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Beyond Just Text: Semantic Emoji Similarity Modeling to Support
Expressive Communication

HENNING POHL, CHRISTIAN DOMIN, and MICHAEL ROHS, University of Hannover

Emoji, a set of pictographic Unicode characters, have seen strong uptake over the last couple of years. All
common mobile platforms and many desktop systems now support emoji entry, and users have embraced
their use. Yet, we currently know very little about what makes for good emoji entry. While soft keyboards for
text entry are well optimized, based on language and touch models, no such information exists to guide the
design of emoji keyboards. In this article, we investigate of the problem of emoji entry, starting with a study
of the current state of the emoji keyboard implementation in Android. To enable moving forward to novel
emoji keyboard designs, we then explore a model for emoji similarity that is able to inform such designs.
This semantic model is based on data from 21 million collected tweets containing emoji. We compare this
model against a solely description-based model of emoji in a crowdsourced study. Our model shows good
performance in capturing detailed relationships between emoji.
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1. INTRODUCTION

For more and more users, the mobile phone is their primary, or even only, computing
device. On Facebook, e.g., mobile-only users make up a growing percentage of users, cur-
rently already accounting for more than 50% of their monthly active users.1 Facebook
is but one of many messaging and social networking applications, that, overall, dom-
inate the rankings for most used applications on mobile devices [Church et al. 2015].
As such, a critical aspect of mobile systems is how they can support the expression and
creativity of their users, enabling them to connect with those dear to them.

Text input is a dominant aspect of this expression and has hence been a research
focus for many years. For example, researchers have designed a large number of input
methods to optimize text entry speeds (for a comparison, see, e.g., Kristensson and
Vertanen [2014]). But text input is not necessarily restricted to actual text. Instead
of using characters to compose words, they can also be repurposed in emoticons, such

1http://venturebeat.com/2016/01/27/over-half-of-facebook-users-access-the-service-only-on-mobile/.
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Fig. 1. Emoji were first specified in version 6.0 of the Unicode standard (with some characters retroactively
promoted to emoji). Since then their number has continuously grown. The total given here is a conservative
number as it does not include every possible combination of compound emoji. For a list of included emoji per
version, see http://emojipedia.org/unicode-6.0http://emojipedia.org/unicode-[VERSION].

as :), or <3. Here, characters are put together in a way that disposes of their actual
meaning and makes use of their look to assemble larger shapes. Hence, the colon turns
into a set of eyes and the parenthesis becomes a mouth.

In the Western world, emoticons traditionally mostly use a small number of punctu-
ation characters. But non-Western writing systems offer many characters that enable
more complex and expressive emoticons, such as (shrugging emoticon).
While this potentially allows users to assemble intricate messages, this is not straight-
forward on current mobile phone keyboards that do not generally provide access to
arbitrary Unicode characters. Emoticons have filled a need for a more casual [Pohl
and Murray-Smith 2013] and playful form of communication (e.g., adding a ;) to a
text), but can sometimes be hard to use, especially on mobiles. As recently shown by
Janssen et al. [2014] emoticon use in chats does indeed increase perceived intimacy be-
tween chat participants. This further underlines how there is inherent value in adding
emotional cues to ones textual communication.

This desire for expression beyond just text is likely what has also been driving
adoption and use of emoji.2 Where emoticons assemble “pictures” from characters,
with emoji, each character is itself pictographic. Instead of sending :D, users can then
send . While still just text, this character is usually rendered as a colorful visual icon.
Emoji not just allow for the expression of many emotional states (e.g., , , or ) but
also enable users to decorate messages (e.g., , , or ), or replace words with visual
stand-ins (e.g., , , or ). Using a visual icon instead of a word enables users to
introduce ambiguity and playfulness where they see fit. Hence, this means that emoji
meaning is fluid and subject to contextual and cultural (as shown for pictograms by Cho
and Ishida [2011]) interpretation. It is this malleability that makes emoji attractive
from an expressive point of view, but also makes it hard to organize emoji into a set
keyboard layout.

Emoji have been growing both in popularity and number over the recent years. As
shown in Figure 1, new emoji continue to be introduced.3 Current mobile devices all
make a large number of these characters available for users to enter with dedicated
emoji keyboards. Yet, while the number of emoji has been growing, those keyboards
have stuck with one input mechanism: selecting emoji from large, scrollable lists.
However, as we will show in this article, this approach is slow and prone to user

2A set of pictographic Unicode characters: http://www.unicode.org/emoji.
3For a full list, see http://www.unicode.org/emoji/charts/full-emoji-list.html.
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confusion. But while data and methods are in place to optimize non-emoji keyboards,
there is currently nothing available to do the same for emoji entry. In this article, we
investigate emoji similarity modeling as a method to support the design of future emoji
input methods.

Being able to compute the level of similarity between two emoji allows clustering and
organization of them. In contrast to keyboards for Latin scripts, where it is important
to optimize for sequences of keys, emoji keyboards need to be optimized for search.
Being able to place related emoji close to each other is then a way to aid the user in
said search. For example, when searching for , it is sensible to expect this emoji to be
close to others like . On the other hand, if one sees , one could expect hamburgers to
not be nearby. This structuring of the emoji presentation is particularly necessary as
the large number of emoji makes it unfeasible to memorize all emoji locations. Instead,
a more realistic approach is guided search, which requires the capability to organize
or subset this search space—something we contribute in this article.

In the remainder of this article, we first take a closer look at the state of the art
by presenting an introduction to emoji, a quantitative exploration of emoji use (based
on a large number of scraped tweets with emoji from Twitter), and an evaluation of
the current Google emoji keyboard. The results from the study of the Google emoji
keyboard show that emoji entry can be slow, but more importantly that search is a
critical problem of emoji entry. This finding motivates us to focus on the aspect of emoji
layout to support users in this search. To guide emoji arrangement, we then build a
model for emoji similarity. Our model makes use of semantic information, gathered
from the tweets we collected earlier. We compare this model to a purely description-
based model in a crowdsourcing study. Our results show significant correlation between
human raters and both models. Instead of manually designing emoji input methods,
future designs can thus also be informed by such models. By making it easier and more
convenient to enter emoji, input methods would directly support users’ ability for more
personal and playful expression.

2. AN INTRO TO EMOJI

Though in some instances they supplant words entirely, they also open up new vistas
of exchange and creativity. They are in a sense, the words that got away, and then
returned. As smiles and frowns and jetliners. [Lebduska 2015]

In the late 90s, the first emoji were created in Japan for NTT DoCoMo. Emoji allowed
sending small pictograms to other phones by only transmitting two bytes—the corre-
sponding character code. The Japanese origin of emoji still manifests itself in emoji
such as (Japanese post office), (outline of Japan), (Koinobori wind socks—
flown during Children’s Day celebrations in Japan), or (Kadomatsu decoration used
for Japanese New Year). Other Japanese carriers followed suit and several partially
overlapping sets of characters were in use for a while. However, this situation posed
problems when designing for interoperability beyond Japan, e.g., with email systems.
To resolve this situation, the Unicode consortium in 2010 standardized 722 emoji in
version 6.0 of the Unicode standard, while also promoting many earlier characters4

to the status of emoji as well. In addition to symbols from the Japanese carriers, this
included characters from Zapf Dingbats (e.g., or ), Microsoft’s Wingdings font (e.g.,

or ), and Japanese TV symbols (Association of Radio Industries and Businesses
set, e.g., or ). In fact, many symbols were part of multiple original sources and
were merged to one Unicode code point. With Unicode standardization, interoperability

4For an overview of emoji sources see http://www.unicode.org/emoji/charts/emoji-versions-sources.html.
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between systems was secured—a necessary prerequisite for the rise of emoji to broad
popularity. Unicode allows proposals for additional emoji and hence the set has grown
over the years. For example, Unicode version 9.0 is bringing emoji such as (Selfie),
(Duck), and (Canoe).

2.1. Uptake In Emoji Usage

Data on emoji uptake are available from Instagram and Twitter. Instagram saw a
sharp rise in emoji usage from 0% of texts using emoji to 20% of them within less than
half a year of the introduction of the iOS emoji keyboard.5 Currently, about 40% of
Instagram messages contain emoji, and this number is even higher in some markets
(e.g., more than 60% in Finland). Twitter has reported data on the usage of emoji in TV-
related tweets between April 2014 (when emoji were introduced on Twitter) and July
2015.6 In that timeframe, the share of TV-related tweets containing emoji grew from
9.8% to 14%. This percentage highly varies by genre and, e.g., up to 22% of tweets on
music programming contain emoji. Twitter also found that younger and female users
are more likely to include emoji in their tweets—hinting at why tweets on sport talk
shows are least likely to include emoji (only 4% do). Of course, uptake of emoji in social
media and messaging is not representative of overall frequency of emoji in other forms
of writing. Likely, much fewer emoji make their way into essays, annual reports, or
news articles. Yet, personal communication is an important area and, as shown above,
supporting emoji use here is an aspect of growing importance.

Growth of emoji popularity also shows in how much attention they receive. For ex-
ample, Oxford Dictionaries prominently made an emoji, “ ,” their Oxford Dictionaries
Word of the Year 2015.7 While emoji allow users more visual expression in their messag-
ing, that same quality is also attracting advertisers. One mobile marketing company,
e.g., saw an 777% increase of emoji usage in campaigns running on their platform.8

2.2. The Nature of Emoji

What makes emoji special as a means of adding visuals to texts is that they are text.
Instead of sending images of smileys or airplanes, characters representing them are
transmitted (they form a logographic writing system). Hence, in contrast to images,
they can be used in places such as URLs, email subjects, or usernames. The Unicode
standardization only defines a mapping between a character code and an abstract
emoji description. It is up to individual platforms to provide fonts that render the
individual emoji as a graphical representation (note that some emoji, such as , can also
optionally be rendered as text: !!). Hence, emoji can look different on different systems
and even between versions of the same system. This can be problematic where graphical
representations strongly differ, a problem just recently investigated by Miller et al.
[2016]. Table I shows several such examples wherein emoji vary so much in appearance
that there could be misunderstandings between users of different platforms.

But the fact that they are text also allowed them to spread at the speed that they
did. After all, emoji are not the first instance of visually augmented texts. Instant
messengers like Yahoo! Messenger have for a long time supported inline smileys. Sim-
ilarly, common forum software, like phpBB, have their own smileys. With no standard
encoding for those smileys though, there was no interoperability. Forwarding a forum
post via instant message would mean losing the embedded smileys. Emoji, however,

5http://instagram-engineering.tumblr.com/post/117889701472/emojineering-part-1-machine-learning-for-
emoji.
6https://blog.twitter.com/2015/emoji-usage-in-tv-conversation.
7http://blog.oxforddictionaries.com/2015/11/word-of-the-year-2015-emoji/.
8http://venturebeat.com/2016/03/24/marketers-might-over-doing-it-with-all-of-the-emojis/.
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Table I. While Most Emoji Look Similar on all Major Platforms, They Each Have Their Own Unique Style
Some emoji, as shown here, differ considerably between platforms which could lead to unintended interpretations
in cross-platform messaging. For example, some vendors chose to represent the nail polish emoji not as the object
but instead as the action of applying it. This could introduce misunderstandings in messages such as “Went to
get some .” More severe inconsistencies are, e.g., exhibited by some vendors representing alien monsters with
the classic video game sprite , or showing two females dancing where the standard calls for one “woman
with bunny ears.” But vendors also use the chance to leave their personal mark. The mobile phone emoji, for
example, shows phone designs by the respective companies. Note that we show two versions of the microsoft
emoji to highlight changes even within one vendor’s designs.

now allow copying text with smileys freely between systems. This does not necessarily
mean the emoji will show up on each system, though (users browsing the web on an
older phone without emoji support would, e.g., just see empty boxes).

The textual nature of emoji, in a sense, allows them to “sneak into” applications. If an
application renders text through an API like Microsoft’s DirectWrite,9 emoji characters
are automatically rendered correctly (if supported on the specific platform). Thus,
while supporting custom smileys adds additional work, applications that can handle
text essentially get emoji capabilities for free. In this case, no app-specific input method
needs to be designed, but emoji entry is done via the system’s keyboard.

