, \bullet^{7}$, ${ }^{8}$ and \bullet^{9} are unavailable. 4. \bullet^{7}, \bullet^{8} and \bullet^{9} are only available for working with a derivative which contains a term with an index ≤-2. 5. At \bullet^{5} and \bullet^{6} accept $-144 x^{-2}$. 6. $\sqrt{\frac{144}{9}}$ must be simplified at the \bullet^{7}, \bullet^{8} or \bullet^{9} stage for \bullet^{7} to be awarded. 7. $\bullet 9$ is not available to candidates who consider a value ≤ 0 in the neighbourhood of 4 . 8. A candidate's table of signs must be valid and legitimately lead to a minimum for \bullet^{9} to be awarded. 9. $\bullet{ }^{9}$ is not available to candidates who state the minimum exists at a negative value of x.			
Commonly Observed Responses:			

Table of signs for a derivative
Accept

x	-4^{-}	-4	-4^{+}		x	4^{-}	4	4^{+}
$L^{\prime}(x)$ Shape or Slope	+	0	-		$L^{\prime}(x)$	-	0	+
Shape or Slope	\searrow	-						

x	\rightarrow	-4	\rightarrow
$L^{\prime}(x)$	+	0	-
Shape or Slope		-	

x	\rightarrow	4	\rightarrow
$L^{\prime}(x)$	-	0	+
Shape or Slope			

Here, for exemplification, tables of signs considering both roots separately have been displayed. However, in this question, it was only expected that candidates would consider the positive root for \bullet^{8}. Do not penalise the consideration of the neqative root.

Arrows are taken to mean "in the neighbourhood of"

x	a	-4	b	c	4	d
$L^{\prime}(x)$ Shape or Slope	+	0	-	-	0	+
		-				

Where: $\quad a<-4,-4<b<0,0<c<4, d>4$

Do not Accept

x	a	-4	b	4	c
$L^{\prime}(x)$	+	0	-	0	+
Shape or Slope		-			

Since the function is discontinuous ' $-4<b<4$ ' is not acceptable.

x	\rightarrow	-4	\rightarrow	4	\rightarrow
$L^{\prime}(x)$	+	0	-	0	+
Shape or Slope		-			

Since the function is discontinuous ' $-4 \rightarrow 4$ ' is not acceptable.

General Comments

- For this question do not penalise the omission of ' x ' or the word 'shape'/ 'slope'.
- Stating values of $L^{\prime}(x)$ in the table is an acceptable alternative to writing ' + ' or ' - ' signs.
- Acceptable alternatives for $L^{\prime}(x)$ are: $L^{\prime}, \frac{d L}{d x}$ or $9-\frac{144}{x^{2}}$. DO NOT accept $\frac{d y}{d x}$ or $f^{\prime}(x)$.

Question		Generic Scheme	Illustrative Scheme	Max
8.	(a)	- ${ }^{1}$ use compound angle formula -2 compare coefficients - ${ }^{3}$ process for k -4 process for a and express in required form	- ${ }^{1} k \cos x \cos a-k \sin x \sin a$ stated explicitly $\bullet^{2} k \cos a=5, k \sin a=2$ stated explicitly -3 $k=\sqrt{29}$ - ${ }^{4} \sqrt{29} \cos (x+0 \cdot 38)$	4

1. Treat $k \cos x \cos a-\sin x \sin a$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. $\sqrt{29} \cos x \cos a-\sqrt{29} \sin x \sin a$ or $\sqrt{29}(\cos x \cos a-\sin x \sin a)$ is acceptable for \bullet^{1} and \bullet^{3}.
3. Accept $k \cos a=5,-k \sin a=-2$ for \bullet^{2}.
4. \bullet^{2} is not available for $k \cos x=5, k \sin x=2$, however, $\bullet{ }^{4}$ is still available.
5. \bullet^{3} is only available for a single value of $k, k>0$.
6. Candidates who work in degrees and do not convert to radian measure do not gain \bullet^{4}.
7. Candidates may use any form of the wave equation for \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted in the form $k \cos (x+a)$.
8. Accept any answer for a that rounds to $0 \cdot 38$.
9. Evidence for \bullet^{4} may not appear until part (b).

Commonly Observed Responses:

Responses with missing information in working:

Candidate A $\bullet \bullet^{1} \wedge$ $\sqrt{29} \cos a=5$ $\bullet^{2} \checkmark$ $\sqrt{29} \sin a=2$ $\bullet^{3} \checkmark$ $\tan a=\frac{2}{5}, a=0 \cdot 3805 \ldots$ $\sqrt{29} \cos (x+0 \cdot 38)$ $\bullet^{4} \checkmark$	Candidate B $k \cos x \cos a-$ $\cos a=5$ $\sin a=2$ $\begin{aligned} & \tan a=\frac{2}{5} \\ & a=0 \cdot 38 \\ & \sqrt{29} \cos (x+C \end{aligned}$	Candidate B $\begin{array}{ll} k \cos x \cos a-k \sin x \sin a & \bullet^{1} \checkmark \\ \cos a=5 & \\ \sin a=2 & \bullet^{2} x \\ & \bullet^{3} \checkmark \end{array}$
Responses with the correct expansion of $k \cos (x+a)$ but errors for either \bullet^{2} or \bullet^{4}.		
Candidate C $\begin{aligned} & k \cos a=5, k \sin a=2 \bullet^{2} \checkmark \\ & \tan a=\frac{5}{2} \\ & a=1 \cdot 19 \end{aligned}$	Candidate D $\begin{aligned} & k \cos a=2, k \sin a=5 \bullet^{2} \times \\ & \tan a=\frac{5}{2}, a=1 \cdot 19 \\ & \sqrt{29} \cos (x+1 \cdot 19) \quad \bullet \sqrt{ } 1 \end{aligned}$	Candidate E $\begin{aligned} & k \cos a=5, k \sin a=-2 \bullet^{2} \times \\ & \tan a=\frac{-2}{5} \\ & \sqrt{29} \cos (x+5 \cdot 90) \quad \bullet \sqrt{ } 1 \end{aligned}$

