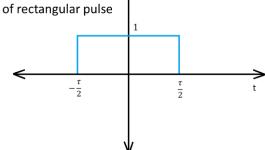

Communication Theory

Communication system operates on input message signals according to its characteristics.

- Message signal m(t) originates from an information source in the form of voice, image, video, data etc. These signals are generated using transducers and are mostly baseband.
- Transmitter includes signal processing such as low-pass filtering to convert message into a band-limited signal and modulating (amplitude, frequency, phase etc.) it for transmission.
- Channel is a transmission media such as fiberoptic, copper, twisted pair, wireless etc.
- Receiver involves de-modulation and signal extraction.



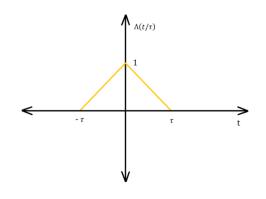
$$u(t - t_0)$$

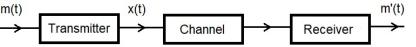
$$u(at) = u(t)$$

Rectangle Pulse

$$\Pi(t/\tau) = \begin{cases} 1 & \left| \frac{t}{\tau} \right| < 1/2 \\ 0 & \left| \frac{t}{\tau} \right| > 1/2 \end{cases}$$

au is the total time period of rectangular pulse

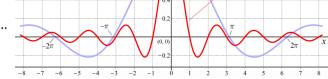



 $\Pi(t/\tau)$

Triangular Pulse

$$\Lambda(t/\tau) = \begin{cases} 1 - \left| \frac{t}{\tau} \right| & \left| \frac{t}{\tau} \right| < 1 \\ 0 & \left| \frac{t}{\tau} \right| > 1 \end{cases}$$

 2τ is the total time period of triangular pulse



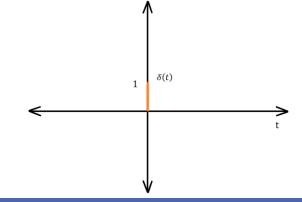
Sinc Signal

$$sinc(at) = \frac{\sin(a\pi t)}{a\pi t}$$

$$sinc(at) = 0$$
 $at = \pm 1, \pm 2, \pm 3$.

$$sinc(at) = 1$$
 $at = 0$

Above given function is a normalized function.


Sampling function is an unnormalized function $f_{sampling}(at) = \frac{\sin(at)}{at}$

Unit Impulse Signal

$$\delta(t) = \begin{cases} 1 & t = 0 \\ 0 & t \neq 0 \end{cases}$$

Properties

 $\delta(kt) = \frac{1}{|k|}\delta(t)$