2.3. A Combinatorial Explosion of Emoji

While many emoji are defined as a 1 : 1 character code to pictogram relations, others
break this pattern. For example, the Unicode standard specifies flags emoji, which are
not each encoded as distinct characters. Instead, regional indicator letters are combined
to spell out country codes that are then supposed to be rendered as flags: .
This approach makes the standard more flexible, as no list of flags needs to be updated
with changing geopolitics. Which codes define a flag emoji is delegated to ISO 3166,
specifically the two-letter codes defined in ISO 3166-1 alpha-2. There are currently 249
officially assigned country codes, yet support varies a lot between devices. While , ,

, , , , , , , and are commonly supported, some systems show no flags at
all (e.g., Windows Phones), while others support many more (e.g., current versions of
iOS). This includes non-country flags (such as ) and proposed extensions for regional
flags10 (such as a flag for Wales: ). The large number of possible flags is bound to
result in long blocks of visually similar emoji on keyboards—an aspect that is already
an issue on some platforms.

9https://msdn.microsoft.com/en-us/library/windows/desktop/hh802480(v=vs.85).aspx.
10http://www.unicode.org/review/pri299/pri299-additional-flags-background.html.
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Fig. 2. Since Unicode Version 8.0, the standard specifies that emoji showing people should have a generic
color (such as yellow, blue, or gray). Those emoji can then be combined with one of five skin tone modifiers to
produce a more diverse set of emoji.

Fig. 3. To accommodate the large number of skin tone variant emoji, emoji keyboards have changed to
pop-up selection menus for corresponding emoji when touched for a short while. Users can then pick a skin
color from the overlayed menu.

Fig. 4. Some emoji can be combined into groupings. Joining multiple person emoji with (U+200D: zero
width joiner), e.g., results in family emoji. The same approach is used to generate couple and kissing emoji
for all gender pairings. Here, a (U+FE0F: variation selector-16) character is used to force emoji style for
the heart character (hearts can also be rendered as monochrome text). All this can potentially be combined
with skin tone modifiers. This mechanism has also been exploited to create non-standard emoji. The last
row, e.g., shows an emoji Apple included for the “I Am A Witness” anti-bullying campaign (see http://www.
wired.com/2015/10/i-am-a-witness-emoji-ios-9/).

In an approach similar to regional indicator letters, Unicode version 8.0 brought
the introduction of skin tone modifiers. While the emoji standard did initially not
specify skin color, most platforms rendered people emoji (such as ) with white skin
color. Skin tone modifiers now allow (depending on platform availability) changing the
appearance of emoji to one of five levels (Type I and Type II are combined in one level) on
the Fitzpatrick [1988] scale (see Figure 2). Along with this change, all major platforms
have moved to neutral color (e.g., yellow) people emoji when no modifier is used (such
as ). This inclusion of skin tone brought a large increase in available emoji. However,
instead of including those emoji directly in the overall emoji list (as with flags), all
current platforms chose to make skin tone selection a separate interaction (hold down
on emoji and select variant from popup, see Figure 3). While this somewhat limits
growth of the emoji list, it also makes skin tone variants less discoverable and take
more time to access.

The standard also allows assembling couple and family emoji to, e.g., allow sending
an emoji of a gay couple with two daughters (see Figure 4). This can be combined

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.
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with skin tone modifiers to represent interracial families (the Windows 10 Anniversary
Update supports more than 52,000 such combinations11). While Unicode thus allows
to specify arbitrarily complex family groupings, there is no guarantee these characters
would be rendered as one emoji. Those changes to the standard brought some diversity
to emoji, but also further increased the number of emoji. The general approach—to
define emoji as a combination of several other characters—however is recurring in the
standard (e.g., is a combination of the code points for 5 and that of a box). While
this allows for many combinations, it also means the number of emoji to choose from
is potentially very large.

2.4. Common Usage of Emoji

As we have seen, emoji use in textual communication is growing. Yet, at the same
time, the number of emoji itself is expanding rapidly through inclusion of additional
symbols, and also through the introduction of emoji modifiers. What is available to
users thus is currently a moving target. It remains to be seen how adoption and user
behavior change once the larger set of emoji sees wider availability. However, we can
make some observations on how emoji are currently used, based on the many messages
we inspected during work on this article (for a quantitative view, see Section 3). We
observed the following five different patterns of use.

Decorative use. Here, emoji are used as a sort of flourish, or decoration, for accom-
panying text, yet are not an integral part of it. For example, emoji can be used
when congratulating: “Happy birthday! .”

Stand-in use. Here, an emoji replaces an actual word, such as in: “Out for a .”
Emotional use. Instead of just decorating a message, emoji can be used to change

the tone or meaning of a message. One example is sarcasm, such as in: “Sure, go
ahead .” Another example is communicating feelings about something, such as
in: “Got my test results ,” which would be a very different message when ending
with a .

Reaction use. Here, the emoji stands on its own and communicates a direct reac-
tion to a previous statement, such as: “ ” (alright). This is mostly used in chat
conversations.

Stand-alone use. This is a generalization of reaction use for messages that contain
only emoji. This presumes either familiarity of the recipient with this kind of use
(similar to use of texting abbreviations) and/or context. In mid-December, a user
might, e.g., send: “ ” (∼ I’m stressed out by Christmas shopping).

3. QUANTIFYING EMOJI USAGE

So far, we have given a general overview on emoji and their use. However, ultimately we
would like to have data to reason about and work with emoji. We thus set out to collect
a large amount of real-world data on emoji and how they are used. An ideal candidate
would be instant messaging logs, but those pose privacy problems and are also not
generally available. Instead, we turn to publicly available data and collected a large
number of tweets containing emoji. Using data from Twitter has several advantages
over other data sources: (1) it is available via an easy-to-access API, (2) in contrast
to forums, which usually concentrate on one topic, tweets cover a much wider range
of topics and use, from casual communication between friends, to curated marketing
by social media experts, and (3) there is a large amount of data, with roughly several
thousand tweets send out per second.

11http://blog.emojipedia.org/diverse-emoji-families-come-to-windows/.
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There is also previous work on emoji in Twitter data that validates this approach. For
example, Suttles and Ide [2013] analyze tweet sentiment analysis and explicitly include
emoji. Vidal et al. [2015] concentrated specifically on food-related emotion expression,
as they analyze emoticons and emoji in a dataset of 12,600 tweets containing the words
breakfast, lunch, dinner, or snack. Instead of assessing the sentiment of a complete
message, Novak et al. [2015] try to quantify the sentiment of individual emoji and
other symbols. They used human sentiment ratings of about 70,000 tweets to rank 751
emoji and other symbols from most negative to most positive sentiment. They also find
that more frequently used emoji have significantly more positive sentiment than less
frequently used ones. While those papers use tweets to infer sentiment, we instead use
tweets to first investigate use of and then establish similarity between emoji.

As the amount of emoji in use is constantly changing (device updates bring new
emoji), we decided to limit our data collection to a well-defined set of emoji. We hence
only collected tweets containing one of the 845 “level 1” emoji, i.e., those that are
“commonly supported as emoji by vendors at present”12 (note that this definition has
just recently been removed from the report). This is a subset of the emoji specified by
the Unicode 7.0 standard. While we limit ourselves to this well-defined subset, there
are no technical roadblocks to extending this methodology to more emoji. However,
including very new emoji could introduce a bias as only very few devices support them
and their use would thus mostly be restricted to early adopters.

In total, we collected almost 21 million tweets over a period of about 29 days in
July/August 2015 via the Twitter public streaming API.13 To limit the number of
tweets, we only collected tweets for 3 minutes at a time, or until 10,000 tweets were
gathered—whichever came first. We use Twitter’s keyword filtering to only gather
tweets with emoji. However, as Twitter only allows specification of up to 400 keywords
per request, we split the set of emoji in three equal-sized blocks, randomized block order
within a run, and scraped each of those blocks in sequence. A new scraping run was
started every 15 minutes starting at five past the hour. Hence, we had a large number
of individual scraping sessions (96 per day), which were limited in duration though.
At most, this would allow for 2,880,000 collected tweets per day, yet we collected just
slightly more than 720,000 tweets on average.

For each tweet, we only retain some data (primarily id, text, date, and username) and
save it to a database. We only collect tweets in English (as identified by Twitter) and
reject retweets (i.e., all tweets starting with “RT @”). While most tweets we collected
appear genuine, we noticed some spam. We define a tweet as spam if the tweet (or slight
variations of it) reappear a large number of times. Such tweets often contain a running
number but otherwise repeat the same text as earlier tweets. We set a conservative
threshold of labeling tweets as spam if we can find more than 200 matching other
tweets (we do not remove very short tweets such as “Goodnight ”). For example, we
collected 1,336 tweets like:

While the share of such tweets of the overall dataset is less than 2%, we do remove
them from further analysis. For many emoji, this does not make a difference, but for
a small subset of emoji (e.g., the hand emoji used in the tweet above), those tweets do
skew the data as there is not a large number of tweets containing those emoji to begin
with.

12http://www.unicode.org/reports/tr51/#def_level1_emoji.
13https://dev.twitter.com/streaming/public.
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After initial tweet collection, we had 243 emoji occurring less than 1,000 times. As we
intend to reason about the context of emoji, having only few samples per emoji would
limit this capability. To gather more data for those emoji, we collected an additional
106,618 supplemental tweets (including 3,083 we later removed as spam) between
early August and mid-September 2015. We dropped emoji from this scraping once we
had collected more than 1,000 samples for them. While this ran for almost 6 weeks, we
were not able to gather 1,000 samples for the 76 least frequently used emoji. However,
our least represented emoji, , now has 211 samples (compared to 27 samples before
supplemental scraping). After supplemental scraping and spam removal, our final
dataset contains 20.6 million tweets.

We used the opportunity to investigate the gender distribution of users tweeting
with emoji. For this, we randomly sampled 1,000 users and extracted the name they
use on Twitter (not their Twitter handle, which is a unique user identifier). Note that
this assumes people use their real name (or at least first name) on Twitter, as people
are free to enter anything they wish in that field. We parsed these data to extract first
names and fed those names to the genderize.io14 service, which, based on a database
of more than 200,000 distinct names, tries to assign gender. In our sample, 27% of
the names were labeled as male and 34% as female. However, 39% of names (such
as, labrena, Utter Amateur, and Minnion) could not be assigned a gender. While this
hints at a larger share of females using emoji (as indicated in previous research), more
research is necessary to confirm.

We also took a closer look at usage patterns (Section 2.4) in the collected tweets.
For this purpose, we randomly sampled 200 tweets and hand annotated them as using
emoji either decoratively, as stand-in, for emotional expression, or stand-alone. We
found some overlap between categories (some tweets, e.g., make use of both decorative
and emotional emoji at the same time). However, with 66% of tweets, most emoji
were used to add emotional expression. While 34% of tweets made use of emoji as
decoration, only 8% of tweets used emoji to replace a word. Surprisingly, we found no
tweets containing only emoji and no text in our dataset. However, we discovered this
is due to the streaming API filtering out such tweets. For example, we would receive
the tweet “Cute ” but not the tweets “ ” or “ .” Unfortunately, this behavior
is undocumented, and we can only speculate why we observe this. However, for our
further use of the Twitter data, this is not a large problem. As we are specifically
interested in context around emoji, single emoji tweets do not add to the model. We do
miss out on tweets with multiple emoji (yet no Latin characters) though, which would
help with training. Yet, we believe our dataset is sufficiently large to allow us to fill
those gaps with emoji sequences from tweets with Latin characters included.

From our initial, unbiased, tweet sample (excluding supplemental tweets), we can
estimate how many and which emoji are used. We observed that 83% of tweets only
contain one emoji (see Figure 5). Hence, it is necessary to draw on the surrounding
word context in establishing emoji similarity across tweets. Considering only tweets
in which multiple emoji occur side by side would severely limit the usable data. While
there are some outliers with larger numbers of emoji, these are negligible overall. We
also see a small set of emoji dominating in actual use (see Figure 6). The top 10 emoji
together appear about 9 million times, while the bottom 10 only have 379 occurrences
overall. This is a strong indicator that not all emoji are created equal, but might also
be due to current keyboards making it too hard to discover less frequently used emoji.
Emoji keyboards could take this skewed distribution of emoji into account and place
emphasis on supporting common emoji especially well. Yet this should not be read as
a reason to omit some emoji from the keyboard. The set of used emoji likely varies by

14https://genderize.io/.
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Fig. 5. In our collected tweets (excluding spam), about 83% (∼17 million) only contain one emoji (we do not
collect tweets without emoji). At the other extreme, we scraped one tweet containing 105 emoji.