1. For candidates who do not attempt to write $f^{\prime}(x)$ as the sum of two integrable terms, award $0 / 4$.
2. \bullet^{2} and \bullet^{3} are only available for integrating terms involving fractional indices.
3. The term integrated at \bullet^{3} must have an index of opposite sign to that of the term integrated at \bullet^{2}.
4. For candidates who differentiate one term, only \bullet^{1} and \bullet^{2} are available.
5. For candidates who differentiate both terms, only \bullet^{1} is available.
6. For \bullet^{4}. accept ' $f(x)=\frac{4}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+c, c=-2^{\prime}$
7. Candidates must simplify coefficients in their final line of working for the last mark available for that line of working to be awarded.

Commonly Observed Responses:

Candidate A

$$
\begin{array}{ll}
f^{\prime}(x)=2 x+x^{-\frac{1}{2}} & \bullet^{1} x \\
x^{2}+2 x^{\frac{1}{2}}+c & \bullet^{2} \checkmark \bullet^{3} \sqrt{ } 2 \\
f(x)=x^{2}+2 x^{\frac{1}{2}}-47 & \bullet \sqrt{ } 1
\end{array}
$$

Candidate C

$$
\begin{array}{ll}
f^{\prime}(x)=2 x^{\frac{1}{2}}+1 & \bullet^{1} x \\
\frac{4}{3} x^{\frac{3}{2}}+x+c & \bullet^{2} \checkmark \bullet^{3} \sqrt{ } 2 \\
f(x)=\frac{4}{3} x^{\frac{3}{2}}+x-5 & \bullet \sqrt{\sqrt{ }}
\end{array}
$$

Candidate B

$$
\begin{array}{ll}
f^{\prime}(x)=2 x+x^{-\frac{1}{2}} & \bullet^{1} x \\
x^{2}+2 x^{\frac{1}{2}} & \bullet^{2} \vee \bullet^{3} x \\
f(x)=x^{2}+2 x^{\frac{1}{2}} & \bullet \bullet^{4}
\end{array}
$$

Candidate D

$f^{\prime}(x)=\frac{2 x+1}{x^{\frac{1}{2}}}$
$\frac{x^{2}+x}{2 x^{\frac{3}{2}}}+c$

$$
\bullet^{2} \times \bullet^{3} \times \bullet^{4} x
$$ See Note 1

$f(x)=\frac{x^{2}+x}{2 x^{\frac{3}{2}}}+\frac{115}{3}$

Question		Generic Scheme	Illustrative Scheme	Max Mark
11.	(a)	- ${ }^{1}$ substitute for $\sin 2 x$ and $\tan x$ - ${ }^{2}$ simplify ${ }^{3}{ }^{3}$ use an appropriate substitution -4 simplify and communicate result	${ }^{1}(2 \sin x \cos x) \times \frac{\sin x}{\cos x}$ - $2 \sin ^{2} x$ - ${ }^{3} 2\left(1-\cos ^{2} x\right)$ or $1-\left(1-2 \sin ^{2} x\right)$ - ${ }^{4} 1-\cos 2 x=1-\cos 2 x$ or $2 \sin ^{2} x=2 \sin ^{2} x$ \therefore Identity shown	4

Notes:

1. \bullet^{1} is not available to candidates who simply quote $\sin 2 x=2 \sin x \cos x$ and $\tan x=\frac{\sin x}{\cos x}$ without substituting into the identity.
2. $\bullet{ }^{4}$ is not available to candidates who work throughout with A in place of x.
3. \bullet^{3} is not available to candidates who simply quote $\cos 2 x=1-2 \sin ^{2} x$ without substituting into the identity.
4. On this occasion, at \bullet^{4} do not penalise the omission of 'LHS =RHS' or a similar statement.

Commonly Observed Responses:

Candidate A

$\sin 2 x \tan x=1-\cos 2 x$
$\begin{array}{ll}2 \sin x \cos x \times \frac{\sin x}{\cos x}=1-\cos 2 x & \bullet \bullet^{1} \checkmark \\ 2 \sin ^{2} x=1-\cos 2 x & \bullet^{2} \checkmark \\ 2 \sin ^{2} x-1=-\cos 2 x & \bullet^{3} \times \bullet^{4} x\end{array}$
$-\left(1-2 \sin ^{2} x\right)=-\cos 2 x$
$-\cos 2 x=-\cos 2 x$
In proving the identity, candidates must work with both sides independently. ie in each line of working the LHS must be equivalent to the left hand side of the line above.

Candidate B

$\sin 2 x \tan x=1-\cos 2 x$

$$
\begin{aligned}
& \sin 2 x \tan x=1-\left(1-2 \sin ^{2} x\right) \\
& \sin 2 x \tan x=2 \sin ^{2} x \\
& \tan x=\frac{2 \sin ^{2} x}{2 \sin x \cos x}
\end{aligned}
$$

$$
\tan x=\tan x
$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
(b)	- ${ }^{5}$ link to (a) and substitute - ${ }^{6}$ differentiate	- $\quad f(x)=1-\cos 2 x$ or $f(x)=2 \sin ^{2} x$ - $f^{\prime}(x)=2 \sin 2 x$ or $f^{\prime}(x)=4 \sin x \cos x$	2
Notes:			
Commonly Observed Responses:			

[END OF MARKING INSTRUCTIONS]

