
Raspberry Pi For Beginners - Final Project 
 
Time to start the final project of this course, and practice on everything you’ve seen until now! 
 
First, make sure you have watched the video showing the final result of the project. 
 
Here are some tips to help you get started with the project. 
 
So, you are going to create 2 different Python programs. 
 
The first Python program will: 

- Monitor the PIR sensor. When some movement is detected, make sure the movement is 
detected for 3 consecutive seconds. To do that you can create an infinite while loop. 
You’ll have to keep the last PIR sensor state into a variable and compare it with the 
current state. As an additional visual indicator you can also power on an LED when the 
PIR sensor detects some movement. 

- At this point, take a photo and save it to the /home/pi/camera folder. Create a function 
“take_photo()” to take a photo and save it. The file name starts with “img_” and then has 
a timestamp to make it unique. To get a timestamp you can call the function 
“time.time()”. Then call this function in the appropriate place in your main while loop. 

- Then, add the name of the photo (complete path + file name) into a log file named 
photo_logs.txt (use the append mode with “a” when opening the file). During the setup of 
the program, check if this file exists and remove it so it doesn’t contain data from 
previous program runs. 

- Then, send an email  to yourself with the photo as an attachment. Setup email (with 
Yagmail) in the setup section of the program. Create a “send_email_with_photo” function 
to send the photo which was just taken by email.  

- Also, as an additional feature, make sure you don’t take more than one photo (+ write to 
log file and send email) every 60 seconds. For that you can also keep a 
“last_time_photo_taken” variable with the time. 

 
The second Python program will: 

- Run a Flask application with a default route “/” just returning “Hello” 
- Add another route “/check-movement”  
- When the function for this URL is called, read the log file (photo_logs.txt created by the 

other Python program, using the read mode “r”). Count the number of lines in the file, 
and get the last photo path (last line). You can use a “for line in f” loop to go through all 
the lines in the file. 

- Then, compare the line count with the previous line count (= the last time you called this 
URL). For that you’ll need to use a global variable to keep track of the count. 

- Return a string telling how many new photos have been taken since the last time the 
URL was called, + give the path to the photo file. 



- And finally, use an <img src=”photo_path”> tag inside the string you return to print the 
image in the browser. To make things work you’ll also have to change the line “app = 
Flask(__name__)” to become “app = Flask(__name__, 
static_url_path=CAMERA_FOLDER_PATH, static_folder=CAMERA_FOLDER_PATH)”, 
where CAMERA_FOLDER_PATH is "/home/pi/camera". 

 
Here’s now a quick overview of what I’m going to do in each step of the solution. If you are 
completely stuck, you can always watch the next solution step, and then work by yourself again 
to complete the next step. 
 
Steps 1-4 are for the 1st Python program, Steps 5-6 for the 2nd Python program. 
 

- Step1: Setup the code for the PIR sensor. Detect when there is movement. If there is 
movement, check that the movement has been detected for 3 full consecutive seconds. 
If yes, check that we didn’t take a photo in the last 60 seconds. If yes, then print a 
message to say we are going to take a photo and send it by email. Also, power on one 
LED when the PIR sensor detects movement. 

- Step 2: Setup the camera before the main while loop. Create the function to take a 
photo and save it into a file. Call that function from the main while loop. 

- Step 3: In the setup section of the program, remove the log file if it exists. Create the 
function to save new photo paths to the log file, and call that function just after taking a 
photo. 

- Step 4: Setup email with Yagmail. Create the function to send an email with an 
attachment. Call that function just after updating the log file. 

- Step 5: Create the Flask application with default route and “/check-movement” route. 
Read the log file and return the number of new photos since the last check. 

- Step 6: Display the file name of the latest photo, and the photo itself, when calling the 
URL “/check-movement” 

- Step 7 (Bonus): Start the 2 Python programs on boot with systemd, so you don’t need 
to manually get access to your Pi and start the programs from the terminal. 

 
All right, that’s enough tips for now! Time for you to start working on this project :) 
 
Again, if you need any help, feel free to: 

- Re-watch lessons from the previous sections. 
- Search on Google. 
- Just take a break and come back later, this is often a good thing to do. 
- And if completely stuck, watch the next solution step. 

 
The solution will help you in 3 ways: first, if you are really stuck in one part, don’t waste 10 hours 
being stuck. After some point, it’s best to watch the solution and try to understand it. Second, 
after you finish the project, you can see how someone else is thinking about the same problem. 
And third, I will try to give you a solution with clean code and best practices, so you can use 
those tips to make your programs cleaner and more readable in the future. 