Fig. 6. Emoji frequency in our collected tweets (excluding spam) follows a power-law distribution. While we
saw over 2.6 million instances of , we only collected 27 instances for each of and .

person, situation, topic, or chat partner. Exclusion from a keyboard should thus not
just be based on the frequency of use. The relative frequency of the “z” character in
English texts, e.g., is only 0.096%,15 yet all English keyboards include it.

Comparative data on emoji frequency and use are, e.g., available from SwiftKey—a
third party keyboard for iOS and Android. In their SwiftKey Emoji Report,16 they
describe findings based on typing data gathered between October 2014 and Jan-
uary 2015. For example, they note that 44.8% of emoji use are only happy faces,
something we also see in our data. They also find a large amount of differences
according to users’ location. Russian users, e.g., are twice as likely to use the
emoji compared to the average user. On the other hand, Australian users are 66%
more likely to use . The live updating emojitracker17 also monitors emoji usage on
Twitter. We compared their emoji ranking to ours and found a strong correlation;
Spearman’s rank correlation coefficient rs = 0.95, p < 0.0001.

4. EVALUATING THE STATE OF THE ART OF EMOJI ENTRY

As we have shown, the use of emoji has grown rapidly over the last couple of years.
However, design of emoji keyboards has so far mostly stuck with long lists of emoji. The
sheer number of emoji has made it impossible to show them all at once at a selectable
size—a problem shared with other scripts containing many characters. While we will

15Computed from the Brown corpus [Kucera and Francis 1967].
16https://blog.swiftkey.com/americans-love-skulls-brazilians-love-cats-swiftkey-emoji-meanings-report/.
17http://www.emojitracker.com/.
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Fig. 7. An overview of all emoji available in the Google keyboard on the Nexus 5 and thus included in our
evaluation. The emoji are shown in the same category and order as they appear on the keyboard.

later look at other approaches to the problem of entering characters from such large
volume scripts, here we first take a look at the common approach. With lists of emoji
being used everywhere, an analysis of such keyboards aids in identifying problems and
setting a baseline for any future improvements to emoji entry.

In this section, we will investigate how the default Google keyboard on a Nexus 5,
running Android 5.1.1, fares when entering emoji. We chose to investigate emoji entry
on Android, as it is the most widely used mobile operating system. While there are
many different manufacturers of Android devices, the Nexus 5 is a generic middle
ground without OEM customizations. It is also one of the most common devices.18

The version of the Google keyboard we tested offers 822 emoji (shown in Figure 7),
split into five categories. All emoji are arranged in grids and span multiple pages,
which users can swipe through horizontally. Each page is associated with a category

18According to OpenSignal’s August 2015 Android Fragmentation Report: http://opensignal.com/reports/
2015/08/android-fragmentation/.
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and selecting a category jumps to a page belonging to it. However, users can also
transition between categories by continuing swiping on the last page of a category.
This is different than many other emoji keyboards wherein emoji in each category are
shown in a list of their own and no continuous swipe-through is possible. Thus, the
Google keyboard actually has an advantage when used for exploration where users
want to quickly scroll through all emoji.

The Google keyboard employs two mechanism to facilitate entry of common emoji:
(1) it maintains a list of recently used emoji, and (2) also remembers the last used page
per category. If users only enter emoji from a small number of pages, this approach
often presents them with the target page when opening the keyboard or switching
categories. However, this mechanism can be disorienting sometimes when users jump
to the middle of a category on category selection but are unclear whether the emoji
they are looking for is in a previous or following page. The worst case occurs, when the
emoji is on the first page of the category, yet after jumping to the middle users search
for it in the other direction. Now users traverse half the pages to reach the wrong end
and then need to backtrack all the pages of the category to find the actual emoji. In
this situation, always jumping to the start of a category (as in most other keyboards)
would have probably fared better. This issue likely resolves though, once users have a
better mental model of emoji ordering.

Each page of the Google emoji keyboard shows seven columns by three rows of
emoji. This is a common arrangement, e.g., also found in the Samsung keyboard on
a Galaxy S4 and the WhatsApp keyboard on a Lumia 920. Many newer devices even
show four rows of emoji or more. The number of usual emoji per screen thus is roughly
between 18 and 50 (21 in the case of the Google keyboard).

4.1. Challenges when Testing Emoji Keyboards

Evaluating emoji keyboards comes with several challenges. With the set of possible
entries commonly as big as 845 emoji (level 1 emoji), or even bigger (e.g., all Unicode 9.0
emoji), exhaustively testing the entry of every emoji in a lab setting is prohibitively
costly. However, only testing some, e.g., the most common ones, can bias the results.
Drawing a limited random test set of emoji is one way to approach this. But even then,
the question of how much coverage of the full set is needed for representative results
remains open.

The bigger challenge, however, is picking an appropriate testing procedure. If one
were interested in natural user behavior, a chat study wherein two participants ex-
change messages (such as in Hancock et al. [2007]) would be an appropriate choice.
This could also be designed as a longitudinal study that monitors users’ chatting be-
havior (such as in Tossell et al. [2012]). However, this approach risks that only a small
number of emoji are actually typed and does not generate a lot of data as much of the
time is spend not entering emoji. A longitudinal study also raises privacy concerns, as
recording typed emoji can capture user mood. Larger amounts of data can be generated
by deploying prototypes to an app store (such as in Böhmer et al. [2014]). However, this
still would not give control over the share of emoji in the data. One way around this is
to find a game format that allows control of the task, while still engaging users, such
as in Henze et al. [2012]. Most commonly, though, text entry methods are tested with
a task wherein participants have to copy text verbatim. That is also the approach we
chose for our investigation, as this allows for control of which emoji are to be typed.

We adopt an approach wherein we test with an emoji test set sampled from Twitter.
To generate a test set, we scrape 10,000 tweets containing emoji present on the Google
keyboard (822 different emoji). From the scraped tweets, we only keep the emoji and
store how often they occurred. This set includes 502 different emoji (as some emoji
never occurred in the tweets scraped for testing). During testing, we sample emoji

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.



Beyond Just Text: Semantic Emoji Similarity Modeling to Support Expressive Communication 6:13

with replacement from this dataset. The dataset is hence heavily skewed toward the
most common emoji. Thus, in order to broaden the range of emoji occurring during
the evaluation, we log transform the emoji frequencies to boost the likelihood of rarer
emoji appearing. When computing final keyboard performance, we reverse that trans-
formation. Thus, while we favor rarer emoji during selection, we make sure they only
influence scores per their original likelihood.

4.2. Participants

For the study, we recruited 12 participants (three female, age 21–41, x̄ = 27.4, SD = 6.3)
from around our institution. The study took ≈30 minutes and after completion, partic-
ipants received a small non-monetary gratuity. All participants owned a smartphone;
however, none of the participants owned a Nexus 5 as used in the study. Only two
participants stated they had the same emoji design on their phone. Most participants
had phones by vendors with custom UIs (e.g., the Samsung keyboard), or with older
Android versions (which used a different design). However, while they were not inti-
mately familiar with the Google one, default keyboards do not differ much currently.
We asked participants to indicate whether they often use emoji on their phones on a
five-point Likert scale. While one participant strongly disagreed, four agreed, three
strongly agreed, and four did not lean either way.

4.3. Procedure

Before participants started the session, they were given time to try out the Google
keyboard. In this phase, participants were shown emoji to enter that are not part of
the evaluation set. While this prevents participants already searching for emoji which
are later to be tested, they nonetheless gain an initial overview of the keyboard as they
look for the evaluation set emoji. We chose the training emoji such that they reset the
Google keyboard’s category state. As mentioned earlier, the keyboard remembers the
last entered emoji for each category and jumps back to that position when reopened.
By always having an emoji from the first page of each category last in the training
phase, all category jump targets are reset to the respective first page of the category.
While this ensures a consistent starting state for all participants, note that once they
entered emoji in the testing phase, the category jump targets differ between them.

After entering 10 emoji, we considered a participant to be sufficiently familiar with
the interface and move on to the main study. The interface used here (see Figure 8)
is the same as in the training phase but shows emoji from the test set. If participants
took more than 1 minute to find an emoji in this phase, we aborted the trial as pilots
showed that very long search times frustrated participants.

During emoji entry, we draw emoji to enter by sampling with replacement from
the log-transformed emoji set. Overall, 100 emoji are drawn from this set, resulting in
100 trials per participant. We only did 100 trials, as this allowed testing in a reasonable
amount of time, after piloting indicated long trial times. In each trial, we start taking
the time once the emoji keyboard is activated via the emoji button in the lower right of
the Google keyboard. During the trial, we record any page transition, activated either
by swiping left or right or by selecting one of the categories and jumping to a page. A
trial is complete once the user commits the emoji with the button next to the text field.
Upon completion of a trial, the keyboard resets to the QWERTY view.

4.4. Results

As described earlier, we favor rare emoji in the evaluation to have a broader test set.
In the analysis, we reverse that log-transform and give weights to emoji equivalent to
their observed frequency in the test set. Thus, all time results reported here come in a

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.



6:14 H. Pohl et al.

Fig. 8. Layout of our evaluation application while testing the Google keyboard. Participants are shown the
emoji to enter at the top of the app. In each trial, they need to activate emoji mode, find the respective emoji,
and click the commit button. Committing a selection also switches the keyboard back to QWERTY mode.

Fig. 9. This figure shows (left) how fast users were able to enter emoji, and (right) how many trials were
aborted because they took longer than 1 minute (error bars show 95% confidence intervals). As we log-
transform emoji frequency during evaluation, the raw results do not accurately reflect expected performance.
We remove this bias toward rare emoji for the corrected values, which only slightly changes the results.

raw and a corrected version, where the corrected version accurately captures expected
performance for emoji use in the wild.

Figure 9 shows the outcome of the evaluation. The raw selection times over all
successful trials was 8.8 s (median) and 12.5 s (mean), respectively. Once we correct
for the skewed frequency, this changes to 8.2 s (median) and 11.4 s (mean). This equals
about five to seven characters (while emoji can replace a word, from an entry perspective
each emoji corresponds to one selection) per minute. Note that these times only take
into account successful trials, the average would be higher, had we not stopped trials
after 1 minute. In our fastest trial, the participant selected in 864 ms. This was
possible because no page change was necessary for the selection (the emoji was already
on the initial page). In fact, 64% of the 100 fastest trials did not require a page change
at all. Correspondingly, there is a strong linear relationship between the number of
page transitions and the resulting selection time of a trial, p < 0.0001. About 3.2%
of trials took longer than that 1 minute and were aborted (one participant entered all
emoji within a minute, while all other participants exhibited failure rates between 1%
and 6%). If we take into account the emoji frequency, the expected average failure rate
corrects only slightly to 3.3%. This shows that for most trials, selection time is within
a reasonable range.
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Fig. 10. Selection time for entered emoji, ordered by rank. Error bars show 95% confidence intervals for
each of the 25 aggregated bins. There is no clear pattern of often-used emoji being selected faster than rarer
emoji. Note that this plot only includes data for successfully selected emoji, excluding failed trials.

In some trials, selection time is much larger than others. We compare selection times
for emoji with at least five trials (65 different emoji). This shows a large difference
between the fastest and slowest emoji with entered in an average 4.3 s (five trials),
while (also five trials) took an average of 35.5 s. In fact, the 10 fastest emoji ( ,

, , , , , , , , and ) were entered more than five times faster than the
10 slowest emoji ( , , , , , , , , , and ). The faster emoji were more
commonly used (per our sampled frequencies on Twitter) than the slower ones. But
while they are used more than twice as often, a linear regression on mean selection
time and log-transformed emoji frequency shows no significant relationship, p = 0.3.
Hence, we cannot identify good criteria to define a subset of emoji that are faster to
enter than others.

The failure rate also varies by emoji. For example, no trial of , , , , , or
was successfully completed. As we randomly sample from a large set of emoji, those
six emoji only account for a total of eight trials though. These trials are thus not
representative for general performance. For a closer look, we only consider emoji for
which we have collected data from at least five trials: a smaller set of 70 emoji. From
those 70 emoji, 61 were always entered successfully (385 trials). The remaining nine
emoji ( , , , , , , , , and ) each only led to one failure (in a total of 58
trials). There is no clear pattern in this set of emoji to suggest that some specific subset
of emoji are more likely to fail than others.

