Elixir Lists
Extended Cut

Lists - Review

Lists are collections of values of any type

List values are not stored in contiguous memory
Each list item points to each subsequent element
Always put new list items to the front (head) of a list

Elixir Lists

Turtles all the way down...sorta

e Understand a single item list — understand lists
e Elixir lists are composed of lists
o ie: list of lists

e Empty list is baseline for all lists — []
o No head, no tail, just an empty list

e Remember: | is “cons” or the cons cell

Elixir Lists

Not a “con job” - this is a job for cons

e Cons cells harken back to the Lisp programming language

e Basic building block of FP lists; each list node is a cons cell

e Cons cell made of two parts: car (or first) and cdr (or rest)
O car points to value node is “holding”

O cdr (pronounced “could-er”) points to next cons cell in list or empty list - []

Con cells visualized

Ist2

CAR
Cell

CDR
Cell

Ist1

Y

Ist1

—[]

Elixir Lists

Y

— []

Elixir Lists

Give that list an item!

e Consider the nature of cons-based lists
e Prepend always preferred over append
e Moar practice ... GO!

my list =
my list =

[]
[11[]]
my list = [2]|[1]
my list = [3]|[2]

1111 =

|
|
|
(31021111171

Elixir Lists

Your Turn!
e Practice building lists in IEx
e Build new lists using cons
e Consider: why is prepending ok but not appending?
e Share your answer or thoughts in our online discussion.

e Enjoy your new understanding, it will come in handy frequently.

