
Elixir Lists
Extended Cut

Lists - Review

● Lists are collections of values of any type
● List values are not stored in contiguous memory
● Each list item points to each subsequent element
● Always put new list items to the front (head) of a list

Turtles all the way down...sorta

● Understand a single item list → understand lists
● Elixir lists are composed of lists

○ ie: list of lists

● Empty list is baseline for all lists → []
○ No head, no tail, just an empty list

● Remember: | is “cons” or the cons cell

Elixir Lists

Not a “con job” - this is a job for cons

● Cons cells harken back to the Lisp programming language
● Basic building block of FP lists; each list node is a cons cell
● Cons cell made of two parts: car (or first) and cdr (or rest)

○ car points to value node is “holding”

○ cdr (pronounced “could-er”) points to next cons cell in list or empty list - []

Elixir Lists

Con cells visualized
Elixir Lists

or

Give that list an item!

● Consider the nature of cons-based lists
● Prepend always preferred over append
● Moar practice . . . GO!

 my_list = []
 my_list = [1|[]]
 my_list = [2|[1|[]]]
 my_list = [3|[2|[1|[]]]]
 [3|[2|[1|[]]]] === [3,2,1] # true

Elixir Lists

Your Turn!

● Practice building lists in IEx
● Build new lists using cons
● Consider: why is prepending ok but not appending?
● Share your answer or thoughts in our online discussion.

● Enjoy your new understanding, it will come in handy frequently.

Elixir Lists