One might assume that frequently used emoji would be easier to enter. However,
when plotting selection time as a function of emoji rank (see Figure 10), no effect of
rank is visible. To confirm, we ran an independent-samples t-test, comparing selection
time between the 50 lowest ranked (i.e., the emoji is not frequently used) samples and
the 50 highest ranked samples. There is no significant difference in the selection times
for lower ranked (M = 12.1 s, SD = 11.3 s) and higher ranked (M = 10.2 s, SD = 8.1 s)
emoji; t(98) = 0.95, p = 0.35.

Finally, we checked how users progressed toward the target emoji. Figure 11 shows
an overview of all trajectories toward the target emoji’s page. As their first action after
opening the emoji keyboard, most users immediately jump to a different category. This
was the case in 640 of the trials (∼57%) and is visible as the large share of category
jumps (shown in red) at the left of Figure 11. But that initial jump was not always the
right one and in 14% of successful trials participants jumped to a category more than
once (up to six times). Overall, though, there was fast progression toward the target
page. However, there is a long tail, as some trials took much longer. This is also visible
in Figure 12 that highlights how the majority of trials already reach the target emoji
after about 10 page transitions.
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Fig. 11. Here we show how participants progressed toward the target emoji. In each trial, users start at
the last active page of the keyboard. From there, they need to navigate to the target page (here shown in
the middle). Ideally, users would jump to the proper category (category jumps are shown in red) and then
swipe through some pages (page transitions shown in black) until finding the target emoji. Here, we see
that there is indeed a fast approach of the target, yet users in many trials get lost. The plot also shows page
transitions from one trial highlighted in green. That participant immediately selected a wrong category,
searched that category for a while, jumped to the right category, missed the target page while searching
within that category, but finally selected the target emoji after about 13 s.

Fig. 12. When we look at how many jumps to different categories and swipes between pages (here aggregated
as navigation actions) it takes users to reach the target emoji, it can be seen that most successful trials end
after about 10 actions. However, there is a long tail where users navigate through many more pages before
finally arriving at the desired one.

We can also investigate whether participants missed the target emoji (navigated to
the proper page, but continued their search). This was the case in 230 trials (∼19%).
Users would often quickly swipe through the pages and then backtrack to the target
emoji. One example of this is also shown as a highlighted trajectory in Figure 11. As
can be seen, the participant in that trial started far to the right of the target emoji’s
page, selected a category (big jump) and checked several pages of that category. After
not finding the emoji there, she jumps to another category and continues searching
there. This user actually overshots the target page by one page, but immediately goes
back and selects the emoji.

We find that in 802 (66.8%) of the trials, participants made use of the category
buttons to jump to a different page. In the remainder of the trials, they either swiped
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through many pages or were already close to the target emoji. However, we also find
that participants often chose the wrong category and had to pick another one. In 191
trials (15.9%), participants picked a category at least twice. The number of category
jumps quickly declines though (6.6% trials contain more than two jumps, 3.3% more
than three, and only 1.2% more than four). The most extreme trial we recorded had the
participant select a different category eight times—rechecking already visited ones as
well—and visiting 83 pages in the process.

While the above analysis only considered successful trials, we can also take a look
at the 38 failed trials to see how those searches progressed. Most surprisingly, we find
that in 66% of failed trials, participants actually visited the page containing the target
emoji. The participants hence often missed it and continued their search elsewhere.
Participants also visited many more pages in failed trials than in successful ones.
On average, 53 pages were visited (50 median) in failed trials, while participants in
successful trials visited only 10 pages (6 median). However, the worst recorded failed
search spanned a total of 98 page visits, even though the keyboard only has 42 pages.

4.5. Discussion

Overall, emoji entry performance with the Google keyboard is adequate. Selection time
can be slow, but only becomes very large in a limited number of cases. But in some
situations, the Google keyboard exhibits problems. Especially, the fact that users miss
the emoji 19% of the time is concerning. While the Google keyboard shows only 21 emoji
per page, the emoji keyboard on the iPhone 6+ shows up to 50. A higher density of emoji
makes it easier to miss one, or at least increases the time needed to scan a page of emoji.
With the number of emoji growing, this search problem is bound to intensify.

We can also see that users often pick the wrong category for an emoji. In almost 16%
of the trials, they jumped to a different category more than twice. This indicates that
there might be a room for improvement in the category assignment, as users’ model of
emoji location does not always match the actual location. Presently, there are little data
that can be used to inform category assignment. Later on, in this article, we will look
at using large amounts of tweets to inform which emoji should be close to each other.
In actual use, most users would probably not spend the time to find one specific emoji,
though. Instead, they would settle on a different one or eschew emoji use altogether.
However, as users should be able to enter any text, they should also be able to properly
enter any emoji.

The fact that users sometimes failed at finding emoji in a reasonable amount of time
also made us wonder about the base cost of using the Google keyboard interface. In
our tested version of the Google keyboard, the 822 emoji are split over 42 pages. As an
animation is shown for each page transition, just visiting a page already takes some
time. The overall large number of pages then makes exploration and search of emoji
cumbersome. To quantify this, we ran a quick informal study with seven participants
(one female, age 22–34 years). We had participants start on the first page of the Google
keyboard and asked them just to swipe through all the pages. This already took them
about 21 s. If additional visual search effort is necessary, it is clear that exploring the
available emoji can take a long time.

The current Google emoji keyboard does not favor more common emoji over less
common ones. Hence, we could not observe faster selection for more frequently used
emoji. Depending on the specific design goals, this can be perfectly acceptable behavior.
If we consider all emoji as equally important, then we would indeed not want to favor
any of them. In fact, favoring the already more popular ones would only reinforce
this difference. However, novel emoji designs could decide to bias selection efficiency
slightly toward more common emoji. The critical aspect in such an endeavor would be
how to find the right balance of bias to support.
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Table II. Differences Between Traditional and Emoji Text Entry

Traditional text entry Emoji entry
• Characters are entered from a small set of

well-known symbols (the ISO basic Latin
alphabet, e.g., has 26 characters).

• Characters are entered from a large set where
users might be unfamiliar with many of the
symbols.

• The meaning of each character is well defined and
there is no character-level ambiguity.

• Multiple interpretations per emoji are possible
and ambiguity can allow for choice between
several emoji (e.g., several emoji can connotate
enjoyment).

• Input needs to be optimized for speed. Focuses on
composition of words.

• Speed and efficiency are less important. Instead,
exploration of the available symbols needs to be
easy.

• Designed for frequent and, sometimes, prolonged
use.

• Designed for intermittent and sporadic use.

• A means for general purpose expression. Text is
neither inherently playful, nor somber.

• Emoji are visual (and often playful and
“cartoony”) in nature, making them immediately
noticeable when embedded in text. In text, emoji
can provide a sort of emotional annotation (e.g.,
pointing out intended sarcasm).

Compared to traditional text entry, the five to seven emoji per minute rate, currently
achievable with the Google keyboard, seems slow. We can also compare this number to
performance data from other large character systems. With pinyin (Chinese) text entry,
for example, characters can be entered much faster with performance varying between
15 and 35 (∼25 on average) characters per minute, depending on the input method
used [Liu and Wang 2007]. This is even though there are more Chinese characters
than emoji. With pinyin, users still enter Latin characters, yet those numbers show
that other approaches to large character set text entry fare much better than the list
selection one currently used for emoji.

5. INPUT METHODS FOR EMOJI AND OTHER LARGE CHARACTER SETS

Having taken a closer look at the predominant method for emoji entry—selection from
lists—here, we take a step back and look at the problem from a broader perspective.
Even just for emoji, while list selection is the predominant form of entry, other input
methods do exist. But entering emoji is not the only text entry area where the set of
characters to enter is large. Especially East Asian languages, such as Chinese, deal
with similar problems of mapping characters to a format that allows for easy entry.
With these scripts, there is not a clear best approach and thus there are, e.g., several
different kinds of input methods for Chinese characters. Note that any character set
can be considered large in some contexts. For example, in early phones methods such
as T9 are used to input Latin characters via the smaller numeric keypad. Similarly,
current research on text entry methods for smartwatches shows again how just Latin
script can already be a lot of characters to support.

Compared to text entry for large character sets, text entry methods for sets of up to
∼30 characters are well researched. For those small sets, frequently each character is
assigned to a button, and the buttons are arranged in a “simple” layout (e.g., QWERTY).
However, this approach does not work for entering emoji—there is no layout that shows
all emoji at the same time at a selectable size. In fact, in addition to distinct layout
problems, there are several general differences between entering text and entering
emoji, as shown in Table II.

In this section, we present an overview of classes of text entry methods currently
available for entering emoji. Furthermore, we take a look at existing input methods for
other kinds of large character sets and how they could influence designs of emoji input
methods. Particularly, East Asian scripts have inspired a wide range of input methods,
e.g., based on the shape or phonetic of the characters to enter.
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5.1. Enumeration

Listing all possible characters and then allowing users to browse that list is the ap-
proach currently used by emoji keyboards. This approach has several advantages:
(1) it does not require any ordering of the characters, (2) it allows users to browse all
available characters and thus aids in discovery, (3) as users can see the available emoji,
they do not need to remember exactly what it looks like, and (4) it is easy to implement
and extend for new characters. However, as stated earlier, this approach also does not
scale well to larger character sets. The absence of an ordering also means that it can
be hard to remember the location of a character.

A slight tweak of just showing all characters in a large list is the EmojiZoom input
method [Pohl et al. 2016]. Here, all emoji are shown at once, but only are selectable
after users zoom in. High-resolution screens on current mobile devices enable users
to still make out sufficient details, even at the zoomed out level. As the start view
is always the same, this design also allows users to build spatial memory and, e.g.,
learn that smiley emoji are always found in the top left corner. The spatial mapping
also allows for good exploration of the available emoji. Users can zoom in slightly, to
a level where individual emoji are clearly legible, and then pan around to explore the
space. EmojiZoom organizes emoji according to the Unicode order in snaking layout.
This still leaves cases wherein emoji location is ambiguous. The ordering is also only
one-dimensional and the mapping to two-dimensional space thus also limited. For a
two-dimensional layout of emoji more detailed relationship information is necessary.
The semantic similarity model we later present in this article would enable a more
spatially optimized version of EmojiZoom.

5.1.1. Categorization. To alleviate the problems of large lists, emoji keyboards split the
emoji into different categories. In Android 5.0, e.g., those are faces, objects, nature,
places, and symbols. However, while this limits the number of pages per category,
splitting introduces new problems. The assignment to categories is often arbitrary and
a compromise. For example, is part of the faces category, while is part of the nature
category with most other animals. Yet, while is also in the nature category, and
are found in the places category with other sports and activities. Such ambiguities are
common. Should be with the other flags or near ? Why is not next to and
on the Google keyboard? Because emoji often allow multiple uses and interpretations,
imposing a strict ordering is bound to produce such cases, where one would expect
one emoji to be close to another, but it is found elsewhere. One could put emoji in
multiple categories (not currently done), but this would also inflate categories and
might negatively impact search time.

5.2. Querying and Prediction

Instead of selecting characters from large lists, users can be enabled to query the set of
characters to find the one they are looking for. While this allows for simple interfaces
(e.g., only a text box), the main problem with this approach is that users have to know
the character they are looking for. Thus, query systems fare poorly when users need
to discover characters or cannot exactly remember the shape of a character. However,
such systems do integrate well with the existing Latin script keyboards as they require
no mode switch to a dedicated emoji keyboard.

5.2.1. Handwriting/Drawing. Handwriting recognition [Tappert et al. 1990] is an estab-
lished method for entering characters. While it theoretically allows for arbitrarily large
character sets, it is effectively limited by how well users can remember and draw each
character. Earlier research already extended this to pictogram retrieval [Lopresti and
Tomkins 1993]. Google has also been experimenting with using handwriting input for
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entering emoji.19 While their emoji mode works well for emoji with an easy to draw
silhouette (e.g., or ) or only few features (e.g., or ), it fails with emoji where no
clear handwriting equivalent exists or where the emoji is too complex (e.g., , , or ).
Outline drawings are also not able to differentiate between emoji that only differ on
how they are filled. For example, the flags of Germany , Estonia , and Hungary
only differ in the color of their stripes and are not distinguishable in outline sketches.

5.2.2. Textual Search and Replacement. When users know the name or description of a
character (e.g., is called oncoming bus), they can search for it with text queries.
While we are not aware of any emoji keyboard implementing this, some do offer a
related method. For example, on Windows Phone 8.1 users can select words and then
pick an emoji for replacement (e.g., replacing “dragon” with ). This approach uses
a curated subset of emoji annotations as given in the Unicode CLDR.20 In fact, this
approach of linking emoji with their respective keywords is becoming more common.
Apple, e.g., is planning to introduce the capability to replace words with emoji on tap
to iMessage with iOS 10. Some systems such as the Slack21 messaging platform, the
Discourse22 forum software, the Github23 repository service, and many others,24 allow
emoji entry via text codes. Here, entering :thumbsup: in a text field would, e.g., result
in that text in the output to be mapped to the emoji.

5.2.3. Prediction. Instead of making emoji entry a dedicated task, some keyboards try
to roll it into the autocorrection mechanism. An early example of this can be found on
Windows Phone 8.1 where, after entering “birthday,” the keyboard will suggest entering

next. Such emoji suggestions can also be found in some third party keyboards.
The Minuum keyboard is one example, featuring smart emoji prediction.25 Instead
of integrating into a keyboard, Dango floats on the screen, analyzing what is being
typed to suggest emoji, GIFs, and stickers to add to the current message.26 Like our
semantic emoji model, Dango uses a neural network to embed emoji and text in the
same space. Instead of emoji, Urabe et al. [2013] analyzed affect in input text and then
infer appropriate emoticons. User thus implicitly control which emoticons are available
with the text they enter. Our work in this article can support existing methods in this
category. As we will show later, we are able to predict semantic similarity between
emoji, which could directly support prediction.

One aspect of prediction-based methods that so far has seen little focus, though, is
how they could support exploration. Currently, the existing systems only present users
with a shortlist of matching emoji. However, going beyond this list is not supported yet.
If similarity data for emoji are available, keyboards could be extended to allow users
to grow a result set with other emoji, similar to the ones already shown. Similarly,
systems could present an initial coarse but wider prediction, and then only after users
pick the rough direction they want to go in, present a more fine-grained list of predicted
emoji.

5.2.4. Query by Picture. While not used as an actual text input method, Image2Emoji
demonstrated how to select a set of emoji based on an input image [Cappallo et al.

19https://play.google.com/store/apps/details?id=com.google.android.apps.handwriting.ime.
20Unicode Common Locale Data Repository: http://cldr.unicode.org/.
21https://get.slack.help/hc/en-us/articles/202931348-Emoji-and-emoticons.
22http://blog.discourse.org/2015/12/emoji-and-discourse/.
23https://github.com/blog/1289-emoji-autocomplete.
24See, e.g., http://www.emoji-cheat-sheet.com/.
25http://minuum.com/exploring-emoji-the-quest-for-the-perfect-emoticon/.
26http://getdango.com/emoji-and-deep-learning.html.
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2015a].27 Input images are mapped to textual descriptions via a convolutional neural
network, combined with any accompanying text (title, description, tags). Emoji are also
mapped to text by representing each with its name. Which emoji are then similar to an
image is determined by similarity of their textual descriptions in a semantic embedding.
Such a method could be useful for generating a shortlist of emoji for use in captions
when sharing images on social media or when commenting on media. However, for a
general text entry method, requiring users to have an image of what they are trying to
express handy is likely too cumbersome.

5.3. Methods for East Asian Languages: Mapping to Latin Script

So far, we have taken a look at methods already in use (even though only experimen-
tally) for emoji entry. For East Asian scripts, there are several more methods in use
that work by defining a mapping from each character to a sequence of Latin characters.
Such a mapping is generally (1) phonetic, or (2) based on the shape of the character.
Here, we detail those two approaches and describe how those could relate to emoji
entry.

5.3.1. Phonetic Mapping. Some of the most common methods here are based on Pinyin,
the phonetic system for Mandarin. Instead of entering a character directly, users enter
a phonetic representation (which is possible using an extended set of Latin characters).
For example, to enter “DengXian,” users can just input “nihao.” However, while such
methods work well for, e.g., East Asian scripts, they are not directly applicable to entry
of emoji or symbols where no clear phonetic representation exists. Instead, one could
spell out the name of an emoji (e.g., “tropical drink” ). But many of these names
are not obvious and there would need to be a way to indicate whether emoji or text
entry is desired. A basic version of this is found on Windows Phone 8.1, where saying
“smiley” inserts a :), while “frowny” instead puts a :( into the text. However, speech
is generally poorly suited to the exploration required for entry from the larger emoji
set. One possible approach here, though, would be to dictate text first and then only
use voice input to insert emoji afterward. Textual context could then limit the number
of candidate emoji to a manageable set for speech input.

5.3.2. Graphological. In graphological mappings, characters are decomposed into parts
that can then be mapped to Latin characters. In the Cangjie input method, for example,
all Chinese characters are represented by 24 basic character components. For example,
the “ ” (water) radical is used in characters, such as “ ”, “ ”, or “ .” Each of those
components is mapped to one Latin character (the water radical, e.g., is represented by
the letter “E”). To enter a Chinese character, users then need to input several radicals
in a specific sequence. Users thus need to be familiar with the decomposition rules that
define how to map characters to sequences of radicals.

This concept could potentially be used for emoji as well, if suitable decompositions
are defined. For example, , , and all share a common visual component (the basic
smiley face) with varying facial features. We can imagine entering emoji by chaining
together descriptors (e.g., specifying the combination of face and happy already reduces
the set of possible emoji to a manageable number, which could then be displayed for
selection). Instead of showing a list of all emoji, emoji keyboards could then just show
a much smaller list of emoji radicals. However, this requires manual or automated
tagging of emoji radicals, where it is not clear what the set of radicals would be.

27They have also shown the reverse: searching for video based on a set of input emoji [Cappallo et al. 2015b].
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6. MOTIVATING EMOJI SIMILARITY MODELING

Keyboards have always brought with them questions of optimization: After all, the
whole point of the invention of the typewriter was to speed up writing. But optimization
is particularly important, as there is a large potential within the nature of the device.
As the letter-to-key assignment is arbitrary, in the sense that any such assignment
is possible to build or implement, there is a large amount of leeway in the design.
Common optimization goals for keyboards are, e.g., to make text entry faster, or to
make disambiguation between neighboring keys easier.

Early keyboard layouts, such as QWERTY, were hand designed. But the number of
possible layouts is very large and design intuition was eventually replaced by compu-
tational approaches. An early example is Zhai et al.’s [2000] Metropolis keyboard that
tries to optimize for movement time between keys, weighted according to the respec-
tive bigram probabilities. In fact, this formulation, based on Fitt’s Law, is a common
optimization target, as it optimizes for the travel distance of the fingers and yields
results were keys often used after each other are close to each other. Of course, speed
is only one aspect to optimize for and thus there are other keyboards that optimize for
multilingual input [Bi et al. 2012], touch input [Weir et al. 2014], or try to find the best
layout for multiple optimization goals at once [Dunlop and Levine 2012]. In addition to
different objective functions, researchers are also applying more complex optimization
methods, such as integer programming [Karrenbauer and Oulasvirta 2014], to search
for the best layout.

However, the optimization goals for text entry and emoji entry are completely dif-
ferent. For text entry, a common goal to optimize for is speed of entry, or the related
travel distance between keys. Hence, objective functions for this purpose generally
include bigram probabilities as a weighting term. The underlying assumption here is
that many characters are entered in series. If users only ever entered one key such
an optimization would not help at all. But while longer sequences are common in text
entry, they are not a common case for emoji entry. Instead of entering many emoji
after each other, users usually only want to add one or a small number of emoji to
a message.

The most important aspect of emoji entry is thus the search for individual emoji and
not the entry of emoji sequences. As such, we do not need to optimize travel distance
between subsequently used emoji but instead need to optimize for search time. This
aspect of emoji entry connects more with work in visual search than work in text
entry. Where text input methods have been less concerned with searching for the right
key (users are expected to internalize the layout and only be restricted in their entry
speed by travel distance at some point), research in menu or icon selections focuses
specifically on this.

The benefit of pictoral presentation was investigated, e.g., by Niemel and Saarinen
[2000], who showed that searching for icons is easier than searching for text labels.
They also saw a decrease in search time when related icons were grouped together.
Grouping-related emoji together could thus potentially also lead to reduced search
times. There are also ongoing efforts to model visual search, similar to Fitt’s Law
capturing movement, in order to make performance predictions for interfaces. Such
modeling generally falls into two categories: (a) trying to fit a mathematical model to
experimental data, or (b) trying to model cognitive processes. An example of the former
is Bailly et al.’s [2014] work, who fit a mathematical model to predict search time in
menus. Instead, Kieras and Hornof [2014] try to model the cognitive process of vision,
in order to predict where people look and, in effect, how long it will take them to find
a target. Their model, e.g., captures that color is the strongest influence on how well
targets can be distinguished. We could thus assume that pages of emoji very similar
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in color, (e.g., the smiley emoji: , , , , . . . ) make it harder to find a specific emoji
than pages with stronger color differences (e.g., the hearts: , , , . . . ).

We can relate this back to the input methods presented in Section 5. For categoriza-
tion style input methods, we need to optimize the arrangement of emoji so that related
emoji are in the same category. Within a category, we would also expect more related
emoji to be close to each other. For example, it is sensible to expect , , and to be
not just in the same category, but also next to each other. A model for categorical emoji
input methods would thus need to help with both category assignment and within-
category ordering. If we only look at the more relaxed enumeration input methods,
only the ordering aspect is necessary. This can be a one-dimensional ordering for linear
lists but could also mean a two-dimensional ordering for methods like EmojiZoom.

Predictive methods also require an emoji similarity model. For example, if a user
entered “Hitting the road,” a model should be able to predict emoji such as , or

. In this example, this would require capturing relationships between emoji and
English language words. But even just modeling relationships between different emoji,
excluding other text, is helpful. This could, e.g., be used to predict which emoji are likely
to be added to a multi-emoji response, with one or more emoji already entered. After
typing , it is likely users would also want to add or to the message. This can
also facilitate exploration where users can limit the search space to a smaller set of
candidates by providing a reference emoji.

In this article, we concentrate on a between-emoji similarity model that can be used
to guide emoji arrangement. The underlying motivation is that users would have an
easier time finding an emoji if it is close to similar ones. Instead of looking at each
individual emoji, they then only need to look at one to decide whether they are in the
vicinity of the one they are looking for. For example, when searching for the emoji,
users can assume they are close once they see any one of , , or . It would also be
fair to assume other sports-related emoji are nearby, with , e.g., as close as possible
to . On the other hand, if users see , , or , they should be able to safely assume
that is somewhere else. Building a similarity model of emoji is a necessary step to
optimize for these criteria.

7. TOWARD A MODEL OF EMOJI SIMILARITY

As the number of emoji is currently growing with every new version of the Unicode
standard and more emoji make it into vendors’ emoji keyboards, the current presenta-
tion of emoji in one or several lists is getting more and more problematic. The Google
keyboard on the Nexus 5, e.g., already contains 42 pages of emoji for its 822 emoji (the
latest version of iOS comes with about 1,300 emoji). In our study in Section 4, we found
that it is easy to miss an emoji. Furthermore, exploration of available emoji is expen-
sive and a good ordering of them thus is necessary to achieve a reasonable average
search time. While categories subdivide the space, which speeds up search somewhat,
the assignment of emoji to categories, as shown earlier, can itself be problematic.

As we have described, many keyboards already make use of models to inform their
design. For example, when designing a keyboard for the English language, key ar-
rangements can be chosen so that expected travel time between keys is minimized
according to bigram probabilities for letter pairs. However, there is no clear equivalent
of model-based optimization for emoji entry. Yet, as outlined in Section 6, a similarity
model for emoji would help in guiding design of emoji input methods. In order to make
model-driven improvements of emoji keyboards possible, we thus set out to build such
a model.

In this section, we will look at two ways to build emoji similarity models: (a) based
on emoji annotations, as defined by the Unicode standard, and (b) based on semantic
information derived from the large number of tweets we collected. Both similarity
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Table III. Jaccard Similarity Coefficient for a Set of Example Emoji Pairs

measures allow us to quantify which emoji are related and should be close together. We
compare performance of both models in a crowdsourcing study and explore differences
in what aspects of emoji they capture.

7.1. Deriving Emoji Similarity from Unicode Annotations

As mentioned earlier, all emoji are already tagged with some annotations.28 For ex-
ample, is tagged as animal, pet, nature, and cat. Those annotations are intended to
help users winnow down the set of emoji by entering the tag and then selecting the
matching emoji.

We initially hypothesized these annotations could be used to establish similarity
between any two emoji: by comparing their annotations. Similarly, Aoki and Uchida
[2011] checked for co-occurrence of emotional words in blog posts to derive feature
vectors (and thus a way to compare) for emoji. Let TEmojiA

be the set of all annotations
for EmojiA. Emoji are considered similar if they share many terms and disagree on few.
We thus chose the Jaccard similarity coefficient J as quantifier, which is defined as
follows:

J
(
TEmojiA

, TEmojiB

) =
∣
∣TEmojiA

∩ TEmojiB

∣
∣

∣∣TEmojiA
∪ TEmojiB

∣∣ . (1)

Some examples of the resulting similarity values can be seen in Table III. This similar-
ity measure works well for clustering around concepts, such as food, animal, or vehicle.
However, it does, e.g., not include a notion of two emoji coinciding in an activity. For
example, the shown dissimilarity of and only tells us that smiling and poodles
are not the same thing. From a different perspective, though, one could certainly be
happy about a new dog or a walk with a dog. This aspect is not captured by this cate-
gorical similarity, which does not take context into account. Hence, we set out to find
an approach for establishing similarity that captures a wider notion of what emoji
relatedness means.

7.2. Emoji Model Building from Tweets

To move beyond categorical similarity, we set out to build a similarity measure based
on how emoji are actually used. By building on actual use, similarity is hence defined
only by whether users enter emoji together or whether they enter emoji in similar
contexts. We hypothesize that this would be able to capture connections between emoji
that are not reflected in just their tags. For example, we would expect and from

28Available at: http://unicode.org/repos/cldr/trunk/common/annotations/. Note that these annotations have
recently been updated. The annotations we use in this article are per Summer 2015. Some tags were removed
and , e.g., is now only tagged as pet and cat.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.

http://unicode.org/repos/cldr/trunk/common/annotations/


Beyond Just Text: Semantic Emoji Similarity Modeling to Support Expressive Communication 6:25

our previous example to exhibit some connection once we take into account the context
around emoji. We derive this contextual information from the large number of tweets
we collected earlier. Because most tweets only contain one emoji, we need to include
all text to build a strong model of emoji similarity. For example, if we were to see both

and individually in tweets containing the word “besties,” we could conclude that
they are probably related. We chose to use a word-embedding approach to map each
emoji (and every other token) to a word vector. Similarity between two emoji can then
be determined through the similarity of their respective word vectors.

In a word embedding, individual tokens are each mapped to n-dimensional numeric
vectors. For example, might map to [0, 0]T , to [0, 1]T , to [1, 0]T , and to [1, 1]T .
In this example, one dimension encodes sentiment, and one dimension encodes whether
the emoji is a face or a cat. Other emoji could then also be represented in this space,
e.g., might be represented as [0.5, 0]T . We can see how this basic embedding directly
leads us to a similarity measure. If two emoji have similar numeric representations
in this space, they are conceptually close. For example, an emoji at [0.2, 0]T and an
emoji at [0.3, 0]T both would be rather cheery faces, quite far away from an emoji at
[0.9, 0.8]T that would be some sad animal. In the word embedding, we can compute the
distance between two emoji a and b with any norm. We chose to use the Euclidean
distance function, given as

(2)

Instead, one could use other norms, such as the Manhattan distance, or similarity
measures like cosine similarity. Note that we are not interested in the absolute distance
between two emoji but aim to rank emoji to find the x most related ones.

However, in our example, embedding it would be hard to represent an emoji like
as it does not align to the chosen dimensions. A television set is neither face nor animal
while also not having a clear place in a sentiment dimension. To represent the diverse
set of emoji, we need many more dimensions. If we were to hand-pick the dimensions
we might, e.g., use concepts such as sentiment, seriousness, edibility, or gendered. But
picking the right dimensions and then manually rating emoji would be a very complex
and error-prone task. Instead, we use a neural network to learn appropriate dimensions
for our word embedding. While those dimensions then do not individually map anymore
to easily understood concepts, automating this process enables us to make use of much
more data than humans could incorporate in a manual design.

To create the word embedding, we use a Python implementation29 of word2vec30

[Řehůřek and Sojka 2010; Mikolov et al. 2013]. Word2vec implements two versions of a
neural network language model: continuous skip-grams and continuous bag-of-words.
For both algorithms, there is only one hidden layer in addition to the input and output
layers. We use skip-grams, where the vocabulary forms the input layer of the neural
network and context words form the output layer. Thus, after learning, the hidden
layer is tuned to predict the context (surrounding words) for an input word.

During training of our model, input words and their context are taken from individual
tweets. For example, consider the following tweet:

29http://radimrehurek.com/gensim/.
30https://code.google.com/p/word2vec/.
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For the input token , the context is given by surrounding other emoji and words.
Thus, when this tweet is used for training, it would strengthen connections in the
hidden layer that result in predictions of tokens like bliss, pure, or . In this example,
we would also train for a relationship between UI and . However, this pair is very
unlikely to occur elsewhere in our dataset, while the tokens birthday and likely occur
together many more times.

After training, the neural network is tuned to predict the likely context for every
input token. Hence, the output layer is a softmax regression classifier, outputting the
probability for each output token. If we feed to the neural network, it might, e.g.,
provide an output vector that assigns a high probability to the rain token. Keep in
mind that the input is a one-hot vector: All values are set to zero, except the position
representing the input token. While the hidden layer is a large matrix, a multiplication
with the input vector essentially just selects one row from this matrix. If two input
vectors result in the same output in the hidden layer, then their predicted context is
also equal. From this follows that if two tokens share a similar context, their hidden
layer weights must also be similar. We can thus use those weights directly to form the
word vector for our word embedding.

As discussed above, we need a higher number of dimensions for our embedding
to capture concepts of emoji. We chose a balanced 300-dimensional space for this:
between the 100-dimensional word2vec default and the 500-dimensions used in the
similar setup of Image2Emoji [Cappallo et al. 2015a]. We experimented with different
hidden layer sizes in the process, yet did not find noticeable differences. However, we
only tested layer sizes between 200 and 400 dimensions. Very small layer sizes are
likely not able to capture relationships between emoji that well. While we do not limit
the vocabulary of the model (a word vector is trained for each word in the corpus), we
ignore all words that occur less than 50 times. Given the large size of our dataset (after
splitting all tweets, based on whitespace, we are working with 228 million tokens), this
is very unlikely to affect proper words. However, it helps limit the size of the input and
output layers and thus helps with memory and time requirements of word2vec.

One advantage of word2vec is that the amount of training data that can be used is
not limited by memory. Thus, while our tweet database is 27GB large, we can stream
each tweet to the model during learning. We tokenize tweets by breaking them up at
whitespace and emoji positions after removing all punctuation (excluding punctuation
emoji such as ). This ensures, each emoji is an individual token, even when no whites-
pace separates it from a word or multiple emoji follow directly after each other. From
the stream of tokens, we filter out tokens that are hyperlinks or Twitter handles (e.g.,
“@_CHINOSAUR”).

In a final step, we split the model into two versions: one retaining all tokens and
one limited to only the 845 emoji tokens. For each token, we keep the 300-dimensional
feature vector, which are supplemented with frequency data for the emoji tokens. While
we concentrate on the analysis of the emoji-only model in this article, both versions of
the dataset are available as supplemental data to this article. We hope that they will
be useful as a base upon which to build novel emoji entry methods.

7.2.1. Exploring the Emoji Model. Once a word embedding for the tweet corpus is gener-
ated, it can be used to query for emoji similarity. As stated earlier, we use the Euclidean

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.



Beyond Just Text: Semantic Emoji Similarity Modeling to Support Expressive Communication 6:27

norm to derive distances between pairs of emoji. In addition to basic ranking, word
vectors also allow for more complex queries such as “what is like but not like ”
(answers according to our model, e.g., are , “cakeday,” or , i.e., other occasions for
presents that are not Christmas). For more information on vector compositionality in
word embeddings trained with word2vec, such as in the example above, see Mikolov
et al. [2013]. In this article, we do not further explore such multi-emoji relationships
but concentrate on pairwise similarity.

However, to get a more general idea of whether the model indeed learned relation-
ships between emoji, a visualization of clusters is useful. As the model is high dimen-
sional, it cannot be plotted directly. We use an implementation [Pedregosa et al. 2011]
of t-distributed Stochastic Neighbor Embedding (t-SNE) [van der Maaten and Hinton
2008] to reduce the number of dimensions from 300 down to 2 dimensions. Compared
to other dimensionality reduction methods, t-SNE performs well at capturing local
structure and making clusters in the data visually distinguishable.

The resulting visualization (see Figure 13) identifies several distinct clusters. On
the right side, e.g., we can see all clock face emoji close to each other, as well as
clusters of vehicles and writing-related objects. In the lower left, food and animals
form individual clusters. Here, subclusters around more specific themes can be seen as
well. For example, animals living in the water form a distinct group, as do sweets or
fruit. In the upper left all smileys can be found. A closer look reveals child clusters for
loving, happy, and unhappy faces. In general, we see some emoji that cluster together
tightly and others that are more loosely coupled to others. Examples of close clusters
are astrological signs (e.g., ), moon phases (e.g., ), blood types (e.g., ), or buildings
(e.g., ). However, other emoji do not seem to connect as closely, e.g., is further away
from others. But for some emoji this just shows that they are associated with multiple
clusters or less tightly bound, compared to others in the cluster. For example, the
(dragon) is not as tightly bound to the animal cluster as other animal emoji. Note
that while this visualization is useful in identifying groups of closely related emoji, it
does not show any global similarity. Thus, two emoji that are on opposite ends of the
visualization are not necessarily less similar than two emoji only half the width apart.

Instead of showing relatedness for all emoji, we can also have a look at smaller
groupings. Particularly interesting is which emoji are most related to a given one. As
we saw earlier, the annotation-based similarity is limited in that it can only capture
a category-centric notion of similarity. Instead, our emoji model allows us to query for
similarity due to related use of two emoji. In Table IV, we show a selection of emoji
with their respective 10 most related emoji. As can be seen, deeper connections are
revealed. For example, the is detected as being closely related to , while they
share no common Unicode annotations. Similarly, and also share no tags, yet are
closely related in our model. This is a first indication that our semantic model can
indeed capture more detailed relationships between emoji. We confirm this later on in
a crowdsourced experiment.

Another measure of model quality is whether it captures emoji diversity. It would,
e.g., be problematic if all emoji were slightly similar, with no strong differences be-
tween pairs. However, Figure 14 shows that the similarity between emoji is actually
heavily skewed. From all possible emoji pairings, only some are closely related, with
the majority of pairings exhibiting medium similarity. This is a reassuring result as
we indeed would expect the vast number of emoji pairs to only be slightly similar. For
example, we would expect emoji such as to only exhibit close relationships to a few
other animal or ocean-related emoji. With a larger range of other emoji, like , , or

, we would not expect much of an overlap in actual use and thus no large similarity.
We also wanted to make sure that similarity is indeed specific to the individual emoji.

A naive approach could, e.g., always rank high, as this common emoji often occurs
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Table IV. Top 10 Most Related Emoji for Several Example Emoji

Fig. 14. After building the emoji similarity model, we can investigate how emoji relate to each other. On
the left, we can see that similarity between emoji follows a rather skewed distribution. More closely related
emoji pairs are found in the long left tail, while most pairs bunch together with medium distance. On the
right, we explore whether there are some emoji that dominate the emoji similarity. For each of the 845 emoji,
we sort the remaining 844 emoji according to the pairwise similarity. We can then, e.g., look at the set of all
emoji ranked most similar. The variability (for each of the 844 possible list positions) describes how diverse
such a set is. We aggregate several ranks here to better show the change in variability.

together with others, biasing the model toward frequent emoji. Hence, we looked at
whether it was always the same emoji being highly ranked (e.g., again), or whether
there was variability. Here, variability is defined as the size of the rank set (e.g., the
set of all emoji ranked second most similar) over the number of emoji (845 in our case).
For example, if each emoji is ranked most similar once, the variability would be 1.0.
Figure 14 shows how variability varies over the range of ranks. There is no strong bias,
and many different emoji are ranked first. For example, the most highly ranked emoji
exhibit a variability of about 0.56, meaning that more than half the emoji appear at
that rank (keep in mind this is always in relation to a second emoji; thus there are 845
individual rankings).

Finally, Figure 15 shows a hierarchical view of the emoji model. Where Figure 13
shows a global view of similarity, here related emoji are found in nearby nodes of the
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Table V. Top Five Most Related Tokens and Emoji for Several Example Tokens

hierarchy. To generate this view, we use agglomerative clustering wherein nodes are
successively merged (based on minimal distance) until a root node has been determined.
We can look closer at one branch of the hierarchy:

Here, we see that vehicles cluster together, with emergency and heavy vehicles form-
ing their own subclusters. However, such a rigid clustering also creates artifacts due
to the merge criteria (we, e.g., only find in a nearby branch). We use Ward’s criterion
here, which tries to minimize the variance of merged clusters. A different approach
would be to minimize the maximum distance in a cluster, more heavily penalizing
outliers in a cluster.

However, not all odd locations are due to the clustering. For example, note that
(showing the Tokyo Tower) is shown as very related to —more so than to . Thus,
people apparently interpret it erroneously as the Eiffel Tower. Such interpretations can
be challenging: Should keyboards arrange emoji as intended or as interpreted? And
should the layout for Japan (where users probably recognize the tower) be different
than elsewhere?

7.2.2. Exploring the Full Model. While we concentrate on the emoji-only model in this
article, we actually have a more complete model for all tokens we used in training the
emoji-only model. Here, we take a short look on how those other tokens relate to emoji
and each other. Note that because we only trained on tweets, the word model has lower
quality coverage than other models trained through word2vec. The usual approach is to
include a larger secondary corpus to build a more in-depth model of word relationships.
A common method, e.g., is to also use the English Wikipedia corpus during training.

Table V shows rankings for five example tokens. We show ranking for other word
tokens and emoji separately, because other words are commonly much more related
than emoji. Unsurprisingly, it can be seen there is strong semantic connection to dif-
ferent spellings of the same word. While we do not apply word stemming, this could be
used to prune the vocabulary before building the model, in order to omit tokens such
as “birthdayyyyy.” But we can also see that the closest matching emoji for the given
query tokens capture the given token quite well. For example, all birthday-related
emoji match the theme and could be used in birthday messages.
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7.3. Evaluating Model Performance

So far, we have shown overviews of the models and examples that demonstrate the
quality of the results. However, we wanted to confirm the similarity predictions with
data from a second source. Hence, we gathered human ratings of emoji similarity to
compare with our computed similarity data from both the tag-based and the semantic
model.

We ran our crowdsourcing study on CrowdFlower,31 which, in turn, recruits contrib-
utors from a larger range of channels.32 In each task, we showed contributors 10 emoji
pairs and for each asked them: “How related are these emoji?” In the task instructions,
we further specified that: “Two emoji could be related because they describe a similar
concept, or because they are commonly used together. If you are unsure, think about how
likely you are to use the two emoji together in a message.”

Contributors gave their response on a seven-point Likert scale ranging from “unre-
lated” to “very related.”

To ensure rating quality, we designated a set of test questions for our task. We
drew test questions from the emoji pairs where our semantic model indicates strongest
similarity. After manually checking appropriateness and quality of those pairs, we
selected the 15 most closely related ones as test questions. The selected pairs were

In each task, one of the questions was automatically included from this test question
set. If contributors did not answer this question correctly (indicating some level of
relationship), they were excluded from the task as they are deemed unreliable.

The rest of the emoji pairs to rate were drawn from two different groups: (1) the
5% most related emoji pairs (per our semantic model), and (2) the remainder of emoji
pairs. We excluded emoji pairs already used as test questions from this selection. The
total number of emoji pairs is thus given as:

(845
2

) − 15 = 356, 575. From each of those
groups, we randomly selected 45 pairs for inclusion in the crowdsourcing study. Hence,
we use 45 out of the 17,829 pairs in the top 5% and 45 out of the 338,746 remaining
pairs. For each of those 90 pairs, we collected 20 human ratings for a total of 1,800
trusted judgments. Those 1,800 judgments are trusted in the sense that CrowdFlower
deems the raters reliable. Contributors are flagged as unreliable if they do not correctly
responded to the test question in their task. Furthermore, before being served an actual
tasks, contributors had to take a quiz composed of just test questions which, when
failed, immediately flags them as unreliable.

In total, we had 52 participants contribute trusted judgments in our study (all ratings
are available as supplemental material to this article). The median (and maximum)
number of judgments per participants was 60. Contributors hailed from a wide selection
of places, but most of them were from India (6), Serbia (5), Venezuela (4), Malaysia (4),
and Turkey (3). Overall, trusted contributors provided 2525 judgments (if we include
the 98 rejected participants, who failed the quiz or are untrusted, the total number
of judgments is 3,265). However, 725 of those were test questions and only used to
determine contributor reliability. This leaves us with a final 1,800 judgments. Agree-
ment of raters, per Krippendorff ’s alpha, is 0.39 (95% bootstrapped confidence interval:

31https://www.crowdflower.com/.
32https://www.crowdflower.com/labor-channels/.
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Fig. 16. Spearman’s rank correlation coefficient for comparisons of human raters, the semantic, and tag-
based models. For comparison, we also show how human raters correlate among themselves (random split
between workers). All correlations are significant. Error bars show bootstrapped 95% confidence intervals.

0.30–0.48). This shows rating relationships between emoji was no easy task for raters.
We can thus expect some noise when relating this back to our model predictions.

7.3.1. Results. In our analysis, we only consider ratings for the top 5% and remainder
groups but exclude the test questions. Emoji pairs in the top 5% percentile, per our
semantic model, received a median rating of 4 (higher equals more related) in the 900
crowdsourced ratings. On the other hand, the 900 emoji pairs from the remainder of
the dataset only received a median rating of 2. We used Mann–Whitney’s U test to
compare the two groups and found a significant effect; U = 544, 873.0, p < 0.0001.
Thus, emoji pairs considered the most related by the semantic model are also seen as
significantly more related by human raters.

Contributors also had an easier time rating emoji pairs from the top 5% group than
from the remainder group. Krippendorff ’s alpha for the former is 0.42 (95% boot-
strapped confidence interval: 0.32–0.52), while the ratings for the remainder group
only show an alpha value of 0.20 (95% bootstrapped confidence interval: 0.07–0.35)
This is likely due to the top 5% group having more within-group similarity (per our
semantic model), while the remainder group contains many emoji pairs with no clear
connection. In such a case, some raters might see connections where others see none.
For example, the relationship between (barber pole) and is only apparent in some
cultures and would likely lead to a very different rating by Americans and Germans.

So far, we have shown that our model’s predictions are accurate on the level of dis-
tinguishing the top 5% most related emoji from the rest. However, we also wanted to
see whether similarity estimation holds on the individual emoji pair level. For this,
we check whether there is a significant correlation between the similarity scores given
by the human raters and by the two models. All correlations in this section are given
via Spearman’s rank correlation coefficient rs. See Figure 16, for an overview of how
correlation varies for different groups and comparisons. Figure 16 also shows boot-
strapped 95% confidence intervals for correlation, while we here only report averages.
Over all emoji pairs with human ratings, we found that similarity predictions of the
tag-based model and the human raters were correlated; rs = 0.50, p < 0.0001. The
distance predictions of the semantic model and the human similarity ratings showed
similar correlation; rs = −0.37, p < 0.0001. Correlation between random subsets of
human raters is also at about the same level; rs = 0.39, p < 0.0001.

Comparing human ratings and the tag-based model for the top 5% group shows
significant correlation; rs = 0.48, p < 0.0001. The same holds for the semantic model;
rs = −0.31, p < 0.0001. Similarly, human ratings and tag-based similarity predictions
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for the remainder group are significantly correlated; rs = 0.28, p < 0.0001. Finally, a
significant correlation is also observable when comparing human raters and semantic
model predictions; rs = −0.11, p < 0.001. Within the human raters, the top 5% group
shows higher correlation than the remainder group; rs = 0.41, p < 0.0001 and rs =
0.27, p < 0.0001.

7.3.2. Discussion. In our crowdsourcing study, we saw significant correlation between
human raters and both the tag-based and the semantic models. This shows that both
models indeed capture differences in emoji similarity. However, there are differences
between the two models. While both align with human raters, as we have seen, they
sometimes disagree on the similarity of emoji. This is due to them focusing on different
aspects of similarity: The tag-based model denoting whether two emoji show the same
or a similar thing, while the semantic model captures a more fuzzy notion of related-
ness, based on co-occurrence in or similar use. We hence need to further explore the
differences between the two models.

7.4. Comparing Tag-Based and Semantic Emoji Models

As we have seen, both models make similarity predictions that align with human
raters. Yet, their predictions are not the same and they both capture different aspects
of emoji similarity. Here, we take a closer look at where the two models agree the most
and the least.

In this section, we define agreement between the two models as the amount of overlap
in the emoji similarity ranking they generate. For example, we could ask both models
which 10 emoji are most similar to , giving us two sets A and B. The agreement is
then given as follows:

,
(3)

which is equivalent to the Jaccard similarity coefficient from Equation (1). Note that
we do not consider rank position in this definition of agreement, but only whether it is
included in the other result set or not. After all, for reasonably small result set sizes
it does not matter much which rank position an emoji holds. For example, whether an
emoji is 3rd or 4th in an eight item result set has no strong impact on retrieval time
for that emoji if all items are shown at once (e.g., in the autocorrect bar).

Figure 17 shows agreement between the two models for varying sizes of rankings.
For example, when we only consider the top-ranked emoji, the two models agree about
20% of the time. Naturally, increasing the size of the respective result sets increases
agreement (at size 844 every other emoji would be included and agreement would
be a guaranteed 100%). Overall, there is substantial disagreement between the two
methods. However, the agreement is not equal over all emoji but differs depending on
which emoji are considered. Figure 17 thus also shows the five emoji where the two
models agree and disagree the most. We consider agreement over different ranking
sizes when computing this average per-emoji agreement.

The two models have high agreement for emoji with a straightforward interpretation
but disagree where interpretation is more open. For example, is likely to allow for
less flexibility in interpretation than . The later could be used to describe actual fires,
trends that are hot, food that is spicy, people that are attractive, stores that are busy,
and possibly many more scenarios. On the other hand, trains do not lend themselves
to equal levels of ambiguity in interpretation.

We can take a closer look at these 10 extreme examples of agreement and disagree-
ment between the two emoji models. For each of those emoji, Table VI shows the 10 most
similar ranked emoji by each of the models. As can be seen, where there is agreement
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Fig. 17. We derive agreement between the semantic and the tag-based model from the overlap in the top-
ranked emoji. For example, the two models, on average, have 30% of the top five emoji in common. Agreement
increases as more ranks are considered. Error bars show bootstrapped 95% confidence intervals. On the right,
we highlight the five emoji with the respective highest and lowest agreement (averaged over different rank
sizes).

the sets largely overlap. Even the ranking within the two results is close. However,
when there is strong disagreement, the two result sets are very dissimilar. Yet, the way
the results differ can tell us a lot about the strong suit of each of the two models.

A good example of model differences is their ranking for the emoji. The semantic
model makes several predictions that use battery as a stand-in for general energy level.
For example, drinking a to wake up, or the quality of a wireless connection . We can
also see a direct link between the battery and the phone it is often in, with emoji like
or . Likewise, could be used to indicate a “dead” phone but could also indicate that
a user is very tired. While the presence of the emoji might be puzzling at first, there
is a strong connection between and . As an emoji combination, is sometimes
used to reference a meme on Twitter.33 On the other hand, the tag-based model cannot
make good predictions for the emoji. This is primarily due to the fact that this emoji is
only annotated with two tags: “battery” and “object.” Yet the “battery” tag is not shared
with any other emoji and the ranking thus degenerates to a random selection of other
objects. One could add additional tags to emoji, but another option might be to find
connections between tags. For example, there is also the “electricity” tag, which is used
by and , but, surprisingly, not by itself. The same holds for the “electric” tag,
which is used for five emoji, yet also excludes .

Poor tag coverage is a fundamental problem of the tag-based model. Overall, 1,175 dif-
ferent tags are used to describe the 845 emoji we investigated. Yet, while has 15 tags,
12 other emoji only are described by two tags (e.g., , or ). These are the extremes
though and the median number of tags per emoji is 5. The different tags are very un-
evenly distributed though. While 274 emoji are tagged as “object,” 215 as “symbol,” 199
as “nature,” and 184 as “person,” use count quickly goes down and 719 tags are only
used by a single emoji. For tag-based similarity, these single-use tags are detrimental
and do not help with establishing relationships between emoji.

An emoji with better tag coverage is , which is annotated as “body,” “clothing,”
“footprint,” “person,” and “print.” Hence, the tag-based model matches this emoji
with other body parts and clothing items. This is an emoji the semantic model does
more poorly with. However, it does identify a connection between and walking/
movement-related emoji (dash symbol) and . In fact, this connection to walking
is not identified by the tag-based model. Checking back with the emoji clusters, as

33http://blog.getemoji.com/post/134792876960/what-does-the-frog-and-teacup-emoji.
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Table VI. The Semantic and The Tag-Based Model Differ in What They Capture About Emoji. Here, We Explore
the Differences for the Five Emoji Where Agreement (As per Figure 17) Between the Two Models is Lowest and

The Five Where it is Highest. Note That in This Set Only Sees a High Frequency of Use (It Was The 23rd
Most Common Emoji in Our Twitter Dataset)

shown in Figure 13, we can see that does not connect well to larger agglomerations
of related emoji. Additional training data might help strengthen some connections:
We only collected 14,609 tweets containing .

Overall, the closer look at these emoji strengthens the impression that object-related
emoji allow for more consensus in similarity estimation than emoji allowing for more
abstract interpretations. However, it is precisely these emoji that add to the vibrancy
of emoji use in messaging. Adding a when going camping makes the message more
colorful and playful. Yet, the does not allow for a range of expression as wide as, e.g.,
the emoji.
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8. CONCLUSION

In this article, we have outlined and explored the space of emoji text entry. Starting
from an introduction to emoji, we first looked at how emoji are used and how well
current input methods support them. As we showed in a study of the state of the art,
arrangement of emoji into categories is a weak spot of current emoji keyboards. Such
organizational problems were also described in the study of EmojiZoom [Pohl et al.
2016]. Participants preferred the two-dimensional layout per the Unicode sorting to the
ordering of the Google keyboard (which slightly deviates from the Unicode one). Hence,
we identify improvements to emoji ordering as an important direction for research on
emoji.

The large number of emoji makes it hard to manually optimize emoji ordering though.
We have motivated building an emoji similarity model as a way to allow automatic opti-
mization of or reasoning about emoji layouts. This would also scale to different cultural
context, e.g., by only considering German language tweets for a German emoji model.
We have presented two candidate models to establish emoji similarity: (1) based on
emoji annotations and (2) based on semantic information on emoji. In a crowdsourcing
study, we have shown that both models correlate with human raters. Yet, what each
model captures is quite different. Direct comparison of the two models indicates that
semantic similarity is able to capture more nuanced relationships of emoji. However,
this is prone to more noise than tag-based comparison. On the other hand, tag-based
approaches have poor coverage for many emoji. As the semantic similarity approach
does not rely on manual annotation, it scales better with the large number of possible
emoji pairings.

Emoji have seen strong uptake and cultural influence. The fact that they are part
of the Unicode standard also gives these characters a likely higher permanence than
application-specific smileys or stickers. The Unicode Character Encoding Stability Poli-
cies34 explicitly state that “Once a character is encoded, it will not be moved or removed.”
Hence, emoji are here to stay.

But, as we discussed, entering emoji is quite different than entering text. Emoji have
some unique characteristics, such as their lack of a clear phonetic interpretation and
their visual nature. Existing keyboard layout optimization also does not translate well
to emoji entry. Instead of a layout optimized for entering character sequences, emoji
require input methods that optimize for search and exploration. Our emoji similarity
model can inform this process. As we have shown, this model can be used to structure
the emoji space and thus, e.g., inform category assignment. It could also be used to
retrieve emoji fitting a current context (text or other emoji). Yet, while making emoji
available via a retrieval method might work for a few users, it is likely inadequate for a
large number of users. Exploration of available emoji is a critical aspect in emoji entry.
While familiarity with all letters of Latin script is assumed in other keyboards, emoji
keyboards cannot make the same assumption.

Entering emoji still means entering text, not uploading an image. Compared to
entering Latin script though, appearance plays a crucial role. For example, while ,

, , , , and all show closed books, they each have a distinct color. While there
might be a clear mapping when users actually want to describe, e.g., a red book, most
of the time the choice of book emoji comes down to taste. The word book itself does
not pose the same trouble. It is only once the book becomes a notebook or novel that
the meaning changes. As the choice of book emoji thus depends on taste and might be
different depending on mood, it is not sufficient to just show one of them. Exploring the

34http://unicode.org/policies/stability_policy.html.
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Fig. 18. Unicode characters can be combined to build emoticons more diverse and expressive than those
restricted to only ASCII characters. Shown here are kaomoji: the Japanese form of emoticons.

available emoji and picking the right one for the current situation are critical aspects
of emoji entry.

This visual variability of emoji relates back to where we initially started: Emoji can
add playfulness to messaging and allow users to express themselves on a new level.
The most frequently used emoji in our Twitter dataset all add to a text on the emotional
level. Whether a message is followed by or can dramatically change the tone. For
example, consider receiving either “Susan’s coming over later ,” or “Susan’s coming
over later .” Emoji are a first to make access to this kind of expression easy and
ubiquitous.

Yet, the emoji entry we explored in this article is but one method to add such level
of expression to messaging. As already noted in Section 1, emoticons are the classical
example of this kind of content. However, there are many possible extensions here and
other means to give expressive power to users. We take a closer look at those methods,
“beyond emoji entry,” that are possible paths to support the underlying goal: allow
users to communicate in a playful and casual way.

8.1. Outlook: Beyond Emoji

So far, we have focused specifically on emoji, yet the Unicode standard actually enables
a much wider range of textual expressions. As shown in Section 1, several of the
characters encoded in Unicode can also be combined to form emoticons (emotion icons).
Other characters can be appropriated to stylize text.

Where classic emoticons like :), O_o, or :D only make use of ASCII characters, a
much wider variety of emoticons is possible when including more exotic characters
(for some examples see Figure 18). One of the more common ones, e.g., is the look
of disapproval35: . This emoticon repurposes the (ha) letter from the Kannada
alphabet to symbolize an eye. However, entering such emoticons is not an easy task.
Some soft keyboards make emoticons available (e.g., the Windows Phone 8.1 keyboard
has a tab for this which contains emoticons such as ), but the selection is small.
A large number of third party apps try to fill this gap and include emoticons ready
for use via copy and paste—an approach also supported by dedicated websites, such
as http://www.disapprovallook.com disapprovallook.com. The problem with all these
methods is that it only allows users to use what is already given. However, it makes
entering novel emoticons restrictively hard and relegates experimenting with textual
expression to the desktop. While users could install a range of keyboard languages to
access more characters, such keyboards are tailored to text entry in that language,
not repurposing of individual characters—some keyboards also use input methods not
familiar to regular QWERTY users. As keyboards on mobile devices have moved to have

35http://knowyourmeme.com/memes/ಠ_ಠ-look-of-disapproval.
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Fig. 19. Unicode characters can be used to stylize text. The first four examples use characters from the
enclosed and mathematical alphanumerics blocks, while the zalgo text uses combining marks.

Fig. 20. Some third-party keyboards allow GIF entry. Shown here are (1) Fleksy, (2) Ginger Keyboard, and
(3) EmojiKeyboard Pro.

dedicated emoji entry modes, we can envision keyboards moving beyond this state of
the art and making an even larger character set available.

Unicode characters can also be used to stylize Latin script (see Figure 19). Here,
instead of composition, appearance is changed by using stand-in characters. For ex-
ample, instead of U+6B, one can use U+1D528 when entering the letter k to get the
fraktur version . The Unicode mathematical alphanumerics block, e.g., contains sev-
eral stylized variants of Latin letters, which allows us to effectively control the font of
messages where no font information can be transmitted. Finally, Unicode also contains
combining marks that are designed to modify other characters. While this can, e.g., be
used as a way to add accents to characters (such as in times.ttfa), it also allows us to
scramble text. One variant of this is zalgo36 text (Figure 19, right), which strives to give
text an appearance alluding to insanity. As with Unicode emoticons, there is currently
no convenient way to add combining marks to characters on mobile devices. However,
some keyboards relegate characters with diacritics to menus attached to the respective
keys (e.g., the German keyboard on Windows Phone 8.1 offers selection of a or from a
popup, shown after long pressing the a key). Such a mechanism could potentially be
extended to larger sets of alternative characters and diacritical marks.

But Unicode characters, as emoji or emoticons, are the only one way expression is
added to messages. Another popular approach is to add images, e.g., in the form of
memes or animated GIFs. Such content was just recently shown by Bakhshi et al.
[2016] to be significantly more engaging than just text. The Unicode consortium itself
notes that, in the long run, applications should support arbitrary images in text:

The longer-term goal for implementations should be to support embedded graph-
ics, in addition to the emoji characters. Embedded graphics allow arbitrary emoji
symbols, and are not dependent on additional Unicode encoding.37

36http://knowyourmeme.com/memes/zalgo.
37http://www.unicode.org/reports/tr51/#Longer_Term.
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Today, several third party keyboards such as Flesky,38 Ginger,39 or EmojiKeyboard
Pro40 already also allow “typing” images. Such images are either found by browsing
tags or searching with a phrase (see Figure 20 for several interface examples). One
common use of such images is in the form of a reaction gif ,41 where an animated gif is
used to represent approval, happiness, shrugging, or eye rolling.

With emoticons, emoji, and images, mobile text entry faces two challenges: (1) how
to make the large set of existing content available, and (2) how to allow users to create
their own content for personalized expression. For emoji, we only need to solve (1), yet
if arbitrary images and emoticons are allowed, creation becomes a crucial aspect. How-
ever, while there are several web-based tools and browser extensions for styling text
or creating memes, many of those are not easily accessible on mobile devices. Yet being
mobile need not mean that users are necessarily restricted to existing content. In fact,
as demonstrated by 12Pixels, custom-tailored applications are able to allow creative
making on mobile device much more restricted than today’s smartphones [Willis and
Poupyrev 2010]. As text can often be insufficient as a means to communicate emotions,
this kind of visual language can fill in the gaps and offer an additional means of ex-
pression. If we restrict input to just text or make it hard to express emotions, we cannot
communicate with each other as effectively as possible.
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Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

Henning Pohl and Roderick Murray-Smith. 2013. Focused and casual interactions: Allowing users to vary
their level of engagement. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’13). ACM, New York, NY, 2223–2232. DOI:http://dx.doi.org/10.1145/2470654.2481307

Henning Pohl, Dennis Stanke, and Michael Rohs. 2016. EmojiZoom: Emoji entry via large overview maps. In
Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices
and Services Companion (MobileHCI’16). DOI:http://dx.doi.org/10.1145/2935334.2935382

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 6, Publication date: March 2017.

http://dx.doi.org/10.1145/2207676.2208659
http://dx.doi.org/10.1001/archderm.1988.01670060015008
http://dx.doi.org/10.1145/1240624.1240764
http://dx.doi.org/10.1145/2208636.2208658
http://dx.doi.org/10.1016/j.ijhcs.2013.09.007
http://dx.doi.org/10.1145/2642918.2647382
http://dx.doi.org/10.1145/2556288.2557324
http://dx.doi.org/10.1145/2556288.2557324
http://dx.doi.org/10.1145/2628363.2628405
http://harlotofthearts.org/index.php/harlot/article/view/186/157
http://harlotofthearts.org/index.php/harlot/article/view/186/157
http://dx.doi.org/10.1145/1378063.1378151
http://dx.doi.org/10.1518/001872000779697999
http://dx.doi.org/10.1371/journal.pone.0144296
http://dx.doi.org/10.1145/2470654.2481307
http://dx.doi.org/10.1145/2935334.2935382


6:42 H. Pohl et al.
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